

Sensing Dust in the Desert: PM₁₀ Projects and Lessons Learned in the Extreme Environment of Phoenix, AZ

Ronald Pope, PhD Atmospheric Scientist Planning & Analysis Division

"Valley of the Sun"

Summer Haboob

July Mean High: **106 °F** (record high 122 °F) **December Mean Low: L: 45 °F** (record low 16 °F)

Winter Inversion

RECENT PROJECTS

Citizen Science Projects

- Community-Based Approach to Improving Air Pollution Monitoring in SW Tribal Communities (2014 Proposal)
 - 7 Parameters
 - 5 low-cost portable sensors

- ASU Low Cost Sensor Co-Location Validation Project with Field Testing at The Boulder Ridge Community
 - 2 Parameters (PM10 & PM2.5)
 - 5 low-cost portable sensors
 - Collocation with FEM sites

Outreach and Education Projects

Maricopa County Air Quality Education Kiosks Sensor: AQMesh Parameters: PM₁₀, PM_{2.5}, Ozone, NO₂

Up in the Air: An Air Pollution Education with Kids Making Sense Sensor: AirBeam2 Parameters: PM₁₀, PM_{2.5}, PM₁

> KIDS MAKING SENSE

Phoenix as a Testbed for Air Quality Sensors (P-TAQS)

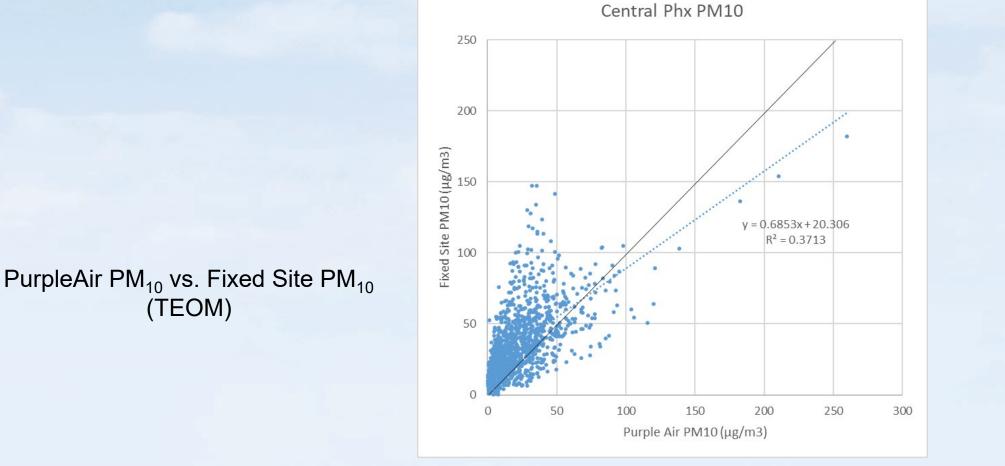
EPA Office of Research and Development: NERL Maricopa County Air Quality Department

Phase 1

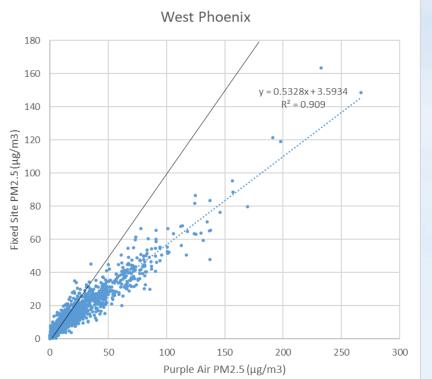
- A year-long collocation of PurpleAir sensors with FEM monitors (TEOM).
- MCAQD conducted a winter fireplace smoke study in 2018-2019 as part of Phase 1.
 - 10 PurpleAir Sites
 - Focused on $PM_{2.5}$, but also collected PM_{10}

Phoenix as a Testbed for Air Quality Sensors (P-TAQS)

EPA Office of Research and Development: NERL Maricopa County Air Quality Department


Phase 2

- A larger field study using sensors in a distributive network.
 - 21 PurpleAir Air Sites, some with solar
 - Mobile FEM (T640) for QA


LESSONS LEARNED AND DATA QUALITY QUESTIONS

- PurpleAir PM_{2.5} were fairly precise (r² = .91 at West Phoenix), but accuracy was off. We used a correction factor (0.59) to correct.
- PurpleAir PM_{10} had far lower P&A performance ($r^2 = .37$ at Central Phoenix).



- Data quality degraded with higher particulate concentrations.
- Sensors collocated at sites with greater amount of crustal material, as noted by using PM Coarse, have lower data quality.
 - The larger the coarse portion of the PM_{10} sample, the worse job that PurpleAir did in measuring $PM_{2.5}$ (r² = .91 vs .78)

Lesser Crustal Component in PM₁₀

PurpleAir $PM_{2.5}$ vs. Fixed Site $PM_{2.5}$ (TEOM)

Greater Crustal Component in PM₁₀

- Accuracy and Survivability Questions about Sensors
 - Over a range of values?
 - At extreme values (>1000 µg/m³)?
 - At various temperatures or environmental extremes?
 - Various particle sources?
 - At different time scales?
 - Long-term performance?
- Data Issues
 - Consistency between low-cost sensor and regulatory data (e.g. 80 second data vs 60 second data)

Thank you

Ron Pope ron.pope@maricopa.gov