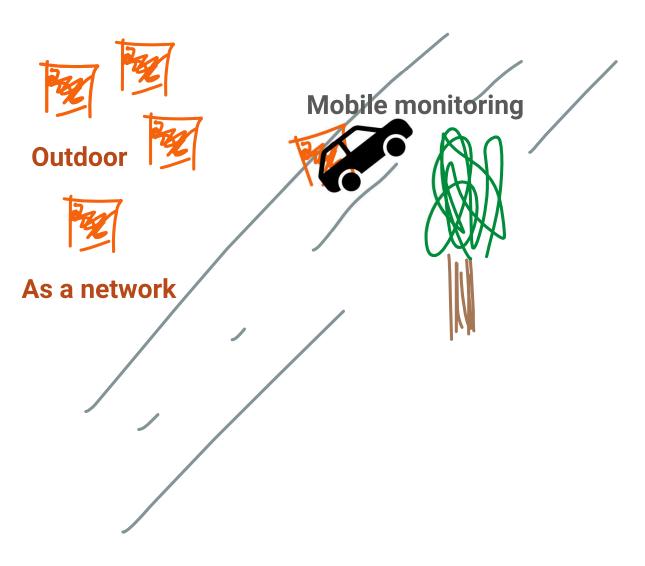
Data Quality Objectives for Air Sensors in Human Exposure and Health Research Studies: PM₁₀, NO₂, SO₂ and CO

Rima Habre, ScD

habre@usc.edu

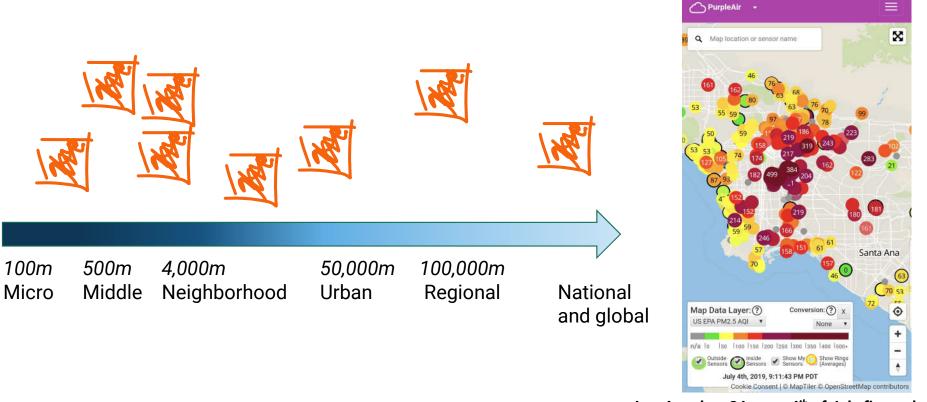
Assistant Professor, Division of Environmental Health, University of Southern California Visiting Scientist, Harvard TH Chan School of Public Health

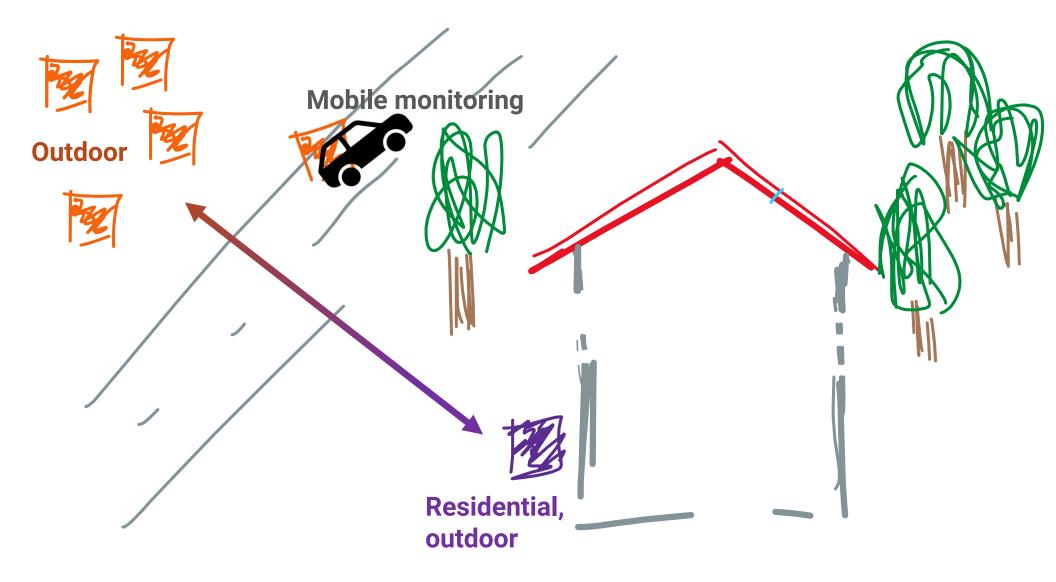
EPA Air Sensors Conference II, July 2019

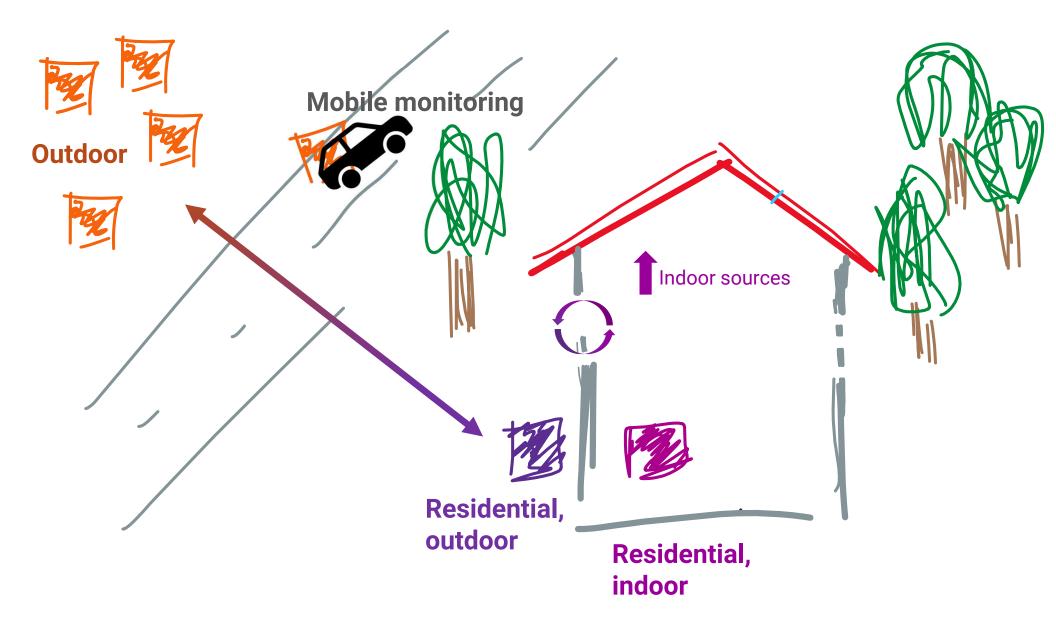


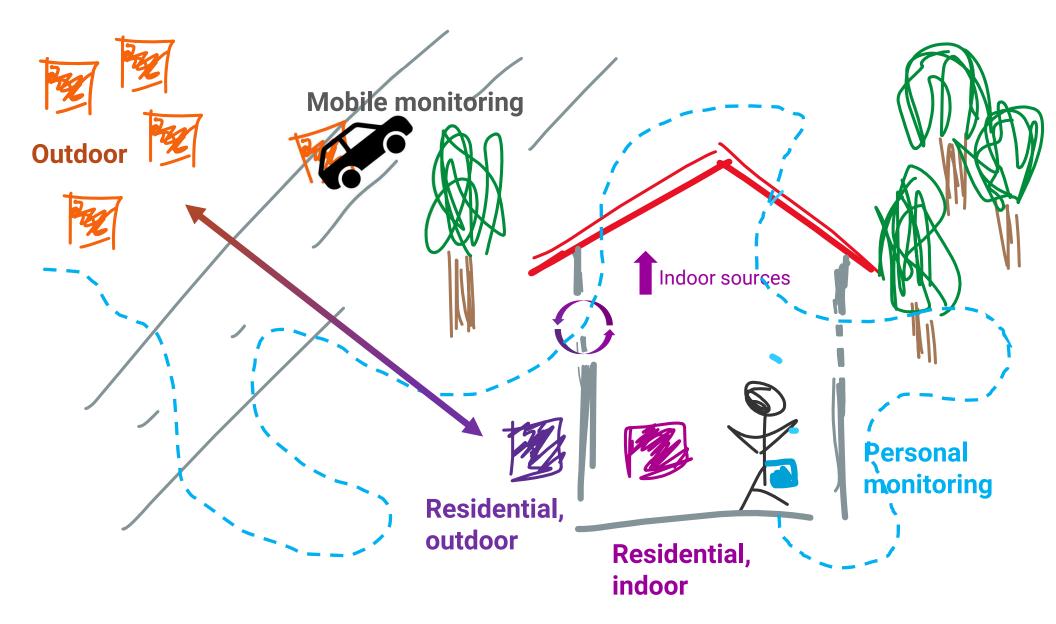
Outline

- Major exposure and health research applications for low-cost air quality sensors
- Universal calibration challenges
- Current data on PM_{10} , NO_2 , SO_2 , CO low-cost sensors
- Desired performance targets for exposure and health research
- Pollutant-specific considerations by deployment type
- Recommendations for sensor manufacturers/sensor community
- Need for acute exposure and health risk research






Spatial scales for outdoor monitoring



40 CFR PART 58, AMBIENT AIR QUALITY SURVEILLANCE, APPENDIX D TO PART 58—NETWORK DESIGN CRITERIA FOR AMBIENT AIR QUALITY MONITORING, FROM: <u>https://www.ecfr.gov/cgi-bin/text-</u>idx?SID=c7fae1149eb6eeaa96ea607c0b871570&mc=true&node=ap40.6.58.0000_0nbspnbspnbsp.d&rgn=div9

Los Angeles, CA area, 4th of July fireworks, 2019 Purple Air Map, courtesy of Dr. Mariam Girguis

Major research applications

Ambient/outdoor monitoring

- Increasingly powerful as networks
- Collocated to FEM/FRM for calibration purposes (min 1m-4m spacing for flow rates <200lpm)
 - Important to understand intended spatial scale of EPA/local monitor!
 - Important to differentiate real spatial variability from "colocation"
- Geographically weighted regression, machine learning, other techniques to derive spatiotemporal surfaces that capture and integrate all spatial scales listed above, integrated with ground monitors and satellite data
- Outdoor mobile monitoring on cars, drones, etc..

Residential (outdoor/indoor) and personal monitoring

- Paired residential outdoor and indoor monitoring
 - Spatial variability of outdoor pollution, infiltration of outdoor pollution indoors, indoor sources and concentrations, decreased measurement error compared to central sites, no mobility, stationary calibration possible
- Personal monitoring
 - Gold standard, accounts for mobility, complex calibration requirements, movement across microenvironments and quick RH/temp changes, higher burden for wear compliance, higher requirements on researchers/developers for user engagement (data visualizations etc..), stationary calibration useful but might not be sufficient

Universal calibration challenges

- Geographically relevant calibration (in terms of aerosol size distribution, composition, meteorological conditions etc..)
- Deployment relevant calibration (stationary outdoor, stationary indoor, or mobile/personal) – need to imitate actual deployment conditions during calibration for relevance
 - Especially challenging for personal deployments
- More demanding, more frequent, and faster turnaround calibration needs → need more scalable, "smart" calibration solutions, combination of automatic, user end, on sensor manufacturer end?

Current AQ-Spec Evaluations PM₁₀, NO₂, SO₂, CO sensors

Sensor Image	Make (Model)	Est. Cost (USD)	Pollutant(s)	*Field R ²	*Lab R ²	Summary Report
249,000	Alphasense	\$310				PDF (1,291
	(OPC-N2)		PM10	0.45 to 0.57	0.99	KB)
2	PurpleAir (PA-I)	\$150		PDF (1,072		
			PM10	0.32 to 0.44	0.97	KB)
2	PurpleAir	\$200				PDF (1,328
	(PA-II)	0 9	PM10	0.66 to 0.70	0.95	KB)

Sensor Image	Make (Model)	Est. Cost(USD)	Туре	Meas.	[*] Field R ²	*Lab R ²	Summary Report
	Aeroqual (AQY) Ver. 0.5	\$3,000	Electrochem	NO ₂	0.77	0.98	PDF (1,158 KB)
-							
	CairPol Cairsens (CO)	\$1,243	Electrochem	со	0.94		
	CairPol Cairsens (NO ₂)	\$1,198				-	
Ù	UNITEC (SENS-IT)	\$2,200	Metal Oxide	со	0.33 to 0.43	0.99	PDF (1,283 KB)
				NO ₂	0.60 to 0.65		

http://www.aqmd.gov/aq-spec/evaluations/summary-pm

http://www.aqmd.gov/aq-spec/evaluations/summary-gas

Desired DQOs for research applications

- As close to FEM as possible on *hourly* basis
- Exposure and health studies conducted to inform NAAQS
 - Demonstrate or quantify health risks at or below current NAAQS
 - Investigate threshold effects at very low concentrations
 - Need to legally conform to FEM/FRM standards for Integrated Science Assessment consideration
- Only outdoor pollution is regulated, conform to DQOs of ambient standards
- 1-hour averaging time supports studies of acute health effects and risk communication around short-term exposures
 - Should also allow researchers to investigate sub-hourly effects with high confidence in the measurements

Desired DQOs for research applications

- Limit of Detection: detect health effects at low concentrations
 - Some indoor settings
 - Diseases with no or low threshold concentration-response curves
 - 3-5 ppb for gases, 3 μg for PM_{10}
- Accuracy: quantification compared to a known standard (if gas, or filter if PM_{10}) within 10-15%
- Precision within 5-10%
- Zero drift (< 2ppb/day or 5ppb/year for gases)
 - Metal oxide sensors especially

- Linearity across range of realistic concentrations and one higher calibration point
- Measurement range globally relevant (at ground level population centers), also for met conditions
- Response time < 10 secs
- Flow rate within ± 5% if active
 - Especially low flow rate samplers, plus more sensitive flow logging

TABLE B-1 TO SUBPART B OF PART 53—PERFORMANCE LIMIT SPECIFICATIONS FOR AUTOMATED METHODS

Performance		SO ₂		O ₃		СО		NO ₂	Definitions
parameter	Units ¹	Std. range ³	Lower range ²³	Std. range ³	Lower range ²³	Std. range ³	Lower range ²³	(Std. range)	and test procedures
 Range Noise Lower detectable limit. Interference equiv- 	ppm ppm ppm	0–0.5 0.001 0.002	<0.5 0.0005 0.001	0–0.5 0.0025 0.005	<0.5 0.001 0.002	0–50 0.2 0.4	<50 0.1 0.2	0–0.5 0.005 0.010	Sec. 53.23(a) Sec. 53.23(b) Sec. 53.23(c)
alent Each interferent Total, all interferents.	ppm ppm	±0.005 _	⁴ ±0.005 _	±0.005 _	±0.005 _	±1.0 –	±0.5 _	±0.02 0.04	Sec. 53.23(d) Sec. 53.23(d)
5. Zero drift, 12 and 24 hour.	ppm	±0.004	±0.002	±0.004	±0.002	±0.5	±0.3	±0.02	Sec. 53.23(e)
6. Span drift, 24 hour 20% of upper range limit.	Percent	_	_	_	_	_	_	±20.0	Sec. 53.23(e)
80% of upper range limit.	Percent	±3.0	±3.0	±3.0	±3.0	±2.0	±2.0	±5.0	Sec. 53.23(e)
 7. Lag time 8. Rise time 9. Fall time 10. Precision 	Minutes Minutes Minutes	2 2 2	2 2 2	2 2 2	2 2 2	2.0 2.0 2.0	2.0 2.0 2.0	20 15 15	Sec. 53.23(e) Sec. 53.23(e) Sec. 53.23(e)

From: https://www.govinfo.gov/content/pkg/CFR-2016-title40-vol6/pdf/CFR-2016-title40-vol6-part53-subpartB-appB-id33.pdf

PM₁₀ Considerations

Residential monitoring

- Outdoor
 - Micro scale, sources with high spatial variability like non-tailpipe traffic (brake and tire wear, resuspended road dust), unpaved roads, industries emitting dust (cement manufacturing etc..)
 - Ùrban/regional signals like windblown dust depending on area
- Indoor
 - Resuspended dust (indoor source)
 - Pollen and allergens

Personal monitoring

- Similar sources, high spatial variability and "personal cloud" effect
 - Measure in breathing zone, rather than near ground level or stationary, further away in room, to minimize exposure error

General issues

- PM₁₀ optical signals different than PM_{2.5}, need more relevant calibration aerosol for OPCs equations converting counts to mass
- More frequent optics cleaning compared to PM_{2.5}?

Indoor relative to central site, outdoor gas concentrations: NYC example

Table 1. Distribution of weekly indoor and outdoor concentrations of gases (p.p.b.), $PM_{2.5}$ mass, its carbon fractions (μ g/m³) and elemental components (ng/m³).

Pollutant	Indoor concentration			Outa	Outdoor concentration		
	Ν	Mean	SD	Ν	Mean	SD	
Units: p.p.b.							
NO ₂	126	28.5	13.7	130	24.6	5.6	
SO ₂	126	0.3	0.6	130	6.2	4.1	
O ₃	126	2.8	3.7	129	19.8	8.3	

Sources of indoor air pollution in New York City residences of asthmatic children

Rima Habre¹, Brent Coull^{1,2}, Erin Moshier³, James Godbold³, Avi Grunin⁴, Amit Nath⁵, William Castro⁵, Neil Schachter⁵, Annette Rohr⁶, Meyer Kattan⁷, John Spengler¹ and Petros Koutrakis¹

Journal of Exposure Science and Environmental Epidemiology (2013), 1-10

NO₂ Considerations

Residential monitoring

- Outdoor
 - Capture spatially variable traffic tailpipe emissions signals (NO_x more variable than NO₂)
 - Transported "aged" NO₂
- Indoor
 - Gas stoves as a major source, usually high levels indoors when present
 - In absence of gas stoves or other major sources, can indicate impact of traffic indoors

Personal monitoring

- Likely impacted by traffic/intransit activities, other fuel combustion, and indoor combustion sources
- Detection limit issues at subhour frequency?
- Chemiluminescence FRM difficult to miniaturize (unlike O_3 UV absorption for example)

General issues

• Detection limits for minute to hourly measurements?

SO₂ Considerations

Residential monitoring

- Outdoor
 - Capture point and area sources
 - Usually industry/transportation related, sulfur in fuel
 - EJ communities living near sources or major truck transportation corridors
- Indoor
 - · Limited to no indoor sources
 - Very low concentrations indoors, detection limit issues

Personal monitoring

- Time-activity weighted exposure likely very low, detection limit issues
- Occupational settings

General issues

• Detection limits for deployments other than outdoor, stationary, or outdoor near-source or fence line monitoring?

CO Considerations

Residential monitoring

- Outdoor
 - Microscale hotspots like major intersections in urban areas, street canyon effects with high-rise buildings, near major freeways, poorly ventilated parking lots
 - Signal diluted away at central sites
- Indoor
 - Safety purposes (incomplete combustion) at high levels
 - Homes, schools or offices sited close to outdoor hotspots: productivity and health issues
 - Risk factor for individuals with cardiovascular disease at lower levels

Personal monitoring

- Safety purposes (CO poisoning, occupational settings)
- Risk factor for individuals with cardiovascular disease at lower levels

General issues

 Sensors well-developed for safety applications to detect high concentrations, but are detection limits sufficient for indoor/personal exposures or general ambient levels?

Other features and design recommendations: Same as 1st workshop, emphasizing...

Wearability/Usability

- User-centered design principles, 'real-life compatible'
- · 'Smart' calibration kits or options
 - Automatic self-calibration for zero drift?
 - Sensor-manufacturer designed quick turnaround calibration plan? Especially for exposure and health research studies...
 - Pre-, during- and post- deployment calibration exercises not very feasible while running a study
 - Standardized test protocols and more diverse test aerosol(s) for PM (reflect more representative aerosol size distribution and composition than Arizona Road Dust)

Data processing/communication

- Ability to communicate <u>securely</u> and in realtime
- Capture QA/QC metadata + GPS + RH/Temp + wear compliance + noise + light + other environmental parameters measured by smartphones or other paired devices?
- Capacity to store data for 1hr+ when connection lost
- 'Plug-and-play' ability, advertise MAC address etc...
 - Play well with other sensors in a system or platform!

Need for acute exposure and health studies

Understand exposure determinants and health associations

- At minute to hourly levels
- Peaks and transient exposures, specific source signals
- Important for acute outcomes such as cardiac events, arrythmias, heart rate variability, asthma attacks, etc..
- At individual level, not just population level

Inform data visualization strategies and risk communication

- Direct comparison of minutelevel low-cost sensor readings to AQI is misleading and inaccurate
- Data visualization key for engaging participants, but care in influencing behavior or biasing research
- Sensor/app developers should take care in how/what to present and communicate around

Pollutant-specific considerations: Most sensitive groups per AQI guidance

When this pollutant has an index value above 100 * * *	Report these sensitive groups * * *				
Ozone	Children and people with asthma are the groups most at risk.				
PM _{2.5}	People with respiratory or heart disease, the elderly and children are the groups most at risk.				
PM ₁₀	People with respiratory disease are the group most at risk.				
со	People with heart disease are the group most at risk.				
SO ₂	People with asthma are the group most at risk.				
NO ₂	Children and people with respiratory disease are the groups most at risk.				

40 CFR PART 58, AMBIENT AIR QUALITY SURVEILLANCE, APPENDIX G TO PART 58—UNIFORM AIR QUALITY INDEX (AQI) AND DAILY REPORTING https://www.ecfr.gov/cgi-bin/text-idx?SID=c7fae1149eb6eeaa96ea607c0b871570&mc=true&node=ap40.6.58.0000_0nbspnbspnbspnbsp.g&rgn=div9

Thank You

 Los Angeles PRISMS Center webinar by Alex Bui (PI) and Rima Habre for the NIEHS Exposure Science and the Exposome Webinar Series: https://www.youtube.com/watch?y=6y0tzsfApw4

https://www.youtube.com/watch?v=6y0tzsfApw4

 Current list of reference and equivalent methods for criteria air pollutants: <u>https://www3.epa.gov/ttn/amtic/files/ambient/criteria/AMTIC_</u> <u>List_June_2017_update_6-19-2017.pdf</u>