Number: P-18-0122 **TSCA Section 5(a)(3) Determination**: The chemical substance is not likely to present an unreasonable risk (5(a)(3)(C)) #### **Chemical Name:** Generic: Alkylamide, polymer with alkylamine, formaldehyde, and polycyanamide, alkyl acid salt # Conditions of Use (intended, known, or reasonably foreseen)¹: Intended conditions of use (generic): Manufacture for use as a paper additive, consistent with the manufacturing, processing, use, distribution, and disposal information described in the PMN. Known conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are known conditions of use and found none. Reasonably foreseen conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are reasonably foreseen conditions of use and identified the following conditions of use: manufacture, processing, or use, resulting in releases to water that differ from those from the intended conditions of use described in the PMN. **Summary:** The chemical substance is not likely to present an unreasonable risk of injury to health or the environment, without consideration of costs or other nonrisk factors, including an unreasonable risk to a potentially exposed or susceptible subpopulation identified as relevant by the Administrator under the conditions of use, based on the risk assessment presented below and the terms of the proposed Significant New Use Rule (SNUR) signed by EPA. Although EPA estimated that the new chemical substance could be very persistent, the new chemical substance has low potential for bioaccumulation, such that repeated exposures are not expected to be cumulative. Based on EPA's TSCA New Chemicals Program Chemical Category for _ ¹ Under TSCA § 3(4), the term "conditions of use" means "the circumstances, as determined by the Administrator, under which a chemical substance is intended, known, or reasonably foreseen to be manufactured, processed, distributed in commerce, used, or disposed of." In general, EPA considers the intended conditions of use of a new chemical substance to be those identified in the section 5(a) notification. Known conditions of use include activities within the United States that result from manufacture that is exempt from PMN submission requirements. Reasonably foreseen conditions of use are future circumstances, distinct from known or intended conditions of use, under which the Administrator expects the chemical substance to be manufactured, processed, distributed, used, or disposed of. The identification of "reasonably foreseen" conditions of use will necessarily be a case-by-case determination and will be highly fact-specific. Reasonably foreseen conditions of use will not be based on hypotheticals or conjecture. EPA's identification of conditions of use includes the expectation of compliance with federal and state laws, such as worker protection standards or disposal restrictions, unless case-specific facts indicate otherwise. Accordingly, EPA will apply its professional judgment, experience, and discretion when considering such factors as evidence of current use of the new chemical substance outside the United States, evidence that the PMN substance is sufficiently likely to be used for the same purposes as existing chemical substances that are structurally analogous to the new chemical substance, and conditions of use identified in an initial PMN submission that the submitter omits in a revised PMN. The sources EPA uses to identify reasonably foreseen conditions of use include searches of internal confidential EPA PMN databases (containing use information on analogue chemicals), other U.S. government public sources, the National Library of Medicine's Hazardous Substances Data Bank (HSDB), the Chemical Abstract Service STN Platform, REACH Dossiers, technical encyclopedias (e.g., Kirk-Othmer and Ullmann), and Internet searches. Polycationic Polymers² and test data on analogous chemical substances, EPA estimates that the chemical substance has high environmental hazard and potential for the following human health hazards: lung effects and irritation to the eye, skin, lungs, and mucous membranes. The PMN describes conditions of use that mitigate both ecological and human health risks. EPA concludes that the new chemical is not likely to present unreasonable risk to human health or the environment under the intended conditions of use. As set forth below, the information available to EPA is sufficient to permit the Agency to conduct a reasoned evaluation of the health and environmental effects of the chemical substance under the conditions of use that are not subject to the proposed SNUR, in order to determine that the chemical substance is not likely to present an unreasonable risk under those conditions of use. As such, EPA does not need to impose testing requirements to conduct this evaluation. Whether testing is needed to evaluate the effects of the intended, known, or reasonably foreseen conditions of use of a chemical substance subject to a PMN is determined on a case-by-case basis. To the extent that testing may be necessary to conduct a reasoned evaluation of the health or environmental effects of the reasonably foreseen conditions of use that are subject to the proposed SNUR, EPA will make the appropriate determination if a SNUN is submitted following finalization of the SNUR. EPA found no known conditions of use, assessed the intended conditions of use, and addressed reasonably foreseen conditions of use by proposing a SNUR. Therefore, EPA determines the new chemical substance is not likely to present unreasonable risk to human health or the environment. Fate: Environmental fate is the determination of which environmental compartment(s) a chemical moves to, the expected residence time in the environmental compartment(s) and removal and degradation processes. Environmental fate is an important factor in determining exposure and thus in determining whether a chemical may present an unreasonable risk. EPA estimated physical/chemical and fate properties of this new chemical substance based on its high molecular volume and using data for analogous polymers. The chemical substance is estimated to be removed during wastewater treatment with an efficiency of 90% via sorption. Removal by biodegradation is estimated to be negligible based on high molecular volume. Sorption to sludge is estimated to be strong, and sorption to soil and sediment is estimated to be very strong based on high molecular volume, resulting in negligible migration to groundwater for the new chemical substance. Volatilization to air is estimated to be negligible because of the high molecular volume. Overall, these estimates are indicative of low potential for this chemical substance to volatilize into the air and a low potential for this chemical substance to migrate into groundwater. **Persistence**³: Persistence is relevant to whether a new chemical substance is likely to present an unreasonable risk because chemicals that are not degraded in the environment at rates that ² TSCA New Chemicals Program (NCP) Chemical Categories. https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/chemical-categories-used-review-new. ³ Persistence: A chemical substance is considered to have limited persistence if it has a half-life in water, soil or sediment of less than 2 months or there are equivalent or analogous data. A chemical substance is considered to be persistent if it has a half-life in water, soil or sediments of greater than 2 months but less than or equal to 6 months prevent substantial buildup in the environment, and thus increase potential for exposure, may present a risk if the substance presents a hazard to human health or the environment. Based on data for analogous polymers and high molecular volume, EPA estimated the anaerobic and aerobic biodegradation half-life of the new chemical substance to be greater than six months. These estimates for biodegradation indicate that the new chemical substance will be very persistent in aerobic environments (e.g., surface water) and anaerobic environments (e.g., sediment). **Bioaccumulation⁴:** Bioaccumulation is relevant to whether a new chemical substance is likely to present an unreasonable risk because substances that bioaccumulate in aquatic and/or terrestrial species pose the potential for elevated exposures to humans and other organisms via food chains. The new chemical substance has low bioaccumulation potential based on high molecular volume and low water solubility, which limit bioavailability and bioaccumulation. Although EPA estimated that the new chemical substance could be very persistent, the new chemical substance has low potential for bioaccumulation, such that repeated exposures are not expected to cause food chain effects via accumulation in exposed organisms. **Human Health Hazard**⁵: Human health hazard is relevant to whether a new chemical substance is likely to present an unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated the human health hazard of this chemical substance based on its estimated physical/chemical properties, comparison to structurally analogous chemical substances for which there is information on human health hazard, EPA's TSCA New Chemicals or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments of greater than 6 months or there are equivalent or analogous data. (64 FR 60194; November 4, 1999) ⁴ Bioaccumulation: A chemical substance is considered to have a low potential for bioaccumulation if there are bioconcentration factors (BCF) or bioaccumulation factors (BAF) of less than 1,000 or there are equivalent or analogous data. A chemical substance is considered to be bioaccumulative if there are BCFs or BAFs of 1,000 or greater and less than or equal to 5,000 or there are equivalent or analogous data. A chemical substance is considered to be very bioaccumulative if there are BCFs or BAFs of 5,000 or greater or there are equivalent or analogous data. (64 FR 60194; November 4 1999) ⁵ A chemical substance is considered to have low human health hazard if effects are observed in animal studies with a No Observed Adverse Effect Level (NOAEL) equal to or greater than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have moderate human health hazard if effects are observed in animal studies with a NOAEL less than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have high human health hazard if there is evidence of adverse effects in humans or conclusive evidence of severe effects in animal studies with a NOAEL of less than or equal to 10 mg/kg/day or if there are equivalent data on analogous chemical substances. EPA may also use Benchmark Dose Levels (BMDL) derived from benchmark dose (BMD) modeling as points of departure for toxic effects. See https://www.epa.gov/bmds/what-benchmark-dose-software-bmds. Using this approach, a BMDL is associated with a benchmark response, for example a 5 or 10 % incidence of effect. The aforementioned characterizations of hazard (low, medium, high) would also apply to BMDLs. In the absence of animal data on a chemical or analogous chemical substance, EPA may use other data or information such as from in vitro assays, chemical categories (e.g., Organization for Economic Co-operation and Development, 2014 Guidance on Grouping of Chemicals, Second Edition. ENV/JM/MONO(2014)4. Series on Testing & Assessment No. 194. Environment Directorate, Organization for Economic Co-operation and Development, Paris, France. (http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2014)4&doclanguage=en)). structure-activity relationships, and/or structural alerts to support characterizing human health hazards. Program Chemical Categories for Polycationic Polymers, and use of other structural information. Absorption of the new chemical substance through the skin, lungs, and GI tract is expected to be nil as the neat material and poor to nil when in solution based on physical/chemical properties. Hazards identified included lung toxicity from cationic binding to lung membranes and irritation to skin, eyes, lung and GI tract based on amine content. Presence of formaldehyde and [claimed CBI] in the new chemical substance initially prompted additional hazard concerns, but supporting information on residuals and production information that confirmed these components are fully reacted into the polymer negated the concerns. EPA quantitatively assessed risk using test data for [claimed CBI]. EPA identified a NOAEC of 0.012 mg/m³ based on inflammation, metaplasia, and fibrosis in a 28-day inhalation toxicity study, which was used to derive exposure route- and population-specific points of departure for quantitative risk assessment, described below. Environmental Hazard⁶: Environmental hazard is relevant to whether a new chemical substance is likely to present unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated environmental hazard of this new chemical substance using hazard data on analogous chemicals. The new chemical substance falls within the TSCA New Chemicals Program Chemical Category of Polycationic Polymers. EPA determined environmental hazard for this new chemical substance based on SAR predictions for polycationic polymers (special class within ECOSAR v.2.0). Acute toxicity values estimated for fish, aquatic invertebrates, and algae are 0.75 mg/L, 0.24 mg/L, and 0.06 mg/L, respectively. Chronic toxicity values estimated for fish, aquatic invertebrates, and algae are 0.04 mg/L, 0.02 mg/L, and 0.01 mg/L, respectively. These toxicity values indicate that the new chemical substance is expected to have high environmental hazard. Application of assessment factors of 4 and 10 to acute and chronic toxicity values, respectively, results in acute and chronic concentrations of concern of 0.015 mg/L (15 ppb) and 0.001 mg/L (1 ppb), respectively. **Exposure:** The exposure to a new chemical substance is potentially relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimates occupational exposure and environmental release of the new chemical substance under the intended conditions of use described in the PMN using ChemSTEER (Chemical _ ⁶ A chemical substance is considered to have low ecotoxicity hazard if the Fish, Daphnid and Algae LC50 values are greater than 100 mg/L, or if the Fish and Daphnid chronic values (ChVs) are greater than 10.0 mg/L, or there are not effects at saturation (occurs when water solubility of a chemical substance is lower than an effect concentration), or the log Kow value exceeds QSAR cut-offs. A chemical substance is considered to have moderate ecotoxicity hazard if the lowest of the Fish, Daphnid or Algae LC50s is greater than 1 mg/L and less than 100 mg/L, or where the Fish or Daphnid ChVs are greater than 0.1 mg/L and less than 10.0 mg/L. A chemical substance is considered to have high ecotoxicity hazard, or if either the Fish, Daphnid or Algae LC50s are less than 1 mg/L, or any Fish or Daphnid ChVs is less than 0.1 mg/L (Sustainable Futures https://www.epa.gov/sustainable-futures/sustainable-futures-p2-framework-manual). Screening Tool for Exposures and Environmental Releases https://www.epa.gov/tsca-screening-tools/chemsteer-chemical-screening-tool-exposures-and-environmental-releases). EPA uses EFAST (the Exposure and Fate Assessment Screening Tool; https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014) to estimate general population, consumer, and environmental exposures. EPA considers workers to be a potentially exposed or susceptible subpopulation (PESS) on the basis of greater exposure potential compared to the general population. EPA also considers PESS in conducting general population drinking water exposures by evaluating risks associated with water intake rates for multiple age groups, ranging from infants to adults. EPA considers consumers of specific products to be a potentially exposed or susceptible subpopulation on the basis of greater exposure potential compared to the general population who do not use specific products. For this new chemical assessment, EPA assessed exposure to workers via the dermal and inhalation routes. Releases to water during manufacturing, processing, and use were estimated and used to assess exposure to the environment and general population. Exposure from air releases are estimated to be negligible (below modeling thresholds). Exposures to consumers were not assessed because consumer uses were not identified as conditions of use. **Risk Characterization:** EPA characterizes risks to human health and the environment by comparing the potential hazards and exposures for the chemical substance, estimated as described above. EPA applies a margin of exposure approach to calculate potential human health risks of new chemicals. A benchmark (acceptable) margin of exposure is derived by applying uncertainty factors for the following types of extrapolations: intra-species extrapolation (UF_H = 10 to account for variation in sensitivity among the human population), inter-species extrapolation (UF_A = 10 to account for extrapolating from experimental animals to humans) and LOAEL-to-NOAEL extrapolation (UF_L = 10 to account for using a LOAEL when a NOAEL is not available). Hence, in the New Chemicals Program, a benchmark MOE is typically 100 and 1000 when NOAELs and LOAELs, respectively, are used to identify hazard. When allometric scaling or pharmacokinetic modeling is used to derive an effect level, the UF_H may be reduced to 3, for a benchmark MOE of 30. The benchmark MOE is used to compare to the MOE calculated by comparing the toxicity NOAEL or LOAEL to the estimated exposure concentrations. When the calculated MOE is equal to or exceeds the benchmark MOE, the new chemical substance is not likely to present an unreasonable risk. EPA assesses risks to workers considering engineering controls described in the PMN but in the absence of personal protective equipment (PPE) such as gloves and respirators. If risks are preliminarily identified, EPA then considers whether the risks would be mitigated by the use of PPE (e.g., impervious gloves, respirator). Risks to human health for the new chemical substance were evaluated using the route-specific effect level (i.e., NOAEC) described above. Risks were identified for workers from inhalation exposure (MOE = 20; benchmark MOE =100). Risks will be mitigated if exposures are controlled by the use of appropriate PPE, including respiratory protection with an APF of 10. Risks could not be quantified for irritation hazards, but appropriate PPE, including impervious gloves and protective eye wear, would mitigate concerns. EPA expects that employers will require and workers will use appropriate personal protective equipment (i.e., impervious gloves, protective eye wear, and a respirator), consistent with the Safety Data Sheet prepared by the PMN submitter, in a manner adequate to protect them. Risks to the general population for lung effects were not evaluated because inhalation exposure is expected to be negligible under the conditions of use. Risks were not assessed for general population for ingestion of water or fish, because the high molecular weight and low predicted exposures indicate risks are not expected via these routes of exposure. Risks were not assessed for consumers as no consumer uses were identified under the current conditions of use. Risks to the environment were evaluated by comparing estimated surface water concentrations with the estimated acute and chronic concentrations of concern. Risks to the environment were not identified due to releases to water because relevant surface water concentrations did not exceed the acute or the chronic COCs. It is reasonably foreseen that manufacture, processing, or use of the new chemical substance could result in releases to water exceeding the COC of 1 ppb. It is reasonably foreseen based on the initial PMN submission that included conditions of use resulting in release to water that posed risk to the environment. The SNUR that has been proposed for these chemical substances defines certain conditions of use as significant new uses. The proposed significant new uses include release of a manufacturing, processing, or use stream associated with any use of the substance, other than the use described in the PMN, into the waters of the United States exceeding a surface water concentration of 1 ppb. Conditions of use that fall under the restrictions of the proposed SNUR are not likely to present unreasonable risk of injury to health or the environment because (1) those conditions of use are not likely to be commenced during the pendency of the proposed SNUR, and (2) upon finalization of the SNUR, those conditions of use would be prohibited unless and until EPA makes an affirmative determination that the significant new use is not likely to present an unreasonable risk or takes appropriate action under section 5(e) or 5(f). | 04/15/2019 | /s/ | |------------|-------------------------------------------| | Date: | Tala R. Henry, Ph.D. | | | Acting Deputy Director for Programs | | | Office of Pollution Prevention and Toxics |