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ABSTRACT: We conduct a meta-analysis using a comprehensive review of studies that examine 

the effects of water quality improvements on waterfront and non-waterfront housing values. Rather 

than conducting the meta-analysis using dollar values, this study estimates mean elasticity 

responses. We identify 36 studies that result in 656 unique observations. Mean property price 

elasticities with respect to numerous water quality measures are calculated (e.g., chlorophyll-a, 

fecal coliform, nitrogen, and phosphorous) for purposes of value transfer. In the context of water 

clarity, function transfers can be performed. We estimate numerous meta-regressions, and compare 

transfer performance across models using an out-of-sample transfer error exercise. The results 

suggest value transfers often perform just as well as more complicated function transfers.  In our 

context, however, a simple function transfer that accounts for baseline water clarity performs best.  

We discuss the implications of these results for benefit transfer, and outline key limitations in the 

literature.   
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1. INTRODUCTION 

 

The hedonic property value method is a popular nonmarket valuation technique to estimate how 

residents value local amenities and disamenities, including water quality and related ecosystem 

services. The basic notion is that a house and its location comprise a bundle of characteristics. 

Hedonic modeling allows analysts to estimate how each of those various characteristics contribute 

to the overall price of a home. Empirical applications of hedonic methods to property values date 

back to Hass (1922), who examined how agricultural land prices vary with distance to the city 

center. But it was not until Rosen’s (1974) seminal paper that hedonic modeling was formally 

linked to welfare analysis. Since then there have been numerous empirical studies examining how 

local environmental commodities affect residential property prices.  

Dating back to David’s (1968) report, the hedonic literature examining the impacts of surface water 

quality on residential property values is fairly well-established. Our comprehensive literature 

review identified 36 unique studies in the published and grey literature. Many studies focus 

primarily on the price impacts of water quality among waterfront homes (Young 1984, Michael et 

al. 1996, Boyle et al. 1999, Leggett and Bockstael 2000), but recent studies have found price effects 

as far away as about one mile from a waterbody (Walsh et al. 2011a, Netusil et al. 2014, Liu et al. 

2017, Klemick et al. 2018).  

In order to generalize key conclusions from any literature, economists often turn to meta-analysis, 

which is a quantitative synthesis of multiple primary studies (Nelson, 2013). Nelson and Kennedy 

(2009) identified 140 meta-analyses in the environmental and resource economics field, about half 

of which were published since 2004. Although there are several meta-analyses of hedonic property 

value studies, including applications to air quality (Smith and Huang, 1993, 1995), contaminated 

                                                 
1 The authors thank Elena Besedin, Matthew Ranson, and Patrick Walsh for helpful feedback early in the 

development of this project. We also thank Charles Griffiths, James Price, Brenda Rashleigh, Stephen Swallow, 

Hale Thurston, and participants at the 10th Annual Conference of the Society for Benefit-Cost Analysis and the 

USDA Workshop “Applications and Potential of Ecosystem Services Valuation within USDA – Advancing the 

Science” for helpful comments.  
a Corresponding author: Department of Economics, Appalachian State University, 416 Howard Street, ASU Box 

32051, Boone, NC. Email: guignetdb@appstate.edu.  
b Office of Research and Development, U.S. Environmental Protection Agency. 
c Abt Associates, Inc. 
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sites (Messer et al., 2006; Kiel and Williams, 2007), open space (Mazzotta et al., 2014), and noise 

(Nelson, 2004), to our knowledge we conduct the first comprehensive meta-analysis of the hedonic 

literature examining surface water quality.2  

The results from meta-analyses can help make predictions for benefit transfer – where an analyst 

uses the predicted outcomes to infer ex ante or ex post impacts of some policy action, in lieu of 

conducting a new study.  In practice, benefit analyses of public policies often rely on benefit 

transfer because original studies require a lot of time and money, or are infeasible due to data 

constraints. In fact, benefit transfer is one of the most common approaches used to complete 

benefit-cost analyses at the US Environmental Protection Agency (US EPA, 2010, Newbold et al. 

2018). Improving benefit transfer, as well as combining limited, but heterogeneous, information 

for surface water quality changes, remains a priority for policy-makers (Newbold et al. 2018). 

Our objective is to synthesize the vast literature examining how water quality impacts home values, 

and estimate unit values and value-transfer functions. Our study aggregates this literature and 

systematically calculates comparable within- and cross-study elasticity estimates by accounting 

for differences in functional forms, assumed price-distance gradients, and baseline conditions. We 

convert the primary study coefficient estimates to common elasticity and semi-elasticity measures 

for both waterfront and near-waterfront homes, and then use Monte Carlo simulations to estimate 

the corresponding standard errors. Each study can yield numerous meta-observations due to 

multiple study areas, water quality metrics, and model specifications. Our meta-dataset contains 

n=665 unique observations, and for 656 of these observations sufficient information was reported 

to calculate the corresponding elasticity and/or semi-elasticity estimates. 

We find considerable differences across the studies in the meta-dataset in terms of how studies 

quantified water quality, the type of waterbody studied, and the region of the US the study 

examined. We often find it difficult to convert the disparate water quality measures to a common 

metric. Therefore, we conduct a separate meta-analysis for each water quality measure. In most 

cases this is limited to calculating mean elasticities with respect to each water quality measure. We 

calculate these unit values separately for waterfront and non-waterfront homes using a variety of 

different weighting schemes. Most notably, we propose a novel cluster-adjusted Random Effect 

Size (RES) weighting scheme that simultaneously gives more influence to more statistically 

precise primary study estimates and accounts for the cluster- (or panel-) nature of the meta-dataset.  

In the context of water clarity specifically, a sufficient number of meta-observations (n=260) 

allows us to conduct a meta-regression analysis. In the absence of clear guidance on the most 

appropriate estimation approach and specification for these meta-regressions, a variety of 

specifications are estimated using different techniques, including Random Effects (RE) Panel 

models and the Mundlak (1978) regression model that was recently suggested by Boyle and 

Wooldridge (2018) as a possible alternative when estimating meta-regressions for purposes of 

benefit transfer.     

                                                 
2 There are, however, two notable unpublished studies.  In her Master’s thesis, Fath (2011) conducts a limited meta-

analysis of 13 hedonic studies.  Abt Associates (2015) estimates the capitalization effects of large-scale changes in 

water clarity of lakes based on a simple weighted-average across nine hedonic studies. 
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We then statistically test the appropriateness of pooling estimates from different regions and types 

of waterbodies, and discuss the implications for benefit transfer. Benefit transfer performance 

across the different models for value function transfers are compared to each other, and to a simpler 

value transfer. This assessment entails an out-of-sample transfer error exercise. Although value 

transfers generally perform on par with more complicated function transfers, and sometimes even 

perform better, we do find that a transfer function accounting for baseline water clarity levels 

yields the lowest transfer error.  

Along with recommendations to practitioners conducting benefit transfer, we provide some brief 

guidance on combining our results with available data to assess local, regional, and national 

policies affecting water quality. A key contribution of this study is in highlighting gaps in the 

literature regarding the types of waterbodies and regions covered, and the disconnect between the 

water quality metrics used by economists versus those currently examined by water quality 

modelers and policy makers.  

The remainder of the paper is organized as follows.  First, we describe the meta-dataset, including 

how we identified studies and our approach to format comparable elasticity estimates.  Section 3 

introduces the methodology for weighting and clustering meta-observations, and presents the 

meta-regression models used to predict values related to water clarity.  We then present the results 

for the mean unit value and meta-regression models, including a comparison to determine which 

is more accurate for benefit transfer.  We end with a discussion of the limitations and future 

research.   

 

2. META-DATASET 

 

2.1 Identifying Candidate Studies and Inclusion Criteria 

Our search protocol included both peer-reviewed and grey literature sources.  We focused on 

hedonic studies utilizing surface water quality measures or indices in the US, but we left criteria 

such as year published open under different combinations of keywords to capture the largest 

selection of studies.  The search began with reviewing reports unrelated to this research effort (e.g., 

US EPA 2016; Van Houtven et al. 2008) or other literature reviews and meta-analyses on related 

topics (e.g., Abt Associates, 2015; Alvarez & Asci, 2014; Braden et al., 2011; Crompton, 2004; 

Fath, 2011).  The next step was to search a variety of databases and working paper series which 

included Google Scholar, Environmental Valuation Reference Inventory, JSTOR, AgEcon Search, 

EPA’s National Center for Environmental Economics Working Paper Series, Resources for the 

Future (RFF) Working Paper Series, Social Science Research Network (SSRN), and ScienceDirect 

among many others.  Keywords when searching these databases included all combinations of the 

terms:  house, home, property, value, price, or hedonic with terms such as water quality, water 

clarity, Secchi disk, pH, aquatic, and sediment.  Requests also were submitted to ResEcon and 

Land and Resource Economics Network on October 24, 2014 and January 21, 2016.  Seven studies 

were provided from the 2014 request and one publication was added from the 2016 request.  After 

this lengthy process, we attempted one final literature search through the US EPA’s internal library 
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system.  This last step identified two studies that were not identified previously.  Although it was 

published after the construction of the meta-dataset, the list of identified studies was compared to 

an extensive literature review by Nicholls and Crompton (2018). This provided additional 

reassurance that the identified set of studies fitting the outlined criteria is fairly comprehensive.  

In total we identify 65 studies in the published and grey literature that are potentially relevant. To 

facilitate linkages between water quality models and economic valuation, and ultimately to 

perform more defensible benefit transfers to US policies, focus is drawn to the 36 unique primary 

studies that examined surface water quality in the US using objective water quality measures. More 

specifically, 29 studies are dropped after further screening because an objective water quality 

measure was not used, the study area was outside of the US, a working paper or other grey literature 

became redundant with a later peer-reviewed publication that is in the meta-dataset, or the research 

was not a primary study (e.g., a literature review).  The remaining 36 studies are selected for 

inclusion in the final meta-dataset.   

 

2.2 Meta-dataset Structure and Details 

From the selected 36 studies, 26 are published studies in peer-reviewed academic journals, three 

are working papers, three are Master’s level or PhD theses, two are government reports, one is a 

presentation, and one is a book chapter.  The year of publication or study release ranges from 1979-

2017. The majority of primary studies examine freshwater lakes (24 studies), followed by estuaries 

(6 studies), rivers (2 studies) and small rivers and streams (3 studies). One study examines both 

lakes and rivers. As shown in Figure 1, spatial coverage is limited in the southwest and midwest 

regions of the US, while the eastern and southern regions have the most studies.  Some states even 

have as many as four (Maine, Maryland, Ohio), and even five studies (Florida).   

[Insert Figure 1 about here.] 

The meta-dataset consists of a panel or cluster structure, where each study can contribute multiple 

unique observations.3 Individual studies may analyze multiple study areas, water quality metrics, 

and model specifications. Additionally, a unique dimension in the current context is that the 

primary hedonic studies sometimes examine how the property value effects of interest vary with 

distance from the waterbody. Distance is thus an important factor and should be accounted for 

when transferring water quality benefits to a new policy region. A novel contribution of this study 

is that the meta-dataset explicitly incorporates price effect estimates corresponding to different 

distances from the waterbody.  This implies that even a single coefficient estimate from a primary 

study may be used to infer price effects for homes at different distances, each of which is 

represented as a separate observation in the meta-dataset.  

                                                 
3 In the context of meta-analysis, Boyle and Wooldridge (2018) specify the distinction between a cluster versus a 

panel structure. The structures are similar, but with a cluster structure there is no natural ordering to the observations 

within a cluster, as is the case in this meta-analysis.  We therefore continue with the cluster structure nomenclature, 

but believe making the connection to panel data analysis is useful given its prominence in econometrics   
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Across the 36 primary studies, there are 30 different measures of water quality examined. To be 

fully transparent and provide the most information for practitioners to choose from when 

conducting benefit transfers, the meta-dataset includes all water quality measures. The price effect 

estimates with respect to different water quality measures, however, are examined separately in 

the meta-analysis. The pooling of estimates across different water quality measures is not 

appropriate.  Even when converted to elasticities, a one-percent change in Secchi disk depth means 

something very different than a one-percent change in fecal coliform counts, pH levels, or nitrogen 

concentrations, for example.  That said, when a valid approach could be found, the primary study 

estimates are converted to a common water quality measure.  Such a conversion is only undertaken 

for two hedonic studies examining light attenuation (a measure of water clarity) in the Chesapeake 

Bay (Guignet et al., 2017; Walsh et al., 2017), where an appropriate conversion factor was 

available in the literature. In these cases, the meta-dataset includes unique observations 

corresponding to the inferred water quality measure (Secchi disk depth), as well as the original 

measure (light attenuation). To our knowledge, valid conversion factors or other approaches are 

not currently available for other water quality measures and primary study areas included in the 

meta-dataset.   

 

2.3 Formatting Comparable Elasticity and Semi-elasticity Estimates 

A key challenge in constructing any meta-dataset is to ensure that all the outcomes of interest are 

comparable across studies (Nelson and Kennedy, 2009). By focusing on a single methodology, 

hedonic property value methods, the outcome of interest itself is always the same – i.e., 

capitalization effects on residential property values. And as just discussed, elasticity estimates with 

respect to different water quality measures are never pooled and examined in a single meta-

analysis, thus making the estimates that are examined together even more comparable.  Two other 

sources deterring comparability of results across primary studies must still be accounted for, and 

both pertain to functional form assumptions in the original hedonic specifications.   

The first form of cross-study differences is a common obstacle for meta-analysts. Differences in 

functional form lead to coefficient estimates that have slightly different interpretations across 

studies.  In the hedonic literature, some studies estimate specifications like semi-log, double-log, 

and even linear models. Other primary studies include interaction terms between the water quality 

measure and various attributes of the waterbody (such as lake area) to model heterogeneity.  To 

address these differences we convert the coefficient estimates from the primary studies to common 

elasticity and semi-elasticity estimates based on study specific model-by-model derivations, which 

are carefully detailed in Appendix A. These derivations also sometimes include the mean 

transaction price and mean values of observed covariates, as reported in the primary study. Such 

variables enter into the elasticity calculations due to interaction terms or other functional form 

assumptions in the primary study.   

The second form of cross-study differences involves how (and if) the home price impacts of water 

quality are allowed to vary with distance to the waterbody. In a recent meta-analysis of stated 

preference studies on water quality, Johnston et al. (2019) point out that no published meta-



6 
 

regression studies in the valuation literature include a mechanism to account for the relationship 

between households’ values for an environmental commodity and distance to the resource.  

Johnston et al. account for this relationship by proposing an approach to estimate the mean distance 

among the sample in each primary study, and then include that as a control variable in the right-

hand side of their meta-regression models.  In our study we are able take a different approach that 

explicitly incorporates such spatial heterogeneity into the structure of the meta-dataset itself. We 

include unique observations from the same primary study that account for the house price effects 

at different distances from the resource. Such an approach is possible due to the relatively fine 

spatial resolution associated with hedonic property value methods compared to other non-market 

valuation techniques.  

In the hedonic literature, different primary studies make different functional form assumptions 

when it comes to the price-distance gradient with respect to water quality, including both discrete 

distance bins and continuous gradients (e.g., linear, inverse distance, polynomial).  The 

consideration of how the outcome effects of interest vary with distance adds a unique and novel 

dimension to the cluster (or panel) structure of our meta-dataset.  Except for internal meta-analyses 

by Klemick et al. (2018) and Guignet et al. (2018), our meta-analysis is the first to incorporate this 

distance dimension into the meta-dataset.  In an internal meta-analysis the researchers estimate the 

primary regressions themselves, and so Klemick et al. (2018) and Guignet et al. (2018) had the 

luxury of assuming the initial functional forms of their hedonic regressions, and thus ensured that 

the distance gradients were specified the same way across all estimates.  In the current meta-

analysis we do not have this luxury, and adapting the elasticity estimates to be comparable across 

different distance gradient specifications in different studies is a unique challenge.    

We make an overarching assumption to limit the meta-dataset and analysis to only housing value 

impacts within 500 meters.  Although some hedonic studies have found that water quality impacts 

home values at farther distances (e.g., Walsh et al. 2011a, Netusil et al. 2014, Klemick et al. 2018, 

Kung et al. 2019), 16 of the 36 studies in the literature exclusively analyze price impacts on 

waterfront homes.  It is unknown whether some primary studies limited the spatial extent of the 

analysis because no significant price effects were found or believed to be present at farther 

distances, or because of other reasons (perhaps due to stakeholder interest or to keep the analysis 

more tractable). The same reasoning applies to why other studies decided to limit the spatial extent 

of the analysis at a certain distance.  To minimize any potential selection bias of elasticity estimates 

corresponding to farther distances, we limit the meta-data and analysis to only price effects within 

500 meters.  

To standardize the elasticities across different studies with different distance gradient functional 

form assumptions, we “discretize” distance into two bins – waterfront homes and non-waterfront 

homes within 500 meters. If a primary study only examined waterfront homes, then it only 

contributes observations to the meta-dataset corresponding to waterfront homes.  But if a study 

examined both waterfront and non-waterfront homes, then it contributes separate observations for 

each distance bin, even if the observations are derived from the same underlying set of 
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coefficients.4 For elasticity estimates corresponding to waterfront homes, when applicable, a 

distance of 50 meters is plugged into the study-specific elasticity derivations. This assumed 

distance for a “representative” waterfront home is based on observed mean distances among 

waterfront homes across the primary studies. For non-waterfront homes within 0-500 meters, the 

midpoint of 250 meters is plugged into the study-specific elasticity derivations, when applicable. 

Details are provided in Appendix A. Overall, this approach allows us to derive comparable 

elasticity estimates across studies based on the form of the distance gradient assumed in each 

primary study.  

Finally, meta-analysis often requires a measure of statistical precision around the estimates of the 

outcome of interest, in our case the inferred elasticity estimates. To obtain the elasticity estimates 

of interest and the corresponding standard error of those estimates, we conduct Monte Carlo 

simulations consisting of 100,000 iterations.  The meta-dataset contains intermediate variables 

representing all relevant sample means, coefficient estimates, variances, and covariances from the 

primary studies. Often only the variance for the single coefficient entering the study-specific 

elasticity calculations is needed for these simulations, and it is fairly standard in the economics 

literature to include the coefficient standard errors when reporting results.  However, some study-

specific elasticity calculations include multiple coefficients, thus requiring both the variances and 

covariances among that set of coefficients.  Hedonic studies do not usually report the full variance-

covariance matrix. When needed we contacted the primary study authors to obtain the necessary 

covariance estimates required to conduct the Monte Carlo simulations.5  In the case of four studies, 

however, we assume the corresponding covariances are zero because the primary study authors 

did not respond or could no longer provide the requested information.  

Using the primary study coefficient estimates, variances, and covariances, the Monte Carlo 

simulations entail 100,000 random draws from the joint normal distributions estimated by the 

primary studies.  The simulations are carried out separately for each observation in the meta-

dataset. After each draw the inferred elasticity is re-calculated, resulting in an empirical 

distribution from which we obtain the inferred elasticity mean and standard deviation for each 

observation in the meta-dataset. 

 

2.4 Meta-data Descriptive Statistics 

After considering these multiple dimensions, the set of 36 studies provide 665 unique observations 

for the meta-dataset.  Figure 2 displays the number of observations from each study, which ranges 

from just two observations from a single study to over 224 observations. There is sufficient 

information to infer 656 unique estimates of the price elasticity and/or semi-elasticity with respect 

to a change in an objective water quality measure. The current meta-analysis examines primary 

                                                 
4 In a couple of studies (Poor et al., 2007; Tuttle and Heintzelman, 2015) the distance gradient was essentially 

assumed to be flat. In those cases, the resulting elasticity observations for waterfront and non-waterfront homes in 

the meta-dataset are identical.  
5 We are extremely grateful and thank Okmyung Bin, Allen Klaiber, Tingting Liu, Patrick Walsh, and James Yoo 

for providing the variance-covariance estimates needed to complete the Monte Carlo simulations.  We also thank 

Kevin Boyle for providing details on the functional form assumptions in Michael et al. (2000).  
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study estimates of elasticity, which decreases the sample to 607. Nine additional observations are 

lost due to insufficient information in the primary study to estimate the standard error of the 

elasticity estimates, leaving a final dataset of 598 unique elasticity estimates for analysis. 

[Insert Figure 2 about here.] 

With 260 unique elasticity estimates, water clarity is by far the most common water quality 

measure analyzed in the literature; followed by fecal coliform (56), chlorophyll a (36), nitrogen 

(20), pH (19), and phosphorous (12).  Several other water quality measures have been examined 

by one or two studies in the hedonic literature, and also contribute unique elasticity estimates to 

the meta-dataset (see Table B2 in Appendix B for a full list). 

The elasticities with respect to different water quality measures are examined separately in the 

meta-analysis methodology discussed in the next section. In particular, the meta-regression 

analysis focuses on water clarity, where there is currently enough studies and observations to 

conduct such an analysis.  The 260 unique house price elasticity estimates with respect to water 

clarity are estimated from 18 separate studies, and cover 63 different housing markets. About 56% 

of these estimates correspond to water clarity in freshwater lakes or reservoirs, while the other 

44% correspond to estuaries.  

A few additional descriptive statistics of the elasticity observations with respect to water clarity 

are provided in Table 1.  About 68% of the observed elasticity estimates corresponding to water 

clarity are for waterfront homes. The average of the mean clarity levels reported in the primary 

studies is a Secchi disk depth of 2.343 meters. Of course, as one may expect this varies by 

waterbody type. Estuaries have a mean Secchi disk depth of only 0.635 meters, whereas freshwater 

lakes have a mean Secchi disk depth of 3.677 meters. The majority of estimates correspond to the 

southern (48.5%) or northeastern (28.8%) quadrants of the US, with the remainder of this set of 

elasticity estimates corresponding to the midwest (19.2%) or west (3.5%) US.6 As can be seen by 

the “no spatial methods” variable, 38% of the of the elasticity estimates with respect to water 

clarity were derived from models that did not utilize econometric methods to account for spatial 

dependence (i.e., spatial fixed effects, spatial lag of neighboring house prices, and/or account for 

spatial autocorrelation in some fashion). Although admittedly imperfect, this is the only observed 

variable that reflects quality of the primary study models, and so it is intended to proxy for 

potentially poorer quality studies. 

[Insert Table 1 about here.] 

Socio-demographics corresponding to the primary study areas and time period were also obtained 

from the US Census Bureau by matching each observation to data for the corresponding 

jurisdiction and year from the decennial census most closely corresponding to the primary study 

time period. Median household income (2017$ USD) is on average $59,080 in the areas examined 

by the primary studies. Interestingly, the percent of the population with a college degree is fairly 

low (only 13.7% on average), as is population density, suggesting only 50 households per square 

                                                 
6 Regions of the US are defined following the US Census Bureau’s “Census Regions” 

(https://www.census.gov/geo/reference/gtc/gtc_census_divreg.html, accessed 18 Mar. 2019).  

https://www.census.gov/geo/reference/gtc/gtc_census_divreg.html
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kilometer. These statistics may reflect the fact that homes near lakes and estuaries generally tend 

to be in more rural areas.  

 

3. METHODOLOGY 

 

3.1 Mean Unit Values 

We next calculate mean elasticity values for each water quality measure examined in the hedonic 

literature. These unit values provide a useful summary measure, and can be utilized for benefit 

transfer when value transfers are deemed appropriate or are the only transfer approach available. 

In fact, although the literature still generally finds function transfer approaches that explicitly 

account for various dimensions of heterogeneity preferable (Johnston and Rosenberger, 2010), it 

has been found that simpler unit value transfers may perform better in some contexts (Klemick, 

2018; Bateman et al., 2011; Johnston and Duke, 2010; Lindhjem and Navrud, 2008; Barton, 2002).  

 

When calculating the mean values in a meta-analysis it is often appropriate to weight each 

observation by its inverse variance in order to give more weight to more precise estimates (Nelson, 

2013; Borenstein et al., 2010; Nelson and Kennedy, 2009). Two weighting schemes are generally 

used. We refer to the first as the Fixed Effect Size (FES) model, in order to avoid confusion with 

the frequently used fixed effects models in panel data analysis. Under the FES framework each 

meta-observation is considered a draw from the same underlying population distribution (even if 

from different studies), and the estimated weighted mean is interpreted as an average of that single 

true distribution. In other words, sampling error is the only driver of differences in the observed 

estimates across studies. The second weighting scheme is a variant of the above, and is sometimes 

referred to as the Random Effects Size (RES) model. The RES model is preferred if the meta-

observations are believed to be estimates of different “true” elasticities from different distributions 

(Harris et al. 2008, Borenstein et al. 2010, Nelson 2013). In the RES framework the weighted mean 

is interpreted as an estimate of the average of the different average elasticities across the different 

distributions.   

 

An additional complication in the current meta-dataset is that primary studies often report multiple 

estimates based on the same underlying property transaction data. If such dependence is not 

accounted for, some meta-observations would be unduly weighted, counting as a single 

observation when they should be discounted appropriately because there are multiple observed 

estimates of the same “true” value. We propose the following cluster-adjusted FES and RES 

weights to account such dependence in the meta-dataset.  

 

One can think of the clustering (or panel nature) of the meta-data at different levels, such as by 

study, or by groups of studies, that rely on the same primary data, researchers, etc., but our 

preferred definition of a cluster is by “housing market.”  Meta-observations estimated from a 
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common transaction dataset in terms of study area and time period are grouped together. The 

intuition is that these are common estimates of the same underlying elasticity. Under this clustering 

scheme, we are agnostic towards who conducted the primary study. Whether from the same study 

or not, we are interested in the “true” elasticity in a given area and time period. For example, 

consider a primary study that estimated four hedonic regressions and contributed four elasticity 

estimates to the meta-dataset. If each elasticity pertained to a different study area (e.g., a different 

county in the same state), then these estimates would not be grouped as a cluster.  Each observation 

in this case is an estimate of the elasticity in a different housing market, and pertaining to a different 

waterbody (or set of waterbodies).  In contrast, if these four different regressions were just different 

functional forms and estimated from the same sample of transactions in the same county, then the 

estimates would be grouped as a single cluster. The four meta-observations in that case would 

basically just be four different estimates of the same underlying elasticity.  

 

The starting point is the standard Fixed Effect Size (FES) and Random Effects Size (RES) 

weighting schemes (Nelson and Kennedy, 2009; Borenstein et al., 2010; and Nelson, 2013), which 

are slightly manipulated to account for the distance dimension that is incorporated into the meta-

dataset.  For the FES model, the weight for elasticity estimate i, at distance d, in cluster j (𝜀𝑖̂𝑑𝑗) is:  

  

𝑤𝑖𝑑𝑗
𝐹𝐸𝑆 =

1

𝑣𝑖𝑑𝑗
          (1) 

 

where 𝑣𝑖𝑑𝑗 is the variance of the estimate 𝜀𝑖̂𝑑𝑗 from the primary study. We could also add subscripts 

denoting estimates from model m of study s, but these are omitted for notational ease, as are 

subscripts denoting different water quality measures.  The FES mean elasticity for a given water 

quality parameter and distance bin d is thus,  

 

  𝜀𝑑̅
𝐹𝐸𝑆 = ∑

𝑤𝑖𝑑𝑗
𝐹𝐸𝑆

∑ 𝑤𝑖𝑑𝑗
𝐹𝐸𝑆𝑛

𝑖=1

𝜀𝑖̂𝑑𝑗
𝑛
𝑖=1         (2) 

where n is the number of observed estimates in the meta-dataset for distance bin d and the water 

quality measure of interest.  

 

The RES weights can be calculated in a similar fashion:  

 

𝑤𝑖𝑑𝑗
𝑅𝐸𝑆 =

1

𝑣𝑖𝑑𝑗+𝑇2         (3) 

 

where 𝑇2 is the between study variance, and is calculated as: 
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𝑇2 =
𝑄−(𝑛−1)

∑ 𝑤𝑖𝑑𝑗
𝐹𝐸𝑆𝑛

𝑖=1 −(
∑ (𝑤𝑖𝑑𝑗

𝐹𝐸𝑆)
2𝑛

𝑖=1

∑ 𝑤𝑖𝑑𝑗
𝐹𝐸𝑆𝑛

𝑖=1

)

         (4) 

 

The numerator of 𝑇2 entails the weighted sum of squares of the elasticity estimates around the 

FES mean, denoted as Q, minus the available degrees of freedom (i.e., the number or meta-

observations minus one). Q is calculated as: 

 

𝑄 = ∑
(𝜀̂𝑖𝑑𝑗−𝜀̅𝑑

𝐹𝐸𝑆)
2

𝑣𝑖𝑑𝑗

𝑛
𝑖=1           (5) 

 

The RES weighted means are thus calculated as  

 

𝜀𝑑̅
𝑅𝐸𝑆 = ∑

𝑤𝑖𝑑𝑗
𝑅𝐸𝑆

∑ 𝑤𝑖𝑑𝑗
𝑅𝐸𝑆𝑛

𝑖=1

𝜀𝑖̂𝑑𝑗
𝑛
𝑖=1          (6) 

 

The between-study variance is estimated via the DerSimonian and Laird (1986) method using the 

inverse variance weights (𝑤𝑖𝑗
𝐹𝐸𝑆) and the FES mean elasticity estimate 𝜀𝑑̅

𝐹𝐸𝑆. Following Borenstein 

et al. (2010), the between study variance 𝑇2 is set to zero for a few observations where it was 

originally negative. Any such instances in the current meta-datset seem reasonable because they  

always entail just a single study (and so there is no between study variation).   

 

Our proposed cluster-adjusted FES and RES weights adapt equations 1 and 3 in order to account 

for the dependence of meta-observations within a cluster. Let 𝑘𝑑𝑗 denote the number of elasticity 

estimates in cluster j, for homes in distance bin d. Since a cluster does not necessarily correspond 

to a study, subscript s is not necessarily equivalent, and is thus again omitted for notational ease.  

The proposed adjustment to the weights simply involves multiplying the original FES or RES 

weights, which we now denote as 𝑤𝑖𝑑𝑗 = 𝑤𝑖𝑑𝑗
𝑅𝐸𝑆 𝑜𝑟 𝑤𝑖𝑠𝑗

𝐹𝐸𝑆, by the inverse of 𝑘𝑑𝑗. This is done for 

all clusters  𝑗 = 1, … , 𝐾𝑑.  

 

The intuition is that the RES or FES weighted elasticity corresponding to each meta-observation 

is weighted such that 𝑤𝑖𝑑𝑗𝜀𝑖̂𝑑𝑗 sums to the weighted elasticity for a single synthetic meta-

observation of distance bin d for each cluster. The new weights are 
1

𝑘𝑑𝑗
𝑤𝑖𝑑𝑗. This can be illustrated 

mathematically.  First consider the normalized weights based on just the statistical precision of 

observation i, for distance bin d, and from cluster j, 
𝑤𝑖𝑑𝑗

∑ 𝑤𝑖𝑑𝑗
𝑛
𝑖=1

. The summation in the denominator 

can be re-written as two separate summations. In other words, summing over all meta-observations 

in the sample is equivalent to summing over all meta-observations in each cluster, and then over 

all clusters in the sample; more formally: 
𝑤𝑖𝑑𝑗

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

.  
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We next discount all weights corresponding to elasticity estimates for distance bin d, and within 

cluster j, by multiplying it by the inverse of the number of primary estimates in that cluster.  This 

yields 
1

𝑘𝑑𝑗
 

𝑤𝑖𝑑𝑗

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

, which we must then re-normalize such that the new combined weights sum 

to one. More formally: 

 
1

𝑘𝑑𝑗
  

𝑤𝑖𝑑𝑗

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

∑ ∑ (
1

𝑘𝑑𝑗
  

𝑤𝑖𝑑𝑗

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

)
𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

  

 

This can then be rearranged as:  

 
1

𝑘𝑑𝑗
  

𝑤𝑖𝑑𝑗

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

1

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

∑ ∑ (
𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
)

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

  

 

and then after cancelling out the common term 
1

∑ ∑ 𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

, we are left with the normalized 

cluster-adjusted weight:  

𝜔𝑖𝑑𝑗
ℎ =

𝑤𝑖𝑑𝑗

𝑘𝑑𝑗

∑ ∑ (
𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
)

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

         (7) 

 

where h simply denotes the FES or RES weight depending on which was used to calculate 𝑤𝑖𝑑𝑗. 

As a result, the cluster-adjusted FES or RES unit value mean elasticities for each distance bin d 

are calculated as: 

 

𝜀𝑑̅
ℎ = ∑ ∑

𝑤𝑖𝑑𝑗

𝑘𝑑𝑗

∑ ∑ (
𝑤𝑖𝑑𝑗

𝑘𝑑𝑗
)

𝑘𝑑𝑗
𝑖=1

𝐾𝑑
𝑗=1

 𝜀𝑖̂𝑑𝑗
𝑘𝑑𝑗

𝑖=1
𝐾𝑑
𝑗=1        (8) 

 

We prefer the cluster-adjusted RES weights over the corresponding FES weights. There is no 

reason to suspect that the true home price elasticities with respect to water quality are the same at 

different waterbodies and housing markets across the US. These waterbodies differ in size, 

baseline water quality levels, and the provision of recreational, aesthetic and ecosystem services, 

among other things. The housing bundles, and preferences and income of buyers and sellers, likely 

vary as well.   We estimate the cluster-adjusted FES weights and other weighting schemes mainly 

as a sensitivity analysis.   
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3.2 Meta-regression Models 

Function transfers based on meta-regressions can be a useful approach for benefit transfer (Nelson, 

2013). Such an approach involves first estimating a meta-regression model, and then using the 

estimated parameters to predict outcome values for a policy site. The approach takes advantage of 

the full amount of information provided by the literature, while also accounting for key dimensions 

of heterogeneity in the outcome effect of interest.  The meta-regression model description below 

is kept general, but in the current study we limit the meta-regressions to just water clarity (i.e., 

Secchi disk depth). In our opinion, this is the only water quality measure analyzed frequently 

enough in the current literature to allow for a defensible meta-regression analysis.  

The dependent variable 𝜀𝑖̂𝑑𝑗 is elasticity estimate i for distance bin d in cluster (i.e., housing 

market) j. The most comprehensive model is:  

 

𝜀𝑖̂𝑑𝑗 = 𝛽0 + 𝑤𝑓𝑖𝑑𝑗𝛽1 + 𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗𝛽2 + 𝑊𝑄𝑖𝑗𝛽3 + 𝒓𝒆𝒈𝒊𝒐𝒏𝑗𝜷4 + 𝑧𝑖𝑗𝛽5 + 𝑒𝑖𝑑𝑗 (9) 

 

where 𝑤𝑓𝑖𝑑𝑗 is a dummy variable denoting that the observed elasticity estimate corresponds to the 

value of homes on the waterfront, as opposed to non-waterfront homes within 0 to 500 meters of 

the waterbody.  The dummy variable 𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗 equals one if the elasticity estimate corresponds to 

water quality in an estuary, as opposed to freshwater lakes (the omitted category).7 In theory, 

different waterbody types in the same housing market could be examined, but in the current meta-

dataset this variable is invariant within each cluster, and so the i subscript is omitted. The variable 

𝑊𝑄𝑖𝑗 is the mean baseline water quality level corresponding to the respective waterbody, or 

portion of the waterbody, for observation i in cluster (or housing market) j.  In the case of water 

clarity, 𝑊𝑄𝑖𝑗 is measured as Secchi disk depth in meters. The next variable denotes the region of 

the US from which the estimates in housing market j are located – the northeast, south, midwest, 

and west.  

The final variable 𝑧𝑖𝑗 represents study attributes or model assumptions made by the primary study 

authors. As described by Boyle and Wooldridge (2018), such variables are helpful because 𝜀𝑖̂𝑑𝑗 is 

merely an estimate of the true elasticity, and that estimate is dependent on modelling assumptions 

made in the primary studies.  These assumptions could be correlated with other variables in 

equation (9), and so inclusion of 𝑧𝑖𝑗 helps avoid a potential omitted variable bias. Additionally, if 

particular values of 𝑧𝑖𝑗 denote better modelling choices, then such information can be exploited 

when predicting values for purposes of benefit-transfer (Boyle and Wooldridge, 2018). For this 

meta-analysis 𝑧𝑖𝑗 is a dummy variable equal to one if elasticity i for housing market j was estimated 

                                                 
7 Initially, a vector of dummy variables denoting different waterbody types was to be included in the meta-

regression.  As described in section 2.4, the meta-dataset includes price elasticities corresponding to freshwater 

lakes, estuaries, rivers, and small rivers and streams.  However, the primary hedonic studies in the current literature 

that examine water clarity focus solely on freshwater lakes or estuaries.  
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from a primary study model that did not account for spatial dependence among housing 

observations in the primary data. In other words, if a model did not include spatial fixed effects, a 

spatial lag of housing prices, or account for spatial autocorrelation in some fashion, then 𝑧𝑖𝑗 = 1; 

and 𝑧𝑖𝑗 = 0 otherwise.  This is meant as a proxy for potentially poorer quality estimates, and so 𝛽4 

absorbs potential effects that could otherwise bias the other meta-regression coefficients.8  The 

omitted category is thus potentially better-quality estimates from models that did account for 

spatial dependence, and so the remaining meta-regression coefficients can be used directly for 

benefit-transfer in practice. The parameters to be estimated are 𝛽0, … , 𝛽5, and 𝑒𝑖𝑑𝑗 is an error term 

that we discuss in more detail below.9  

As was the case when calculating the mean elasticities, when estimating the meta-regressions the 

cluster structure of the meta-dataset must be accounted for so that studies reporting multiple 

elasticity estimates from the same housing market are not given an unwarranted amount of 

influence.  When estimating equation (9), the observations are weighted according to the same 

cluster-adjusted RES weights described in section 3.1.  

 

An additional complication that arises from the cluster structure of the meta-dataset is that there 

may be cluster-specific effects associated with a particular housing market and the waterbodies 

examined in that housing market. In equation (9), we assume that this cluster-specific effect 𝑐𝑗 is 

reflected in the error term, i.e., 𝑒𝑖𝑑𝑗 = 𝑐𝑗 + 𝑢𝑖𝑑𝑗, where 𝑢𝑖𝑑𝑗 is an assumed independent and 

normally distributed error term. This implies that the error terms (𝑒𝑖𝑑𝑗) when estimating equation 

(9) are correlated for observations pertaining to the same housing market. To account for such 

correlation, we estimate equation (9) as a Random Effects (RE) Panel model (see, for example, 

Wooldridge, 2002).  A RE Panel regression model is recommended when more than one estimate 

is taken from a primary study (Nelson and Kennedy, 2009). 

An issue with modelling the cluster (or housing market) specific effect in this fashion is that 𝑐𝑗 

could be correlated with observed right-hand side variables, which would lead to inconsistent 

estimates (Wooldridge, 2002). In the current context, it may very well be the case that the 

necessary assumptions for consistent estimates from the RE panel model are violated. Unobserved 

variables associated with a particular housing market and waterbody (or set of waterbodies) may 

likely be correlated with observed right-hand side variables. In such cases, a fixed effect (FE) panel 

model is often estimated. But the FE Panel model is not a viable approach in the current context.  

First, the site specific fixed effect would absorb much of the variation of interest because most of 

the modifiers in the meta-regression do not vary within a cluster. Even if there is some within-

cluster variation, it is often only seen among a small subset of the observations, and would thus 

disregard a lot of observations and variation of interest.  Second, out of sample inference for 

                                                 
8 The later meta-regression results are robust if a dummy denoting results from an unpublished study are used 

instead.   
9 Subsequent regression models are estimated that include characteristics of the population corresponding to housing 

market j (i.e., median income, percent of population with a college degree, and population density), but the 

coefficients on these variables are found to be statistically insignificant. See Table B1 in Appendix B for details.   
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purposes of benefit transfer would not be valid because we cannot estimate the corresponding fixed 

effects for housing markets and waterbodies that are not in the current meta-dataset.  

When benefit transfer is the primary objective, Boyle and Wooldridge (2018) recently suggested 

estimating a regression model first proposed by Mundlak (1978), as an alternative to a FE Panel 

meta-regression. The Mundlak model estimates the cluster-specific effects by including the cluster 

average of the relevant modifier variables in the right-hand side of the meta-regression: 

 

𝜀𝑖̂𝑑𝑗 = 𝛽0 + 𝑤𝑓𝑖𝑑𝑗𝛽1 + 𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗𝛽2 + 𝑊𝑄𝑖𝑗𝛽3 + 𝒓𝒆𝒈𝒊𝒐𝒏𝑗𝜷4 + 𝑧𝑖𝑗𝛽5  

+𝑤𝑓̅̅ ̅̅
𝑗𝛾1 + 𝑊𝑄̅̅ ̅̅ ̅

𝑗𝛾3 + 𝑧𝑗̅𝛾5 + 𝑒𝑖𝑑𝑗
∗     (10) 

 

The variables 𝑤𝑓̅̅ ̅̅
𝑗, 𝑊𝑄̅̅ ̅̅ ̅

𝑗, and 𝑧𝑗̅ are the cluster-specific means for the waterfront, baseline water 

quality, and model attribute variables, respectively.  The corresponding cluster-mean for  𝑒𝑠𝑡𝑢𝑎𝑟𝑦𝑗 

and 𝒓𝒆𝒈𝒊𝒐𝒏𝑗 could also be included, in theory, but in the current meta-dataset these variables do 

not vary within a cluster.  

A portion of the cluster-specific effect that was previously assumed to be random in equation (9) 

is now explicitly estimated in equation (10). More formally,  

 

𝑒𝑖𝑑𝑗 = 𝑤𝑓̅̅ ̅̅
𝑗𝛾1 + 𝑊𝑄̅̅ ̅̅ ̅

𝑗𝛾3 + 𝑧𝑗̅𝛾5 + 𝑒𝑖𝑑𝑗
∗        (11) 

 

where 𝑒𝑖𝑑𝑗
∗ = 𝑐𝑗

∗ + 𝑢𝑖𝑑𝑗. The coefficients 𝛾1, 𝛾3 and 𝛾5 capture the portion of the cluster-specific 

effects that are correlated with the other right-hand side modifier variables. The remaining portion 

of the cluster-specific effect 𝑐𝑗
∗ is assumed to be uncorrelated with the observed right-hand side 

variables and can thus be modelled as random.   

The Mundlak model in equation (10) does not require the assumption that 𝑐𝑗 be uncorrelated with 

other right-hand side variables, as is the case with a conventional RE Panel model. The model also 

has an advantage over a FE Panel model because it does not disregard variation with respect to 

cluster-invariant variables, and allows for out-of-sample inference.  In this particular context, 

however, it is unclear what the gains from the Mundlak model are, or if it is even appropriate, due 

to limited within-cluster variation.  In this specific application the model hinges primarily on the 

dummy variable denoting whether an observed elasticity estimate corresponds to waterfront 

(versus non-waterfront) home values.  There is within cluster-variation of 𝑤𝑓𝑖𝑑𝑗 among 19 (of the 

63 housing markets), this corresponds to 160 observations from six different studies.  There is 

some within cluster-variation in 𝑊𝑄𝑖𝑗, but this is limited to just six housing markets, 

corresponding to 95 observations from three different studies.  There is also little within-cluster 

variation in the model attribute variable 𝑧𝑖̅𝑗, with only two housing markets, examined by two 
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studies, showing variation in models that do and do not account for spatial dependence (17 and 18 

observations, respectively).    

A priori, the most appropriate meta-regression estimation approach and model remains unclear. In 

the next section we present estimation results for all meta-regression model variants. Then we 

conduct an out-of-sample prediction exercise to compare which modelling approach performs best 

in terms of benefit transfer.   

 

4. RESULTS 

 

4.1. Mean Unit Value Estimates 

We estimate mean elasticities for each water quality measure used in the hedonic literature.  When 

available, we present separate mean elasticities for waterfront homes and for non-waterfront homes 

within 500 meters of a waterbody. The results in Table 2 display the mean values only for water 

quality measures that were used in at least three studies (but the full set of mean elasticity estimates 

can be found in Table B2 of Appendix B).  

[Insert Table 2 about here.] 

Our preferred estimates are the cluster-adjusted RES means, which give more weight to more 

precise primary study estimates, and also ensure that equal influence is given to each housing 

market examined in the literature.   The cluster-adjusted RES means in Table 2 generally have the 

expected sign, and the relative magnitude is often larger for waterfront versus non-waterfront 

homes, as one would expect.   For example, a one-percent increase in nitrogen concentrations leads 

to a 0.220% decline in waterfront home values, and a 0.136% decline in the value of non-

waterfront homes that are within 500 meters of the waterbody. A one-percent increase in 

phosphorous concentrations leads to a 0.107% decrease in waterfront home values, but has a 

statistically insignificant impact on non-waterfront homes.  A similar insignificant impact on non-

waterfront home values is found in the context of pH, but a one-percent decrease in pH levels (i.e., 

more acidic waters) does lead to a 0.779% decrease in waterfront home values.  

As shown in the subsequent columns of Table 2, these results are generally robust across 

alternative weighting schemes, including the FES cluster-adjusted counterpart, as well as more 

standard approaches – the conventional RES mean (e.g., Borenstein et al., 2010), a cluster 

weighted mean that does not account for statistical precision of the primary estimates, and a 

completely unweighted average where all observations are given equal weight. The estimated 

mean elasticities with respect to water clarity, at least for waterfront homes, do however appear 

sensitive to weighting schemes that do not account for statistical precision of the primary estimates 

and/or clustering of estimates from the same housing market.  This may be at least partly driven 

by the fact that just three studies (Walsh et al., 2017; Ara, 2007; and Michael et al., 2000) 

contribute 65% of the observed elasticities with respect to water clarity. In any case, we believe 

the cluster-adjusted RES means are the most valid for the reasons previously discussed. The other 

mean elasticity calculations are presented mainly as a sensitivity analysis.  
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There are some examples where the cluster-adjusted RES means yield somewhat counterintuitive 

results. For example, although a one-percent increase in chlorophyll-a concentrations suggests a 

0.026% decline in waterfront home values, the mean elasticity estimate for non-waterfront home 

values suggests a small but statistically significant 0.009% increase in home values. This result is 

sensitive to the weighting scheme. In the other mean elasticity calculations, we see no significant 

impact of chlorophyll-a on non-waterfront home values, which at least does not run counter to 

expectations.  The home price effects of increased fecal coliform concentrations are also somewhat 

odd. The price impact among non-waterfront homes is larger in magnitude than that for waterfront 

homes.  At first, we thought that this result might be driven by the fact that the set of studies used 

to calculate these averages differ slightly. Leggett and Bockstael’s (2000) hedonic analysis of fecal 

coliform in the Chesapeake Bay examines only waterfront property prices. However, even if we 

omit that study, the cluster-adjusted RES waterfront mean elasticity is -0.003, which is still less in 

absolute value than the -0.052 price elasticity corresponding to non-waterfront homes within 500 

meters. Although the relative magnitudes of the price elasticities are against expectations, it is 

reassuring that both suggest the expected negative effect of increased fecal coliform counts on 

nearby home values. 

Due to the limited number of studies, and to our knowledge an inability to defensibly convert 

elasticities across different water quality parameters to a common measure, it seems that value 

transfers are generally the only viable option available if one is interested in using benefit transfer 

to estimate the capitalization effects of water quality changes on home values. In the case of water 

clarity, however, there are a sufficient number of observations to estimate limited meta-regressions 

and pursue a function transfer approach.   

 

4.2. Meta-regression Results 

The meta-regression analysis focuses on just a subset of the meta-dataset, only examining the 

n=260 observed elasticity estimates with respect to water clarity (i.e., Secchi disk depth 

measurements). All meta-regressions utilize the same weights as the preferred cluster-adjusted 

RES mean elasticity estimates. This is the preferred weighting scheme for the same reasons 

discussed above – it gives more weight to more precise estimates and ensures that no single study 

or analyzed housing market unduly influences the results. The clusters are defined according to 

the 63 unique housing markets.10 

We first estimate a series of RE Panel meta-regression models following equation (9).  The results 

are presented in Table 3. The first model (1A) includes only a dummy variable equal to one when 

the elasticity estimate corresponds to waterfront home values, and zero otherwise. As expected, 

and in line with the earlier unit value estimates, the price elasticity with respect to clearer waters 

is significantly higher (0.0791) among waterfront homes. The constant term reflects the price 

elasticity with respect to non-waterfront homes within 500 meters (the omitted category).  And so, 

                                                 
10 Although the unique housing market-based cluster-adjusted RES weights are preferred, the results are generally 

robust to simple OLS models where all observations are given equal weight, and to models where estimates from the 

same study (instead of housing market) are defined as a cluster (see Tables B3 through B5 in Appendix B).  
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a one-percent increase in water clarity corresponds to a 0.0257% increase in non-waterfront home 

values and a statistically higher 0.1048% (=0.0791+0.0257) increase in the value of waterfront 

homes.  

[Insert Table 3 about here.] 

Model 2A in Table 3 adds a dummy variable denoting elasticity estimates corresponding to clarity 

improvements in an estuary; the omitted category is freshwater lakes. The coefficient is negative 

and statistically significant, suggesting that water clarity changes in an estuary have a lesser impact 

on home values.  The results suggest that a one-percent increase in water clarity of a lake leads to 

a 0.1211% (=0.0498+0.0713) and 0.0713% appreciation in the value of lakefront and non-

lakefront homes, respectively. In contrast, a one-percent increase in water clarity of an estuary 

leads to a respective increase of 0.0665% (=0.0498+0.0713-0.0546) and 0.0167% (=0.0713-

0.0546) in the value of waterfront and non-waterfront homes. One potential explanation for this 

difference is that surrounding residents do not generally expect the water to be as clear in estuaries. 

Estuaries have brackish waters that are often naturally more opaque. The unweighted mean Secchi 

disk depths reported by the primary studies in the meta-dataset is 3.68 meters for lakes, but only 

0.64 meters for estuaries.  

To examine whether baseline water clarity matters, the RE Panel Model 3A includes the mean 

water clarity level (i.e., Secchi disk depth in meters). The results suggest that water clarity 

improvements in waterbodies that already have relatively clear waters lead to larger increases in 

home values.  For example, a one-percent increase in clarity leads to a 0.0937% increase in the 

value of waterfront homes around a waterbody that has a Secchi disk depth equal to the unweighted 

mean of 2.343 meters.  But a one-percent increase in the clarity of a waterbody that has a baseline 

Secchi disk depth of 4.311 meters (a one standard deviation increase) suggests a statistically higher 

0.1224% increase in waterfront home values.  This result could be evidence of a premium to 

maintain or further improve relatively clear waters, which would run counter to the idea of 

diminishing marginal utility with respect to water clarity. A more likely explanation is that it may 

reflect differences in perceptions and expectations across different waterbodies or types of 

waterbodies (i.e., freshwater lakes versus estuaries), as discussed above. Model 4A shows that 

when conditional on the waterbody type, the mean clarity coefficient becomes much smaller and 

statistically insignificant.  

Model 5A in Table 3 includes dummy variables denoting different regions of the US.  The results 

suggest that hedonic studies examining waters in the midwest and western US seem to yield 

statistically similar results as studies examining waters in the northeast (the omitted category). 

This lends some confidence to potentially performing benefit transfers across regions.  We do, 

however, see that studies examining water clarity in the southern US yield systematically lower 

elasticity estimates on average. Model 6A includes all covariates, and although some of the results 

are robust, the inclusion of all covariates leads to losses in statistical significance for some 

variables. We posit that such a comprehensive model is too taxing on the currently available n=260 

observations in the metadata, especially given the correlation across many of the modifier 

variables.  We see, conditional on region of the US, the mean clarity coefficient actually becomes 

negative; which although it is statistically insignificant, this is at least in line with the notion of 
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diminishing marginal utility. The same holds true in the later Mundlak models, which controls for 

such housing market and waterbody specific effects. 

We next re-estimate all six of the RE Panel models, but now also add the model attribute variable 

no spatial methods, which denotes elasticity estimates that were derived from primary study 

models that did not account for spatial dependence of the original housing transaction data. The 

omitted category is thus elasticity estimates from models that did account for such spatial 

dependence, and that could thus be interpreted as potentially more accurate estimates. The results 

from models 1B through 4B in Table 4 are similar to the earlier meta-regressions.  The statistically 

insignificant coefficients corresponding to no spatial methods suggest that modelling assumptions 

by the primary study authors did not systematically affect the elasticity estimates.  

This finding is not robust however, in models 5B and 6B, where we condition on regions of the 

US. The significant -0.1308 and -0.1412 coefficient estimates corresponding to no spatial methods 

suggest that studies not utilizing modelling techniques to account for spatial dependence tend to 

yield significantly lower elasticity estimates; implying that modelling choices made by the primary 

study authors may be important to control for in a benefit-transfer exercise. The results also 

suggests that modelling choices are correlated with where a primary study focused.  The midwest 

coefficient is now statistically significant, at least in model 5B, implying that that after 

conditioning on model attributes, the housing price effects in the midwest are systematically lower 

compared to price effects in the northeast.  Differences between price effects in the south and the 

northeast are also now much larger in magnitude, as seen by the large negative coefficient 

corresponding to south in models 5B and 6B.  In contrast to some of the earlier meta-regression 

results, this suggests that heterogeneity across regions may be important to account for when 

conducting benefit transfers.    

[Insert Table 4 about here.] 

As an alternative to the RE Panel meta-regression models we next implement the Mundlak (1978) 

regression model that was recently suggested by Boyle and Wooldridge (2018) for estimating 

meta-regressions. The results are presented in Table 5.  First looking at model 1A, the positive and 

significant coefficient on the waterfront dummy reveals a similar finding to earlier models – that 

an improvement in clarity leads to a statistically significant increase in waterfront home values, 

and that effect is statistically larger than the price impact on non-waterfront homes. More 

specifically, the model suggests that a one percent increase in water clarity leads to a 0.1135% 

(=0.0640+0.0471+0.0024) increase in waterfront home values, which is very similar to the results 

of earlier models. In contrast, however, the Mundlak variant of model 1A suggests a one-percent 

increase in clarity leads to a 0.0495% (=0.0471+0.0024) increase in the value of non-waterfront 

homes within 500 meters. Based on the overlapping confidence intervals, this effect is likely not 

statistically different from that of earlier models, but the point estimate is twice as large.  

[Insert Table 5 about here.] 

The Mundlak variants of models 2A through 6A in Table 5 reveal somewhat similar results to the 

earlier models. As shown in model 2A, the price elasticities with respect to water clarity are still 

lesser in the context of estuaries (compared to lakes), although this difference is no longer 
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statistically significant. And model 3A again suggests higher price elasticities with respect to water 

clarity when baseline water clarity levels are higher. A baseline clarity level of one additional 

meter suggests an additional 0.0325% (=0.0597-0.0273) increase in home values for a one-percent 

improvement in clarity, an effect that is statistically significant at conventional levels (p=0.020).11  

As before, elasticity estimates corresponding to housing markets and waterbodies in the 

southeastern US are systematically lower than those for the northeast (the omitted category).  One 

difference compared to the RE Panel models is that the Mundlak variants of models 5A and 6A 

suggest that the elasticity estimates corresponding to the midwest are also systematically lower.  

Finally, in Table 6 we present the same six Mundlak meta-regression models, but now again 

include the model attributes variable, no spatial methods. The results are fairly similar to the 

previous meta-regressions. The small and insignificant coefficients on no spatial methods suggests 

that such modelling choices do not systematically affect the within-cluster variation in the inferred 

elasticities. Interpretation of this variable warrants caution in the Mundlak models, however, 

because as discussed in section 3.2 there is limited within-cluster variation. Only two studies, 

examining water clarity in two different housing markets, estimated hedonic regressions with 

different model assumptions regarding spatial dependence (Ara, 2007; Horsch and Lewis, 2009). 

Both of these studies examined waters in the Midwest.  The corresponding no spatial methods 

cluster mean, however, is in agreement with earlier results. Some models, and in particular models 

controlling for study region (5A and 6A), suggest that primary studies not accounting for spatial 

dependence tend to yield lower elasticity estimates.  

[Insert Table 6 about here.] 

 

4.3. Best Performing Model for Benefit Transfer 

In this section we attempt to shed light on whether a value or function transfer approach is more 

accurate for benefit transfer, at least in this particular context of water clarity and housing values.  

Focusing on water clarity, the cluster-adjusted RES means and all meta-regression models are 

evaluated by taking the absolute value of the percent difference between the initial elasticities from 

the primary studies (𝜀𝑖̂𝑑𝑗) and the predicted elasticities from the corresponding unit value means 

or meta-regressions (𝜀̂̂𝑖𝑑𝑗). Note that we distinguish between waterfront and non-waterfront homes 

when estimating the mean elasticities and conducting the value transfer. More formally, the 

absolute value of the percent transfer error is calculated as: 

|%𝑇𝐸| = |(
𝜀̂̂𝑖𝑑𝑗−𝜀̂𝑖𝑑𝑗

𝜀̂𝑖𝑑𝑗
) × 100|         (12) 

To examine out-of-sample transfer error, we iteratively leave out observations corresponding to 

one of each of the 63 housing markets and then re-estimate the mean values and meta-regressions 

using the remaining a sub-sample.  The predicted values (𝜀̂̂𝑖𝑑𝑗) and |%𝑇𝐸| are then estimated for 

                                                 
11 The overall marginal effect with respect to mean water clarity levels is calculated by summing the coefficients 

corresponding to the baseline water clarity level and the associated cluster mean water clarity level, yielding 0.0325.  

The standard error of 0.0139 is estimated via the delta method. 
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the excluded observations. This is repeated by excluding each of the housing market clusters one 

at a time.  After completing all 63 iterations we then calculate the mean |%𝑇𝐸| to evaluate out-of-

sample transfer performance.  We prefer an out-of-sample transfer error exercise like this over a 

simpler in-sample comparison that would directly use the full sample results presented in Tables 

2-6 because an out-of-sample transfer error comparison is more indicative of how a value or 

function transfer would perform in policy settings.  

The results in Table 7 suggest that the unit value transfer often performs on par with the more 

complicated function transfers. The value transfer even performs better than some of the most 

comprehensive models (e.g., 6A and 6B) and many of the more complicated Mundlak models.  

In general, the RE Panel estimation procedures seem superior to the Mundlak approach, at least 

within the context of property value capitalization effects with respect to water clarity. Only in the 

case of model 1A does the Mundlak model perform slightly better. The superior transfer 

performance of the RE Panel model should minimize concerns regarding the validity of the 

assumption that the cluster-specific effects be uncorrelated with observed right-hand side 

variables.  

[Insert Table 7 about here.] 

Of most relevance is the answer to the question – which transfer approach performs best? In all 

cases model specification 3, which includes mean water clarity as a right-hand side moderator 

yields the lowest transfer error. Accounting for baseline water clarity levels improves transfer 

accuracy. And in particular, the RE Panel variant of model 3A performs the best, yielding a mean 

transfer error of 256% (median of 81%). Overall, in the context of water clarity the results suggest 

that practitioners perform a function transfer approach based on the RE Panel variant of model 

3A.12  

Although this model yields the lowest transfer error, it is concerning that the magnitude of the 

transfer error is large.  This is unfortunately not unheard of given the current state of benefit-

transfer methods, at least in the context of environmental applications.  In a recent study evaluating 

modeling decisions that affect benefit transfer errors, Kaul et al. (2013) examined 1,071 transfer 

errors reported by 31 studies and report that the absolute value of the transfer errors ranged from 

0% to 7,496%, with a mean of 172% (median of 39%). This is similar to the finding by 

Rosenberger (2015), who reports median absolute transfer errors between 36% – 45%.  Notably, 

across all of the observations included in both of these studies, there are only three hedonic 

property values studies (which appear in Rosenberger (2015)), and none of these hedonic studies 

examined surface water quality.  

 

 

                                                 
12 One can use the point estimates in Table 3 for purposes of benefit-transfer. The full variance-covariance matrix is 

presented in Appendix C. This is needed to derive the corresponding confidence intervals via the delta method 

(Greene, 2003, page 70) or Monte Carlo simulations.  
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5. DISCUSSION 

The primary objective of this study is to help practitioners exploit the fairly large literature of 

hedonic property value studies examining surface water quality, and ultimately to facilitate ex ante 

and ex post assessments to better inform local, regional, and national policies impacting water 

quality. Based on the constructed meta-dataset, limited value transfers can be conducted to assess 

policies impacting chlorophyll-a, fecal coliform, nitrogen, phosphorous, water clarity, and pH in 

waterbodies. Our findings, at least in the context of water clarity, suggest that simpler value 

transfers perform on par with (and sometimes better than) more complicated function transfers.  

This is in line with other recent findings in the literature (Klemick, 2018; Bateman et al., 2011; 

Johnston and Duke, 2010; Lindhjem and Navrud, 2008; Barton, 2002), and is a promising result 

for practitioners.  Given the limited number of studies on any one water quality measure, value 

transfers are really the only viable option for examining the property capitalization effects from 

changes in water quality (with the exception of water clarity, which we discuss further below).  

To conduct a unit value transfer, one would need to select the water quality measure that is most 

appropriate for the policy site, and/or based on the available water quality data and projection 

models. Policies generally result in changes in many water quality measures, but the hedonic 

literature often focuses on a single measure within a hedonic regression.13 We recommend 

practitioners do the same when transferring results from this literature, and so when conducting 

benefit transfers one should not add up the price impacts across changes in multiple water quality 

measures.  Our mean elasticity estimates can be combined with spatially explicit data of the 

relevant surface waterbodies, housing locations and number of homes, and baseline housing 

values, in order to project how a water quality policy impacts residential property values. Ideally, 

such a benefit transfer exercise can be carried out using detailed, high-resolution data on 

waterbodies and individual residential properties from local or state governments. In the absence 

of such data, one can combine our estimated elasticities with waterbody location data provided by 

the National Hydrography Dataset (NHD), along with aggregated data on housing and land cover, 

from the US Census Bureau and National Land Cover Dataset (NLCD).14  

In the context of water clarity, our results suggest that a function transfer accounting for baseline 

water clarity levels can improve transfer performance. In addition to the data needs discussed 

above, one would also need to have information on baseline water clarity levels.  Such information 

is likely needed anyway to quantify the change in water clarity resulting from a policy.  

 In future work we hope to expand this meta-dataset in two ways to increase its utility in informing 

policy.  First, for tractability we decided early in the development of the meta-dataset to limit the 

                                                 
13 Of the 598 observations analyzed in this meta-analysis, 444 (74%) are derived from hedonic regressions that 

included a single water quality measure.  The remaining 156 elasticity observations were estimated from hedonic 

regressions that included two or more water quality measures directly on the right-hand of the same hedonic 

regression (Ara, 2007; Bin and Czajkowski, 2013; Brashares, 1985; Liao et al., 2016; Liu et al., 2014; Netusil et al., 

2014; and Walsh and Milon, 2016). 
14 Website links to these data sources are as follows: National Hydrography Dataset (NHD), 

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/; US Census Bureau, 

https://www.census.gov/; National Land Cover Dataset (NLCD), https://www.mrlc.gov/ (accessed 20 Feb. 2019).   

https://www.usgs.gov/core-science-systems/ngp/national-hydrography/
https://www.census.gov/
https://www.mrlc.gov/
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distance bins to waterfront homes and non-waterfront homes within 500-meters of a waterbody.  

The hedonic literature has increasingly expanded this focus, however, finding significant impacts 

on home prices up to a few kilometers away (e.g., Walsh et al. 2011a, Netusil et al. 2014, Klemick 

et al. 2018, Kung et al. 2019). Adding meta-observations that pertain to farther distance bins, even 

within the context of the currently included studies, will provide a more comprehensive meta-

analysis in the future (although one must also consider the sample selection concerns discussed in 

section 2).   

Second, new studies should be periodically added to the meta-dataset as they emerge in the hedonic 

literature. When conducting new hedonic studies, we encourage researchers to consider some of 

the gaps in the current literature. Our review reveals limitations in the types of waterbodies studied 

and the geographic areas covered.  More hedonic studies examining surface water quality in the 

mountain states in the west, parts of the Midwest, and the south-central portions of the US are 

needed; as are hedonic studies examining how property values respond to water quality changes 

in estuaries, rivers, and streams. Such primary studies are needed to provide truly nationwide 

coverage and ultimately more robust benefit-transfer procedures for assessing policies.   

Another disconnect pertains to the types of water quality metrics used by economists versus those 

used by water quality modelers and policy-makers.  Water clarity is the most common metric used 

in the hedonic literature. It is a convenient measure for non-market valuation because households 

are able to perceive and understand it.  In certain cases, it also can act as a reasonable proxy for 

other measures of water quality (e.g., nutrients or sediments), which may be more difficult for 

households to observe.  With that said, water clarity is not always a good measure of quality across 

all contexts (Keeler et al. 2012). For example, waters with low pH levels due to acid rain or mine 

drainage may be very clear, but of poor quality.  This disconnect between water clarity and quality 

is an issue in the non-market valuation literature more broadly (Abt Associates, 2016).  

Although the majority of hedonic studies focus on water clarity, water quality models, such as the 

Soil and Water Assessment Tool (SWAT), Hydrologic and Water Quality System (HAWQS), and 

SPAtially Referenced Regressions On Watershed Attributes (SPARROW), tend to focus on 

changes in nutrients, sediments, metals, dissolved oxygen, and organic chemicals (Tetra Tech, 

2018).  There are some process-based water quality and aquatic ecosystem models that can 

calculate Secchi disk depth, but they require waterbody-specific characteristics as an input (Park 

and Clough, 2018). There are other studies that estimate relationships or correlations between 

water quality parameters and water clarity, but such relationships are also often very location 

specific (e.g., Wang et al. 2013; Hoyer et al. 2002).  Due to the location or waterbody specific 

nature of the existing approaches to project changes in water clarity, such methods generally 

cannot be broadly applied without more information.   

Further research is necessary to improve the link between water quality and economic models.  

Closing this gap can entail one of two things, or some combination of both. First, when choosing 

the appropriate water quality metric, economists conducting future hedonic studies should keep 

the application of their results for policy analysis in mind. Doing so will allow their results to be 

used to monetize the quantified policy changes projected by water quality models.  It will also help 

facilitate more robust transfer approaches by adding observations to our meta-dataset that focus 
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on other water quality measures besides clarity. Second, water quality modelers could develop 

models that directly project changes in water clarity, or perhaps develop more robust conversion 

factors. Such a call is not a new idea. Desvousges et al. (1992, p. 682) recommended that, at the 

very least, statistical analyses establish “… the correlation between policy variables and variables 

frequently used as indicators of water quality.” Developing such conversion factors would be 

challenging, and would likely need to be watershed, and perhaps even waterbody, specific. 

If relationships between policy-relevant water quality measures and clarity can be made more 

often, then such translations could be directly incorporated into the meta-dataset in a similar 

fashion to some of the conversions already made when “standardizing” the primary study estimates 

(for example, see Walsh et al. (2017) and Guignet et al. (2017) in Appendix A). Instead of 

conducting a separate meta-analysis for each water quality measure, as we do in this study, more 

primary studies could be combined into a single more robust meta-analysis that focuses on 

whatever water quality measure is most relevant for the policy at hand.    

 

6. CONCLUSION 

 

Despite the large literature of the capitalization of local surface water quality in home values, this 

literature has not generally been used to inform decision-making in public policy. For example, 

hedonic property value studies have yet to be used in regulatory analyses of regional and 

nationwide water quality regulations enacted by the US Environmental Protection Agency. 

Heterogeneity in local housing markets, the types of waterbodies examined, the model 

specifications estimated, and the water quality metrics used, are key reasons why the results of 

these local studies have not been applied to broader policies. This meta-analysis overcame these 

obstacles through the meticulous development of a detailed and comprehensive meta-dataset. The 

existence of this meta-dataset and our subsequent meta-analysis provides a means for practitioners 

to conduct benefit transfer, and assess how improvements in water quality from local, regional, 

and even national policies are capitalized into housing values.   
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FIGURES AND TABLES 

 

Figure 1. Number of Water Quality Hedonic Studies in each State.  
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Figure 2. Number of Meta-dataset Observations by Study. 
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Table 1. Descriptive Statistics of Elasticity Observations with respect to Water Clarity. 

Variable Mean Std. Dev. Min Max 

     

waterfront 0.681 0.467 0 1 

estuary 0.438 0.497 0 1 

mean clarity (Secchi disk depth in meters) 2.343 1.968 0.380 6.450 

northeast 0.288 0.454 0 1 

midwest 0.192 0.395 0 1 

south 0.485 0.501 0 1 

west 0.035 0.183 0 1 

no spatial methods 0.381 0.183 0 1 

median income (2017$ USD) 59,080  14,142  37,865  91,174  

college degree (% population) 0.137 0.041 0.077 0.273 

population density (households /sq. km.) 49.908 58.378 1.410 227.963 

Unweighted descriptive statistics presented for n=260 unique elasticity estimates in meta-dataset pertaining to water clarity. 

Estimates based on 18 primary hedonic studies, corresponding to 63 unique housing markets (as defined by the primary studies). 

All variables are dummy variables unless indicated otherwise. 
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Table 2. Unit value mean elasticity estimates. 

Water quality measure Cluster Adjusted 

RES Mean 

Cluster Adjusted 

FES Mean 

Standard 

RES Mean 

Cluster  

Weighted Mean 

Unweighted 

Mean n Studies 

Chlorophyll a (mg/L)        
   waterfront -0.026*** -0.027*** -0.022*** 0.324* 0.737* 18 3 

 (-0.031, -0.021) (-0.032, -0.021) (-0.031, -0.013) (-0.036, 0.685) (-0.044, 1.517)   

   non-waterfront w/in 500 m 0.009*** -0.001 0.001 0.010 0.005 18 3 

 (0.006, 0.012) (-0.003, 0.001) (-0.006, 0.009) (-0.085, 0.105) (-0.201, 0.211)   
Fecal coliform (count per 100 mL)        

   waterfront -1.3E-4*** -2.2E-5*** -0.2E-4 -0.037 -0.018*** 36 4 

 (-1.8E-4, -0.7E-4) (-2.8E-5, -1.6E-5) (-0.6E-4, 0.1E-4) (-0.088, 0.014) (-0.026, -0.011)   

   non-waterfront w/in 500 m -0.052*** -0.036*** -0.024*** -0.059* -0.020*** 20 3 

 (-0.096, -0.008) (-0.046, -0.027) (-0.036, -0.011) (-0.090, -0.005) (-0.034, -0.006)   
Nitrogen (mg/L)        

   waterfront -0.220*** -0.131*** -0.245*** -0.242*** -0.292*** 10 5 

 (-0.244, -0.196) (-0.149, -0.113) (-0.321, -0.170) (-0.271, -0.215) (-0.326, -0.257)   

   non-waterfront w/in 500 m -0.136*** -0.030*** -0.130*** -0.184*** -0.221*** 10 5 

 (-0.156, -0.116) (-0.036, -0.023) (-0.184, -0.077) (-0.210, -0.157) (-0.254, -0.187)   
Phosphorous (mg/L)        

   waterfront -0.107*** -0.093*** -0.114*** -0.107*** -0.115*** 6 3 

 (-0.122, -0.092) (-0.106, -0.081) (-0.154, -0.074) (-0.123, -0.092) (-0.130, -0.100)   

   non-waterfront w/in 500 m -0.005 0.003 -0.002 -0.019*** -0.016** 6 3 

 (-0.012, 0.003) (-0.002, 0.008) (-0.015, 0.010) (-0.032, -0.005) (-0.029, -0.003)   
Water clarity (Secchi disk depth, meters)        

   waterfront 0.105*** 0.031*** 0.090*** 0.182 0.155 177 18 

 (0.095, 0.114) (0.028, 0.034) (0.078, 0.102) (-17.398, 17.762) (-6.102, 6.413)   

   non-waterfront w/in 500 m 0.026*** 0.012*** 0.018*** 0.042*** 0.028*** 83 6 

 (0.017, 0.034) (0.010, 0.015) (0.008, 0.028) (0.025, 0.059) (0.020, 0.036)   
pH (pH scale, 0 [acidic] to 14 [basic])        
   waterfront 0.779** 0.419*** 0.424 1.986*** 2.173*** 13 3 

 (0.019, 1.540) (0.183, 0.654) (-0.285, 1.133) (-.840, 3.133) (1.015, 3.331)   
   non-waterfront w/in 500 m -0.188 -0.188 -0.379 0.008 -0.334 6 1 

 (-1.086, 0.711) (-1.086, 0.711) (-1.084, 0.326) (-1.405, 1.422) (-1.126, 0.457)   
*** p<0.01, ** p<0.05, * p<0.1.  Confidence intervals at the 95% level are displayed in parentheses. Observations weighted by cluster-adjusted RES weights, where each cluster defined 

at the housing market level as defined in the primary studies.  Only elasticity estimates pertaining to water quality measures used in at least 3 studies are presented here, but the full suite 

of mean elasticity estimates are presented in Appendix B, Table B2. We present the respective units for each water quality measure in parentheses, but emphasize that the elasticity 

estimates presented in the table are unit-less. 
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Table 3. Random Effects Panel (RE Panel) Meta-regression Results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 VARIABLES (1A) (2A) (3A) (4A) (5A) (6A) 

            

waterfront 0.0791*** 0.0498** 0.0457** 0.0443** 0.0347 0.0381* 

 (0.018) (0.024) (0.020) (0.021) (0.022) (0.021) 

estuary  -0.0546*  -0.0395  -0.0015 

  (0.030)  (0.053)  (0.024) 

mean clarity   0.0146** 0.0059  -0.0103 

   (0.007) (0.013)  (0.019) 

midwest     -0.0318 -0.0513 

     (0.039) (0.053) 

south     -0.0865*** -0.1239* 

     (0.032) (0.067) 

west     -0.0622 -0.0609 

     (0.097) (0.108) 

constant 0.0257* 0.0713** 0.0138 0.0538 0.1065*** 0.1517 

 (0.016) (0.031) (0.017) (0.060) (0.033) (0.096) 

        
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Random Effects Panel (RE Panel) regressions 

estimated using the "mixed" routine in Stata 14, where the n=260 observations are weighted by the cluster-

adjusted Random Effect Size (RES) weights and the cluster specific effects are defined according to the K=63 

unique housing market clusters. 
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Table 4. RE Panel Meta-regression Results with Model Attributes. 

 VARIABLES (1B) (2B) (3B) (4B) (5B) (6B) 

            

waterfront 0.0654*** 0.0612*** 0.0552*** 0.0553*** 0.0524*** 0.0514*** 

 (0.017) (0.018) (0.019) (0.018) (0.018) (0.018) 

estuary  -0.0788  -0.0535  0.0168 

  (0.053)  (0.059)  (0.022) 

mean clarity   0.0299** 0.0213  0.0077 

   (0.013) (0.013)  (0.016) 

midwest     -0.0695** -0.0579 

     (0.029) (0.043) 

south     -0.2003*** -0.1958*** 

     (0.058) (0.060) 

west     -0.0582 -0.0588 

     (0.097) (0.089) 

no spatial methods 0.0227 -0.0405 -0.0739 -0.0890 -0.1308** -0.1412** 

 (0.025) (0.051) (0.050) (0.057) (0.054) (0.066) 

constant 0.0252 0.0925* 0.0031 0.0552 0.2156*** 0.1904*** 

 (0.016) (0.053) (0.018) (0.062) (0.057) (0.073) 

        
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Random Effects Panel (RE Panel) regressions estimated using 

the "mixed" routine in Stata 14, where the n=260 observations are weighted by the cluster-adjusted Random Effect Size (RES) 

weights and the cluster specific effects are defined according to the K=63 unique housing market clusters. 

  



31 
 

Table 5. Mundlak Model Meta-regression Results. 

 VARIABLES (1A) (2A) (3A) (4A) (5A) (6A) 

              

waterfront 0.0640*** 0.0602*** 0.0607*** 0.0595*** 0.0581*** 0.0579*** 

 (0.018) (0.019) (0.019) (0.019) (0.019) (0.019) 

waterfront cluster mean 0.0471 -0.0571 -0.1744 -0.1791 -0.2279* -0.2566 

 (0.052) (0.093) (0.112) (0.122) (0.134) (0.158) 

estuary  -0.0693  -0.0399  0.0183 

  (0.046)  (0.058)  (0.025) 

mean clarity   -0.0273 -0.0305  -0.0378 

   (0.067) (0.068)  (0.070) 

clarity cluster mean   0.0597 0.0548  0.0469 

   (0.066) (0.068)  (0.070) 

midwest     -0.0806*** -0.0693* 

     (0.030) (0.042) 

south     -0.1832*** -0.1781** 

     (0.070) (0.075) 

west     -0.0622 -0.0633 

     (0.097) (0.087) 

constant 0.0024 0.1118 0.0856* 0.1282 0.3109** 0.2969** 

 (0.034) (0.088) (0.052) (0.094) (0.132) (0.136) 

       
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Regressions estimated using n=260 observations. 

Observations are weighted by the cluster-adjusted Random Effect Size (RES) weights, where each cluster is defined as one of 

the K=63 unique housing markets.   Mundlak (1978) regressions estimated by first calculating cluster (primary study) means 

for independent variables that vary within each cluster, and then by running the subsequent model via the "mixed" routine in 

Stata 14, where the residual cluster-specific effect is maintained. 
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Table 6. Mundlak Model Meta-regression Results with Model Attributes. 

 VARIABLES (1B) (2B) (3B) (4B) (5B) (6B) 

              

waterfront 0.0637*** 0.0613*** 0.0621*** 0.0609*** 0.0598*** 0.0596*** 

 (0.018) (0.019) (0.019) (0.019) (0.019) (0.019) 

waterfront cluster mean 0.0248 0.0531 -0.0828 -0.0385 -0.0146 -0.0526 

 (0.041) (0.070) (0.072) (0.095) (0.141) (0.146) 

estuary  -0.0860  -0.0569  0.0281 

  (0.059)  (0.065)  (0.022) 

mean clarity   -0.0243 -0.0280  -0.0363 

   (0.060) (0.061)  (0.060) 

clarity cluster mean   0.0631 0.0575  0.0550 

   (0.064) (0.064)  (0.065) 

midwest     -0.0849*** -0.0622 

     (0.029) (0.039) 

south     -0.2441*** -0.2311*** 

     (0.053) (0.054) 

west     -0.0569 -0.0589 

     (0.097) (0.078) 

no spatial methods 0.0129 0.0135 0.0124 0.0129 0.0137 0.0135 

 (0.016) (0.016) (0.015) (0.015) (0.016) (0.015) 

no spatial methods cluster mean -0.0005 -0.0890 -0.0879* -0.1252 -0.1877** -0.2050** 

 (0.033) (0.073) (0.049) (0.081) (0.085) (0.098) 

constant 0.0131 0.0731 0.0370 0.0711 0.2648*** 0.2316** 

 (0.022) (0.055) (0.031) (0.059) (0.081) (0.092) 

       
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Regressions estimated using n=260 observations. Observations are 

weighted by the cluster-adjusted Random Effect Size (RES) weights, where each cluster is defined as one of the K=63 unique housing 

markets.   Mundlak (1978) regressions estimated by first calculating cluster (primary study) means for independent variables that vary 

within each cluster, and then by running the subsequent model via the "mixed" routine in Stata 14, where the residual cluster-specific 

effect is maintained. 
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Table 7. Out-of-Sample Transfer Error: Average of the Absolute Value of Percentage Difference 

in Predicted Elasticities. 

  
Cluster-

adjusted 

RES Mean 

Meta-regression Model 

  

              

        

 286%       

Original Models  (1A) (2A) (3A) (4A) (5A) (6A) 

     RE Panel   286% 265% 256% 262% 267% 294% 

     Mundlak   276% 293% 281% 301% 355% 391% 

        
Models w/ 

Methodological 

Variable  (1B) (2B) (3B) (4B) (5B) (6B) 

     RE Panel   280% 278% 261% 265% 278% 306% 

     Mundlak   280% 299% 272% 296% 354% 386% 

        
Bold text denotes the model that yields the lowest transfer error, in absolute terms. Absolute value of the percentage transfer error 

is calculated as the absolute value of the percentage difference between the predicted elasticity from the corresponding meta-

regression model or mean value and the original elasticity estimate from the primary studies. Observations in all unit value mean 

and meta-regression estimates weighted following the cluster-adjusted RES scheme. The out-of-sample absolute transfer error is 

calculated by iteratively leaving out each of the K=63 unique housing market clusters, estimating the model with the remaining 

clusters, and then calculating the predicted elasticities and resulting transfer error for the excluded cluster.  
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APPENDICES 

 

Appendix A: Study specific description and meta-dataset details. 

This appendix provides a brief summary of each study in the meta-dataset, and provides 

examples to illustrate the study-by-study derivations of the common elasticity and semi-elasticity 

estimates in the meta-dataset.  The below textbox introduces the standardized notation used. 

p = sales price (or alternative measure of house value) 

WQ = water quality variable of interest. If multiple water quality parameters are included, then 

they are denoted using subscripts. Letter subscripts denote differences in units (e.g., meters 

(m) versus feet (ft)). 

area = surface area of waterbody 

X = vector for all other variables not of primary interest 

distWF = waterfront dummy variable 

dist = continuous variable measuring distance to waterbody 

dist e-f= distance dummy variable ranging from e to f (e.g., distance buffer between zero and 

200 meters would be dist0-200) 

 

 

γ = coefficients on X 

β = coefficient on WQ  

D = coefficient on WQ dummy variable 

 

Ara (2007) 

This study examined water clarity and fecal coliform in Lake Erie.  The study used several 

clustering algorithms to define submarkets along Lake Erie.  This clustering led to eight 

submarkets for which hedonic price equations are estimated for secchi depth and fecal coliform.  

Equations are estimated for both waterfront and non-waterfront homes.  The authors estimated 

each model using both OLS and spatial error models.  The study contributed 60 observations to 

the meta-dataset.   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  All 

models have a double-log specification:    

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
𝜕𝑝

𝜕𝑊𝑄
= 𝛽

𝑝

𝑊𝑄
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow    

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑊𝑄
            (2) 
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𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽           (3) 

The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

semi-elasticities. 

   

Bejranonda et al. (1999) 

This study examined sediment inflow rates for state park lakes and reservoirs within 4,000 feet 

(1219.2 meters) of homes in Ohio.  The counties are not identifiable based on the information 

provided in the primary study.  The hedonic models examined the effect of sedimentation rates 

on property values for homes near lakes/reservoirs with regulations limiting boating horse-power 

to 10 (Limited HP) versus unlimited horse-power lakes (Unlimited HP).  The dependent variable 

is the annual rental value which is obtained from a transformation on the total assessed housing 

value.  The authors excluded homes near lakes that had a water surface area less than 100 acres 

(one acre equals 4046.86 square meters).  The study estimated two models (one for the Limited 

HP lakes and one for the Unlimited HP lakes) each yielding a waterfront and non-waterfront 

estimate. Therefore, four observations are included in the meta-dataset.   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model (1) as an example. 

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
𝜕𝑝

𝜕𝑊𝑄
= 𝛽

𝑝

𝑊𝑄
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑊𝑄
            (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽           (3) 

The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

semi-elasticities.   

 

Bin and Czajkowski (2013) 

This study examined a variety of water quality variables including visibility, salinity, pH, and 

dissolved oxygen (DO) in the St. Lucie River, St. Lucie Estuary, and Indian River Lagoon of 

Florida.  The study estimated eight hedonic regression models, but only four included an 

objective and usable set of water quality parameters (e.g., water visibility, pH, dissolved 

oxygen).  The four models not included used a subjective location-based grade to measure water 

quality.  The study contributed a total of 18 observations to the meta-dataset.  
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For 12 observations, water quality variables were actual measures.  The derivation of our 

standardized elasticity and semi-elasticity estimates for these 12 observations is as follows.  

Consider a simplified representation of Table 3’s Model I as an example.  

ln(𝑝) = 𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2𝑊𝑄2  

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2𝑊𝑄2)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp(𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2𝑊𝑄2) ∙ (𝛽1 + 2𝛽2𝑊𝑄) 

Substituting for in p from equation (1) yields:   
∂p

∂WQ
= 𝑝 ∙ (𝛽1 + 2𝛽2𝑊𝑄) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

 
𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= (𝛽1 + 2𝛽2𝑊𝑄)         (2) 

 
𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= (𝛽1 + 2𝛽2𝑊𝑄) ∙ 𝑊𝑄        (3) 

The relevant sample means for WQ are then plugged in as needed to calculate the estimated 

elasticities and semi-elasticities.   

Six observations are based on dummy variables for WQ.  The dummy variables were equal to 

one for water visibility fair, water visibility good, and salinity good. 

Consider a simplified representation of Model III in Table 3 of the primary study as an example.  

ln(𝑝) = 𝛾𝑋 + 𝐷𝑊𝑄  

Rearranging to isolate p on the left-hand side yields, 

𝑝 = exp (𝛾𝑋 + 𝐷𝑊𝑄) 

Let p0 denote the price when 𝑊𝑄 = 0, and p1 denote when 𝑊𝑄 = 1.  These can be written out, 

respectively, as:  

𝑝0 = exp (𝛾𝑋) 

𝑝1 = exp (𝛾𝑋 + 𝐷) 

Because the functional form is log-linear, we use the transformation first outlined by Halvorsen 

and Palmquist (1980) for calculating the percent change in price: %∆𝑝 =
𝑝1−𝑝0

𝑝0
.  

Plugging in the above equations yields: 

 %∆𝑝 =
𝑝1−𝑝0

𝑝0
=

exp(𝛾𝑋+𝐷)−exp(𝛾𝑋)

exp (𝛾𝑋)
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Some rearranging and simplification yields: 

%∆𝑝 =
exp(𝛾𝑋)exp (𝐷)−exp(𝛾𝑋)

exp(𝛾𝑋)
  

%∆𝑝 = exp (𝐷) − 1            

The relevant coefficient estimate for D is then plugged in as needed to calculate the percent 

change in price. The percent change in price enters the meta-dataset as a “semi-elasticity” 

estimate for observations like this, and the corresponding elasticity variables are not applicable 

and are left as null. 

 

Boyle and Taylor (2001) 

This study examined water clarity in 34 lakes of Maine that are divided into four groups.  The 

study estimated four hedonic regression models based on the groupings and each model is 

estimated with two different datasets of property characteristics. The first was labeled as town 

data and utilized tax-assessor records, and the second used survey responses from buyers and 

sellers.  Each model contributed a waterfront estimate to the meta-dataset, yielding a total of 

eight observations.  Waterbody surface area was measured in acres in the original study (one acre 

equals 4046.86 square meters).  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Group 1, town data model as an example. 

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= (𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠 ∙

1

𝑊𝑄
) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

(𝛽∙𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠)

𝑊𝑄∙𝑝
          (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
=

(𝛽∙𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠)

𝑝
          (3) 

The relevant sample means for WQ, price, and area are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities.  Because Boyle and Taylor did not 

include lake area or the specific lakes that are used for the different groups, we use the 3,515 

mean acreage estimate (14,224,713 sq. meters) from Michael et al. (2000), who used a similar, 

but not the exact same, data set. 
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Boyle et al. (1999) 

This study examined water clarity (secchi depth) of lakes in four different housing markets in 

Maine.  The study estimated four hedonic regression models, one for each market, and each 

yielding one observation for waterfront homes.  Therefore, the study contributed a total of four 

observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the linear-log model.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

1

𝑊𝑄
  

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄∙𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑝
           (3) 

One complication for the study is only the mean implicit prices (
𝜕𝑝

𝜕𝑊𝑄
) are reported, not the 

actual regression coefficients 𝛽 (see Table 1 in Boyle et al., 1999).  Therefore, we back out the 

relevant elasticities and semi-elasticities using the available estimates and the implicit price 

equation preceding equation (2) above.  In addition, the relevant sample means for WQ and p are 

plugged in as needed for each of the four study areas in order to calculate the estimated 

elasticities and semi-elasticities.   

 

Brashares (1985) 

This study examined the effect of turbidity and fecal coliform on lakeshore home values in 

southeast Michigan.  The study estimated several hedonic price functions each using different 

subsets of the data. One model examined homes with lake frontage only, one with lake or canal 

frontage, and one with selected homes on lakes with public access.  With three different subsets 

of the housing data and two water quality variables, this study contributed 6 observations to the 

meta-dataset.  All the models followed a log-quadratic specification, where the water quality 

variables entered as squared values of the mean.    

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.   All 

models have the following log-quadratic specification:    

ln(𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄2          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  
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𝜕𝑝

𝜕𝑊𝑄
= 2𝛽𝑊𝑄 ∙ 𝑝 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 2𝛽𝑊𝑄            (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 2𝛽𝑊𝑄2          (3) 

Elasticities and semi-elasticities are then computed using the summer mean values for the water 

quality variables as reported in table v.3 of the primary study. 

 

Cho et al. (2011) 

This study examined impairment in streams and the river in the Pigeon River Watershed of 

North Carolina and Tennessee.  The impairment source was identified as a paper mill.  The study 

estimated six hedonic regression models (four for NC and two for TN), each yielding a 

waterfront and non-waterfront estimate for two impairment dummy variables.  Therefore, the 

study contributed a total of 24 observations to the meta-dataset.  

The derivation of our standardized semi-elasticity estimates is as follows.  Consider a simplified 

representation of the North Carolina Thiessen Polygon (TP) model as an example, where 

𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑟𝑖𝑣𝑒𝑟 and 𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑠𝑡𝑟𝑒𝑎𝑚𝑠 are dummy variables denoting that the nearby river and 

contributing streams, respectively, are considered impaired.  

ln(𝑝) = 𝛾𝑋 + 𝐷1𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑟𝑖𝑣𝑒𝑟 + 𝐷2𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑠𝑡𝑟𝑒𝑎𝑚𝑠  

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝐷1𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑟𝑖𝑣𝑒𝑟 + 𝐷2𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟𝑠𝑡𝑟𝑒𝑎𝑚𝑠)     (1) 

Because the functional form is log-linear, we use the Halvorsen and Palmquist (1980) equation 

for calculating the percent change in price which can then be expressed as %∆𝑝 =
𝑝1−𝑝0

𝑝0
.  

As an example, the percent change in price due to a river being classified as impaired is 

expressed as follows.  Let p0 denote the price when the dummy variable is turned off, and p1 

denote when it is turned on.  These can be written out, respectively, as:  

𝑝0 = exp (𝛾𝑋) 

𝑝1 = exp (𝛾𝑋 + 𝐷1) 

Plugging in the above equations yields: 

 %∆𝑝 =
𝑝1−𝑝0

𝑝0
=

exp(𝛾𝑋+𝐷1)−exp(𝛾𝑋)

exp (𝛾𝑋)
 

Some rearranging and simplification produces: 
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%∆𝑝 =
exp(𝛾𝑋)exp (𝐷1)−exp(𝛾𝑋)

exp(𝛾𝑋)
  

%∆𝑝 = exp (𝐷1) − 1            

The relevant coefficient estimate for D1 is then plugged in as needed to calculate the percent 

change in price.   The percent change in price enters the meta-dataset as a “semi-elasticity” 

estimate for observations like this, and the corresponding elasticity variables are not applicable 

and are left as null. 

 

Epp and Al-Ani (1979) 

This study examined pH levels in small rivers and streams in Pennsylvania.  The study estimated 

four hedonic regression models, but only three included an objective water quality parameter for 

waterfront properties.  The excluded model focused on a subjective water quality measure based 

on property owners’ perceptions.  Therefore, the study contributed a total of three observations to 

the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 1 as an example.  

ln(𝑝) = 𝛾𝑋 + 𝛽1 ln(𝑊𝑄) + 𝛽2[ln(𝑊𝑄) 𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]  

ln(𝑝) = 𝛾𝑋 + [𝛽1 + 𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]ln (𝑊𝑄) 

where popchange denotes the change in population in that area.  Rearranging for p, 

𝑝 =  𝑒𝛾𝑋+[𝛽1+𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= 𝑒𝛾𝑋+[𝛽1+𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]ln (𝑊𝑄) ∙  [𝛽1 + 𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

1

𝑊𝑄
 

Substituting for p from equation (1) yields:   
∂p

∂𝑊𝑄
= 𝑝 ∙  [𝛽1 + 𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

1

𝑊𝑄
 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= [𝛽1 + 𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]

1

𝑊𝑄
         (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= [𝛽1 + 𝛽2𝑝𝑜𝑝𝑐ℎ𝑎𝑛𝑔𝑒]        (3) 

The relevant sample means for pH and population change are then plugged in as needed in order 

to calculate the estimated elasticities and semi-elasticities.   
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Feather et al. (1992) 

This study examined the effect of water quality -- as proxied by a trophic status index (TSI) -- on 

the sale of vacant lots on lakes in Orange County, Florida between 1982-84.  TSI theoretically 

ranges from 0 (good water quality) to 100 (very poor).  The study estimated two hedonic 

regression models. The first used a linear model specification for waterfront properties only and 

the second model, for both waterfront and non-waterfront properties, was log-linear based on 

Box-Cox procedures for estimating functional form.  Therefore, the study contributed a total of 

three observations to the meta-dataset. 

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Table V-4 as an example. 

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽

1

𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽

𝑊𝑄

𝑝
          (3) 

For the log-linear specification, consider the simplified representation of the model in Table V-8 

of the primary study.   

ln(𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄           (1) 

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽𝑊𝑄)  

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp(𝛾𝑋 + 𝛽𝑊𝑄) ∙ 𝛽 

Substituting in for p yields:   
∂p

∂WQ
= 𝑝𝛽 

The semi-elasticity and elasticity are respectively: 

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽            (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽𝑊𝑄          (3) 
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The relevant sample means for TSI and price are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities. 

 

Gibbs et al. (2002) 

This study examined water clarity (secchi depth) of lakes in four different housing markets in 

New Hampshire.  The study estimated four hedonic regression models, one for each market, and 

each yielding one observation for waterfront homes.  Therefore, the study contributed a total of 

four observations to the meta-dataset. The derivation of our standardized elasticity and semi-

elasticity estimates is similar to that reported for Boyle et al. (1999) in this appendix. Consider a 

simplified representation of the linear-log model.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

1

𝑊𝑄
  

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄∙𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑝
           (3) 

The relevant sample means for lake area, secchi depth, and price are then plugged in as needed in 

order to calculate the estimated elasticities and semi-elasticities.   

 

Guignet et al. (2017) 

This study examined water clarity (light attenuation coefficient) in the Chesapeake Bay.  The 

study estimated several hedonic regression models but only one included a water quality 

parameter of interest, yielding a waterfront and non-waterfront observation. Two additional 

observations are derived from the same regression results by converting the estimates to 

correspond to Secchi disk depth (instead of the light attenuation coefficient). Therefore, the study 

contributed a total of four observations to the meta-dataset. The derivation of our standardized 

elasticity and semi-elasticity estimates is as follows.  Consider a simplified representation of 

model 2.C as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽1(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡𝑊𝐹) + 𝛽2(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡0−200)  

   +𝛽3(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡200−500)  

where 𝑑𝑖𝑠𝑡𝑊𝐹 is a dummy variable equal to one for waterfront homes, 𝑑𝑖𝑠𝑡0−200 is a dummy 

variable equal to one for non-waterfront homes within 0-200 meters of the water, and 

𝑑𝑖𝑠𝑡200−500 is a dummy variable equal to one for non-waterfront homes within 200-500 meters 



50 
 

of the water. The above equation can be simplified to: 

𝑝 = 𝑒𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−200+𝛽3𝑑𝑖𝑠𝑡200−500) ln(𝑊𝑄𝐾𝐷)       

Calculating the elasticities and semi-elasticities with respect to the light attenuation coefficient 

(𝑊𝑄𝐾𝐷) is straight forward and follows similar derivation as that below.  Here we focus on 

converting those estimates to secchi depth in meters (𝑊𝑄𝑚), using the following inverse 

relationship estimated for this particular study area and referenced in the primary study: 

𝑊𝑄𝐾𝐷 = 1.45/𝑊𝑄𝑚. Plugging this into the above hedonic regression yields:  

𝑝 = 𝑒
𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−200+𝛽3𝑑𝑖𝑠𝑡200−500) ln(

1.45

𝑊𝑄𝑚
)
      (1) 

To calculate the semi-elasticity and elasticity estimates (equations 2 and 3 below, respectively), 

we take the derivative with respect to 𝑊𝑄𝑚 and then do some slight rearranging: 

𝜕𝑝

𝜕𝑊𝑄𝑚
= 𝑒

𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−200+𝛽3𝑑𝑖𝑠𝑡200−500) ln(
1.45

𝑊𝑄𝑚
)
  

∙ −(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−200 + 𝛽3𝑑𝑖𝑠𝑡200−500)
𝑊𝑄𝑚

1.45
(1.45)𝑊𝑄𝑚

−2
  

 

𝜕𝑝

𝜕𝑊𝑄𝑚
= −

𝑝

𝑊𝑄𝑚
(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−200 + 𝛽3𝑑𝑖𝑠𝑡200−500)  

 

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
= −

1

𝑊𝑄𝑚
(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−200 + 𝛽3𝑑𝑖𝑠𝑡200−500)     (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= −(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−200 + 𝛽3𝑑𝑖𝑠𝑡200−500)     (3) 

After plugging in the appropriate value of zero or one for the corresponding distance bin dummy 

variables, the elasticities and semi-elasticities for waterfront homes are simply −𝛽1and −
𝛽1

𝑊𝑄𝑚
, 

respectively. For non-waterfront observations, the representative non-waterfront home distance 

of 250 meters is assumed, and so 𝑑𝑖𝑠𝑡0−200 = 0 and 𝑑𝑖𝑠𝑡200−500 = 1 is plugged in. The 

corresponding elasticities and semi-elasticities are −𝛽3 and −
𝛽3

𝑊𝑄𝑚
. The relevant sample mean 

for 𝑊𝑄𝑚 is then plugged in as needed in order to calculate the estimated semi-elasticities.   

 

Horsch and Lewis (2009) 

Although the authors’ primary focus was on Eurasian milfoil (an invasive aquatic vegetation), 

this study also examined water clarity (secchi depth) of lakes in Vilas County, Wisconsin.  The 

study estimated nine hedonic regression models, five of which included water clarity.  Each 

model only used waterfront homes in the estimations.  Therefore, the study contributed a total of 

five observations to the meta-dataset.  
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The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the primary study’s linear model.  

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄𝑓𝑡  

The primary study WQ is expressed in terms of secchi depth in feet, which we re-express as 

secchi depth in meters using the following conversion factor: 𝑊𝑄𝑓𝑡 = 𝑊𝑄𝑚 ∙
3.28084 𝑓𝑡 

1 𝑚
. 

Plugging this into the hedonic regression yields: 

𝑝 = 𝛾𝑋 + 𝛽(𝑊𝑄𝑚 ∙ 3.28084)        (1) 

Taking the partial derivative with respect to 𝑊𝑄𝑚 and then multiplying both sides by 1 𝑝⁄  and 

𝑊𝑄𝑚
𝑝⁄  yields the semi-elasticity and elasticity calculations, respectively.  

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
=

𝛽

𝑝
∙ 3.28084          (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= 𝛽 ∙ 3.28084 ∙

𝑊𝑄𝑚

𝑝
         (3) 

The relevant sample means for price and the converted mean secchi depth in meters are then 

plugged in as needed.   

 

Hsu (2000) 

This study examined the effect of lake water clarity and aquatic plants on lakefront property 

values across twenty lakes grouped into three distinct markets in Vermont.  The metadata 

includes seven observations from this study.  Three of the observations are from model 

specifications which exclude the aquatic plant variables and include only water clarity.  The 

other four observations on water clarity come from model specifications that include the aquatic 

plant variables.   All of the water clarity variables are specified as the interaction of the natural 

log of the minimum water clarity in the year the property was sold multiplied by the total lake 

surface area.  The derivation of the standardized elasticity and semi-elasticity is as follows. 

The lin-log specification can generally be expressed as:    

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
𝜕𝑝

𝜕𝑊𝑄
= (𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= (𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
) ∙

1

𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

1

𝑝
          (3) 
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The relevant sample means for lake area, water clarity, and price are then plugged in as needed 

in order to calculate the estimated elasticities and semi-elasticities. 

 

Kashian et al. (2006) 

This study examined water clarity in the lake community of Delavan, Wisconsin.  The study 

estimated three hedonic models, but only one included a water quality parameter, yielding a 

waterfront and a non-waterfront observation. Therefore, the study contributed a total of two 

observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 3 from the primary study as an example.  

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

In this case, WQ is expressed in terms of secchi depth in feet, which we re-express as secchi 

depth in meters using the following conversion factor: 𝑊𝑄𝑓𝑡 = 𝑊𝑄𝑚 ∙
3.28084 𝑓𝑡 

1 𝑚
. 

Substituting this conversion into equation (1), we have 

𝑝 = 𝛾𝑋 + 𝛽(𝑊𝑄𝑚 ∙ 3.28084) 

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄𝑚
= 𝛽 ∙ 3.28084 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
=

𝛽

𝑝
∙ 3.28084          (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= 𝛽 ∙ 3.28084 ∙

𝑊𝑄𝑚

𝑝
         (3) 

The relevant sample means for WQm and price are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Krysel et al. (2003) 

This study examined the effect of lake water clarity on lakefront property values across thirty-

seven lakes grouped into six distinct markets in Minnesota.  There are two estimates based on 

different model specifications for five of the groups and one estimate for the Bemidji group.  

Thus, this study contributes 11 observations to the meta-dataset.  The water quality variable used 

in the study is the natural log of water clarity multiplied by lake size.   

The lin-log specification can generally be expressed as:    

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 
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Taking the partial derivative of equation (1) with respect to WQ yields:  

 
𝜕𝑝

𝜕𝑊𝑄
= (𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
) 

Rearranging produces the formulas for the semi-elasticity equation (2) and elasticity equation 

(3). 

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
∙

1

𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

1

𝑝
          (3) 

The relevant sample means for WQ, p, and area are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities. 

 

Leggett and Bockstael (2000) 

This study examined fecal coliform counts in the Chesapeake Bay.  The study estimated 20 

different hedonic regression models, all of which focused on waterfront homes in Anne Arundel 

county, Maryland, and each yielded one observation.  Therefore, the study contributed a total of 

20 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  The 

primary study considered several different functional forms, but the fecal coliform count variable 

of interest (WQ) always entered linearly.  Consider a simplified representation Leggett and 

Bockstael’s linear model as an example.  

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄           (1) 

Taking the derivative and dividing by p yields the semi-elasticity: 

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑝
           (2) 

The elasticity can then be expressed by taking equation (2) and multiplying by WQ, as follows: 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
=

𝛽𝑊𝑄

𝑝
           (3) 

The relevant sample means for WQ and price from Table I of the primary study are then plugged 

in as needed in order to calculate the estimated elasticities and semi-elasticities.   

 

Liao et al. (2016) 

This study examined water clarity in the Coeur d’Alene Lake, Idaho.  The study estimated six 

hedonic regression models, but only four included an objective water quality parameter of 

interest for waterfront properties.  Two of the hedonic models include two water quality 
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parameters (one for northern division of the lake and one for southern division of the lake).  

Therefore, the study contributed a total of six observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model 1 in Table 2 of the primary study as an example.  

The hedonic double-log specification can generally be specified as: 

ln (𝑝) = 𝛾𝑋 + 𝛽 ln(𝑊𝑄)  

Rearranging for p,  

p = exp (𝛾𝑋 + 𝛽 ln(𝑊𝑄))          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

∂p

𝜕𝑊𝑄
= exp (𝛾𝑋 + 𝛽 ln(𝑊𝑄)) 

𝛽

𝑊𝑄
  

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

∂p

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑊𝑄
            (2) 

∂p

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽           (3) 

The relevant coefficient and sample means for WQ are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities.   

 

Liu et al. (2014) 

This working paper examined sediment loads, dissolved oxygen, nitrogen and phosphorous 

levels, and secchi depth in the Hoover Reservoir, as well as nitrogen and phosphorous in rivers, 

focusing on the Upper Big Walnut Creek watershed in Ohio. The study estimated a single 

hedonic regression model, that included interaction terms for each specific water quality measure 

and waterbody combination listed above, yielding seven observations corresponding to 

waterfront homes and seven corresponding to non-waterfront homes. Therefore, the study 

contributed a total of 14 observations to the meta-dataset. Only eight of these observations, 

however, can be included in any subsequent meta-analysis.  Standard errors for all the relevant 

coefficient estimates in the other six cases lacked the necessary number of significant digits and 

were essentially listed as zero.  This prevented us from simulating the corresponding standard 

errors associated with our standardized elasticity and semi-elasticity estimates.15   

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the model that focuses on nitrogen levels in the Hoover 

Reservoir as an example. Note that although numerous water quality measures are included in 

                                                 
15 Subsequent correspondence with the primary study authors to obtain the necessary estimates, as well as the 

covariances, were unsuccessful as the available working paper was said to be undergoing revisions.  
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the single hedonic regression from this study, they will cancel out when taking the partial 

derivative with respect to each water quality measure of interest.  The hedonic regression can be 

represented as: 

ln(𝑝) = 𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2(𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡𝑚𝑖𝑙𝑒𝑠)   

where 𝑑𝑖𝑠𝑡𝑚𝑖𝑙𝑒𝑠 is distance to the Hoover Reservoir, measured in miles. Since the distances for 

the standardized waterfront and non-waterfront estimates in the meta-dataset are noted in meters, 

we must convert the distance measure by applying the following conversion factor: 𝑑𝑖𝑠𝑡𝑚𝑖𝑙𝑒𝑠 =
𝑑𝑖𝑠𝑡𝑚

1609.34⁄ . Plugging this into the hedonic equation yields: 

ln(𝑝) = 𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2 (𝑊𝑄 ∙
𝑑𝑖𝑠𝑡𝑚

1609.34
)         (1) 

Taking the partial derivative and rearranging yields the semi-elasticity and elasticity calculations 

(equations (2) and (3) below, respectively).  

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽1 + 𝛽2

𝑑𝑖𝑠𝑡𝑚

1609.34
         (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= (𝛽1 + 𝛽2

𝑑𝑖𝑠𝑡𝑚

1609.34
) 𝑊𝑄        (3) 

The relevant sample means for WQ are then plugged in as needed in order to calculate the 

estimated elasticity and semi-elasticities.  The mean distance for waterfront homes was not 

reported, and so in calculating the waterfront estimates a distance of 50 meters was assumed (as 

done for other studies where such information was needed but unavailable), and an assumed 250 

meters was used for the representative non-waterfront home.  

 

Liu et al. (2017) 

This study examined chlorophyll in Narragansett Bay, Rhode Island.  The study estimated 13 

hedonic regression models, each yielding a waterfront and non-waterfront estimate.  Therefore, 

the study contributed a total of 26 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  As an 

example, consider a simplified representation of the “well-informed” model for waterfront 

properties, which used the 99th percentile for Chlorophyll concentration as the relevant water 

quality measure.  

ln(𝑝) = 𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−100𝑚    

Rearranging for p, 

𝑝 = exp(𝛾𝑋 + 𝛽1𝑊𝑄 + 𝛽2𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−100𝑚)      (1) 

In this case, WQ is expressed in terms of micrograms per liter, which we re-express as 

milligrams per liter using the following conversion factor: 𝑊𝑄𝜇𝑔
𝐿⁄ = 𝑊𝑄𝑚𝑔

𝐿⁄ ∙
1000𝜇𝑔 

1 𝑚𝑔
.  
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𝑑𝑖𝑠𝑡0−100𝑚 is a dummy variable representing waterfront properties within 100m of the Bay. 

Substituting this conversion into equation (1), we have 

𝑝 = exp(𝛾𝑋 + 𝛽1𝑊𝑄𝑚𝑔
𝐿⁄ ∙ 1000 + 𝛽2𝑊𝑄𝑚𝑔

𝐿⁄ ∙ 1000 ∙ 𝑑𝑖𝑠𝑡0−100𝑚)  

Taking the partial derivative with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp(𝛾𝑋 + 𝛽1𝑊𝑄𝑚𝑔

𝐿⁄ ∙ 1000 + 𝛽2𝑊𝑄𝑚𝑔
𝐿⁄ ∙ 1000 ∙ 𝑑𝑖𝑠𝑡0−100𝑚)(𝛽1 ∙ 1000 + 𝛽2 ∙ 1000 ∙

𝑑𝑖𝑠𝑡0−100𝑚)  

Plugging in p from equation (1) yields:  

𝜕𝑝

𝜕𝑊𝑄
= 𝑝 ∙ (𝛽1 ∙ 1000 + 𝛽2 ∙ 1000 ∙ 𝑑𝑖𝑠𝑡0−100𝑚)  

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 1000(𝛽1 + 𝛽2𝑑𝑖𝑠𝑡0−100𝑚)         (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝑊𝑄𝑚𝑔

𝐿⁄ ∙ 1000(𝛽1 + 𝛽2𝑑𝑖𝑠𝑡0−100𝑚)       (3) 

For waterfront properties, we set 𝑑𝑖𝑠𝑡0−100𝑚 = 1.  The relevant coefficients and sample means 

for WQ are then plugged in as needed in order to calculate the estimated elasticities and semi-

elasticities. 

 

Michael et al. (2000) 

This study examined water clarity in 22 lakes of Maine that are divided into three groups.  The 

study estimated nine hedonic regression models per group, each yielding one waterfront 

observation.  Therefore, the study contributed a total of 27 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Group 1’s CMIN model as an example.  CMIN 

represents the minimum water clarity for the year the property was sold. 

The lin-log specification can generally be expressed as:   

𝑝 = 𝛾𝑋 + 𝛽ln (𝑊𝑄)           (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

 
𝜕𝑝

𝜕𝑊
= (𝛽

1

𝑊𝑄
) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= (𝛽

1

𝑊𝑄
)

1

𝑝
          (2) 
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𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= (𝛽

1

𝑝
)          (3) 

The relevant coefficient and sample means for WQ and price are then plugged in as needed in 

order to calculate the estimated elasticities and semi-elasticities.   

The functional form of WQ varied across specifications. Table 4 in Michael et al. presents 

CMAX/CMIN or CMAX/CMIN% as additional water clarity specifications.  However, in Table 

7, the specification is presented as CMIN/CMAX and CMIN/CMAX%.  For models 6 and 7, we 

estimate the elasticities as presented in Table 4, as suggested by the primary study authors.16 

As an example, Model 6 from the primary study has the following form:  

𝑝 = 𝛾𝑋 + 𝛽
ln (𝐶𝑀𝐴𝑋)

ln (𝑊𝑄)
           (1) 

where ln(CMAX) is an interaction term. 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= - 𝛽 (

ln (𝐶𝑀𝐴𝑋)

𝑊𝑄∙ln (𝑊𝑄)2) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= − 𝛽 (

ln (𝐶𝑀𝐴𝑋)

𝑊𝑄∙ln (𝑊𝑄)2) ∙
1

𝑝
         (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= − 𝛽 (

ln(𝐶𝑀𝐴𝑋)

ln(𝑊𝑄)2 )  ∙
1

𝑝
         (3) 

 

As another example, Model 7 from the primary study has the following form: 

𝑝 = 𝛾𝑋 + 𝛽
ln(𝐶𝑀𝐴𝑋)−ln (𝑊𝑄)

ln (𝐶𝑀𝐴𝑋)
          (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= (

− 𝛽

𝑊𝑄 ∙ ln (𝐶𝑀𝐴𝑋)
) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= (

− 𝛽

𝑊𝑄∙ln (𝐶𝑀𝐴𝑋)
) ∙

1

𝑝
         (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
=

− 𝛽

ln (𝐶𝑀𝐴𝑋)
∙

1

𝑝
          (3) 

 

                                                 
16 Personal communication with K. Boyle, December 8, 2017.  



58 
 

Netusil et al. (2014) 

This study examined a variety of water quality parameters including dissolved oxygen, E. coli, 

fecal coliform, pH, temperature, and total suspended solids in Johnson Creek, Oregon, and Burnt 

Bridge Creek, Washington.  The study estimated five hedonic regression models for Johnson 

Creek and one model for Burnt Bridge Creek, each yielding five water quality measures for 

waterfront and non-waterfront properties.  For this study, the dummy variable, dist0-0.25, 

representing properties within a 0.25 mile (402.34 meters) of the creeks includes both waterfront 

and non-waterfront homes. Therefore, the study contributed a total of 60 observations to the 

meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the Johnson Creek (Dry) OLS model from the primary 

study as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−0.25  

𝑝 = exp (𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−0.25)         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

𝜕𝑝

𝜕𝑊𝑄
= exp (𝛾𝑋 + 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−0.25) 𝛽 ∙ 𝑑𝑖𝑠𝑡0−0.25  

Substituting in p from equation (1), the formulas for the semi-elasticity equation (2) and 

elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙ 𝑑𝑖𝑠𝑡0−0.25          (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽𝑊𝑄 ∙ 𝑑𝑖𝑠𝑡0−0.25         (3) 

For both waterfront and non-waterfront properties, we set 𝑑𝑖𝑠𝑡0−0.25=1.  The relevant coefficient 

and sample means for WQ are then plugged in as needed in order to calculate the estimated 

elasticities and semi-elasticities. 

 

Olden and Tamayo (2014) 

This study examined water clarity in lakes located in King County, Washington.  The study 

estimated three hedonic regression models, each yielding a waterfront observation.  Therefore, 

the study contributed a total of three observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Model 1 from the primary study as an example. 

𝑝 = 𝛾𝑋 + 𝛽𝑊𝑄          (1) 

Taking the partial derivative with respect to WQ yields:  
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𝜕𝑝

𝜕𝑊𝑄
= 𝛽 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽

𝑊𝑄

𝑝
           (3) 

The relevant sample means for WQ and p are then plugged in as needed in order to calculate the 

estimated elasticities and semi-elasticities.   

 

Poor et al. (2001) 

This study estimated several hedonic regression models that included both objective and 

subjective measures of water clarity (i.e., secchi depth) in lakes in Maine.  The meta-dataset 

focuses solely on objective measures of water quality, and so we examine the four hedonic 

regression models that included objective secchi depth measurements as an explanatory variable. 

Each model corresponded to one of four different housing markets in Maine and provided one 

waterfront observation.  Therefore, the study contributed a total of four observations to the meta-

dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is similar to Boyle et 

al. (1999) and is briefly re-summarized here.  Consider a simplified representation of the linear-

log model presented in the primary study.  

𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

𝜕𝑝

𝜕𝑊𝑄
= 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙

1

𝑊𝑄
  

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄∙𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑝
           (3) 

The relevant sample means for WQ, area, and p are plugged in as needed for each of the four 

study areas in order to calculate the estimated elasticities and semi-elasticities.   

 

Poor et al. (2007) 

This study examined concentrations of total suspended solids and dissolved inorganic nitrogen in 

rivers throughout the St. Mary’s watershed in Maryland.  The study presented two hedonic 
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regression models, one for each of the two water quality measures.  The focus was on ambient 

water quality, and so the sample encompassed both waterfront and non-waterfront homes 

(although the distance gradient with respect to water quality was essentially assumed to be flat).  

Therefore, each model contributed a waterfront and non-waterfront observation, implying that 

the study provided a total of four observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the model as follows:  

ln (𝑝) = 𝛾𝑋 + 𝛽𝑊𝑄  

𝑝 = 𝑒𝛾𝑋+𝛽𝑊𝑄            (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3), respectively: 

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽𝑊𝑄          (3) 

The relevant sample means for WQ (either total suspended solids or dissolved inorganic nitrogen 

depending on the model) are then plugged in as needed in order to calculate the estimated 

elasticities and semi-elasticities.   

 

Ramachandran (2015) 

This study examined nitrogen concentrations in the Three Bays area of Cape Cod, 

Massachusetts. The study estimated and presented four hedonic regression models, but only three 

of these models included the relevant water quality measure as a control variable.  Each model 

yielded a waterfront and non-waterfront observation. Therefore, the study contributed a total of 

six observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates from the double-log 

specification in the primary study is as follows.   

ln (𝑝) = 𝛾𝑋 + 𝛽ln (𝑊𝑄)  

𝑝 = 𝑒𝛾𝑋+𝛽ln (𝑊𝑄)            (1) 

Taking the partial derivative of equation (1) with respect to WQ and some rearrangement yields 

the semi-elasticity and elasticity calculations, equations (2) and (3) respectively: 

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

𝛽

𝑊𝑄
            (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽           (3)  
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The relevant sample mean for WQ is then plugged in as needed in order to calculate the 

estimated elasticities and semi-elasticities.   

 

Steinnes (1992) 

This study examined the effect of water clarity across 53 lakes in Northern Minnesota.  The 

study used several measures of the appraised value of land as the dependent variable in the 

hedonic price equation.  However, the study did not report the average price nor the summary 

statistics for the water clarity variable so neither the elasticity nor the semi-elasticity are 

computed for this study.  

 

Tuttle and Heintzelman (2015) 

This study examined numerous ecological and water quality measures in lakes in the 

Adirondacks Park in New York, including the presence of milfoil (an invasive species), loons (an 

aquatic bird and indicator species of ecological health), and lake acidity (i.e., pH levels). The 

only objective measure of water quality for inclusion in this meta-dataset is lake acidity, which is 

measured as an indicator equal to one if pH levels are below 6.5.  The study estimated and 

presented four hedonic regression models that included the poor pH indicator as a control 

variable.  Two of these models included only lakefront homes, and thus contributed only a single 

observation each to the meta-dataset.  The other two models included waterfront and non-

waterfront homes in the estimating sample and thus provided two observations each.  This study 

contributed a total of six observations to the meta-dataset.  

The relevant water quality measures are binary indicator variables in this case, and so the percent 

change in price (%∆𝑝) is calculated for the “semi-elasticity” variable in the meta-dataset. The 

elasticity estimates are not applicable and are left as null. Consider a simplified representation of 

Tuttle and Heintzelman’s hedonic model. 

ln (𝑝) = 𝛾𝑋 + 𝐷𝑊𝑄   

𝑝 = 𝑒𝛾𝑋+𝐷𝑊𝑄            (1) 

where 𝐷 is the coefficient of interest corresponding to the poor pH dummy variable. Note that 

the distance gradient with respect to water quality was assumed to be flat in this study, and so, 

when appropriate, the calculations for waterfront and non-waterfront %∆𝑝 are the same. Let the 

price for a representative home when the nearest lake does not and does have poor pH be 

denoted as p0 and p1, respectively. These can be expressed as:   

𝑝0 = exp (𝛾𝑋) 

𝑝1 = exp (𝛾𝑋 + 𝐷) 

Plugging the above two equations into the percent change in price calculation yields: 
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 %∆𝑝 =
𝑝1−𝑝0

𝑝0
=

exp(𝛾𝑋+𝐷)−exp(𝛾𝑋)

exp (𝛾𝑋)
 

And with some rearranging and simplification yields: 

%∆𝑝 =
exp(𝛾𝑋)exp (𝐷)−exp(𝛾𝑋)

exp(𝛾𝑋)
  

%∆𝑝 = exp (𝐷) − 1  

The relevant coefficient estimate for 𝐷 is then plugged in as needed to calculate the percent 

change in price. 

 

Walsh and Milon (2016) 

This study examined the effect of nutrients on properties on and/or near lakes in Orange County, 

Florida. The study estimated several singular indicators of nutrients including Total Nitrogen 

(TN), Total Phosphorus (TP), and Chlorophyll-a (CHLA).  The study also examined several 

composite indicators – the trophic status index (TSI) and what the authors label as the one-out, 

all-out (OOAO) indicator that equals one if all the US EPA criteria for TN, TP, and CHLA are 

achieved.  Each model yields a waterfront and non-waterfront observation which contributes ten 

observations, plus an additional model which includes TN, TP, and CHLA in a single model 

yielding six more observations for a total of 16 observations from this study. 

The derivation of the standardized elasticity and semi-elasticity estimates is as follows.  Consider 

simplified version of the basic specification used (see EQ1 on pg. 647 of the primary study):  

ln(𝑝) = 𝛾𝑋 + 𝛽0𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽1 ln(𝑊𝑄) + 𝛽2(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡𝑊𝐹) + 𝛽3(ln(𝑊𝑄) ∙ ln(𝑑𝑖𝑠𝑡)) +
𝛽4(ln(𝑊𝑄) ∙ ln(𝑎𝑟𝑒𝑎)) + 𝛽5(ln(𝑊𝑄) ∙ 𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤)        

where ClearLow is a dummy variable indicating that a lake is considered a clear lake with low 

alkalinity. This equation can be simplified to: 

ln (𝑝) = 𝛾𝑋 + 𝛽0𝑑𝑖𝑠𝑡𝑊𝐹 + [𝛽1 + 𝛽2 𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) +

𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄)  

 𝑝 = exp ( 𝛾𝑋 + 𝛽0𝑑𝑖𝑠𝑡𝑊𝐹 + [𝛽1 + 𝛽2 𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) +
𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄))         (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄
= exp ( 𝛾𝑋 + 𝛽0𝑑𝑖𝑠𝑡𝑊𝐹

+ [𝛽1 + 𝛽2 𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) + 𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ln(𝑊𝑄))

∙  [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) + 𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤] ∙
1

𝑊𝑄
 

Plugging in p from equation (1), and then rearranging yields the formulas for the semi-elasticity 

and elasticity estimates, equations (2) and (3), respectively.  
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𝜕𝑝

𝜕𝑊𝑄
= 𝑝[𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) + 𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]

1

𝑊𝑄
     

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) + 𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]

1

𝑊𝑄
  (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3 ln(𝑑𝑖𝑠𝑡) + 𝛽4 ln(𝑎𝑟𝑒𝑎) + 𝛽5𝐶𝑙𝑒𝑎𝑟𝐿𝑜𝑤]  (3) 

For waterfront observations, the relevant sample mean values for area are plugged in to 

equations (2) and (3), the representative waterfront home distance of 50 meters is plugged in for 

dist, and distWF is set equal to one. For non-waterfront observations, the corresponding sample 

mean values are plugged in, but distWF is set equal to zero and the representative non-waterfront 

home distance of 250 meters is plugged in for dist.  The dummy variable ClearLow indicates 

clear lakes with low alkalinity is set to one for model specifications that include that variable. 

 

Walsh et al. (2011a) 

This study examined water clarity (secchi depth) in lakes in Orange County, Florida.  The study 

estimated six hedonic regression models that varied in terms of the independent variables and 

how they address spatial dependence. Each model yields a waterfront and a non-waterfront 

observation.  Therefore, the study contributed a total of 12 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation model 3 or 3S in the primary study as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽1 ln(𝑊𝑄𝑓𝑡) + 𝛽2(ln(𝑊𝑄𝑓𝑡) ∙ 𝑑𝑖𝑠𝑡𝑊𝐹) + 𝛽3(ln(𝑊𝑄𝑓𝑡) ∙ ln (𝑑𝑖𝑠𝑡)) +

𝛽4(ln (𝑎𝑟𝑒𝑎) ∙ ln (𝑊𝑄𝑓𝑡))  

which can be simplified to: 

ln (𝑝) = 𝛾𝑋 + [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)] ln(𝑊𝑄𝑓𝑡)       

In this case, WQ is expressed in terms of secchi depth in feet, which we re-express as secchi 

depth in meters using the following conversion factor: 𝑊𝑄𝑓𝑡 = 𝑊𝑄𝑚 ∙
3.28084 𝑓𝑡 

1 𝑚
. Plugging the 

conversion factor into the hedonic price function and re-arranging so that p is on the on the left-

hand side yields:  

𝑝 = e𝛾𝑋+[𝛽1+𝛽2𝑑𝑖𝑠𝑡𝑊𝐹+𝛽3ln (𝑑𝑖𝑠𝑡)+𝛽4ln (𝑎𝑟𝑒𝑎)] ln(𝑊𝑄𝑚∙3.28084)      (1) 

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄𝑚
= e𝛾𝑋+[𝛽1+𝛽2𝑑𝑖𝑠𝑡𝑊𝐹+𝛽3 ln(𝑑𝑖𝑠𝑡)+𝛽4 ln(𝑎𝑟𝑒𝑎)] ln(𝑊𝑄𝑚∙3.28084)  

∙ [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]
1

𝑊𝑄𝑚∙3.28084
∙ 3.28084  

Notice that the re-scaling factor of 3.28084 will cancel out in the derivative. Plugging in p from 
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equation (1), and then rearranging yields the formulas for the semi-elasticity and elasticity 

estimates, equations (2) and (3), respectively.  

𝜕𝑝

𝜕𝑊𝑄𝑚
= 𝑝[𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]

1

𝑊𝑄𝑚
  

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]

1

𝑊𝑄𝑚
     (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]    (3) 

For waterfront observations, the relevant sample mean value for area is plugged into equations 

(2) and (3), the representative waterfront home distance of 50 meters is plugged in for dist, and 

𝑑𝑖𝑠𝑡𝑊𝐹 is set equal to one.  The mean water quality value (from table 2 of the primary study) is 

converted to meters and plugged in for WQm. For non-waterfront observations, the 

corresponding sample mean values are plugged in, but 𝑑𝑖𝑠𝑡𝑊𝐹 is set equal to zero and the 

representative non-waterfront home distance of 250 meters is plugged in for dist.  

 

Walsh et al. (2011b) 

This study examined four water quality measures (chlorophyll-a, nitrogen, phosphorous, and a 

trophic state index) for lakes in Orange County, Florida.  The study estimated 12 hedonic 

regression models, three for each of the four water quality measures, which varied in terms of 

how the functional form accounted for spatial dependence.  Each model yielded two 

observations, one for waterfront homes and another for non-waterfront homes.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of the Walsh et al.’s double-log hedonic model.  

ln (𝑝) = 𝛾𝑋 + 𝛽1 ln(𝑊𝑄) + 𝛽2(ln(𝑊𝑄) ∙ 𝑑𝑖𝑠𝑡𝑊𝐹) + 𝛽3(ln(𝑊𝑄) ∙ ln (𝑑𝑖𝑠𝑡)) +
𝛽4(ln (𝑎𝑟𝑒𝑎) ∙ ln (𝑊𝑄))  

Which can be simplified to: 

ln (𝑝) = 𝛾𝑋 + [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)] ln(𝑊𝑄)     (1) 

where WQ denotes the corresponding measure of interest.  

Taking the partial derivative of equation (1) with respect to WQ yields: 

𝜕𝑝

𝜕𝑊𝑄
= e𝛾𝑋+[𝛽1+𝛽2𝑑𝑖𝑠𝑡𝑊𝐹+𝛽3 ln(𝑑𝑖𝑠𝑡)+𝛽4 ln(𝑎𝑟𝑒𝑎)] ln(𝑊𝑄)  

∙ [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]
1

𝑊𝑄
  

Plugging in p from equation (1), and then rearranging yields the formulas for the semi-elasticity 

and elasticity estimates, equations (2) and (3), respectively.  
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𝜕𝑝

𝜕𝑊𝑄
= 𝑝[𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]

1

𝑊𝑄
  

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]

1

𝑊𝑄
      (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= [𝛽1 + 𝛽2𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽3ln (𝑑𝑖𝑠𝑡) + 𝛽4ln (𝑎𝑟𝑒𝑎)]     (3) 

For waterfront observations, the relevant sample mean value for area is plugged in to equations 

(2) and (3), the representative waterfront home distance of 50 meters is plugged in for dist, and 

𝑑𝑖𝑠𝑡𝑊𝐹 is set equal to one.  The corresponding mean water quality values are plugged in for WQ. 

For non-waterfront observations, the corresponding sample mean values are plugged in, but 

𝑑𝑖𝑠𝑡𝑊𝐹 is set equal to zero and the representative non-waterfront home distance of 250 meters is 

plugged in for dist.  

 

Walsh et al. (2017) 

This study examined water clarity (light attenuation coefficient) in the Chesapeake Bay tidal 

waters for 14 adjacent counties in Maryland.  The study estimated 56 separate hedonic regression 

models; four for each county, where the functional form (double-log versus semi-log) and period 

for which the water quality measure is averaged over (one versus three years) varied.  Each 

model in turn yields a waterfront and non-waterfront estimate, implying 112 observations. 

Furthermore, an additional 112 observations are derived from the same regression results by 

converting the estimates to correspond to secchi depth (instead of the light attenuation 

coefficient). Therefore, the study contributed a total of 224 observations to the meta-dataset.  

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of Walsh et al.’s double-log models as an example.  

ln (𝑝) = 𝛾𝑋 + 𝛽1(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡𝑊𝐹) + 𝛽2(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡0−500)  

   +𝛽3(ln(𝑊𝑄𝐾𝐷) ∙ 𝑑𝑖𝑠𝑡500−1000)  

where 𝑑𝑖𝑠𝑡𝑊𝐹 is a dummy variable equal to one for waterfront homes, 𝑑𝑖𝑠𝑡0−500 is a dummy 

variable equal to one for non-waterfront homes within 0-500 meters of the water, and 

𝑑𝑖𝑠𝑡500−1000 is a dummy variable equal to one for non-waterfront homes within 500-1000 

meters of the water. The above equation can be simplified to: 

𝑝 = 𝑒𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−500+𝛽3𝑑𝑖𝑠𝑡500−1000) ln(𝑊𝑄𝐾𝐷)       

Calculating the elasticities and semi-elasticities with respect to the light attenuation coefficient 

(WQKD) is straight forward and follows similar derivation as that below.  Here we focus on 

converting those estimates to secchi depth in meters (WQm), using the following inverse 

relationship estimated for this particular study area and noted in the primary study: 𝑊𝑄𝐾𝐷 =
1.45/𝑊𝑄𝑚. Plugging this into the above hedonic regression yields:  

𝑝 = 𝑒
𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−500+𝛽3𝑑𝑖𝑠𝑡500−1000) ln(

1.45

𝑊𝑄𝑚
)
     (1) 
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To calculate the semi-elasticity and elasticity estimates (equations 2 and 3, respectively), we take 

the derivative with respect to WQm and then do some slight rearranging: 

𝜕𝑝

𝜕𝑊𝑄𝑚
= 𝑒

𝛾𝑋+(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹+𝛽2𝑑𝑖𝑠𝑡0−500+𝛽3𝑑𝑖𝑠𝑡500−1000) ln(
1.45

𝑊𝑄𝑚
)
  

∙ −(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−500 + 𝛽3𝑑𝑖𝑠𝑡500−1000)
𝑊𝑄𝑚

1.45
(1.45)𝑊𝑄𝑚

−2
  

 

𝜕𝑝

𝜕𝑊𝑄𝑚
= −

𝑝

𝑊𝑄𝑚
(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−500 + 𝛽3𝑑𝑖𝑠𝑡500−1000)  

 

𝜕𝑝

𝜕𝑊𝑄𝑚

1

𝑝
= −

1

𝑊𝑄𝑚
(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−500 + 𝛽3𝑑𝑖𝑠𝑡500−1000)     (2) 

𝜕𝑝

𝜕𝑊𝑄𝑚

𝑊𝑄𝑚

𝑝
= −(𝛽1𝑑𝑖𝑠𝑡𝑊𝐹 + 𝛽2𝑑𝑖𝑠𝑡0−500 + 𝛽3𝑑𝑖𝑠𝑡500−1000)     (3) 

After plugging in the appropriate value of zero or one for the corresponding dummy variables, 

the elasticities and semi-elasticities for waterfront homes are simply −𝛽1and −
𝛽1

𝑊𝑄𝑚
, 

respectively. For non-waterfront observations, representative non-waterfront home distance of 

250 meters is plugged in for dist, and so the corresponding elasticities and semi-elasticities are 

−𝛽2 and −
𝛽2

𝑊𝑄𝑚
. The relevant county specific sample means for WQm and p are then plugged in 

as needed in order to calculate the estimated semi-elasticities.   

 

Williamson et al. (2008) 

This study examined acid mine drainage impairment in the Cheat River Watershed in West 

Virginia.  The study estimated one hedonic regression model, yielding a waterfront and non-

waterfront observation.  For this study, the dummy variable, WQimpair0.25 representing properties 

within a 0.25 mile (i.e., 402.34 meters) of the acid mine drainage impaired stream includes both 

waterfront and non-waterfront.   Therefore, the study contributed a total of two observations to 

the meta-dataset.  

Consider a simplified representation of Table 3 as an example. 

ln(𝑝) = 𝛾𝑋 + 𝐷1𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟0.25 + 𝐷2𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟0.50       (1) 

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝐷1𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟0.25 + 𝐷2𝑊𝑄𝑖𝑚𝑝𝑎𝑖𝑟0.50) 

Because the functional form is log-linear, we use the following equation for calculating the 

percent change in price, as first outlined by Halvorsen and Palmquist (1980):  %∆𝑝 =
𝑝1−𝑝0

𝑝0
.  
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Estimating the percent change for impaired river, let p0 denote the price when the dummy 

variable is turned off, and p1 denote when it is turned on.  These can be written out, respectively, 

as:  

𝑝0 = exp (𝛾𝑋) 

𝑝1 = exp (𝛾𝑋 + 𝐷1) 

Plugging in the above equations yields: 

 %∆𝑝 =
𝑝1−𝑝0

𝑝0
=

exp(𝛾𝑋+𝐷1)−exp(𝛾𝑋)

exp (𝛾𝑋)
 

Some rearranging and simplification yields: 

%∆𝑝 =
exp(𝛾𝑋)exp (𝐷1)−exp(𝛾𝑋)

exp(𝛾𝑋)
  

%∆𝑝 = exp (𝐷1) − 1  

The relevant coefficient for D1 is then plugged in as needed to calculate the percent change in 

price.   

 

Wolf and Klaiber (2017) 

This study examined the effect of the density of harmful algae (as proxied by microsystin 

concentrations) on properties across six counties surrounding four inland lakes in Ohio.  The 

study estimated nine hedonic models, each yielding a waterfront and non-waterfront estimate.  

Therefore, the study contributed a total of 18 observations to the meta-dataset. The algae 

concentrations are converted to a binary water quality dummy variable (Algae) that is set equal 

to one when the algae density is above the World Health Organization’s standard of 1ug/L for 

drinking water for a period of time matching individual housing transactions data. 

The derivation of the standardized elasticity and semi-elasticity estimates is as follows.  Consider 

simplified version of the basic specification used. 

ln(𝑝) = 𝛾𝑋 + 𝐷1𝐴𝑙𝑔𝑎𝑒 + 𝐷2(𝐴𝑙𝑔𝑎𝑒 ∙ (𝑑𝑖𝑠𝑡0−20𝑚 + 𝑑𝑖𝑠𝑡20−600𝑚)) + 𝐷3(𝐴𝑙𝑔𝑎𝑒 ∙ 𝑑𝑖𝑠𝑡) 

This can then be rewritten as:  

𝑝 = exp (𝛾𝑋 + 𝐷1𝐴𝑙𝑔𝑎𝑒 +  𝐷2(𝐴𝑙𝑔𝑎𝑒 ∙ (𝑑𝑖𝑠𝑡0−20𝑚 + 𝑑𝑖𝑠𝑡20−600𝑚)) + 𝐷3(𝐴𝑙𝑔𝑎𝑒 ∙ 𝑑𝑖𝑠𝑡)) (1) 

Let p0 denote the price when the algae dummy is turned off, and p1 denote when it is turned on.  

These can be written out, respectively, as:  

𝑝0 = 𝑒𝛾𝑋  

𝑝1 = 𝑒𝛾𝑋+𝐷1+𝐷2+𝐷3(𝑑𝑖𝑠𝑡)  
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The percent change in price can then be expressed as %∆𝑝 =
𝑝1−𝑝0

𝑝0
. Plugging in the above 

equations yields: 

 %∆𝑝 =
𝑝1−𝑝0

𝑝0
=

𝑒𝛾𝑋+𝐷1+𝐷2+𝐷3(𝑑𝑖𝑠𝑡)−𝑒𝛾𝑋

𝑒𝛾𝑋  

Some rearranging and simplification yields: 

%∆𝑝 =
𝑒𝛾𝑋𝑒𝐷1+𝐷2+𝐷3(𝑑𝑖𝑠𝑡)−𝑒𝛾𝑋

𝑒𝛾𝑋   

%∆𝑝 = 𝑒𝐷1+𝐷2+𝐷3(𝑑𝑖𝑠𝑡) − 1  

The relevant coefficients and the appropriate representative home distance for dist (50 meters for 

waterfront homes, 250 meters for non-waterfront homes) are then plugged in as needed in order 

to calculate the estimated percent change in price. 

 

Yoo et al. (2014) 

This study examined the effect of sediment loads on five lakes in Arizona.  The sediment loading 

observations are derived from a watershed level sediment delivery model.  The sediment load is 

interacted with the travel time from each property to the nearest lake in all models.  Three semi-

log model specifications are estimated – OLS, spatial lag model, and spatial error model – for 

both waterfront and non-waterfront homes.  There are six observations from this study.  

Derivation of the elasticity and semi-elasticity is as follows – recall that WQ in this study is 

measured as sediment load.  The primary study WQ is expressed in terms of tons/acre, which we 

re-express as kg/sq.meters using the following conversion factor: 𝑊𝑄𝑡𝑜𝑛𝑠

𝑎𝑐𝑟𝑒

= 𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461. 

Plugging this into the hedonic regression yields: 

  ln(𝑝) = 𝛾𝑋 + 𝛽1𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 + 𝛽2𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽3𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒2 

which is rewritten as: 

p = exp (𝛾𝑋 + 𝛽1𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 + 𝛽2𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽3𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461 ∙ 𝑇𝑖𝑚𝑒2) 

            (1) 

Now, the derivative with respect to WQ is: 

𝑑𝑝

𝑑𝑊𝑄
= 𝑝 ∙ (𝛽1 ∙ 4.461 + 𝛽2 ∙ 4.461 ∙ 𝑇𝑖𝑚𝑒 + 𝛽3 ∙ 4.461 ∙ 𝑇𝑖𝑚𝑒2) 

and the semi-elasticity (equation 2) and elasticity (equation 3) are given by:  

𝑑𝑝

𝑑𝑊𝑄

1

𝑝
= 4.461(𝛽1 + 𝛽2 ∙ 𝑇𝑖𝑚𝑒 + 𝛽3 ∙ 𝑇𝑖𝑚𝑒2)      (2) 

𝑑𝑝

𝑑𝑊𝑄

𝑊𝑄

𝑝
= 𝑊𝑄 𝑘𝑔

𝑠𝑞𝑚

∙ 4.461(𝛽1 + 𝛽2 ∙ 𝑇𝑖𝑚𝑒 + 𝛽3 ∙ 𝑇𝑖𝑚𝑒2)     (3) 
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The relevant sample means for WQ and Time are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Zhang and Boyle (2010) 

This study examined the interaction of water clarity and surface area of waterbody in the four 

lakes and one pond in Rutland County, Vermont.  The study estimated ten hedonic regression 

models, but only six included a water quality parameter.  These six models focused only on 

waterfront homes, and therefore the study contributed a total of six observations to the meta-

dataset.   Waterbody surface area was measured in acres in the original study (one acre equals 

4046.86 square meters). 

The derivation of our standardized elasticity and semi-elasticity estimates is as follows.  

Consider a simplified representation of model Total Macrophytes-Quadratic as an example. 

The hedonic double-log specification can generally be specified as: 

ln (𝑝) = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠 ∙ ln(𝑊𝑄)         

Rearranging for p, 

𝑝 = exp (𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠 ∙ ln(𝑊𝑄))       (1) 

Taking the partial derivative of equation (1) with respect to WQ yields:  

∂p

𝜕𝑊𝑄
= exp (𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠 ∙ ln(𝑊𝑄)) ∙ (𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠)

1

𝑊𝑄
 

Substituting in p from equation (1) and rearranging, the formulas for the semi-elasticity equation 

(2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
=

(𝛽∙𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠)

𝑊𝑄
   (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= (𝛽 ∙ 𝑎𝑟𝑒𝑎𝑎𝑐𝑟𝑒𝑠)  (3) 

The relevant sample means for WQ and area are then plugged in as needed in order to calculate 

the estimated elasticities and semi-elasticities.   

 

Zhang et al. (2015) 

This study examined the effect of water clarity on lakefront homes across 15 markets in Maine, 

Vermont, and New Hampshire.   The water quality variable used in the study is the natural log of 

water clarity multiplied by lake size.  There is one observation per market, thus this study 

contributed 15 observations to the meta-dataset. 

The specification used in all the models is:    
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𝑝 = 𝛾𝑋 + 𝛽 ∙ 𝑎𝑟𝑒𝑎 ∙ ln (𝑊𝑄)         (1) 

Taking the partial derivative of the price equation with respect to 𝑊𝑄 yields:  

 
𝜕𝑝

𝜕𝑊𝑄
= (𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
) 

The formulas for the semi-elasticity equation (2) and elasticity equation (3) follow   

𝜕𝑝

𝜕𝑊𝑄

1

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑊𝑄
∙

1

𝑝
           (2) 

𝜕𝑝

𝜕𝑊𝑄

𝑊𝑄

𝑝
= 𝛽 ∙

𝑎𝑟𝑒𝑎

𝑝
           (3) 

The relevant sample means for WQ, price, and area are then plugged in as needed in order to 

calculate the estimated elasticities and semi-elasticities. 
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Appendix B: Supplemental meta-analysis results. 

 

Table B1. Meta-regression Results Examining Heterogeneity by Study Area Demographics. 

VARIABLES RE Panel 1  Mundlak 1 RE Panel 2 Mundlak 2 RE Panel 3 Mundlak 3 

             

waterfront 0.0807*** 0.0644*** 0.0812*** 0.0643*** 0.0863*** 0.0643*** 

 (0.020) (0.019) (0.018) (0.018) (0.019) (0.018) 

waterfront cluster mean  0.0632  0.0541  0.0762 

  (0.052)  (0.052)  (0.055) 

median income (2017$ USD) 0.0000 0.0000     

 (0.000) (0.000)     

college degree (% population)   0.1538 0.1908   

   (0.290) (0.298)   

population density (households /sq. km.)     0.0002 0.0003 

     (0.000) (0.000) 

Constant 0.0166 -0.0382 0.0020 -0.0305 0.0112 -0.0316 

 (0.056) (0.074) (0.045) (0.059) (0.020) (0.042) 

              

Dependent variable: home price elasticity with respect to water clarity (secchi depth). *** p<0.01, ** p<0.05, * p<0.1.  Standard errors 

in parentheses. Regressions estimated using n=260 observations, from K=63 unique housing market clusters.   Random Effects Panel 

(RE Panel) regressions estimated using the "mixed" routine in Stata 14, where the n=260 observations are weighted by the cluster-

adjusted Random Effect Size (RES) weights and the cluster specific effects are defined according to the K=63 unique housing market 

clusters. Mundlak (1978) regressions estimated by first calculating cluster means for independent variables that vary within each 

cluster, and then by running the subsequent model via the "mixed" routine in Stata 14, where the residual cluster-specific effect is 

maintained.  
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Table B2. Unit value mean elasticity estimates. 

Water quality measure Cluster Adjusted 

RES Mean 

Cluster Adjusted 

FES Mean 

Standard 

RES Mean 

Cluster  

Weighted Mean 

Unweighted 

Mean n # studies 

Chlorophyll a        

   waterfront -0.026*** -0.027*** -0.022*** 0.324* 0.737* 18 3 

 (-0.031, -0.021) (-0.032, -0.021) (-0.031, -0.013) (-0.036, 0.685) (-0.044, 1.517)   

   non-waterfront w/in 500 m 0.009*** -0.001 0.001 0.010 0.005 18 3 

 (0.006, 0.012) (-0.003, 0.001) (-0.006, 0.009) (-0.085, 0.105) (-0.201, 0.211)   

Dissolved oxygen        

   waterfront -0.010 0.064 0.098 -0.014 0.089 10 2 

 (-0.257, 0.237) (-0.217, 0.345) (-0.669, 0.865) (-0.262, 0.235) (-0.207, 0.384)   

   non-waterfront w/in 500 m 0.642*** 0.209 0.992*** 0.666*** 1.063*** 6 1 

 (0.374, 0.910) (-0.095, 0.513) (0.343, 1.641) (0.395, 0.937) (0.708, 1.419)   

E-coli        

   waterfront -0.081*** -0.094*** -0.089*** -0.073*** -0.073*** 5 1 

 (-0.129, -0.032) (-0.140, -0.048) (-0.147, -0.031) (-0.124, -0.021) (-0.124, -0.021)   

   non-waterfront w/in 500 m -0.081*** -0.094*** -0.089*** -0.073*** -0.073*** 5 1 

 (-0.129, -0.033) (-0.140, -0.048) (-0.147, -0.031) (-0.125, -0.022) (-0.125, -0.022)   

Fecal coliform        

   waterfront -1.3E-4*** -2.2E-5*** -0.2E-4 -0.037 -0.018*** 36 4 

 (-1.8E-4, -0.7E-4) (-2.8E-5, -1.6E-5) (-0.6E-4, 0.1E-4) (-0.088, 0.014) (-0.026, -0.011)   

   non-waterfront w/in 500 m -0.052*** -0.036*** -0.024*** -0.059* -0.020*** 20 3 

 (-0.096, -0.008) (-0.046, -0.027) (-0.036, -0.011) (-0.090, -0.005) (-0.034, -0.006)   

Lake trophic state index        

   waterfront -0.797*** -0.797*** -0.797*** -0.920*** -0.920*** 2 1 

 (-1.330, -0.264) (-1.330, -0.264) (-1.330, -0.264) (-1.545, -0.295) (-1.545, -0.295)   

   non-waterfront w/in 500 m -0.682** -0.682** -0.682** -0.682** -0.682** 1 1 

 (-1.296, -0.068) (-1.296, -0.068) (-1.296, -0.068) (-1.296, -0.068) (-1.296, -0.068)   

Light attenuation        

   waterfront -0.082*** -0.071*** -0.070*** -0.086*** -0.086*** 57 2 

 (-0.093, -0.070) (-0.078, -0.064) (-0.076, -0.063) (-0.099, -0.074) (-0.099, -0.073)   
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   non-waterfront w/in 500 m -0.013*** -0.011*** -0.011 -0.014*** -0.014*** 57 2 

 (-0.020, -0.006) (-0.014, -0.007) (-0.014, -0.007) (-0.022, -0.006) (-0.022, -0.006)   

Nitrogen        

   waterfront -0.220*** -0.131*** -0.245*** -0.242*** -0.292*** 10 5 

 (-0.244, -0.196) (-0.149, -0.113) (-0.321, -0.170) (-0.271, -0.215) (-0.326, -0.257)   

   non-waterfront w/in 500 m -0.136*** -0.030*** -0.130*** -0.184*** -0.221*** 10 5 

 (-0.156, -0.116) (-0.036, -0.023) (-0.184, -0.077) (-0.210, -0.157) (-0.254, -0.187)   

Percent Water Visibility        

   waterfront -1.659*** -1.659*** -1.659*** -1.655*** -1.655*** 2 1 

 (-1.900, -1.418) (-1.900, -1.418) (-1.900, -1.418) (-1.896, -1.414) (-1.896, -1.414)   

   non-waterfront w/in 500 m - - - - - 0 0 

        

Phosphorous        

   waterfront -0.107*** -0.093*** -0.114*** -0.107*** -0.115*** 6 3 

 (-0.122, -0.092) (-0.106, -0.081) (-0.154, -0.074) (-0.123, -0.092) (-0.130, -0.100)   

   non-waterfront w/in 500 m -0.005 0.003 -0.002 -0.019*** -0.016** 6 3 

 (-0.012, 0.003) (-0.002, 0.008) (-0.015, 0.010) (-0.032, -0.005) (-0.029, -0.003)   

Salinity        

   waterfront 0.552*** 0.552*** 0.552*** 0.553*** 0.553*** 2 1 

 (0.279, 0.824) (0.279, 0.824) (0.279, 0.824) (0.281, 0.826) (0.281, 0.826)   

   non-waterfront w/in 500 m - - - - - 0 0 

        

Sediment        

   waterfront -0.003 4.9E-6** 4.9E-6** -0.012 -0.018 4 2 

 (-0.008, 0.001) (0.2E-6, 9.7E-6) (0.2E-6, 9.7E-6) (-0.059, 0.035) (-0.088, 0.052)   

   non-waterfront w/in 500 m -0.006 4.9E-6** 4.9E-6** -0.012 -0.018 4 2 

 (-0.014, 0.003) (0.2E-6, 9.7E-6) (0.2E-6, 9.7E-6) (-0.059, 0.035) (-0.088, 0.052)   

Sedimentation Rate        

   waterfront -0.113*** -0.113*** -0.113*** -0.132*** -0.132*** 2 1 

 (-0.134, -0.091) (-0.134, -0.091) (-0.134, -0.091) (-0.183, -0.082) (-0.183, -0.082)   

   non-waterfront w/in 500 m -0.113*** -0.113*** -0.113*** -0.132*** -0.132*** 2 1 

 (-0.134, -0.091) (-0.134, -0.091) (-0.134, -0.091) (-0.183, -0.082) (-0.183, -0.082)   
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Temperature        

   waterfront -0.164 -0.118 -0.164 -0.177 0.138 6 1 

 (-0.688, 0.361) (-0.603, 0.366) (-0.226, 0.533) (-0.720, 0.366) (-0.240, 0.516)   

   non-waterfront w/in 500 m -0.164 -0.119 -0.164 -0.177 0.137 6 1 

 (-0.687, 0.360) (-0.602, 0.365) (-0.226, 0.532) (-0.719, 0.365) (-0.240, 0.515)   

Total Suspended Solids        

   waterfront -0.032** -0.039** -0.013 -0.026 0.002 7 2 

 (-0.064, -0.000) (-0.073, -0.005) (-0.055, 0.029) (-0.057, 0.005) (-0.31, 0.036)   

   non-waterfront w/in 500 m -0.032** -0.039** -0.013 -0.026 0.002 7 2 

 (-0.064, -0.000) (-0.073, -0.005) (-0.055, 0.029) (-0.057, 0.005) (-0.31, 0.036)   

Turbidity        

   waterfront -0.036*** -0.036*** -0.036*** -0.036*** -0.036*** 2 1 

 (-0.057, -0.016) (-0.057, -0.016) (-0.057, -0.016) (-0.057, -0.016) (-0.057, -0.016)   

   non-waterfront w/in 500 m - - - - - 0 0 
        

 

Water clarity        

   waterfront 0.105*** 0.031*** 0.090*** 0.182 0.155 177 18 

 (0.095, 0.114) (0.028, 0.034) (0.078, 0.102) (-17.398, 17.762) (-6.102, 6.413)   

   non-waterfront w/in 500 m 0.026*** 0.012*** 0.018*** 0.042*** 0.028*** 83 6 

 (0.017, 0.034) (0.010, 0.015) (0.008, 0.028) (0.025, 0.059) (0.020, 0.036)   

pH        

   waterfront 0.779** 0.419*** 0.424 1.986*** 2.173*** 13 3 

 (0.019, 1.540) (0.183, 0.654) (-0.285, 1.133) (-.840, 3.133) (1.015, 3.331)   

   non-waterfront w/in 500 m -0.188 -0.188 -0.379 0.008 -0.334 6 1 

 (-1.086, 0.711) (-1.086, 0.711) (-1.084, 0.326) (-1.405, 1.422) (-1.126, 0.457)   

Trophic state index        

   waterfront -0.158*** -0.135*** -0.177*** -1.60*** -0.181*** 4 2 

 (-0.181, -0.136) (-0.160, -0.110) (-0.229, -0.124) (-0.184, -0.137) (-0.209, -0.154)   

   non-waterfront w/in 500 m 0.015** -0.001 0.022 0.018** 0.029*** 4 2 

  (0.001, 0.029) (-0.011, 0.010) (-0.007, 0.051) (0.003, 0.034) (0.007, 0.050)     

*** p<0.01, ** p<0.05, * p<0.1.  Confidence intervals at the 95% level are displayed in parentheses. Observations weighted by cluster-adjusted RES weights, 

where each cluster defined at the housing market level as defined in the primary studies.   
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Table B 3. Unweighted OLS Meta-regression Results. 

VARIABLES (1A) (2A) (3A) (4A) (5A) (6A) 

       

waterfront 0.1279*** 0.0972*** 0.0908** 0.0911** 0.0547 0.0602* 

 (0.033) (0.035) (0.037) (0.037) (0.036) (0.036) 

estuary  -0.0841**  -0.0653  -0.0486 

  (0.033)  (0.048)  (0.075) 

mean clarity   0.0195** 0.0068  -0.0504*** 

   (0.009) (0.013)  (0.019) 

midwest     -0.1485*** -0.2673*** 

     (0.046) (0.064) 

south     -0.1705*** -0.3242*** 

     (0.040) (0.095) 

west     -0.1212 -0.0856 

     (0.085) (0.085) 

constant 0.0276 0.0854** 0.0071 0.0653 0.1928*** 0.4247*** 

 (0.027) (0.035) (0.029) (0.051) (0.046) (0.098) 

       

R-squared 0.055 0.079 0.073 0.080 0.122 0.146 

Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Regressions estimated using n=260 unweighted 

observations and the OLS regression routine "regress" in Stata 14.   
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Table B 4. Random Effect (RE) Panel Meta-regression Results: Clustered at Study Level. 

VARIABLES (1A) (2A) (3A) (4A) (5A) (6A) 

              

waterfront 0.0954*** 0.0539** 0.0461* 0.0440* 0.0334 0.0350 

 (0.023) (0.026) (0.024) (0.026) (0.031) (0.029) 

estuary  -0.0767**  -0.0509  0.0073 

  (0.032)  (0.056)  (0.024) 

mean clarity   0.0210*** 0.0102  -0.0053 

   (0.006) (0.014)  (0.024) 

midwest     -0.0415 -0.0520 

     (0.056) (0.087) 

south     -0.1183*** -0.1452* 

     (0.030) (0.082) 

west     -0.0915 -0.0906 

     (0.097) (0.103) 

constant 0.0308* 0.0938*** 0.0131 0.0639 0.1397*** 0.1631 

 (0.018) (0.036) (0.015) (0.065) (0.036) (0.121) 

              
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Random Effects Panel (RE Panel) 

regressions estimated using the "mixed" routine in Stata 14, where the n=260 observations are weighted by 

the cluster-adjusted Random Effect Size (RES) weights and the cluster specific effects are defined according 

to the K=18 primary studies. 
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Table B 5. Mundlak Model Meta-regression Results: Clustered at Study Level. 

VARIABLES (1A) (2A) (3A) (4A) (5A) (6A) 

             

waterfront 0.0681*** 0.0631*** 0.0632*** 0.0619*** 0.0601*** 0.0599*** 

 (0.006) (0.010) (0.009) (0.010) (0.010) (0.010) 

waterfront cluster mean 0.0828 -0.0471 -0.2119 -0.1985 -0.2553* -0.2817 

 (0.066) (0.113) (0.162) (0.170) (0.147) (0.186) 

estuary  -0.0884*  -0.0457  0.0224 

  (0.052)  (0.067)  (0.028) 

mean clarity   0.0166 0.0156  0.0133 

   (0.024) (0.024)  (0.025) 

clarity cluster mean   0.0270 0.0160  -0.0035 

   (0.030) (0.034)  (0.031) 

midwest     -0.1044*** -0.0914* 

     (0.027) (0.048) 

south     -0.2260*** -0.2210*** 

     (0.073) (0.078) 

west     -0.0915 -0.0931 

     (0.097) (0.087) 

constant -0.0102 0.1267 0.0989 0.1399 0.3683** 0.3487** 

  (0.044) (0.105) (0.070) (0.109) (0.145) (0.144) 
Dependent variable: home price elasticity with respect to water clarity (Secchi disk depth). 

*** p<0.01, ** p<0.05, * p<0.1.  Standard errors in parentheses. Regressions estimated using n=260 observations. 

Observations are weighted by the cluster-adjusted Random Effect Size (RES) weights, where each cluster is defined as one of 

the K=18 unique primary studies.   Mundlak (1978) regressions estimated by first calculating cluster (primary study) means 

for independent variables that vary within each cluster, and then by running the subsequent model via the "mixed" routine in 

Stata 14, where the residual cluster-specific effect is maintained.  
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Appendix C: Variance-Covariance Matrix for Random Effects Panel Model 3A.  

 

Table C1. Variance-Covariance Matrix for Random Effects Panel Model 3A (from Table 3). 

 waterfront mean clarity constant 

waterfront 0.00040212     

mean clarity -0.00006911 0.00004695   

constant -0.00008892 -0.00005674 0.00029653 

 


	2019 WP Cover_Guignet.pdf
	HedonicWQ_MetaAnalysis_NCEEWP_2019_06_04_v2.pdf

