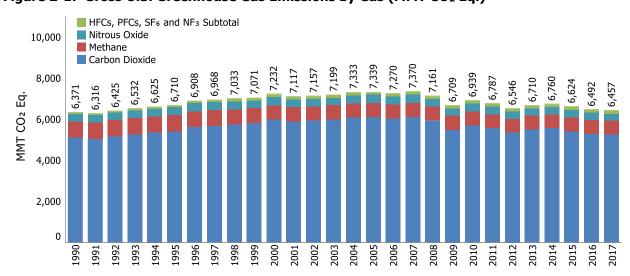
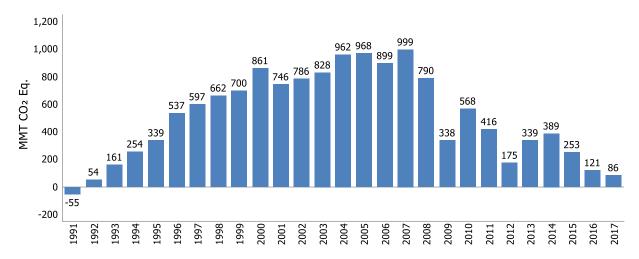
2. Trends in Greenhouse Gas Emissions

2.1 Recent Trends in U.S. Greenhouse Gas Emissions and Sinks

In 2017, total gross U.S. greenhouse gas emissions were 6,456.7 MMT, or million metric tons, carbon dioxide (CO₂) Eq.¹ Total U.S. emissions have increased by 1.3 percent from 1990 to 2017, and emissions decreased from 2016 to 2017 by 0.5 percent (35.5 MMT CO₂ Eq.). The decrease in total greenhouse gas emissions between 2016 and 2017 was driven in part by a decrease in CO₂ emissions from fossil fuel combustion. The decrease in CO₂ emissions from fossil fuel combustion was a result of multiple factors, including a continued shift from coal to natural gas and increased use of renewable energy in the electric power sector, and milder weather that contributed to less overall electricity use.

Since 1990, U.S. emissions have increased at an average annual rate of 0.1 percent. Figure 2-1 through Figure 2-3 illustrate the overall trend in total U.S. emissions by gas, annual changes, and absolute changes since 1990. Overall, net emissions in 2017 were 13.0 percent below 2005 levels as shown in Table 2-1.




Figure 2-1: Gross U.S. Greenhouse Gas Emissions by Gas (MMT CO₂ Eq.)

¹ The gross emissions total presented in this report for the United States excludes emissions and removals from Land Use, Land-Use Change, and Forestry (LULUCF). The net emissions total presented in this report for the United States includes emissions and removals from LULUCF.

Figure 2-2: Annual Percent Change in Gross U.S. Greenhouse Gas Emissions Relative to the Previous Year

Figure 2-3: Cumulative Change in Annual Gross U.S. Greenhouse Gas Emissions Relative to 1990 (1990=0, MMT CO₂ Eq.)

Overall, from 1990 to 2017, total emissions of CO₂ increased by 149.6 MMT CO₂ Eq. (2.9 percent), while total emissions of methane (CH₄) decreased by 123.5 MMT CO₂ Eq. (15.8 percent), and total emissions of nitrous oxide (N₂O) decreased by 9.8 MMT CO₂ Eq. (2.6 percent). During the same period, aggregate weighted emissions of hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF₆), and nitrogen trifluoride (NF₃) rose by 69.5 MMT CO₂ Eq. (69.7 percent). Despite being emitted in smaller quantities relative to the other principal greenhouse gases, emissions of HFCs, PFCs, SF₆, and NF₃ are significant because many of them have extremely high global warming potentials (GWPs), and, in the cases of PFCs, SF₆, and NF₃, long atmospheric lifetimes. Conversely, U.S. greenhouse gas emissions were partly offset by carbon (C) sequestration in managed forests, trees in urban areas, agricultural soils, landfilled yard trimmings, and coastal wetlands. These were estimated to offset 11.3 percent of total emissions in 2017.

Table 2-1 summarizes emissions and sinks from all U.S. anthropogenic sources in weighted units of MMT CO₂ Eq., while unweighted gas emissions and sinks in kilotons (kt) are provided in Table 2-2.

Table 2-1: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (MMT CO₂ Eq.)

Gas/Source	1990	2005	2013	2014	2015	2016	2017
CO ₂	5,121.2	6,130.6	5,522.9	5,572.1	5,423.0	5,306.7	5,270.7
Fossil Fuel Combustion	4,738.8	5,744.8	5,157.4	5,199.3	5,047.1	4,961.9	4,912.0
Transportation	1,469.1	1,857.0	1,682.7	1,721.6	1,734.0	1,779.0	1,800.6
Electric Power Sector	1,820.0	2,400.0	2,038.3	2,037.1	1,900.6	1,808.9	1,732.0
Industrial	857.5	853.4	840.0	819.6	807.9	807.6	810.7
Residential	338.2	357.9	329.3	346.8	317.8	292.9	294.5
Commercial	226.5	226.8	224.6	232.9	245.5	232.1	232.9
U.S. Territories	27.6	49.7	42.5	41.4	41.4	41.4	41.4
Non-Energy Use of Fuels Iron and Steel Production &	119.6	139.6	123.5	119.9	126.9	113.7	123.2
Metallurgical Coke Production	101.6	68.2	53.5	58.4	47.8	42.3	41.8
Cement Production	33.5	46.2	36.4	39.4	39.9	39.4	40.3
Petrochemical Production	21.2	26.8	26.4	26.5	28.1	28.1	28.2
Natural Gas Systems	30.0	22.6	25.1	25.5	25.1	25.5	26.3
Petroleum Systems	9.0	11.6	25.1	29.6	31.7	22.2	23.3
Ammonia Production	13.0	9.2	9.5	9.4	10.6	10.8	13.2
Lime Production	11.7	14.6	14.0	14.2	13.3	12.9	13.1
Incineration of Waste	8.0	12.5	10.3	10.4	10.7	10.8	10.8
Other Process Uses of Carbonates	6.3	7.6	11.5	13.0	12.2	11.0	10.1
Urea Fertilization	2.4	3.5	4.4	4.5	4.7	4.9	5.1
Urea Consumption for Non-					,	,	0.1
Agricultural Purposes	3.8	3.7	4.6	1.8	4.6	5.1	5.0
Carbon Dioxide Consumption	1.5	1.4	4.2	4.5	4.5	4.5	4.5
Liming	4.7	4.3	3.9	3.6	3.7	3.2	3.2
Ferroalloy Production	2.2	1.4	1.8	1.9	2.0	1.8	2.0
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.7	1.8
Titanium Dioxide Production	1.2	1.8	1.7	1.7	1.6	1.7	1.7
Glass Production	1.5	1.9	1.3	1.3	1.3	1.2	1.3
Aluminum Production	6.8	4.1	3.3	2.8	2.8	1.3	1.2
Phosphoric Acid Production	1.5	1.3	1.1	1.0	1.0	1.0	1.0
Zinc Production	0.6	1.0	1.4	1.0	0.9	0.9	1.0
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5
Silicon Carbide Production and							
Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Abandoned Oil and Gas Wells	+	+	+	+	+	+	+
Magnesium Production and							
Processing	+	+	+	+	+	+	+
Wood Biomass, Ethanol, and							
Biodiesel Consumption ^a	219.4	230.7	315.5	323.2	317.7	317.2	322.2
International Bunker Fuels ^b	103.5	113.1	99.8	103.4	110.9	116.6	120.1
CH ₄ ^c	779.8	691.4	663.0	662.1	661.4	654.9	656.3
Enteric Fermentation	164.2	168.9	165.5	164.2	166.5	171.9	175.4
Natural Gas Systems	193.1	171.4	165.6	165.1	167.2	165.7	165.6
Landfills	179.6	131.4	112.9	112.5	111.2	108.0	107.7
Manure Management	37.1	53.7	58.1	57.8	60.9	61.5	61.7
Coal Mining	96.5	64.1	64.6	64.6	61.2	53.8	55.7
Petroleum Systems	42.1	36.7	41.6	42.1	39.5	38.2	37.7
Wastewater Treatment	15.3	15.4	14.3	14.3	14.5	14.2	14.2
Rice Cultivation	16.0	16.7	11.5	12.7	12.3	13.7	11.3
Stationary Combustion	8.6	7.8	8.7	8.9	8.5	7.9	7.8
Abandoned Oil and Gas Wells	6.6	6.9	7.0	7.1	7.1	7.2	6.9
Abandoned Underground Coal							
Mines	7.2	6.6	6.2	6.3	6.4	6.7	6.4
Mobile Combustion	12.9	9.6	4.5	4.1	3.6	3.4	3.2
Composting	0.4	1.9	2.0	2.1	2.1	2.1	2.2
Petrochemical Production	0.2	0.1	0.1	0.1	0.2	0.2	0.3

Field Burning of Agricultural							
Residues	0.1	0.2		0.2	0.2	0.2	0.2
Ferroalloy Production	+	+		+ +	+	+	+
Silicon Carbide Production and							
Consumption	+	+		+ +	+	+	+
Iron and Steel Production &							
Metallurgical Coke Production	+	+		+ +	+	+	+
Incineration of Waste	+	+		+ +	+	+	+
International Bunker Fuels ^b	0.2	0.1		0.1	0.1	0.1	0.1
N ₂ O ^c	370.3	375.8	365		374.1	364.5	360.5
Agricultural Soil Management	251.7	254.5	265		277.8	267.6	266.4
Stationary Combustion	25.1	34.3	32		30.6	30.1	28.6
Manure Management	14.0	16.5	17		17.6	18.2	18.7
Mobile Combustion	42.0	39.0	22		18.8	17.9	16.9
Nitric Acid Production	12.1	11.3	10		11.6	10.1	9.3
Adipic Acid Production	15.2	7.1		5.4		7.0	7.4
Wastewater Treatment	3.4	4.4		4.8	4.8	4.9	5.0
N ₂ O from Product Uses	4.2	4.2		4.2	4.2	4.2	4.2
Composting	0.3	1.7	1	.8 1.9	1.9	1.9	1.9
Caprolactam, Glyoxal, and	1.7	2.1	_	2.0	2.0	2.0	1.4
Glyoxylic Acid Production Incineration of Waste	1.7 0.5	2.1 0.4		2.0 0.3 0.3	2.0 0.3	2.0 0.3	1.4 0.3
Semiconductor Manufacture	0.5	0.4		0.3 0.3	0.3	0.3	0.3
Field Burning of Agricultural		0.1	,	0.2	0.2	0.2	0.2
Residues	+	0.1	(0.1	0.1	0.1	0.1
Petroleum Systems	+	+		+ +	+	+	+
Natural Gas Systems	+	+		+ +	+	+	+
International Bunker Fuels ^b	0.9	1.0	(0.9	0.9	1.0	1.0
HFCs	46.6	122.3	146		153.8	155.0	158.3
Substitution of Ozone Depleting	10.0	122.0	1		1000	100.0	10010
Substances ^d	0.3	102.1	141	.7 145.2	149.2	151.7	152.7
HCFC-22 Production	46.1	20.0		5.0	4.3	2.8	5.2
Semiconductor Manufacture	0.2	0.2	(0.3	0.3	0.3	0.4
Magnesium Production and							
Processing	0.0	0.0	(0.1	0.1	0.1	0.1
PFCs	24.3	6.7	5	5.6	5.1	4.4	4.1
Semiconductor Manufacture	2.8	3.2	2	3.1	3.1	3.0	3.0
Aluminum Production	21.5	3.4	3	2.5	2.0	1.4	1.1
Substitution of Ozone Depleting							
Substances	0.0	+		+ +	+	+	+
SF ₆	28.8	11.8	•	6.3	5.8	6.3	6.1
Electrical Transmission and	22.1	0.2		4 4 6	4.1	4.4	4.2
Distribution Magnesium Production and	23.1	8.3	4	.4 4.6	4.1	4.4	4.3
Processing	5.2	2.7	1	.3 0.9	1.0	1.1	1.1
Semiconductor Manufacture	0.5	0.7		0.7 0.7	0.7	0.9	0.7
NF ₃		0.7		0.7 0.7 0.7 0.5 0.5	0.7	0.9	0.7
Semiconductor Manufacture	+	0.5		0.5 0.5	0.6	0.6	0.6
Total Emissions	6,371.0	7,339.0	6,710		6,623.8	6,492.3	6,456.7
LULUCF Emissions ^c	7.8	16.0		7.5 17.7	28.3	15.5	15.5
LULUCF CH ₄ Emissions	5.0	9.0		0.9 10.1	16.5	8.8	8.8
LULUCF N ₂ O Emissions	2.8	7.0		'.6 7.7	11.8	6.7	6.7
LULUCF Carbon Stock Change ^e	(814.8)	(756.1)	(731		(739.4)	(738.1)	(729.6)
LULUCF Sector Net Total ^f	(807.0)	(740.0)	(713		(711.1)	(722.6)	(714.1)
Net Emissions (Sources and Sinks)	5,564.0	6,599.0	5,996			5,769.7	5,742.6

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

+ Does not exceed 0.05 MMT CO₂ Eq.

Table 2-2: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks (kt)

Gas/Source	1990	200	5	2013	2014	2015	2016	2017
CO ₂	5,121,179	6,130,55	2	5,522,908	5,572,106	5,422,966	5,306,662	5,270,749
Fossil Fuel Combustion	4,738,756	5,744,75	4	5,157,391	5,199,345	5,047,107	4,961,876	4,911,962
Transportation	1,469,090	1,856,99	9	1,682,675	1,721,581	1,733,961	1,779,031	1,800,567
Electric Power Sector	1,819,951	2,399,97	4	2,038,258	2,037,148	1,900,624	1,808,863	1,732,025
Industrial	857,463	853,42	3	840,023	819,556	807,876	807,599	810,651
Residential	338,170	357,89	3	329,328	346,835	317,816	292,885	294,463
Commercial	226,528	226,75	5	224,643	232,864	245,462	232,137	232,892
U.S. Territories	27,555	49,71	0	42,463	41,361	41,367	41,362	41,363
Non-Energy Use of Fuels	119,551	139,62	5	123,476	119,895	126,939	113,719	123,221
Iron and Steel Production &								
Metallurgical Coke								
Production	101,630	68,21		53,471	58,353	47,825	42,309	41,782
Cement Production	33,484	46,19		36,369	39,439	39,907	39,439	40,324
Petrochemical Production	21,222	26,81		26,395	26,496	28,062	28,110	28,225
Natural Gas Systems	30,048	22,63		25,148	25,518	25,071	25,488	26,327
Petroleum Systems	8,950	11,55		25,130	29,597	31,672	22,200	23,336
Ammonia Production	13,047	9,19		9,480	9,377	10,634	10,838	13,216
Lime Production	11,700	14,55		14,028	14,210	13,342	12,942	13,145
Incineration of Waste	7,950	12,46	9	10,333	10,429	10,742	10,765	10,790
Other Process Uses of								
Carbonates	6,297	7,64		11,524	12,954	12,182	10,969	10,139
Urea Fertilization	2,417	3,50	4	4,443	4,515	4,728	4,877	5,051
Urea Consumption for Non-								
Agricultural Purposes	3,784	3,65		4,556	1,807	4,578	5,132	4,958
Carbon Dioxide Consumption	1,472	1,37		4,188	4,471	4,471	4,471	4,471
Liming	4,667	4,34		3,907	3,609	3,737	3,206	3,182
Ferroalloy Production	2,152	1,39		1,785	1,914	1,960	1,796	1,975
Soda Ash Production	1,431	1,65		1,694	1,685	1,714	1,723	1,753
Titanium Dioxide Production	1,195	1,75		1,715	1,688	1,635	1,662	1,688
Glass Production	1,535	1,92		1,317	1,336	1,299	1,249	1,315
Aluminum Production	6,831	4,14		3,255	2,833	2,767	1,334	1,205
Phosphoric Acid Production	1,529	1,34		1,149	1,038	999	998	1,023
Zinc Production	632	1,03		1,429	956	933	925	1,009
Lead Production	516	55	3	546	459	473	450	455
Silicon Carbide Production								
and Consumption	375	21		169	173	180	174	186
Abandoned Oil and Gas Wells	6		7	7	7	7	7	7

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULLICE

^b Emissions from International Bunker Fuels are not included in totals.

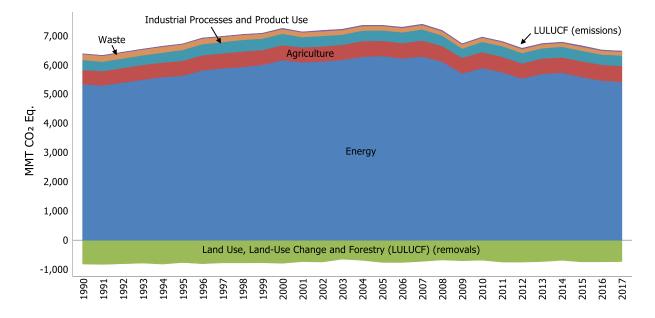
^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^d Small amounts of PFC emissions also result from this source.

^e LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^f The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

Magnesium Production and							
Processing	1	3	2	2	3	3	3
Wood Biomass, Ethanol, and							
Biodiesel Consumption ^a	219,413	230,700	315,545	323,187	317,742	317,191	322,225
International Bunker Fuels ^b	103,463	113,139	99,763	103,400	110,887	116,594	120,107
CH ₄ ^c	31,194	27,657	26,522	26,483	26,456	26,196	26,253
Enteric Fermentation	6,566	6,755	6,620	6,568	6,661	6,875	7,018
Natural Gas Systems	7,723	6,856	6,624	6,603	6,686	6,629	6,624
Landfills	7,182	5,256	4,517	4,502	4,448	4,319	4,309
Manure Management	1,486	2,150	2,322	2,311	2,435	2,461	2,467
Coal Mining	3,860	2,565	2,584	2,583	2,449	2,154	2,227
Petroleum Systems	1,682	1,469	1,665	1,682	1,579	1,528	1,506
Wastewater Treatment	611	616	572	572	579	568	568
Rice Cultivation	641	667	462	510	493	549	454
Stationary Combustion	344	313	350	355	340	318	312
Abandoned Oil and Gas Wells	262	277	282	283	285	289	277
Abandoned Underground	288	264	240	252	256	269	257
Coal Mines Mobile Combustion	518	264 384	249 181	253 163	256 143	268 135	257 128
	15	75	81	84	85	85	86
Composting Petrochemical Production	9	3	3	5	83 7	10	10
Field Burning of Agricultural	9	3	3	3	/	10	10
Residues	4	7	8	8	8	8	8
Ferroalloy Production	1	+	+	1	1	1	1
Silicon Carbide Production	1	· ·		1	1	1	1
and Consumption	1	+	+	+	+	+	+
Iron and Steel Production &	1			·		·	
Metallurgical Coke							
Production	1	1	+	+	+	+	+
Incineration of Waste	+	+	+	+	+	+	+
International Bunker Fuels ^b	7	5	3	3	3	4	4
N_2O^c	1,243	1,261	1,226	1,217	1,255	1,223	1,210
Agricultural Soil Management	845	854	890	880	932	898	894
Stationary Combustion	84	115	110	111	103	101	96
Manure Management	47	55	58	58	59	61	63
Mobile Combustion	141	131	74	68	63	60	57
Nitric Acid Production	41	38	36	37	39	34	31
Adipic Acid Production	51	24	13	18	14	23	25
Wastewater Treatment	11	15	16	16	16	16	17
N ₂ O from Product Uses	14	14	14	14	14	14	14
Composting	1	6	6	6	6	6	6
Caprolactam, Glyoxal, and		_	_	_	_	_	_
Glyoxylic Acid Production	6	7	7	7	7	7	5
Incineration of Waste	2	1	1	1	1	1	1
Semiconductor Manufacture	+	+	1	1	1	1	1
Field Burning of Agricultural							
Residues	+	+	+	+	+	+ +	+
Petroleum Systems	+	+	+ +	+	+	+	+
Natural Gas Systems International Bunker Fuels ^b	3	+ 3	3	3	3	3	+ 3
HFCs	M	M	M	M	M	M	M
Substitution of Ozone	IVI	IVI	171	IVI	IVI	IVI	171
Depleting Substances ^d	M	M	M	M	M	M	M
HCFC-22 Production	3	1	+	+	+	+	+
Semiconductor Manufacture	M	M	M	M	M	M	M
Magnesium Production and	111	.,,		111	171	171	111
Processing	0	0	+	+	+	+	+
PFCs	M	M	M	M	M	M	M


Semiconductor Manufacture	M	M	M	M	M	M	M
Aluminum Production	M	M	M	M	M	M	M
Substitution of Ozone							
Depleting Substances ^d	0	+	+	+	+	+	+
SF_6	1	1	+	+	+	+	+
Electrical Transmission and							
Distribution	1	+	+	+	+	+	+
Magnesium Production and							
Processing	+	+	+	+	+	+	+
Semiconductor Manufacture	+	+	+	+	+	+	+
NF ₃	+	+	+	+	+	+	+
Semiconductor Manufacture	+	+	+	+	+	+	+

⁺ Does not exceed 0.5 kt.

Notes: Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

Emissions of all gases can be summed from each source category into a set of five sectors defined by the Intergovernmental Panel on Climate Change (IPCC). Figure 2-4 and Table 2-3 illustrate that over the twenty-eight-year period of 1990 to 2017, total emissions from the Energy, Industrial Processes and Product Use, and Agriculture sectors grew by 85.1 MMT CO₂ Eq. (1.6 percent), 16.8 MMT CO₂ Eq. (4.9 percent), and 51.8 MMT CO₂ Eq. (10.6 percent), respectively. Emissions from the Waste sector decreased by 68.0 MMT CO₂ Eq. (34.2 percent). Over the same period, total C sequestration in the Land Use, Land-Use Change, and Forestry (LULUCF) sector decreased by 85.2 MMT CO₂ (10.5 percent decrease in total C sequestration), and emissions from the LULUCF sector increased by 7.7 MMT CO₂ Eq. (99.1 percent).

Figure 2-4: U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO₂ Eq.)

M - Mixture of multiple gases

^a Emissions from Wood Biomass, Ethanol, and Biodiesel Consumption are not included specifically in summing Energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

^b Emissions from International Bunker Fuels are not included in totals.

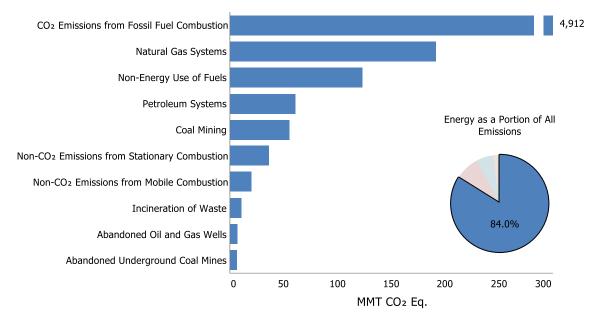
^c LULUCF emissions of CH₄ and N₂O are reported separately from gross emissions totals. Refer to Table 2-8 for a breakout of emissions and removals for LULUCF by gas and source category.

^d Small amounts of PFC emissions also result from this source.

Table 2-3: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks by Chapter/IPCC Sector (MMT CO_2 Eq.)

Chapter/IPCC Sector	1990	2005	2013	2014	2015	2016	2017
Energy	5,339.8	6,308.0	5,695.0	5,736.4	5,584.7	5,465.3	5,424.8
Fossil Fuel Combustion	4,738.8	5,744.8	5,157.4	5,199.3	5,047.1	4,961.9	4,912.0
Natural Gas Systems	223.1	194.0	190.8	190.6	192.2	191.2	191.9
Non-Energy Use of Fuels	119.6	139.6	123.5	119.9	126.9	113.7	123.2
Petroleum Systems	51.0	48.3	66.8	71.7	71.2	60.4	61.0
Coal Mining	96.5	64.1	64.6	64.6	61.2	53.8	55.7
Stationary Combustion	33.7	42.2	41.5	41.9	39.0	38.0	36.4
Mobile Combustion	55.0	48.6	26.6	24.3	22.4	21.2	20.1
Incineration of Waste	8.4	12.9	10.6	10.7	11.1	11.1	11.1
Abandoned Oil and Gas Wells	6.6	6.9	7.0	7.1	7.1	7.2	6.9
Abandoned Underground Coal Mines	7.2	6.6	6.2	6.3	6.4	6.7	6.4
Industrial Processes and Product Use	342.1	358.0	353.1	365.2	360.8	354.6	358.9
Substitution of Ozone Depleting							
Substances	0.3	102.1	141.7	145.3	149.2	151.8	152.7
Iron and Steel Production &							
Metallurgical Coke Production	101.7	68.2	53.5	58.4	47.8	42.3	41.8
Cement Production	33.5	46.2	36.4	39.4	39.9	39.4	40.3
Petrochemical Production	21.4	26.9	26.5	26.6	28.2	28.4	28.5
Ammonia Production	13.0	9.2	9.5	9.4	10.6	10.8	13.2
Lime Production	11.7	14.6	14.0	14.2	13.3	12.9	13.1
Other Process Uses of Carbonates	6.3	7.6	11.5	13.0	12.2	11.0	10.1
Nitric Acid Production	12.1	11.3	10.7	10.9	11.6	10.1	9.3
Adipic Acid Production	15.2	7.1	3.9	5.4	4.3	7.0	7.4
HCFC-22 Production	46.1	20.0	4.1	5.0	4.3	2.8	5.2
Urea Consumption for Non-					_		
Agricultural Purposes	3.8	3.7	4.6	1.8	4.6	5.1	5.0
Semiconductor Manufacture	3.6	4.7	4.6	4.8	4.9	5.0	5.0
Carbon Dioxide Consumption	1.5	1.4	4.2	4.5	4.5	4.5	4.5
Electrical Transmission and	1.0	11.					
Distribution	23.1	8.3	4.4	4.6	4.1	4.4	4.3
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Aluminum Production	28.3	7.6	6.2	5.4	4.8	2.7	2.3
Ferroalloy Production	2.2	1.4	1.8	1.9	2.0	1.8	2.0
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.7	1.8
Titanium Dioxide Production	1.2	1.8	1.7	1.7	1.6	1.7	1.7
Caprolactam, Glyoxal, and Glyoxylic							
Acid Production	1.7	2.1	2.0	2.0	2.0	2.0	1.4
Glass Production	1.5	1.9	1.3	1.3	1.3	1.2	1.3
Magnesium Production and	1.0	1.5	1.5	1.5	1.5	1.2	1.5
Processing	5.2	2.7	1.4	1.0	1.1	1.2	1.2
Phosphoric Acid Production	1.5	1.3	1.1	1.0	1.0	1.0	1.0
Zinc Production	0.6	1.0	1.4	1.0	0.9	0.9	1.0
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5
Silicon Carbide Production and	0.5	0.0	0.5	0.5	0.5	0.5	0.5
Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Agriculture	490.2	518.4	526.3	522.8	543.8	541.2	542.1
Agricultural Soil Management	251.7	254.5	265.2	262.3	277.8	267.6	266.4
Enteric Fermentation	164.2	168.9	165.5	164.2	166.5	171.9	175.4
Manure Management	51.1	70.2	75.5	75.2	78.5	79.7	80.4
Rice Cultivation	16.0	16.7	11.5	12.7	12.3	13.7	11.3
Urea Fertilization	2.4	3.5	4.4	4.5	4.7	4.9	5.1
Liming	4.7	4.3	3.9	3.6	3.7	3.2	3.1
Field Burning of Agricultural	4./	4.3	3.9	3.0	3.7	3.2	3.2
Residues	0.2	0.3	0.3	0.3	0.3	0.3	0.3
Residues	0.2	0.3	0.5	0.5	0.5	0.5	0.5

Waste	198.9	154.7	135.8	135.6	134.5	131.1	131.0
Landfills	179.6	131.4	112.9	112.5	111.2	108.0	107.7
Wastewater Treatment	18.7	19.8	19.0	19.1	19.3	19.1	19.2
Composting	0.7	3.5	3.9	4.0	4.0	4.0	4.1
Total Emissions ^a	6,371.0	7,339.0	6,710.2	6,760.0	6,623.8	6,492.3	6,456.7
Land Use, Land-Use Change, and							
Forestry	(807.0)	(740.0)	(713.5)	(670.0)	(711.1)	(722.6)	(714.1)
Forest land	(788.0)	(750.2)	(726.4)	(678.6)	(744.4)	(741.0)	(733.1)
Cropland	34.6	40.1	55.6	54.7	60.4	57.4	56.6
Grassland	4.7	11.3	4.9	1.2	20.0	7.5	8.9
Wetlands	(0.5)	(2.0)	(0.7)	(0.6)	(0.7)	(0.7)	(0.7)
Settlements	(57.8)	(39.2)	(46.9)	(46.7)	(46.4)	(45.8)	(45.9)
Net Emission (Sources and Sinks) ^b	5,564.0	6,599.0	5,996.8	6,090.0	5,912.7	5,769.7	5,742.6


Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

Energy

Energy-related activities, primarily fossil fuel combustion, accounted for the vast majority of U.S. CO₂ emissions for the period of 1990 through 2017. Fossil fuel combustion is the largest source of energy-related emissions, with CO₂ being the primary gas emitted (see Figure 2-5). Due to their relative importance, fossil fuel combustion-related CO₂ emissions are considered in detail in the Energy chapter (see Figure 2-6).

In 2017, approximately 80 percent of the energy consumed in the United States (on a Btu basis) was produced through the combustion of fossil fuels. The remaining 20 percent came from other energy sources such as hydropower, biomass, nuclear, wind, and solar energy. A discussion of specific trends related to CO₂ as well as other greenhouse gas emissions from energy use is presented in the Energy chapter. Energy-related activities are also responsible for CH₄ and N₂O emissions (43 percent and 13 percent of total U.S. emissions of each gas, respectively). Table 2-4 presents greenhouse gas emissions from the Energy chapter, by source and gas.

Figure 2-5: 2017 Energy Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

^a Total emissions without LULUCF.

^b Net emissions with LULUCF.

Figure 2-6: 2017 U.S. Fossil Carbon Flows (MMT CO₂ Eq.)

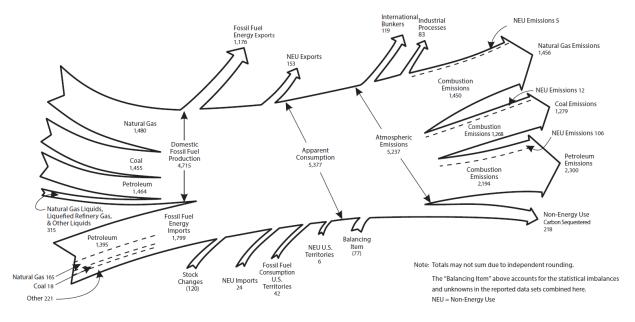


Table 2-4: Emissions from Energy (MMT CO₂ Eq.)

Gas/Source	1990	2005	20	13 2014	2015	2016	2017
CO ₂	4,905.3	5,931.0	5,341	.5 5,384.8	5,241.5	5,134.1	5,095.6
Fossil Fuel Combustion	4,738.8	5,744.8	5,157	.4 5,199.3	5,047.1	4,961.9	4,912.0
Transportation	1,469.1	1,857.0	1,682	.7 1,721.6	1,734.0	1,779.0	1,800.6
Electricity Generation	1,820.0	2,400.0	2,038	2.3 2,037.1	1,900.6	1,808.9	1,732.0
Industrial	857.5	853.4	840	0.0 819.6	807.9	807.6	810.7
Residential	338.2	357.9	329	0.3 346.8	317.8	292.9	294.5
Commercial	226.5	226.8	224	2.6 232.9	245.5	232.1	232.9
U.S. Territories	27.6	49.7	42	2.5 41.4	41.4	41.4	41.4
Non-Energy Use of Fuels	119.6	139.6	123	.5 119.9	126.9	113.7	123.2
Natural Gas Systems	30.0	22.6	25	.1 25.5	25.1	25.5	26.3
Petroleum Systems	9.0	11.6	25	.1 29.6	31.7	22.2	23.3
Incineration of Waste	8.0	12.5	10	.3 10.4	10.7	10.8	10.8
Abandoned Oil and Gas Wells	+	+		+ +	+	+	+
Biomass-Wood ^a	215.2	206.9	227	7.3 233.8	224.7	216.3	221.4
International Bunker Fuels ^b	103.5	113.1	99	0.8 103.4	110.9	116.6	120.1
Biofuels-Ethanol ^a	4.2	22.9	74	76.1	78.9	81.2	82.1
Biofuels-Biodiesel ^a	0.0	0.9	13	2.5 13.3	14.1	19.6	18.7
CH ₄	366.9	303.2	298	298.1	293.5	283.0	283.3
Natural Gas Systems	193.1	171.4	165	1.6 165.1	167.2	165.7	165.6
Coal Mining	96.5	64.1	64	.6 64.6	61.2	53.8	55.7
Petroleum Systems	42.1	36.7	41	.6 42.1	39.5	38.2	37.7
Stationary Combustion	8.6	7.8	8	8.9	8.5	7.9	7.8
Abandoned Oil and Gas Wells	6.6	6.9	7	7.0	7.1	7.2	6.9
Abandoned Underground Coal							
Mines	7.2	6.6	ϵ	6.3	6.4	6.7	6.4
Mobile Combustion	12.9	9.6	4	.5 4.1	3.6	3.4	3.2
Incineration of Waste	+	+		+ +	+	+	+
International Bunker Fuels ^b	0.2	0.1	0	0.1	0.1	0.1	0.1
N_2O	67.6	73.7	55	53.5	49.7	48.3	45.9
Stationary Combustion	25.1	34.3	32	.7 33.0	30.6	30.1	28.6

Mobile Combustion	42.0	39.0	22.1	20.2	18.8	17.9	16.9
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3
Petroleum Systems	+	+	+	+	+	+	+
Natural Gas Systems	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.9	1.0	0.9	0.9	0.9	1.0	1.0
Total	5,339.8	6,308.0	5,695.0	5,736.4	5,584.7	5,465.3	5,424.8

⁺ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

CO₂ Emissions from Fossil Fuel Combustion

As the largest contributor to U.S. greenhouse gas emissions, CO₂ from fossil fuel combustion has accounted for approximately 77 percent of GWP-weighted emissions for the entire time series since 1990. Emissions from this source category grew by 3.7 percent (173.2 MMT CO₂ Eq.) from 1990 to 2017 and were responsible for most of the increase in national emissions during this period. Conversely, CO₂ emissions from fossil fuel combustion decreased from 2005 levels by 832.8 MMT CO₂ Eq., a decrease of approximately 14.5 percent between 2005 and 2017. From 2016 to 2017, these emissions decreased by 1.0 percent (49.9 MMT CO₂ Eq.). Historically, changes in emissions from fossil fuel combustion have been the dominant factor affecting U.S. emission trends.

Changes in CO₂ emissions from fossil fuel combustion are influenced by many long-term and short-term factors, including population and economic growth, energy price fluctuations and market trends, technological changes, energy fuel choices, and seasonal temperatures. On an annual basis, the overall consumption and mix of fossil fuels in the United States fluctuates primarily in response to changes in general economic conditions, overall energy prices, the relative price of different fuels, weather, and the availability of non-fossil alternatives. For example, coal consumption for electric power is influenced by a number of factors including the relative price of coal and alternative sources, the ability to switch fuels, and longer-term trends in coal markets. Likewise, warmer winters lead to a decrease in heating degree days and result in a decreased demand for heating fuel and electricity for heat in the residential and commercial sector, which leads to a decrease in emissions from reduced fuel consumption.

Energy-related CO₂ emissions also depend on the type of fuel consumed or energy used and its C intensity. Producing a unit of heat or electricity using natural gas instead of coal, for example, reduces CO₂ emissions because of the lower C content of natural gas (see Table A-41 in Annex 2.1 for more detail on the C Content Coefficient of different fossil fuels).

Trends in CO₂ emissions from fossil fuel combustion over the past five years have been strongly influenced by the electric power sector, which historically has accounted for the largest share of emissions from this source (see Figure 2-7). In recent years, the types of fuel consumed to produce electricity have changed. Total electric power generation remained relatively flat over the past five years, but emissions have decreased due to a decreasing reliance on coal used to generate electricity and increased generation from natural gas and renewable energy sources. Carbon dioxide emissions from coal consumption for electric power generation decreased by 23.2 percent since 2013, which can be largely attributed to a shift to the use of less-CO₂-intensive natural gas to generate electricity and a rapid increase in the use of renewable energy in the electric power sector in recent years. Electricity generation from renewable sources increased by 35.9 percent from 2013 to 2017 and natural gas generation increased by 16.3 percent over the same time period (see Table 3-12 for more detail on electricity generation by source). The decrease in coal-powered electricity generation and increase in natural gas and renewable energy electricity generation have contributed to a 15.0 percent decrease in overall CO₂ emissions from electric power generation from 2013 to 2017 (see Figure 2-9).

The trends in CO₂ emissions from fossil fuel combustion over the past five years also follow changes in heating degree days. Carbon dioxide emissions from natural gas consumption in the residential and commercial sectors decreased by 9.3 percent and 3.4 percent from 2013 to 2017, respectively. This trend can be largely attributed to a 14 percent decrease in heating degree days, which led to a decreased demand for heating fuel and electricity for heat in these sectors. In addition, an increase in energy efficiency standards and the use of energy-efficient products in residential and commercial buildings has resulted in an overall reduction in energy use, contributing to a decrease in

^a Emissions from Wood Biomass and Biofuel Consumption are not included specifically in summing energy sector totals. Net carbon fluxes from changes in biogenic carbon reservoirs are accounted for in the estimates for LULUCF.

^b Emissions from International Bunker Fuels are not included in totals.

CO₂ emissions in both of these sectors (EIA 2018). Combined residential and commercial sector CO₂ emissions decreased by 4.8 percent from 2013 to 2017.

Petroleum use is another major driver of CO₂ emissions from fossil fuel combustion, particularly in the transportation sector, which represents the largest source of CO₂ emissions from fossil fuel combustion in 2017. Despite the overall decreasing trend in CO₂ emissions from fossil fuel combustion over the past five years, emissions from petroleum consumption for transportation (including bunkers) have increased by 7.5 percent since 2013; this trend can be primarily attributed to a 7.5 percent increase in vehicle miles traveled (VMT) over the same time period. Fuel economy of light-duty vehicles is another important factor. The decline in new light-duty vehicle fuel economy between 1990 and 2004 reflected the increasing market share of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48 percent in 2004. Starting in 2005, average new vehicle fuel economy began to increase while light-duty VMT grew only modestly for much of the period.

Although CO₂ emissions from the transportation sector have increased over the past five years, CO₂ emissions from all other sectors and U.S. Territories have decreased in recent years, contributing to a 1.0 percent decrease in total CO₂ emissions from fossil fuel combustion from 2016 to 2017 and a 4.8 percent reduction since 2013.

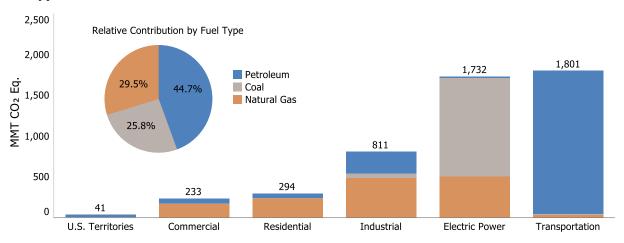
Carbon dioxide emissions from fossil fuel combustion are presented in Table 2-5 based on the underlying U.S. energy consumer data collected by the U.S. Energy Information Administration (EIA). Estimates of CO₂ emissions from fossil fuel combustion are calculated from these EIA "end-use sectors" based on total fuel consumption and appropriate fuel properties described below. (Any additional analysis and refinement of the EIA data is further explained in the Energy chapter of this report.)

- *Transportation*. EIA's fuel consumption data for the transportation sector consists of all vehicles whose primary purpose is transporting people and/or goods from one physical location to another.
- Industry. EIA statistics for the industrial sector include fossil fuel consumption that occurs in the fields of manufacturing, agriculture, mining, and construction. EIA's fuel consumption data for the industrial sector consist of all facilities and equipment used for producing, processing, or assembling goods. (EIA includes generators that produce electricity and/or useful thermal output primarily to support on-site industrial activities in this sector.)
- Electric Power. EIA's fuel consumption data for the electric power sector are comprised of electricity-only
 and combined-heat-and-power (CHP) plants within the North American Industry Classification System
 (NAICS) 22 category whose primary business is to sell electricity, or electricity and heat, to the public.
 (Non-utility power producers are included in this sector as long as they meet the electric power sector
 definition.)
- Residential. EIA's fuel consumption data for the residential sector consist of living quarters for private households.
- Commercial. EIA's fuel consumption data for the commercial sector consist of service-providing facilities and equipment from private and public organizations and businesses. (EIA includes generators that produce electricity and/or useful thermal output primarily to support the activities at commercial establishments in this sector.)

Table 2-5 and Figure 2-7 summarize CO₂ emissions from fossil fuel combustion by end-use sector.

Figure 2-8 further describes direct and indirect CO₂ emissions from fossil fuel combustion, separated by end-use sector.

Table 2-5: CO₂ Emissions from Fossil Fuel Combustion by End-Use Sector (MMT CO₂ Eq.)


End-Use Sector	1990	2005	2013	2014	2015	2016	2017
Transportation	1,472.1	1,861.7	1,686.9	1,726.0	1,738.2	1,783.2	1,804.9
Combustion	1,469.1	1,857.0	1,682.7	1,721.6	1,734.0	1,779.0	1,800.6
Electricity	3.0	4.7	4.3	4.5	4.3	4.2	4.3
Industrial	1,543.9	1,589.7	1,434.8	1,412.5	1,357.4	1,325.2	1,315.1
Combustion	857.5	853.4	840.0	819.6	807.9	807.6	810.7
Electricity	686.4	736.3	594.8	593.0	549.5	517.6	504.4
Residential	930.9	1,213.9	1,064.1	1,080.9	1,001.6	946.3	911.5

Combustion Electricity	226.5 537.7	226.8 803.0	224.6 704.5	232.9 705.6	245.5 663.0	232.1 633.6	232.9 606.2
U.S. Territories ^a	27.6	49.7	42.5	41.4	41.4	41.4	41.4
Total	4,738.8	5,744.8	5,157.4	5,199.3	5,047.1	4,961.9	4,912.0
Electric Power	1,820.0	2,400.0	2,038.3	2,037.1	1,900.6	1,808.9	1,732.0

^a Fuel consumption by U.S. Territories (i.e., American Samoa, Guam, Puerto Rico, U.S. Virgin Islands, Wake Island, and other U.S. Pacific Islands) is included in this report.

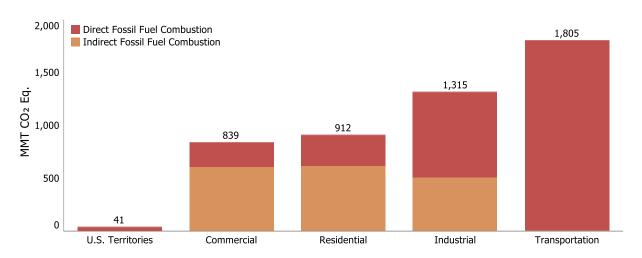

Notes: Combustion-related emissions from electric power are allocated based on aggregate national electricity use by each end-use sector. Totals may not sum due to independent rounding.

Figure 2-7: 2017 CO₂ Emissions from Fossil Fuel Combustion by Sector and Fuel Type (MMT CO₂ Eq.)

Note on Figure 2-7: Fossil Fuel Combustion for electric power also includes emissions of less than 0.5 MMT CO₂ Eq. from geothermal-based generation.

Figure 2-8: 2017 End-Use Sector Emissions of CO₂ from Fossil Fuel Combustion (MMT CO₂ Eq.)

Electric power was the second largest emitter of CO₂ in 2017 (surpassed by transportation); electricity generators used 32 percent of U.S. energy from fossil fuels and emitted 35 percent of the CO₂ from fossil fuel combustion in 2017. Changes in electricity demand and the carbon intensity of fuels used for electric power generation have a significant impact on CO₂ emissions. Carbon dioxide emissions from the electric power sector have decreased by approximately 4.8 percent since 1990, and the carbon intensity of the electric power sector, in terms of CO₂ Eq. per QBtu input, has significantly decreased by 11 percent during that same timeframe. This decoupling of the level of electric power generation and the resulting CO₂ emissions is shown below in Figure 2-9.

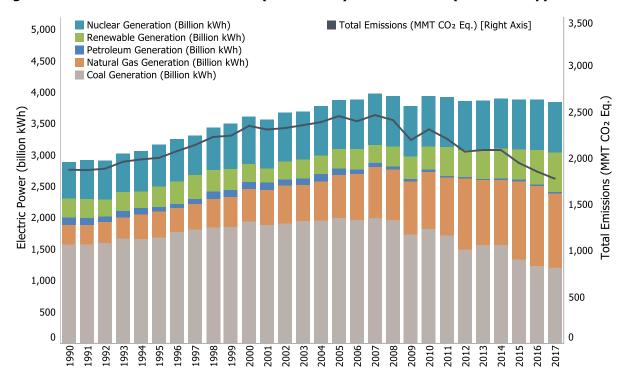


Figure 2-9: Electric Power Generation (Billion kWh) and Emissions (MMT CO₂ Eq.)

Electric power CO₂ emissions can also be allocated to the end-use sectors that use electricity, as presented in Table 2-5. With electricity CO₂ emissions allocated to end-use sectors, the transportation end-use sector accounted for 1,804.9 MMT CO₂ Eq. in 2017 or approximately 37 percent of total CO₂ emissions from fossil fuel combustion. The industrial end-use sector accounted for 27 percent of CO₂ emissions from fossil fuel combustion when including allocated electricity emissions. The residential and commercial end-use sectors accounted for 19 and 17 percent, respectively, of CO₂ emissions from fossil fuel combustion when including allocated electricity emissions. Both of these end-use sectors were heavily reliant on electricity for meeting energy needs, with electricity use for lighting, heating, air conditioning, and operating appliances contributing 68 and 72 percent of emissions from the residential and commercial end-use sectors, respectively.

Other Significant Trends in Energy

Other significant trends in emissions from energy source categories over the twenty-eight-year period from 1990 through 2017 included the following:

• Methane emissions from natural gas systems and petroleum systems (combined here) decreased from 235.1 MMT CO₂ Eq. in 1990 to 203.3 MMT CO₂ Eq. in 2017 (31.9 MMT CO₂ Eq. or 13.6 percent decrease from 1990 to 2017). Natural gas systems CH₄ emissions decreased by 27.5 MMT CO₂ Eq. (14.2 percent) since 1990, largely due to a decrease in emissions from distribution, transmission and storage, processing, and exploration. The decrease in distribution is largely due to decreased emissions from pipelines and distribution station leaks, and the decrease in transmission and storage emissions is largely due to reduced compressor station emissions (including emissions from compressors and leaks). Petroleum systems CH₄

- emissions decreased by 4.4 MMT CO₂ Eq. (or 10.5 percent) since 1990. This decrease is due primarily to decreases in tank emissions and associated gas venting. Carbon dioxide emissions from natural gas and petroleum systems increased by 27 percent from 1990 to 2017, due to increases in flaring emissions.
- Carbon dioxide emissions from non-energy uses of fossil fuels increased by 3.7 MMT CO₂ Eq. (3.1 percent) from 1990 through 2017. Emissions from non-energy uses of fossil fuels were 123.2MMT CO₂ Eq. in 2017, which constituted 2.3 percent of total national CO₂ emissions, approximately the same proportion as in 1990.
- Methane emissions from coal mining decreased by 40.8 MMT CO₂ Eq. (42.3 percent) from 1990 through 2017, primarily due to a decrease in the number of active mines and annual coal production over the time period.
- Nitrous oxide emissions from stationary combustion increased by 3.5 MMT CO₂ Eq. (14.1 percent) from 1990 through 2017. Nitrous oxide emissions from this source increased primarily as a result of an increase in the number of coal fluidized bed boilers in the electric power sector.
- Nitrous oxide emissions from mobile combustion decreased by 25.1 MMT CO₂ Eq. (59.7 percent) from 1990 through 2017, primarily as a result of N₂O national emission control standards and emission control technologies for on-road vehicles.
- Carbon dioxide emissions from incineration of waste (10.8 MMT CO₂ Eq. in 2017) increased by 2.8 MMT CO₂ Eq. (35.7 percent) from 1990 through 2017, as the volume of scrap tires and other fossil C-containing materials in waste increased.

Industrial Processes and Product Use

In many cases, greenhouse gas emissions are generated and emitted as the byproducts of many non-energy-related industrial activities. For example, industrial processes can chemically or physically transform raw materials, which often release waste gases such as CO₂, CH₄, N₂O, and fluorinated gases (e.g., HFC-23). These processes are shown in Figure 2-10. Industrial manufacturing processes and use by end-consumers also release HFCs, PFCs, SF₆, and NF₃ and other fluorinated compounds. In addition to the use of HFCs and some PFCs as substitutes for ozone depleting substances (ODS), fluorinated compounds such as HFCs, PFCs, SF₆, NF₃, and others are employed and emitted by a number of other industrial sources in the United States. These industries include semiconductor manufacture, electric power transmission and distribution, and magnesium metal production and processing. In addition, N₂O is used in and emitted by semiconductor manufacturing and anesthetic and aerosol applications. Table 2-6 presents greenhouse gas emissions from industrial processes by source category. Overall, emission sources in the Industrial Processes and Product Use (IPPU) chapter account for 5.6 percent of U.S. greenhouse gas emissions in 2017.

Figure 2-10: 2017 Industrial Processes and Product Use Chapter Greenhouse Gas Sources (MMT CO_2 Eq.)

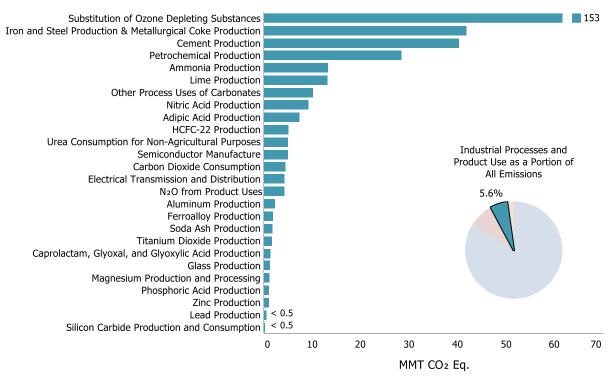


Table 2-6: Emissions from Industrial Processes and Product Use (MMT CO₂ Eq.)

Gas/Source	1990	2005	2013	2014	2015	2016	2017
CO ₂	208.8	191.7	173.1	179.2	173.0	164.5	166.9
Iron and Steel Production & Metallurgical Coke							
Production	101.6	68.2	53.5	58.4	47.8	42.3	41.8
Iron and Steel Production	99.1	66.2	51.6	56.3	45.0	41.0	41.2
Metallurgical Coke Production	2.5	2.1	1.8	2.0	2.8	1.3	0.6
Cement Production	33.5	46.2	36.4	39.4	39.9	39.4	40.3
Petrochemical Production	21.2	26.8	26.4	26.5	28.1	28.1	28.2
Ammonia Production	13.0	9.2	9.5	9.4	10.6	10.8	13.2
Lime Production	11.7	14.6	14.0	14.2	13.3	12.9	13.1
Other Process Uses of Carbonates	6.3	7.6	11.5	13.0	12.2	11.0	10.1
Urea Consumption for Non-Agricultural							
Purposes	3.8	3.7	4.6	1.8	4.6	5.1	5.0
Carbon Dioxide Consumption	1.5	1.4	4.2	4.5	4.5	4.5	4.5
Ferroalloy Production	2.2	1.4	1.8	1.9	2.0	1.8	2.0
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.7	1.8
Titanium Dioxide Production	1.2	1.8	1.7	1.7	1.6	1.7	1.7
Glass Production	1.5	1.9	1.3	1.3	1.3	1.2	1.3
Aluminum Production	6.8	4.1	3.3	2.8	2.8	1.3	1.2
Phosphoric Acid Production	1.5	1.3	1.1	1.0	1.0	1.0	1.0
Zinc Production	0.6	1.0	1.4	1.0	0.9	0.9	1.0
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5
Silicon Carbide Production and Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2
Magnesium Production and Processing	+	+	+	+	+	+	+
CH ₄	0.3	0.1	0.1	0.2	0.2	0.3	0.3
Petrochemical Production	0.2	0.1	0.1	0.1	0.2	0.2	0.3
Ferroalloy Production	+	+	+	+	+	+	+

Silicon Carbide Production and Consumption	+	+	+	+	+	+	+
Iron and Steel Production & Metallurgical Coke							
Production	+	+	+	+	+	+	+
Iron and Steel Production	+	+	+	+	+	+	+
Metallurgical Coke Production	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N_2O	33.3	24.9	21.0	22.8	22.3	23.6	22.6
Nitric Acid Production	12.1	11.3	10.7	10.9	11.6	10.1	9.3
Adipic Acid Production	15.2	7.1	3.9	5.4	4.3	7.0	7.4
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2
Caprolactam, Glyoxal, and Glyoxylic Acid	1.7	2.1	2.0	2.0	2.0	2.0	1.4
Semiconductor Manufacturing	+	0.1	0.2	0.2	0.2	0.2	0.2
HFCs	46.6	122.3	146.1	150.7	153.8	155.0	158.3
Substitution of Ozone Depleting Substances ^a	0.3	102.1	141.7	145.2	149.2	151.7	152.7
HCFC-22 Production	46.1	20.0	4.1	5.0	4.3	2.8	5.2
Semiconductor Manufacturing	0.2	0.2	0.3	0.3	0.3	0.3	0.4
Magnesium Production and Processing	0.0	0.0	0.1	0.1	0.1	0.1	0.1
PFCs	24.3	6.7	5.9	5.6	5.1	4.4	4.1
Semiconductor Manufacturing	2.8	3.2	2.9	3.1	3.1	3.0	3.0
Aluminum Production	21.5	3.4	3.0	2.5	2.0	1.4	1.1
Substitution of Ozone Depleting Substances	0.0	+	+	+	+	+	+
SF_6	28.8	11.8	6.3	6.3	5.8	6.3	6.1
Electrical Transmission and Distribution	23.1	8.3	4.4	4.6	4.1	4.4	4.3
Magnesium Production and Processing	5.2	2.7	1.3	0.9	1.0	1.1	1.1
Semiconductor Manufacturing	0.5	0.7	0.7	0.7	0.7	0.9	0.7
NF ₃	+	0.5	0.5	0.5	0.6	0.6	0.6
Semiconductor Manufacturing	+	0.5	0.5	0.5	0.6	0.6	0.6
Total	342.1	358.0	353.1	365.2	360.8	354.6	358.9

⁺ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Overall, emissions from the IPPU sector increased by 4.9 percent from 1990 to 2017. Significant trends in emissions from IPPU source categories over the twenty-eight-year period from 1990 through 2017 included the following:

- Hydrofluorocarbon and perfluorocarbon emissions resulting from the substitution of ODS (e.g., chlorofluorocarbons [CFCs]) have been increasing from small amounts in 1990 to 152.7 MMT CO₂ Eq. in 2017. This increase was in large part the result of efforts to phase out CFCs and other ODS in the United States. In the short term, this trend is expected to continue, and will likely continue over the next decade as hydrochlorofluorocarbons (HCFCs), which are interim substitutes in many applications, are themselves phased-out under the provisions of the Copenhagen Amendments to the Montreal Protocol.
- Combined CO₂ and CH₄ emissions from iron and steel production and metallurgical coke production decreased by 1.2 percent to 41.8 MMT CO₂ Eq. from 2016 to 2017, and have declined overall by 59.9 MMT CO₂ Eq. (58.9 percent) from 1990 through 2017, due to restructuring of the industry, technological improvements, and increased scrap steel utilization.
- Carbon dioxide emissions from cement production increased by 20.4 percent (6.8 MMT CO₂ Eq.) from 1990 through 2017. They rose from 1990 through 2006 (with the exception of a slight decrease in 1997) and then fell until 2009 due to a decrease in demand for construction materials during the economic recession. Since 2010, CO₂ emissions from cement production have risen 28.2 percent (8.9 MMT CO₂ Eq.).
- Carbon dioxide emissions from ammonia production (13.2 MMT CO₂ Eq. in 2017) decreased by 1.3 percent (0.2 MMT CO₂ Eq.) since 1990. Ammonia production relies on natural gas as both a feedstock and a fuel, and as such, market fluctuations and volatility in natural gas prices affect the production of ammonia.
- Nitrous oxide emissions from adipic acid production were 7.4 MMT CO₂ Eq. in 2017, and have decreased significantly since 1990 due to both the widespread installation of pollution control measures in the late

^a Small amounts of PFC emissions also result from this source.

- 1990s and plant idling in the late 2000s. Emissions from adipic acid production have decreased by 51.5 percent since 1990 and by 56.3 percent since a peak in 1995.
- PFC emissions from aluminum production decreased by 94.8 percent (20.3 MMT CO₂ Eq.) from 1990 to 2017, due to both industry emission reduction efforts and lower domestic aluminum production.

Agriculture

Agricultural activities contribute directly to emissions of greenhouse gases through a variety of processes, including the following source categories: enteric fermentation in domestic livestock, livestock manure management, rice cultivation, agricultural soil management, liming, urea fertilization, and field burning of agricultural residues. Methane, N_2O , and CO_2 were the primary greenhouse gases emitted by agricultural activities.

In 2017, agricultural activities were responsible for emissions of 542.1 MMT CO₂ Eq., or 8.4 percent of total U.S. greenhouse gas emissions. Methane emissions from enteric fermentation and manure management represented approximately 26.7 percent and 9.4 percent of total CH₄ emissions from anthropogenic activities, respectively, in 2017. Agricultural soil management activities, such as application of synthetic and organic fertilizers, deposition of livestock manure, and growing N-fixing plants, were the largest source of U.S. N₂O emissions in 2017, accounting for 73.9 percent. Carbon dioxide emissions from the application of crushed limestone and dolomite (i.e., soil liming) and urea fertilization represented 0.2 percent of total CO₂ emissions from anthropogenic activities. Figure 2-11 and Table 2-7 illustrate agricultural greenhouse gas emissions by source.

Agricultural Soil Management 266 **Enteric Fermentation** Agriculture as a Portion of Manure Management All Emissions 8.4% Rice Cultivation **Urea Fertilization** Liming Field Burning of Agricultural Residues 140 20 60 80 100 120 160 200 220 240 260 MMT CO₂ Eq.

Figure 2-11: 2017 Agriculture Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

Table 2-7: Emissions from Agriculture (MMT CO₂ Eq.)

Gas/Source	1990	2005	20)13	2014	2015	2016	2017
CO ₂	7.1	7.9		8.4	8.1	8.5	8.1	8.2
Urea Fertilization	2.4	3.5		4.4	4.5	4.7	4.9	5.1
Liming	4.7	4.3		3.9	3.6	3.7	3.2	3.2
CH ₄	217.4	239.5	23	5.3	234.9	239.9	247.3	248.7
Enteric Fermentation	164.2	168.9	16	5.5	164.2	166.5	171.9	175.4
Manure Management	37.1	53.7	5	8.1	57.8	60.9	61.5	61.7
Rice Cultivation	16.0	16.7	1	1.5	12.7	12.3	13.7	11.3
Field Burning of Agricultural								
Residues	0.1	0.2		0.2	0.2	0.2	0.2	0.2
N_2O	265.7	271.1	28	2.7	279.7	295.4	285.8	285.2
Agricultural Soil Management	251.7	254.5	26	5.2	262.3	277.8	267.6	266.4
Manure Management	14.0	16.5	1	7.4	17.4	17.6	18.2	18.7
Field Burning of Agricultural								
Residues	+	0.1		0.1	0.1	0.1	0.1	0.1

Total	490.2	518.4	526.3	522.8	543.8	541.2	542.1

⁺ Does not exceed 0.05 MMT CO₂ Eq.

Note: Totals may not sum due to independent rounding.

Some significant trends in U.S. emissions from Agriculture source categories include the following:

- Agricultural soils are the largest anthropogenic source of N₂O emissions in the United States, accounting for approximately 73.9 percent of N₂O emissions in 2017 and 4.1 percent of total emissions in the United States in 2017. Estimated emissions from this source in 2017 were 266.4 MMT CO₂ Eq. Annual N₂O emissions from agricultural soils fluctuated between 1990 and 2017, although overall emissions were 5.8 percent higher in 2017 than in 1990. Year-to-year fluctuations are largely a reflection of annual variation in weather patterns, synthetic fertilizer use, and crop production.
- Enteric fermentation is the largest anthropogenic source of CH₄ emissions in the United States. In 2017, enteric fermentation CH₄ emissions were 26.7 percent of total CH₄ emissions (175.4 MMT CO₂ Eq.), which represents an increase of 11.3 MMT CO₂ Eq. (6.9 percent) since 1990. This increase in emissions from 1990 to 2017 in enteric fermentation generally follows the increasing trends in cattle populations. From 1990 to 1995, emissions increased and then generally decreased from 1996 to 2004, mainly due to fluctuations in beef cattle populations and increased digestibility of feed for feedlot cattle. Emissions increased from 2005 to 2007, as both dairy and beef populations increased. Research indicates that the feed digestibility of dairy cow diets decreased during this period. Emissions decreased again from 2008 to 2014 as beef cattle populations again decreased. Emissions increased from 2014 to 2017, consistent with an increase in beef cattle population over those same years.
- Overall, emissions from manure management increased 57.1 percent between 1990 and 2017. This encompassed an increase of 66.0 percent for CH₄, from 37.1 MMT CO₂ Eq. in 1990 to 61.7 MMT CO₂ Eq. in 2017; and an increase of 33.6 percent for N₂O, from 14.0 MMT CO₂ Eq. in 1990 to 18.7 MMT CO₂ Eq. in 2017. The majority of the increase observed in CH₄ resulted from swine and dairy cattle manure, where emissions increased 29 and 134 percent, respectively, from 1990 to 2017. From 2016 to 2017, there was a 0.2 percent increase in total CH₄ emissions from manure management, mainly due to minor shifts in the animal populations and the resultant effects on manure management system allocations.
- Liming and urea fertilization are the only source of CO₂ emissions reported in the Agriculture sector. Estimated emissions from these sources were 3.2 and 5.1 MMT CO₂ Eq., respectively. Liming emissions decreased by 0.7 percent relative to 2016 and 31.8 percent relative to 1990, while urea fertilization emissions increased by 3.6 percent relative to 2016 and 109.0 percent relative to 1990.

Land Use, Land-Use Change, and Forestry

When humans alter the terrestrial biosphere through land use, changes in land use, and land management practices, they also influence the carbon (C) stock fluxes on these lands and cause emissions of CH₄ and N₂O. Overall, managed land is a net sink for CO₂ (C sequestration) in the United States. The primary drivers of fluxes on managed lands include, for example, forest management practices, tree planting in urban areas, the management of agricultural soils, the landfilling of yard trimmings and food scraps, and activities that cause changes in C stocks in coastal wetlands. The main drivers for net forest sequestration include net forest growth, increasing forest area, and a net accumulation of C stocks in harvested wood pools. The net sequestration in *Settlements Remaining Settlements*, is driven primarily by C stock gains in urban forests through net tree growth and increased urban area, as well as long-term accumulation of C in landfills from additions of yard trimmings and food scraps.

The LULUCF sector in 2017 resulted in a net increase in C stocks (i.e., net CO₂ removals) of 729.6 MMT CO₂ Eq. (Table 2-8).² This represents an offset of approximately 11.3 percent of total (i.e., gross) greenhouse gas emissions

Trends 2-19

² LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland,

in 2017. Emissions of CH₄ and N₂O from LULUCF activities in 2017 were 15.5 MMT CO₂ Eq. and represent 0.2 percent of total greenhouse gas emissions.³ Between 1990 and 2017, total C sequestration in the LULUCF sector decreased by 10.5 percent, primarily due to a decrease in the rate of net C accumulation in forests and *Cropland Remaining Cropland*, as well as an increase in CO₂ emissions from *Land Converted to Settlements*.

Forest fires were the largest source of CH₄ emissions from LULUCF in 2017, totaling 4.9 MMT CO₂ Eq. (194 kt of CH₄). Coastal Wetlands Remaining Coastal Wetlands resulted in CH₄ emissions of 3.6 MMT CO₂ Eq. (144 kt of CH₄). Grassland fires resulted in CH₄ emissions of 0.3 MMT CO₂ Eq. (12 kt of CH₄). Peatlands Remaining Peatlands, Land Converted to Wetlands, and Drained Organic Soils resulted in CH₄ emissions of less than 0.05 MMT CO₂ Eq. each.

Forest fires were also the largest source of N₂O emissions from LULUCF in 2017, totaling 3.2 MMT CO₂ Eq. (11 kt of N₂O). Nitrous oxide emissions from fertilizer application to settlement soils in 2017 totaled to 2.5 MMT CO₂ Eq. (8 kt of N₂O). Additionally, the application of synthetic fertilizers to forest soils in 2017 resulted in N₂O emissions of 0.5 MMT CO₂ Eq. (2 kt of N₂O). Grassland fires resulted in N₂O emissions of 0.3 MMT CO₂ Eq. (1 kt of N₂O). *Coastal Wetlands Remaining Coastal Wetlands* and *Drained Organic Soils* resulted in N₂O emissions of 0.1 MMT CO₂ Eq. each (less than 0.5 kt of N₂O). *Peatlands Remaining Peatlands* resulted in N₂O emissions of less than 0.05 MMT CO₂ Eq.

Carbon dioxide removals from C stock changes are presented in Figure 2-12 and Table 2-8 along with CH₄ and N₂O emissions for LULUCF source categories.

Figure 2-12: 2017 LULUCF Chapter Greenhouse Gas Sources and Sinks (MMT CO₂ Eq.)

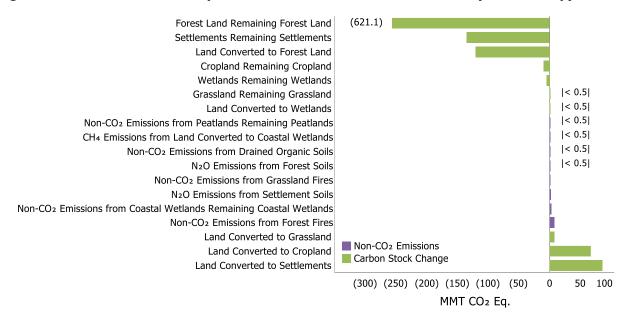


Table 2-8: U.S. Greenhouse Gas Emissions and Removals (Net Flux) from Land Use, Land-Use Change, and Forestry (MMT CO₂ Eq.)

Gas/Land-Use Category	1990	2005	2013	2014	2015	2016	2017
Carbon Stock Change ^a	(814.8)	(756.1)	(731.0)	(687.8)	(739.4)	(738.1)	(729.6)
Forest Land Remaining Forest Land	(671.6)	(639.4)	(616.7)	(568.8)	(645.2)	(628.9)	(621.1)
Land Converted to Forest Land	(119.1)	(120.0)	(120.5)	(120.5)	(120.6)	(120.6)	(120.6)

Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

2-20 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017

_

³ LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

Cropland Remaining Cropland	(40.9)	(26.5)	(11.4)	(12.0)	(6.3)	(9.9)	(10.3)
Land Converted to Cropland	75.6	66.7	66.9	66.7	66.7	67.3	66.9
Grassland Remaining Grassland	(4.2)	5.5	(3.7)	(7.5)	9.6	(1.6)	(0.1)
Land Converted to Grassland	8.7	5.1	8.3	7.9	9.8	8.5	8.3
Wetlands Remaining Wetlands	(4.0)	(5.7)	(4.3)	(4.3)	(4.4)	(4.4)	(4.4)
Land Converted to Wetlands	. ,	. ,	` ′	` ′	. ,	. ,	` ′
	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Settlements Remaining Settlements	(122.1)	(127.8)	(135.9)	(135.8)	(135.4)	(134.7)	(134.5)
Land Converted to Settlements	62.9	86.0	86.4	86.5	86.5	86.4	86.2
CH ₄	5.0	9.0	9.9	10.1	16.5	8.8	8.8
Forest Land Remaining Forest Land:		5.0			10.6	4.0	4.0
Forest Fires ^b	1.5	5.2	6.1	6.1	12.6	4.9	4.9
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	3.4	3.5	3.6	3.6	3.6	3.6	3.6
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.2	0.4	0.3	0.3	0.3
Land Converted to Wetlands: Land							
Converted to Coastal Wetlands	+	+	+	+	+	+	+
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	+	+	+	+	+	+	+
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
N ₂ O	2.8	7.0	7.6	7.7	11.8	6.7	6.7
Forest Land Remaining Forest Land:							
Forest Fires ^b	1.0	3.4	4.0	4.0	8.3	3.2	3.2
Settlements Remaining Settlements:							
Settlement Soils ^e	1.4	2.5	2.6	2.6	2.5	2.5	2.5
Forest Land Remaining Forest Land:							
Forest Soils ^f	0.1	0.5	0.5	0.5	0.5	0.5	0.5
Grassland Remaining Grassland:							
Grassland Fires ^c	0.1	0.3	0.2	0.4	0.3	0.3	0.3
Wetlands Remaining Wetlands: Coastal							
Wetlands Remaining Coastal Wetlands	0.1	0.2	0.1	0.1	0.1	0.1	0.1
Forest Land Remaining Forest Land:							
Drained Organic Soils ^d	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Wetlands Remaining Wetlands:							
Peatlands Remaining Peatlands	+	+	+	+	+	+	+
LULUCF Emissions ^g	7.8	16.0	17.5	17.7	28.3	15.5	15.5
LULUCF Carbon Stock Change ^a	(814.8)	(756.1)	(731.0)	(687.8)	(739.4)	(738.1)	(729.6)
LULUCF Sector Net Total ^h	(807.0)	(740.0)	(713.5)	(670.0)	(711.1)	(722.6)	(714.1)

⁺ Absolute value does not exceed 0.05 MMT CO₂ Eq.

Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration.

^a LULUCF Carbon Stock Change is the net C stock change from the following categories: Forest Land Remaining Forest Land, Land Converted to Forest Land, Cropland Remaining Cropland, Land Converted to Cropland, Grassland Remaining Grassland, Land Converted to Grassland, Wetlands Remaining Wetlands, Land Converted to Wetlands, Settlements Remaining Settlements, and Land Converted to Settlements.

^b Estimates include emissions from fires on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^c Estimates include emissions from fires on both Grassland Remaining Grassland and Land Converted to Grassland.

^d Estimates include emissions from drained organic soils on both *Forest Land Remaining Forest Land* and *Land Converted to Forest Land*.

^e Estimates include emissions from N fertilizer additions on both Settlements Remaining Settlements and Land Converted to Settlements.

f Estimates include emissions from N fertilizer additions on both Forest Land Remaining Forest Land and Land Converted to Forest Land.

^g LULUCF emissions include the CH₄ and N₂O emissions reported for *Peatlands Remaining Peatlands*, Forest Fires, Drained Organic Soils, Grassland Fires, and *Coastal Wetlands Remaining Coastal Wetlands*; CH₄ emissions from *Land Converted to Coastal Wetlands*; and N₂O emissions from Forest Soils and Settlement Soils.

^h The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

Other significant trends from 1990 to 2017 in emissions from LULUCF categories include:

- Annual C sequestration by forest land (i.e., annual C stock accumulation in the five C pools and harvested
 wood products for Forest Land Remaining Forest Land and Land Converted to Forest Land) has decreased
 by approximately 6.2 percent since 1990. This is primarily due to decreased C stock gains in Land
 Converted to Forest Land and the harvested wood products pools within Forest Land Remaining Forest
 Land.
- Annual C sequestration from *Settlements Remaining Settlements* (which includes organic soils, settlement trees, and landfilled yard trimmings and food scraps) has increased by 10.2 percent over the period from 1990 to 2017. This is primarily due to an increase in urbanized land area in the United States.
- Annual emissions from Land Converted to Settlements increased by approximately 37.0 percent from 1990 to 2017 due to losses in aboveground biomass C stocks from Forest Land Converted to Settlements and mineral soils C stocks from Grassland Converted to Settlements.
- Nitrous oxide emissions from fertilizer application to settlement soils in 2017 totaled to 2.5 MMT CO₂ Eq. (8 kt of N₂O). This represents an increase of 72.0 percent since 1990. Additionally, the application of synthetic fertilizers to forest soils in 2017 resulted in N₂O emissions of 0.5 MMT CO₂ Eq. (2 kt of N₂O). Nitrous oxide emissions from fertilizer application to forest soils have increased by 455 percent since 1990, but still account for a relatively small portion of overall emissions.

Waste

Waste management and treatment activities are sources of greenhouse gas emissions (see Figure 2-13). In 2017, landfills were the third-largest source of U.S. anthropogenic CH₄ emissions, accounting for 16.4 percent of total U.S. CH₄ emissions.⁴ Additionally, wastewater treatment accounts for 14.6 percent of waste emissions, 2.2 percent of U.S. CH₄ emissions, and 1.4 percent of N₂O emissions. Emissions of CH₄ and N₂O from composting are also accounted for in this chapter, generating emissions of 2.2 MMT CO₂ Eq. and 1.9 MMT CO₂ Eq., respectively. A summary of greenhouse gas emissions from the Waste chapter is presented in Table 2-9.

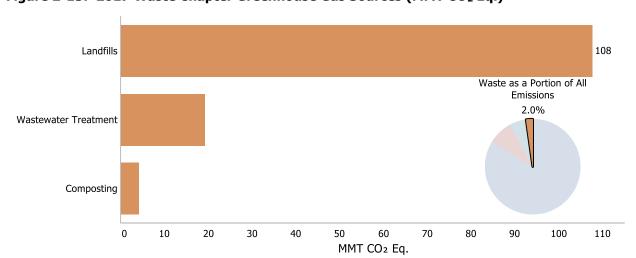


Figure 2-13: 2017 Waste Chapter Greenhouse Gas Sources (MMT CO₂ Eq.)

Overall, in 2017, waste activities generated emissions of 131.0 MMT CO₂ Eq., or 2.0 percent of total U.S. greenhouse gas emissions.

⁴ Landfills also store carbon, due to incomplete degradation of organic materials such as wood products and yard trimmings, as described in the Land Use, Land-Use Change, and Forestry chapter.

Table 2-9: Emissions from Waste (MMT CO₂ Eq.)

Gas/Source	1990	2005	2013	2014	2015	2016	2017
CH ₄	195.2	148.7	129.3	128.9	127.8	124.3	124.1
Landfills	179.6	131.4	112.9	112.5	111.2	108.0	107.7
Wastewater Treatment	15.3	15.4	14.3	14.3	14.5	14.2	14.2
Composting	0.4	1.9	2.0	2.1	2.1	2.1	2.2
N_2O	3.7	6.1	6.5	6.6	6.7	6.8	6.9
Wastewater Treatment	3.4	4.4	4.7	4.8	4.8	4.9	5.0
Composting	0.3	1.7	1.8	1.9	1.9	1.9	1.9
Total	198.9	154.7	135.8	135.6	134.5	131.1	131.0

Note: Totals may not sum due to independent rounding.

Some significant trends in U.S. emissions from waste source categories include the following:

- From 1990 to 2017, net CH₄ emissions from landfills decreased by 71.8 MMT CO₂ Eq. (40.0 percent), with small increases occurring in interim years. This downward trend in emissions coincided with increased landfill gas collection and control systems, and a reduction of decomposable materials (i.e., paper and paperboard, food scraps, and yard trimmings) discarded in municipal solid waste (MSW) landfills over the time series.
- Combined CH₄ and N₂O emissions from composting have generally increased since 1990, from 0.7 MMT CO₂ Eq. to 4.1 MMT CO₂ Eq. in 2017, which represents slightly less than a five-fold increase over the time series. The growth in composting since the 1990s is attributable to primarily four factors: (1) the enactment of legislation by state and local governments that discouraged the disposal of yard trimmings and food waste in landfills; (2) yard trimming collection and yard trimming drop off sites provided by local solid waste management districts; (3) an increased awareness of the environmental benefits of composting; and (4) loans or grant programs to establish or expand composting infrastructure.
- From 1990 to 2017, CH₄ and N₂O emissions from wastewater treatment decreased by 1.1 MMT CO₂ Eq. (7.0 percent) and increased by 1.6 MMT CO₂ Eq. (46.4 percent), respectively. Methane emissions from domestic wastewater treatment have decreased since 1999 due to decreasing percentages of wastewater being treated in anaerobic systems, including reduced use of on-site septic systems and central anaerobic treatment systems. Nitrous oxide emissions from wastewater treatment processes gradually increased across the time series as a result of increasing U.S. population and protein consumption.

2.2 Emissions by Economic Sector

Throughout this report, emission estimates are grouped into five sectors (i.e., chapters) defined by the IPCC and detailed above: Energy; IPPU; Agriculture; LULUCF; and Waste. While it is important to use this characterization for consistency with United Nations Framework Convention on Climate Change (UNFCCC) reporting guidelines and to promote comparability across countries, it is also useful to characterize emissions according to commonly used economic sector categories: residential, commercial, industry, transportation, electric power, and agriculture. Emissions from U.S. Territories are reported as their own end-use sector due to a lack of specific consumption data for the individual end-use sectors within U.S. Territories.

Using this categorization, transportation activities, in aggregate, accounted for the largest portion (28.9 percent) of total U.S. greenhouse gas emissions in 2017. Emissions from electric power accounted for the second largest portion (27.5 percent), while emissions from industry accounted for the third largest portion (22.2 percent) of total U.S. greenhouse gas emissions in 2017. Emissions from industry have in general declined over the past decade due to a number of factors, including structural changes in the U.S. economy (i.e., shifts from a manufacturing-based to a service-based economy), fuel switching, and efficiency improvements.

The remaining 21.3 percent of U.S. greenhouse gas emissions were contributed by, in order of magnitude, the agriculture, commercial, and residential sectors, plus emissions from U.S. Territories. Activities related to agriculture accounted for roughly 9.0 percent of emissions; unlike other economic sectors, agricultural sector

emissions were dominated by N₂O emissions from agricultural soil management and CH₄ emissions from enteric fermentation, rather than CO₂ from fossil fuel combustion. The commercial and residential sectors accounted for roughly 6.4 percent and 5.1 percent of emissions, respectively, and U.S. Territories accounted for 0.7 percent of emissions; emissions from these sectors primarily consisted of CO₂ emissions from fossil fuel combustion. Carbon dioxide was also emitted and sequestered (in the form of C) by a variety of activities related to forest management practices, tree planting in urban areas, the management of agricultural soils, landfilling of yard trimmings, and changes in C stocks in coastal wetlands.

Table 2-10 presents a detailed breakdown of emissions from each of these economic sectors by source category, as they are defined in this report. Figure 2-14 shows the trend in emissions by sector from 1990 to 2017.

Figure 2-14: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq.)

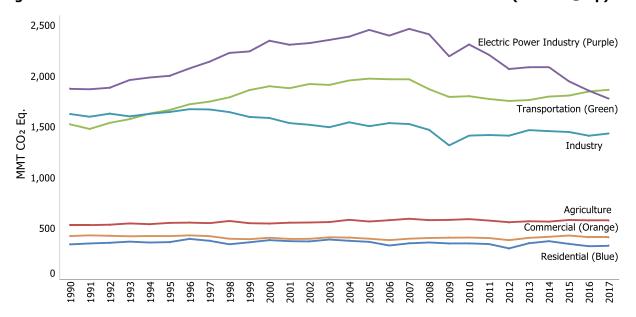


Table 2-10: U.S. Greenhouse Gas Emissions Allocated to Economic Sectors (MMT CO₂ Eq. and Percent of Total in 2017)

Sector/Source	1990	2005	2013	2014	2015	2016	2017 ^a	Percenta
Transportation	1,527.1	1,976.0	1,765.4	1,799.9	1,809.3	1,849.7	1,866.2	28.9%
CO ₂ from Fossil Fuel Combustion	1,469.1	1,857.0	1,682.7	1,721.6	1,734.0	1,779.0	1,800.6	27.9%
Substitution of Ozone Depleting								
Substances	+	69.3	51.6	48.8	46.3	43.3	40.1	0.6%
Mobile Combustion	46.1	39.5	21.5	19.5	18.1	17.0	15.9	0.2%
Non-Energy Use of Fuels	11.8	10.2	9.6	10.0	11.0	10.4	9.6	0.1%
Electric Power Industry	1,875.5	2,455.9	2,088.7	2,088.9	1,949.5	1,857.2	1,778.3	27.5%
CO ₂ from Fossil Fuel Combustion	1,820.0	2,400.0	2,038.3	2,037.1	1,900.6	1,808.9	1,732.0	26.8%
Stationary Combustion	20.9	30.9	29.7	29.9	27.7	27.4	25.9	0.4%
Incineration of Waste	8.4	12.9	10.6	10.7	11.1	11.1	11.1	0.2%
Other Process Uses of Carbonates	3.1	3.8	5.8	6.5	6.1	5.5	5.1	0.1%
Electrical Transmission and								
Distribution	23.1	8.3	4.4	4.6	4.1	4.4	4.3	0.1%
Industry	1,628.6	1,508.4	1,469.5	1,459.3	1,451.2	1,414.1	1,436.5	22.2%
CO ₂ from Fossil Fuel Combustion	814.1	803.0	794.7	774.0	767.2	767.9	771.2	11.9%
Natural Gas Systems	223.1	194.0	190.8	190.6	192.2	191.2	191.9	3.0%
Non-Energy Use of Fuels	102.1	121.3	108.4	104.7	110.9	98.2	108.5	1.7%

Petroleum Systems	51.0	48.3	66.8	71.7	71.2	60.4	61.0	0.9%
Coal Mining	96.5	64.1	64.6	64.6	61.2	53.8	55.7	0.9%
Iron and Steel Production	101.7	68.2	53.5	58.4	47.8	42.3	41.8	0.6%
Cement Production	33.5	46.2	36.4	39.4	39.9	39.4	40.3	0.6%
Substitution of Ozone Depleting								
Substances	+	7.8	21.2	23.1	25.6	27.9	30.1	0.5%
Petrochemical Production	21.4	26.9	26.5	26.6	28.2	28.4	28.5	0.4%
Ammonia Production	13.0	9.2	9.5	9.4	10.6	10.8	13.2	0.2%
Lime Production	11.7	14.6	14.0	14.2	13.3	12.9	13.1	0.2%
Nitric Acid Production	12.1	11.3	10.7	10.9	11.6	10.1	9.3	0.1%
Adipic Acid Production	15.2	7.1	3.9	5.4	4.3	7.0	7.4	0.1%
Abandoned Oil and Gas Wells	6.6	6.9	7.0	7.1	7.1	7.2	6.9	0.1%
Abandoned Underground Coal								
Mines	7.2	6.6	6.2	6.3	6.4	6.7	6.4	0.1%
HCFC-22 Production	46.1	20.0	4.1	5.0	4.3	2.8	5.2	0.1%
Other Process Uses of Carbonates	3.1	3.8	5.8	6.5	6.1	5.5	5.1	0.1%
Urea Consumption for Non-								
Agricultural Purposes	3.8	3.7	4.6	1.8	4.6	5.1	5.0	0.1%
Semiconductor Manufacture	3.6	4.7	4.6	4.8	4.9	5.0	5.0	0.1%
Carbon Dioxide Consumption	1.5	1.4	4.2	4.5	4.5	4.5	4.5	0.1%
N ₂ O from Product Uses	4.2	4.2	4.2	4.2	4.2	4.2	4.2	0.1%
Stationary Combustion	4.8	4.6	4.4	4.3	4.2	4.1	4.2	0.1%
Mobile Combustion	7.6	7.8	4.3	4.0	3.7	3.6	3.6	0.1%
Aluminum Production	28.3	7.6	6.2	5.4	4.8	2.7	2.3	+%
Ferroalloy Production	2.2	1.4	1.8	1.9	2.0	1.8	2.0	+%
Soda Ash Production	1.4	1.7	1.7	1.7	1.7	1.7	1.8	+%
Titanium Dioxide Production	1.2	1.8	1.7	1.7	1.6	1.7	1.7	+%
Caprolactam, Glyoxal, and								
Glyoxylic Acid Production	1.7	2.1	2.0	2.0	2.0	2.0	1.4	+%
Glass Production	1.5	1.9	1.3	1.3	1.3	1.2	1.3	+%
Magnesium Production and								
Processing	5.2	2.7	1.4	1.0	1.1	1.2	1.2	+%
Phosphoric Acid Production	1.5	1.3	1.1	1.0	1.0	1.0	1.0	+%
Zinc Production	0.6	1.0	1.4	1.0	0.9	0.9	1.0	+%
Lead Production	0.5	0.6	0.5	0.5	0.5	0.5	0.5	+%
Silicon Carbide Production and								
Consumption	0.4	0.2	0.2	0.2	0.2	0.2	0.2	+%
Agriculture	534.9	570.0	572.6	569.2	585.2	581.7	582.2	9.0%
N ₂ O from Agricultural Soil								
Management	251.7	254.5	265.2	262.3	277.8	267.6	266.4	4.1%
Enteric Fermentation	164.2	168.9	165.5	164.2	166.5	171.9	175.4	2.7%
Manure Management	51.1	70.2	75.5	75.2	78.5	79.7	80.4	1.2%
CO ₂ from Fossil Fuel Combustion	43.4	50.4	45.4	45.5	40.7	39.7	39.4	0.6%
Rice Cultivation	16.0	16.7	11.5	12.7	12.3	13.7	11.3	0.2%
Urea Fertilization	2.4	3.5	4.4	4.5	4.7	4.9	5.1	0.1%
Liming	4.7	4.3	3.9	3.6	3.7	3.2	3.2	+%
Mobile Combustion	1.2	1.2	0.8	0.8	0.6	0.6	0.6	+%
Field Burning of Agricultural								
Residues	0.2	0.3	0.3	0.3	0.3	0.3	0.3	+%
Stationary Combustion	0.1	+	0.1	0.1	0.1	0.1	0.1	+%
Commercial	426.9	400.7	409.6	419.5	432.2	416.1	416.0	6.4%
CO ₂ from Fossil Fuel Combustion	226.5	226.8	224.6	232.9	245.5	232.1	232.9	3.6%
Landfills	179.6	131.4	112.9	112.5	111.2	108.0	107.7	1.7%
Substitution of Ozone Depleting								
Substances	+	17.8	47.8	49.6	50.7	51.3	50.6	0.8%
Wastewater Treatment	15.3	15.4	14.3	14.3	14.5	14.2	14.2	0.2%
Human Sewage	3.4	4.4	4.7	4.8	4.8	4.9	5.0	0.1%
Composting	0.7	3.5	3.9	4.0	4.0	4.0	4.1	0.1%
-T0	0.7	5.5						0.170

Stationary Combustion	1.5		1.4	1.4	1.4	1.6	1.5	1.5	$+\frac{9}{0}$
Residential	344.7		370.0	356.3	376.6	349.7	326.9	330.9	5.1%
CO ₂ from Fossil Fuel Combustion	338.2		357.9	329.3	346.8	317.8	292.9	294.5	4.6%
Substitution of Ozone Depleting									
Substances	0.3		7.2	21.1	23.8	26.5	29.3	31.9	0.5%
Stationary Combustion	6.3		4.9	5.9	6.0	5.3	4.7	4.6	0.1%
U.S. Territories	33.3		58.1	48.1	46.6	46.6	46.6	46.6	0.7%
CO ₂ from Fossil Fuel Combustion	27.6		49.7	42.5	41.4	41.4	41.4	41.4	0.6%
Non-Energy Use of Fuels	5.7		8.1	5.4	5.1	5.1	5.1	5.1	0.1%
Stationary Combustion	0.1		0.2	0.2	0.2	0.2	0.2	0.2	+%
Total Emissions	6,371.0		7,339.0	6,710.2	6,760.0	6,623.8	6,492.3	6,456.7	100.0%
LULUCF Sector Net Total ^b	(807.0)		(740.0)	(713.5)	(670.0)	(711.1)	(722.6)	(714.1)	(11.1%)
Net Emissions (Sources and				_	•			•	<u> </u>
Sinks)	5,564.0		6,599.0	5,996.8	6,090.0	5,912.7	5,769.7	5,742.6	88.9%
NT - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TOT	. m . 1		. 1	.1 T T T T T T C	ND 00 - 1		1 .

Notes: Total emissions presented without LULUCF. Total net emissions presented with LULUCF. Totals may not sum due to independent rounding. Parentheses indicate negative values or sequestration.

Emissions with Electricity Distributed to Economic Sectors

It is also useful to view greenhouse gas emissions from economic sectors with emissions related to electric power distributed into end-use categories (i.e., emissions from electric power are allocated to the economic sectors in which the electricity is used). The generation, transmission, and distribution of electricity, accounted for 28 percent of total U.S. greenhouse gas emissions in 2017. Electric power-related emissions decreased by 5.2 percent since 1990 and by 4.2 percent from 2016 to 2017, primarily due to decreased CO₂ emissions from fossil fuel combustion and increased use of renewable energy. Between 2016 to 2017, the consumption of coal, natural gas, and petroleum for electric power generation decreased by 2.9, 7.2, and 10.7 percent, respectively, while the amount of electricity generated (in kWh) decreased by 1.1 percent.

From 2016 to 2017, electricity sales to the residential and commercial end-use sectors decreased by 2.3 percent and 1.0 percent, respectively. Electricity sales to the industrial sector increased by approximately 0.8 percent. Overall, from 2016 to 2017, the amount of electricity retail sales (in kWh) decreased by 1.0 percent. The sales trend in the residential and commercial sectors can largely be attributed to milder weather conditions (i.e., warmer winter months and cooler summer months). A decrease in both heating and cooling degree days from 2016 to 2017 resulted in less demand for electricity to power heating and cooling equipment (EIA 2018). Table 2-11 provides a detailed summary of emissions from electric power-related activities.

Table 2-11: Electric Power-Related Greenhouse Gas Emissions (MMT CO₂ Eq.)

Gas/Fuel Type or Source	1990	2005	2013	2014	2015	2016	2017
CO ₂	1,831.0	2,416.3	2,054.4	2,054.1	1,917.5	1,825.1	1,747.9
Fossil Fuel Combustion	1,820.0	2,400.0	2,038.3	2,037.1	1,900.6	1,808.9	1,732.0
Coal	1,546.5	1,982.8	1,571.3	1,568.6	1,351.4	1,242.0	1,207.1
Natural Gas	175.4	318.9	444.2	442.9	525.2	545.0	505.6
Petroleum	97.5	97.9	22.4	25.3	23.7	21.4	18.9
Geothermal	0.5	0.5	0.4	0.4	0.4	0.4	0.4
Incineration of Waste	8.0	12.5	10.3	10.4	10.7	10.8	10.8
Other Process Uses of							
Carbonates	3.1	3.8	5.8	6.5	6.1	5.5	5.1
CH ₄	0.4	0.9	1.0	1.1	1.2	1.2	1.1
Stationary Sources ^a	0.4	0.9	1.0	1.1	1.2	1.2	1.1
Incineration of Waste	+	+	+	+	+	+	+
N_2O	21.0	30.4	28.9	29.2	26.8	26.5	25.1
Stationary Sources ^a	20.5	30.1	28.6	28.9	26.5	26.2	24.8
Incineration of Waste	0.5	0.4	0.3	0.3	0.3	0.3	0.3

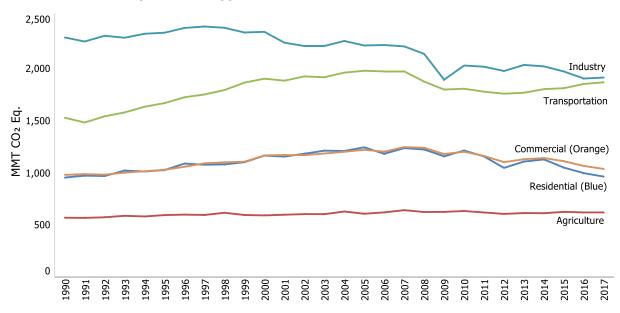
⁺ Does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.

^a Percent of total (gross) emissions excluding emissions from LULUCF for 2017.

^b The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

SF ₆	23.1	8.3	4.4	4.6	4.1	4.4	4.3
Electrical Transmission and							
Distribution	23.1	8.3	4.4	4.6	4.1	4.4	4.3
Total	1,875.5	2,455.9	2,088.7	2,088.9	1,949.5	1,857.2	1,778.3

⁺ Does not exceed 0.05 MMT CO₂ Eq.


Note: Totals may not sum due to independent rounding.

To distribute electricity emissions among economic end-use sectors, emissions from the source categories assigned to the electric power sector were allocated to the residential, commercial, industry, transportation, and agriculture economic sectors according to each economic sector's share of retail sales of electricity (EIA 2019a; Duffield 2006). These source categories include CO₂ from Fossil Fuel Combustion, CH₄ and N₂O from Stationary Combustion, Incineration of Waste, Other Process Uses of Carbonates, and SF₆ from Electrical Transmission and Distribution Systems. Note that only 50 percent of the Other Process Uses of Carbonates emissions were associated with electric power and distributed as described; the remainder of Other Process Uses of Carbonates emissions were attributed to the industrial processes economic end-use sector.⁵

When emissions from electricity use are distributed among these economic end-use sectors, industrial activities account for the largest share of total U.S. greenhouse gas emissions (29.7 percent), followed closely by emissions from transportation (29.0 percent). Emissions from the commercial and residential sectors also increase substantially when emissions from electricity are included (16.1 and 14.9 percent, respectively). In all economic end-use sectors except agriculture, CO₂ accounts for more than 81.3 percent of greenhouse gas emissions, primarily from the combustion of fossil fuels.

Table 2-12 presents a detailed breakdown of emissions from each of these economic sectors, with emissions from electric power distributed to them. Figure 2-12 shows the trend in these emissions by sector from 1990 to 2017.

Figure 2-15: U.S. Greenhouse Gas Emissions with Electricity-Related Emissions Distributed to Economic Sectors (MMT CO₂ Eq.)

^a Includes only stationary combustion emissions related to the generation of electricity.

⁵ Emissions were not distributed to U.S. Territories, since the electric power sector only includes emissions related to the generation of electricity in the 50 states and the District of Columbia.

Table 2-12: U.S. Greenhouse Gas Emissions by Economic Sector and Gas with Electricity-Related Emissions Distributed (MMT CO_2 Eq.) and Percent of Total in 2017

Sector/Gas	1990	2005	2013	2014	2015	2016	2017	Percenta
Industry	2,300.9	2,223.5	2,036.7	2,023.0	1,973.6	1,906.4	1,915.6	29.7%
Direct Emissions	1,628.6	1,508.4	1,469.5	1,459.3	1,451.2	1,414.1	1,436.5	22.2%
CO_2	1,160.8	1,146.4	1,120.6	1,106.6	1,101.7	1,072.8	1,091.3	16.9%
CH_4	353.8	293.6	289.3	289.1	285.1	275.3	275.9	4.3%
N_2O	37.6	29.7	25.6	27.3	26.7	28.0	27.1	0.4%
HFCs, PFCs, SF ₆ , and NF ₃	76.3	38.7	34.0	36.3	37.7	38.0	42.2	0.7%
Electricity-Related	672.3	715.2	567.2	563.7	522.4	492.3	479.2	7.4%
CO_2	656.4	703.6	557.9	554.3	513.8	483.8	470.9	7.3%
CH ₄	0.2	0.3	0.3	0.3	0.3	0.3	0.3	+%
N_2O	7.5	8.9	7.9	7.9	7.2	7.0	6.8	0.1%
SF_6	8.3	2.4	1.2	1.2	1.1	1.2	1.2	+%
Transportation	1,530.2	1,980.8	1,769.8	1,804.5	1,813.7	1,854.1	1,870.6	29.0%
Direct Emissions	1,527.1	1,976.0	1,765.4	1,799.9	1,809.3	1,849.7	1,866.2	28.9%
CO_2	1,480.9	1,867.2	1,692.3	1,731.6	1,744.9	1,789.4	1,810.1	28.0%
CH ₄	5.9	3.0	1.8	1.7	1.6	1.5	1.4	+%
N_2O	40.2	36.5	19.7	17.8	16.5	15.5	14.5	0.2%
$\mathrm{HFCs^b}$	+	69.3	51.6	48.8	46.3	43.3	40.1	0.6%
Electricity-Related	3.1	4.8	4.4	4.6	4.4	4.3	4.4	0.1%
CO_2	3.1	4.8	4.3	4.5	4.3	4.2	4.4	0.1%
CH ₄	+	+	+	+	+	+	+	+%
N_2O	+	0.1	0.1	0.1	0.1	0.1	0.1	+%
SF ₆	+	+	+	+	+	+	+	+%
Commercial	981.1	1,222.4	1,131.5	1,143.1	1,112.3	1,066.6	1,038.4	16.1%
Direct Emissions	426.9	400.7	409.6	419.5	432.2	416.1	416.0	6.4%
CO_2	226.5	226.8	224.6	232.9	245.5	232.1	232.9	3.6%
CH ₄	196.3	149.7	130.3	130.0	129.0	125.5	125.3	1.9%
N_2O	4.1	6.4	6.8	7.0	7.0	7.1	7.2	0.1%
HFCs	+	17.8	47.8	49.6	50.7	51.3	50.6	0.8%
Electricity-Related	554.2	821.7	721.9	723.6	680.1	650.5	622.4	9.6%
CO_2	541.0	808.4	710.0	711.5	668.9	639.3	611.8	9.5%
CH ₄	0.1	0.3	0.4	0.4	0.4	0.4	0.4	+%
N_2O	6.2	10.2	10.0	10.1	9.4	9.3	8.8	0.1%
SF ₆	6.8	2.8	1.5	1.6	1.4	1.5	1.5	+%
Residential	955.6	1,246.0	1,109.2	1,129.3	1,051.1	997.8	964.5	14.9%
Direct Emissions	344.7	370.0	356.3	376.6	349.7	326.9	330.9	5.1%
CO_2	338.2	357.9	329.3	346.8	317.8	292.9	294.5	4.6%
CH ₄	5.2	4.1	4.9	5.0	4.5	3.9	3.8	0.1%
N_2O	1.0	0.9	1.0	1.0	0.9	0.8	0.8	+%
HFCs	0.3	7.2	21.1	23.8	26.5	29.3	31.9	0.5%
Electricity-Related	610.8	875.9	752.9	752.7	701.4	670.9	633.6	9.8%
CO_2	596.4	861.8	740.5	740.2	689.8	659.3	622.7	9.6%
CH ₄	0.1	0.3	0.4	0.4	0.4	0.4	0.4	+%
N_2O	6.8	10.9	10.4	10.5	9.7	9.6	8.9	0.1%
SF ₆	7.5	3.0	1.6	1.7	1.5	1.6	1.5	+%
Agriculture	569.9	608.3	614.9	613.5	626.5	620.8	620.9	9.6%
Direct Emissions	534.9	570.0	572.6	569.2	585.2	581.7	582.2	9.0%
CO_2	50.5	58.2	53.7	53.6	49.2	47.8	47.6	0.7%
CH ₄	218.1	240.1	235.5	235.2	240.0	247.4	248.8	3.9%
N ₂ O	266.3	271.7	283.3	280.4	296.0	286.4	285.8	4.4%
Electricity-Related	35.1	38.3	42.3	44.3	41.2	39.1	38.7	0.6%
CO_2	34.2	37.7	41.6	43.6	40.6	38.4	38.1	0.6%
CH ₄	+	+	+	+	+	+	+	+%
N_2O	0.4	0.5	0.6	0.6	0.6	0.6	0.5	+%
SF ₆	0.4	0.1	0.1	0.1	0.1	0.1	0.1	+%
U.S. Territories	33.3	58.1	48.1	46.6	46.6	46.6	46.6	0.7%

Total Emissions	6,371.0	7,339.0	6,710.2	6,760.0	6,623.8	6,492.3	6,456.7	100.0%
LULUCF Sector Net Total ^c	(807.0)	(740.0)	(713.5)	(670.0)	(711.1)	(722.6)	(714.1)	-11.1%
Net Emissions (Sources and								
Sinks)	5,564.0	6,599.0	5,996.8	6,090.0	5,912.7	5,769.7	5,742.6	88.9%

Notes: Total emissions presented without LULUCF. Net emissions presented with LULUCF. Emissions from electric power are allocated based on aggregate electricity use in each end-use sector. Totals may not sum due to independent rounding.

Industry

The industry end-use sector includes CO_2 emissions from fossil fuel combustion from all manufacturing facilities, in aggregate, and with the distribution of electricity-related emissions, accounts for 29.7 percent of U.S. greenhouse gas emissions in 2017. This end-use sector also includes emissions that are produced as a byproduct of the non-energy-related industrial process activities. The variety of activities producing these non-energy-related emissions includes CH_4 emissions from petroleum and natural gas systems, fugitive CH_4 emissions from coal mining, byproduct CO_2 emissions from cement manufacture, and HFC, PFC, SF₆, and NF₃ byproduct emissions from semiconductor manufacture, to name a few.

Since 1990, industrial sector emissions have declined by 14.8 percent. The decline has occurred both in direct emissions and indirect emissions associated with electricity use. Structural changes within the U.S. economy that led to shifts in industrial output away from energy-intensive manufacturing products to less energy-intensive products (e.g., from steel to computer equipment) have had a significant effect on industrial emissions.

Transportation

When electricity-related emissions are distributed to economic end-use sectors, transportation activities accounted for 29.0 percent of U.S. greenhouse gas emissions in 2017. The largest sources of transportation greenhouse gas emissions in 2017 were passenger cars (41.2 percent); freight trucks (23.3 percent); light-duty trucks, which include sport utility vehicles, pickup trucks, and minivans (17.5 percent); commercial aircraft (6.9 percent); other aircraft (2.4 percent); ships and boats (2.4 percent); rail (2.2 percent); and pipelines (2.2 percent). These figures include direct CO₂, CH₄, and N₂O emissions from fossil fuel combustion used in transportation and emissions from non-energy use (i.e., lubricants) used in transportation, as well as HFC emissions from mobile air conditioners and refrigerated transport allocated to these vehicle types.

In terms of the overall trend, from 1990 to 2017, total transportation emissions increased due, in large part, to increased demand for travel. The number of VMT by light-duty motor vehicles (passenger cars and light-duty trucks) increased 45.1 percent from 1990 to 2017, as a result of a confluence of factors including population growth, economic growth, urban sprawl, and periods of low fuel prices.

The decline in new light-duty vehicle fuel economy between 1990 and 2004 reflected the increasing market share of light-duty trucks, which grew from about 30 percent of new vehicle sales in 1990 to 48 percent in 2004. Starting in 2005, average new vehicle fuel economy began to increase while light-duty VMT grew only modestly for much of the period. Light-duty VMT grew by less than one percent or declined each year between 2005 and 2013⁶ and has since grown at a faster rate (2.5 percent from 2015 to 2016, and 1.0 percent from 2016 to 2017). Average new vehicle fuel economy has increased almost every year since 2005, while light-duty truck market share decreased to

⁺ Does not exceed 0.05 MMT CO₂ Eq. or 0.05 percent.

^a Percent of total (gross) emissions excluding emissions from LULUCF for year 2017.

^b Includes primarily HFC-134a.

^c The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

⁶ VMT estimates are based on data from FHWA Highway Statistics Table VM-1 (FHWA 1996 through 2017). In 2007 and 2008 light-duty VMT decreased 3.0 percent and 2.3 percent, respectively. Note that the decline in light-duty VMT from 2006 to 2007 is due at least in part to a change in FHWA's methods for estimating VMT. In 2011, FHWA changed its methods for estimating VMT by vehicle class, which led to a shift in VMT and emissions among on-road vehicle classes in the 2007 to 2017 time period. In absence of these method changes, light-duty VMT growth between 2006 and 2007 would likely have been higher.

about 33 percent in 2009 and has since varied from year to year between 36 and 45 percent. Light-duty truck market share was about 42 percent of new vehicles in model year 2017 (EPA 2019).

Table 2-13 provides a detailed summary of greenhouse gas emissions from transportation-related activities with electricity-related emissions included in the totals.

Almost all of the energy used for transportation was supplied by petroleum-based products, with more than half being related to gasoline consumption in automobiles and other highway vehicles. Other fuel uses, especially diesel fuel for freight trucks and jet fuel for aircraft, accounted for the remainder. The primary driver of transportation-related emissions was CO₂ from fossil fuel combustion, which increased by 23 percent from 1990 to 2017.⁷ This rise in CO₂ emissions, combined with an increase in HFCs from close to zero emissions in 1990 to 40.1 MMT CO₂ Eq. in 2017, led to an increase in overall greenhouse gas emissions from transportation activities of 22 percent.⁸

Table 2-13: Transportation-Related Greenhouse Gas Emissions (MMT CO₂ Eq.)

Gas/Vehicle	1990	2005	2013	2014	2015	2016	2017
Passenger Cars	639.6	693.8	747.0	761.8	762.0	772.6	770.7
CO_2	612.2	643.3	717.2	734.8	736.9	749.9	750.6
CH4	3.2	1.3	0.8	0.7	0.6	0.6	0.5
N_2O	24.1	17.6	11.8	10.5	9.7	8.9	8.2
HFCs	0.0	31.7	17.2	15.8	14.7	13.2	11.4
Light-Duty Trucks	326.7	540.2	315.1	335.5	324.5	333.8	327.3
CO_2	312.2	491.1	283.6	306.2	297.5	309.1	304.8
CH4	1.7	0.8	0.3	0.2	0.2	0.2	0.2
N_2O	12.8	15.0	4.7	4.4	3.8	3.5	3.1
HFCs	0.0	33.3	26.5	24.7	23.0	21.1	19.2
Medium- and Heavy-Duty							
Trucks	230.3	400.1	395.2	407.6	415.5	423.6	436.5
CO_2	229.3	395.4	389.0	401.4	409.1	417.2	430.0
CH ₄	0.3	0.1	0.1	0.1	0.1	0.1	0.1
N_2O	0.7	1.2	0.9	0.9	0.8	0.8	0.8
HFCs	0.0	3.4	5.2	5.3	5.5	5.5	5.7
Buses	8.5	12.2	17.9	19.3	19.8	19.5	20.4
CO_2	8.4	11.6	17.2	18.6	19.1	18.8	19.7
CH4	+	0.2	0.2	0.2	0.2	0.2	0.2
N_2O	+	+	+	+	+	+	+
HFCs	0.0	0.3	0.4	0.4	0.4	0.4	0.4
Motorcycles	1.7	1.6	3.9	3.8	3.7	3.9	3.8
CO_2	1.7	1.6	3.8	3.8	3.7	3.8	3.7
CH ₄	+	+	+	+	+	+	+
N_2O	+	+	+	+	+	+	+
Commercial Aircraft ^a	110.9	134.0	115.4	116.3	120.1	121.5	129.2
CO_2	109.9	132.7	114.3	115.2	119.0	120.4	128.0
CH4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
N_2O	1.0	1.2	1.1	1.1	1.1	1.1	1.2
Other Aircraft ^b	78.3	59.7	34.7	35.0	40.4	47.5	45.6
CO_2	77.5	59.1	34.4	34.7	40.0	47.0	45.2
CH4	0.1	0.1	+	+	+	+	+
N_2O	0.7	0.5	0.3	0.3	0.4	0.4	0.4
Ships and Boats ^c	47.4	45.7	40.1	29.4	34.1	41.3	44.4
CO_2	46.3	44.2	37.2	26.4	30.8	37.5	40.3
CH ₄	0.6	0.5	0.3	0.3	0.3	0.3	0.3
N_2O	0.6	0.6	0.5	0.3	0.4	0.5	0.5
HFCs	0.0	0.5	2.0	2.3	2.6	2.9	3.3

⁷ See previous footnote.

⁸ See previous footnote.

Rail	39.0	50.9	44.8	46.3	44.2	40.8	41.9
CO_2	38.5	50.3	44.2	45.7	43.6	40.2	41.2
CH ₄	0.1	0.1	0.1	0.1	0.1	0.1	0.1
N_2O	0.3	0.4	0.4	0.4	0.4	0.3	0.3
HFCs	0.0	0.1	0.1	0.1	0.1	0.1	0.1
Other Emissions from							
Electric Power ^d	0.1	+	+	+	+	+	0.1
Pipelines ^e	36.0	32.4	46.2	39.4	38.5	39.2	41.4
CO_2	36.0	32.4	46.2	39.4	38.5	39.2	41.4
Lubricants	11.8	10.2	9.6	10.0	11.0	10.4	9.6
CO_2	11.8	10.2	9.6	10.0	11.0	10.4	9.6
Total Transportation	1,530.2	1,980.8	1,769.8	1,804.5	1,813.7	1,854.1	1,870.6
International Bunker Fuels ^f	54.8	44.7	29.5	28.7	31.6	34.9	34.6
Ethanol CO2g	4.1	21.6	70.5	74.0	74.2	76.9	77.7
Biodiesel CO2g	0.0	0.9	13.5	13.3	14.1	19.6	18.7

⁺ Does not exceed 0.05 MMT CO₂ Eq.

Notes: Passenger cars and light-duty trucks include vehicles typically used for personal travel and less than 8,500 lbs; medium- and heavy-duty trucks include vehicles larger than 8,500 lbs. HFC emissions primarily reflect HFC-134a. Totals may not sum due to independent rounding.

Commercial

The commercial end-use sector, with electricity-related emissions distributed, accounts for 16.1 percent of U.S. greenhouse gas emissions in 2017 and is heavily reliant on electricity for meeting energy needs, with electricity use for lighting, heating, air conditioning, and operating appliances. The remaining emissions were largely due to the direct consumption of natural gas and petroleum products, primarily for heating and cooking needs. Energy-related emissions from the commercial sector have generally been increasing since 1990, and annual variations are often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing economic conditions. Decreases in energy-related emissions in the commercial sector in recent years can be largely attributed to an overall reduction in energy use driven by a reduction in heating degree days, and increases in energy efficiency.

Landfills and wastewater treatment are included in the commercial sector, with landfill emissions decreasing since 1990 and wastewater treatment emissions decreasing slightly.

Residential

The residential end-use sector, with electricity-related emissions distributed, accounts for 14.9 percent of U.S. greenhouse gas emissions in 2017 and similarly, is heavily reliant on electricity for meeting energy needs, with electricity use for lighting, heating, air conditioning, and operating appliances. The remaining emissions were largely due to the direct consumption of natural gas and petroleum products, primarily for heating and cooking needs. Emissions from the residential sector have generally been increasing since 1990, and annual variations are often correlated with short-term fluctuations in energy use caused by weather conditions, rather than prevailing

^a Consists of emissions from jet fuel consumed by domestic operations of commercial aircraft (no bunkers).

^b Consists of emissions from jet fuel and aviation gasoline consumption by general aviation and military aircraft.

^c Fluctuations in emission estimates are associated with fluctuations in reported fuel consumption, and may reflect issues with data sources.

^d Other emissions from electric power are a result of waste incineration (as the majority of municipal solid waste is combusted in "trash-to-steam" electric power plants), electrical transmission and distribution, and a portion of Other Process Uses of Carbonates (from pollution control equipment installed in electric power plants).

^e CO₂ estimates reflect natural gas used to power pipelines, but not electricity. While the operation of pipelines produces CH₄ and N₂O, these emissions are not directly attributed to pipelines in the Inventory.

f Emissions from International Bunker Fuels include emissions from both civilian and military activities; these emissions are not included in the transportation totals.

g Ethanol and biodiesel CO₂ estimates are presented for informational purposes only. See Section 3.11 and the estimates in Land Use, Land-Use Change, and Forestry (see Chapter 6), in line with IPCC methodological guidance and UNFCCC reporting obligations, for more information on ethanol and biodiesel.

economic conditions. In the long term, the residential sector is also affected by population growth, migration trends toward warmer areas, and changes in housing and building attributes (e.g., larger sizes and improved insulation). A shift toward energy-efficient products and more stringent energy efficiency standards for household equipment has also contributed to recent trends in energy demand in households (EIA 2018).

Agriculture

The agriculture end-use sector accounts for 9.6 percent of U.S. greenhouse gas emissions in 2017 when electricity-related emissions are distributed, and includes a variety of processes, including enteric fermentation in domestic livestock, livestock manure management, and agricultural soil management. In 2017, agricultural soil management was the largest source of N₂O emissions, and enteric fermentation was the largest source of CH₄ emissions in the United States. This sector also includes small amounts of CO₂ emissions from fossil fuel combustion by motorized farm equipment such as tractors.

Box 2-1: Methodology for Aggregating Emissions by Economic Sector

In presenting the Economic Sectors in the annual *Inventory of U.S. Greenhouse Gas Emissions and Sinks*, the Inventory expands upon the standard IPCC sectors common for UNFCCC reporting. Discussing greenhouse gas emissions relevant to U.S.-specific economic sectors improves communication of the report's findings.

The *Electric Power* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA electric power sector. Stationary combustion emissions of CH₄ and N₂O are also based on the EIA electric power sector. Additional sources include CO₂, CH₄, and N₂O from waste incineration, as the majority of municipal solid waste is combusted in plants that produce electricity. The Electric Power economic sector also includes SF₆ from Electrical Transmission and Distribution, and a portion of CO₂ from Other Process Uses of Carbonates (from pollution control equipment installed in electric power plants).

The *Transportation* economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA transportation fuel-consuming sector. (Additional analyses and refinement of the EIA data are further explained in the Energy chapter of this report.) Emissions of CH₄ and N₂O from mobile combustion are also apportioned to the Transportation economic sector based on the EIA transportation fuel-consuming sector. Substitution of Ozone Depleting Substances emissions are apportioned to the Transportation economic sector based on emissions from refrigerated transport and motor vehicle air-conditioning systems. Finally, CO₂ emissions from Non-Energy Uses of Fossil Fuels identified as lubricants for transportation vehicles are included in the Transportation economic sector.

The Industry economic sector includes CO_2 emissions from the combustion of fossil fuels that are included in the EIA industrial fuel-consuming sector, minus the agricultural use of fuel explained below. The CH_4 and N_2O emissions from stationary and mobile combustion are also apportioned to the Industry economic sector based on the EIA industrial fuel-consuming sector, minus emissions apportioned to the Agriculture economic sector. Substitution of Ozone Depleting Substances emissions are apportioned based on their specific end-uses within the source category, with most emissions falling within the Industry economic sector.

Additionally, all process-related emissions from sources with methods considered within the IPCC IPPU sector are apportioned to the Industry economic sector. This includes the process-related emissions (i.e., emissions from the actual process to make the material, not from fuels to power the plant) from activities such as Cement Production, Iron and Steel Production and Metallurgical Coke Production, and Ammonia Production. Additionally, fugitive emissions from energy production sources, such as Natural Gas Systems, Coal Mining, and Petroleum Systems are included in the Industry economic sector. A portion of CO₂ from Other Process Uses of Carbonates (from pollution control equipment installed in large industrial facilities) is also included in the Industry economic sector. Finally, all remaining CO₂ emissions from Non-Energy Uses of Fossil Fuels are assumed to be industrial in nature (besides the lubricants for transportation vehicles specified above) and are attributed to the Industry economic sector.

The *Agriculture* economic sector includes CO₂ emissions from the combustion of fossil fuels that are based on supplementary sources of agriculture fuel use data, because EIA does not include an agriculture fuel-consuming sector. Agriculture equipment is included in the EIA industrial fuel-consuming sector. Agriculture fuel use estimates are obtained from U.S. Department of Agriculture survey data, in combination with separate EIA fuel sales reports (USDA 2018; EIA 2019b). These supplementary data are subtracted from the industrial fuel use reported by EIA to

obtain agriculture fuel use. CO₂ emissions from fossil fuel combustion, and CH₄ and N₂O emissions from stationary and mobile combustion, are then apportioned to the Agriculture economic sector based on agricultural fuel use.

The other IPCC Agriculture emission source categories apportioned to the Agriculture economic sector include N_2O emissions from Agricultural Soils, CH_4 from Enteric Fermentation, CH_4 and N_2O from Manure Management, CH_4 from Rice Cultivation, CO_2 emissions from Liming and Urea Application, and CH_4 and N_2O from Field Burning of Agricultural Residues.

The Residential economic sector includes CO_2 emissions from the combustion of fossil fuels that are included in the EIA residential fuel-consuming sector. Stationary combustion emissions of CH_4 and N_2O are also based on the EIA residential fuel-consuming sector. Substitution of Ozone Depleting Substances are apportioned to the Residential economic sector based on emissions from residential air-conditioning systems. Nitrous oxide emissions from the application of fertilizers to developed land (termed "settlements" by the IPCC) are also included in the Residential economic sector.

The Commercial economic sector includes CO₂ emissions from the combustion of fossil fuels that are included in the EIA commercial fuel-consuming sector. Emissions of CH₄ and N₂O from Mobile Combustion are also apportioned to the Commercial economic sector based on the EIA commercial fuel-consuming sector. Substitution of Ozone Depleting Substances emissions are apportioned to the Commercial economic sector based on emissions from commercial refrigeration/air-conditioning systems. Public works sources, including direct CH₄ from Landfills, CH₄ and N₂O from Wastewater Treatment, and Composting, are also included in the Commercial economic sector.

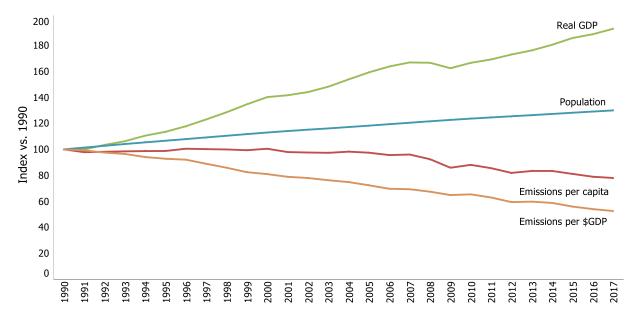
Box 2-2: Recent Trends in Various U.S. Greenhouse Gas Emissions-Related Data

Total greenhouse gas emissions can be compared to other economic and social indices to highlight changes over time. These comparisons include: (1) emissions per unit of aggregate energy use, because energy-related activities are the largest sources of emissions; (2) emissions per unit of fossil fuel consumption, because almost all energy-related emissions involve the combustion of fossil fuels; (3) emissions per unit of electricity use, because the electric power industry—utilities and non-utilities combined—was the second largest source of emissions in 2017; (4) emissions per unit of total gross domestic product as a measure of national economic activity; and (5) emissions per capita.

Table 2-14 provides data on various statistics related to U.S. greenhouse gas emissions normalized to 1990 as a baseline year. These values represent the relative change in each statistic since 1990. Greenhouse gas emissions in the United States have grown at an average annual rate of 0.1 percent since 1990. This growth rate is slightly slower than that for total energy use and fossil fuel consumption, and much slower than that for electricity use, overall gross domestic product (GDP) and national population (see Table 2-14 and Figure 2-16). These trends vary after 2005, when greenhouse gas emissions, total energy use and fossil fuel consumption began to peak. Greenhouse gas emissions in the United States have decreased at an average annual rate of 1.0 percent since 2005. Total energy use and fossil fuel consumption have also decreased at slower rates than emissions since 2005, while electricity use, GDP, and national population continued to increase.

Table 2-14: Recent Trends in Various U.S. Data (Index 1990 = 100)

Variable	1990	2	005	2013	2014	2015	2016	2017	Avg. Annual Change Since 1990 ^a	Avg. Annual Change Since 2005 ^a
Greenhouse Gas Emissions ^b	100		115	105	106	104	102	101	0.1%	-1.0%
Energy Use ^c	100		118	115	117	116	116	116	0.6%	-0.1%
Fossil Fuel Consumption ^c	100		119	110	111	110	109	108	0.3%	-0.7%
Electricity Use ^c	100		134	136	138	137	138	136	1.2%	0.1%
$\mathrm{GDP^d}$	100		159	176	180	186	189	193	2.5%	1.6%
Population ^e	100		118	126	127	128	129	130	1.0%	0.8%


⁺ Does not exceed 0.05 percent.

^a Average annual growth rate

^b GWP-weighted values

^c Energy-content-weighted values (EIA 2019a)

Figure 2-16: U.S. Greenhouse Gas Emissions Per Capita and Per Dollar of Gross Domestic Product

Source: BEA (2018), U.S. Census Bureau (2018), and emission estimates in this report.

2.3 Precursor Greenhouse Gas Emissions (CO, NO_x, NMVOCs, and SO₂)

The reporting requirements of the UNFCCC⁹ request that information be provided on indirect greenhouse gases, which include CO, NO_x, NMVOCs, and SO₂. These gases are not direct greenhouse gases, but indirectly affect terrestrial radiation absorption by influencing the formation and destruction of tropospheric and stratospheric ozone, or, in the case of SO₂, by affecting the absorptive characteristics of the atmosphere. Additionally, some of these gases may react with other chemical compounds in the atmosphere to form compounds that are greenhouse gases. Carbon monoxide is produced when carbon-containing fuels are combusted incompletely. Nitrogen oxides (i.e., NO and NO₂) are created by lightning, fires, fossil fuel combustion, and in the stratosphere from N₂O. Non-methane volatile organic compounds—which include hundreds of organic compounds that participate in atmospheric chemical reactions (i.e., propane, butane, xylene, toluene, ethane, and many others)—are emitted primarily from transportation, industrial processes, and non-industrial consumption of organic solvents. In the United States, SO₂ is primarily emitted from coal combustion for electric power generation and the metals industry. Sulfur-containing compounds emitted into the atmosphere tend to exert a negative radiative forcing (i.e., cooling) and therefore are discussed separately.

One important indirect climate change effect of NMVOCs and NO_x is their role as precursors for tropospheric ozone formation. They can also alter the atmospheric lifetimes of other greenhouse gases. Another example of indirect

^d GDP in chained 2009 dollars (BEA 2019)

e U.S. Census Bureau (2018)

⁹ See http://unfccc.int/resource/docs/2013/cop19/eng/10a03.pdf>.

greenhouse gas formation into greenhouse gases is the interaction of CO with the hydroxyl radical—the major atmospheric sink for CH₄ emissions—to form CO₂. Therefore, increased atmospheric concentrations of CO limit the number of hydroxyl molecules (OH) available to destroy CH₄.

Since 1970, the United States has published estimates of emissions of CO, NO_x, NMVOCs, and SO₂ (EPA 2018), ¹⁰ which are regulated under the Clean Air Act. Table 2-15 shows that fuel combustion accounts for the majority of emissions of these indirect greenhouse gases. Industrial processes—such as the manufacture of chemical and allied products, metals processing, and industrial uses of solvents—are also significant sources of CO, NO_x, and NMVOCs.

Table 2-15: Emissions of NO_x, CO, NMVOCs, and SO₂ (kt)

Gas/Activity	1990	2005	2013	2014	2015	2016	2017
NOx	21,745	17,336	11,345	10,808	10,293	9,608	9,126
Mobile Fossil Fuel Combustion	10,862	10,295	6,523	6,138	5,740	5,413	5,051
Stationary Fossil Fuel Combustion	10,023	5,858	3,487	3,319	3,042	2,882	2,761
Oil and Gas Activities	139	321	641	650	650	650	650
Industrial Processes and Product Use	592	572	427	414	414	414	414
Forest Fires	37	133	157	155	321	124	124
Waste Combustion	82	128	89	97	97	97	97
Grassland Fires	5	21	13	27	21	19	21
Agricultural Burning	4	6	6	6	6	6	6
Waste	+	2	2	2	2	2	2
CO	131,277	71,783	48,720	47,613	52,447	43,039	41,382
Mobile Fossil Fuel Combustion	119,360	58,615	35,525	34,135	33,159	30,786	29,112
Forest Fires	1,334	4,723	5,574	5,525	11,425	4,425	4,425
Stationary Fossil Fuel Combustion	5,000	4,648	3,847	3,686	3,686	3,686	3,686
Waste Combustion	978	1,403	1,518	1,776	1,776	1,776	1,776
Industrial Processes and Product Use	4,129	1,557	1,247	1,251	1,251	1,251	1,251
Oil and Gas Activities	302	318	628	637	637	637	637
Grassland Fires	84	358	217	442	356	324	345
Agricultural Burning	89	154	157	152	148	144	141
Waste	1	7	7	8	8	8	8
NMVOCs	20,930	13,154	11,332	11,130	10,965	10,719	10,513
Industrial Processes and Product Use	7,638	5,849	3,855	3,816	3,816	3,816	3,816
Mobile Fossil Fuel Combustion	10,932	5,724	4,023	3,754	3,589	3,342	3,137
Oil and Gas Activities	554	510	2,741	2,853	2,853	2,853	2,853
Stationary Fossil Fuel Combustion	912	716	532	497	497	497	497
Waste Combustion	222	241	122	143	143	143	143
Waste	673	114	58	68	68	68	68
Agricultural Burning	NA	NA	NA	NA	NA	NA	NA
SO_2	20,935	13,196	4,421	4,241	3,343	2,686	2,553
Stationary Fossil Fuel Combustion	18,407	11,541	3,644	3,532	2,635	1,978	1,846
Industrial Processes and Product Use	1,307	831	548	498	498	498	498
Mobile Fossil Fuel Combustion	390	180	99	94	94	94	94
Oil and Gas Activities	793	619	106	88	87	87	87
Waste Combustion	38	25	23	27	27	27	27
Waste	+	1	1	1	1	1	1
Agricultural Burning	NA	NA	NA	NA	NA	NA	NA

⁺ Does not exceed 0.5 kt.

NA (Not Available)

Note: Totals may not sum due to independent rounding.

Source: (EPA 2018) except for estimates from Forest Fires, Grassland Fires, and Field Burning of Agricultural Residues.

 $^{^{10}}$ NO_x and CO emission estimates from Field Burning of Agricultural Residues were estimated separately, and therefore not taken from EPA (2018).

Box 2-3: Sources and Effects of Sulfur Dioxide

Sulfur dioxide (SO₂) emitted into the atmosphere through natural and anthropogenic processes affects the earth's radiative budget through its photochemical transformation into sulfate aerosols that can:

- (1) scatter radiation from the sun back to space, thereby reducing the radiation reaching the earth's surface;
- (2) affect cloud formation; and
- (3) affect atmospheric chemical composition (e.g., by providing surfaces for heterogeneous chemical reactions).

The indirect effect of sulfur-derived aerosols on radiative forcing can be considered in two parts. The first indirect effect is the aerosols' tendency to decrease water droplet size and increase water droplet concentration in the atmosphere. The second indirect effect is the tendency of the reduction in cloud droplet size to affect precipitation by increasing cloud lifetime and thickness. Although still highly uncertain, the radiative forcing estimates from both the first and the second indirect effect are believed to be negative, as is the combined radiative forcing of the two (IPCC 2013).

Sulfur dioxide is also a major contributor to the formation of regional haze, which can cause significant increases in acute and chronic respiratory diseases. Once SO₂ is emitted, it is chemically transformed in the atmosphere and returns to the earth as the primary source of acid rain. Because of these harmful effects, the United States has regulated SO₂ emissions in the Clean Air Act.

Electric power is the largest anthropogenic source of SO₂ emissions in the United States, accounting for 49.2 percent in 2017. Coal combustion contributes nearly all of those emissions (approximately 92 percent). Sulfur dioxide emissions have decreased in recent years, primarily as a result of electric power generators switching from high-sulfur to low-sulfur coal and installing flue gas desulfurization equipment.