

Data-Driven Decision Making for Cost-Effective Methane Emission Mitigation

July 24, 2019

Tips

- All participants (except speaker) are in listen-only mode
- Questions submitted during the webinar will be reviewed at the end of the webinar
 - Type a question here
- If you are experiencing technical difficulties, please let us know using the Questions pane on the right side
- A copy of today's presentation will be available on EPA's website

Agenda

- Welcome and Opening Remarks
- Data-Driven Decision Making Kinder Morgan Natural Gas Pipeline Business Unit
 - Jim Tangeman, Kinder Morgan
- Case Study Strengthen Reporting Assurance with Business Intelligence Tool
 - Dan McDermott, Huco Consulting
 - Dave Cox, PE, FirmoGraphs
- Questions
- Upcoming Events

Data-Driven Decision Making Kinder Morgan Natural Gas Pipeline Business Unit

EPA Natural Gas STAR and Methane Challenge Programs
July 24, 2019

Jim Tangeman, Kinder Morgan EHS Manager Natural Gas Pipelines Business Unit

Kinder Morgan: Leader in Energy Infrastructure

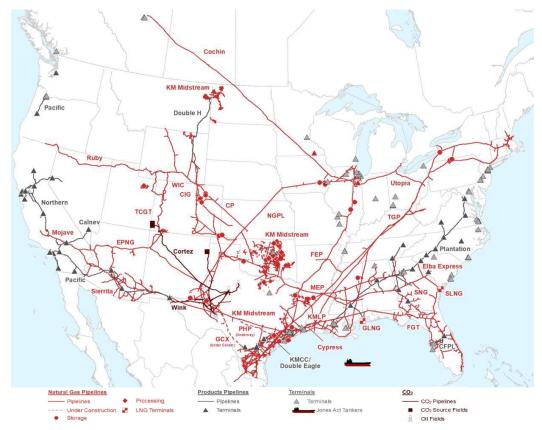
Experienced operator with unparalleled footprint built over decades

Note: Mileage and volumes are company-wide per 2019 budget.

Largest natural gas transmission network

- ~70,000 miles of natural gas pipelines
- Connected to every important U.S. natural gas resource play and key demand centers
- Move ~40% of natural gas consumed in the U.S.

Largest independent transporter of refined products


- Transport ~1.7 mmbbld of refined products
- ~6,900 miles of refined products pipelines
- ~5,800 miles of other liquids pipelines (crude and natural gas liquids)

Largest independent terminal operator

157 terminals

Largest transporter of CO₂

■ Transport ~1.2 Bcfd of CO₂

Kinder Morgan – Commitment to Reduction of Methane

Kinder Morgan Commitment to Reduction of Methane Emissions

Kinder Morgan became one of the Founding Members of the Environmental Protection Agency's Natural Gas STAR Methane Challenge (ONE Future Option) Program in 2016 through our participation in the ONE Future Coalition industry group. By doing so, we are recognized as leaders in our industry in reducing methane emissions using smart performance-based approaches. Kinder Morgan believes it is important to be part of the solution toward reducing emissions of methane and other greenhouse gasses through industry-leading efforts in safely and efficiently delivering natural gas to consumers.

As a Methane Challenge Partner company, Kinder Morgan has committed our natural gas transmission and storage facilities to implement activities and technologies, and transparently report systematic and comprehensive actions to reduce methane emissions. This commitment will be met through a company policy made effective under O&M

Procedure 1229 - Methane Emissions, Reporting, and Reductions.

- Charter Partner of EPA's Natural Gas STAR Program: 1993 to present
 - Many innovative technologies and practices resulted from the program
- A Founding Member of the ONE Future Coalition in 2014
- A Charter Partner of EPA's Natural Gas STAR Methane Challenge Program ONE Future Option in 2016
 - KM committed to a methane emission intensity target of 0.31% across our transmission and storage operations by 2025.
 - First reporting year of 2017, KM achieved a methane emission intensity of 0.04%
 - Additional years of methane emission reductions and methane emission intensities need to be collected to better understand the trends and targets.
 - Continuous Improvement: ONE Future's methane management approach aligns with Kinder Morgan's Operations Management Systems (OMS) philosophy.

KINDERMORGAN

Kinder Morgan – Methane Reduction Programs Timeline (2015 to present)

- 2015: As part of ONE Future, began collaborating with USEPA on their Methane Challenge program to include a ONE Future option
- 2016: USEPA finalized the Methane Challenge-ONE Future option in August
- January 1, 2017: Official start date of Kinder Morgan's commitments under Methane Challenge
- 2017: Rollout of Methane Challenge tools and tracking systems to be used by stakeholders within Kinder Morgan: leak survey and repair spreadsheets, leak tracking database, gas loss minimization form (next few slides)
- 2017: Updating emission reporting tools for tracking and reporting methane reductions
- 2018: Finalize and rollout internal policy and procedure implementing program
- 2018 to present: Continue collaboration with EPA and Other Agencies

Kinder Morgan – Work Flow & Responsible Parties

Kinder Morgan's GHG group sends out list of facilities to be surveyed & measured during first quarter of each year.

Kinder Morgan assigned Technicians or Contractors perform the annual leak surveys & measurements at the affected facilities. Technicians enter the results in the respective spreadsheet tools (see upcoming slides)

For surveys & measurements performed by Kinder Morgan assigned Technicians upload all survey & measurement results into KM Leak Database from the spreadsheet tools (see upcoming slides).

Kinder Morgan's GHG Group collects all the leak data from the KM Leak Database and other KM databases to generate annual GHG Reports to EPA, ONE Future report, EPA's Natural Gas STAR Report, EPA's Methane Challenge Report, and Corporate ESG Report

Kinder Morgan – Program Implementation

Key Evaluation Questions

- Can this program be implemented using internal or external resources or a combination of both?
- Business case: What is the estimated cost, where will the funds come from, what is the ROI, and intangible co-benefits?
- How will it be successfully implemented internally?
- Who are the internal stakeholders that will have responsibilities under this program?
- How will the data needed for this program be collected and where will it reside?
- What will we do with this data after it is collected? Calculating emissions, determining emission reductions, reporting, and other analysis TBD

Key Program Elements

- Kinder Morgan Internal Procedures
- Determining affected facilities
- Facility leak surveys & measurement data
- Leak repairs & confirmation data
- Determining internal responsible parties
- Universal and easy to use tools to track and collect the data
- Centralized data repository tool
- Calculation and reporting tools

Kinder Morgan – Data Collection & Management Tools

- Kinder Morgan Operation & Maintenance (O&M) Procedures: O&M 1229 Methane Emissions Reporting and Reductions
- Kinder Morgan ONE Future-Methane Challenge intranet website available to all Kinder Morgan employees and Kinder Morgan contractors
- Spreadsheets & Other materials posted on intranet website for stakeholders
 - Annual list of facilities needing surveys & measurements
 - GHG survey spreadsheet
 - Leak repair list spreadsheet
 - Other spreadsheets
 - Training materials
 - Link to O&M 1229
 - Link to Kinder Morgan Equipment Leaks and Repairs Dashboard
 - Kinder Morgan methane commitment documents
- Kinder Morgan Leak Database (MS Access and SQL)
- Kinder Morgan Equipment Leaks and Repairs Dashboard
- Sharepoint and Network Server
- OpsInfo Environmental Management System & Emission Reporting

"Your recent Amazon purchases, Tweet score and location history makes you 23.5% welcome here."

Kinder Morgan – O&M Procedure 1229

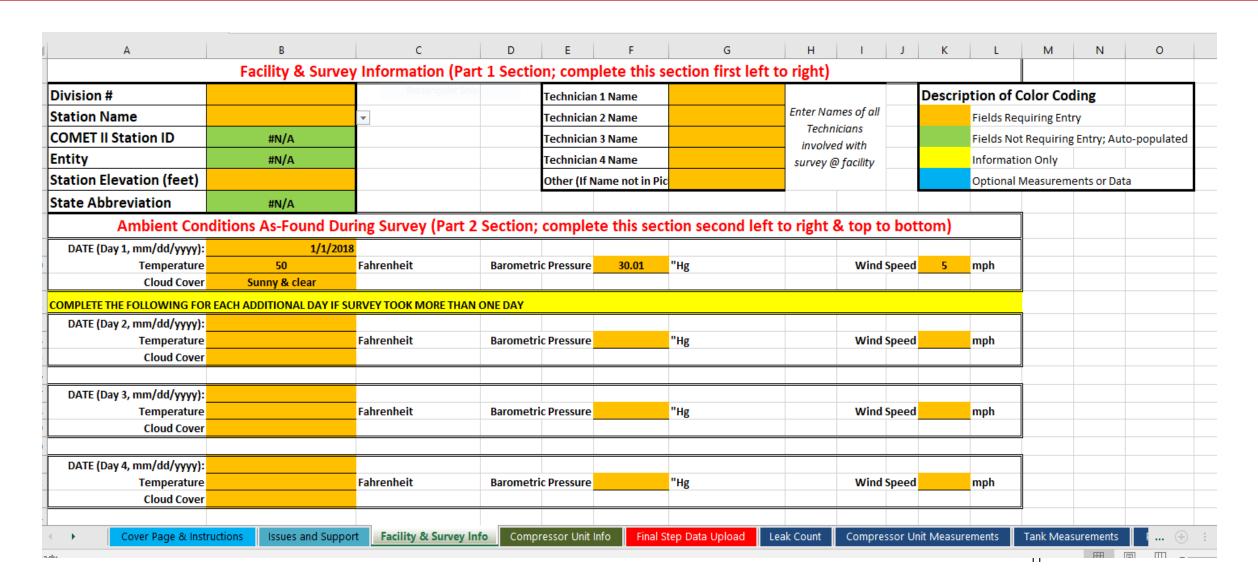
KINDER	MORGAN	No. Title:	O&M 1229 Methane Emissions Reporting and Reductions
O&M PROCE	DURE	Revised:	
Table of C	ontents		
1. Applicabilit	y		1
			1
1.2. Additio	ons and Exceptions	ston, and Valuator	y Commitment Requirements2
			y Comminument Requirements
			2
•			2
3.2. Definit	ions		2
3.3. Compi	ressor Stations for Transmis Cinder Morgan Methane Lea	ision and Storage (k Severity Pate an	Operations4 Id Required Action10
3.4. Natura	al Gas Transmission and Sto	rage Pipeline Emi	ssions11
3.5. Metha	ne Emission Reduction Wor	k Practices for Tra	nsmission Pipelines12
3.6. Agenc	y Reporting Requirements		13
			15
1. Applical	bility		
1.1. Facil	lity Type		
Gas	Pipeline Facility:		
	Gas Treatment		
	Offshore Gathering		
	Regulated Onshore Gath	nering - Type A	
	Regulated Onshore Gath		
_ X	Transmission	3 .75	
553	ge Facility:		
<u> </u>	Underground Natural Ga	s Storage	
	procedure applies to all Con	~	n and Storage Operations
		iipaiiy Halisiilissiu	in and Storage Operations.
1.2. Addi	itions and Exceptions		
			nances, and underground natural gas storage to PHMSA regulations, and may be subject to

additional regulations of other governing bodies (e.g., EPA, FERC, OSHA, Intrastate Regulated -

The applicability of O&M Procedures to specific Company business entities is delineated in

AL PSC, LA DNR, OCC, TRRC, UT PSC, etc.).

DOODE Introduction to Company Standards


Kinder Morgan – Annual Survey Spreadsheet

Α	В	C D	E	F	G	Н	1	J	K	L	М	N	0	P
		A.												
		KINDER	DRGAN				Descri	ption of	Color Co	ding				
		KINDLIN	INC.				Descri				-			
									equiring En		to nonulated			
									tion Only	ig Entry; Au	to-populated			
		GHG Leak Survey & Measurement Report for 40	CER 08 Subpart W and O	ME Euturo Dro	ogram					nents or Dat	ta		-	
		Version 4.0, No.		AL I ULUIE PIL	/Бтапп			Ориона	INICASUICI	ilents of Da	tu .			
		version 4.0, No	VEHINCI ZU10											
		Di	20											
		Division #	0	4										
		Station Name	0											
		Station Number	#N/A											
		Entity	#N/A	2										
		Day 1 Date (mm/dd/yyyy)	1/1/2018											
FIRST S	STEP: In orde	er for this spreadsheet to work, you must configure/in	stall Microsoft Access 2010	0 or 2016 on y	our comput	er. You	will only	need to do	this once.					
Follow	the steps b	pelow to complete this:												
	a	Go to the start menu of your PC and and type Acces	s into the search bar											
	b	Click on Microsoft Access 2010 or 2016												
	С	Your PC will automatically complete configuring Acc	cess for your PC. This will t	take approxir	mately 5 mir	nutes								
	d	When complete, an access file will open on your co	mputer. Close the file by	clicking the X	button in th	ne top ri	ight							
	e	You can now run the program in the spreadsheet. C	ontinue to the steps below	N	200		200	300	441					
		Instructions Co	malating the De	nort Tal	20									
				oressor Unit Ir			ata Upload		Count		r Unit Measurem		Tank N	

Kinder Morgan – Annual Survey Spreadsheet Facility Info.

Kinder Morgan – Leak Repair List Spreadsheet

4	Α	В	С	D	E	F	G	н	1	J	К
1	Select Fa	cility Name									
2					Get Leak Data fro	Get Leak Data from Database Upload Repair Data					
3	Select R	epair Status	All	_							
4											
5	Entity	Divisio n	Station Name	Leak Number	who Identified	Leak Identifica tion Date	Leak Description	Component Type		Observed Severity	Technicians Comments
6											
7											
8											
9											

D	К	L	М	N	0	P	Q	R
		Requires Inpu	it from Opera	ations				
		Auto-Populat	ed. No Input	Needed	THIS IS THE INITIAL REPAIR DEADLINE			IF REPAIR IS MADE, YOU MUST ENTER YOUR NAME IN THE COLUMN BELOW
Leak Number Tag	Technicians Comments	Leak Repair Status	_	Leak Confirm Method/Device	Date of Next Scheduled Station Shutdown	Iwas not renaired at next	I KANSIR MATTA	Operations Person Name
								12

Kinder Morgan – Leak Database

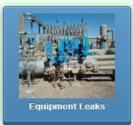
ID -	Division	- Auto Assign Leak Number -	LeakIDTag -	Leak Identification Date -	Leak ID Year -	Temp(F)	 Pressure(Hg - 	WindSpeed(-	CloudCover -	Leak Description
2	2	CIG-2541042787-1	1001	2/21/2017	2017	34	30.06	5	Partly Cloudy	FCV-3 ESD Blow down
3	2	CIG-2541042787-2	1002	2/21/2017	2017	34	30.06	5	Partly Cloudy	V-4 scrubber sight glass valve.
4	2	CIG-2541042787-3	1003	2/21/2017	2017	34	30.06	5	Partly Cloudy	Domestic fuel gas neter 2 in. pip
5	2	CIG-2541042787-4	1004	2/21/2017	2017	34	30.06	5	Partly Cloudy	V-27 Fisher 2732 regulator.
6	2	CIG-2541042787-5	1005	2/21/2017	2017	34	30.06	5	Partly Cloudy	Domestic fuel supply pot.
7	2	CIG-2541042787-6	1006	2/21/2017	2017	34	30.06	5	Partly Cloudy	CG-2 main fuel shut off valve ste
9	2	CIG-2546042786-1	1001	2/20/2017	2017	63	29.95	10	0	CG- 4 unloader vent
10	2	CIG-2546042786-2	1002	2/20/2017	2017	63	29.95	10	0	CG-4 Oil Sump vent
11	. 2	CIG-2546042786-3	1003	2/20/2017	2017	63	29.95	10	0	CG-4 compressor crank case brea
12	2	CIG-2546042786-4	1004	2/20/2017	2017	63	29.95	10	0	CG- 2 Prelube filter 1 in. Piping t
13	2	CIG-2546042786-5	1005	2/20/2017	2017	63	29.95	10	0	CG-1 #1 compressor 1/4 in. comp

Component Type	 Component Category 	Observed Se - Default Leak -	Estimated Le -	Direct Measi +	Direct Measurement Device	→ Video ID	- Leak Repair Da
OEL (Sub. W & OF)	Non-compressor	Low (0.01 to 1.0		0.03	High Flow Sampler	1448, 1449	2/20/2018
Valve (Sub. W & OF)	Non-compressor	Low (0.01 to 1.0 1				1444, 1454	
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.0 1				1450, 1451	2/20/2018
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.(1				1437, 1438	2/20/2018
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.01				1452, 1453	
Valve (Sub. W & OF)	Compressor	Low (0.01 to 1.(1				1455, 1456	2/20/2018
OEL (Sub. W & OF)	Compressor	Low (0.01 to 1.0		0.31	High Flow Sampler	1412, 1413	2/19/2018
OEL (Sub. W & OF)	Compressor	Moderate (1.01		4.17	High Flow Sampler	1414, 1415	2/19/2018
Connector (Sub. W & OF)	Compressor	Moderate (1.015				1423, 1424	2/19/2018
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.(1				1422	2/19/2018
Other/Non-EPA see description (OF Only)	Compressor	Low (0.01 to 1.0 1				1420, 1421	2/19/2018
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.(1					
Connector (Sub. W & OF)	Non-compressor	Low (0.01 to 1.(1					

Kinder Morgan – Data, Data, Data

Kinder Morgan – Current Activities and Reductions

- ONE Future-Methane Challenge Commitments include:
 - Leak detection & repair at T&S stations (Phase-In 2017 to 2021)
 - Reduction of Transmission Pipeline Blowdown volumes
 - Pipeline pump downs and compression sleeves
 - Other technologies & work practices on case-by-case basis
- Year 1: 2017 Methane Reductions (volume)*
 - Vol. Leak Detection & Repair = 176,511 thousand cubic feet (MCF)
 - Reduction of Transmission Pipeline BDs = 3,115,817 MCF
- Year 1: 2017 Methane Reductions (mass)*
 - Vol. Leak Detection & Repair = 3,389 MT CH4 (84,725 MT CO2e)
 - Reduction of Trans. Pipeline BDs = 59,823 MT CH4 (1,495,592 MT CO2e)
- Year 2: 2018 Methane Reductions (Pending)

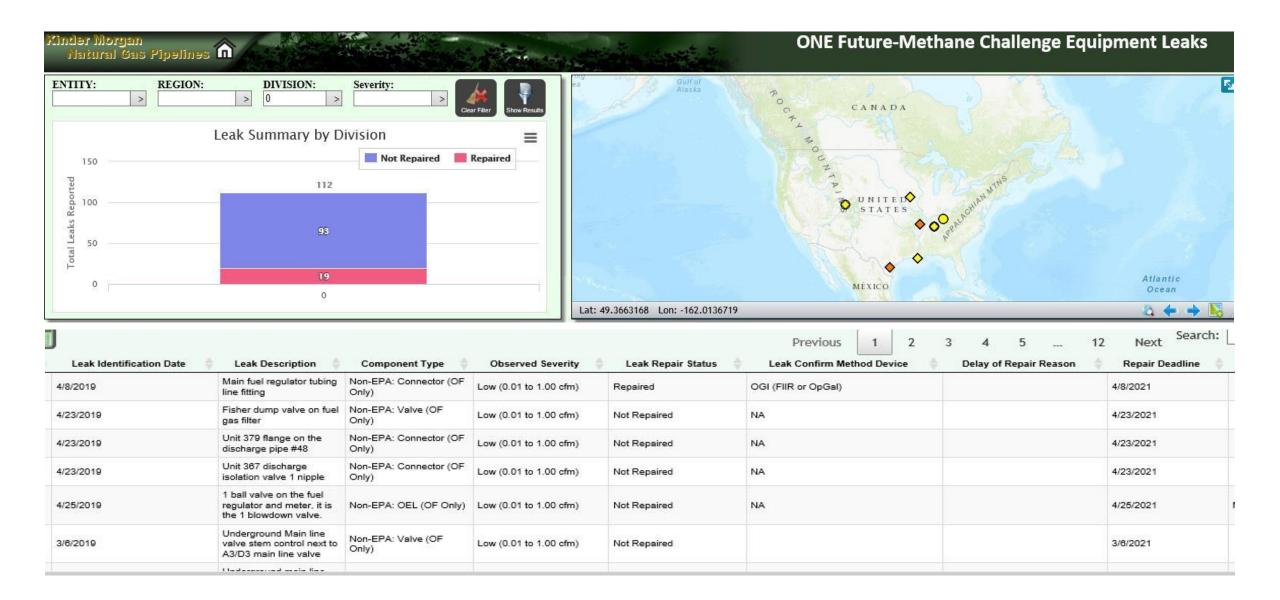

^{*}Includes the annual methane reductions associated with Kinder Morgan's Methane Challenge commitments in 2017. Does not include the additional EPA Natural Gas STAR recurring reductions reported to EPA separately for 2017.

Kinder Morgan – Leak Dashboard

Minder Morgan Natural Gas Pipelines

ONE Future-Methane Challenge Leak Tracking Dashboard

This page includes leak data for all piping and equipment components at the surveyed stations and it also identifies whether a component has been repaired or not repaired. These are the component types covered under the leak repair program described in Section 3.3.7 of O&M 1229


This page includes leak survey and measurement data for the compressor sources at the surveyed stations. These compressor source categories include reciprocating compressor rod packings, centrifugal compressor wet seals, centrifugal compressor dry seals, unit blowdown valves, and unit isolation valves. These compressor sources are not covered under the leak repair program of O&M 1229, but this information is provided for Operations personnel to use in their decision-making about whether a repair or replacement might be warranted.

This page includes leak survey and measurement data for the tank leaks found at the surveyed stations. These tank leak sources might include thief hatches, tank vents, tank valves and other types of leak points associated with atmospheric tanks containing some type of hydrocarbon that is connected either upstream or downstream of a pressurized natural gas line. These tank leak sources are not covered under the leak repair program of O&M 1229, but this information is provided for Operations personnel to use in their decision-making about whether a repair or replacement might be warranted.

Kinder Morgan – Leak Dashboard (sample data only)

Kinder Morgan – Elements for Successful Implementation from a Data Perspective

- Tools available to the front-line stakeholders (i.e., Operations and Technicians).
 - User-friendly spreadsheets and databases accessible across the assets
 - When possible, make use of systems already in place that are familiar with stakeholders
- Company-wide internal procedures
- Proper training and guidance
- Third year of program: continues to evolve
- Continuous Improvement: always seek opportunities to make improvements
 - Continue communicating the program up and down the chain of command
 - Improvements with data collection & management tools
 - Get feedback from internal stakeholders/customers
 - Prioritization of leaks and repair activities
 - Implement lessons learned
 - Analyze and communicate data collected, identify trends, inform future decision-making, identify other opportunities to reduce

Jim Tangeman KINDER MORGAN

Lakewood, CO Office: 303-914-7788

Colorado Springs, CO Office: 719-520-4769

Cell: 719-425-6601

James_Tangeman@Kindermorgan.com

Case Study - Strengthen Reporting Assurance with Business Intelligence Tool

Dan McDermott, Huco Consulting Dave Cox, PE, FirmoGraphs

Takeaway Points

KM has implemented data collection procedures to achieve beyond-compliance improvements. The outlook is great so far, as evidenced by the One Future leak survey activities.

Huco has worked with KM and other customers to apply business intelligence tools and techniques to strengthen reporting assurance.

FirmoGraphs supports Huco leveraging public data sources inside of the BI tools.

Substantial benchmarking opportunities exist.

What are Business Intelligence (BI) Tools?

- Software for data analysis and visualization
- 100s of them available
- 4 named as leaders in the Gartner, Inc Magic Quadrant
- Free versions and free training available online
- Today, working with Qlik Sense™

Why Use BI?

- Identify issues early, before submitting public reports
- Find trends otherwise invisible in spreadsheets
 - Single values, e.g., fuel use
 - Averages
 - Calculated results, e.g., fuel x emission factor
- Make observations to improve operations
- Detect suspicious-looking changes
 - 10x difference this year compared to last
 - Difference in ratios, e.g., production to emissions

Get Ready to Explore

Do basic training Learn by doing

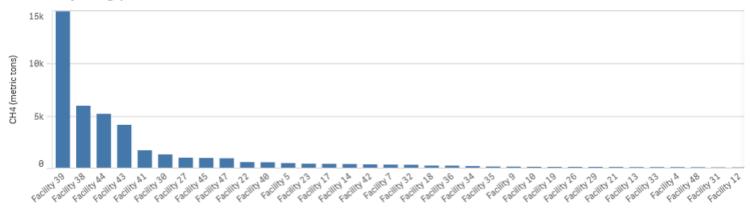
Prepare your data

Needs to be structured

Does not need to be perfect

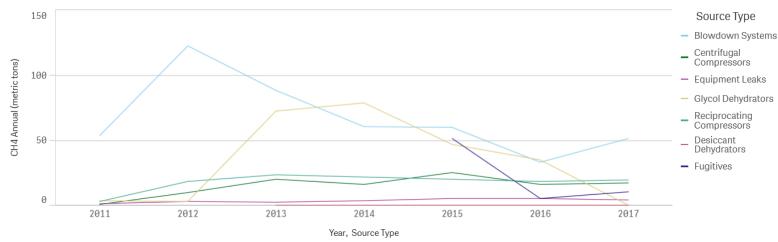
Visualization helps with Data QA

Starting Point

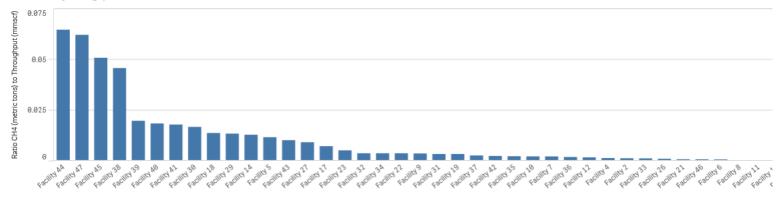

- All data captured in Excel Spreadsheet
- 277497 data points
- Very difficult to extrapolate trends in data.
- Very difficult to validate that data is accurate.

oor -	Subport -	Source Type	Facility Name	Course Name	▼ Data Type	▼ Data Value
	3 Subpart W		Facility Name	Source Name Flare 805	N2O (metric tons)	0.00080618
	4 Subpart W		Facility 1	Flare 805	CH4 (metric tons)	1.73694657
	4 Subpart W		Facility 1	Flare 805	CO2 (metric tons)	299.476624
	4 Subpart W		Facility 1	Flare 805	CO2e (metric tons)	337.355714
	4 Subpart W		Facility 1	Flare 805	N2O (metric tons)	0.00059708
	6 Subpart W		Facility 1	Flare 805	CH4 (metric tons)	0.89312927
	6 Subpart W		Facility 1	Flare 805	CO2 (metric tons)	179.142871
	6 Subpart W		Facility 1	Flare 805	CO2e (metric tons)	201.581667
	6 Subpart W		Facility 1	Flare 805	N2O (metric tons)	0.00035192
	7 Subpart W		Facility 1	Flare 805	CH4 (metric tons)	0.54485957
	7 Subpart W		Facility 1	Flare 805	CO2 (metric tons)	112.724670
	7 Subpart W 7 Subpart W		Facility 1	Flare 805	CO2e (metric tons)	127.960075
	7 Subpart W		Facility 1	Flare 805	N2O (metric tons)	0.00017648
		Equipment Leaks	Facility 1	Gas Leaks	CH4 (metric tons)	5.72384259
		Equipment Leaks	Facility 1	Gas Leaks	CO2 (metric tons)	0.21616263
		Equipment Leaks	Facility 1	Gas Leaks	CO2e (metric tons)	139.692801
		Equipment Leaks	Facility 1	Gas Leaks	CH4 (metric tons)	10.8589044
		Equipment Leaks	Facility 1	Gas Leaks	CO2 (metric tons)	0.67314942
		Equipment Leaks	Facility 1	Gas Leaks	CO2e (metric tons)	276.833085
		Equipment Leaks	Facility 1	Gas Leaks	CH4 (metric tons)	51.0174843
		Equipment Leaks	Facility 1	Gas Leaks	CO2 (metric tons)	0.63360706
		Equipment Leaks	Facility 1	Gas Leaks	CO2e (metric tons)	1291.55901
		Equipment Leaks	Facility 1	Gas Leaks	CH4 (metric tons)	49,4799430
		Equipment Leaks	Facility 1	Gas Leaks	CO2 (metric tons)	0.60269828
		Equipment Leaks	Facility 1	Gas Leaks	CO2e (metric tons)	1316.7552
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CH4 (metric tons)	1.39437878
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CO2 (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CO2e (metric tons)	34.7129142
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CH4 (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CO2 (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CO2e (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CH4 (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1435	CO2 (metric tons)	
		Reciprocating Compressors		Reciprocating Compressor 1435	CO2e (metric tons)	
		Reciprocating Compressors		Reciprocating Compressor 1436	CH4 (metric tons)	1.29373013
		Reciprocating Compressors	· ·	Reciprocating Compressor 1436	CO2 (metric tons)	
		Reciprocating Compressors	· ·	Reciprocating Compressor 1436	CO2e (metric tons)	33.8293284
		Reciprocating Compressors	· ·	Reciprocating Compressor 1436	CH4 (metric tons)	2.14205225
		Reciprocating Compressors		Reciprocating Compressor 1436	CO2 (metric tons)	0.13207823
		Reciprocating Compressors		Reciprocating Compressor 1436	CO2e (metric tons)	54.7396368

Methane Emissions


- Review Methane Emissions per facility for single reporting year.
- Review how methane emissions for certain source types changed over a variety of years
- Note that larger facilities are going to have larger emissions.

CH4 to Facility Throughput Ratio


Average Emissions per Source Type

Methane Emission to Facility Throughput Ratio

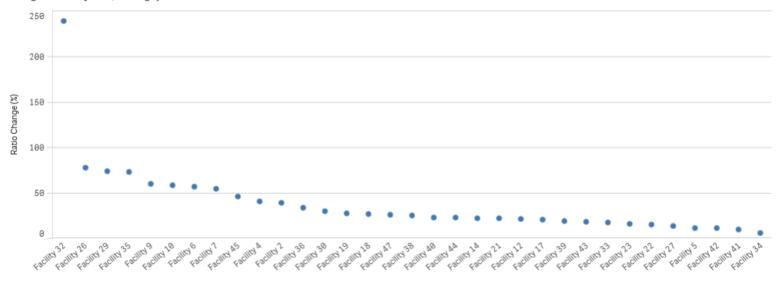
- Normalize CH4 as a product of overall facility throughput.
- Ability to review how all facilities are performing and associated emissions from each source type.

CH4 to Facility Throughput Ratio

Facility Name

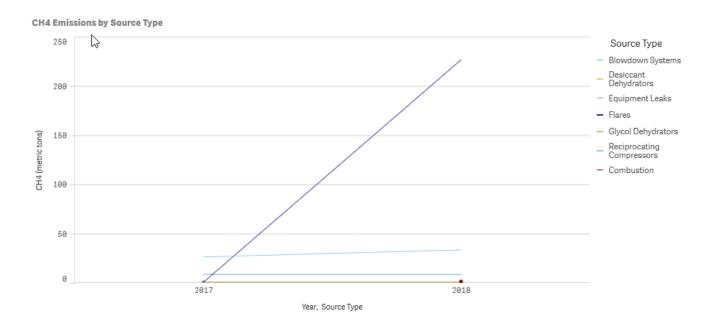
Facility CH4 by Source Type

Facility Name	Q	Source Type	Q	CH4 (metric tons)	
Totals				40479.032626439	
Facility 39		Fugitives		10619.070597773	^
Facility 38		Fugitives		5137.1002334539	
Facility 43		Centrifugal Compressors		3405.1472590465	
Facility 44		Fugitives		3319.1540696461	
Facility 39		Centrifugal Compressors		1718.9012935693	
Facility 44		Centrifugal Compressors		1697.84634049	
Facility 39		Blowdown Systems		1617.7705177822	
Facility 41		Fugitives		1471.3194194474	
Facility 45		Fugitives		830.04353698662	
Facility 47		Fugitives		778.16916443903	
Facility 39		Combustion		628.04932700107	
Facility 27		Flares		615.66172875624	
Facility 30		Flares		564.86750789711	
Facility 22		Flares		478.40268393681	~


Facility Throughput

racility Name	Q,	i nrougnput (mscr)
Totals		3246180132.0696
Facility 39		767511098.65002
Facility 43		415881821.10608
Facility 22		158880400.7056
Facility 21		156730864.56782
Facility 42		152097556.24137
Facility 38		129755347.21854
Facility 36		123508292.50757
Facility 27		107570405.6801
Facility 26		106639096.28298
Facility 41		94032546.452792
Facility 32		80824986.719448
Facility 44		79611032.922166
Facility 23		77254511.55402
Facility 30		76595019.518523

Data Validation – Change in Throughput Ratio


- Review changes in CH4 to throughput ratio between reporting years.
- Identify any outliers and investigate further

Change in Facility CH4/Throughput Ratio Between Current and Previous Year

Facility CH4, Throughput, and Change Data for Current and Previous Year

Facility Name Q	Ratio Change (%)	CH4, Prev Year (metric tons)	CH4, Curr Year (metric tons)	Throughput, Prev Year (mscf)	Throughput, Curr Year (mscf)
Totals	-	40,542	40,287	2,841,549,035	3,246,180,132
Facility 32	238.25	34	268	35,066,864	80,824,98 ^
Facility 26	76.07	226	65	89,207,277	106,639,09
Facility 29	72.09	620	65	13,255,301	5,016,52
Facility 35	71.40	325	101	49,411,304	53,660,80
Facility 9	58.07	143	91	18,589,699	28,112,83
Facility 10	57.08	54	79	47,067,867	43,899,56
Facility 6	55.43	39	19	60,921,740	68,124,97
Facility 7	53.35	261	132	68,378,625	74,177,22
Facility 45	44.64	854	924	24,413,553	18,258,17
Facility 4	39.04	86	49	54,011,107	50,396,00
Facility 2	37.25	20	23	31,795,109	26,255,08
Facility 36	31.77	292	183	134,425,583	123,508,29
Facility 30	28.60	1,643	1,256	71,558,865	76,595,02
Facility 19	25.63	80	68	20.035.689	23.027.18 ×

Facility CH4 by Source Type

Facility Name Q	Source Type Q	Year Q	CH4 (metric tons)
Totals			303.64002089902
Facility 32	Blowdown Systems	2017	0
Facility 32	Combustion	2018	0.7141495298263
Facility 32	Desiccant Dehydrators	2017	0
Facility 32	Desiccant Dehydrators	2018	0.003937470313534
Facility 32	Equipment Leaks	2017	7.9666698012042
Facility 32	Equipment Leaks	2018	8.2578788118015
Facility 32	Flares	2017	0.4813414716941
Facility 32	Flares	2018	226.59620290164
Facility 32	Glycol Dehydrators	2017	0.12840371611405
Facility 32	Glycol Dehydrators	2018	0.1664531294981
Facility 32	Reciprocating Compressors	2017	25.861648061293
Facility 32	Reciprocating Compressors	2018	33.46333600564

Data Validation – Change in Throughput Ratio

- Filter to outlier.
- Review other visualizations to determine where outlier can be found.
- Investigate further.

Hours for Current Year Hours in Non-Operating Mode... Hours in Operating Mode (hours) Hours in Stand 10k 15k 20k Facility 30 - Reciprocating Com... 8.76k Facility 31 - Reciprocating Com.. 6.62k Facility 31 - Reciprocating Com... Facility 31 - Reciprocating Com.. Facility 31 - Reciprocating Com... Facility 31 - Reciprocating Com.. 6.62k Facility 31 - Reciprocating Com.. Facility 32 - Reciprocating Com... Facility 32 - Reciprocating Com.. Facility 32 - Reciprocating Com.. 8.76k Facility 32 - Reciprocating Com... 8.76k Facility 32 - Reciprocating Com.. Facility 32 - Reciprocating Com.. Facility 32 - Reciprocating Com.. 8.76k Facility 32 - Reciprocating Com...

Facility 32 - Reciprocating Com... Facility 32 - Reciprocating Com... Hours of operation will only be displayed when the total hours operated in all 3 modes exceeded the number of hours in a year for the current reporting year.

Hours Exceedances by Mode for Current Year

Only displays compressors where hours in all modes exceeded hours in year.

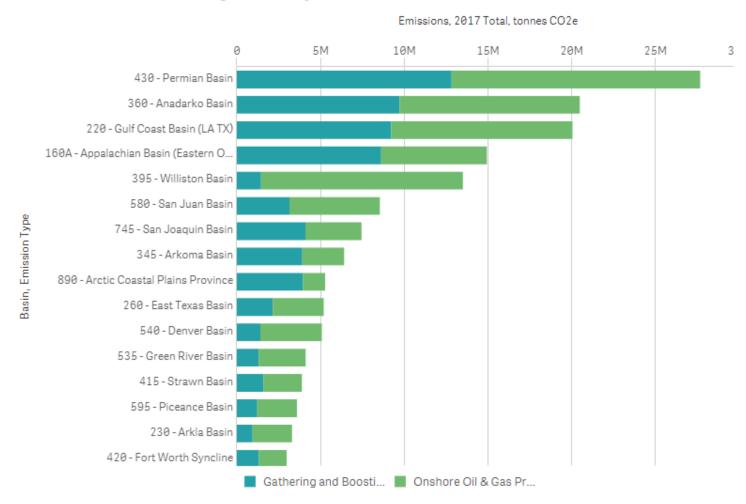
Facility Q Name	Q. Source Name	Hours in All Modes (hours)	Hours in Operating Mode (hours)	Hours in Non- Operating Mode (hours)	Hours in Standby Mode (hours)
Facility 31	Reciprocating Compressor 1730	19,855.00	5,129	25	14,70 ^
Facility 30	Reciprocating Compressor 1723	8,818.00	7,992	525	30
Facility 23	Reciprocating Compressor 1621	8,762.00	8,432	330	
Facility 36	Reciprocating Compressor 1781	8,760.00	7,970	300	49 _

Table will only display compressors that were measured within a mode where an operator had indicated 0 operating hours for that mode during the current reporting year. Filter down to facility if needed.

Measurement Mode Mismatches for Current Year

Only displays compressors that did not operate in a mode they were measured in.

Facility Name Q	Source Name Q	Operating Mode Measurement Check	Non-Operating Mode Measurement Check	Standby Mode Measurement Check
Totals		0	0	0


Data – Compressor Hours

- Compressor hours of operation for all modes greater than total hours in year.
- Processing and Transmission rely on these hours for emission calculations.
- Data can be validated within Excel files, but BI tool allows quick identification of data outliers and address issues prior to submittal.

Benchmarking Opportunities

- Utilize flight publicly available data to benchmark emissions
- Production, Gathering, and Boosting
- Data available by operator, facility, and gas emitted

Table: Onshore and Gas Gathering Emissions by Basin, Gas

BI software is inexpensive and powerful

Conclusions

Data exploration is fun



Insights are valuable beyond compliance to drive operational improvement

Questions

Upcoming Events

2019 Renewable Natural Gas Workshop

Save the Date!

Sept 24, 2019 Reno, NV

Photo Credit: Ken Lund, CC BY-SA 2.0

2019 Natural Gas STAR & Methane Challenge Workshop

Save the Date!

Nov 4-6, 2019 Pittsburgh, PA

EPA Methane Challenge & Natural Gas STAR Programs

Contact us:
GasSTAR@epa.gov

Natural Gas STAR Website: www.epa.gov/natural-gas-star-program