

Office of Chemical Safety and Pollution Prevention

Draft Risk Evaluation for N-Methylpyrrolidone (2-Pyrrolidinone, 1-Methyl-)

CASRN: 872-50-4

Benchmark Dose Modeling Supplemental File

October 2019

Table of Contents

1	INT	RODUCTION	.4
2	BEN	ICHMARK DOSE MODELING OF FETAL AND PUP BODY WEIGHT CHANGES	.5
	2.1	Results for Saillenfait et al., 2003	.7
	2.2	Results for Saillenfait et al., 2002	10
	2.3	Results for Saillenfait et al., 2002 and 2003 combined	13
		Results for DuPont, 1990	
	2.5	Results for Becci et al., 1982.	9
3		ICHMARK DOSE MODELING OF EFFECTS FOR RESORPTIONS AND FETAL	
M		LITY	
		Results for Saillenfait et al., 2002 and 2003 combined using C _{max}	
		Results for Saillenfait et al., 2002 and 2003 combined using AUC	
	3.3	Results for Sitarek et al., 2012	28
4	BEN	ICHMARK DOSE MODELING OF MALE FERTILITY, FEMALE FECUNDITY,	
		SIZE AND PUP DEATH IN EXXON, 1991	29
	4.1	Overall BMD Modeling Approach for Exxon 1991 Data	9
	4.2	PBPK Analysis for Exxon 1991 Data	30
		Summary of BMD Modeling for Exxon, 1991 Data	
		Results of BMD Modeling of P2 Male and Female Fertility Indices (Exxon, 1991)	
	4.4.1		
	4.4.2		
	4.4.3	• •	
	4.4.4	P2/F2B Female Fecundity (Females Unsuccessful/Females Mated; Exxon Appendix AG)	18
	4.5	Results of BMD Modeling of P2 Litter (Exxon, 1991)	52
	4.5.1	P2/F2A Litter Size - 50 g Rat (Exxon Appendix AJ, "Total Pups Born")	54
	4.5.2	P2/F2B Litter Size - 50 g Rat (Exxon Appendix AK, "Total Pups Born")	58
	4.5.3	P2/F2A Litter Size – GD 6-21 Rat (Exxon Appendix AJ, "Total Pups Born")	52
	4.5.4	P2/F2B Litter Size – GD 6-21 Rat (Exxon Appendix AK, "Total Pups Born")	56
	4.6	Results of BMD Modeling of P2 Pup Death (Exxon, 1991)	70
	4.6.1		
	4.6.2		
	4.6.3		
	4.6.4	P2/F2B Pups Dead by Day 4 (Dead by Day 4/Total Pups Born; Exxon Appendix AK) 8	32
5	REF	TERENCES	R 4

List of Figures
Figure 2-1 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body
Weight in Rats Exposed to NMP via Inhalation (Saillenfait et al., 2003)
Figure 2-2 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body
Weight in Rats Exposed to NMP via Gavage (Saillenfait et al., 2002)
Figure 2-3 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body
Weight in Rats Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002)
Figure 2-4 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body
Weight in Rats Exposed to NMP via Inhalation (DuPont, 1990)17
Figure 2-5 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body
Weight in Rats Exposed to NMP Dermally (Becci et al., 1982)
Figure 3-1 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Resorptions in Ra
Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002))
Figure 3-2 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Resorptions in Ra
Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002))
List of Tables
Table 2-2-1 Fetal Body Weight Data Selected for Dose-Response Modeling for NMP
Table 2-2-2 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Inhalation Using
Daily Average AUC as the Dose Metric (Saillenfait et al., 2003)
Table 2-2-3 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Gavage Using Daily
Average AUC as the Dose Metric (Saillenfait et al., 2002)
Table 2-2-4 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Gavage or
Inhalation using Daily Average AUC as the Dose Metric (Saillenfait et al. (2003; 2002))
Table 2-2-5 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Inhalation using
Daily Average AUC as the Dose Metric (DuPont, 1990)
Table 2-2-6 Model Predictions for Fetal Body Weights in Rats Exposed to NMP Dermally Using Daily
Average AUC as the Dose Metric (Becci et al., 1982)
Table 3-3-1 Skeletal Malformations, Resorptions and Fetal Mortality Data Selected for Dose-Response
Modeling for NMP
Table 3-3-2 Model Predictions for Resorptions in Rats Exposed to NMP via Gavage or Inhalation Using
C _{max} as the Dose Metric (Saillenfait et al. (2003; 2002))
Table 3-3-3 Model Predictions for Resorptions in Rats Exposed to NMP via Gavage or Inhalation Using
AUC as the Dose Metric (Saillenfait et al. (2003; 2002))
Table 3-3-4 Model Predictions for Fetal Mortality in Rats Exposed to NMP by Gavage Using C _{max} as the
Dose Metric (Sitarek et al., 2012)
Table 4-1 PBPK-predicted average blood concentrations (C _{avg} , mg/L) in juvenile rats
Table 4-2 PBPK-predicted average blood concentrations (Cavg, mg/L) during gestation for P2/F2A 3
Table 4-3 PBPK-predicted average blood concentrations (Cavg, mg/L) during gestation for P2/F2B 32
Table 4-4 BMD Modeling Summary for Exxon (1991)
Table 4-5 Model Predictions for Reduced Male Fertility in P2/F2A Male Rats (Exxon, 1991) 30
Table 4-6 Model Predictions for Reduced Male Fertility in P2/F2B Male Rats (Exxon, 1991)
Table 4-7 Model Predictions for Reduced Fecundity in P2/F2A Female Rats (Exxon, 1991) 4-4
Table 4-8 Model Predictions for Reduced Fecundity in P2/F2B Female Rats (Exxon, 1991) 48
Table 4-9 Model Predictions for Litter Size in P2/F2A Rats Based on Post-weaning Exposure (Exxon,
1001)

Table 4-10 Model Predictions for Litter Size in P2/F2B Rats Based on Post-weaning Exposure (Exxon	ı,
1991)	58
Table 4-11 Model Predictions for Litter Size in P2/F2A Rats Based on Gestational Exposure (Exxon,	
1991)	62
Table 4-12 Model Predictions for Litter Size in P2/F2B Rats Based on Gestational Exposure (Exxon,	
1991)	66
Table 4-13 Model Predictions for Pup Death at Day 0 in P2/F2A Rats (Exxon, 1991)	72
Table 4-14 Model Predictions for Pup Death at Day 0 in P2/F2B Rats (Exxon, 1991)	78
Table 4-15 Model Predictions for Pup Death at Day 4 in P2/F2A Rats (Exxon, 1991)	81
Table 4-16 Model Predictions for Pup Death at Day 4 in P2/F2B Rats (Exxon, 1991)	83

1 INTRODUCTION

This supplemental file describes benchmark dose (BMD) modeling approaches and results for all endpoints considered in the derivation of points of departure (PODs) for NMP. Reduced male fertility, reduced female fecundity, and reduced fetal/pup body weights were all identified as sensitive reproductive and developmental endpoints associated with repeated dose exposures and were evaluated as the potential basis for chronic PODs. Resorptions and fetal mortality were identified as sensitive developmental endpoints that are relevant for single dose exposures and were evaluated as the potential basis for acute PODs.

BMD modeling for fetal and pup body weight changes (Section 2) and resorption/fetal death (Section 3) was performed using USEPA's BMD Software package version 2.5 (<u>BMDS</u> 2.5), in a manner consistent with EPA <u>Benchmark Dose Technical Guidance</u>. These benchmark modeling results were previously presented in EPA's risk assessment of NMP (<u>U.S. EPA, 2015</u>).

Subsequent BMD modeling for reduced male fertility, female fecundity, reduced litter size, and pup death (Section 4) described in a 2-generation reproductive study in rats (Exxon, 1991) was performed using USEPA's BMD Software package version 3.1.1 (BMDS 3.1.1) or 2.7 (BMDS 2.7)¹ in a manner consistent with Benchmark Dose Technical Guidance. Litter size and pup death were not the most sensitive reproductive and developmental endpoints in this study, but were evaluated for comparison with developmental effects in other studies and as supporting evidence for the reduced fertility observed in this study.

A peer-reviewed rat PBPK model for NMP (Poet et al., 2010) modified by EPA was used to calculate BMDs for each endpoint in terms of internal doses (blood concentrations) in exposed rats. PODs based on internal doses in rats can be compared to blood concentrations in people predicted by human PBPK models for each condition of use. Internal dose metrics calculated with the rat PBPK model are in units of either AUC (hr mg/L) for chronic exposures or peak blood concentration (Cmax, mg/L) for acute exposures.

_

¹ While EPA's preferred nested dichotomous model (NLogistic) is available in both BMDS 2.7 and 3.1.1 and, in this case, provided the best fit to the pup death endpoint, BMDS 2.7 was used to provide an evaluation of this endpoint that includes two alternative nested dichotomous models that are not currently available in BMDS 3.1.1.

2 Benchmark Dose Modeling of Fetal and Pup Body Weight Changes

BMD modeling for fetal and pup body weight changes and resorption/fetal death was performed using USEPA's BMD Software package version 2.5 (BMDS 2.5), in a manner consistent with EPA Benchmark Dose Technical Guidance. These benchmark modeling results were previously presented in EPA's (2015) risk assessment of NMP.

Continuous models were used to fit dose-response data for mean fetal/pup body weights. A BMR of 5% RD from control mean was applied in modeling pup body weight changes under the assumption that it represents a minimal biologically significant response. In adults, a 10% decrease in body weight in animals is generally recognized as a biologically significant response associated with identifying a maximum tolerated dose. During development, however, identification of a smaller (5%) decrease in body weight is consistent with the assumptions that development represents a susceptible lifestage and that the developing animal is more adversely affected by a decrease in body weight than the adult. In humans, reduced birth weight is associated with numerous adverse health outcomes, including increased risk of infant mortality as well as heart disease and type II diabetes in adults (Barker, 2007; Reyes and Mañalich, 2005). The selection of a 5% BMR is additionally supported by data from (Kavlock et al., 1995) which found that a BMR of 5% RD for fetal weight reduction was statistically similar to several other BMR measurements as well as to statistically-dervived NOAEL values. For these reasons, a BMR of 5% RD was selected for decreased pup weight. A BMR of 1 standard deviation is also shown for comparison.

Daily AUC for NMP in blood, averaged over the exposure period until the day of measurement (*e.g.* GD6-20 for Becci et al. (1982) or GD5-21 for Saillenfait et al. (2002)), was used as an appropriate dose measure for this endpoint. The doses and response data used for the modeling are presented in Table 2-2-1.

Table 2-2-1 Fetal Body Weight Data Selected for Dose-Response Modeling for NMP

Reference	Dose AUC (hr mg/L)	Number of litters	Fetal body weight (g) Mean ± Standard Deviation
Saillenfait et al.	0	24	5.671 ± 0.370
(2003)	158	20	5.623 ± 0.358
	323	19	5.469 ± 0.252
	668	25	5.393 ± 0.446
Saillenfait et	0	21	5.73 ± 0.5
al.(<u>2002</u>)	1144	21	5.59 ± 0.22
	2503	24	5.18 ± 0.35
	5674	25	4.02 ± 0.21
	9231	8	3.01 ± 0.39

Reference	Dose AUC (hr mg/L)	Number of litters	Fetal body weight (g) Mean ± Standard Deviation
Saillenfait et	0	45	5.698 ± 0.44
al.(2002) and (2003) pooled	158	20	5.623 ± 0.358
p. 0.10 u	323	19	5.469 ± 0.252
	668	25	5.393 ± 0.446
	1144	21	5.59 ± 0.22
	2503	24	5.18 ± 0.35
	5674	25	4.02 ± 0.21
	9231	8	3.01 ± 0.39
DuPont (<u>1990</u>)	0	39	7.48 ± 0.701
	51	16	7.03 ± 0.705
	268	15	7.13 ± 0.695
	633	22	6.66 ± 0.616
Becci et al. (<u>1982</u>)	0	24	3.45 ± 0.20
	561	22	3.49 ± 0.24
	2052	23	3.54 ± 0.29
	7986	22	2.83 ± 0.39

The best fitting model was selected based on Akaike information criterion (AIC; lower value indicates a better fit), chi-square goodness of fit p-value (higher value indicates a better fit), ratio of the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection. A comparison of model fits obtained for each data set of fetal/pup body weight changes is provided in Table 2-2-2 to Table 2-2-6. The best-fitting models, based on the criteria described above, are indicated in bold. For each of the best fitting models in Sections 2.1-2.5, subsequent tables and figures show the model version number, model form, benchmark dose calculation, parameter estimates and estimated values.

2.1 Results for Saillenfait et al., 2003

Table 2-2-2 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Inhalation Using Daily Average AUC as the Dose Metric (Saillenfait et al., 2003)

BMR = 5% Relative Deviation (RD) and for Comparison 1 Standard Deviation (SD)

Modela	Good	ness of fit	BMR =	5% RD	BMR	R = 1 SD	Basis for model
	<i>p</i> -value	AIC	BMD _{5RD} (hr mg/L)	BMDL _{5RD} (hr mg/L)	BMD _{1SD} (hr mg/L)	BMDL _{1SD} (hr mg/L)	selection
Linear	0.952	-84.637	642	411	747	456	Of the acceptable
Exponential (M2)	0.948	-84.629	641	405	749	451	models based on p- value (>0.1) and visual fit the
Exponential (M4)	0.948	-84.629	641	284	749	381	BMDLs were sufficiently close
Exponential (M3)	0.815	-82.682	653	406	745	453	and the Linear model was selected based on
Power	0.812	-82.680	653	413	744	458	lowest AIC.
Polynomial 3°b Polynomial 2°	0.789	-82.665	652	412	738	457	
Hill	N/A ^c	-80.737	649	176	889	error	
Exponential (M5)	N/A ^c	-80.737	643	168	error	error	

^a Modeled variance case presented (BMDS Test 2 *p*-value = 0.0670), selected model in bold; scaled residuals for selected model for doses 0, 158.3, 322.6 and 668.2 hr mg/L were 0.0675, 0.316, -0.654 and 0.24, respectively. ^b For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

^c No available degrees of freedom to calculate a goodness of fit value.

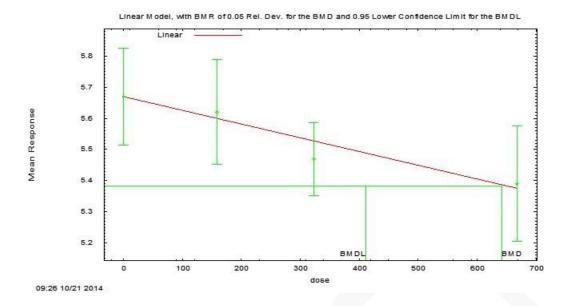


Figure 2-1 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body Weight in Rats Exposed to NMP via Inhalation (Saillenfait et al., 2003)
BMR = 5% Relative Deviation; Daily Average AUC as Dose Shown in hr mg/L

Linear Model. (Version: 2.19; Date: 06/25/2014)

The form of the response function is: $Y[dose] = beta_0 + beta_1*dose$

A modeled variance is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation

BMD = 642.052

BMDL at the 95% confidence level = 411.487

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lalpha	10.9507	-1.98661
rho	-7.59357	0
beta_0	5.66546	5.66303
beta_1	-0.000441199	-0.00043693

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	24	5.67	5.67	0.37	0.33	0.0675
158.3	20	5.62	5.6	0.36	0.346	0.316
322.6	20	5.47	5.52	0.25	0.363	-0.654
668.2	25	5.39	5.37	0.45	0.404	0.24

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	45.950356	5	-81.900712
A2	49.530515	8	-83.061031
A3	46.368255	6	-80.736511
fitted	46.318536	4	-84.637072
R	41.618363	2	-79.236727

Test	- 2*log(Likelihood Ratio)	Test df	p-value
Test 1	15.8243	6	0.01473
Test 2	7.16032	3	0.06696
Test 3	6.32452	2	0.04233
Test 4	0.099439	2	0.9515

2.2 Results for Saillenfait et al., 2002

Table 2-2-3 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Gavage Using Daily Average AUC as the Dose Metric (Saillenfait et al., 2002)

BMR = 5% Relative Deviation (RD) and for Comparison 1 Standard Deviation (SD)

Modela	Goodne	ess of fit	BMD _{5RD} (hr	BMDL _{5RD}	BMD _{1SD} (hr	BMDL _{1SD} (hr	Basis for model selection	
	<i>p</i> -value	AIC	mg/L)	(hr mg/L)	mg/L)	mg/L)		
Exponential (M5)	0.966	-109.73	1637	1184	1880	1400	Of the acceptable models based on p-value (>0.1) and	
Hill	0.962	-109.73	1660	1194	1895	1409	visual fit (Exponential (M5), Hill and Exponential (M3))	
Exponential (M3)	0.325	-109.49	1329	1035	1578	1245	the BMDLs were sufficiently close and the Exponential (M5) model was selected based on lowest AIC.	
Linear	0.0687	-106.63	938	895	1210	1036		
Power	0.0479	-105.66	1114	904	1381	1070		
Polynomial 4°b Polynomial 3°c Polynomial 2°	0.0295	-104.68	962	895	1233	1038		
Exponential (M2)	0.00183	-98.750	741	693	1028	876		
Exponential (M4)	0.00183	-98.750	741	691	1028	876		

^a Modeled variance case presented (BMDS Test 2 *p*-value = 1.26E-04), selected model in bold; scaled residuals for selected model for doses 0, 1144, 2503, 5674 and 9231 hr mg/L were -0.1399, 0.1248, -0.02274, 0.1033 and -0.1213, respectively. ^b For the Polynomial 4° model, the b4 and b3 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

^c For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model.

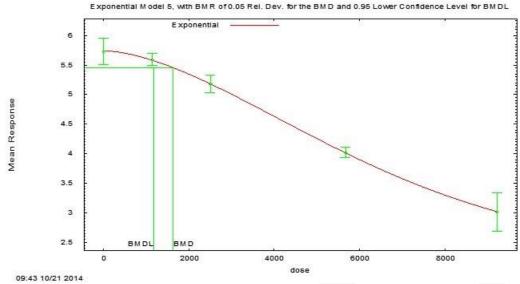


Figure 2-2 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body Weight in Rats Exposed to NMP via Gavage (Saillenfait et al., 2002)

BMR = 5% Relative Deviation; Daily Average AUC as Dose Shown in hr mg/L

Exponential Model. (Version: 1.9; Date: 01/29/2013)

The form of the response function is: $Y[dose] = a * [c-(c-1) * exp(-(b * dose)^d)]$ A modeled variance is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation

BMD = 1637.32

BMDL at the 95% confidence level = 1184.3

Parameter Estimates

diameter Estimates						
Variable	Estimate	Default Initial Parameter Values				
lnalpha	-3.80738	-2.38723				
rho	1.00208	0.0548918				
a	5.74092	6.0165				
b	0.000143148	0.000073183				
С	0.405685	0.000500291				
d	1.67614	1				

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	21	5.73	5.741	0.5	0.3577	-0.1399
1144	21	5.59	5.58	0.22	0.3527	0.1248
2503	24	5.18	5.182	0.35	0.3398	-0.02274
5674	25	4.02	4.014	0.21	0.299	0.1033
9231	8	3.01	3.021	0.39	0.2593	-0.1213

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	59.67563	6	-107.3513
A2	71.17728	10	-122.3546
A3	60.86644	7	-107.7329
R	-42.05093	2	88.10186
5	60.86544	6	-109.7309

1 CSUS OF THICK CSU							
Test	- 2*log(Likelihood Ratio)	Test df	p-value				
Test 1	226.5	8	<0.0001				
Test 2	23	4	0.0001264				
Test 3	20.62	3	0.0001261				
Test 7a	0.001995	1	0.9644				

2.3 Results for Saillenfait et al., 2002 and 2003 combined

Table 2-2-4 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Gavage or Inhalation using Daily Average AUC as the Dose Metric (Saillenfait et al. (2003; 2002))

BMR = 5% Relative Deviation (RD) and for Comparison 1 Standard Deviation (SD)

Model ^a	Goodne	ess of fit	BMD _{5RD} (hr	BMDL _{5RD}	BMD _{1SD} (hr	BMDL _{1SD} (hr	Basis for model selection
	<i>p</i> -value	AIC	mg/L)	(hr mg/L)	mg/L)	mg/L)	
Exponential (M2) Exponential (M4) ^b	<0.0001	-169.77	828	774	1155	1030	While none of the models had an acceptable p-value (>0.1) the visual fit appears adequate and the model
Exponential (M3)	0.0119	-187.12	1547	1253	1911	1579	with the highest p-value and lowest AIC, the Exponential (M5) model
Exponential (M5)	0.0150	-187.44	1937	1424	2283	1764	was selected.
Hill	0.0138	-187.25	1962	1421	2297	1762	
Power	0.00396	-184.48	1321	1039	1696	1366	
Polynomial 7°c Polynomial 5°d Polynomial 4°e Polynomial 3°f	0.00218	-183.08	1155	978	1532	1287	
Polynomial 6°g	0.00218	-183.08	1155	978	1532	1287	
Polynomial 2°h	0.00218	-183.08	1155	978	1532	1287	
Linear	0.00164	-182.51	989	944	1343	1208	

^a Modeled variance case presented (BMDS Test 2 p-value = 1.21E-04), selected model in bold; scaled residuals for selected model for doses 0, 156.5, 319, 660.8, 1144, 2503, 5674 and 9231 hr mg/L were 1.671, 0.2153, -1.487, -2.354, 1.142, 0.2305, 0.03888 and -0.1112, respectively.

^b For the Exponential (M4) model, the estimate of c was 0 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Polynomial 7° model, the b7, b6, b5 and b4 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 3° model.

^d For the Polynomial 5° model, the b5 and b4 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Polynomial 3° model.

^e For the Polynomial 4° model, the b4 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 3° model.

^f The Polynomial 3° model may appear equivalent to the Polynomial 6° model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 2° model.

^g The Polynomial 6° model may appear equivalent to the Polynomial 7° model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 5° model. This also applies to the Polynomial 3° model. This also applies to the Polynomial 3° model. This also applies to the Polynomial 3° model.

^h The Polynomial 2° model may appear equivalent to the Polynomial 7° model, however differences exist in digits not displayed in the table. This also applies to the Polynomial 6° model. This also applies to the Polynomial 5° model. This also applies to the Polynomial 4° model. This also applies to the Polynomial 3° model.

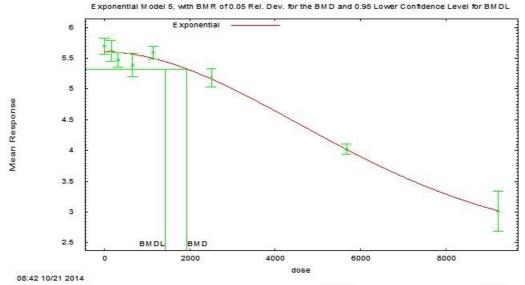


Figure 2-3 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body Weight in Rats Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002)) BMR = 5% Relative Deviation; Daily Average AUC as Dose Shown in hr mg/L

Exponential Model. (Version: 1.9; Date: 01/29/2013)

The form of the response function is: $Y[dose] = a * [c-(c-1) * exp(-(b * dose)^d)]$ A modeled variance is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation

BMD = 1937.29

BMDL at the 95% confidence level = 1423.77

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lnalpha	-4.03673	-2.36893
rho	1.20539	0.0584431
a	5.6045	5.9829
b	0.000147759	0.0000728823
c	0.446945	0.000503101
d	1.88381	1

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	45	5.698	5.604	0.4353	0.3755	1.671
156.5	20	5.62	5.602	0.36	0.3754	0.2153
319	20	5.47	5.595	0.25	0.3751	-1.487
660.8	25	5.39	5.566	0.45	0.3739	-2.354
1144	21	5.59	5.497	0.22	0.3711	1.142
2503	24	5.18	5.163	0.35	0.3574	0.2305
5674	25	4.02	4.018	0.21	0.3072	0.03888
9231	8	3.01	3.02	0.39	0.2587	-0.1112

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	104.4887	9	-190.9774
A2	119.1975	16	-206.3949
A3	105.8917	10	-191.7834
R	-48.75234	2	101.5047
5	99.71803	6	-187.4361

T CO CO OI THICE			
Test	- 2*log(Likelihood Ratio)	Test df	p-value
Test 1	335.9	14	< 0.0001
Test 2	29.42	7	0.0001214
Test 3	26.61	6	0.0001712
Test 7a	12.35	4	0.01495

2.4 Results for DuPont, 1990

Table 2-2-5 Model Predictions for Fetal Body Weights in Rats Exposed to NMP by Inhalation using Daily Average AUC as the Dose Metric (<u>DuPont</u>, <u>1990</u>)

BMR = 5% Relative Deviation and for Comparison 1 Standard Deviation (SD)

Model ^a	Goodne	Goodness of fit		BMDL _{5RD} (hr	BMD _{1SD} (hr	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	mg/L)	mg/L)	mg/L)	(hr mg/L)	selection
Exponential (M2) Exponential (M3) ^b	0.140	27.266	315	223	594	411	Of the acceptable models based on p-value (>0.1) and visual fit the BMDLs were sufficiently close and the Exponential model was selected based on
Power ^c Polynomial 3° ^d Polynomial 2° ^e Linear	0.138	27.288	323	234	596	421	
Exponential (M4)	0.0494	29.191	260	1.16	580	2.61	lowest AIC.
Exponential (M5)	0.0494	29.191	260	1.30	580	3.07	
Hill	0.0597	28.875	58.5	4.71E-04	609	1.98E-05	

^a Constant variance case presented (BMDS Test 2 p-value = 0.905), selected model in bold; scaled residuals for selected model for doses 0, 51.18, 267.9 and 633.3 hr mg/L were 0.8831, -1.718, 0.3504 and 0.0002752, respectively.

^b For the Exponential (M3) model, the estimate of d was 1 (boundary). The models in this row reduced to the Exponential (M2) model.

^c For the Power model, the power parameter estimate was 1. The models in this row reduced to the Linear model.

^d For the Polynomial 3° model, the b3 coefficient estimates was 0 (boundary of parameters space). The models in this row reduced to the Polynomial 2° model. For the Polynomial 3° model, the b3 and b2 coefficient estimates were 0 (boundary of parameters space). The models in this row reduced to the Linear model.

^e For the Polynomial 2° model, the b2 coefficient estimate was 0 (boundary of parameters space). The models in this row reduced to the Linear model.

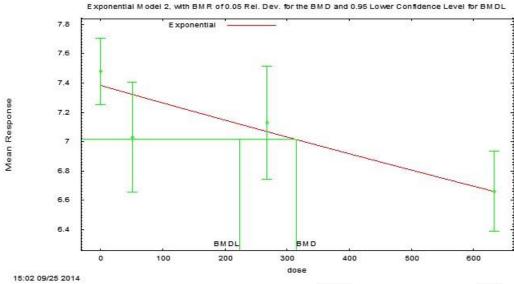


Figure 2-4 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body Weight in Rats Exposed to NMP via Inhalation (<u>DuPont, 1990</u>)
BMR = 5% Relative Deviation; Daily Average AUC as Dose Shown in hr mg/L

Exponential Model. (Version: 1.9; Date: 01/29/2013)

The form of the response function is: Y[dose] = a * exp(sign * b * dose)

A constant variance model is fit

Benchmark Dose Computation.

BMR = 5% Relative deviation

BMD = 314.897

BMDL at the 95% confidence level = 223.175

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lnalpha	-0.768852	-0.811648
rho(S)	n/a	0
a	7.38373	6.90878
b	0.000162889	0.000162077
c	0	0
d	1	1

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	39	7.48	7.384	0.701	0.6808	0.8831
51.18	16	7.03	7.322	0.705	0.6808	-1.718
267.9	15	7.13	7.068	0.695	0.6808	0.3504
633.3	22	6.66	6.66	0.616	0.6808	0.0002752

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-8.66418	5	27.32836
A2	-8.383601	8	32.7672
A3	-8.66418	5	27.32836
R	-18.52227	2	41.04454
2	-10.6328	3	27.26561

Test	- 2*log(Likelihood Ratio)	Test df	p-value				
Test 1	20.28	6	0.002471				
Test 2	0.5612	3	0.9053				
Test 3	0.5612	3	0.9053				
Test 4	3.937	2	0.1396				

2.5 Results for Becci et al., 1982

Table 2-2-6 Model Predictions for Fetal Body Weights in Rats Exposed to NMP Dermally Using Daily Average AUC as the Dose Metric (Becci et al., 1982)

BMR = 5% Relative Deviation and for Comparison 1 Standard Deviation (SD)

Modela	Goodness of fit		BMD _{5RD} (hr	BMDL _{5RD} (hr	BMD _{1SD} (hr	BMDL _{1SD} (hr	Basis for model selection	
	<i>p</i> -value	AIC	mg/L)	mg/L)	mg/L)	mg/L)		
Polynomial 3°	0.572	-138.35	5391	4018	6015	4645	Of the acceptable models	
Power	0.371	-136.67	7692	3783	7864	4525	based on p-value (>0.1) and visual fit the BMDLs were	
Polynomial 2°	0.307	-137.11	4326	3919	5087	4503	sufficiently close and the	
Linear	0.00557	-129.09	2452	1944	3331	2567	Polynomial 3° model was selected based on lowest	
Hill	N/A ^b	-134.67	7497	2302	7695	2361	AIC.	

Notes:

^b No available degrees of freedom to calculate a goodness of fit value.

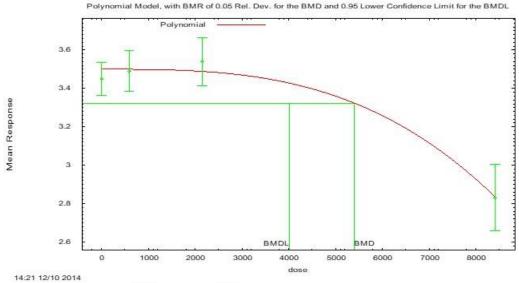


Figure 2-5 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Fetal Body Weight in Rats Exposed to NMP Dermally (<u>Becci et al., 1982</u>)

BMR = 5% Relative Deviation; Daily Average AUC as Dose Shown in hr mg/L

Polynomial Model. (Version: 2.19; Date: 06/25/2014)

The form of the response function is: $Y[dose] = beta_0 + beta_1*dose + beta_2*dose^2 + ...$ A modeled variance is fit

^a Modeled variance case presented (BMDS Test 2 p-value = 0.0101), selected model in bold; scaled residuals for selected model for doses 0, 588.7, 2156 and 8409 hr mg/L were -0.928, -0.111, 1.08 and -0.03, respectively.

Benchmark Dose Computation.

BMR = 5% Relative deviation

BMD = 5390.85

BMDL at the 95% confidence level = 4017.68

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lalpha	2.56784	-2.49546
rho	-4.31376	0
beta_0	3.49599	3.45
beta_1	-1.68014E-27	0
beta_2	0	-0.000000016108
beta_3	-1.11576E-12	-2.23106E-13

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	24	3.45	3.5	0.2	0.243	-0.928
588.7	22	3.49	3.5	0.24	0.243	-0.111
2156	23	3.54	3.48	0.29	0.244	1.08
8409	22	2.83	2.83	0.39	0.382	-0.03

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	70.088658	5	-130.177316
A2	75.754919	8	-135.509838
A3	73.734901	6	-135.469801
fitted	73.175965	4	-138.35193
R	37.76879	2	-71.537581

Test	- 2*log(Likelihood Ratio)	Test df	p-value
Test 1	75.9723	6	< 0.0001
Test 2	11.3325	3	0.01006
Test 3	4.04004	2	0.1327
Test 4	1.11787	2	0.5718

3 Benchmark Dose Modeling of Effects for Resorptions and Fetal Mortality

BMD modeling for fetal and pup body weight changes and resorption/fetal death was performed using USEPA's BMD Software package version 2.5 (BMDS 2.5), in a manner consistent with EPA Benchmark Dose Technical Guidance. These benchmark modeling results were previously presented in EPA's (2015) risk assessment of NMP.

Dichotomous models were used to fit fetal mortality incidence data and continuous models were used to fit dose-response data for mean number of resorptions. A BMR of 1% was used to address the relative severity of this endpoint (EPA, 2012). BMRs of 0.5 and 1 standard deviation are also shown for comparison. The peak NMP in maternal blood (C_{max}) was used as an appropriate dose measure for these endpoints. The doses and response data used for the modeling are presented in Table 3-3-1.

Table 3-3-1 Skeletal Malformations, Resorptions and Fetal Mortality Data Selected for Dose-Response Modeling for NMP

Reference and endpoint	Dose Cmax (mg/L)	Dose AUC (hr mg/L)	Number of litters	Response Mean ± Standard Deviation
Saillenfait et	0	0	45	3.4 ± 7.13
al.(<u>2002</u>) and (2003)	15	156.5	20	4.3 ± 4.1
Resorptions	30	319	20	9.9 ± 22.3
	62	660.8	25	7 ± 9.4
	120	1144	21	8.9 ± 21.2
	250	2503	24	4.5 ± 6.6
	531	5674	25	9.4 ± 8.9
	831	9231	5	91 ± 16
Sitarek et al.	0	0	22	0.18 ± 0.85
(2012) fetal mortality	76	902	24	0 ± 0
	265	3168	20	0.13 ± 0.34
	669	8245	15	0.8 ± 1.1

The best fitting model was selected based on Akaike information criterion (AIC; lower value indicates a better fit), chi-square goodness of fit p-value (higher value indicates a better fit), ratio of the BMC:BMCL (lower value indicates less model uncertainty) and visual inspection. Comparisons of model fits obtained for resorptions and fetal mortality are provided in Table 3-3-2 to Table 3-3-4. The best-fitting models, based on the criteria described above, are indicated in bold. For each of the best fitting models in Section 3.1-3.3, subsequent tables and figures show the model version number, model form, benchmark dose calculation, parameter estimates and estimated values.

3.1 Results for Saillenfait et al., 2002 and 2003 combined using C_{max}

Table 3-3-2 Model Predictions for Resorptions in Rats Exposed to NMP via Gavage or Inhalation Using C_{max} as the Dose Metric (Saillenfait et al. (2003; 2002))

BMR = 1% Relative Deviation (RD) and for Comparison 0.5 and 1 Standard Deviation (SD)

Modela	Goodne	ess of fit	BMD _{1RD}	BMDL _{1RD}	BMD _{0.5SD}	BMDL _{0.5SD}	BMD _{1SD}	BMDL _{1SD}	Basis for model
	<i>p</i> -value	AIC	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	selection
Exponential (M2)	<0.0001	1288.45	1.60	1.26	424	349	530	468	While none of the models had an
Exponential (M3)	<0.0001	1263.09	247	97.9	621	510	685	602	acceptable p-value (>0.1) the visual fit appears adequate,
Exponential (M4)	<0.0001	1364.53	0.122	0.0122	58.2	44.5	116	89.1	the lowest AIC, the Hill model was
Exponential (M5)	<0.0001	1265.04	326	215	593	514	648	583	selected.
Hill	<0.0001	1263.03	429	216	558	514	582	548	
Power	<0.0001	1263.04	326	215	593	514	648	583	
Polynomial 4°	<0.0001	1276.48	128	77.6	436	419	518	504	
Polynomial 3°	<0.0001	1300.17	66.7	55.2	359	345	452	435	
Polynomial 2°	<0.0001	1336.49	19.2	3.77	247	215	349	317	
Linear	<0.0001	1362.53	0.121	0.0122	58.2	44.5	116	89.1	

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001), selected model in bold; scaled residuals for selected model for doses 0, 15.01, 30.34, 61.86, 120, 250, 531 and 831 mg/L were -1.42, -0.619, 1.41, 0.401, 1.1, -0.599, 0.29 and -0.00443, respectively.

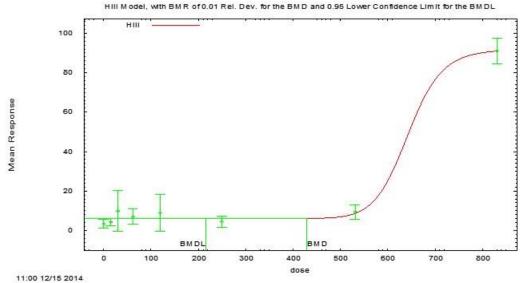


Figure 3-1 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Resorptions in Rat Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002)) BMR = 1% Relative Deviation; C_{max} as Dose Shown in mg/L

Hill Model. (Version: 2.17; Date: 01/28/2013)

The form of the response function is: $Y[dose] = intercept + v*dose^n/(k^n + dose^n)$ A modeled variance is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation

BMD = 429.482

BMDL at the 95% confidence level = 215.783

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values
lalpha	4.75575	5.10412
rho	0.150826	0
intercept	6.00954	3.4
V	85.8437	87.6
n	18	1.9286
k	642.982	992.029

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	45	3.4	6.01	7.13	12.3	-1.42
15.01	20	4.3	6.01	4.1	12.3	-0.619
30.34	20	9.9	6.01	22.3	12.3	1.41
61.86	25	7	6.01	9.4	12.3	0.401
120	22	8.9	6.01	21.2	12.3	1.1
250	24	4.5	6.01	6.6	12.3	-0.599
531	25	9.4	8.67	8.9	12.7	0.29
831	25	91	91	16	15.2	-0.00443

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-624.644958	9	1267.289916
A2	-570.082153	16	1172.164306
A3	-595.035542	10	1210.071083
fitted	-626.515585	5	1263.03117
R	-806.807094	2	1617.614189

1 ests of interest							
Test	- 2*log(Likelihood Ratio)	Test df	p-value				
Test 1	473.45	14	< 0.0001				
Test 2	109.126	7	< 0.0001				
Test 3	49.9068	6	< 0.0001				
Test 4	62.9601	5	< 0.0001				

3.2 Results for Saillenfait et al., 2002 and 2003 combined using AUC

Table 3-3-3 Model Predictions for Resorptions in Rats Exposed to NMP via Gavage or Inhalation Using AUC as the Dose Metric (Saillenfait et al. (2003; 2002))

BMR = 1% Relative Deviation (RD) and for Comparison 0.5 and 1 Standard Deviation (SD)

Modela	Goodne	ss of fit	BMD _{1RD}	BMDL _{1RD}	BMD _{0.5SD}	BMDL _{0.5SD}	BMD _{1SD} (hr	BMDL _{1SD}	Basis for
	<i>p</i> -value	AIC	(hr mg/L)	(hr mg/L)	mg/L) (hr mg/L) (hr mg/L)		mg/L)	(hr mg/L)	model selection
Exponential (M2)	<0.0001	1286.5	19.8	15.8	4281	3524	5543	4887	While none of the models
Exponential (M3)	<0.0001	1263.1	2466	901	6721	5432	7486	6504	had an acceptable p- value (>0.1)
Exponential (M4)	<0.0001	1360.1	0.720	0.0760	598	473	1196	946	the visual fit appears
Exponential (M5)	<0.0001	1265.0	3343	2128	6394	5479	7045	6285	adequate, the lowest AIC, the Power
Hill	<0.0001	1265.0	4177	2133	6091	5481	6478	5858	model was selected.
Power	<0.0001	1263.0	3343	2128	6394	5479	7045	6285	Sciected.
Polynomial 4°	<0.0001	1271.7	1432	135	4827	4537	5741	5534	
Polynomial 3°	<0.0001	1292.4	743	133	3958	3731	4986	4786	
Polynomial 2°	<0.0001	1329.7	211	148	2714	2538	3838	3589	
Linear	<0.0001	1358.1	0.720	0.0760	598	473	1196	946	

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001), selected model in bold; scaled residuals for selected model for doses 0, 156.5, 319, 660.8, 1144, 2503, 5674 and 9231 hr mg/L were -1.42, -0.62, 1.41, 0.4, 1.1, -0.603, 0.299 and -0.00462, respectively.

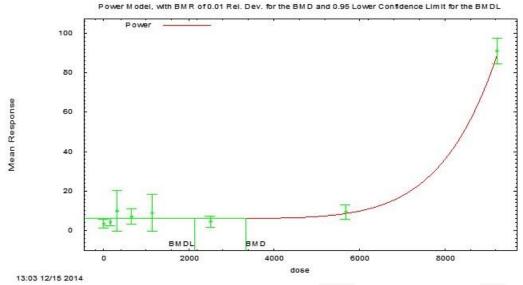


Figure 3-2 Plot of Mean Response by Dose, with Fitted Curve for Selected Model for Resorptions in Rat Exposed to NMP via Gavage or Inhalation (Saillenfait et al. (2003; 2002)) BMR = 1% Relative Deviation; AUC as Dose Shown in hr mg/L

Power Model. (Version: 2.18; Date: 05/19/2014)

The form of the response function is: $Y[dose] = control + slope * dose^power$ A modeled variance is fit

Benchmark Dose Computation.

BMR = 1% Relative deviation

BMD = 3343.09

BMDL at the 95% confidence level = 2127.52

Parameter Estimates

Variable	Estimate	Default Initial Parameter Values		
lalpha	4.75548	5.10412		
rho	0.150959	0		
control	6.01205	3.4		
slope	4.05331E-27	0.0564664		
power	7.14249	0.625198		

Table of Data and Estimated Values of Interest

Dose	N	Obs Mean	Est Mean	Obs Std Dev	Est Std Dev	Scaled Resid
0	45	3.4	6.01	7.13	12.3	-1.42
156.5	20	4.3	6.01	4.1	12.3	-0.62
319	20	9.9	6.01	22.3	12.3	1.41
660.8	25	7	6.01	9.4	12.3	0.4
1144	22	8.9	6.01	21.2	12.3	1.1
2503	24	4.5	6.02	6.6	12.3	-0.603
5674	25	9.4	8.64	8.9	12.7	0.299
9231	25	91	91	16	15.2	-0.00462

Likelihoods of Interest

Model	Log(likelihood)	# Param's	AIC
A1	-624.644958	9	1267.289916
A2	-570.082153	16	1172.164306
A3	-595.035542	10	1210.071083
fitted	-626.519051	5	1263.038102
R	-806.807094	2	1617.614189

Test	- 2*log(Likelihood Ratio)	Test df	p-value	
Test 1	473.45	14	< 0.0001	
Test 2	109.126	7	< 0.0001	
Test 3	49.9068	6	< 0.0001	
Test 4	62.967	5	< 0.0001	

3.3 Results for Sitarek et al., 2012

Table 3-3-4 Model Predictions for Fetal Mortality in Rats Exposed to NMP by Gavage Using C_{max} as the Dose Metric (Sitarek et al., 2012)

BMR = 1% Relative Deviation and for Comparison 0.5 and 1 Standard Deviation (SD)

Modela	Goodn	ess of fit	BMD _{1RD}			BMD _{1SD}	BMD _{1SD}	Basis for	
	<i>p</i> -value	AIC	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	model selection
Exponential (M2)	<0.0001	7701.7	0.0578	0.0403	181	0.341	185	26.4	No models provided an
Exponential (M3)	<0.0001	1.8E+17	1.1E+15	1.1E+15	3.9E+15	3.9E+15	3.9E+15	3.9E+15	adequate fit and a valid BMDL
Exponential (M4)			error ^b	error	error ^b	error	error ^b	error	estimate, therefore no
Exponential (M5)	N/A ^c		error ^b	error	error ^b	error	error ^b	error	model was selected.
Power	<0.0001	4.2143	465	83.1	634	471	658	567	
Polynomial 2°	<0.0001	11.247	31.9	15.0	471	351	666	496	
Linear	<0.0001	20.871	1.94	4.30E-05	457	241	915	482	
Hill	N/A ^c	8.2143	464	83.2	633	300	658	324	

^a Modeled variance case presented (BMDS Test 2 p-value = <0.0001, BMDS Test 3 p-value = <0.0001), no model was selected as a best-fitting model.

^b BMD or BMDL computation failed for this model.

^c No available degrees of freedom to calculate a goodness of fit value.

4 Benchmark Dose Modeling of Male Fertility, Female Fecundity, Litter Size and Pup Death in Exxon, 1991

BMD modeling for reduced male fertility, female fecundity, and reduced litter size described in a 2-generation reproductive study in rats exposed through diet (Exxon, 1991) was performed using USEPA's BMD Software package version 3.1.1 (BMDS 3.1.1) or 2.7 (BMDS 2.7) in a manner consistent with Benchmark Dose Technical Guidance.

In the Exxon (1991) study, two generations of both sexes were dosed daily for at least ten weeks prior to mating and throughout the mating period. Target doses for the exposed groups were 50, 160 and 500 mg/kg-day. Individual litter data reported in Appendices to the Exxon (1991) report were used for the determination of dichotomous response incidence and continuous response means and standard deviations modeled in this report.

The strongest dose-responses for reproductive effects in the Exxon (1991) study were observed for reduced Male Fertility Index and Female Fecundity Index in the first (P2/F2A; Table 73 of the Exxon report) and second (P2/F2B; Table 74 of the Exxon report) litters of the P2 (F1A) 2nd generation parents.

4.1 Overall BMD Modeling Approach for Exxon 1991 Data

Benchmark dose software version 3.1.1 (<u>BMDS</u> 3.1.1) was used to analyze male fertility, female fecundity and litter size. The pup death endpoint was analyzed using BMDS 2.7 because it contains the larger suite of nested dichotomous models.² Nested dichotomous models are preferred for this endpoint because they contain an intra-litter correlation coefficient for the assessment of litter-specific responses.

Only BMDS models that use likelihood optimization and profile likelihood-based confidence intervals were used in this analysis. All continuous models applied assume normal response distribution. Also, the benchmark response levels and dose metrics for the analysis are:

- Fertility and Fecundity for P2/F2A and P2/F2B parental rats estimate BMDs for 10% extra risk using PBPK estimates of average daily blood concentrations for young (50 g) rat as doses (four datasets), plus a sensitivity analysis using average daily blood concentrations for 250 g, 350 g and 450 g rats.
- Litter Size for P2/F2A and P2/F2B estimate BMDs for 1 SD change from control mean using PBPK estimates of average daily blood concentrations for young (50 g) rat and GD 6-21 dams as doses (four datasets)
- Pup death for P2/F2A and P2/F2B estimate BMDs for death at Day 0 and by day 4 for 10%. 5% and 1% extra risk using PBPK estimates of average daily blood concentrations for GD 6-21 dam as doses (four datasets)

Standard and non-standard forms of these models³ (defined for each endpoint below) were run separately in BMDS 3.1.1, but EPA model selection procedures (<u>EPA, 2012</u>) were applied only to the results of the standard model runs when adequate fit was achieved with any standard model. Since

² BMDS 3.1.1 contains the same NLogistic model, which is preferred because it has received the more extensive QA testing and is deemed to be the most reliable nested model, but NCTR and RaiVR models are provided as alternatives in this report.

³ The set of standard models are identified in accordance with EPA BMD technical guidance (EPA, 2012) and are the default models in BMDS 3.1.1. Non-standard models are the remaining (non-default) models available in BMDS 3.1.1.

adequate model fits were obtained in all cases for the standard model suites, no non-standard modeling results are shown or discussed in this report.

Model Restrictions and Model Selection

Restrictions for BMDS 3.1.1 models are defined in the BMDS 3.1.1 User Guide and are applied in accordance with EPA BMD Technical Guidance (EPA, 2012). For each BMD analysis, a single preferred model was chosen from among the preferred standard set of models (noting instances where consideration of non-standard models may be justified) in accordance with EPA BMD Technical Guidance (EPA, 2012). For continuous responses, dose group response standard deviation (SD) was modeled assuming constant variance across dose groups. If adequate fit (*p*>0.1) was not achieved for this variance model a nonconstant variance assumption that models SD as a power function of the mean was applied (EPA, 2012). Nested dichotomous models were run two ways, with intra-litter correlation (ILC) coefficients estimated and with ILC coefficients assumed to be zero. Because potential litter-specific covariates (LSCs) such as dam BW are affected by dose, no appropriate LSC could be determined and LSCs were not estimated in the BMDS nested dichotomous model runs.

4.2 PBPK Analysis for Exxon 1991 Data

Details of the PBPK models for rats and humans are provided in Appendix I of the NMP Risk Evaluation. The models were developed to describe dosimetry in adult females during pregnancy and so were slightly adapted to estimate dosimetry in juvenile (post-weaning) rats and adult men.

Because NMP has a relatively short half-life in both rats and humans, exposures only need to be simulated for several days to a week to determine the internal dosimetry from a consistent exposure pattern, such as occurs in an animal bioassay or in the workplace (5 day/week). Therefore, adult human single-day or workplace exposures outside of pregnancy were assumed to be adequately represented by running the model for the first day or week of pregnancy, when physiological changes are minimal. Also, physiological differences between men and women were assumed to have minimal impact on the predicted dosimetry, except that a male-specific body weight (BW) and hand surface area (SA) were used to estimate dosimetry in men. Changing the BW also affects cardiac output, respiration, and metabolism, which all scale as BW^{0.75} in the model. Exposures were simulated for a single day (residential consumer use) or a week (workplace, with 5 d/w exposure) and the average daily area-under-the-curve (AUC) blood concentration⁴ was calculated.

For the rat, where pregnancy only lasts 21 days, the model code was modified to allow a user-specified day for the start of gestation (GSTART), so results for non-pregnant animals could be obtained; i.e., with time < GSTART. As for humans, physiological differences between males and females were assumed to not significantly impact internal dosimetry, hence the non-pregnant female model was used to simulate male dosimetry. Simulations for post-weaning juvenile animals in the Exxon (1991) bioassay were conducted by setting the (initial) BW to 50 g (and for comparison, 250 g, 350 g and 450 g). Because metabolism is scaled as BW^{0.75} in the rats (as well as humans) the internal dose decreases as BW decreases, so using this BW yields the lowest estimated internal dose for post-weaning rats (weaning presumed to occur at about this BW). Using this BW in dose-response analysis for fertility and

⁴ Since the 24-hour AUC can vary from day to day, in particular for workplace scenarios, a time-averaged AUC is computed as $AUC_{avg} = AUC$ (averaging time)*(24 h)/(averaging time), where "averaging time" is typically a week. The average blood concentration is simply $C_{avg} = AUC$ (averaging time)/(averaging time). Hence $C_{avg} = AUC_{avg}/(24 \text{ h})$.

fecundity provides a lower bound on the internal dose that could give rise to those effects, since they could result from toxicity at any point in development or during maturity. Target exposure levels (50, 160, and 500 mg/kg/d) were used as exposure levels, exposure was simulated for one-week to go beyond any initial accumulation and the average blood concentration (C_{avg}) in the last day of exposure used as internal dose. Food consumption was assumed to occur 12 h/d, at a constant rate over the 12 h to match the target exposure. Results are given in Table 4-1.

Table 4-1 PBPK-predicted average blood concentrations (Cavg, mg/L) in juvenile rats

	0		8/ U / U	
Exposure rate	C _{avg} (50 g	C _{avg} (250 g	C _{avg} (350 g	C _{avg} (450 g
(mg/kg/d)	rat)	rat)	rat)	rat)
0	0	0	0	0
50	13.9	21.1	23.1	24.6
160	48.4	75.2	82.6	88.6
500	181.4	292.6	324.0	349.8

The existing PBPK model does not describe lactational dosimetry, hence the analysis did not include exposure during that period.

Since effects on litter size and pup viability could result from exposure during gestation, for these endpoints C_{avg} in the rat dam over gestation days (GDs) 6-21 days of gestation was estimated. For simulation of gestation, group-specific mean BW on GD 0 from Table 53 (P2/F2A) and Table 56 (P2/F2B) of the Exxon (1991) report were used to set the initial BW of the animals. The gestational BW gain simulated by the model depended on the number of fetuses (NUMFET), an input parameter. Since group-specific BW values were also given on GD 20 (Tables 53 and 56 of the Exxon report), a nominal NUMFET was selected for each group to match, as closely as possible, the GD 20 BW value, though the NUMFET did not necessarily match the average number actually born. This choice was made since the BW impacts the internal dose, so it was considered most important to match the BW increase. The dose rates for each exposure group were calculated as the average of measured doses for days 6-20 from Tables 67 (P2/F2A) and 69 (P2/F2B) of the Exxon (1991) report. The resulting internal doses are given in Table 4-2 and 4-3.

Table 4-2 PBPK-predicted average blood concentrations (Cavg, mg/L) during gestation for P2/F2A

GD 0	GD 6-20	Predicted GD 20 BW	GD 6-21
BW (kg)	Exposure rate	(kg)	Cavg
	(mg/kg/d)	(# fetuses simulated)	(mg/L)
0.3243	52.475	0.4505 (17)	26.12
0.3054	166.75	0.4394 (19)	92.55
0.2815	494.1	0.3872 (14)	326.1

Table 4-3 PBPK-predicted average blood concentrations (Cavg, mg/L) during gestation for P2/F2B

GD 0	GD 6-20	PredictedGD 20 BW	
BW (kg)	Exposure rate	(kg)	GD 6-21
	(mg/kg/d)	(# fetuses simulated)	Cavg (mg/L)
0.3706	49.350	0.5075 (18)	25.25
0.3536	156.70	0.4935 (19)	89.03
0.3187	466.63	0.4188 (12)	311.9

For human workplace and residential exposures, input parameters were specified in Excel spreadsheets. For workplace exposures, estimated air concentrations were assumed to be constant over each period of use, but the air concentration, liquid concentration (weight fraction), and duration of use varied between scenarios. Internal average blood concentrations for varying levels of protective equipment (face mask and/or gloves with varying protection factors (PFs)) were estimated assuming a five-day work week in which the exposure was repeated each day followed by two days without exposure. Residential applications were assumed to occur for a single day and air-concentration time-courses estimated for each application, along with liquid weight fraction and dermal contact duration specific to each use scenario. These inputs were read by a model script from Excel spreadsheets. For the analysis of potential for effect on male fertility, BW and hand surface area (SA) were set to male-specific values. For the analysis of potential for gestational effect, BW and SA were set to female-specific values. Residential application evaluated exposure for both adult and teenage women. Model results are written back to the Excel spreadsheet from which exposure inputs were obtained.

Since human internal doses are calculated as 24-h average AUC values, these must be divided by 24 h before comparison to C_{avg} BMD(L) values, or the C_{avg} BMD(L) values multiplied by 24 h, prior to MOE calculation.

4.3 Summary of BMD Modeling for Exxon, 1991 Data

Table 4-4 BMD Modeling Summary for Exxon (1991)

Sec.	Response	Basis for Internal Dose Calculations	Selected Model ²	BMR	BMD³ (mg/L)	BMDL ³ (mg/L)	BMDU ³ (mg/L)	BMD ⁴ 24hr AUC (h mg/L)	BMDL ⁴ 24hr AUC (h mg/L)
4.4.1	P2/F2A Male Rat Fertility	Young rat (50 g)	Log-Logistic	10% ER	20.5	10.9	81.7	492	262
4.4.2	P2/F2B Male Rat Fertility	Young rat (50 g) ¹	Log-Logistic	10% ER	14.2	7.64	65.1	341	183
4.4.3	P2/F2A Female Rat Fecundity	Young rat (50 g)	Log-Logistic	10% ER	35.9	16.7	179	862	401
4.4.4	P2/F2B Female Rat Fecundity	Young rat (50 g)	Log-Logistic	10% ER	17.5	8.40	58.4	420	202
4.5.1	P2/F2A Litter Size	Young rat (50 g)	Polynomial 3	1 SD	203	151	715	4872	3624
4.5.2	P2/F2B Litter Size	Young rat (50 g)	Linear	1 SD	153	99.6	332	3672	2390
4.5.3	P2/F2A Litter Size ⁵	Dam (GD 6-21)	Polynomial 3	1 SD	364	274	1280	8736	6576
4.5.4	P2/F2B Litter Size ⁵	Dam (GD 6-21)	Linear	1 SD	265	172	575	6360	4128
4.6.1	P2/F2A Pup Death at Day 0 (stillborn)	Dam (GD 6-21)	NLogistic - ILC	5% ER 1% ER	327 281	205 49.3	NC NC	7848 6744	4920 1183
4.6.2	P2/F2B Pup Death at Day 0 (stillborn)	Dam (GD 6-21)	No Model Selected	5% ER 1% ER	NA NA	NA NA	NA NA	NA NA	NA NA
4.6.3	P2/F2A Pup Death by Day 4	Dam (GD 6-21)	No Model Selected	5% ER 1% ER	NA NA	NA NA	NA NA	NA NA	NA NA
4.6.4	P2/F2B Pup Death by Day 4	Dam (GD 6-21)	No Model Selected	5% ER 1% ER	NA NA	NA NA	NA NA	NA NA	NA NA

¹ BMDL estimates from the selected model (Log-Logistic) for this most sensitive endpoint using internal doses based on 250 g, 350 g and 450 g rats, were 12.1, 13.4 and 14.4 mg/L, respectively (details of these results and results for the other fertility and fecundity endpoints are available in the supplemental BMDS 3.1.1 Excel Result Workbook files associated with this report).

NC = Not Calculated; NA = Not Applicable

² As described in Section 4.1, BMDs were derived from the standard set of models as defined in the EPA BMD technical guidance and as identified in BMDS 3.1.1 as defaults. Since the standard approach gave adequate results for all endpoints, non-standard models were not considered for BMD derivations.

³ BMD, BMDL and BMDU values are in terms of average concentration over 24 hrs and are reported to more than 3 significant figures in the tables in Section 4.4, 4.5 and 4.6. This has been done to facilitate QC (i.e., replication of the results to a higher number of significant figures gives greater assurance that QA model runs have been performed using the same modeling options).

⁴Adjusted BMD and BMDL are in terms of 24-hour AUC blood concentration. These units are directly comparable with BMDLs previously calculated for the NMP risk evaluation ⁵Effects on litter size during gestation are of interest for acute exposure and would therefore be most appropriately evaluated based on maximum concentrations as opposed to 24hr average or AUC concentrations shown here.

4.4 Results of BMD Modeling of P2 Male and Female Fertility Indices (Exxon, 1991)

The strongest dose-responses for reproductive effects in the Exxon (1991) study were observed for reduced Male Fertility Index and Female Fecundity Index in the first (P2/F2A; Table 73 of the Exxon report) and second (P2/F2B; Table 74 of the Exxon report) litters of the P2 (F1A) 2nd generation parents. Incidence data for these effects were obtained from Appendices AF (P2/F2A parents) and AG (P2/F2B parents) of the Exxon (1991) report. Because BMDS models dichotomous data using dose-response curves that are increasing in dose-response, the results reported in Appendices AF and AG in terms of successful impregnations were inverted to obtain incidence data in terms of "number of males unsuccessful at impregnating any female" per "number of males used for mating" (Males Unsuccessful/Males Used) and "number of females that did not get pregnant" per "number of females sperm positive (confirmed mated or confirmed pregnant)" (Females Unsuccessful/Females Mated). These ratios were derived slightly differently from the Male Fertility and Female Fecundity indices shown in Tables 73 and 74 of the Exxon (1991) report in that a confirmed pregnancy was counted as "sperm positive" regardless of whether the mating was "confirmed" (cases where this occurred are identified with footnotes in the tabular results of this Section).

Because of the existing uncertainty regarding the lifestage "window of toxicity," and the possibility that reproductive effects of concern could have been associated with early life exposures, the BMD analyses of potential reproductive effects were performed using PBPK estimates of internal doses that assume an early lifestage rat body weight of 50 g. A sensitivity analysis was performed on the P2/F2B Male Rat Fertility to determine the impact of the body weight assumption. As indicated in Footnote 1 of the table in Section 4.3, BMDL estimates for this most sensitive endpoint increased by less than 2-fold for body weight assumptions at or below 450 g. The following standard and non-standard dichotomous models and general modeling options were used to fit fertility incidence data.

Standard Dichotomous Models Applied to Fertility and Fecundity Responses:

- Gamma-restricted
- Log-Logistic-restricted
- Multistage-restricted; from degree = 1 to degree = # dose groups 1
- Weibull-restricted
- Dichotomous Hill-unrestricted
- Logistic
- Log-Probit-unrestricted
- Probit

Non-Standard Dichotomous Models Applied to Fertility and Fecundity Responses:

- Dichotomous Hill-restricted
- LogProbit-restricted
- Gamma-unrestricted
- Log-Logistic-unrestricted
- Multistage-unrestricted
- Weibull-unrestricted

General Model Options Used for Fertility and Fecundity Dichotomous Responses:

• Benchmark Response (BMR): 0.1 (10%) Extra Risk

Confidence Level: 0.95Background: Estimated

4.4.1 P2/F2A Male Fertility (Males Unsuccessful/Males Used; Exxon Appendix AF)

mg/L Blood - 50 g Rat	N	Incidence
0	29	2
13.9	29	8
48.4	29	8
181.4	30	16

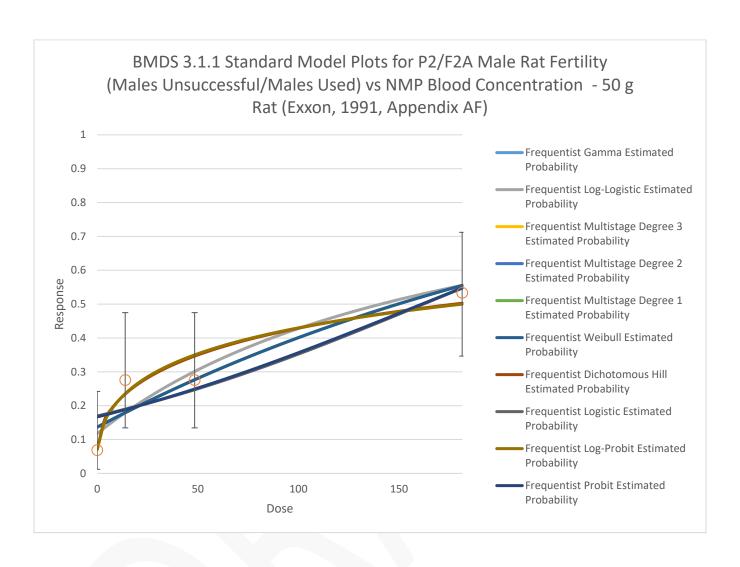

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Male Rat Fertility (Exxon, 1991)

Table 4-5 Model Predictions for Reduced Male Fertility in P2/F2A Male Rats (Exxon, 1991)

Standard	Restriction*	109	6 Extra L blood	Risk		,	BMDS	DMDS D
Models	*	BMD	Rat) BMD L	BMDU	P Value	AIC	Recommend	BMDS Recommendation Notes
<u>Gamma</u>	Restricted	28.82 54	18.06 77	106.50 62	0.221224 4	131.36474 26	Viable - Alternate	
Log- Logistic*	Restricted	20.47 39	10.93 76	81.732 23	0.267407	130.87451 55	Recommend ed	Basis: Lowest BMDL In a > 3- Fold BMDL Range Lowest AIC
Multistage Degree 3	Restricted	28.82 54	18.06 78	109.51 57	0.221224	131.36474 26	Viable - Alternate	
Multistage Degree 2	Restricted	28.82 54	18.06 75	91.607 10	0.221224	131.36474 26	Viable - Alternate	
Multistage Degree 1	Restricted	28.82 53	18.06 76	56.969 40	0.221223	131.36474 26	Viable - Alternate	
Weibull	Restricted	28.82 54	18.06 76	115.14 04	0.221223	131.36474 26	Viable - Alternate	
Dichotom ous Hill	Unrestricted	4.245 66	0.000	41.015	0.309315	131.38255 36	Questionable	BMD/BMDL ratio > 20 BMD/BMDL ratio > 3 BMD 3x lower than lowest non-zero dose BMDL 10x lower than lowest non- zero dose
Logistic	NA	51.42 08	38.19 85	79.828 21	0.162073 5	132.33267 84	Viable - Alternate	
Log-Probit	Unrestricted	4.642 11	0.000	37.710 69	0.294224 6	131.45311 68	Questionable	BMD/BMDL ratio > 20 BMD/BMDL ratio > 3 BMD 3x lower than lowest non-zero dose BMDL 10x lower than lowest non-zero dose
Probit	NA	48.86 14	36.41 63	77.278 41	0.166761 4	132.24053 29	Viable - Alternate	

^{*}Selected Model (Green); residuals for doses 0, 13.9, 48.4, and 181.4 were -0.811610042, 1.353899534, -0.296031585 and -0.242023672, respectively.

^{**}Restrictions defined in the <u>BMDS 3.1.1 User Guide</u>; NA = Not Applicable

$Selected\ Model-Log\text{-}Logistic\ (Restricted)\ \text{-}\ Extra\ Risk,\ BMR=0.1$

User Input

Info	
Model	Log-Logistic v1.0
Dataset Name	P2F2A Male Fertility
User notes	[Add user notes here]

Model Options	
Risk Type	Extra Risk
BMR	0.1
Confidence Level	0.95
Backgroun	0.93
d	Estimated


Model Data	
Dependent	
Variable	[Dose]
Independen	
t Variable	[Incidence]
Total # of	
Observatio	
ns	4

Benchmark Dose					
BMD	20.4738478				
BMDL	10.93759459				
BMDU	81.7322316				
AIC	130.8745155				
P-value	0.267407255				
D.O.F.	2				
Chi ²	2.637964966				

Model Parameters				
# of Parameters	3			
Variable	Estimate			
g	0.117496501			
a	-5.216372932			
b	Bounded			

Goodness	of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.117496501	3.407398541	2	29	-0.81161
13.9	0.17939856	5.202558252	8	29	1.3538995
48.4	0.301079065	8.731292894	8	29	-0.296032
181.4	0.555291468	16.65874405	16	30	-0.242024

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-62.1675397	4	-	-	-
Fitted Model	-63.43725776	2	2.53943612	2	0.2809108
Reduced Model	-70.51432209	1	16.6935648	3	0.0008171

4.4.2 P2/F2B Male Fertility (Males Unsuccessful/Males Used; Exxon Appendix AG)

mg/L Blood - 50 g Rat	N	Incidence
0	30	5
13.9	29	9
48.4	30	12
181.4	29	19

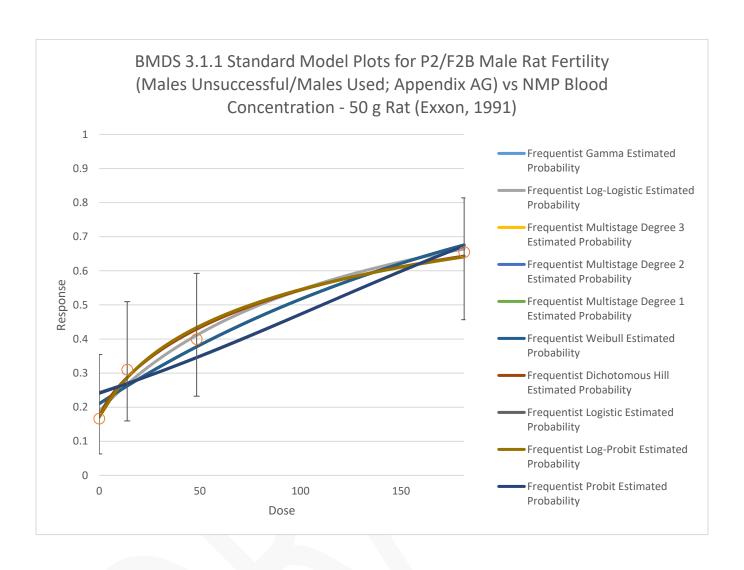

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Male Rat Fertility (Exxon, 1991)

Table 4-6 Model Predictions for Reduced Male Fertility in P2/F2B Male Rats (Exxon, 1991)

Standard Models	Restriction*	10% Extra Risk (mg/L blood – 50 g Rat)		P Value	AIC	BMDS Recommend	BMDS Recommendation Notes	
Wiodels		BMD	BMD L	BMDU			S	
Gamma	Restricted	21.46 13	13.74 89	76.520 64	0.666630	145.51839 72	Viable - Alternate	
Logistic*	Restricted	14.21 25	7.638 24	65.118 25	0.824828	145.08067 89	Recommend ed	Basis: Lowest BMDL In a > 3- Fold BMDL Range Lowest AIC
Multistage Degree 3	Restricted	21.46 13	13.74 89	87.342 37	0.666630	145.51839 72	Viable - Alternate	
Multistage Degree 2	Restricted	21.46 13	13.74 87	75.005 23	0.666630	145.51839 72	Viable - Alternate	
Multistage Degree 1	Restricted	21.46 13	13.74 88	40.467 12	0.666630 6	145.51839 72	Viable - Alternate	
Weibull	Restricted	21.46 13	13.74 89	80.304 69	0.666630 6	145.51839 72	Viable - Alternate	
Dichotom ous Hill	Unrestricted	8.677 17	0.171 04	60.827 28	0.656447 9	146.89849 18	Questionable	BMD/BMDL ratio > 20 BMDL 10x lower than lowest non- zero dose
<u>Logistic</u>	NA	36.72 71	27.09 45	56.560 66	0.442632	146.39715 35	Viable - Alternate	
Log-Probit	Unrestricted	9.269 62	0.241 78	59.565 93	0.616103 1	146.95220 17	Questionable	BMD/BMDL ratio > 20 BMDL 10x lower than lowest non- zero dose
Probit	NA	35.70 14	26.71 57	55.327 79	0.453368 9	146.34376 72	Viable - Alternate	

^{*}Selected Model (Green); residuals for doses 0, 13.9, 48.4 and 181.4 were -0.300662226, 0.518709072, -0.122358174 and -0.103594189, respectively.

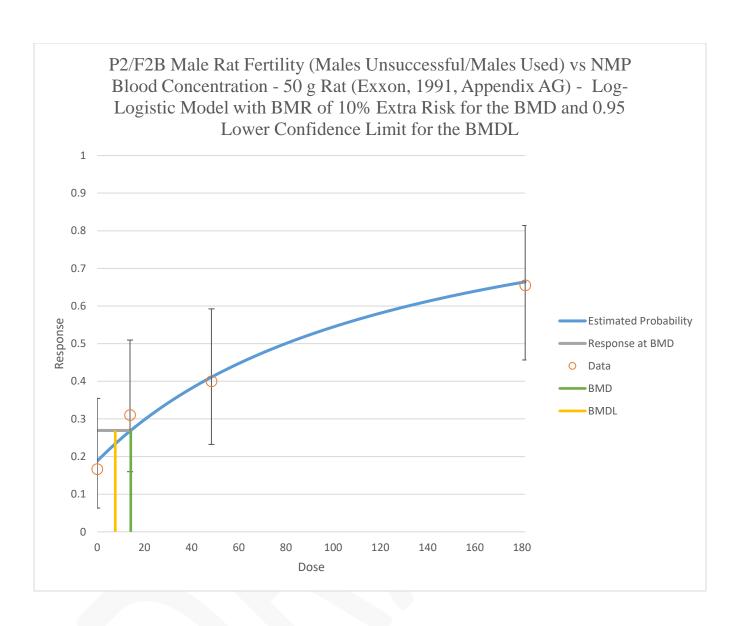
^{**}Restrictions defined in the <u>BMDS 3.1.1 User Guide</u>; NA = Not Applicable

Selected Model - Log-Logistic (Restricted) - Extra Risk, BMR = 0.1

User Input

Info	
Model	Log-Logistic v1.0
Dataset Name	P2F2B Male Fertility
User notes	[Add user notes here]

Model Options	
Risk Type	Extra Risk
BMR	0.1
Confidence	
Level	0.95
Backgroun	
d	Estimated


Model	
Data	
Dependent	
Variable	[Dose]
Independen	
t Variable	[Incidence]
Total # of	
Observatio	
ns	4

Benchmark Dose			
BMD	14.21245366		
BMDL	7.638241538		
BMDU	65.11824629		
AIC	145.0806789		
P-value	0.824828266		
D.O.F.	2		
Chi ²	0.385160154		

Model Parameters				
# of Parameters	3			
Variable	Estimate			
g	0.188119322			
a	-4.851343176			
b	Bounded			

Goodness	of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.188119322	5.643579645	5	30	-0.300662
13.9	0.267697459	7.763226311	9	29	0.5187091
48.4	0.410991312	12.32973936	12	30	-0.122358
181.4	0.664257058	19.26345469	19	29	-0.103594

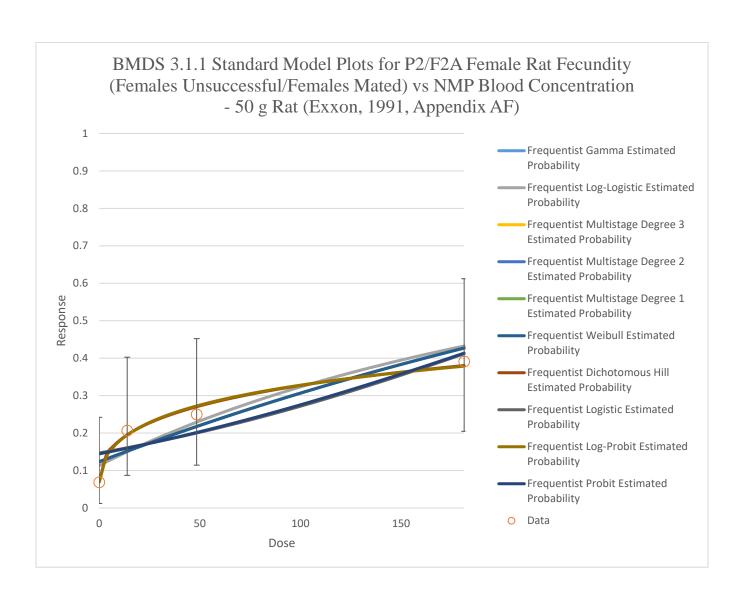
Analysis of	Deviance				
Model	Model Log Likelihood		Deviance	Test d.f.	P Value
Full Model	-70.35048621	4	-	-	-
Fitted Model	-70.54033943	2	0.37970644	2	0.8270805
Reduced Model	-78.43743444	1	16.1738965	3	0.0010446

4.4.3 P2/F2A Female Fecundity (Females Unsuccessful/Females Mated; Exxon Appendix AF)

mg/L Blood - 50 g Rat	N	Incidence
0	29*	2
13.9	29**	6
48.4	28	7
181.4	23	9

^{*} Includes 1 presumed mating (JAB149 with JAB273) that was not "Confirmed" but resulted in pregnancy of JAB273

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Female Rat Fecundity (Exxon, 1991)


Table 4-7 Model Predictions for Reduced Fecundity in P2/F2A Female Rats (Exxon, 1991)

		109	6 Extra	Risk				(Likeling 1991)
Standard	Restriction*	(mg/L blood – 50 g Rat)		P Value	AIC	BMDS Recommend	BMDS Recommendation Notes	
Models *	*	BMD	BMD L	BMDU	1 value	THE	S	BWD5 Recommendation (votes
Gamma	Restricted	44.96	24.27	166.87	0.410732	112.25409	Viable -	
		90	97	43	8	63	Alternate	
Logistic*	Restricted	35.85 00	16.70 86	178.83 94	0.464483 7	111.95596 85	Recommend ed	Basis: Lowest AIC
Multistage	Restricted	44.96	24.27	152.75	0.410732	112.25409	Viable -	
Degree 3	Restricted	9	93	87	9	63	Alternate	
Multistage	Restricted	44.96	24.27	145.56	0.410732	112.25409	Viable -	
Degree 2	Restricted	90	97	55	8	63	Alternate	
Multistage	Restricted	44.96	24.27	139.99	0.410732	112.25409	Viable -	
Degree 1	Restricted	90	94	63	9	63	Alternate	
Weibull	Restricted	44.96	24.27	176.62	0.410732	112.25409	Viable -	
weibuii	Restricted	90	97	68	8	63	Alternate	
Dichotom ous Hill	Unrestricted	6.584 76	0	78.866 85	NA	114.50099 14	Unusable	BMD computation failed; lower limit includes 0 BMDL not estimated d.f.=0 (Goodness of fit test cannot be calculated)
Logistic	NA	72.81	49.22	179.07	0.311254	112.97438	Viable -	
Log-Probit	Unrestricted	7.047 68	0	74.365 06	6 0.736000 8	42 112.51903 46	Alternate Unusable	BMD computation failed; lower limit includes 0 BMDL not estimated
Probit	NA	69.29 99	46.38 35	174.67 04	0.320756 4	112.89541 63	Viable - Alternate	

^{*}Selected Model (Green); residuals for doses 0, 13.9, 48.4 and 181.4 were -0.754747582, 0.857664083, 0.263750831 and -0.398574381, respectively.

^{**} Includes 1 presumed mating (JAB008 with JAB105) that was not "Confirmed" but resulted in pregnancy of JAB105

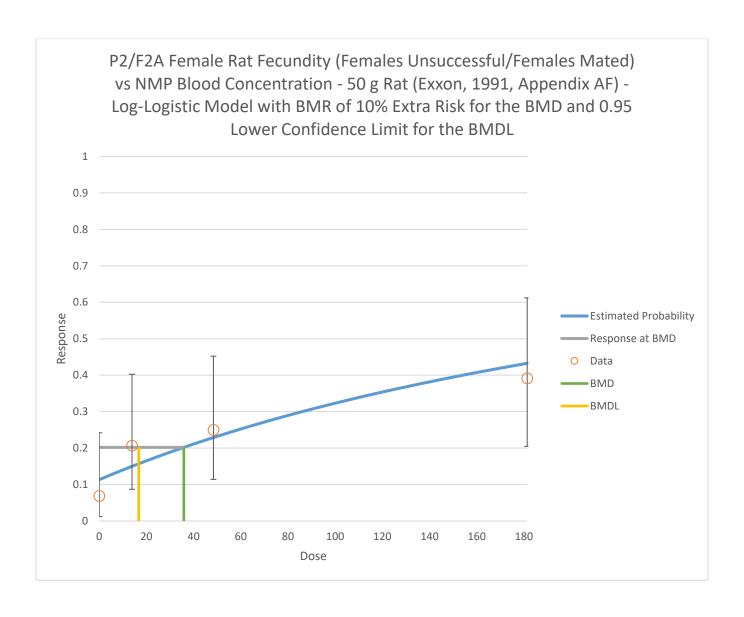
^{**}Restrictions defined in the <u>BMDS 3.1.1 User Guide</u>; NA = Not Applicable

Selected Model – Log-Logistic - Extra Risk, BMR = 0.1

User Input

Info	
Model	Log-Logistic v1.0
Dataset Name	P2F2A Female Fecundity
User notes	[Add user notes here]

Model Options	
Risk Type	Extra Risk
BMR	0.1
Confidence	
Level	0.95
Backgroun	
d	Estimated


Model Data	
Dependent	
Variable	mg/L Blood 50 g Rat
Independen	
t Variable	Females Unsuccessful
Total # of	
Observatio	
ns	4

Benchmark Dose	
BMD	35.85003887
BMDL	16.70857886
BMDU	178.8394143
AIC	111.9559685
P-value	0.464483699
D.O.F.	2
Chi ²	1.53365763

Model Parameters				
# of Parameters	3			
Variable	Estimate			
g	0.11340654			
a	-5.776569229			
b	Bounded			

Goodness of Fit					
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.11340654	3.288789653	2	29	-0.754748
13.9	0.150024089	4.350698589	6	29	0.8576641
48.4	0.22905425	6.41351901	7	28	0.2637508
181.4	0.432477945	9.946992746	9	23	-0.398574

Analysis of Deviance					
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-53.20227182	4	-	-	-
Fitted Model	-53.97798425	2	1.55142486	2	0.4603757
Reduced Model	-57.45827043	1	8.51199723	3	0.0365346

4.4.4 P2/F2B Female Fecundity (Females Unsuccessful/Females Mated; Exxon Appendix AG)

mg/L Blood - 50 g Rat	N	Incidence
0	27	2
13.9	29*	9
48.4	28	10
181.4	21**	11

^{*} Includes 2 presumed matings (JAB194 with JAB279; JAB201 with JAB293) not "Confirmed" but resulting in pregnancies

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Female Rat Fecundity (Exxon, 1991)

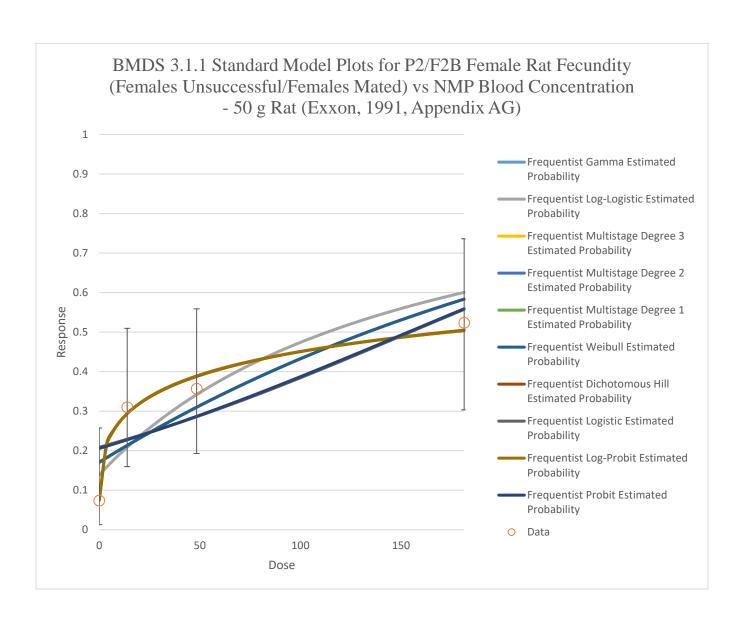

Table 4-8 Model Predictions for Reduced Fecundity in P2/F2B Female Rats (Exxon, 1991)

Table 4-8 Model Fredictions for Reduced Fecundity in 12/F2B Female Rats (Exxon, 1991)								
Standard Restriction Models *			% Extra L blood Rat)		P Value	AIC	BMDS Recommend	BMDS Recommendation Notes
Wiodels		BMD	BMD L	BMDU			S	
<u>Gamma</u>	Restricted	27.75 96	15.94 81	82.142 00	0.134929 9	123.98854 15	Viable - Alternate	
Log- Logistic*	Restricted	17.45 28	8.395 86	58.448 82	0.192512	123.02937 23	Recommend ed	Basis: Lowest AIC
Multistage Degree 3	Restricted	27.75 98	15.94 82	97.117 40	0.134930 6	123.98854 15	Viable - Alternate	
Multistage Degree 2	Restricted	27.75 98	15.94 82	87.010 75	0.134930 6	123.98854 15	Viable - Alternate	
Multistage Degree 1	Restricted	27.76 19	15.94 83	68.871 17	0.134946	123.98854 16	Viable - Alternate	
Weibull	Restricted	27.76 00	15.94 83	84.747 89	0.134931 8	123.98854 15	Viable - Alternate	
Dichotom ous Hill	Unrestricted	1.071 72	0	18.132 80	NA	123.92613 36	Unusable	BMD computation failed; lower limit includes 0 BMDL not estimated BMD 10x lower than lowest non-zero dose d.f.=0 (Goodness of fit test cannot be calculated)
Logistic	NA	49.48 25	34.00 90	100.18 99	0.089017 8	125.22780 17	Questionable	Goodness of fit p-value < 0.1
<u>Log-Probit</u>	Unrestricted	1.359 20	0	18.120 44	0.660457	121.93944 43	Unusable	BMD computation failed; lower limit includes 0 BMDL not estimated BMD 10x lower than lowest non-zero dose
Probit	NA	47.44 59	32.80 38	97.343 69	0.091838	125.13199 18	Questionable	Goodness of fit p-value < 0.1

^{*}Selected Model (Green); residuals for doses 0, 13.9, 48.4 and 181.4 were -0.976071189, 1.341257654, 0.170425804 and -0.717257235, respectively.

^{**} Includes 1 presumed mating (JAB022 with JAB134) that was not "Confirmed" but resulted in pregnancy of JAB134

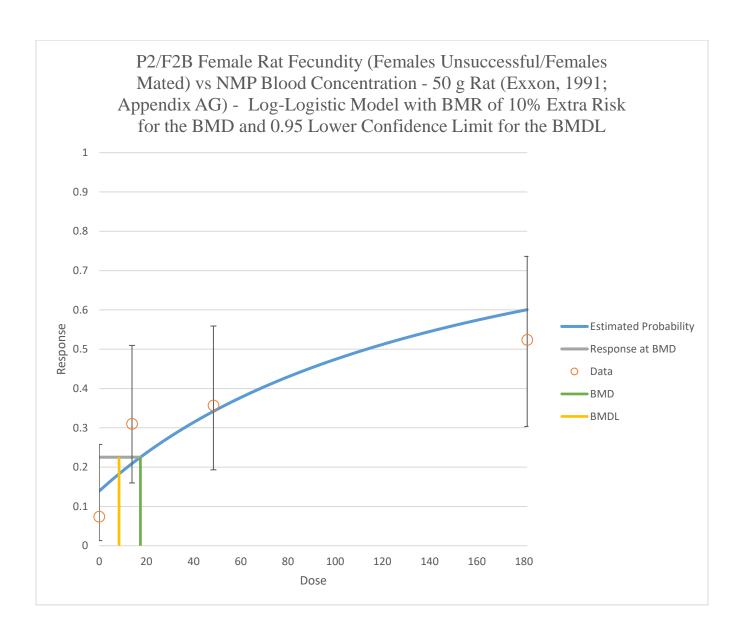
^{**}Restrictions defined in the <u>BMDS 3.1.1 User Guide</u>; NA = Not Applicable

Selected Model – Log-Logistic (Restricted) - Extra Risk, BMR = 0.1

User Input

Info	
Model	Log-Logistic v1.0
Dataset Name	P2F2B Female Fecundity
User notes	[Add user notes here]

Model Options	
Risk Type	Extra Risk
BMR	0.1
Confidence Level	0.95
Background	Estimated


Model Data	
Dependent	
Variable	[Dose]
Independent	
Variable	[Incidence]
Total # of	
Observation	
S	4

Benchmark Dose						
BMD	17.45276136					
BMDL	8.395858147					
BMDU	58.44881649					
AIC	123.0293723					
P-value	0.192512349					
D.O.F.	2					
Chi ²	3.295189957					
AIC P-value D.O.F.	123.0293723 0.192512349 2					

Model Parameters							
# of Parameters	3						
Variable	Estimate						
g	0.139072629						
a	-5.056722458						
b	Bounded						

Goodness	of Fit				
Dose	Estimated Probability	Expected	Observed	Size	Scaled Residual
0	0.139072629	3.754960985	2	27	-0.976071
13.9	0.209064738	6.062877397	9	29	1.3412577
48.4	0.341865741	9.572240753	10	28	0.1704258
181.4	0.600472417	12.60992076	11	21	-0.717257

Analysis of I	Deviance				
Model	Log Likelihood	# of Parameters	Deviance	Test d.f.	P Value
Full Model	-57.87277378	4	-	-	-
Fitted Model	-59.51468613	2	3.2838247	2	0.1936094
Reduced Model	-64.55874867	1	13.3719498	3	0.0038975

4.5 Results of BMD Modeling of P2 Litter (Exxon, 1991)

The next most sensitive dose-related reproductive effect noted in the Exxon (1991) study, other than the reduction in male fertility and female fecundity, was the reduction in litter size, which was most pronounced for the first (F2A) and 2nd (F2B) P2 rat litters. However, the Exxon (1991) study also reported a dose-related increase in pup death by postnatal day 4 that was also most pronounced in the F2A and F2B litters of the P2 parental rats. Thus, the extent to which the reduction in litter size is due to reproductive effects on the parents or gestational effects on the fetus is not clear, and the Exxon (1991) reproductive study design does not allow for a definitive investigation of that question (e.g., the number of implantations and resorptions were not identified). For these reasons, the litter size reduction effect was analyzed three ways (see Section 4.2 for PBPK modeling details):

- 1. Model litter size means and SD (live and stillborn pups) using BMDS continuous models against estimates of internal doses to young (50 g) parental rats (Sections 4.5.1 and 4.5.2).
- 2. Model litter size means and SD (live and stillborn pups) using BMDS continuous models against estimates of internal doses to P2 maternal rats during GD 6-21 (Sections 4.5.3 and 4.5.4).
- 3. Model pup death at day 0 (stillborn) and by postnatal day 4 per total pups born as incidence data using BMDS nested dichotomous models against estimates of internal doses to P2 maternal rats during GD 6-21 (Section 4.6).

Individual litter data that allows for the calculation of dose-specific means and standard deviations for litter size are available in Appendix AJ (for P2/F2A litters) and AK (for P2/FB litters) of the Exxon (1991) report.

Standard and nonstandard continuous models (defined below) were used to fit litter size data. BMDs were estimated for 1 SD change from control mean. Internal doses used for BMD modeling were based on PBPK estimates of average daily blood concentrations for young (50 g) rat and GD 6-21 dams.

Standard Continuous Models Applied to Litter Size Response:

- Exponential 2-restricted
- Exponential 3-restricted
- Exponential 4-restricted
- Exponential 5-restricted
- Hill-restricted
- Polynomial Degree 3-restricted
- Polynomial Degree 2-restricted
- Power-restricted
- Linear

Non-Standard Continuous Models Applied to Litter Size Response:

- Hill-unrestricted
- Polynomial Degree 3-unrestricted

- Polynomial Degree 2-unrestricted
- Power-unrestricted

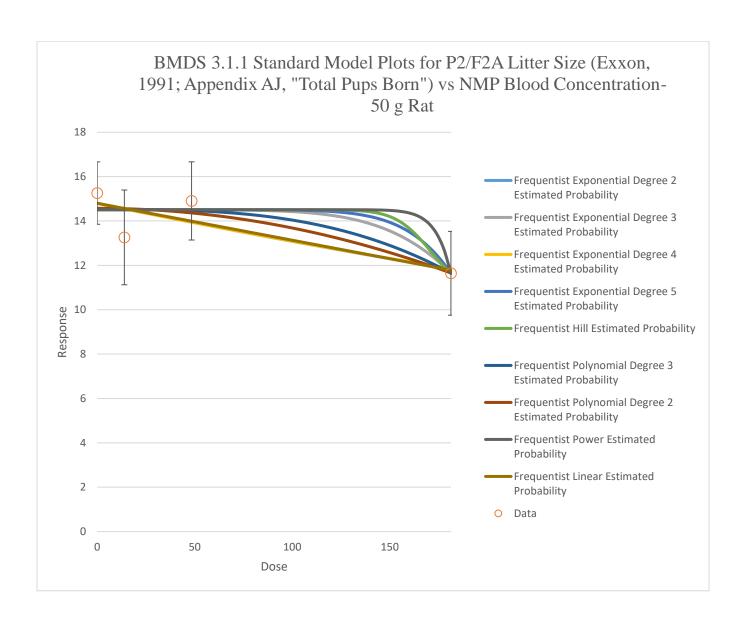
General Model Options Used for Litter Size Continuous Response:

- Benchmark Response (BMR): 1 Standard Deviation (SD) Change from Control Mean
- Confidence Level: 0.95Background: Estimated

4.5.1 P2/F2A Litter Size - 50 g Rat (Exxon Appendix AJ, "Total Pups Born")

mg/L Blood – 50 g Rat	N	Mean	SD
0	27	15.2592593	3.558225
13.9	23	13.2608696	4.937955
48.4	21	14.9047619	3.871754
181.4	14	11.6428571	3.272429

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Litter Size – 50 g Rat (Exxon, 1991)


Table 4-9 Model Predictions for Litter Size in P2/F2A Rats Based on Post-weaning Exposure

(Exxon, 1991)

(EXXOII, 19	<u>/1</u>)							
Standard Models	Restriction **		R = 1 Station (mg/ 50 g Ra BMD L	L blood	P Value	AIC	BMDS Recommend s	BMDS Recommendation Notes
Exponential 2 (CV)	Restricted	264.2 77	140.4 44	1032.8 40	0.131786 1	483.41059 57	Viable - Alternate	BMD higher than maximum dose
Exponential 3 (CV)	Restricted	190.0 60	149.0 59	788.76 70	0.062595	484.82469 12	Questionable	Goodness of fit p-value < 0.1 BMD higher than maximum dose
Exponential 4 (CV)	Restricted	264.1 20	140.4 42	1032.8 35	0.131786 5	483.41059 02	Viable - Alternate	BMD higher than maximum dose
Exponential 5 (CV)	Restricted	190.1 71	149.0 60	788.74 98	NA	486.82469 61	Questionable	BMD higher than maximum dose d.f.=0 (Goodness of fit test cannot be calculated)
Hill (CV)	Restricted	-9999	0	Infinity	0.062597 7	484.82463 33	Unusable	BMD computation failed BMD not estimated BMDL not estimated Goodness of fit p-value < 0.1
Polynomial Degree 3 (CV)	Restricted	202.6 96	150.6 74	714.95 64	0.171851 8	482.87969 17	Recommend ed	Basis: Lowest AIC BMD higher than maximum dose
Polynomial Degree 2 (CV)	Restricted	214.0 35	148.9 14	757.40 27	0.160527	483.01602 8	Viable - Alternate	BMD higher than maximum dose
Power (CV)	Restricted	183.7 83	182.1 12	698.81 91	0.062598	484.82461 5	Questionable	Goodness of fit p-value < 0.1 BMD higher than maximum dose BMDL higher than maximum dose
Linear (CV)	NA	248.9 15	145.0 61	875.68 12	0.136434	483.34127	Viable - Alternate	BMD higher than maximum dose

^{*}Selected Model (Green); Constant variance case presented (Test 2 p-value = 0.24158); scaled residuals for doses 0, 13.9, 48.4 and 181.4 were 0.958706516, -1.509731959, 0.501737513 and -0.010801354, respectively.

^{**}Restrictions defined in the BMDS 3.1.1 User Guide; NA = Not Applicable; CV = Constant Variance Model; NCV = Non-Constant Variance Model

Selected Model – Polynomial Degree 3 (Restricted) - Extra Risk, BMR = 1 SD

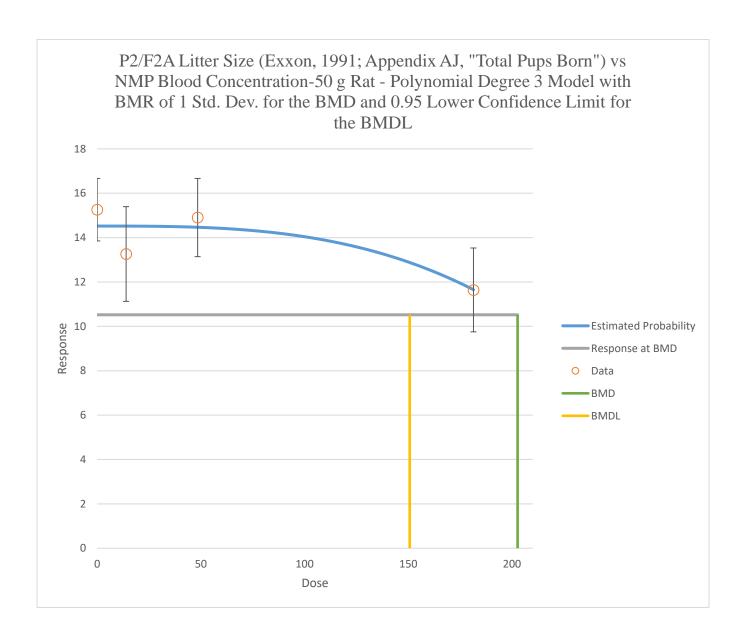
Info	
Model	Polynomial degree 3 v1.1
Dataset Name	P2F2A Litter Size
User notes	[Add user notes here]
Dose-Response	$M[dose] = g + b1*dose + b2*dose^2$
Model	+

User I	nput
Model Options	
BMR Type	Std. Dev.
BMRF	1
Tail	
Probability	-
Confidence	
Level	0.95
Distribution	
Type	Normal
Model I	Results

Model Data	
Dependent	
Variable	[Dose]
Independent	
Variable	[Response]
Total # of	
Observations	85
Adverse	Automatic
Direction	1 Intolliatio

Benchmark Dose					
BMD	202.6960934				
BMDL	150.6744181				
BMDU	714.956421				
AIC	482.8796917				
Test 4 P-value	0.171851757				
D.O.F.	2				
Model Parameters					
# of Parameters	5				
Variable	Estimate				
g	14.52128961				
b1	Bounded				
b2	Bounded				
b3	-4.80285E-07				
alpha	15.99813687				

Goodne	ss of Fit							
Dose	Size	Estimated Median	Calc'd Median	Observed Mean	Estimated SD	Calc'd SD	Observed SD	Scaled Residual
0	27	14.52128961	15.2592593	15.2592593	3.9997671	3.558225	3.558225	0.958706516
13.9	23	14.51999975	13.2608696	13.2608696	3.9997671	4.937955	4.937955	- 1.509731959
48.4	21	14.466835	14.9047619	14.9047619	3.9997671	3.871754	3.871754	0.501737513
181.4	14	11.6544036	11.6428571	11.6428571	3.9997671	3.272429	3.272429	-0.01080135


Likelihoods	of Interest		
Model	Log Likelihood*	# of Parameters	AIC
A1	-236.6787228	5	483.357446
A2	-234.583299	8	485.166598
A3	-236.6787228	5	483.357446
fitted	-238.4398459	3	482.879692
R	-241.3113542	2	486.622708
Tests of	Interest		
Test	-2*Log(Likelihood Ratio)	Test df	p-value
1	13.45611034	6	0.03633832
2	4.190847665	3	0.24157981

4.190847665

3.522246101

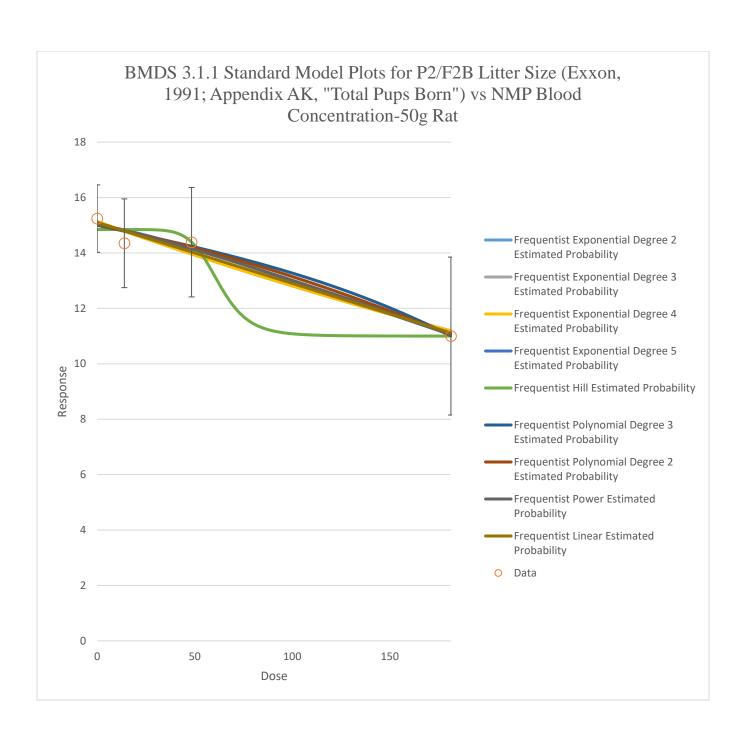
0.24157981

0.17185176

4.5.2 P2/F2B Litter Size - 50 g Rat (Exxon Appendix AK, "Total Pups Born")

	mg/L Blood – 50 g Rat	N	Mean	SD
	0	25	15.24	2.947881
	13.9	20	14.35	3.422449
	48.4	18	14.39	3.972536
Ī	181.4	9	11	3.708099

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Litter Size – 50 g Rat (Exxon, 1991)


 $Table\ 4\text{-}10\ Model\ Predictions\ for\ Litter\ Size\ in\ P2/F2B\ Rats\ Based\ on\ Post-weaning\ Exposure$

(Exxon, 1991)

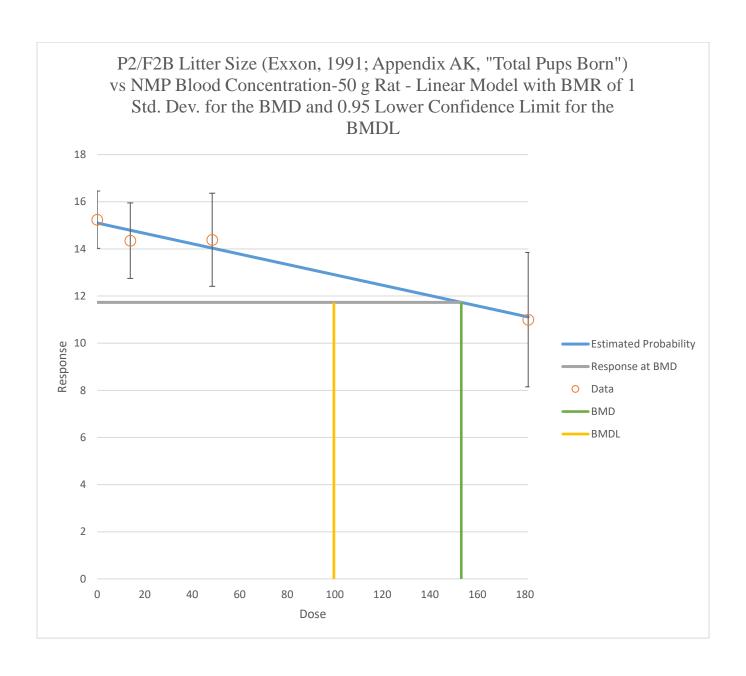
L'AAUII, I								
Standard	Restriction*	Deviati	R = 1 Station (mg/ - 50 g Ra	L blood	P Value	AIC	BMDS Recommend	BMDS Recommendation Notes
Models	*	BMD	BMD L	BMDU			S	
Exponenti	D	151.2	90.01	358.88	0.710819	385.22188	Viable -	
al 2 (CV)	Restricted	11	44	07	6	7	Alternate	
Exponenti	D (1	156.9	90.56	352.68	0.435551	387.14718	Viable -	
al 3 (CV)	Restricted	52	26	54	2	89	Alternate	
Exponenti	D (1) 1	151.1	90.01	358.86	0.710823	385.22187	Viable -	
al 4 (CV)	Restricted	78	45	85	3	65	Alternate	
Exponenti al 5 (CV)	Restricted	156.9 62	50.81 64	352.69 1	NA	389.14720 32	Viable - Alternate	BMD/BMDL ratio > 3 d.f.=0 (Goodness of fit test cannot be calculated)
Hill (CV)	Restricted	79.46 42	51.86 12	Infinity	NA	389.31785 9	Questionable	d.f.=0 (Goodness of fit test cannot be calculated)
Polynomia 1 Degree 3 (CV)	Restricted	162.7 87	100.2 64	324.54 83	0.478185 6	387.04221 2	Viable - Alternate	
Polynomia 1 Degree 2 (CV)	Restricted	159.7 31	100.1 02	326.25 31	0.467703 9	387.06660 93	Viable - Alternate	
Power (CV)	Restricted	157.0 00	99.76 30	329.89 51	0.446602 9	387.11847 29	Viable - Alternate	
Linear (CV)	NA	153.2 31	99.61 58	331.51 77	0.740097 5	385.14116 03	Recommend ed	Basis: Lowest AIC

^{*}Selected Model (Green); Constant variance case presented (Test 2 p-value = 0.60824); scaled residuals for doses 0, 13.9, 48.4 and 181.4 were 0.209483207, -0.589116734, 0.445351928 and -0.100787718, respectively.

^{**}Restrictions defined in the BMDS 3.1.1 User Guide; NA = Not Applicable; CV = Constant Variance Model; NCV = Non-Constant Variance Model

Info	
Model	Linear v1.1
Dataset Name	P2F2B Litter Size
User notes	[Add user notes here]
Dose-Response Model	M[dose] = g + b1*dose

OSCI Input			
Model Options			
BMR Type	Std. Dev.		
BMRF	1		
Tail Probability	-		
Confidence Level	0.95		
Distribution Type	Normal		


Model Data	
Dependent Variable	[Dose]
Independent Variable	[Response]
Total # of Observations	72
Adverse Direction	Automatic

Benchmark Dose				
BMD	153.2308251			
BMDL	99.6158179			
BMDU	331.5176516			
AIC	385.1411603			
Test 4 P-value	0.740097541			
D.O.F.	2			
Model Parameters				
# of Parameters	3			
Variable	Estimate			
g	15.09893919			
beta1	-0.02197258			
alpha	11.33585663			

Goodness of Fit								
Dose	Size	Estimated Median	Calc'd Median	Observed Mean	Estimated SD	Calc'd SD	Observed SD	Scaled Residual
0	25	15.09893919	15.24	15.24	3.36687639	2.947881	2.947881	0.209483207
13.9	20	14.79352033	14.35	14.35	3.36687639	3.422449	3.422449	-0.58911673
48.4	18	14.03546634	14.3888889	14.3888889	3.36687639	3.972536	3.972536	0.445351928
181.4	9	11.11311326	11	11	3.36687639	3.708099	3.708099	-0.10078772

Likelihoods	of Interest		
Model	Log Likelihood*	# of Parameters	AIC
A1	-189.2696069	5	388.539214
A2	-188.354168	8	392.708336
A3	-189.2696069	5	388.539214
fitted	-189.5705801	3	385.14116
R	-194.2508792	2	392.501758
			•

Tests of	Interest		
Test	-2*Log(Likelihood Ratio)	Test df	p-value
1	11.79342232	6	0.06673919
2	1.830877708	3	0.60823876
3	1.830877708	3	0.60823876
4	0.601946577	2	0.74009754

4.5.3 P2/F2A Litter Size – GD 6-21 Rat (Exxon Appendix AJ, "Total Pups Born")

mg/L Blood – GD 6-21			SD
Rat	N	Mean	
		15.259259	
0	27	3	3.558225
		13.260869	
26.1207	23	6	4.937955
		14.904761	
92.5466	21	9	3.871754
		11.642857	
326.1056	14	1	3.272429

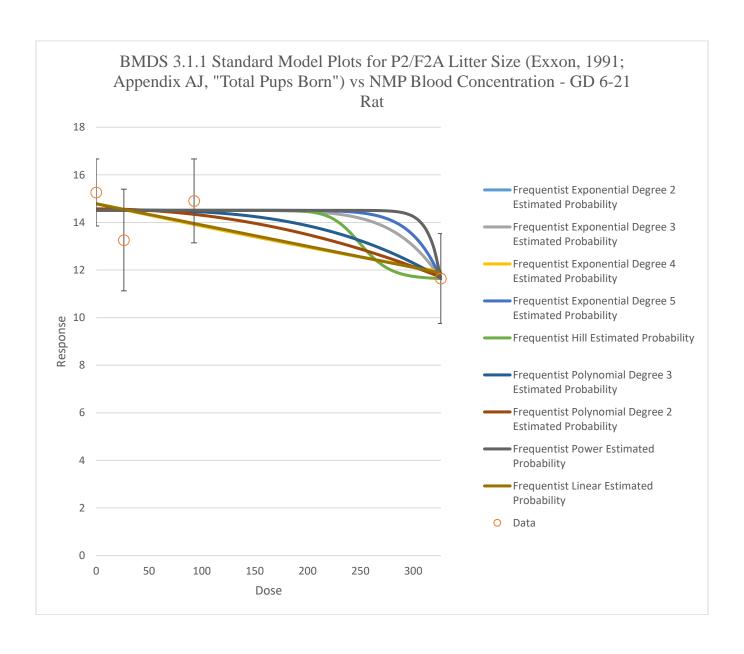

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Litter Size – GD 6-21 Rat (Exxon, 1991)

Table 4-11 Model Predictions for Litter Size in P2/F2A Rats Based on Gestational Exposure (Exxon, 1991)

(EXXVII, 1	<u> </u>								
Standard Models			BMR = 1 Standard Deviation (mg/L Blood – GD 6- 21 Rat)		P Value	AIC	BMDS Recommend	BMDS Recommendation Notes	
		BMD	BMD L	BMDU			5		
Exponenti al 2 (CV)	Restricted	479.8 77	254.4 30	1919.1 52	0.126001 7	483.50036 47	Viable - Alternate	BMD higher than maximum dose	
Exponenti al 3 (CV)	Restricted	341.0 70	272.8 16	1398.6 51	0.062593 9	484.82473 34	Questionable	Goodness of fit p-value < 0.1 BMD higher than maximum dose	
Exponenti al 4 (CV)	Restricted	479.8 45	254.4 27	1919.0 11	0.041809	485.50036 47	Viable - Alternate	Goodness of fit p-value < 0.1 BMD higher than maximum dose	
Exponenti al 5 (CV)	Restricted	335.9 07	105.7 78	369.62 51	NA	486.82461 64	Questionable	BMD/BMDL ratio > 3 BMD higher than maximum dose d.f.=0 (Goodness of fit test cannot be calculated)	
Hill (CV)	Restricted	-9999	0	Infinity	NA	486.82461 56	Unusable	BMD computation failed BMD not estimated BMDL not estimated d.f.=0 (Goodness of fit test cannot be calculated)	
Polynomi al Degree 3 (CV)	Restricted	364.3 94	273.7 96	1275.7 35	0.170808	482.89187 58	Recommend ed	Basis: Lowest AIC BMD higher than maximum dose	
Polynomia 1 Degree 2 (CV)	Restricted	384.9 61	270.0 21	1364.6 28	0.157874 4	483.04935 69	Viable - Alternate	BMD higher than maximum dose	
Power (CV)	Restricted	329.9 08	275.4 82	1240.3 89	0.062598	484.82461 5	Questionable	Goodness of fit p-value < 0.1 BMD higher than maximum dose	
<u>Linear</u> (CV)	NA	450.8 59	261.8 83	1618.6 56	0.130882 7	483.42435 33	Viable - Alternate	BMD higher than maximum dose	

^{*}Selected Model (Green); Constant variance case presented (Test 2 p-value = 0.24158); scaled residuals for doses0, 26.1207, 92.5466 and 326.1056were 0.954993534, -1.512767309, 0.511175014 and -0.013313118, respectively.

^{**}Restrictions defined in the BMDS 3.1.1 User Guide; NA = Not Applicable; CV = Constant Variance Model; NCV = Non-Constant Variance Model

Selected Model – Polynomial Degree 3 (Restricted) - Extra Risk, BMR = 1

User Input

Info	
Model	Polynomial degree 3 v1.1
Dataset Name	P2F2A Litter Size GD 6-21
User notes	[Add user notes here]
Dose-Response Model	$M[dose] = g + b1*dose + b2*dose^2 +$

Std. Dev.
1
-
0.95
Normal


Model Data	
Dependent Variable	[Dose]
Independent Variable	[Response]
Total # of Observations	85
Adverse Direction	Automatic

Model	b2*dose^2 +		
		Model R	Results
	Benchmark Dose		
	BMD	364.3935627	
	BMDL	273.7956247	
	BMDU	1275.734624	
	AIC	482.8918758	
Т	est 4 P-value	0.170808016	
	D.O.F.	2	
	Model Parameters		
#	of Parameters	5	
	Variable	Estimate	
	g	14.52409502	
	b1	Bounded	
	b2	Bounded	
	b3	-8.26711E-08	
	alpha	16.00042971	

Goodne	ess of Fit							
Dose	Size	Estimated Median	Calc'd Median	Observed Mean	Estimated SD	Calc'd SD	Observed SD	Scaled Residual
0	27	14.52409502	15.2592593	15.2592593	4.00005371	3.558225	3.558225	0.954993534
26.1207	23	14.52262166	13.2608696	13.2608696	4.00005371	4.937955	4.937955	-1.512767309
92.5466	21	14.45856578	14.9047619	14.9047619	4.00005371	3.871754	3.871754	0.511175014
326.1056	14	11.65708966	11.6428571	11.6428571	4.00005371	3.272429	3.272429	-0.013313118

Likelihoods of Interest			
Model	Log Likelihood*	# of Parameters	AIC
A1	-236.6787228	5	483.357446
A2	-234.583299	8	485.166598
A3	-236.6787228	5	483.357446
fitted	-238.4459379	3	482.891876
R	-241.3113542	2	486.622708
	· · · · · · · · · · · · · · · · · · ·		

Tests of Interest			
Test	-2*Log(Likelihood Ratio)	Test df	p-value
1	13.45611034	6	0.03633832
2	4.190847665	3	0.24157981
3	4.190847665	3	0.24157981
4	3.534430134	2	0.17080802

4.5.4 P2/F2B Litter Size – GD 6-21 Rat (Exxon Appendix AK, "Total Pups Born")

mg/L Blood – GD 6-21			SD
Rat	N	Mean	
0	25	15.24	2.947881
25.25	20	14.35	3.422449
89.03	18	14.39	3.972536
311.9	9	11	3.708099

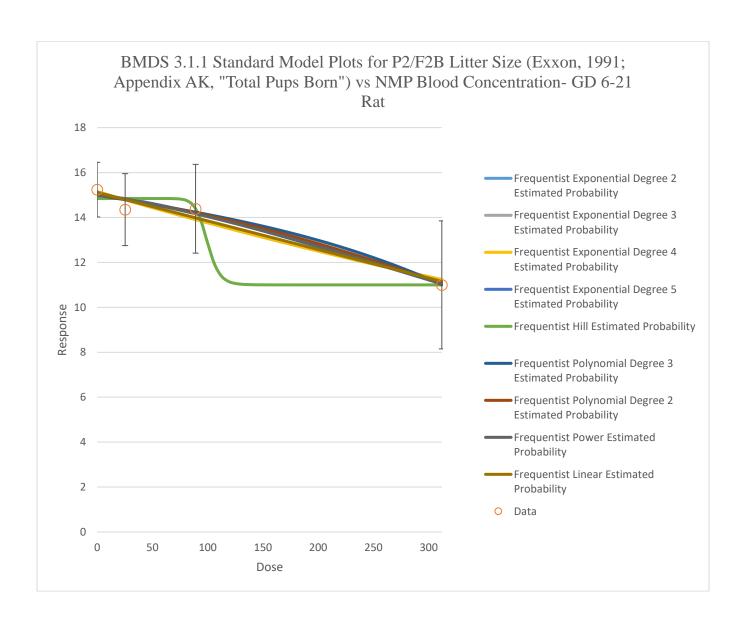

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Litter Size – GD 6-21 Rat (Exxon, 1991)

Table 4-12 Model Predictions for Litter Size in P2/F2B Rats Based on Gestational Exposure (Exxon, 1991)

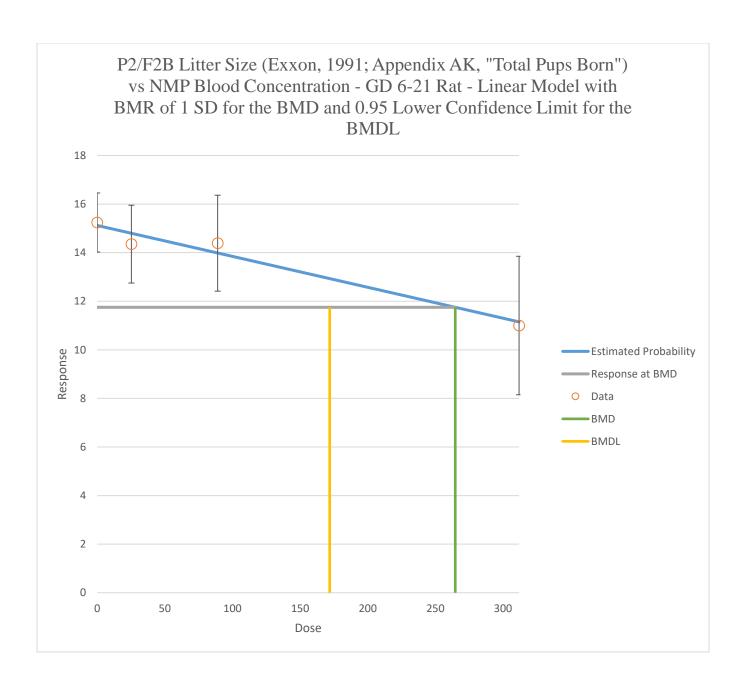
Standard Models	Restriction **]	R = 1 Sta Deviation Blood - 21 Rat BMD L	on - GD 6-	P Value	AIC	BMDS Recommend s	BMDS Recommendation Notes
Exponential 2 (CV)	Restricted	262.3 67	156.2 09	625.51 00	0.682087	385.30440	Viable - Alternate	
Exponential		273.9	157.8	606.75	0.425303	387.17482	Viable -	
3 (CV)	Restricted	39	78	05	6	76	Alternate	
Exponential	Dagtmigtad	262.3	156.2	625.49	0.682087	385.30440	Viable -	
4 (CV)	Restricted	75	08	80	3	9	Alternate	
Exponential 5 (CV)	Restricted	273.9 09	157.8 76	606.74 26	NA	389.17482 74	Questionable	d.f.=0 (Goodness of fit test cannot be calculated)
Hill (CV)	Restricted	111.0 61	95.28 81	Infinity	NA	389.31790 07	Questionable	d.f.=0 (Goodness of fit test cannot be calculated)
Polynomial Degree 3 (CV)	Restricted	281.8 42	173.6 28	556.23 98	0.474588	387.05048 62	Viable - Alternate	
Polynomial Degree 2 (CV)	Restricted	276.8 75	173.2 41	560.25 11	0.460642	387.08354 61	Viable - Alternate	
Power (CV)	Restricted	273.9 07	172.5 02	568.10 38	0.435155 4	387.14823 81	Viable - Alternate	
<u>Linear</u> (CV)	NA	264.7 04	171.8 83	574.90 49	0.717494	385.20319 5	Recommend ed	Basis: Lowest AIC

^{*}Selected Model (Green); Constant variance case presented (Test 2 p-value = 0.60824); scaled residuals for selected model for doses 0, 25.25, 89.0333, and 311.8896 were 0.180266075, -0.593822034, 0.507945167 and -0.133410146, respectively.

^{**}Restrictions defined in the BMDS 3.1.1 User Guide; NA = Not Applicable; CV = Constant Variance Model; NCV = Non-Constant Variance Model

Selected Model –Linear - Extra Risk, BMR = 1 SD

		User	Input		
Info		Model Options			
Model	Linear v1.1	BMR Type	Std. Dev.	Model Data	
Dataset Name	P2F2B Litter Size GD 6-21	BMRF	jtd. Bev.	Dependent Variable	Dose
User notes	[Add user notes here]	Tail Probability	-	Independent Variable	Respons
Oser notes	[Add user notes here]	Confidence Level	0.95	Total # of Observations	72
Dose-Response Model	M[dose] = g + b1*dose	Distribution Type	Normal	Adverse Direction	Automat
		Model	Results		


Benchmark Dose								
BMD	264.7037947							
BMDL	171.8830314							
BMDU	574.9048606							
AIC	385.203195							
Test 4 P-value	0.717494025							
D.O.F.	2							
Model Pa	rameters							
# of Parameters	3							
Variable	Estimate							
σω	15.11856069							
beta1	-0.012724921							
alpha	11.34568072							

Good	ness	of 1	Fit

Dose	Size	Estimated Median	Calc'd Median	Observed Mean	Estimated SD	Calc'd SD	Observed SD	Scaled Residual
0	25	15.11856069	15.24	15.24	3.36833501	2.947881	2.947881	0.180266075
25.25	20	14.79725643	14.35	14.35	3.36833501	3.422449	3.422449	-0.59382203
89.0333	18	13.98561894	14.3888889	14.3888889	3.36833501	3.972536	3.972536	0.507945167
311.8896	9	11.14979002	11	11	3.36833501	3.708099	3.708099	-0.13341015

Likelihoods	of Interest		
Model	Log Likelihood*	# of Parameters	AIC
A1	-189.2696069	5	388.539214
A2	-188.354168	8	392.708336
A3	-189.2696069	5	388.539214
fitted	-189.6015975	3	385.203195
R	-194.2508792	2	392.501758

Tests of	Interest		
Test	-2*Log(Likelihood Ratio)	Test df	p-value
1	11.79342232	6	0.06673919
2	1.830877708	3	0.60823876
3	1.830877708	3	0.60823876

4.6 Results of BMD Modeling of P2 Pup Death (Exxon, 1991)

Nested dichotomous models were applied to fit pup death for the P2/F2A and P2/F2B litters. Nested dichotomous models are preferred for this endpoint because they contain an intra-litter correlation coefficient for the assessment of litter-specific responses. Details regarding pup death at day 0 (stillborn) and by day 4 are available in Appendix AJ (for P2/F2A litters) and AK (for P2/FB litters) of the Exxon (1991) report.

The pup death endpoint was analyzed using BMDS 2.7 because it contains the larger suite of nested dichotomous models. To assess intra-litter correlations (ILC) BMDS nested dichotomous models were run two ways, with ILC coefficients estimated and with ILC coefficients assumed to be zero. Because potential litter-specific covariates (LSCs) such as dam BW are affected by dose, LSCs were not assessed in the BMDS nested dichotomous model runs. The following nested dichotomouse models and general modeling options were used to the pup death incidence data.

Nested Dichotomous Models Applied to Pup Death Response⁵:

- NLogistic Nested Logistic model with ILC coefficients assumed to be 0
- NLogistic-ILC Nested Logistic model with ILC coefficients estimated
- NCTR National Center for Toxicological Research model with ILC coefficients assumed to be
- NCTR-ILC NCTR model with ILC coefficients estimated
- RaiVR Rai and Van Ryzin model with ILC coefficients assumed to be 0
- RaiVR-ILC Rai and Van Ryzin model with ILC coefficients estimated

General Model Options Used for Pup Death Nested Dichotomous Response:

- Benchmark Response (BMR): 10% (not shown in report), 5% and 1% Extra Risk
- Confidence Level: 0.95

Background: Estimated

-

⁵ As indicated in the tables in 2.6, the NLogistic model is generally preferred because it has received the more extensive QA testing, but the NCTR and RaiVR models are provided as alternative models.

4.6.1 P2/F2A Pups Dead at Day 0 (Stillborn Day 0/Total Pups Born; Exxon 1991 Appendix AJ)

Appendix A			26.1207 avg. mg/L blood			92.54	66 avg. m	g/L blood	326.1056 avg. mg/L blood		
	Control		20.120	GD6-2		72.540	GD6-2		GD6-21		
Dam	N	Stillborn	Dam	N	Stillborn	Dam	N	Stillborn	Dam	N	Stillborn
JAB248	12	0	JAB02 9	17	0	JAB3 02	15	0	JAB3 25	13	0
JAB026	16	0	JAB03 2	17	0	JAB0 38	14	1	JAB3 27	12	0
JAB251	14	0	JAB27 9	14	2	JAB1 10	15	0	JAB0 41	13	8
JAB097	15	0	JAB10 4	13	1	JAB3 05	16	1	JAB1 35	7	0
JAB254	9	0	JAB28 2	13	0	JAB1 13	20	1	JAB1 36	4	0
JAB100	18	2	JAB28 5	16	1	JAB1 16	22	1	JAB0 45	14	0
JAB257	17	1	JAB28 8	17	0	JAB3 11	16	0	JAB0 50	12	0
JAB260	18	0	JAB03 5	14	1	JAB1 21	9	0	JAB3 36	11	0
JAB263	15	0	JAB10 7	19	0	JAB3 19	15	0	JAB3 29	11	0
JAB266	15	0	JAB29 2	1	1	JAB3 22	14	0	JAB3 30	8	2
JAB269	18	1	JAB29 5	7	0	JAB3 20	3	0	JAB0 46	14	0
JAB10	18	1	JAB34 7	16	0	JAB3 06	13	0	JAB3 28	14	0
JAB270	18	0	JAB29 8	5	0	JAB3 13	17	1	JAB1 34	16	1
JAB273	15	0	JAB34 8	19	1	JAB3 23	14	0	JAB3 41	14	1
JAB252	16	0	JAB29 3	5	0	JAB3 10	15	1			
JAB028	18	1	JAB03 7	14	1	JAB1 17	14	0			
JAB275	18	0	JAB34 9	16	0	JAB0 40	20	0			
JAB255	16	0	JAB27 8	16	1	JAB3 09	14	1			
JAB264	15	0	JAB10 5	14	0	JAB0 39	16	0			
JAB267	17	0	JAB29 7	15	0	JAB3 17	14	0			
JAB262	17	0	JAB10 6	17	0	JAB1 12	17	0			
JAB102	17	3	JAB28 1	6	0						
JAB246	2	1	JAB29 0	14	0						
JAB256	10	0									
JAB098	15	0									
JAB249	15	0		· · · · · · · · · · · · · · · · · · ·					_	-	

JAB253	18	0					

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Pups Dead at Day 0 (Exxon, 1991)

Table 4-13 Model Predictions for Pup Death at Day 0 in P2/F2A Rats (Exxon, 1991)

Preferre	50/ T		40/ 17					
d	5% Ext	ra Risk	I% Ext	ra Risk	P Value	AIC	BMDS	BMDS Recommendation Notes
Models*	BMD	BMDL	BMD	BMDL	1 (0.100	1110	Recommends	21,220 1000 1111011011011111111111111111
NLogistic	326.34	240.809	280.408	50.7883	0.0007	334.364	Questionable	BMD/BMDL ratio > 3 Goodness of fit p-value < 0.1
<u>NLogisti</u>	327.095	205.186	281.145	49.3219	0.1017	313.315	Recommend	Basis: Lowest AIC BMD/BMDL ratio > 3 for 1% Extra
<u>c-ILC</u>	02/10/2	202.100	2011110	1510215	0.1017	010.010	ed	Risk
Alternativ	e Models	5			-			
<u>NCTR</u>	326.327	271.939	282.34	235.284	0	332.364	Questionable	Goodness of fit p-value < 0.1
NCTR- ILC	327.114	0.63378 5	327.114	0.63378 5	0.1103	311.315	Questionable	BMD/BMDL ratio > 20
<u>RaiVR</u>	281.131	234.276	281.131	234.276	0	332.364	Questionable	Goodness of fit p-value < 0.1
RaiVR- ILC	327.118	0.63378 5	280.539	0.47224 4	0.0867	311.315	Questionable	BMD/BMDL ratio > 20

^{*}NLogistic is preferred because it is the more rigorously tested nested model. All nested models were restricted. Restrictions are defined in the BMDS 3.1.1 User Guide; ILC = Intra-litter Correlation Coefficients estimated; Because potential litter-specific covariates (LSCs) such as dam BW are affected by dose, LSCs were not estimated. **Selected Model (Green); the average scaled residual for dose group nearest the BMD₀₅ and BMD₀₁ were -0.3523 and -0.3523, respectively.

Selected Model Results-NLogistic-ILC, BMR = 0.01 and 0.05

Extra Risk NLogistic Model. (Version: 2.20; Date: 04/27/2015) Input Data File: C:/Users/jgift/BMDS2704/Data/NMP/P2F2A Dead Day 0/nln_P2F2A Day 0 Deaths_Nln-BMR01-RestrictnoLSC.(d) Tue Jul 30 22:03:20 2019 BMDS Model Run The probability function is: Prob. = alpha + theta1*Rij + [1 - alpha - theta1*Rij]/ [1+exp(-beta-theta2*Rij-rho*log(Dose))], where Rij is the litter specific covariate. Restrict Power rho >= 1. Total number of observations = 85 Total number of records with missing values = 0Total number of parameters in model = 9Total number of specified parameters = 2Maximum number of iterations = 500Relative Function Convergence has been set to: 1e-008 Parameter Convergence has been set to: 1e-008 Number of Bootstrap Iterations per run: 1000 Bootstrap Seed: 1564538600 User specifies the following parameters: theta1 = theta2 =Default Initial Parameter Values alpha = 0.02553beta = -66.0821 theta1 =

0 Specified theta2 = 0 Specified rho = 10.9041 phi1 = 0.0392728phi2 =0 phi3 = 0 phi4 = 0.310565

Parameter Estimates

Variable	Estimate	Std. Err.
alpha	0.02553	0.00468854
beta	-66.0821	0.792172
rho	10.9041	0.0311563
phi l	0.0392728	NA
phi2	0	Bounded
phi3	0	Bounded
phi4	0.310565	NA

Log-likelihood: -151.658 AIC: 313.315

Litter Data

Lit Dose	Spec. Cov.	Litte Est. Prob.	r Size	S Expected	caled Obs	erved Residual
0.0000	2.0000	0.026	2	0.051	1	4.1730
0.0000	9.0000	0.026	9	0.230	0	-0.4236
0.0000	10.0000		10	0.255	0	-0.4400
0.0000	12.0000		12	0.306	0	-0.4686
0.0000	14.0000		14	0.357	0	-0.4928
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	15.0000		15	0.383	0	-0.5036
0.0000	16.0000		16	0.408	0	-0.5136
0.0000	16.0000		16	0.408	0	-0.5136
0.0000	16.0000		16	0.408	0	-0.5136
0.0000	17.0000		17	0.434	0	-0.5230
0.0000	17.0000	0.026	17	0.434	0	-0.5230
0.0000	17.0000	0.026	17	0.434	1	0.6820
0.0000	17.0000	0.026	17	0.434	3	3.0920
0.0000	18.0000	0.026	18	0.460	0	-0.5318
0.0000	18.0000	0.026	18	0.460	1	0.6254
0.0000	18.0000	0.026	18	0.460	1	0.6254
0.0000	18.0000	0.026	18	0.460	0	-0.5318
0.0000	18.0000	0.026	18	0.460	0	-0.5318
0.0000	18.0000		18	0.460	2	1.7826
0.0000	18.0000	0.026	18	0.460	1	0.6254
0.0000	18.0000	0.026	18	0.460	0	-0.5318
26 1207	1 0000	0.026		0.026	1	C 1702
26.1207	1.0000		1 5	0.026	1	6.1782
26.1207	5.0000			0.128	0	-0.3619
26.1207	5.0000		5	0.128	0	-0.3619
26.1207	6.0000		6	0.153	0	-0.3965
26.1207	7.0000		7	0.179	0	-0.4282
26.1207	13.0000		13	0.332	1	1.1748
26.1207	13.0000		13	0.332	0	-0.5836
26.1207	14.0000		14	0.357	0	-0.6056
26.1207	14.0000		14	0.357	2	2.7833
26.1207	14.0000		14	0.357	0	-0.6056
26.1207	14.0000		14	0.357	1	1.0888
26.1207	14.0000		14	0.357	1	1.0888
26.1207	15.0000		15	0.383	0	-0.6269
26.1207	16.0000		16	0.408	1	0.9376
26.1207	16.0000		16	0.408	0	-0.6474
26.1207	16.0000	0.026	16	0.408	0	-0.6474

This document is a draft for review purposes only and does not constitute Agency policy.

123	26.1207	16.0000	0.026	16	0.408	1	0.9376
124	26.1207	17.0000	0.026	17	0.434	0	-0.6674
125	26.1207	17.0000	0.026	17	0.434	0	-0.6674
126	26.1207	17.0000	0.026	17	0.434	0	-0.6674
127	26.1207	17.0000	0.026	17	0.434	0	-0.6674
128	26.1207	19.0000	0.026	19	0.485	1	0.7490
129	26.1207	19.0000	0.026	19	0.485	0	-0.7055
130		-,,,,,,,,	****				***************************************
131	92.5466	3.0000	0.026	3	0.077	0	-0.2804
132	92.5466	9.0000	0.026	9	0.230	0	-0.4856
133	92.5466	13.0000	0.026	13	0.332	0	-0.5836
134	92.5466	14.0000	0.026	14	0.357	0	-0.6056
135	92.5466	14.0000	0.026	14	0.357	1	1.0888
136	92.5466	14.0000	0.026	14	0.357	0	-0.6056
137	92.5466	14.0000	0.026	14	0.357	1	1.0888
138	92.5466	14.0000	0.026	14	0.357	0	-0.6056
139	92.5466	14.0000	0.026	14	0.357	0	-0.6056
140	92.5466	15.0000	0.026	15	0.383	0	-0.6269
141	92.5466	15.0000	0.026	15	0.383	0	-0.6269
142	92.5466	15.0000	0.026	15	0.383	0	-0.6269
143	92.5466	15.0000	0.026	15	0.383	1	1.0101
144	92.5466	16.0000	0.026	16	0.408	0	-0.6474
145	92.5466	16.0000	0.026	16	0.408	1	0.9376
146	92.5466	16.0000	0.026	16	0.408	0	-0.6474
147	92.5466	17.0000	0.026	17	0.434	1	0.8703
148	92.5466	17.0000	0.026	17	0.434	0	-0.6674
149	92.5466	20.0000	0.026	20	0.511	1	0.6938
150	92.5466	20.0000	0.026	20	0.511	0	-0.7239
151	92.5466	22.0000	0.026	22	0.562	1	0.5925
152	72.3400	22.0000	0.020	22	0.502	1	0.5725
153	326.1056	4.0000	0.073	4	0.291	0	-0.4031
154	326.1056	7.0000	0.073	7	0.509	0	-0.4379
155	326.1056	8.0000	0.073	8	0.582	2	1.0835
156	326.1056	11.0000	0.073	11	0.800	0	-0.4585
157	326.1056	11.0000	0.073	11	0.800	0	-0.4585
158	326.1056	12.0000	0.073	12	0.873	0	-0.4585
159	326.1056	12.0000	0.073	12	0.873	0	-0.4617
160	326.1056	13.0000	0.073	13	0.873	8	3.4649
161	326.1056	13.0000	0.073	13	0.946	0	-0.4645
162	326.1056	14.0000	0.073	14	1.018	1	-0.4043
163	326.1056	14.0000	0.073	14	1.018	0	-0.4669
164	326.1056	14.0000	0.073	14	1.018	0	-0.4669
165	326.1056	14.0000	0.073	14	1.018	0	-0.4669
166	326.1056		0.073	16	1.018	1	-0.4663
167	320.1030	10.0000	0.073	10	1.104	1	-0.0003
168							
169							
170	Scaled Res	ridual(c) fo	r Dosa Gr	oup Me	oract tha I	MD	
171	Scaled Res	siduai(s) io	i Dose Oi	oup ive	arest the r	עוואנ	
172	Minimum	scaled resi	 dual for d	osa aro	un noorost	tha B	MD –
173	Minimum						
174							
175	Average so						
176	Average A Maximum						
177							
178	Maximum Number of						
179	Number of	muers use	u for scale	u resid	uai ior dos	se groi	ap nearest t
180							
181							
182	Observed	Chi-sauer	a = 120.2	685			
183	Observed	Chi-square	c = 120.2	003			
184			Rootstrop	ning D	aculte		
104			Bootstrap	hing K	Suns		

Scaled Residual(s) for Dose Group Nearest the BMD

Minimum scaled residual for dose group nearest the BMD = -0.4669 Minimum ABS(scaled residual) for dose group nearest the BMD = 0.0085 Average scaled residual for dose group nearest the BMD = Average ABS(scaled residual) for dose group nearest the BMD = 0.3523 Maximum scaled residual for dose group nearest the BMD = Maximum ABS(scaled residual) for dose group nearest the BMD = 0.4669 Number of litters used for scaled residual for dose group nearest the BMD = 4

This document is a draft for review purposes only and does not constitute Agency policy.

Number of Bootstrap Iterations per run: 1000

Bootstrap Chi-square Percentiles

Bootstra	n	Воог	strup Ch	ir squar	C 1 C1C	citties
Run	P-value	50th	90th	95th	99th	
1	0.1020 80).1651	120.879	99 132.	3672	165.0942
2	0.0930 81	1.2319	117.997	70 132.	3763	160.2242
3	0.1050 81	1.1876	121.527	73 137.	2496	166.6223
Combin	ed 0.100	0 80.9	9778 12	0.2642	133.6	763 165.0942

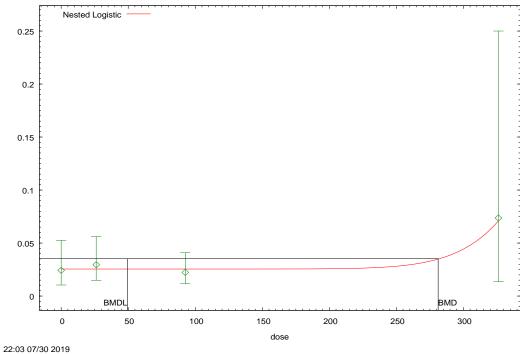
The results for three separate runs are shown. If the estimated p-values are sufficiently stable (do not vary considerably from run to run), then then number of iterations is considered adequate. The p-value that should be reported is the one that combines the results of the three runs. If sufficient stability is not evident (and especially if the p-values are close to the critical level for determining adequate fit, e.g., 0.05), then the user should consider increasing the number of iterations per run.

To calculate the BMD and BMDL, the litter specific covariate is fixed at the mean litter specific covariate of all the data: 14.035294

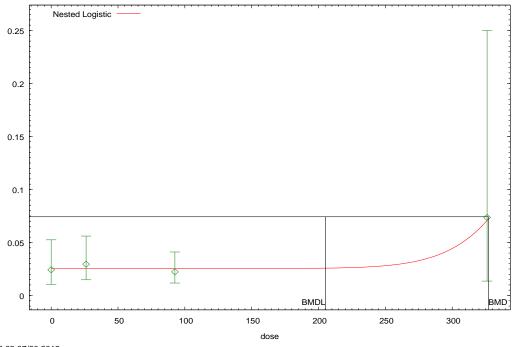
Benchmark Dose Computation

Specified effects = 0.01, 0.05

Risk Type = Extra risk


Confidence level = 0.95

BMDs = 281.145, 327.095


BMDLs = 49.3219, 205.186

Selected Model Plots– NLogistic- ILC, BMR = 0.01 and 0.05 Extra Risk

Nested Logistic Model, with BMR of 1% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

Nested Logistic Model, with BMR of 5% Extra Risk for the BMD and 0.95 Lower Confidence Limit for the BMDL

22:03 07/30 2019 231

232

This document is a draft for review purposes only and does not constitute Agency policy.

230

4.6.2 P2/F2B Pups Dead at Day 0 (Stillborn Day 0/Total Pups Born; Exxon 1991 Appendix AK)

233234

235

236

237

238

	Control	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. mg/L bloo	d GD6-21	89.03 avg	. mg/L bloo	d GD6-21	311.9 avg. mg/L blood GD6-21		
Dam	N	Stillborn	Dam	N	Stillborn	Dam	N	Stillborn	Dam	N	Stillborn
JAB245	18	3	JAB029	15	0	JAB302	19	0	JAB327	14	0
JAB248	14	0	JAB032	15	0	JAB038	14	1	JAB045	15	0
JAB026	16	0	JAB279	14	0	JAB110	15	0	JAB339	4	0
JAB251	12	0	JAB104	18	7	JAB305	15	0	JAB329	14	13
JAB097	18	0	JAB288	15	0	JAB113	16	0	JAB330	13	0
JAB254	8	0	JAB035	15	0	JAB116	5	0	JAB343D	10	0
JAB100	16	0	JAB107	6	0	JAB308	6	0	JAB337	8	0
JAB257	16	2	JAB292	12	1	JAB311	17	0	JAB328	13	0
JAB260	18	0	JAB295	7	0	JAB121	13	0	JAB134	8	5
JAB266	11	0	JAB347	15	0	JAB127	14	1			
JAB269	14	0	JAB348	19	0	JAB130	17	0			
JAB101	15	0	JAB293	19	1	JAB319	18	0			
JAB270	20	0	JAB037	15	0	JAB320	17	0			
JAB273	18	0	JAB349	16	0	JAB313	11	0			
JAB252	11	1	JAB278	11	0	JAB040	18	1			
JAB028	16	0	JAB105	18	0	JAB309	15	0			
JAB275	15	0	JAB289	15	1	JAB039	11	0			
JAB255	20	0	JAB297	13	0	JAB112	18	0			
JAB264	14	0	JAB106	16	0						
JAB262	16	1	JAB290	13	0						
JAB102	17	1									
JAB256	14	0									
JAB098	11	1									
JAB249	16	0									
JAB253	17	0									

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Pups Dead at Day 0 (Exxon, 1991)

Table 4-14 Model Predictions for Pup Death at Day 0 in P2/F2B Rats (Exxon, 1991)

Tuble 4	Table 4-14 Model I redictions for 1 up Death at Day v in 12/12D Rats (Exxon, 1771)											
Standard Models*		ra Risk		ra Risk	P Value AIC R		BMDS Recommends	BMDS Recommendation Notes				
11104015	BMD	BMDL	BMD	BMDL			**					
NLogistic	327.408	275.906	285.459	73.5614	0	246.193	Questionable	BMD/BMDL ratio > 3 Goodness of fit p-value < 0.1				
NLogistic <u>-ILC</u>	CF	CF	CF	CF	CF	209.115	Unusable	BMD computation fail; Lower limit includes 0				
Non-Stand	Non-Standard Models											
<u>NCTR</u>	327.13	0.88668	285.638	0.23745 6	0	244.193	Questionable	BMD/BMDL ratio > 20 Goodness of fit p-value < 0.1				
NCTR- ILC	324.07	0.65928 9	283.317	0.19183	0.256, 0.224	206.511	Questionable	BMD/BMDL ratio > 20				
<u>RaiVR</u>	327.208	0.88668	285.513	0.51411	0	244.193	Questionable	BMD/BMDL ratio > 20 Goodness of fit p-value < 0.1				
RaiVR- ILC	324.124	0.65928 9	283.199	0.51702 1	0.2407	206.511	Questionable	BMD/BMDL ratio > 20				

N-Methylpyrrolidone (NMP) Benchmark Dose Report

- *NLogistic is preferred because it is the more rigorously tested nested model. All nested models were restricted. Restrictions are defined in the <u>BMDS 3.1.1 User Guide</u>; ILC = Intra-litter Correlation Coefficients estimated; Because potential litter-specific
- 241 covariates (LSCs) such as dam BW are affected by dose, LSCs were not estimated.
- **No model selected as all models were questionable or unusable.

243 4.6.3 P2/F2A Pups Dead by Day 4 (Dead by Day 4/Total Pups Born; Exxon Appendix AJ)

	Control		26.1207	avg. mg/ GD6-21			avg. mg/ GD6-21		326.1056 avg. mg/L blood GD6-21			
Dam	N	Dead by Day 4	Dam	N	Dead by Day 4	Dam	N	Dead by Day 4	Dam	N	Dead by Day 4	
JAB248	12	0	JAB029	17	4	JAB302	15	0	JAB325	13	9	
JAB248 JAB026	16	0	JAB029 JAB032	17	0	JAB038	13	1	JAB323 JAB327	12	12	
JAB020 JAB251	14	0	JAB032 JAB279	14	3	JAB038 JAB110	15	1	JAB041	13	13	
JAB231 JAB097	15	0	JAB104	13	1	JAB110 JAB305	16	1	JAB041 JAB135	7	0	
JAB254	9 18	0	JAB282	13	5	JAB113	20	1	JAB136	4 14	2	
JAB100		2	JAB285	16	1	JAB116	22	1	JAB045			
JAB257	17	1	JAB288	17	0	JAB311	16	0	JAB050	12	12	
JAB260	18	3	JAB035	14	1	JAB121	9	0	JAB336	11	11	
JAB263	15	2	JAB107	19	2	JAB319	15	0	JAB329	11	1	
JAB266	15	0	JAB292	11	1	JAB322	14	2	JAB330	8	8	
JAB269	18	1	JAB295	7	0	JAB320	3	0	JAB046	14	0	
JAB10	18	1	JAB347	16	0	JAB306	13	0	JAB328	14	14	
JAB270	18	0	JAB298	5	0	JAB313	17	1	JAB134	16	16	
JAB273	15	0	JAB348	19	3	JAB323	14	1	JAB341	14	14	
JAB252	16	2	JAB293	5	0	JAB310	15	1				
JAB028	18	3	JAB037	14	1	JAB117	14	0				
JAB275	18	5	JAB349	16	0	JAB040	20	2				
JAB255	16	2	JAB278	16	3	JAB309	14	1				
JAB264	15	0	JAB105	14	0	JAB039	16	2				
JAB267	17	1	JAB297	15	1	JAB317	14	0				
JAB262	17	0	JAB106	17	0	JAB112	17	0				
JAB102	17	10	JAB281	6	3							
JAB246	2	2	JAB290	14	0							
JAB256	10	0										
JAB098	15	1										
JAB249	15	0										
JAB253	18	0										

Summary of BMDS 3.1.1 Modeling Results for P2/F2A Pups Dead by Day 4 (Exxon, 1991)

Table 4-15 Model Predictions for Pup Death at Day 4 in P2/F2A Rats (Exxon, 1991)

I dole i	able 4 15 Wodel I Tedletions for Tup Death at Day 4 in 12/12/1 Rats (Exxon, 1991)										
Standard	5% Extra Risk		1% Extra Risk		P Value	AIC	BMDS Recommends	BMDS Recommendation Notes			
Models*	BMD	BMDL	BMD	BMDL			**				
NLogistic	253.849	136.252	226.386	91.5542	0	771.038	Questionable	Goodness of fit p-value < 0.1			
NLogistic -ILC	257.878	132.515	231.394	88.2173	0.0317	608.697	Questionable	Goodness of fit p-value < 0.1			
Non-Stan	Non-Standard Models										
<u>NCTR</u>	261.47	217.891	232.338	193.615	0	769.038	Questionable	Goodness of fit p-value < 0.1			
NCTR- ILC	267.663	223.052	240.654	200.545	0.0307, 0.0303	606.697	Questionable	Goodness of fit p-value < 0.1			
<u>RaiVR</u>	261.996	218.33	233.057	194.214	0	769.038	Questionable	Goodness of fit p-value < 0.1			
RaiVR- ILC	267.488	222.907	240.412	200.344	0.0333, 0.034	606.697	Questionable	Goodness of fit p-value < 0.1			

^{*}NLogistic is preferred because it is the more rigorously tested nested model. All nested models were restricted. Restrictions are defined in the BMDS 3.1.1 User Guide; ILC = Intra-litter Correlation Coefficients estimated; Because potential litter-specific covariates (LSCs) such as dam BW are affected by dose, LSCs were not estimated.

248

249

250

^{**}No model selected as all models were questionable or unusable..

255256

4.6.4 P2/F2B Pups Dead by Day 4 (Dead by Day 4/Total Pups Born; Exxon Appendix AK)

	Control	,	25.25 &	vg. mg/L GD6-21	blood	89.03 a	avg. mg/L GD6-21	blood	311.9	avg. mg/L GD6-21	blood
Dam	N	Dead by Day 4	Dam	N	Dead by Day 4	Dam	N	Dead by Day 4	Dam	N	Dead by Day 4
JAB245	18	18	JAB029	15	0	JAB302	19	1	JAB327	14	14
JAB248	14	0	JAB032	15	0	JAB038	14	1	JAB045	15	2
JAB026	16	0	JAB279	14	0	JAB110	15	1	JAB339	4	4
JAB251	12	0	JAB104	18	7	JAB305	15	0	JAB329	14	14
JAB097	18	0	JAB288	15	0	JAB113	16	0	JAB330	13	13
JAB254	8	0	JAB035	15	0	JAB116	5	0	JAB343 D	10	10
JAB100	16	0	JAB107	6	0	JAB308	6	1	JAB337	8	8
JAB257	16	10	JAB292	12	1	JAB311	17	1	JAB328	13	13
JAB260	18	4	JAB295	7	1	JAB121	13	1	JAB134	8	8
JAB266	11	0	JAB347	15	0	JAB127	14	1			
JAB269	14	0	JAB348	19	0	JAB130	17	1			
JAB101	15	0	JAB293	19	2	JAB319	18	0			
JAB270	20	0	JAB037	15	2	JAB320	17	0			
JAB273	18	2	JAB349	16	0	JAB313	11	0			
JAB252	11	1	JAB278	11	1	JAB040	18	1			
JAB028	16	2	JAB105	18	2	JAB309	15	0			
JAB275	15	1	JAB289	15	6	JAB039	11	0			
JAB255	20	1	JAB297	13	0	JAB112	18	0			
JAB264	14	0	JAB106	16	0						
JAB262	16	3	JAB290	13	1						
JAB102	17	2									
JAB256	14	0									
JAB098	11	3									
JAB249	16	0									
JAB253	17	3									

Summary of BMDS 3.1.1 Modeling Results for P2/F2B Pups Dead by Day 4 (Exxon, 1991)

261262

259

260

Table 4-16 Model Predictions for Pup Death at Day 4 in P2/F2B Rats (Exxon, 1991)

Standard Models*	5% Ext	ra Risk BMDL	1% Ext	ra Risk BMDL	P Value	AIC	BMDS Recommends	BMDS Recommendation Notes
NLogistic	229.655	126.176		92.1515	0	637.258	Questionable	BMD/BMDL ratio > 3 Goodness of fit p-value < 0.1
NLogistic -ILC	229.334	114.81	209.236	85.9385	0.065, 0.053	468.948	Questionable	Goodness of fit p-value < 0.1
Non-Stand	lard Mod	dels						
<u>NCTR</u>	243.777	203.148	218.255	181.88	0	635.258	Questionable	Goodness of fit p-value < 0.1
NCTR- ILC	250.449	208.707	228.766	190.639	0.0623, 0.0687	466.948	Questionable	Goodness of fit p-value < 0.1
<u>RaiVR</u>	243.156	202.63	217.451	181.209	0	635.258	Questionable	Goodness of fit p-value < 0.1
RaiVR- ILC	250.449	208.707	228.766	190.639	0.059, 0.0603	466.948	Questionable	Goodness of fit p-value < 0.1

^{*}NLogistic is preferred because it is the more rigorously tested nested model. All nested models were restricted. Restrictions are defined in the <u>BMDS 3.1.1 User Guide</u>; ILC = Intra-litter Correlation Coefficients estimated; Because potential litter-specific covariates (LSCs) such as dam BW are affected by dose, LSCs were not estimated.

268

^{**}No model selected as all models were questionable or unusable.

5 References

270271

272

276

277

278

279

280 281

282

283

284

285 286

287

288 289

290

291

292

293

294

295

296

297

- Barker, DJP. (2007). The origins of the developmental origins theory. J Intern Med 261: 412-417. http://dx.doi.org/10.1111/j.1365-2796.2007.01809.x
- 273 <u>Becci, PJ; Knickerbocker, MJ; Reagan, EL; Parent, RA; Burnette, LW.</u> (1982). Teratogenicity study of 274 N-methylpyrrolidone after dermal application to Sprague-Dawley rats. Fundam Appl Toxicol 2: 275 73-76.
 - <u>DuPont.</u> (1990). Letter from E I DuPont de Nemours & Company to USEPA submitting comments concerning the proposed test rule on n-methylpyrrolidone with attachment. (40-90107098). E I Dupont De Nemours & Co.
 - Exxon, B. (1991). Project No. 236535, 26 Nov 1991. ((sponsored by GAF Corp., Wayne, USA). (as cited in OECD, 2007)). Wayne, USA: GAF Corp.
 - <u>Kavlock, RJ; Allen, BC; Faustman, EM; Kimmel, CA.</u> (1995). Dose-response assessments for developmental toxicity .4. Benchmark doses for fetal weight changes. Toxicol Sci 26: 211-222. http://dx.doi.org/10.1006/faat.1995.1092
 - Poet, TS; Kirman, CR; Bader, M; van Thriel, C; Gargas, ML; Hinderliter, PM. (2010). Quantitative risk analysis for N-methyl pyrrolidone using physiologically based pharmacokinetic and benchmark dose modeling. Toxicol Sci 113: 468-482. http://dx.doi.org/10.1093/toxsci/kfp264
 - Reyes, L; Mañalich, R. (2005). Long-term consequences of low birth weight [Review]. Kidney Int Suppl 68: S107-S111. http://dx.doi.org/10.1111/j.1523-1755.2005.09718.x
 - <u>Saillenfait, AM; Gallissot, F; Langonné, I; Sabaté, JP.</u> (2002). Developmental toxicity of N-methyl-2-pyrrolidone administered orally to rats. Food Chem Toxicol 40: 1705-1712. http://dx.doi.org/10.1016/S0278-6915(02)00115-1
 - <u>Saillenfait, AM; Gallissot, F; Morel, G.</u> (2003). Developmental toxicity of N-methyl-2-pyrrolidone in rats following inhalation exposure. Food Chem Toxicol 41: 583-588. http://dx.doi.org/10.1016/S0278-6915(02)00300-9
 - <u>Sitarek, K; Stetkiewicz, J; Wąsowicz, W.</u> (2012). Evaluation of reproductive disorders in female rats exposed to N-methyl-2-pyrrolidone. Birth Defects Res B Dev Reprod Toxicol 95: 195-201. http://dx.doi.org/10.1002/bdrb.21001
- U.S. EPA. (2015). TSCA work plan chemical risk assessment. N-Methylpyrrolidone: Paint stripper use
 (CASRN: 872-50-4). In Office of Chemical Safety and Pollution Prevention. (740-R1-5002).
 Washington, DC. https://www.epa.gov/sites/production/files/2015-11/documents/nmp ra 3 23 15 final.pdf