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Abstract: 39 

Model averaging for dichotomous dose-response estimation is superior to estimating the benchmark 40 

dose from a single model; however, there remain several challenges with regard to implementing these 41 

methods in general analyses before model averaging becomes ready for risk assessment practice. Among 42 

these challenges, questions remain on the number and type of the models considered, what to do when 43 

model degeneracy occurs within the set of models considered, and the comparison of model averaging to 44 

other alternative methods such as nonparametric dose response modeling. For benchmark dose 45 

estimation, there is a scant literature of Bayesian techniques that allow the inclusion of prior model 46 

information for both the models and the parameters of the constituent models, which would take full use 47 

of the Bayesian paradigm. This manuscript introduces an approach that addresses all of these questions 48 

while providing a fully Bayesian model averaging framework; further, in contrast to posterior-sampling 49 

methods, we approximate the posterior distribution of the parameter of interest (the benchmark dose).  50 

The approximation allows for accurate computation while maintaining the speed of maximum likelihood 51 

estimation, which is crucial in many applications such as the screening of massive high throughput 52 

datasets.    In what follows, we develop the method, apply this method to real data, and compare it to 53 

other approaches through simulation study under a large variety of true underlying dose-response 54 

curves, some of which are avoid parametric model specification as they are generated from monotone 55 

stochastic processes. Through the simulation study, the method is shown to be superior to a number of 56 

published software tools that represent competing potential and traditional methods for the dose-57 

response analysis of dichotomous data.   58 

Keywords:  Benchmark Dose Estimation, Monte Carlo Simulation, Quantitative Risk Estimation  59 

 60 

 61 

 62 

 63 
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1 Introduction 64 

 Model averaging (1-4) is a technique for inference over multiple parametric models; it estimates 65 

predictor-response relationship as a convex weighted sum of individual models and is one solution to the 66 

problem of model uncertainty in risk assessment. There are many different model averaging approaches 67 

dedicated to dose response and benchmark dose estimation (5-11). Recent research showing that 68 

traditional quantitative risk assessments based upon a single “best model” have poor statistical 69 

properties  (6, 9) and that model averaging is superior to the single model approach (6-8) has led some 70 

regulatory Agencies to recommend model averaging over the single model approach (12).   Despite its 71 

superiority, there are some remaining technical challenges that need to be addressed before model 72 

averaging can be comfortably adopted as standard risk assessment practice.  This article proposes a 73 

methodology that overcomes these challenges while demonstrating its superiority over suggested 74 

practice defined in the US EPA’s benchmark dose (BMD) technical guidance document (13) as well as 75 

other approaches currently in the literature (10, 14). 76 

 The challenges seen in model averaging are twofold: the number and type of parameters in the 77 

model and the issue of model degeneracy for nested models. Model averaging is based upon individual 78 

parametric models chosen by the modeler, and the performance of the approach is dependent upon the 79 

models chosen. Wheeler and Bailer (7) investigate this approach using two model sets showing that the 80 

statistical results differ depending on the number and type of the parametric models included in the 81 

average. Despite other studies (8) showing the difference is minimal in practical terms, the question still 82 

remains “what models should be included in the model average to estimate risk?”  As risk assessors 83 

could conceivably change the models included in the average resulting in different results simply based 84 

upon the modeler’s choices, this is a significant concern for risk assessment practice.  85 

The observation that many of the models degenerate into other models as special cases 86 

compounds this problem.  Some models have bounds on parameters such that when some parameters are 87 
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estimated as equal to a bound, the models degenerate into a single model; this leads to concerns of 88 

implicit bias in the results by essentially including the same model in the average multiple times. For 89 

example, the Weibull and the multistage 2-degree model can degenerate into the quantal linear.   90 

Because of this issue, there are problems in the construction of the model weights and inference.  91 

To solve these problems, this article proposes a Bayesian (15) approach different from previously 92 

suggested Bayesian approaches (9, 10). Our proposed approach solves the problems through the inclusion 93 

of prior information.  Specifically, strict bounds are replaced by “soft bounds” defined by mildly 94 

informative prior distributions for the individual parameters of the models included in the analysis.  95 

These distributions put low prior probability on regions often defined outside the boundary of the 96 

parameters.  For example, the US EPA’s BMD technical guidance (13) recommends constraining the 97 

bounds of the shape parameter of the Weibull model  to be greater or equal to 1, because values less than 98 

1 lead to an infinite slope of the dose-response curve at dose zero. Our proposed priors allow the shape 99 

parameter to take any positive value, but place less than 1% prior probability to values less than 1.  This 100 

model will still fit supralinear curves, but such shapes will only get a high weight if models that are 101 

more parsimonious do not describe the data well and the data support them.  However, in the cases 102 

where there are limited data, the shapes of the models are limited to dose-response shapes that 103 

frequently seen in practice.  104 

A further advantage of this approach is that it allows for a single model suite across all data sets.  105 

Because the parameters are restricted through their prior distributions, the model average will work for 106 

models that have more parameters than there are data points. As the models can be included regardless 107 

of the degeneracy issue and the number of data points, the approach allows for a large suite of model 108 

across many different study designs.  109 

The manuscript is organized as follows: Section 2, describes the model averaging method and 110 

the prior choices as well as justifications for their use.  Section 3 gives an analysis on several real 111 
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dichotomous datasets. Section 4 outlines a comprehensive simulation study of the method and gives the 112 

results comparing it to current practice.  113 

2 Model 114 

 Consider an animal toxicology experiment with m doses d1,…dm and  n1,…,nm animals per dose 115 

group.  For this experiment, let y1,…ym  be the number of positive responses observed in each dose 116 

group. It is frequently assumed that yi ~ binomial( π(di), ni), where π(di) is the probability of adverse 117 

response at dose di. To estimate π(di) given y1,…ym , π(di) is often assumed to be a parametric function 118 

of dose.  For example, the current US EPA Benchmark Dose Software (BMDS) (16) can estimate π(d) 119 

using one of nine dose-response functions.  Picking a single model (e.g., any single model in the US 120 

EPA BMDS suite of models) may result in misrepresentation of the true underlying dose-response 121 

relationship and significant model uncertainty. Bayesian Model averaging (1, 3) develops a probabilistic 122 

framework to incorporates inference from the models considered.  123 

 We use these same models in the model averaging procedure, but place priors over the 124 

parameters of each model.  The priors place a high probability over shapes commonly seen in practice 125 

and lower probability on other dose-response curves that may be unreasonable.  For example, when 126 

using the method of maximum likelihood to estimate the parameter shape parameter, α, of the Weibull 127 

model (described below), EPA constrains this value to be less than 18 (16). Values near 18 result in a 128 

hockey stick-shaped dose-response curve that implies the probability of an adverse event goes from 129 

background to 100% in an extremely small dose range. Thus, high values of this parameter are unlikely, 130 

and the proposed prior puts exponentially decreasing weight on values of α near 18 and higher. This 131 

results in the Bayesian estimate of this parameter to be smaller than its equivalent estimate made using 132 

maximum likelihood.  This is especially true in cases where there are limited data on the dose-response 133 

curve; however, when there are sufficient data one sees minimal differences between the Bayesian 134 

estimate and the method of maximum likelihood.  Further, by placing priors that ensure positivity of the 135 
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parameters, instead of the strict bounds seen with maximum likelihood, the prior prevents models from 136 

degenerating into other models. Further, if one model is close to degenerating into another model, the 137 

more parsimonious model will be preferred over the more complicated model in the average.  138 

2.1 Models Considered 139 

 140 

The nine models used in the modeling suite for the present methodology are listed in Table 1, 141 

along with the priors for the individual model parameters.  All priors are specified for dose-response 142 

curves for doses on [0,1] interval where 1 is the maximum tested dose.  For dose-responses not in this 143 

range, doses are rescaled in relation to 1 being the maximum dose; the new data set is used in all fitting 144 

procedures with all BMD and BMDL values rescaled in relation to the maximum dose.  145 

Model Averaging 146 

 For a given dataset D and a model Mk, we fit each model Mk individually and compute the 147 

posterior distribution of the BMD, i.e., gk(BMD | Mk, D).  The posterior density of the model averaged 148 

BMD is  149 

 𝑔𝑚𝑎(𝐵𝑀𝐷) =  ∑ 𝜋𝑘(𝑀𝑘|𝐷)𝑔𝑘(𝐵𝑀𝐷|𝑀𝑘, 𝐷),9
𝑘=1  (1) 150 

where πk is the posterior probability of model Mk given the data. The BMD and BMDL are then 151 

computed from this posterior distribution. More specifically, the point estimate of the BMD is taken as 152 

the median of this density and the BMDL is taken as the 100*γth percentile for appropriately low 153 

confidence level γ. Model weights πk are approximated from using the Laplace approximation (3). 154 

 The posterior distribution described in (1) is approximated using a Laplacian approximation (17, 155 

18).  The approximation is similar to the Model Averaged Profile Likelihood (MAPL) approach of 156 

Fletcher and Turek (19).  However, while MAPL relies on deterministic calculations, our approach 157 

incorporates prior information in that it uses the marginal profile density (18, 20) of the BMD.  In other 158 
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words, both the likelihood and prior are used.   The method consists of two steps. First, one develops 159 

model-specific posterior distributions for the parameter of interest (eliminating other, “nuisance” 160 

parameters); and second, a weighted combination of the model-specific distributions is taken.  The 161 

model-specific distribution is defined by treating profile distribution bounds as quantiles of a marginal 162 

posterior distribution for the parameter of interest, and the relation to the present approach and the 163 

MAPL approach is justified asymptotically (21, 18).  The full explanation of this approximation is 164 

described in the supplement.  165 

Our approach can be related to the MAPL framework by substituting the posterior distribution 166 

for the likelihood in each of the steps.   Instead of information criteria based weight (e.g., see the model 167 

averaging literature (1, 3, 4)) we use the Laplace approximation for model weights.  This method 168 

approximates an integrated likelihood using the posterior maximum a posteriori (MAP) estimate and 169 

Hessian of the log-posterior.  Further the profile posterior density is used instead of profile likelihood.  170 

2. 2 Weight Calculation 171 

 In previous approaches to benchmark dose inference using model averaging (e.g., Bailer et al. (5), 172 

weights were calculated using either the BIC or AIC, where the AIC is used primarily in frequentist 173 

model averaging (2, 4).  The proposed approach generates weights using the Laplace approximation to the 174 

marginal density of the data. That is for model Mk, 1 ≤ k ≤ 9, with parameter vector 𝜃𝑘 of length s, one 175 

approximates the marginal density as 176 

 𝐼𝑘 = (2𝜋)
𝑠

2⁄ |Σ𝑘|
1

2⁄ ℓ(𝐷|𝜃𝑘, 𝑀𝑘)𝑔(𝜃𝑘|𝑀𝑘),  (2) 177 

where Σk is the negative inverse Hessian matrix,  k̂  is the MAP estimate,    ℓ(𝐷|𝜃𝑘 , 𝑀𝑘) is the 178 

likelihood of the model given the data D, and 𝑔(𝜃𝑘|𝑀𝑘) is the prior density for k .  179 
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 For each model Mk, one calculates the MAP and calculates Ik using equation (2). The posterior 180 

probability of the model is  181 

𝜋𝑘(𝑀𝑘|𝐷) =  
𝑔(𝑀𝑘)𝐼𝑘

∑ 𝑔(𝑀𝑘)𝐼𝑘
9
𝑖=1

, 182 

where 𝑔(𝑀𝑘) is the prior probability of model Mk  (e.g., 1/9 if each of 9 models is treated as equally 183 

plausible a priori).  184 

2.3 Computation of the Model-Averaged BMDL and BMD Point Estimate 185 

Our model-averaged BMD point estimate is the weighted average of MAP estimates from individual 186 

models, weighted by posterior weights 𝜋𝑘(𝑀𝑘|𝐷).  This is equivalent to the median of the posterior 187 

distribution defined in equation (1).  For the BMDL, equation (1) is integrated.  A 100α% BMDU or 188 

100(1 - α) % BMDL is the value BMDα such that:  189 

 







BMD

dD  BMD)| BMDPr( . (3) 190 

For full details on the approximation defined in equation (3), see the supplement included with the 191 

online version of this manuscript.  192 

3 Data Example 193 

 To illustrate the approach applied to experimental data, we choose two datasets that present 194 

challenges to the risk assessor. Using current methodologies solutions to these challenges may not be 195 

fully satisfactory, but are reasonable using the proposed method. These challenges include limited data, 196 

parameter bounds, and supra-linearity.  All analyses were conducted using a BMR of 10% extra risk, 197 

with α = 0.05, and all models are given equal prior probability of being the true model. The supplement 198 

gives an excel spreadsheets that implement this method and can reproduce the results below.  199 
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3.1 N-Nitrosomorpholine  200 

 Ketkar et al. (22) exposed Syrian golden hamsters to N-Nitrosomorpholine in their drinking water.  201 

Four dose groups consisting of 50, 28, 30, and 30 rats were given of 0, 1.36, 6.82, and 13.60 mg/kg/day 202 

in their drinking water. Respiratory hyperplasia is the endpoint of interest, where 0, 14, 16, and 22 of the 203 

animals had the adverse health effect.  With the current BMDS system, this dataset presents many 204 

challenges for the analyst.  In this dataset, none of the constrained model, i.e., models that are not 205 

supralinear, adequately describe the data; and, unconstrained models have unacceptably small BMDLs 206 

with all of the supra linear models containing zero for the lower bound estimates. 207 

For the analysis, the final weight assigned to the log logistic model was 82.9% with the quantal 208 

linear and log-probit each having just under 6% of the final weight; the benchmark dose is 0.16 209 

mg/kg/day (0.01).    Figure 1 gives the estimated model average dose-response (black) and constituent 210 

models (shades of grey) that form the average. Here darker shaded curves have more weight.  From a 211 

visual inspection of the fit the model average dose-response is well within the error bars of the given 212 

data sets, indicating the model adequately describes the data; this is significant as none of the 213 

constrained models adequately fit the data.  Further, this analysis provides a reasonable estimate of the 214 

BMDL at 0.01 ppm, as opposed to 0 for all of the unconstrained dose-response datasets.  215 

3.2 Methyl Isocyanate 216 

 Dodd and Fowler (23) conducted a sub chronic vapor inhalation study of Methyl Isocyanate with 217 

Fischer 344 rats.  In this study, four dose groups of 10 rats each were exposed to 0, 0.15, 0.60 and 3.1 218 

ppm of Methyl Isocyanate in the air. This study observed non-neoplastic lesions only in the highest dose 219 

group; all 10 animals had these lesions, i.e., the observed lesion count was 0, 0,0,10 respectively.  220 

Unlike the first example, this study misses the dose response curve entirely.  Additionally, the low 221 

sample sizes increase the probability that no animals experience lesions at low doses.   The resultant 222 

likelihood is completely separable, and analyses using the Weibull and similar models force the shape 223 
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parameter α to be as large as possible.  For the log-logistic, gamma, and Weibull models the BMDS 224 

system estimate the shape parameter at its upper bound; this results in dose-response curves that are 225 

essentially on/off switches.  Though the BMDL is similar across these models the BMD is determined 226 

by the maximum bound programmed into the BMDS system and will tend towards 3.1 ppm as this 227 

bound is increased. In many cases, the bound is arbitrary and often set based upon computer precision.  228 

 This is not the case for the proposed method. Figure 2 gives the model average plot as the black 229 

line and the corresponding individual fits as grey lines. The BMD for all models is well-defined and the 230 

estimated curves do not resemble on/off switches.  The prior provides information that shrinks the curve 231 

fit back to the mean of the prior, and though different priors would produce different results, the 232 

motivation behind the prior choices becomes apparent; the priors favor dose-response curves that do not 233 

increase arbitrarily rapidly. As a result, the BMD is lower because the method shrinks the results back to 234 

dose-response curves with higher prior probability when data do not adequately define the shape of the 235 

curve.  Despite the difference, the BMDL is in line with the results from a BMDS analysis, which bound 236 

the BMDL to be somewhere between 0.33 and 0.57 ppm; in the case of the MA the BMDL is 0.41 ppm.  237 

4 Simulation 238 

To investigate this approach, we created simulations from 34 different dose response curves assuming 239 

an experimental condition designed to mimic chronic bioassays.  Simulation results are provided for the 240 

described MA approach using the priors defined above (denoted as “Prior 1a” in supplemental material 241 

Appendix 3) and for the MA approach using several alternative sets of model parameter priors (see 242 

supplemental material Appendix 3, Table SA3-1).  We use four dose groups with 50 observations per 243 

group with geometric spacing between doses (0, 0.25, 0.5, and 1.0) and analyze 2000 datasets 244 

investigating coverage, bias (% of true BMD) and BMD/BMDL ratio (see supplemental, material, 245 

Appendix 3, Tables SA3-2, SA3-3 and SA3-4).  Further, to investigate the sensitivity of the model to the 246 

prior model weight choice, two model weighting schemes were assessed.  The first, denoted as the MA 247 
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“even” alternative in Tables SA3-1, SA3-2 and SA3-3, assumes all models are equally likely a priori; 248 

the second condition, denoted as the MA “QL = 0.5” alternative in Tables SA3-1, SA3-2 and SA3-3,” 249 

places 50% of the weight on the quantal linear model with the remaining eight models given equal 250 

6.25% weighting. The “QL = 0.5” alternative is referred to as the MAQ approach below. The 251 

development of the second condition follows from the literature, which suggests near linear dose-252 

response curves are the most difficult to account for in model averaging approaches (7, 9). 253 

 For comparison purposes, simulation results are also provided for the approach recommended in 254 

the US EPA BMD technical guidance for the selection of a “best model” (13).  For that simulation 255 

analysis, all models described above were fit, except the Hill model, which was not fit due to 256 

convergence issues. The models that fit the data were considered further (i.e., having p-value > 0.1). The 257 

BMD and BMDL from the model with the lowest AIC was chosen unless the range of BMDLs from 258 

adequately fitting models was more than 3-fold, in which case the BMD and BMDL from the model 259 

with the lowest BMDL was chosen.  Additionally, simulation results are provided for a competing 260 

Bayesian model averaging method from Shao and Shapiro (10) (denoted as the MAKS approach), using 261 

the same priors as describe above. This methodology fits all models except the hill model using the same 262 

priors as defined above and uses a model averaging approach as defined in that manuscript.  Finally, for 263 

an additional comparison, simulation results are provided for the non-parametric (NP) method of Guha 264 

et al. (14).  265 

4.1 True Dose Response Curves 266 

To simulate a range of plausible dose-response relationships, we define 34 dose response curves 267 

from a variety of shapes. The shapes varied from simple parametric forms, to weighted averages of 268 

parametric models, to smooth monotone curves generated from stochastic processes.   The shapes mimic 269 

plausible curves that may be seen in a dose-response analysis as well as certain cases that might be non-270 

standard, which can be used as a benchmark to diagnose possible problems with any particular method.  271 
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4.1.1 Single Parametric Models in the Model Suite 272 

To mimic a flexible parametric model that may be included in the model suite, we use the multistage 3-273 

parameter model to form various true shapes. As this model has limitations, we add the log-logistic 274 

model to simulate the single, but flexible, parametric model. The 3-parameter multistage is  275 

𝜋𝑚𝑠3(𝑑) = 𝛾 + (1 − 𝛾)[1 − exp(−𝛽1𝑑 − 𝛽2𝑑2 − 𝛽3𝑑3)], 276 

and the Log-logistic is defined above.  Figure 3 (M1-M14) and Figure 5 (M24-M26) show the range of 277 

shapes considered.  Though all dose-response curves are monotone, we include three nonstandard curves 278 

in this set of models.  Models M3, M8 and M12 all increase at low and high dose ranges, but plateau 279 

somewhere in the mid-dose range.  These curves, though not expected to represent dose-response curves 280 

routinely encountered in practice, give an indication of data sets where the methods may have difficulty 281 

fitting the data.  The exact form of the dose-response curves is in Table SA2-1 of the supplement.  282 

4.1.2 Convex Sum of Multiple Parametric Models 283 

In addition, we investigate cases where the true dose-response is a convex combination of the 284 

underlying dose response curve.  Though these dose-responses are representable by the proposed 285 

methodology, one should not consider these as directly in the model space using the proposed 286 

methodology.  As the sample size goes to infinity, model averaging converges on the single model that 287 

minimizes the Kulback-Leibler divergence within the data generating mechanism (24), implying that for 288 

large n there is a single model to which the average model converges with probability 1.  For the first set 289 

of dose-responses considered (M15-M17 and M23), we look at a convex sum of   290 

 𝜋𝑠1(𝑑) =
1

1+exp (3−4𝑑)
,  291 

and  292 

 𝜋𝑠2(𝑑) = 0.02 + 0.98 × [1 − exp(−1.5𝑑)],  293 
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which is the logistic  and quantal linear model respectively. Table SA2-2 of the supplement gives the 294 

different convex sums considered in these conditions and the corresponding BMD, while Figure 4 gives 295 

the range of the dose response models considered (M15-M17 and M23).  296 

 In addition to the two model convex combination, we consider another set of models (M18-297 

M22) composed of a four-parameter convex sum. In this case, the four true dose response conditions are 298 

 299 

    𝜋𝑠3(𝑑) = Φ(−1.6 + 2.5𝑑),  300 

  𝜋𝑠4(𝑑) = 0.02 + 0.98[1 − exp(−1.6𝑑)],  301 

 𝜋𝑠5(𝑑) = 0.02 +
0.98

1+exp [−1.3−2×log(𝑑)]
,  302 

and 303 

 𝜋𝑠6(𝑑) = 0.02 + 0.98[1 − exp(−1.5𝑑2.2)],  304 

which are a probit, quantal linear, log-logistic and Weibull models respectively. Table SA2-3 of the 305 

supplement gives the different convex sums considered in these models and the corresponding BMD, 306 

while Figure 4 gives the range of curves estimated (M18-M22). These conditions all form near linear 307 

dose-response conditions found to be problematic model averaging cases by Wheeler and Bailer (7).   308 

4.1.3 Models Out of the Model Suite.  309 

 We investigate models not representable as any function in the model suite; these are denoted 310 

in Figure 5 as simulation models M27-M34.  Models M27-M32 are generated from a smooth monotone 311 

stochastic process over a basis set (e.g. see Higdon et al. (25)); in these simulations, random coefficients 312 

for each basis were generated in a manner that guaranteed monotonicity. To guarantee the plausibility of 313 

the dose-response, each curve was visually inspected and found to be a reasonable dose-response shape. 314 

In addition to the non-parametric curves M27-M32, two additional cases, M33 and M34, were 315 

considered. M33 uses an exponentially modified Gaussian distribution, which has a history in analytical 316 

chemistry (26).  For M34, a multistage 3 degree model was created to define a case of high dose 317 
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downturn. For these simulation, the generation of each curve is available in an R program (27) in the 318 

supplement. Figure 5 gives the range of curvature defined using these functions (M27-M34) and shows 319 

that a large range of curvature was considered when constructing the simulations. 320 

4.2 Simulation Results  321 

 For the simulation, we investigated the observed coverage Pr(BMDL < BMDTRUE ), the relative 322 

BIAS percentage 100 × 𝐸 [
𝐵𝑀�̂�

𝐵𝑀𝐷𝑇𝑅𝑈𝐸
]  %, and the expected ratio between the lower bound estimate and 323 

the estimated BMD as a measure of spread 𝐸 [
𝐵𝑀𝐷𝐿̂

𝐵𝑀�̂�
].  We note that the more commonly suggested ratio 324 

of the lower and upper bound (BMDL/BMDU) was not used as it was not available in all of the methods 325 

investigated (e.g. the BMDS modeling results).  Additionally, the statistics were computed for BMRs of 326 

1 and 10%.  As there are 34 true dose-response curves, two BMRs for each curve, and five methods 327 

tested, not all of the results are presented here, but are available in the supplement.  328 

 Tables 2-4 give the observed coverage for all of the methods for the BMR = 10% ER.  The 329 

simulation results for the 1% ER BMR, given in the supplement, are in line with the 10% results, and are 330 

not discussed further. Overall, the proposed model averaging approach and the non-parametric approach 331 

of Guha et al (14) are similar; these two approaches frequently achieve near nominal coverage, i.e., ≥ 332 

90% across the simulations. In contrast, the current BMDS approach failed to achieve nearly nominal 333 

coverage in most simulations, and the model averaging approach of Shao and Shapiro (10) usually 334 

performed worse than proposed approach and the NP approach.  Unsurprisingly, all methods performed 335 

poorly for simulation conditions M3, M8 and M12, which are conditions where the response increases, 336 

plateaus, and then increases again at higher doses. In many of these cases, the coverage is 0%, which is a 337 

result of the poor fit of the parametric methods.  Even the non-parametric monotone approach performed 338 

poorly in these conditions because the NP method linearly interpolates between observed points.  In 339 

cases of concave dose-responses between dose groups, a linear interpolation will systematically 340 
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underestimate the true dose-response curve and the corresponding benchmark dose.  For the NP 341 

approach, this pattern is also seen in simulations M1, M23, and M24; all conditions are concave between 342 

zero and the first tested dose of 0.25.  343 

The simulations also examined the effect of placing a priori weight on the quantal linear model 344 

of 0.5, and these results show that by using this weighting scheme coverage may improve for many 345 

dose-response that are very similar to dose-responses observed in practice.  For example, for simulation 346 

conditions M15-M25, coverage is improved to nominal or near-nominal rates with little impact on the 347 

coverage for curves that are clearly sublinear.  This indicates such weighting schemes may help in 348 

modeling the BMD for most dose-response data seen in practice.  349 

 Though the MA, MAQ and NP approaches obtain similar coverage for many models, there are 350 

differences in the methodologies’ performance.  Simulation M1 obtains observed coverage of 0% using 351 

the NP approach as compared to 97.9% using MA.  When this occurs in the simulations (M1, M23, 352 

M24, and M31) it can be traced back to the linearization performed in the specific MA approach. In 353 

cases where the NP approach clearly outperforms MA, that is M4, M13 and M33, the true dose-response 354 

is nearly linear (i.e., directly proportional to the dose).   The constituent parametric models in the MA do 355 

not support the shape, whereas the linear interpolation of the NP approach appropriately models the true 356 

dose response curve as it assumes a linearity between observed doses.    357 

 The simulation results also investigated the bias of the methods.  The MAQ results exhibited less 358 

bias than the MA approach and typically had less bias than the NP approach, which had more 359 

conservative point estimates for sub linear dose-response relationships.  For example, conditions M7 and 360 

M32 were very sub-linear dose-response functions; the NP approach had point estimates that were 361 

35.4% and 34.9% of the true BMD whereas the MAQ approach had point estimates that were 78.6% and 362 

79.6% of the true BMD, which were identical to the MA values.  The BMDS and approach of Kan and 363 

Shapiro performed better than they did in the case of coverage, but the results were not noticeably better 364 
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than either the MA or MAQ approaches.  Though the MAQ weightings make the BMDL more 365 

conservative with respect to the MA, these results show that the MAQ change the point estimate very 366 

little, and possibly making the estimate less biased. A point that is seen with regard to the ratio statistic, 367 

fully described in the supplement.  Nearly all of the MAQ BMDLs are closer to the BMD, which argues 368 

that the MAQ weighting scheme also increases the stability of the estimates.  369 

5 Discussion 370 

 The proposed dichotomous model averaging method solves various problems that have not been 371 

properly addressed within the literature.  As seen in the data examples, it allows the use of unconstrained 372 

models without problems in the estimation of the lower bound, something that occurs frequently in 373 

model averaging using unconstrained models.  By using a Bayesian approach, it allows the fitting of 374 

models that have more parameters than there are data points, and this allows the use of a consistent 375 

model suite across dose-response data sets, which increases transparency as it prevents modelers from 376 

advantageously picking a set of models that may support a conclusion deemed appropriate a priori.  377 

 The MA method, with our proposed priors, performs favorably against many of the current state-378 

of-the-art methods, and it does so in a comprehensive simulation study using several alternative sets of 379 

parameter priors and representing 34 plausible dose-response curves that are both in and out of the MA 380 

modeling suite. Though one may contend that these results are based upon the use of informative priors, 381 

which bias the result in the favor of the proposed method, it would be difficult to construct a set of priors 382 

tailored to all of the simulations conditions simultaneously; thus, the results are more indicative of 383 

general properties of the method than the specific priors used.  Additionally, the method of Shao and 384 

Shapiro (10) use the same priors as proposed in the MA method, which gives a reasonable comparison as 385 

to the effect of the priors with an alternative approach. Further, we contend that the priors are not very 386 

informative for the range of dose responses normally considered reasonable by most toxicologists. The 387 

priors only affect the results when the dose response exhibits a very steep response (i.e., when the dose-388 
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response relationship is not captured by the experiment and some prior information should be used to 389 

make sure sensible estimates are generated), or when there is very little data exist to inform the dose 390 

response (i.e., when sample sizes are small, as in the second data example).  This is not to say that more 391 

appropriate priors cannot be developed in the future to produce better results in certain situations, but the 392 

given results show the current priors offer a significant improvement over traditional analyses (BMDS), 393 

and little bias when compared to other methods.  394 

 Finally, we mention that the method was developed with regard to practical considerations, 395 

including the need for consistency across dose-response analyses and the need for fast analytic methods 396 

to model very large datasets (e.g., many high throughput toxicity datasets). The proposed MA approach 397 

should promote consistency by removing many of the decisions a risk assessor needed to make in 398 

performing a traditional dose-response analysis, including manually running multiple individual models 399 

and choosing a “best model.” It is also much faster than previously published MA approaches. For this 400 

approach, individual model results are fit in milliseconds, with all model averaging results (BMD and 401 

BMDL estimates) computed within a half of a second or less on a modern desktop. This is in contrast to 402 

previous model average approaches such as Wheeler and Bailer (7) that require half a minute to 403 

complete, or full MCMC based approaches such as Shao and Shapiro (10) that may require even longer 404 

run times depending convergence.  405 

 406 

  407 
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Model Constraints Priors Notes 

Quantal linear 
𝜋1(𝑑) = 𝛾 + (1 − 𝛾)(1 − exp[−𝛽𝑑])  

β ˃ 0 
0 ≤ γ ≤ 1 

log(β) ~ Normal( 0,1)   
Ψlogit(γ) ~ Normal(0,2) 

 𝛾 =  
1

1+exp (−𝛹)
  

Multistage 
𝜋2(𝑑) = 𝛾 + (1 − 𝛾)(1 − exp[−𝛽1𝑑 − 𝛽2𝑑2])  

β1 ˃ 0 
β2 ˃ 0 
0 ≤ γ ≤ 1 

log(β1) ~ Normal( 0,0.25) 
log(β2) ~ Normal(0,1) 
Ψlogit(γ) ~ Normal(0,2) 

Note the prior over the β1 parameter expresses 
the belief that the linear term should be 
positive if the quadratic term is positive in the 
two hit model of carcinogenesis.  

Weibull 
𝜋3(𝑑) = 𝛾 + (1 − 𝛾)(1 − exp[−𝛽𝑑𝛼])  

β ˃ 0 
α ˃ 0 
0 ≤ γ ≤ 1 

log(β1) ~ Normal( 0,1) 
log(α) ~ Normal( log(2),0.18) 
logit(γ)Ψ ~ Normal(0,2). 

Here the prior over α is set so that there is only 
a 0.01 prior probability the power parameter 
will be < 1.  This allows for models that are 
supra-linear, but requires a large amount of 
data for the α parameter to go much below 1.  

Gamma 

𝜋4(𝑑) = 𝛾 +
1−𝛾

Γ(𝛼)
∫ 𝑡𝛼−1 exp(−𝑡) 𝑑𝑡 

𝛽𝑑

0
  

β ˃ 0 
α ˃ 0 
0 ≤ γ ≤ 1 

log(β) ~ Normal( 0, 1) 
log(α) ~ Normal( log(2),0.18) 
logit(γ)Ψ ~ Normal(0,2) 

Here the prior over α is designed such that 
there is only a 0.01 prior probability the power 
parameter will be less than 1.  This allows for 
models that are supra linear; however, it 
requires a large amount of data for the 
parameter to go much below 1.  

Dichotomous Hill 

𝜋5(𝑑) = 𝛾 +  
𝜈(1−𝛾)

1+exp [−𝑎−𝑏 log(𝑑)]
  

0 ≤ γ ≤ 1 
0 ≤ ν ≤ 1 
-∞ < a < ∞ 
b > 0 

a ~ Normal( 0, .25) 
b ~ Normal( log(10),0.0625) 
logit(γ)Ψ ~ Normal(0,2)   
ν ~ Normal(4,2) 

𝛾 =  
1

1+exp (−𝛹)
  

Logistic 

𝜋6(𝑑) =
1

1+exp [−𝛽0−𝛽1𝑑]
  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal( 0, 1) 
log(β1) ~ Normal( 0,2) 

 

Log-Logistic 

𝜋7(𝑑) = 𝛾 +
1−𝛾

1+exp [−𝛽0−𝛽1log (𝑑)]
  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal( 0, 1) 
log(β1) ~ Normal(log(2),0.25) 
logit(γ)Ψ ~ Normal(0,2). 

 

𝛾 =  
1

1+exp (−𝛹)
  

Probit 
𝜋8(𝑑) =  Φ(𝛽0 +  𝛽1𝑑)  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal(0,1) 
log(β1) ~ Normal( 0,1) 

 

Log-Probit 
𝜋9(𝑑) = 𝛾 + (1 − 𝛾)Φ[𝛽0 + 𝛽1 log(𝑑)]  

-∞ < β0 < ∞ 
β1 > 0 

β0 ~ Normal( 0, 1) 
log(β1) ~ Normal( log(2),0.25) 
logit(γ)Ψ ~ Normal(0,2) 

𝛾 =  
1

1+exp (−𝛹)
  

Table 1: Individual models used in the model averaging method and their respective parameter priors. Note that logit(𝛾) = log (
𝛾

1−𝛾
).462 
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 463 

Test 
Condition MA MAQ BMDS NP MAKS 

1 97.9% 97.0% 99.1% 0.0% 93.6% 
2 99.7% 99.7% 90.8% 100.0% 100.0% 
3 0.0% 0.0% 0.0% 0.0% 0.0% 
4 52.1% 55.6% 36.2% 92.7% 67.9% 
5 98.8% 98.8% 77.8% 99.2% 100.0% 
6 100.0% 100.0% 91.4% 100.0% 100.0% 
7 100.0% 100.0% 100.0% 100.0% 100.0% 
8 100.0% 100.0% 97.0% 0.0% 0.0% 
9 87.4% 91.0% 88.0% 94.1% 68.9% 

10 100.0% 100.0% 92.6% 99.7% 99.3% 
11 100.0% 100.0% 100.0% 100.0% 100.0% 
12 29.7% 6.2% 48.8% 33.5% 0.0% 

 464 

Table 2: Observed coverage probabilities for the test conditions M1-M12 with BMR = 10% for multiple 465 

methods: MA is the proposed method with equal weighting, MAQ is the proposed method with 50% 466 

prior weight assigned to the quantal linear, BMDS is the current algorithm used by the US EPA, and 467 

fitting procedure recommended by the US EPA (13), NP is the non-parametric Bayesian procedure of  468 

Guha et al. (14), and MAKS is the fully Bayesian model averaging approach of Shao and Shapiro (10). 469 

 470 

  471 
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 472 

Test 
Condition MA MAQ BMDS NP MAKS 

M13 67.7% 83.5% 80.9% 98.8% 82.9% 
M14 94.9% 95.0% 91.6% 100.0% 98.8% 
M15 94.9% 95.0% 57.8% 97.2% 78.8% 
M16 88.2% 95.1% 56.3% 94.1% 82.3% 
M17 91.6% 96.9% 81.2% 89.2% 61.9% 
M18 91.6% 93.1% 65.6% 98.4% 88.5% 
M19 95.5% 98.3% 73.6% 97.1% 89.6% 
M20 97.2% 97.9% 76.2% 99.0% 94.4% 
M21 91.5% 92.7% 78.7% 99.2% 88.4% 

M22 92.7% 94.5% 61.6% 98.3% 88.6% 
M23 89.6% 90.5% 87.5% 83.7% 50.9% 
M24 97.1% 99.9% 67.7% 65.8% 99.9% 
M25 100.0% 100.0% 99.7% 100.0% 100.0% 
M26 95.8% 98.8% 53.1% 95.4% 96.5% 

 473 
Table 3: Observed coverage probabilities for test conditions M13-M26 with BMR = 10% for multiple 474 

methods. Here MA is the proposed method with equal weighting, MAQ is the proposed method with 475 

50% prior weight assigned to the quantal linear, BMDS is the current algorithm, and fitting procedure 476 

recommended by the US EPA (13), NP is the non-parametric Bayesian procedure of  Guha et al. (14), and 477 

MAKS is the fully Bayesian model averaging approach of Shao and Shapiro (10). 478 

  479 
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Test 
Condition MA MAQ BMDS NP MAKS 

M27 99.5% 99.8% 95.1% 99.6% 99.5% 
M28 100.0% 100.0% 100.0% 100.0% 100.0% 
M29 100.0% 100.0% 100.0% 100.0% 100.0% 
M30 92.7% 97.3% 93.2% 99.8% 97.6% 
M31 95.7% 99.0% 67.3% 56.1% 92.6% 
M32 95.9% 100.0% 77.7% 100.0% 100.0% 
M33 0.9% 36.4% 59.6% 96.9% 46.4% 
M34 80.7% 99.8% 99.7% 98.9% 83.7% 

 480 

Table 4: Observed coverage probabilities for the test conditions M27-M34 with BMR = 10% for 481 

multiple tested method. Here MA is the proposed method with equal weighting, MAQ is the proposed 482 

method with 50% prior weight assigned to the quantal linear, BMDS is the current algorithm, and fitting 483 

procedure recommended by the US EPA (13), NP is the non-parametric Bayesian procedure of Guha et 484 

al. (14), and MAKS is the fully Bayesian model averaging approach of Shao and Shapiro (10). 485 
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 487 

Figure 1: Model average estimate of the dose response function for N-Nitrosomorpholine data. The 488 

model average is in black, and the other curves (shades of grey) represent the constituent curves in the 489 

model average. The darkness of the grey curves is proportional to the model weight, where darker grey 490 

curves receive higher weight.   491 

  492 
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 493 

Figure 2: Model average estimate of the dose response function for Methyl Isocyanate dose response 494 

data. The model average is in black, and the other curves (shades of grey) represent the constituent 495 

curves in the model average. The darkness of the grey curves is proportional to the model weight, where 496 

darker grey curves receive higher weight.   497 

  498 
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 499 

 500 

Figure 3: Realized dose-response curves for simulation conditions M1-M14.  Simulation conditions 501 

were generated using a single parametric model.  502 
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 504 

Figure 4: Realized dose-response curves for simulation conditions M15-M26.  Simulation conditions 505 

M15-M23 were generated using a convex sum of multiple parametric models. Simulation conditions 506 

M24 – M26 were generated from a 3 degree multistage parameter to test the performance when a mode 507 

is not in the model suite and has a higher background rate.  508 

 509 

510 
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  511 

 512 

 513 

Figure 5: Realized dose-response curves for simulation conditions M27-M34.  Simulation conditions 514 

were generated using monotone stochastic processes (M27-M32) or were generated from parametric 515 

models outside of proposed model averaging approach (M33 and M34).   516 


