

Memo

То	Michelle Kaysen / USEPA	File no	377882016.2400
From	Peter Guerra Russ Johnson	CC	Dan Sullivan / NIPSCO
Date	June 2, 2017		
Subject	Revised Costs for SWMU 15		

Corrective Measures Study for Area C NIPSCO Bailly Generating Station The Draft Area C Corrective Measures Study (CMS) report was issue

The Draft Area C Corrective Measures Study (CMS) report was issued in August 2015, which recommended encapsulation of coal combustion residuals (CCR) in Solid Waste Management Unit (SWMU) 15. In response to EPA comments dated December 3, 2015, a Revised Draft Area C CMS Report was filed on March 18, 2016 (Revised Draft CMS Report). The revised report maintained encapsulation as the recommended corrective measure for SWMU 15, comprised of a perimeter slurry wall to clay and an engineered, impermeable cover.

To further evaluate the corrective measure options, a geotechnical investigation was completed in July, August and September, 2016 (borings shown in Figure 1). Findings from that investigation were documented in a memorandum to EPA dated January 23, 2017. In the conclusions of that memo NIPSCO proposed to revise the conceptual designs and associated costs in a separate memo to EPA for: (1) encapsulation, (2) full excavation for off-site disposal, and (3) partial excavation for off-site disposal with in situ stabilization and solidification (ISS) of CCR left below the water table. Depending on the remedy evaluated below, the estimated costs have increased primarily because of the increased amount, density, and stability of CCR, and the increased cost of groundwater treatment for boron. The evaluation presented herein will start with the previously recommended encapsulation, followed by partial excavation and ISS. For each of these only one cost version is provided. Due to the much higher costs associated with full excavation and off-site disposal, four cost versions are presented that consider methods that may potentially reduce costs, primarily by eliminating dewatering and treatment of groundwater for the removal of boron, among other inorganics. As detailed in the Revised Recommendation section at the end of this memo, based on the geotechnical investigation findings and this cost re-evaluation, NIPSCO is now recommending partial excavation with ISS for SWMU 15.

ENCAPSULATION

Findings from the 2016 geotechnical investigation and a more rigorous assessment of groundwater treatment costs, primarily for the removal of boron, have resulted in an increase to the Revised Draft CMS Report costs for encapsulation in the following ways. First, the slurry wall must be extended to a greater depth along portions of the wall alignment compared to the average depth of 20 feet assumed in the Revised Draft CMS Report costs. Based on the depths to clay that were encountered in the geotechnical borings, the wall would be extended to variable depths between 20 and 52 feet surrounding the southwest, southeast and northeast portions of SWMU 15. To the northwest, where the clays encountered were very thin, or non-existent, a hanging wall would be

Amec Foster Wheeler 271 Mill Road Chelmsford, MA 01824 USA Tel (978) 692-9090 Fax (978) 692-6633 www.amec.com M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 2 of 8

constructed to depths ranging from 53 to 72 feet. The new, revised square footage of slurry wall is compared to the Revised Draft CMS Report value in **Table 1**.

Second, due to the compressible nature of the CCR, a geogrid material will be placed between the CCR and natural materials used to grade the surface of SWMU 15 before the engineered cap is installed.

Finally, to maintain an inward gradient, groundwater would be extracted from inside the slurry wall to prevent seepage from leaving the encapsulated material. Groundwater modeling indicates that the flow rate should be approximately 5 gallons per minute (gpm). As indicated in **Table 1**, the total costs for the encapsulation remedy, including 30 years of operation and maintenance, is \$26.1M. The encapsulation cost detail is included in Attachment A. A substantial contribution to the overall costs would be the long-term O&M attributed to water treatment. Capital costs for the treatment system include: site preparation; concrete slab and pre-engineered building; system components, including pumps (maximum design flow 20 gpm), tanks, storage/treatment vessels, filters, meters, lines, freight and taxes; electrical allowance; plant construction; and construction oversight. The capital cost for either ion exchange or reverse osmosis system is estimated at approximately \$1.6M (Attachment B). The O&M includes consumables (e.g., depending on the technology, filters, membranes, acid, caustic), power, operation and maintenance, and disposal of concentrated brine (or reject water) for deep-well injection. The O&M is estimated to cost \$146K (for ion exchange) or \$155K (for reverse osmosis) per year. Treated groundwater would either be discharged to surface water pursuant to the state's NPDES program (henceforth referred to as an NPDES permit) or directed to a nearby publicly-owned treatment works (POTW).

Attachment A provides a costing spreadsheet for the encapsulation remedy assuming an ion exchange system will be constructed. Amec Foster Wheeler has collected groundwater samples for an ion-exchange, bench-scale test and for the chemical parameters needed to perform reverse osmosis (RO) modeling. Projection software will be used to model various preliminary designs or configurations for the RO membranes. The RO projections will provide insight on many things, including:

- recovery rates (how much water is purified and how much waste is created)
- equipment sizes (how many RO membranes and RO housings are needed)
- the piping and valve arrangement of the RO system
- the treated water (permeate water) quality
- the reject water (concentrate water) quality
- the power consumption for O&M estimates
- the chemical consumption for O&M estimates

Once the software modeling is complete, the system design (pretreatment, post-treatment, cleaning systems, etc.) will be completed and costed. If these evaluations indicate that RO is more appropriate treatment than ion exchange (as it can potentially reach lower end points with less waste residual or reject), then the 30-year cost presented in **Table 1** would increase approximately \$400K. The water treatment estimates provided in **Attachment B** provide the appropriate level of detail for this Revised Draft CMS Report re-costing effort. Results from the ion exchange bench-scale study and RO modeling will be used to evaluate the most appropriate treatment technology. If both are equally effective, the lower cost option will be employed, considering such things as

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 3 of 8

construction costs, consumables, waste disposal, and long-term operation and maintenance. It should be noted that approved effluent concentrations for metals (particularly boron) have not yet been identified as the permitting process has not been initiated. It is unlikely that the permitting agency will require lower discharge limits than can be reliably achieved; however, achieving very low effluent limits may have significant cost implications. Variable influent concentrations or groundwater temperatures may also affect boron removal efficiencies, with the associated cost implications. It is anticipated that the encapsulated groundwater will approach equilibrium with the CCR and be removed at a low enough rate (e.g., 5 gpm) to produce consistent influent concentrations; however, higher variability is expected for pumping rates (up to 100 gpm) and influent concentrations for the full excavation scenario discussed below.

The groundwater model presented in Appendix J of the Revise Draft CMS Report has been updated to include the new lithologic information from the 2016 geotechnical investigation. The lithology local to SWMU 15 was integrated into the regional geology based on publicly-available information. The model was used to simulate the slurry wall alignment and depths indicated in **Figure 2** to determine flux into/out of the encapsulated CCR via discontinuities in the clay base and seepage through the low-conductivity slurry wall (the total was calculated to be the 5-gpm value referenced above). The model was also used to simulate the plume downgradient of the encapsulated CCR. The modeling results will be presented in a separate technical memorandum.

PARTIAL EXCAVATION AND ISS

Findings from the 2016 geotechnical investigation affect the Revised Draft CMS Report costs for this alternative in two ways. First, it was determined that the volume of CCR above and below water table was greater than previously quantified. Second, the CCR had a greater density than assumed in the Revised Draft CMS Report. These differences are compared in **Table 1**. The increased CCR volume contributes to the time needed to excavate and manage/transport the unsaturated CCR and to solidify/stabilize the saturated CCR left in the ground. The greater density contributes to the cost for disposal of unsaturated CCR removed from SWMU 15. Because CCR excavation will be conducted above the water table there is no need for sheeting/shoring or excavation dewatering and the associated treatment. As detailed in the Revised Draft CMS Report, ISS would be applied to the CCR left below the water table. Different solidification mixes were studied in support of this remedy (see Kemron Report, Appendix C of the Revised Draft CMS Report). The treatability study assessed twelve potential mix designs, which included varying percentages of the following reagents:

- Type I Portland Cement;
- Ground Granulated Blast Furnace Slag; and/or
- Enviroblend® 50/50 AS (a proprietary product)

The unconfined compressive strength of all 12 samples is greater than 55 pounds per square inch, which indicates a "hard" soil type, with a volumetric expansion ranging from 13.8% to 40.4%. The hydraulic conductivity for a subset of three samples was $3.9*10^{-7}$ cm/sec (cement only), $1.2*10^{-8}$ cm/sec (cement and slag), and $4.4*10^{-9}$ cm/sec (cement, slag, and Enviroblend®). The hydraulic conductivity of untreated CCR ranges from $5.9 * 10^{-5}$ to $9.03 * 10^{-6}$ cm/sec. Depending on the mix design, solidification of the CCR would reduce the hydraulic conductivity by nearly two to over four

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 4 of 8

orders of magnitude, which would significantly reduce the flux of CCR constituents from the solidified mass, resulting in substantially improved groundwater quality. Note that the mix designs resulting in the lowest hydraulic conductivity values are associated with the greatest volumetric expansion.

As indicated in **Table 1**, the revised cost for ISS is **\$22.7M**, approximately \$3.6M greater than the Revised Draft CMS Report cost. The revised cost assumes that the excavated CCR from the unsaturated zone will be backfilled to the pre-excavation grade. **Attachment C** provides a revised cost spreadsheet for the partial excavation and ISS remedy. The cost spreadsheet assumes that the saturated CCR will be solidified/stabilized with cement and slag, resulting in a hydraulic conductivity of 1.2*10⁻⁸ cm/sec and an expansion factor of 21%, which will result in less imported backfill to cover the solidified mass and fill the void left by removal of the unsaturated CCR to achieve pre-excavation grades. Partial backfilling to cover the solidified CCR with a vegetative growth layer, but not to pre-existing grades (assume 50% of imported backfill) would reduce the revised costs by approximately \$1.3M. This approach would yield a total revised cost for the encapsulation alternative of **\$21.4M**.

FULL EXCAVATION AND OFF-SITE DISPOSAL

As indicated in **Table 1**, full excavation for off-site disposal is the most expensive corrective measure, particularly Version 1. Options to potentially reduce costs (Versions 2 through 4) were developed. Cost savings are primarily related to: (1) the elimination of high rates of construction dewatering for ion-exchange or RO treatment; (2) measures to reduce water content of excavated CCR; and (3) partial versus complete backfilling to grade. Excavation "in the dry" (Version 1) requires pumping from a sand-dominated aquifer to dewater the CCR with the associated treatment, and both pose technical and financial challenges. Although potentially less expensive, excavation "in the wet" also poses some significant challenges, and the lower cost remedies may be overly optimistic. Additional detail for each version is provided below.

<u>Version 1</u> - This corrective measure includes the removal of CCR and soil at SWMU 15, off-site disposal, and replacement with clean backfill material to the existing grade. Excavated CCR would be disposed off-site, as well as a portion of intermingled soil that cannot be segregated from the CCR. It is assumed that overlying soils (approximately 35,000 cubic yards) would be segregated to the extent practicable, temporarily stockpiled, and reused as backfill. A total of approximately 193,000 in-bank cubic yards would be excavated and transported off-site to a licensed disposal facility as non-hazardous waste. It is estimated that over 16,000 truckloads of soil and CCR will be required (assuming 12 cubic yards per load) to move this amount of material.

Considerable planning would be required to implement this alternative. Several techniques were considered for excavating CCR located below the water table. Bracing, including sheet piles, trench boxes, and in-situ cement-stabilized walls; and/or sloping of the excavation would be required to reach the required depths, and other support systems may be necessary near the transmission tower foundations. The costing of this alternative for comparative purposes assumes sheet piling will be installed to shore excavations and limit horizontal groundwater flow into the excavation. The installation of sheet pile for wall stability and water management during excavation of CCR to the depths required at SWMU 15 would require large overhead equipment for positioning and driving the sheet pile. Driving sheet piles would not be allowed within a certain distance of

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 5 of 8

energized power lines and would not be possible beneath the power lines (energized or deenergized). Excavation with long-stick equipment would also be prohibited near the energized lines. Much of the proposed excavation footprint is beneath or near the power lines. Alternative methods for slope stability and water management in areas near the power transmission lines would have to be employed.

A well-point system and/or construction sump system were considered to manage groundwater seeping and upwelling into the excavation. Excavation floor stability analysis suggests that a sump system in the deeper portions of the CCR would result in unacceptable exit gradients and instability within the floor of the excavation. Therefore, in areas of the planned excavation that are greater than approximately five (5) feet below the static water table, a well-point system that can maintain a drawdown at least a foot or more below the floor of the excavation is required to maintain stability. Assuming sheet pile is used to brace the excavation sidewalls, it is estimated that such drawdown would require pumping on the order of 100 gpm. Given the proximity of the Cowles Bog wetland complex, pumping at 100 gpm may adversely affect the local hydrology of the nearby Cowles Bog.

Recovered groundwater would be treated via ion exchange or reverse osmosis, as described above for the encapsulation remedy, and discharged to either surface water pursuant an NPDES permit or directed to a POTW. Treatment system components would have to be sized for 100 gpm, and the O&M would increase because more consumables would be needed. As indicated in **Attachment B**, the capital cost for either an ion exchange or reverse osmosis (RO) system is estimated at approximately \$1.5M. The O&M cost is estimated to be \$517K (ion exchange) to \$533K (reverse osmosis) for one year (two, 6-month construction periods).

Based on data from the 2016 geotechnical investigation, fully saturated CCR is expected to have an in-situ density of approximately 1.75 tons per cubic yard (tpy). Based on review of the material texture analysis results, the saturated CCR is assumed to freely drain approximately 50% of its total porosity resulting in a material density of approximately 1.58 tpy. Stockpiling with minimum processing of the CCR is expected to result in this freely-drained state.

Excavated materials would likely need to be, at a minimum, temporarily staged on-site for dewatering and further characterization and coordination, and then later loaded into haul trucks for transport to the disposal facility. Stockpiled soils would require dust, erosion, and sedimentation controls. At a minimum, excavated soils would be stockpiled on an impermeable liner at designated locations away from the border between NIPSCO and the Indiana Dunes National Lakeshore (IDNL), potentially along the fence line that parallels the facility access road, or between the transmission towers and transformer yard. The pile(s) would be covered and weighted when not in use and at the end of each work day. Real-time monitoring of air-borne dust concentrations would be performed during movement or agitation of excavated soils.

The **Attachment D** costing spreadsheet for Version 1 assumes an ion exchange system will be constructed for a 100-gpm system, for a total remedial cost of **\$31.9M**. As indicated above for the encapsulation remedy, Amec Foster Wheeler has collected groundwater samples for an ion-exchange, bench-scale test and for the chemical parameters needed to perform RO modeling to evaluate the best technology. If these evaluations indicate that reverse osmosis is the more appropriate technology, then the 1-year cost presented in **Table 1** would increase by \$70K.

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 6 of 8

Version 2 – This alternative is similar to Version 1, with the following major differences: (1) limited dewatering of the excavation; (2) treatment of extracted groundwater to remove total suspended solids (TSS) only before recirculation back to the excavation; (3) material handling to remove moisture from the excavated CCR; and (4) partial backfilling (i.e., to the water table). Excavation with limited dewatering and/or in trench recirculation was considered to maintain static groundwater pressure and stability of the excavation floor. Based on excavation stability analysis results, if the static water table were maintained throughout the excavation process, then the excavation floor would remain stable and excess exit gradients resulting in heaving would be avoided. Excavation "in the wet" requires two key additions to the remedial action: 1) pre-excavation borings to map the excavation floor and walls below the water table with a high degree or resolution; and, 2) excavation with real-time GPS and laser-leveling monitoring systems. Pre-excavation CCR mapping could be accomplished with a detailed and high density grid (e.g., 20-feet on center) of direct-push coring coupled with the topographic surveying completed in 2016 over the limits of the CCR to map the excavation limits. The data from this survey with existing data would be used to generate a target surface for integration with the real-time GPS and laser-leveling monitoring system. Several systems (e.g., Ocala Instruments®, Excavision[™], Leica® PowerDigger 3D[™]) that are commercially available allow the excavator operator to see slope and height differences compared to a reference elevation, in real time, on an LCD screen mounted in the cab of the excavator. Design cut elevations and surfaces can be preloaded into the monitoring system memory to help guide the operator; and excavator bucket position can be logged to confirm as-built excavation dimensions. The system also monitors the progress confirming that target elevations for the excavation are achieved. Visual confirmation of the limits of excavation may not be possible.

Under the limited dewatering option described in the paragraph above, groundwater in the trench would be removed, passed through a particulate filter to remove suspended CCR solids, and returned to the excavation and/or discharged to nearby areas yet to be excavated, but within the general area of excavation. The RO or ion-exchange treatment required to meet the NPDES permit would not be required for this scenario.

As mentioned above for Version 1, fully-saturated CCR is expected to have a density of approximately 1.75 tons per cubic yard (tpy), but is expected to freely drain to approximately 50% of its total porosity resulting in a material density of approximately 1.58 tpy. However, if the material is windrowed and processed more forcefully additional water could be removed resulting in CCR with an approximate density of 1.45 tpy. Windrowing is expected to remove approximately 50% of the water content between the residual saturation (assumed at 5%) and the effective porosity (assumed at 50% of the total porosity).

For Version 2, backfill material would be imported and the approximate 35,000 cubic yards of overburden material would be re-used for fill. Engineered placement of the fill would not be required and the resulting fill profile would be consistent with the surrounding loose/soft materials. Fill placement would likely result in an initial elevation above target, and significant settlement would likely occur over time compared to engineered backfill.

Costing details for Version 2 are provided in **Attachment D** and summarized in **Table 1**. Assuming excavation "in the wet" is possible, water treatment to remove boron is not required, efforts to remove excess moisture to reduce the CCR bulk density to 1.45 tpy are successful, and backfilling to the water table is acceptable, these measures may reduce the estimate costs for Version 1 by

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 7 of 8

approximately \$2.9M, to a remedy cost of **\$29.8M**. These potential savings are related primarily to the elimination of groundwater treatment to remove boron. If the excavations were not backfilled at all, and open ponds remained, the estimated remedy costs would be approximately **\$28.3M**.

<u>Version 3</u> – The difference between this alternative and Version 2 is the additional processing of excavated CCR to reduce the bulk density. Processing the CCR with a filter press is assumed to remove water from the CCR down to residual saturation. Following processing using a filter press, the resulting density of the CCR was calculated to be approximately 1.32 tpy. A portable filter press capable of processing approximately 650 tons per hour of CCR slurry is assumed sufficient to keep up with excavation and limited dewatering processes. As detailed in Attachment D and summarized in **Table 1**, the Version 3 costs is estimated at **\$28.4M**.

In discussions with filter press vendors, depending on the consistency and processes used to excavate and move the CCR to the filter press, the process may not be viable. A key consideration of the filter press operation depends on the flowability of the CCR. If the mixture of CCR and water is such that, either as excavated or amended following excavation, it is in a slurry state, then the filter press might be effective. Conversely, if the material drains readily and exhibits stiffness or a low slump characteristic, the CCR may not be amenable to filter press. Given the latter case, the filter press may not be required, and windrow processing might result in a lower water content than originally assumed for this feasibility study.

<u>Version 4</u> - The difference between this version and Version 3 is the elimination of backfilling, leaving ponded water below the power transmission lines to the depth of excavation. Because there is no fill placement and potential for settlement, there would be no need for periodic grading. An approach for re-vegetating slopes surrounding the ponded water would be developed in consultation with National Park Service (NPS) staff from the IDNL. As detailed in Attachment D and summarized in **Table 1**, the Version 4 costs is estimated at **\$26.9M**.

SOURCE CONTROL

Appendix J of the Revised Draft CMS Report includes natural attenuation simulations of the boron plume based on source isolation (encapsulation), partial source removal and solidification of CCR below the water table (ISS) and full source removal (excavation). To simulate these, the hydraulic properties of the SWMU15 footprint were altered. For example, the in-situ solidification alternative is represented by a MODFLOW variant that has a greatly reduced hydraulic conductivity (0.001 m/d) within the SWMU15 footprint, whereas the excavation and backfill alternative is represented by a variant that has a hydraulic conductivity within the SWMU15 footprint consistent with that of the surrounding aquifer. For the scenario representing capping and barrier wall construction, the SWMU15 footprint was specified as a no-flow zone to the bottom of the model, such that groundwater can neither enter nor exit the area.

The results of these three scenarios indicate that the sandy aquifer has the capacity to attenuate the IDNL boron plume within 3 years regardless of the source area remedy, principally due to the relatively high dispersivities and the fact that the target concentration (1,600 ppb) is less than an order of magnitude below the maximum starting concentration (15,000 ppb) in the transport model. Since Appendix J was issued the encapsulation scenario has changed, and the assumption of a no

M. Kaysen SWMU 15 Geotechnical Investigation Report June 2, 2017 Page 8 of 8

flow barrier is no longer valid, although groundwater seepage through and below the lowconductivity slurry wall significantly reduces the mass flux of boron compared to current conditions.

REVISED RECOMMENDATION

Given the increased costs for encapsulation, the uncertainty associated with containment due to the bottom clay integrity, and the long-term O&M (i.e., required beyond 30 years), NIPSCO is no longer recommending this Alternative #6. Considering cost, implementation, and degree of permanence, as well as effectiveness at plume reduction that is similar in duration to the excavation scenario, NIPSCO now recommends Alternative #4 - Partial Excavation, Off-Site Disposal and Solidification. More than half of the CCR will be removed from SWMU 15 without having to manage and treat groundwater, with much less concern about the excavation floor and sidewall stability. Low-profile equipment exists for the removal of unsaturated CCR and for the ISS of CCR below the water table. This is an extremely important safety and implementation consideration given the overhead, highvoltage transmission lines. The amount of backfill to be placed above the solidified CCR can be adjusted in consultation with NPS to leave a more natural topographic transition from SWMU 15 to the IDNL, with enough soil cover to sustain re-vegetation. Breaks in the existing dike can also be contoured into the finished grade of SWMU 15. The treated CCR would result in a solidified mass with a hydraulic conductivity of approximately 1.2*10⁻⁸ cm/sec, almost three orders of magnitude less than the untreated CCR hydraulic conductivity, with a commensurate reduction in chemical mass flux from the solidified CCR.

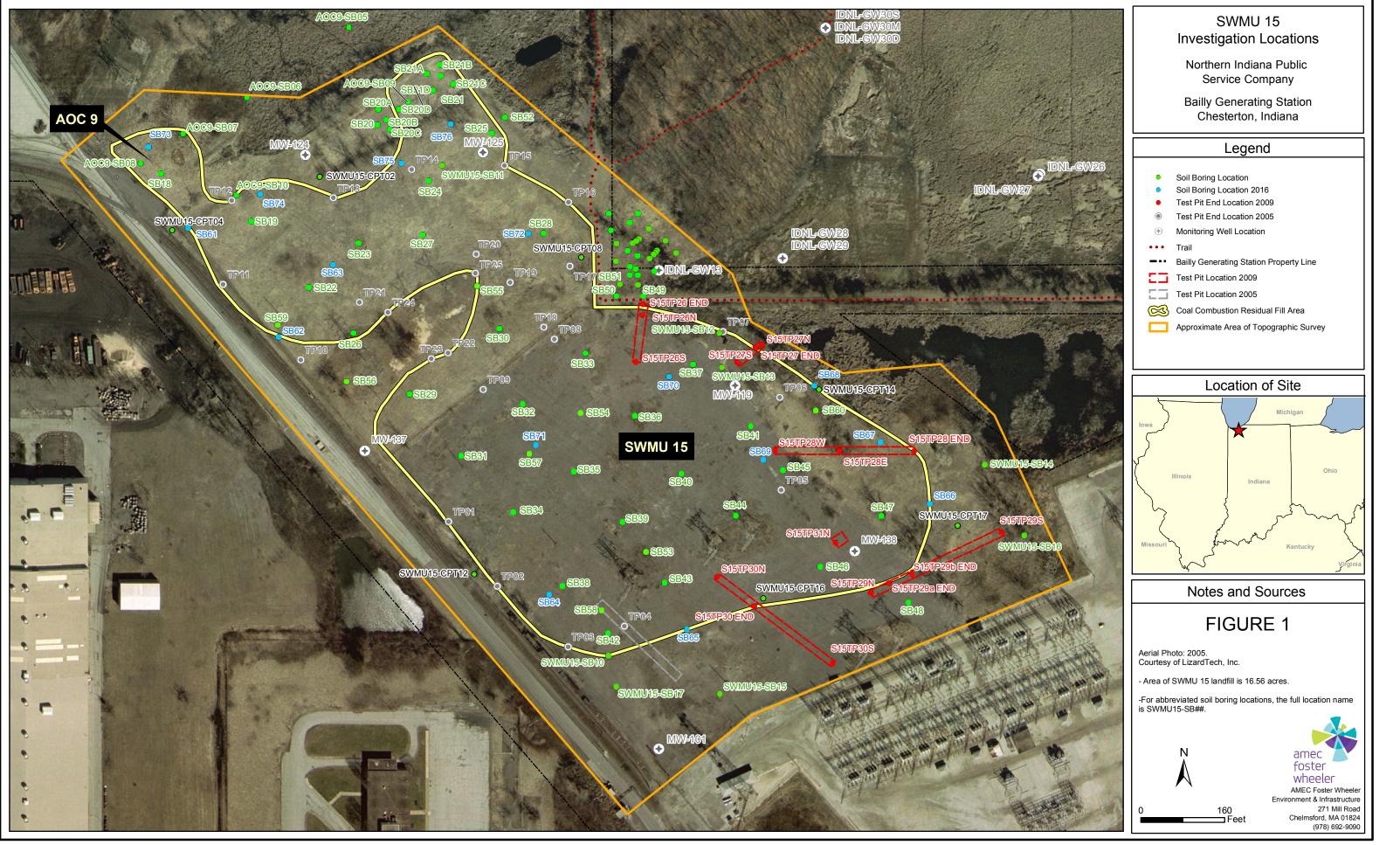
The Full Excavation and Off-Site Disposal remedy (Alternative 1#) remains the most expensive and difficult alternative to implement. Water management and treatment, excavation floor and sidewall stability, and the overhead utilities are all difficult challenges for the full excavation option. Dewatering and water treatment, excavation, free drainage and windrowing, transportation and offsite disposal with full or partial backfilling is the most likely cost scenario, ranging from **\$28.3M** to **\$29.8M** for purposes of comparison to the recommended Alternative #4 (**\$21.4M to \$22.7M**).

ATTACHMENTS

Table 1 – Comparison of Revised Costs Figure 1 – SWMU 15 Investigation Locations

Figure 2 – Slurry Wall Alignment and Depths

Attachment A – Revised Cost Estimate – Encapsulation


Attachment B – Revised Cost Estimate – Water Treatment

- Attachment C Revised Cost Estimate Partial Excavation, Off-Site Disposal and ISS
- Attachment D Revised Cost Estimates Full Excavation and Off-Site Disposal

Table 1. Comparison of Revised Costs Area C Corrective Measures Study Bailly Generating Station Chesterton, IN

Remedy	Element of Cost Estimate	Base Case (included in 2015 CMS Report)	Version 1	Version 2	Version 3	Version 4
	Total Cost (Millions)	\$16.2	\$26.1			
	Construct Slurry Wall (sf)	136,000	219,770			
In-Situ Encapsulation	Water Treatment	Included	Ion Exchange with deep well injection of brine			
	Cover System	Natural materials with impermeable liner	Geogrid before natural materials with impermeable liner			
	Total Cost (Millions)	\$19.1	\$22.7			
	Specific density of material for disposal	1.2 tons/cy	1.6 tons/cy			
Excavation Above Water Table, ISS	Excavation volume of segregatable overburden (cy)	49,437	21,640			
Below	Total volume of CCR/soil matrix for disposal	85,430	100,383			
	Total volume of CCR/soil matrix for ISS	77,681	91,287			
	Total Cost (Millions)	\$30.4	\$31.9	\$29.8	\$28.4	\$26.9
	Specific density of material for disposal (tons/cy)	1.2	1.58	1.45	1.32	1.32
	Volume of segregatable overburden (cy)	49,437	35,156	35,156	35,156	35,156
	Total volume* of CCR/soil matrix <u>above</u> water table	85,169	100,383	100,383	100,383	100,383
	Total volume* of CCR/soil matrix <u>below</u> water table	77,681	91,287	91,287	91,287	91,287
	Segregation of CCR/soil matrix prior to T&D	All CCR and overburden soils are segregatable	CCR and overburden soils are partially segregatable	CCR and overburden soils are partially segregatable	CCR and overburden soils are partially segregatable	CCR and overburden soils are partially segregatable
Full Excavation and	Water Reduction	Drying amendments	Free-drain only	Windrowing	Windrow unsaturated / filter press saturated	Windrow unsaturated / filter press saturated
Off-Site Disposal	Soil drying amendments	Included to reduce moisture below water table	None	None	None	None
	Sheeting/shoring	Included for below water, and around transmission towers	Included for excavation below water table only	Temporary cells to create smaller excavation segments below water table	Temporary cells to create smaller excavation segments below water table	Temporary cells to create smaller excavation segments below water table
	Dewatering	Dewatering with well-point system	Dewatering with well-point system	Limited to maintain excavation stability	Limited to maintain excavation stability	Limited to maintain excavation stability
	Water Treatment	Included	lon exchange with deep well injection of brine	TSS removal with recirculation to area occupied by next cell being excavated	TSS removal with recirculation to area occupied by next cell being excavated	TSS removal with recirculation to area occupied by next cell being excavated
	Pre-excavation base of CCR confirmation	NA	NA	Conducted on grid (e.g., 20-foot spacing) prior to excavation	Conducted on grid (e.g., 20-foot spacing) prior to excavation	Conducted on grid (e.g., 20-foot spacing) prior to excavation
	Excavation confirmation	Visual	Visual	GPS guided, laser leveling	GPS guided, laser leveling	GPS guided, laser leveling
	Backfill	To original grade	To original grade	To water table only	To water table only	None

* Volume presented is indicative of current in-place volume estimate

H:\NiSource\BaillyGenerating\Task81\MXD\Fig2_SlurryWall_AlignmentDepth.mxd May 15, 2017 DWN: emily.gardiner CHKD: AKN

ATTACHMENT A

Revised Cost Estimate Encapsulation

Project:	Bailly Generating Station
Project No:	377882016.2400
Date:	6/2/2017
Calc. By	D. Pettit & D. Schneider & L. Tracy
Checked By:	R. Johnson & T. Delano

SW	мн	15

Corrective Measure Alternative #6 - In-situ Encapsulation: Slurry Wall Around CCR Below the Water Table; Cap Entire SWMU-15
(Version 1)

(version 1)							
Item	Unit	Cos	t per Unit	Quantity	Co	st per Item	Source
Site Prep							
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	20,000		\$,	AMEC estimate
Survey	Acre	\$	590.00	16.60	\$	9,794	RS Means 02 21 13.09 0020
Mobilization	LS	\$	75 000	4	\$	75.000	Similar project SOW; quoted price from
	month	э \$	75,000	6		,	Buffalo Color AMEC estimate
Site Security (perimeter fence)			14,300			,	
Field office	month	\$	2,500		\$,	AMEC estimate
Install E&S controls	LF	\$	4.38	4,531		-,	AMEC estimate
01			5/1	e Prep Subtotal	φ	225,439	
Slurry Wall	10	¢	50.000	4	۴	50.000	Olaritan Desiration Observation (Index) (A
Set-up Slurry Plant	LS	\$	50,000		\$,	Similar Project to Chesterfield, VA
Construct Working Platform	CY	\$	30.00	13,900		,	Amec FW estimate
Construct Slurry Wall	SF	\$	16.00	219,770			Amec FW estimate
Stabilize Excess Slurry	CY	\$	20.00	1,450		-,	Amec FW estimate
Dispose of Excess Slurry Below Cap	CY	\$	10.00	1,600		,	Amec FW estimate
Dispose of Excess Trench Spoils Below Cap	CY	\$	10.00	6,100	\$	61,000	Amec FW estimate
Install Slurry Wall Cap	LF	\$	51.00	5,284	\$	269,484	Amec FW estimate
Slurry Wall Superintendent	HR	\$	125.00	800	\$	100,000	Amec FW estimate
Slurry Wall Crew Per Diem	Day	\$	142.00	640	\$	90,880	FY 2017 GSA rates
Demobilization	LS	\$	50.000	1	\$	50,000	Similar Project to Chesterfield, VA & Buffalo Color,
Demobilization	20	ψ	,	ry Wall Subtotal	ψ	\$4,599,684	
Cover System			Siun	y wan Subiolar		φ 4 ,099,004	
Clearing & grubbing	Acre	\$	9,000	8.28	¢	74 520	Similar project SOW; quoted price
			88,803				RACER Software Ver. 11.3
Place geogrid	Acre	\$	00,003	16.60	Φ	1,474,122	NIMCO Quote for Horseshoe Area and
Characterize, import, place, and grade cap subgrade	CY	\$	24.74	97,801	\$	2,419,595	RS Means 31 23 23.20 + 31 23 23.17 + 31 23 23.23
Imported 6" topsoil for cover	CY	\$	28.05	13,391	\$	375,608	NIMCO quote for Horseshoe
Imported 18" cap subsoil material	CY	\$	25.00	40,172			Could be lower if CUT job nearby
Liner components	sf	\$	0.50	723,096		361,548	Engineering Est
Cover construction	Acre	\$	125,000	16.60		,	Engineering Est
		•	,	System Subtotal		7,784,693	5
Install Hydraulic Control System						, - ,	
Install extraction wells within cover system	EA	\$	11,100	2	\$	22.200	2008 AMEC P&T estimate for BGS
Install piping to treatment system	LF	\$	21.26	1000	\$	21,260	2008 AMEC P&T estimate for BGS
Water Treatment System	LS		1,557,514		\$		AMEC Estimate (Christiansen)
		•	, ,	allation Subtotal		1,600,974	
Oversight					,	, , -	
Construction & Engineering Oversight	HR	\$	100.00	1,200	\$	120.000	AMEC estimate
Lodging & per diem	Day	\$	142.00	120		,	FY 2017 GSA rates
	Day	Ŷ		ersight Subtotal		137,040	
						,	
			Cons	truction Subtotal	\$	14,347,830	
Operation & Maintenance (30-year Projection)							
Cap maintenance	quarter	\$	1,200	120	\$	144,000	Past project & Est.
Water Treatment System (20-gpm system)	year	\$	146,368	30	\$	4,391,037	Past project & Est.
System Operator	month	\$	2,880	360	\$	1,036,800	AMEC estimate
				O&M Subtotal	\$	5,571,837	
		Cr	onstruction	& O&M Subtotal	.\$	19,919 666	
Project Management	3%		9,919,666		\$	597,590	
Engineering	6%	\$ 1	9,919,666		\$	1,195,180	
			PM & 1	Design Subtotal	\$	1,792,770	
Continuous	2000				é	4.040.407	-
Contingency	20%			Tetal	\$	4,342,487	-
				Total	\$	26,054,923	

Assumptions:

CCR remains in-place with engineered cover system, including topsoil, subsoil, geocomposite, and LLDPE liner
Working platform requires 15' wide x 2' tall around the perimeter of SMWU 15 (5,047 x 15 x 2).
Slurry wall will be perimeter of SWMU-15 (5,047') at 2' wide, up to 72 feet deep.

Silvery wall construction duration including set-up and clean-up = 8 weeks.

6. Contractor crew for slurry wall includes 3 full-time personnel for 8 weeks working 10 hour days.

7. Slurry wall will be installed first and then cover system.

8. Cover system construction duration = 4 months.

9. Total estimated duration = 6 months.

10. Engineer oversight includes 1 full-time field engineer for 6 months.

11. Cover construction includes effort for subgrade preparation; cover system installation; stormwater management; E&SC measures.

12. Additional contouring of imported subgrade fill materials will be needed to prep subgrade. Cover system will rise to a maximum, approximately seven feet over existing grade, pending cap design.

13. Air monitoring & dust control are included as part of construction costs.

14. Water for slurry will be available near SWMU 15.

15. Hydraulic control system assumes operation at 5 gpm is required to maintain an inward hydraulic gradient.

ATTACHMENT B

Revised Cost Estimate Water Treatment

						Ion Exchai	nge Options	Reverse Osr	nosis Options		
Line	Cost Elements					Option 1A 100 gpm x 6 months x 2 years	Option 2A 10 gpm x 12 months x 30 years	Option 1B 100 gpm x 6 months x 2 years	Option 2B 10 gpm x 12 months x 30 years	System to Remove TSS	Notes
	Project Element	Cost Basis	Qty.	Unit Cost	Extension	,			,		
	Site preparation, clearing, grading, SWPP, plus tent or shelter for equipment	Similar Project, Detroit MI 6 months per	1	\$65,000	\$65,000	\$65,000	\$65,000	\$65,000	\$65,000	\$65,000	Clear, add 3" pea gravel, tent, scaffold tent over equipment, applies to all cases.
2	Metal, pre-engrd bldg, 16'Lx20'Wx12'H, concrete slab, power, lighting, heated, insulated, w/windows, roll-up door+1	Previous projects	1	\$100,800	\$100,800		\$100,800		\$100,800		The small prefabrication building only applies to Option #2.
3	8' x 40' x 7' trailer for mobile system built up this hold all equipment for either IX or RO, salable after use		1	\$410,000	\$410,000	\$410,000		\$410,000			Based on a custom trailer built for E&I for Ross in Colorado 2015.
	Support slabs (12' x 50') for double wall tanks in Option 2 30-yr system.						\$37,500		\$37,500		Pour in place. Slab for long term basis.
5	Feed, WW storage 2 x 10,000 gallon double wall PolyTank, insulated on gravel bed (or drain in freezing weather), 142" diameter x 202" height (added for insulation and HT plus special freight)	Bailiff Tanks, New Caney, TX	2	\$28,999	\$57,998	\$0	\$57,998	\$0	\$57,998	\$57,998	Eq tanks, purchased, not insulated but includes platform and stairs, custom fittings. Option 2 includes purchased tanks for feed and permeate.
6	Transfer pump, 2gpm @ 75 psi, Goulds, 2 HP, 230v/260v, 3Ph (2000', 1.5" pipe)	Goulds	1	\$8,200	\$8,200	\$8,200	\$16,400	\$8,200	\$16,400		From eq tank to treatment. Single pumps on 100 gpm system. Redundant pumps on 10 gpm - 30 yr system.
	Cartridge filters (2), 10 micron, housings	AA Quote	2	\$3,750	\$7,500	\$7,500	\$7,500	\$7,500	\$7,500	\$7,500	In line cartridge filter, (2) required.
8	Calcium Ion IX System DOW-Hungerford, vessels and control system, 20 gpm capacity, 4 x 80 CF Resin, 30 gpm regen pump @ 40 psi 3 HP	Marshall Davidson, GE Water	1	\$59,333	\$59,333	\$59,333	\$59,333				Calcium removal, one train x 2 vessels, skid-mounted unit with PLC and backwash pumps, 5 HP and 2 HP.
9	Boron IX System DOW-Hungerford, vessels and control system, 20 gpm capacity, 4 x 160 CF Resin	Marshall Davidson, GE Water	1	\$75,333	\$75,333	\$75,333	\$75,333				Boron units, two in one train, skid-mounted unit with PLC and backwash pumps.
10	Reject GW WW storage 5,000 gallon double wall PolyTank, insulated on gravel bed (or drain in freezing weather), 120" diameter x 152" height added for insulation and HT plus special freight)	Bailiff Tanks	2	\$14,999	\$29,998	\$0	\$29,998	\$0	\$29,998		Required to hold spent brine or RO reject, applies to all options, could consider FT for Option 1.
11	H ₂ O Innovation 15 HP 23gpm reverse osmosis skid, complete	Evoqua H ₂ O Innovation	1	\$162,750	\$162,750			\$162,750	\$162,750		Not available as rental unit but may have 50% resale value, latest pricing.
12	Effluent 3000 gallon tank for pump suction Polywall 64" Dia 116" Height, single wall	Bailiff Tanks	1	\$3,028	\$3,028	\$3,028		\$3,028		\$3,028	Polywall tank, 15 minutes retention time.
	Effluent 300 gallon tank for pump suction Polywall 48" Dia 45" Height, single wall	Bailiff Tanks	1	\$608	\$608		\$608		\$608		Polywall tank, 15 minutes retention time.
14	Effluent transfer pump (20gpm @ 50psi) 2 HP, 230v/260v, 3Ph	Goulds	2	\$8,200	\$8,200	\$8,200	\$16,400	\$8,200	\$16,400	\$8,200	From effluent to discharge. Single pumps on 100 gpm system. Redundant pumps on 10 gpm - 30 yr system.
15	New flow meter	Quote (Magmeter)	1	\$7,800	\$7,800	\$7,800	\$7,800	\$7,800	\$7,800	\$7,800	Flow meter and logger for discharge.
	Clean effluent line discharge line (2000' x	Means x	1	\$121,000	\$121,000	\$121,000	\$121,000	\$121,000	\$121,000	\$121,000	Assume 3" HDPE DR 11, buried.
	2"), assume HDPE DR11 Electrical allowance	1.25 Allowance	1	\$45,000	\$45,000	\$10,000	\$45,000	\$10,000	\$45,000	\$10,000	Assumes local 40 amp, 480v service.
	I&C allowance	Allowance	1	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	\$55,000	, ,,	Assumes PLC built into major equipment (IX or RO) with
19	Resale of equipment at end of project (35%					(\$163,400)	,,	(\$171,825)	,,		additional I/O for pumps added during engineering.
20	recovery) Total Direct Costs					\$666,995	\$695,671	\$686,653	\$723,754	\$280,526	
	Construction (above items \$65/hr., 1.74 OH)					\$493,576	\$514,796	\$508,123	\$535,578		Construction 1.764 x Direct Cost (Means).
22	Taxes		0.07			\$11,858	\$18,996	\$13,823	\$20,962		Sales tax on equipment.
23 24	Freight Indirect Costs (Contractor OH&P)		0.06			\$10,164 \$515,597	\$16,282 \$550,074	\$11,849 \$533,795	\$17,967 \$574,507	\$5,072 \$218,578	Freight to site. Indirect cost summary.
	Engineering (PD, DD, CS, ABs)					\$200,000	\$200,000	\$200,000	\$200,000	\$200,000	Engineering allowance.
	3rd Party NDE				\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	\$25,000	NDE allowance.
27	Subtotal				\$0		\$1,470,745	\$1,445,448	\$1,523,261	\$724,104	
	NIPSCO Project Management (on Site) Escalation 2.5%				\$50,000 2.50%	\$50,000 \$35,190	\$50,000 \$36,769	\$50,000 \$36,136	\$50,000 \$38,082	\$50,000 \$18,103	
	Winterization-remobilization					\$25,000	++++	\$25,000	+++++++++++++++++++++++++++++++++++++++	+-0)-00	
31	Total Installed Cost (Project CPEX)					\$1,517,782	\$1,557,514	\$1,556,585	\$1,611,343	\$792,206	
32	Frac tank rentals					\$25,475		\$25,475		\$25,475	Feed FT (100 BBL Baker) rented 180 days per year x 2 years plus \$4K mob/demob/clean (Baker).
33	Filters					\$4,680	\$4,680	\$4,680	\$4,680	\$4,680	······································
	Acid consumption	0.375				\$4,106	\$1,500	\$4,106	\$1,500		20 lb. HCL/day, for IX Regen, 10 lbs./day for RO pH adjustment feed so Calcium ions are soluble, HCL price \$750/ton.
	Caustic, 25% consumption	1				\$8,760 \$15,357	\$1,500 \$4,574	\$39,210	\$14,377	644 077	12 lb. NaOH Regen, 25% NaOH \$1/lb Each system has different amount of power.
	Power cost @\$0.10/kwh Maintenance @3%					\$45,533	\$4,374 \$47,725	\$46,698	\$14,377	\$14,377	The IX system generates 3% regen fluid (24 hour basis) ; the
		Clean								\$40,098	RO generates 5% reject with all ions (brine). The IX system generates 3% regen fluid (24 hour basis) ; the
	Disposal of liquid to Deep Well Ohio Contract operations	Harbors				\$272,160 \$141,000	\$55,188 \$31,200	\$272,160 \$141,000	\$55,188 \$31,200	\$141,000	RO generates 5% reject with all ions (brine). RO generates 5% reject with all ions (brine). Option 1 assumes one operator, 5 days per week, 12 hours pe day, 52 weeks with 25% OT; loaded rate 550/hr., plus \$25K for technician service; Option 2 assumes a portion of security guard or service to check on facility 5 days x 52 weeks plus cal out, 2 hrs. x 5 days x \$60 x 52 weeks.
		1	1								
						44.000	4	44	4		
40	Total Annual Operating Costs 365 days 6-month annual cost					\$517,072 \$258,536	\$146,368	\$533,329 \$266,664	\$154,670	\$232,229	Assumes 2 x 180 day period during bottom half of the year.

ATTACHMENT C

Revised Cost Estimate Partial Excavation, Off-Site Disposal and ISS

Project:	Bailly Generating Station
Project No:	377882016.2400
Date:	6/2/2017
Calc. By	D. Pettit & D. Schneider
Checked By:	R. Johnson

<u>SWMU 15</u>

Corrective Measure Alternative #4 - Partial Excavation and Off-Site Disposal of CCRs, In-Situ Solidification of CCRs Below the Water Table (Version 1)

Item	Unit Cost per Unit Quant		Quantity	Co	st per Item	Source		
Pre-design								
Predesign Mapping - Direct Push and Analysis	EACH	\$	267	1,024	\$	273,408	AMEC estimate	
			Pre	-design Subtotal	\$	273,408		
Site Prep								
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	20,000	1	\$	20,000	AMEC estimate	
Site Security (perimeter fence)	month	\$	12,838	17	\$	218,243	AMEC estimate	
Field office	month	\$	2,500	17	\$	42,500	AMEC estimate	
Install E&S controls	LF	\$	4.38	4,531	\$	19,846	AMEC estimate	
			S	ite Prep Subtotal	\$	300,589		
Excavation								
Clearing & grubbing	Acre	\$	9,000	17.2	\$	154,530	Similar project SOW; quoted price	
Excavate and stockpile SWMU 15 cover soil for reuse	CY	\$	4.38	21,640	\$	94,784	RS Means 31 14 13.23 1430	
Excavate, haul, stockpile & load CCR	CY	\$	12.00	100,383	\$	1,204,602	Contractor & Expr.	
Disposal Characterization	EACH	\$	500.00	317	\$	158,556	one sample per 500 tons @ \$500/sample	
Transportation to landfill	Ton	\$	21.60	158,556	\$	3,424,803	NIMCO quote for Horseshoe area, adjusted	
Disposal Fees	Ton	\$	17.00	158,556	\$	2,695,447	Tipping fee for Newton County Landfill, MI	
Backfill Material (imported) + characterization	CY	\$	15.40	81,213	\$		NIMCO quote for Horseshoe area	
Haul/place/compact backfill	CY	\$	4.78	102,853	\$		RS Means 31 23 23.14 5420 & 31 23 23.23 0020 & 31 23 23.23	
Stabilize (seed, amend, mulch)	SY	\$	1.62	83,103	\$	134,627	NIMCO quote for Horseshoe area	
			Exe	cavation Subtotal	\$	9.609.673		
ISS application								
							Unit rate derived from Chartis quote for ISS at NStar	
ISS	CY	\$	70.16	91,287	\$	6,404,300	Milford, MA	
				ISS Subtotal	\$	6,404,300		
Oversight								
Construction & Engineering Oversight	HR	\$	100.00	8,080	\$	808,000	AMEC estimate	
Lodging & per diem	Day	\$	142.00	790	\$	112,180	FY 2017 GSA rates	
			01	ersight Subtotal	\$	920,180		
			Cons	struction Subtotal	\$	17,508,149		
Project Management	3%	\$	17,508,149		\$	525,244		
Engineering	5%	\$	17,508,149		\$	875,407		
		-	PM &	Design Subtotal	\$	1,400,652		
Contingency	20%				\$	3,781,760	-	
				Total	\$	22,690,562	-	

Assumptions:

1 Overlying soil and CCR will be excavated to the top of the current water table. Deeper CCR remains in-place. No cover system other than backfill of overlying soils.

2 Volume to be excavated includes mixture of ash and overlying soils, 50% of Sand1 soils can be segregated from CCR and reused as backfill.

3 Below the water table, pre-design data will be gathered and can allow target solidification of CCR soil layers (i.e., CCR of intervening layers not required).

4 Assumed CCR bulk density = 1.6 tons/cy

5 Only half the area requires clearing & grubbing.

6 Materials sent off site will be disposed as non-hazardous at Newton County Landfill, MI.

7 Disposal fee based on estimate received from facility manager. Additional fees could be applied based on CCR analytical and physical characteristics.

8 Rates are based on live loading excavated materials directly onto trucks for disposal.

9 ISS will be performed using a blend of Type I Portland Cement and Grade 120 Ground Granular Blast Furnace Slag. ISS will result in 21% bulking of the material addressed below the water table, and a hydraulic conductivity of 1.2x10-8 cm/sec.

10 Excavated areas will be backfilled to previous grade.

11 Estimated production rate of 1,000 cyd/day for earthwork (excavation & hauling).

12 Additional fees for winter weather shutdown and re-start not included.

13 Disposal characterization sampling prior to shipment will indicate CCR meets landfill acceptance criteria. Sampling costs are included.

14 The security fence will be constructed along the eastern edge of SWMU-15, to restrict access from the IDNL property. Quantity assumes 1/3 of total perimeter.

15 ISS line item includes mobilization/demobilization, materials, plant, equipment & labor for in-situ mixing, and QA/QC protocols such as field sampling.

16 Mixing will be accomplished by dual axis rotary blender method.

17 No subsurface obstructions.

18 Air monitoring & dust control costs are for equipment & supplies only. Labor fees captured under oversight costs.

19 Excavation Construction & Engineering Oversight includes 2.5 full-time personnel (Supervisor, Health & Safety, Field Engineer) for 11 months of earthwork working 10 hour days.

20 ISS Engineer oversight includes 1.5 full-time field engineer for 8 months working 10 hour days.

21 Total estimated duration = 19 months.

22 Amendment material for excavated CCR is not required.

23 Dewatering is not required.

24 A shoring system is not required.

ATTACHMENT D

Revised Cost Estimate Full Excavation and Off-Site Disposal

Project:	Ba
Project No:	37
Date:	6/
Calc. By	D.
Checked By:	R.

Bailly Generating Station 377882016.2400 6/2/2017 D. Pettit & D. Schneider R. Johnson & T. Delano

Corrective Measure Alternative #1 - Full Excavation and Off-Site Disposal of CCRs (Version 1)

Item	Unit	Cos	t per Unit	Quantity	antity Cost per Item		Source
Site Prep							
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	50,000	1	\$	50,000	AMEC estimate
Mobilization/Demob	LS	\$	25,000	1	\$	25,000	AMEC estimate
Site Security (perimeter fence)	month	\$	12,838	12	\$	154,054	AMEC estimate
Install E&S controls	LF	\$	4.38	4,531	\$	19,846	AMEC estimate
Field office	month	\$	2,500	17	\$	42,500	AMEC estimate
			Site	Prep Subtotal	\$	291,400	
Shoring							
Shoring Design	LS	\$	25,000	1	\$	25,000	C. Ramsey x 2 for Dewater
Shoring System Install & Removal	LF	\$	1,200	2,400	\$	2,880,000	Chris Ramsey, no bracing
			Sh	oring Subtotal	\$	2,905,000	
Excavation Water Treatment and O&M							
Install Extraction Wells	EA	\$	11,100	10	\$	111,000	2008 AMEC P&T estimate for BGS
Install Piping to Treatment System	LF	\$	21.26	3500	\$	74,410	2008 AMEC P&T estimate for BGS
Construct Ion Exchange Water Treatment System	LS	\$	1,517,782	1	\$	1,517,782	AMEC Estimate (Christiansen)
Annual Operations and Maintenance (6-month period)	Year	\$	258,536	2	\$	517,072	AMEC Estimate (Christiansen)
			Dewa	tering Subtotal	\$	2,220,264	
Excavation							
Clearing & Grubbing	Acre	\$	9,000	8.6	\$	77,273	Similar project SOW; quoted price
Excavate and stockpile SWMU 15 cover soil for reuse	CY	\$	4.38	35,156	\$	153,983	RS Means 31 14 13.23 1430
Disposal Characterization	EACH	\$	500	383	\$	191,670	one sample per 500 tons @ \$500/sample
Excavate, Haul, Stockpile & Load CCR & 50% of Sand1	CY	\$	12.00	191,670	\$	2,300,040	Contractor & Expr./exc/dozer/truck/loader
Transportation to Landfill	Ton	\$	21.60	302,743	\$	6,539,244	NIMCO quote for Horseshoe area, adjusted
Disposal Fees	Ton	\$	17.00	302,743	\$	5,146,627	Tipping fee for Newton County Landfill, MI
Backfill Material (imported) + Characterization	CY	\$	15.40	191,670	\$	2,951,718	NIMCO quote for Horseshoe area + characterization
Haul/place/compact backfill	CY	\$	4.78	226,826	\$	1,084,228	RS Means 31 23 23.14 5420 & 31 23 23.23 0020 & 31 23 23.23 5080
Stabilize (seed, amend, mulch)	SY	\$	1.62	83,112	\$	134,641	NIMCO quote for Horseshoe area
			Exca	ation Subtotal	\$	18,579,424	
Oversight							
Construction & Engineering Oversight	HR	\$	100.00	7,400	\$	740,000	AMEC estimate
Lodging & per diem	Day	\$	142.00	740	\$	105,080	FY 2017 GSA rates
			Over	sight Subtotal	\$	845,080	
			Constru	ction Subtotal	\$	24,841,168	
Project Management	3%	\$ 2	24,841,168		\$	745,235	
Engineering	4%	\$ 2	24,841,168		\$	993,647	
			PM & De	esign Subtotal	\$	1,738,882	
Contingency	20%				\$	5,316,010	
				Total	\$	31,896,059	

Assumptions:

SWMU 15

1. Volume to be excavated includes mixture of ash and overlying soils, soils can be segregated from CCR and reused as backfill.

2. Assumed CCR bulk density = 1.6 tons/cy

3. Only half the area requires clearing & grubbing.

4. Excavated materials disposed as non-hazardous at Newton County Landfill, MI.

5. Shoring system is 30 feet deep.

6. The perimeter of the shoring (2,400) follows the contour of CCR below the groundwater table, assumed to be 6 feet or more below ground surface.

7. Shoring will need to be provided around towers.

8. Shoring costs are based on installation, removal, and rental fees.

9. Dewatering assumes ion exchange treatment for boron followed by discharge to surface water.

10. A well point system with treatment system will be used for dewatering and on-site treatment prior to discharge to surface water.

11. Dewatering system costs calculated based on rental rates per calendar day for 5 months of operation; labor rate based on 5-day work week.

12. Disposal fee based on estimate received from facility manager. Additional fees could be applied based on CCR analytical and physical characteristics.

13. No drying amendment will be needed to reduce moisture from CCR excavated from below the water table.

14. Rates are based on stockpiling followed by loading onto trucks for disposal.

15. Excavated areas will be backfilled to previous grade.

16. Excavation & backfilling will be phased but occuring simultaneously.

17. Estimated production rate of 1,000 cyd/day for earthwork (excavation & hauling).

18. Estimated duration = 17 months of which 14 months is active earthwork (7 months "in the wet" and 7 dry), 2 months to install shoring/dewatering system and 1 month is setup/recovery.

19. Additional fees for winter weather shutdown and re-start not included.

20. Construction & Engineering Oversight includes 2.5 full-time personnel (Supervisor, Health & Safety, Field Engineer) for 14 months of earthwork working 10 hour days; 1

personnel for 2 months of shoring/dewatering installation for 10 hour days.

21. Disposal characterization sampling prior to shipment will indicate CCR meets landfill acceptance criteria. Sampling costs are included.

22. The security fence will be constructed along the eastern edge of SWMU-15, to restrict access from the IDNL property. Quantity assumes 1/3 of total perimeter.

Project: Project No: Date: Calc. By Checked By: Bailly Generating Station 377882016.2400 6/2/2017 D. Pettit & D. Schneider & P. Guerra R. Johnson & T. Delano

SWMU 15

Item	Unit	Cos	t per Unit	Quantity	Cost per Item		Source	
Site Prep								
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	50,000	1	\$	50,000	AMEC estimate	
Predesign Mapping - Direct Push and Analysis	EACH	\$	267	1,024	\$	273,408	AMEC estimate	
Mobilization/Demob	LS	\$	25,000	1	\$	25,000	AMEC estimate	
Site Security (perimeter fence)	month	\$	12,838	12	\$	154,054	AMEC estimate	
Install E&S controls	LF	\$	4.38	4,531		,	AMEC estimate	
Field office	month	\$	2.500	17		,	AMEC estimate	
		·	Site	Prep Subtotal	\$	564,808		
Shoring				-,		,		
Shoring Design	LS	\$	25,000	1	\$	25,000	C. Ramsey x 2 for Dewater	
Shoring System Install & Removal	LF	\$	1,200	2,400	\$		Chris Ramsey, no bracing	
		·	,	oring Subtotal		2,905,000	3	
Excavation Water Treatment and O&M				9	,	,,		
Dewatering Extraction and Transfer Equipment	LS	\$	100,000	1	\$	100,000	AMEC estimate	
TSS Removal and On-site Disposal	LS	\$	792,206		\$,	AMEC estimate	
Annual Operations and Maintenance (6-month period)	Year	\$	116,115	2	\$	232,229	AMEC estimate	
	Dewate		ering Subtotal \$ 1,124,		1,124,436	36		
Excavation				0				
Clearing & grubbing	Acre	\$	9,000	8.6	\$	77,273	Similar project SOW; quoted price	
Excavate and stockpile SWMU 15 cover soil for reuse	CY	\$	4.38	35,156	\$	153,983	RS Means 31 14 13.23 1430	
Disposal Characterization	EACH	\$	500	383	\$	191,670	one sample per 500 tons @ \$500/sample	
Excavate, haul, stockpile & Load CCR & 50% of Sand1	CY	\$	12.00	191,670	\$	2,300,040	Contractor & Expr./exc/dozer/truck/loader	
Windrow Turning Material	CY	\$	15.00	191,670	\$	2,875,050	RACER equivalent	
Transportation to landfill	Ton	\$	21.60	278,161	\$	6,008,279	NIMCO quote for Horseshoe area, adjusted	
Disposal Fees	Ton	\$	17.00	278,161	\$		Tipping fee for Newton County Landfill, MI	
Backfill Material (imported) + characterization	CY	\$	15.40	56,131	\$	864,411	NIMCO quote for Horseshoe area + characterization	
Haul/place/grade backfill	CY	\$	4.37	91,287	\$	398,922	RS Means 31 23 23.14 5420 & 31 23 23.23 0020	
Stabilize (seed, amend, mulch)	SY	\$	1.62	83,112	\$	134,641	NIMCO quote for Horseshoe area	
			Excav	ation Subtotal	\$	17,733,009		
Oversight								
Construction & Engineering Oversight	HR	\$	100.00	7,400	\$	740,000	AMEC estimate	
Lodging & per diem	Day	\$	142.00	740	\$	105,080	FY 2017 GSA rates	
			Overs	sight Subtotal	\$	845,080		
			Construe	ction Subtotal	\$	23,172,332		
Project Management	3%	¢	23,172,332		\$	695,170		
Engineering	3% 4%		23,172,332		э \$	926,893		
	4 /0	φ		sign Subtotal	ъ \$	1,622,063		
Contingonary	209/				¢	4,958,879	-	
Contingency	20%			Total	\$ \$	29,753,275	-	

Assumptions:

1. Volume to be excavated includes mixture of ash and overlying soils, soils can be segregated from CCR and reused as backfill.

2. Assumed CCR bulk density = 1.6 tons/cy (with free draining only). 1.45 after Windrowing

3. Only half the area requires clearing & grubbing.

4. Excavated materials disposed as non-hazardous at Newton County Landfill, MI.

5. Shoring system is 30 feet deep.

6. The perimeter of the shoring (2,400) follows the contour of CCR below the groundwater table, assumed to be 6 feet or more below ground surface.

7. Shoring will need to be provided around towers.

8. Shoring costs are based on installation, removal, and rental fees.

9. Dewatering assumes ion exchange treatment for boron followed by discharge to surface water.

10. A well point system with treatment system will be used for dewatering and on-site treatment prior to discharge to surface water.

11. Dewatering system costs calculated based on rental rates per calendar day for 5 months of operation; labor rate based on 5-day work week.

12. Disposal fee based on estimate received from facility manager. Additional fees could be applied based on CCR analytical and physical characteristics.

13. No drying amendment will be needed to reduce moisture from CCR excavated from below the water table.

14. Rates are based on stockpiling followed by loading onto trucks for disposal.

15. Excavated areas will be backfilled to previous grade.

16. Excavation & backfilling will be phased but occuring simultaneously.

17. Estimated production rate of 1,000 cyd/day for earthwork (excavation & hauling).

18. Estimated duration = 17 months of which 14 months is active earthwork (7 months "in the wet" and 7 dry), 2 months to install shoring/dewatering system and 1 month is setup/recovery.

19. Additional fees for winter weather shutdown and re-start not included.

20. Construction & Engineering Oversight includes 2.5 full-time personnel (Supervisor, Health & Safety, Field Engineer) for 14 months of earthwork working 10 hour days; 1

personnel for 2 months of shoring/dewatering installation for 10 hour days.

21. Disposal characterization sampling prior to shipment will indicate CCR meets landfill acceptance criteria. Sampling costs are included.

22. The security fence will be constructed along the eastern edge of SWMU-15, to restrict access from the IDNL property. Quantity assumes 1/3 of total perimeter.

Project:	
Project No:	
Date:	
Calc. By	
Checked By:	

Bailly Generating Station 377882016.2400 6/2/2017 D. Pettit & D. Schneider & P. Guerra R. Johnson & T. Delano

Item	Unit	Cos	t per Unit	Quantity	Cos	at per Item	Source
Site Prep	onit	003		Quantity	003	a per nem	oource
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	50,000	1	\$	50 000	AMEC estimate
Predesign Mapping - Direct Push and Analysis	EACH	\$	267	1,024		,	AMEC estimate
Mobilization/Demob	LS	\$	25,000	,	\$,	AMEC estimate
	month		12,838	12		,	AMEC estimate
Site Security (perimeter fence)		\$,			,	
Install E&S controls	LF	\$	4.38	4,531		- ,	AMEC estimate
Field office	month	\$	2,500	17		,	AMEC estimate
			Site	Prep Subtotal	\$	564,808	
Shoring							
Shoring Design	LS	\$	25,000		\$		C. Ramsey x 2 for Dewater
Shoring System Install & Removal	LF	\$	1,200	2,400			Chris Ramsey, no bracing
			Sh	oring Subtotal	\$	2,905,000	
Excavation Water Treatment and O&M							
Dewatering Extraction and Transfer Equipment	LS	\$	100,000		\$,	AMEC estimate
TSS Removal and On-site Disposal	LS	\$	792,206		\$	792,206	AMEC estimate
Annual Operations and Maintenance (6-month period)	Year	\$	116,115	2	\$	232,229	AMEC estimate
			Dewat	tering Subtotal	\$	1,124,436	
Excavation							
Clearing & grubbing	Acre	\$	9,000	8.6	\$	77,273	Similar project SOW; quoted price
Excavate and stockpile SWMU 15 cover soil for reuse	CY	\$	4.38	35,156	\$	153,983	RS Means 31 14 13.23 1430
Disposal Characterization	EACH	\$	500	383	\$	191,670	one sample per 500 tons @ \$500/sample
Excavate, haul, stockpile & Load CCR & 50% of Sand1	CY	\$	12.00	191,670	\$		Contractor & Expr./exc/dozer/truck/loader
Windrow Turning Unsat Material	CY	\$	15.00	100,383	\$		RACER equivalent
Haul Saturated Material to Filter Press	CY	\$	2.56	91,287			RACER equivalent
Filter Press Mob/Operate/Demob	CY	\$	6.00	91,287			5/9/2017 Discussion with Matt Binsfeld - JF Brennen
Transportation to landfill	Ton	\$	21.60	266,452			NIMCO guote for Horseshoe area, adjusted
Disposal Fees	Ton	\$	17.00	266,452			Tipping fee for Newton County Landfill, MI
Backfill Material (imported) + characterization	CY	\$	15.40	56,131			NIMCO quote for Horseshoe area + characterization
Haul/place/grade backfill	CY	\$	4.37	91,287			RS Means 31 23 23.14 5420 & 31 23 23.23 0020
	SY	э \$	4.37	83,112		,	
Stabilize (seed, amend, mulch)	51	¢		,			NIMCO quote for Horseshoe area
Oursestable			Excav	ation Subtotal	φ	16,693,170	
Oversight		¢	400.00	7 400	¢	740.000	
Construction & Engineering Oversight	HR	\$	100.00	7,400		,	AMEC estimate
Lodging & per diem	Day	\$	142.00	740		,	FY 2017 GSA rates
			Overs	sight Subtotal	\$	845,080	
			Construe	ction Subtotal	\$	22,132,494	
Project Management	3%	¢	22,132,494		\$	663,975	
, ,	3% 4%		22,132,494		ф \$	885,300	
Engineering	470	φ.		sign Subtotal		885,300 1,549,275	
							_
Contingency	20%				\$	4,736,354	-
				Total	\$	28,418,122	

Assumptions:

SWMU 15

1. Volume to be excavated includes mixture of ash and overlying soils, soils can be segregated from CCR and reused as backfill.

2. Assumed CCR bulk density = 1.6 tons/cy (with free draining only). 1.45 after windrowing and 1.32 after Filter Press

3. Only half the area requires clearing & grubbing.

4. Excavated materials disposed as non-hazardous at Newton County Landfill, MI.

5. Shoring system is 30 feet deep.

6. The perimeter of the shoring (2,400) follows the contour of CCR below the groundwater table, assumed to be 6 feet or more below ground surface.

7. Shoring will need to be provided around towers.

8. Shoring costs are based on installation, removal, and rental fees.

9. Dewatering assumes ion exchange treatment for boron followed by discharge to surface water.

10. A well point system with treatment system will be used for dewatering and on-site treatment prior to discharge to surface water.

11. Dewatering system costs calculated based on rental rates per calendar day for 5 months of operation; labor rate based on 5-day work week.

12. Disposal fee based on estimate received from facility manager. Additional fees could be applied based on CCR analytical and physical characteristics. 13. No drying amendment will be needed to reduce moisture from CCR excavated from below the water table.

14. Rates are based on stockpiling followed by loading onto trucks for disposal.

15. Excavated areas will be backfilled to previous grade.

16. Excavation & backfilling will be phased but occuring simultaneously.

17. Estimated production rate of 1,000 cyd/day for earthwork (excavation & hauling).

18. Estimated duration = 17 months of which 14 months is active earthwork (7 months "in the wet" and 7 dry), 2 months to install shoring/dewatering system and 1 month is set-

19. Additional fees for winter weather shutdown and re-start not included.

20. Construction & Engineering Oversight includes 2.5 full-time personnel (Supervisor, Health & Safety, Field Engineer) for 14 months of earthwork working 10 hour days; 1

21. Disposal characterization sampling prior to shipment will indicate CCR meets landfill acceptance criteria. Sampling costs are included.

22. The security fence will be constructed along the eastern edge of SWMU-15, to restrict access from the IDNL property. Quantity assumes 1/3 of total perimeter.

Project: Project No: Date: Calc. By Checked By: **Bailly Generating Station** 377882016.2400 6/2/2017 D. Pettit & D. Schneider & P. Guerra R. Johnson & T. Delano

Item	Unit	Co	st per Unit	Quantity	Co	st per Item	Source
Site Prep							
Prep Work - Permits, Work Plans, contracting, etc.	LS	\$	50,000	1	\$	50,000	AMEC estimate
Predesign Mapping - Direct Push and Analysis	EACH	\$	267	1,024	\$	273,408	AMEC estimate
Mobilization/Demob	LS	\$	25,000	. 1	\$	25,000	AMEC estimate
Site Security (perimeter fence)	month	\$	12,838	12	\$	154,054	AMEC estimate
Install E&S controls	LF	\$	4.38	4,531	\$,	AMEC estimate
Field office	month	\$	2,500	,	\$		AMEC estimate
		+		Prep Subtotal		564,808	
Shoring					7		
Shoring Design	LS	\$	25,000	1	\$	25,000	C. Ramsey x 2 for Dewater
Shoring System Install & Removal	LF	\$	1,200	2,400			Chris Ramsey, no bracing
,		•		oring Subtotal		2,905,000	,,
Excavation Water Treatment and O&M				5		,,	
Dewatering Extraction and Transfer Equipment	LS	\$	100,000	1	\$	100,000	AMEC estimate
TSS Removal and On-site Disposal	LS	\$	792,206		\$		AMEC estimate
Annual Operations and Maintenance (6-month period)	Year	\$	116,115	2	\$	232,229	AMEC estimate
			Dewa	tering Subtotal	\$	1,124,436	
Excavation							
Clearing & grubbing	Acre	\$	9,000	8.6	\$	77,273	Similar project SOW; quoted price
Excavate and stockpile SWMU 15 cover soil for reuse	CY	\$	4.38	35,156	\$	153,983	RS Means 31 14 13.23 1430
Disposal Characterization	EACH	\$	500	383	\$	191,670	one sample per 500 tons @ \$500/sample
Excavate, haul, stockpile & Load CCR & 50% of Sand1	CY	\$	12.00	191,670	\$	2,300,040	Contractor & Expr./exc/dozer/truck/loader
Windrow Turning Material	CY	\$	15.00	100,383	\$	1,505,752	RACER equivalent
Haul to Filter Press	CY	\$	2.56	91,287	\$	233,693	RACER equivalent
Filter Press Mob/Operate/Demob	CY	\$	6.00	91,287	\$	547,719	5/9/2017 Discussion with Matt Binsfeld - JF Brennen
Transportation to landfill	Ton	\$	21.60	266,452		5,755,373	NIMCO quote for Horseshoe area, adjusted
Disposal Fees	Ton	\$	17.00	266,452	\$	4,529,692	Tipping fee for Newton County Landfill, MI
Haul/Place/Grade Stockpiled Soil	CY	\$	4.37	35,156	\$	153,631	RS Means 31 23 23.14 5420 & 31 23 23.23 0020
Stabilize (seed, amend, mulch)	SY	\$	1.62	41,556	\$	67,321	NIMCO quote for Horseshoe area
			Excav	ation Subtotal	\$	15,516,148	
Oversight							
Construction & Engineering Oversight	HR	\$	100.00	7,400		740,000	AMEC estimate
Lodging & per diem	Day	\$	142.00	740		105,080	FY 2017 GSA rates
			Over	sight Subtotal	\$	845,080	
			Constru	ction Subtotal	\$	20,955,471	
Project Management	3%	\$	20,955,471		\$	628,664	
Engineering	4%	\$	20,955,471		\$	838,219	
			PM & De	esign Subtotal	\$	1,466,883	
Contingency	20%				\$	4,484,471	-
U ,				Total	Š	26,906,825	-

Assumptions:

1. Volume to be excavated includes mixture of ash and overlying soils, soils can be segregated from CCR and reused as backfill.

2. Assumed CCR bulk density = 1.6 tons/cy (with free draining only). 1.32 after Filter Press

3. Only half the area requires clearing & grubbing.

4. Excavated materials disposed as non-hazardous at Newton County Landfill, MI.

5. Shoring system is 30 feet deep.

6. The perimeter of the shoring (2,400) follows the contour of CCR below the groundwater table, assumed to be 6 feet or more below ground surface.

7. Shoring will need to be provided around towers.

8. Shoring costs are based on installation, removal, and rental fees.

9. Dewatering assumes ion exchange treatment for boron followed by discharge to surface water.

10. A well point system with treatment system will be used for dewatering and on-site treatment prior to discharge to surface water.

11. Dewatering system costs calculated based on rental rates per calendar day for 5 months of operation; labor rate based on 5-day work week.

- 12. Disposal fee based on estimate received from facility manager. Additional fees could be applied based on CCR analytical and physical characteristics.
- 13. No drying amendment will be needed to reduce moisture from CCR excavated from below the water table.

14. Rates are based on stockpiling followed by loading onto trucks for disposal.

15. Excavated areas will be backfilled to previous grade.

16. Excavation & backfilling will be phased but occuring simultaneously.

17. Estimated production rate of 1,000 cyd/day for earthwork (excavation & hauling).
18. Estimated duration = 17 months of which 14 months is active earthwork (7 months "in the wet" and 7 dry), 2 months to install shoring/dewatering system and 1 month is set-

19. Additional fees for winter weather shutdown and re-start not included.

20. Construction & Engineering Oversight includes 2.5 full-time personnel (Supervisor, Health & Safety, Field Engineer) for 14 months of earthwork working 10 hour days; 1

21. Disposal characterization sampling prior to shipment will indicate CCR meets landfill acceptance criteria. Sampling costs are included.

22. The security fence will be constructed along the eastern edge of SWMU-15, to restrict access from the IDNL property. Quantity assumes 1/3 of total perimeter.

SWMU 15