Abstract/Summary

This report summarizes a successful independent laboratory validation (ILV) of the analytical method for the analysis of valifenalate and its metabolites valifenalate acid and p-chlorobenzoic acid in water.

Objective

The objective was to independently validate an analytical method [1] for the determination of valifenalate, valifenalate acid and p-chlorobenzoic acid (PCBA) in water to achieve a limit of quantitation (LOQ) at $0.1 \mu g/L$ for each analyte.

Method Principles

Valifenalate, valifenalate acid and PCBA in water were extracted by solid phase extraction (SPE). Appropriate aliquot of an acidified portion of the water sample containing the three analytes was allowed to pass through a conditioned Oasis HLB cartridge. Methanol was used as an eluent to elute out the analytes from the SPE tube. The eluate was diluted (1:1 v/v) with Milli-Q water for LC/MS/MS analysis. Valifenalate and valifenalate acid were analyzed on the LC/MS/MS in positive ionization mode while PCBA was analyzed under negative ionization mode and all three analytes achieved an LOQ of 0.1 μ /L.

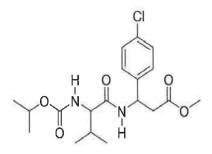
1. Introduction

The purpose of this study was to conduct an independent laboratory validation (ILV) for the determination of Valifenalate and its two metabolites: Valifenalate Acid and p-Chlorobenzoic acid (PCBA) in water. The analysis was performed by Liquid Chromatography with Tandem Mass Spectrometry Detection (LC-MS/MS) based on the method described in "Ferguson, L, 2015: Method Validation - Determination of Residues of Valifenalate and its Metabolites Valifenalate Acid and p-Chlorobenzoic Acid in Water. Ricerca Document No. 032663-1, FMC Tracking No. 2014RES-VAL1464" [1]. The ILV was conducted on surface water matrix targeting an LOQ of $0.1 \mu g/L$ for the analytes.

2. Experimental

2.1 Test System

The validation study was carried out on surface water collected from Jacob's Pond - 42°09'33.9"N 70°50'51.5"W. The surface water was characterized by Agvise (Appendix 2).

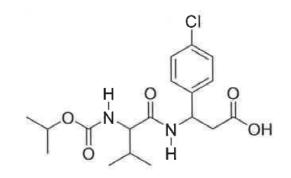

2.2 Analytical Test and Reference Substances

Reference standards of valifenalate, valifenalate acid and PCBA were provided by the Sponsor (Appendix 1).

Valifenalate (IR5885):

Structure:

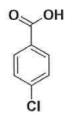
Empirical formula: Molecular weight: CAS No.: Batch No.: Expiry Date: Purity:



C₁₉H₂₇ClN₂O₅ 398.88 g/mol 283159-90-0 20071/77 November 2017 99.27%

Battelle ID: 100066692 FMC Tracking Number: 2015RES-VAL2062

Valifenalate acid (IR5839):


Structure

Empirical formula: Molecular weight: CAS No.: Batch No.: Expiry Date: Purity: C₁₈H₂₅ClN₂O₅ 384.86 g/mol 283159-90-0 G029/08 21 February 2017 98.4%

p-Chlorobenzoic acid (PCBA)

Structure:

Empirical Formula: Molecular Weight: CAS No.: Batch No: Expiry Date: Purity: ClC₆H₄CO₂H 156.57 g/mol 74-11-3 LC07337V May 2017 99.2%

2.3 Analytical Method

The Analytical Method Report, 'Ferguson, L, 2015: Method Validation - Determination of Residues of Valifenalate and its Metabolites Valifenalate acid and p-Chlorobenzoic acid in Water' from Ricerca Biosciences [1] was used to conduct the ILV.

2.3.1 Apparatus

2.3.1.1 Laboratory Equipment

- Balances:
 - o Ohaus Explorer EOD120, SN D2771118362156
 - o Mettler AT201, SN L92660
- Centrifuges:
 - o Sorvall Legend XF
 - Eppendorf 5810
- Turbovap Zymark TurboVap II
- Pipettors: Rainin Pipet-plus, various sizes
- Fisherbrand 50 mL polypropylene centrifuge tubes
- Fisher glass vials, 25 mL screw-cap and 2 mL crimp top
- Fisher 15 mL PP centrifuge tubes
- Gas tight syringes Hamilton, various sizes

All reusable glassware were cleaned in a laboratory dishwasher, solvent rinsed, and air-dried before use. Consumable glassware (injection vials, glass pipettes) were baked at 400°C for at least 30 min before use.

2.3.1.2 LC-MS/MS System

- Shimadzu LC2080 UHPLC system, including a vacuum solvent degasser, binary UHPLC pump, column oven, autosampler
- Applied Biosystems MDS Sciex API 6500 linear ion trap MS/MS system with TurboIonspray (ESI) source
- Thermo Betasil C18 100 x 2.1 mm, 5 μm Catalog # 70105102130 for analysis of valifenalate and valifenalate acid
- ARMOR C18, 5 µm, 100 x 2.1 mm, P/N ADV7009 for analysis of PCBA

2.3.2 Solvents, Chemicals and Consumables

- Methanol, HPLC grade, Fisher, lot #152153
- Formic Acid, Acros Organics, lot #B0527746
- Acetone, Fisher, lot # 150933
- Hydrochloric acid 0.5N, Fisher lot # 153033

2.3.3 Preparation of Standard Solutions

2.3.3.1 Stock and Working Solutions

Valifenalate, valifenalate acid and PCBA were received as neat compounds from the Sponsor. The neat material were stored under ambient conditions when not in use. The stock solutions were prepared in methanol and stored in the freezer at -20 C.

Compound	Battelle ID	Neat material ID	Mass (mg)	Final Volume (mL)	Solution Concentration (µg/mL)**
Valifenalate	IM13	150624-04 (Val*)	10.78	10	1070
Valifenalate Acid	IN93	150624-05 (ValA*)	10.74	10	1057
p-Chlorobenzoic Acid	IO10	150624-03 (PCBA*)	10.19	10	1011
Valifenalate	IN38	150624-04 (Val)	10.11	10	1004
Valifenalate Acid	IN98	150624-05 (ValA)	10.45	10	1028
p-Chlorobenzoic Acid	IO11	150624-03 (PCBA)	9.05	10	898

Stock solutions:

* "Val" refers to valifenalate, "ValA" refers to valifenalate acid, and PCBA refers to pchlorobenzoic acid.

** Concentration corrected for purity of neat material

Working solutions: The working solutions were prepared in methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 °C when not in use:

Working solution: valifenalate and valifenalate acid							
Battelle	Use	Stock conc. Stock volume T		Total volume	Conc.		
ID	solution	(µg/mL)	$\mu g/mL$) (μL) (mL)		(µg/mL)		
IN94	IM13	1070	467	10	50.0 (val)		
11194	IN93	1057	473	10	50.0 (valA)		
IN95	IN94	50.0	1000	10	5.00 (val)		
11195		50.0	1000	10	5.00 (valA)		

	Working solution: PCBA						
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
IO12	IO10	1011	990	10	100		
IO13	IO12	100	1000	10	10.0		

2.3.3.2 Fortification Solutions

Fortification solutions of the analytes were prepared in methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 $^{\circ}$ C when not in use:

	Fortification solutions: valifenalate and valifenalate acid						
Battelle ID	Use solution	Stock conc. (µg/mL)	Stock volume (µL)	Total volume (mL)	Conc. (µg/mL)		
IN96	IN95	5.00	1000	10	0.500 (val) 0.500 (valA)		
IN97	IN96	0.500 0.500	1000	10	0.0500 (val) 0.0500 (valA)		

	Fortification solutions: PCBA						
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
IO14	IO13	10.0	1000	10	1.00		
IO63	IO14	1.00	1000	10	0.100		

2.3.3.3 Solvent Calibration Solutions:

Intermediate solutions for calibrations were prepared in methanol:water (50:50 v:v) with 0.1 % formic acid and stored in the freezer at -20 $^{\circ}$ C when not in use:

Intermediate calibration solutions: valifenalate and valifenalate acid							
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
IO01	IN38	1004	500	10	50.2 (val)		
1001	IN98	1028	485	10	49.9 (valA)		
IO02	1001	50.2	500	10	2.51 (val)		
1002	IO01	49.9	500	10	2.49 (valA)		
1002	1002	2.51	- 500	10	0.125 (val)		
IO03	IO02	2.49		10	0.125 (valA)		
IP40	IN38	1004	500	10	50.2 (val)		
1140	IN98	1028	485	10	49.9 (valA)		
IP41	IP40	50.2	500	10	2.51 (val)		
IP41	IP40	49.9	500	10	2.49 (valA)		
ID42	ID /1	2.51	500	10	0.125 (val)		
IP42	IP41	2.49	500	10	0.125 (valA)		

Battelle ID: 100066692 FMC Tracking Number: 2015RES-VAL2062

	Intermediate calibration solutions: PCBA						
Battelle	Use Stock conc. Stock volume Total volume Conc.						
ID	solution	(µg/mL)	(µL)	(mL)	(µg/mL)		
IO15	IO11	898	110	10	9.88		
IO16	IO15	9.88	100	10	0.0988		
IO17	IO16	0.0988	1000	10	0.00988		

Solvent calibration solutions were prepared by diluting working calibration standards in methanol:water (20:80 v:v) with 0.1% formic acid. Solvent calibration solutions were stored in a freezer at -20 °C when not in use:

	Calibration solutions: valifenalate and valifenalate acid							
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.			
ID	solution	(µg/mL)	(µL)	(mL)	(ng/mL)			
IO04	IO03	0.125	20	10	0.251 (val)			
1004	1003	0.125	20	10	0.249 (valA)			
IO05	IO03	0.125	40	10	0.502 (val)			
1005	1005	0.125	40	10	0.499 (valA)			
IO06	IO03	0.125	120	10	1.51 (val)			
1000	1005	0.125	120	10	1.50 (valA)			
1007	1002	0.125	400	10	5.02 (val)			
IO07	IO03	0.125	400	10	4.99 (valA)			
1000	1002	0.125	800	10	10.0 (val)			
IO08	IO03	0.125	800	10	9.97 (valA)			
1000	IO02	2.51	60	10	15.1 (val)			
IO09		2.49	00	10	15.0 (valA)			
ID42	1042	0.125	20	10	0.251 (val)			
IP43	IP42	0.125	20	10	0.249 (valA)			
ID44	1042	0.125	40	10	0.502 (val)			
IP44	IP42	0.125	40	10	0.499 (valA)			
ID45	1042	0.125	120	10	1.51 (val)			
IP45	IP42	0.125	120	10	1.50 (valA)			
	ID42	0.125	400	10	5.02 (val)			
IP46	IP42	0.125	400	10	4.99 (valA)			
ID 47	1042	0.125	800	10	10.0 (val)			
IP47	IP42	0.125	800	10	9.97 (valA)			
ID49	ID42	0.125	1200	10	15.1 (val)			
IP48	IP42	0.125	1200	10	15.0 (valA)			

Battelle ID: 100066692 FMC Tracking Number: 2015RES-VAL2062

	Calibration solutions: PCBA						
Battelle	Use	Stock conc.	Stock volume	Total volume	Conc.		
ID	solution	(µg/mL)	(µL)	(mL)	(ng/mL)		
IO69	IO66	0.0988	75	10	0.741		
IO70	IO66	0.0988	150	10	1.48		
IO71	IO66	0.0988	300	10	2.96		
IO72	IO66	0.0988	500	10	4.94		
IO73	IO66	0.0988	1000	10	9.88		
IO74	IO66	0.0988	1500	10	14.8		

Matrix matched calibration solutions of the analytes were prepared by diluting 500 μ L of untreated control (UTC) extract with a combination of water and standard solution. Matrix-matched calibration solutions were stored refrigerated with samples at 0 - 4 °C when not in use:

Battelle ID	Stock solution ID	Volume taken of stock solution (µL)	Volume of water added	Final Volume (µL)	Solution Conc. (ng/mL)
	IO08	25			0.251 (val)
CG761UTC-AG(5)	1000		425	1000	0.249 (valA)
	IO74	50			0.741 (PCBA)
	IO08	50			0.502 (val)
CG761UTC-AG(7)	1008	50	350	1000	0.499 (valA)
	IO74	100			1.481 (PCBA)
	IO08	150	150	1000	1.51 (val)
CG761UTC-AG(9)					1.50 (valA)
	IO74	200			2.96 (PCBA)
	1002	40		1000	5.02 (val)
CG761UTC-AG(11)	IO03		410		4.99 (valA)
	IO66	50			4.94 (PCBA)
	1002	00			10.0 (val)
CG761UTC-AG(13)	IO03	80	320	1000	10.0 (valA)
	IO66	100			9.88 (PCBA)
	1002	120			15.1 (val)
CG761UTC-AG(15)	IO03	120	230	1000	15.0 (valA)
	IO66	150			14.8 (PCBA)

2.3.4 Extraction

Extraction Method

- 1. Using graduated cylinder, 100 mL aliquots of surface water samples were added into Erlenmeyer flasks and fortified, if necessary
- 2. Six mL [500 mg] Oasis HLB cartridges were conditioned with 5 mL methanol followed by 5 mL of Milli-Q water
- 3. One mL of 1 N HCl was added to the sample aliquot in the Erlenmeyer flask
- 4. Reservoirs and adapters were attached to the Oasis HLB cartridges and transferred the acidified water sample to the cartridge
- 5. The samples were allowed to flow through at 40 drops per minute with the aided by a light vacuum.
- 6. Twenty mL of water and 1 mL of 1 N HCl were added to the Erlenmeyer flask to rinse the flask and transfer the rinsates to the cartridge
- 7. The water sample and the acidified rinsates were allowed to pass through the cartridge
- 8. The cartridge was eluted with 5 mL of methanol into a 15 mL centrifuge tube.
- 9. Five mL of Milli-Q water was added to the centrifuge tube and vortexed to mix the contents
- 10. An aliquot was transferred to an HPLC auto-sampler vial
- 11. Analysis was performed by LC-MS/MS

2.4 LC-MS/MS Analysis

Calibration solutions, matrix-matched calibration solutions, blank extracts, control sample extracts and fortified sample extracts were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The following LC/MS/MS conditions were used for valifenalate and valifenalate acid analysis in positive ionization mode:

LC System	Shimadzu LC2080 UHPLC system, including a vacuum solvent degasser, binary UHPLC pump, column oven, autosampler				
LC Column	Thermo Betasil C1	8 100 x 2	.1 mm, 5 μι	m Catalog # 70	0105102130
Injection Vol.	10 µL				
	Mobile Phase A: 0	.1 % form	ic acid in w	vater	
	Mobile Phase B: 0	.1 % form	ic acid in a	cetonitrile	
	Mobile Phase Com	position			
HPLC Method	Time (min)		v rate /min)	% A	% B
	0.0	0	.8	80	20
	1.5	0.8		80	20
	1.7	0.8		5	95
	3.0	0.8		5	95
	3.1	0.8		80	20
	5.0	0	.8	80	20
Ret. Times	~ 2.2 – 2.4 minute	S			
MS/MS System	Applied Biosystem system with Turbo				trap MS/MS
	Source temperature	e:	550°C		
	Gas supply (GS 1)	:	70 (arbitrary units)		
	Gas supply (GS 21):	70 (arbitrary units)		
Ion Source Conditions	Curtain gas (CUR)	:	45 (arbitrary units)		
ESI Positive Polarity	Collision gas (CAI	D):	medium (arbitrary units)		
	Entrance potential:		10 V		
	IonSpray voltage:		4000 V		
	Resolution:		Q1: Unit,	Q3: Unit	

The following LC/MS/MS conditions	s were used for PCBA ana	lysis in negative	ionization mode
	s were used for I CDA and	ilysis in negative	iomzanon moue.

LC System	Shimadzu LC2080 UHPLC system, including a vacuum solvent degasser, binary UHPLC pump, column oven, autosampler					
LC Column	ARMOR C18, 5 µ	m, 100 x 2	.1 mm, P/N	NADV7009		
Column Temp	40 °C					
Injection Vol.	20 μL					
HPLC Method	Mobile Phase A: 0.1 % formic acid in water					
	Mobile Phase B: 0.1 % formic acid in acetonitrile					
	Mobile Phase Composition					
	Time (min)	Flow rate (mL/min)		% A	% B	
	0.0	0.8		90	10	
	2.5	0.8		10	90	
	3	0.8		10	90	
	3.1	0.8		90	10	
	5	0.8		90	10	
Ret. Times	~ 2.08 – 2.14 minutes					
MS/MS System	Applied Biosystems MDS Sciex API 6500 linear ion trap MS/MS system with TurboIonspray (ESI) source					
Ion Source Conditions ESI Positive Polarity	Source temperature:		550°C			
	Gas supply (GS 1):		50 (arbitrary units)			
	Gas supply (GS 21):		50 (arbitrary units)			
	Curtain gas (CUR):		20 (arbitrary units)			
	Collision gas (CAD):		medium (arbitrary units)			
	Entrance potential:		-10 V			
	IonSpray voltage:		-4500 V			
	Resolution:		Q1: Unit, Q3: Unit			

	399.5 m/z > 155.0 m/z (used for quantitation)						
MS/MS Conditions for Valifenalate	Dwell time:	100 msec	DP:	80 V			
	CE:	39 V	CXP:	11 V			
	399.5 > 116.0 m/z (used for confirmation)						
	Dwell time:	100 msec	DP:	80 V			
	CE:	25 V	CXP:	10 V			
MS/MS Conditions for Valifenalate Acid	385.3 > 116.0 m/z (used for quantitation)						
	Dwell time:	100 msec	DP:	85 V			
	CE:	27 V	CXP:	10 V			
	385.3 > 144.0 m/z (used for confirmation)						
	Dwell time:	100 msec	DP:	85 V			
	CE:	19 V	CXP:	9 V			
MS/MS Conditions for PCBA	155.0 m/z > 111.0 m/z (used for quantitation)						
	Dwell time:	500 msec	DP:	-27			
	CE:	-16 V	CXP:	-10 V			
	155.0 > 35.0 m/z (used for confirmation)						
	Dwell time:	500 msec	DP:	-19 V			
	CE:	-45 V	CXP:	-16 V			

MRM Transitions for Valifenalate, Valifenalate acid and PCBA

2.5 Calculations

The following equation was used to calculate the individual residues R in mg/kg:

$$R = C_{End} \times \left(\frac{V_{Exl}}{W}\right)$$

Where:

R:Residue in μ g/L. C_{End} :Final concentration of analyte in extract in ng/mL. V_{Exl} :Total volume of the eluate (10 mL).W:Total volume of the sample (100 mL)

The values reported in the tables are calculated with full precision, but displayed with three significant figures.

Recoveries (Rec.) were calculated for the fortified specimens as follows:

$$Rec. = \frac{R}{R_{fort.}} \times 100$$

Where

Rec.: Recovery (%) $R_{fort.}$: Residue fortified, in μ g/L.

The calculation is exemplified with the water sample CG762LOQ-AG(0) fortified at 0.100 μ g/L (LOQ) for valifenalate. The final extract was examined by LC-MS/MS run to give a peak area of 48108 counts for the transition 399.5 m/z > 155.0 m/z. Using the respective calibration curve (see Figure 7) a final concentration of 0.950 ng/mL was calculated (see Table 2).

Thus:

$$R = C_{End} \times \left(\frac{V_{El}}{W}\right) = 0.950 \frac{\text{ng}}{\text{mL}} \times \left(\frac{10 \text{ mL}}{100 \text{ mL}}\right) = 0.0950 \frac{\mu \text{g}}{\text{L}}$$

And:

$$Rec. = \frac{R}{R_{fort.}} \times 100 = \frac{0.0950 \frac{\mu g}{L}}{0.100 \frac{\mu g}{L}} \times 100 = 95.0\%$$