
Restoration and Maintenance of Fish Spawning Reefs

Ed Roseman, USGS Great Lakes Science Center Audrey Baetz, USGS Great Lakes Science Center Jason Fischer, University of Toledo & USGS GLSC Robin DeBruyne, University of Toledo & USGS GLSC Alex Gatch & Tomas Höök, Purdue University

Presentation Outline

- Constructed reefs in Great Lakes
- St. Clair-Detroit River System (SCDRS) reefs
 - Need for reefs
 - Construction
 - Assessment
 - Performance
 - Need for maintenance
- Reef maintenance techniques development
- Conclusions

Great Lakes Constructed Reefs (McLean et al. 2016; Roseman et al. 2017)

Great Lakes Reefs Monitoring

(McLean et al. 2016; Roseman et al. 2017)

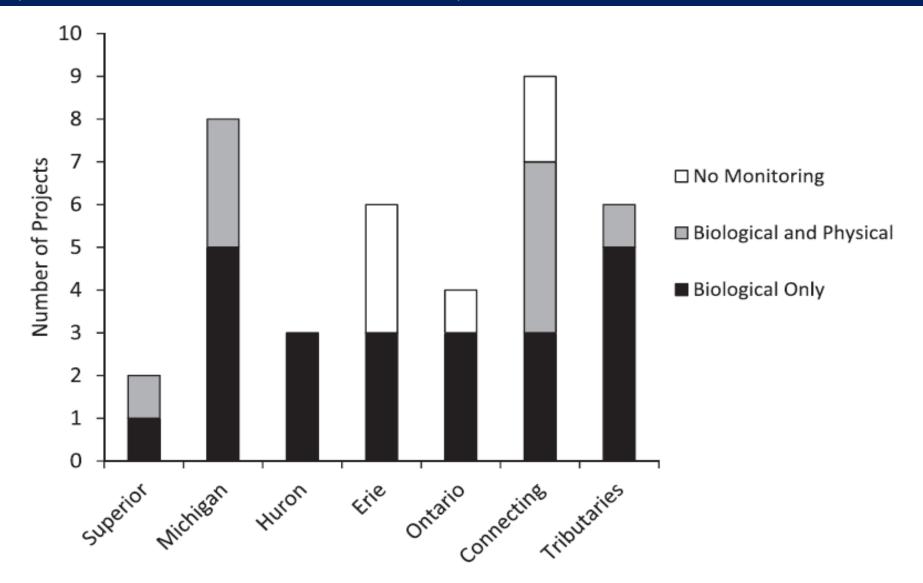
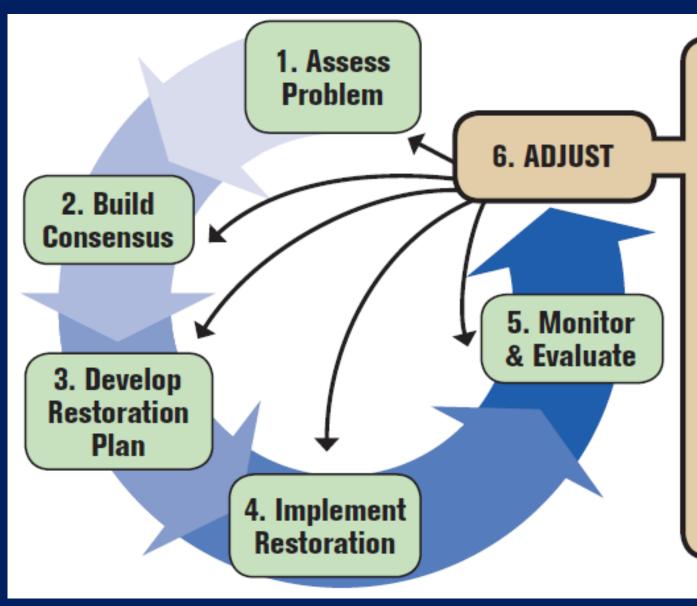


Fig. 2. Artificial reef monitoring conducted in the Great Lakes.

Constructed Reefs in the Great Lakes

- Summarized in McLean et al (2014) and Roseman et al. (2017).
- 42 reefs constructed since early 1800s.
- Objectives, materials, & level of monitoring varied.

Conclusions:


- Lack of long-term evaluation of reef performance; except in SCDRS.
- Need to develop standard protocols for monitoring biological and physical attributes of artificial structures.
- Need to develop maintenance protocols for degraded and poorly functioning reefs.

Constructed Reefs in SCDRS

7 Reef Complexes > 20 acres St. Clair River (~6 acres) Middle Channel (2012) Pointe aux Chenes (2014) Harts Light (2014) **Detroit River (~14 acres)** Belle Isle (2016) Fighting Island (2008, 2013) Grassy Island (2015) Ft. Wayne (2018)

Adaptive Management Framework

A CRUCIAL STEP

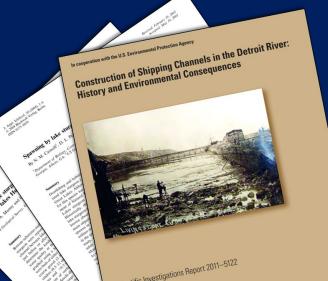
The team has made adjustments to each stage of the process based on lessons learned. This includes:

- Modifying our understanding of the problem
- Expanding outreach and consultation
- Augmenting reef siting and design criteria
- Improving communication with contractors
- Enhancing monitoring strategies

Also see Manny et al. 2015; Vaccaro et al. 2016, Hartig et al. 2018

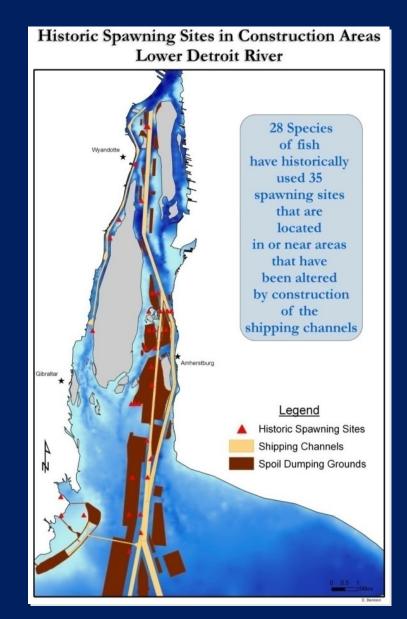
Who Decided Reefs in SCDRS?

Multiple Agencies and Organizations


System-wide Consensus

Scientific Support

Who decided reefs in SCDRS?


- Friends of the St. Clair River, SCR Binational Public Advisory Council, Friends of the Detroit River, Detroit River Public Advisory Council, state and provincial management agencies.
- Designated reef restoration as a management action toward BUI delisting.
- Required approval from state, federal, provincial governments, International Joint Commission, landowners, stakeholders, Lake Carriers Association, & others.

Why reefs in SCDRS?

- Natural spawning habitat lost (next slide graphic).
- Research showed that fish recruitment limited by spawning habitat, lake sturgeon as focal species.
- Examples, successes from other systems (WI, St. Lawrence River, etc.).
- Managers, researchers, & stakeholders reached consensus via Detroit River Public Advisory Council (http://www.detroitriver.org) & SCDRS Initiative process (www.scdrs.org; Vaccaro et al. 2016) as BUI delisting criteria.

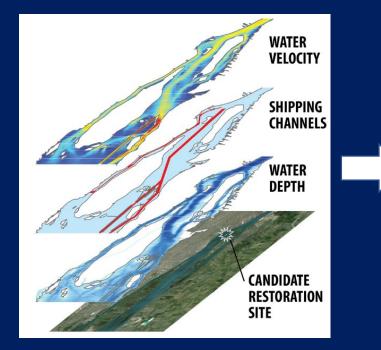
Construction of Shipping Channels

- Loss of spawning substrates
- 46,200,000 m³ substrate removed
- 4,050 ha covered with dredge spoils
- Bennion & Manny (2011).

Loss of Spawning Habitat 1900-1912

Loss of Spawning Habitat 1900-1912

Livingstone Channel lower Detroit River


Where do SCDRS reefs get placed?

- Biophysical model to predict best locations
 - Bennion & Manny (2014).
 - Spawning requirements of the fish (literature review, research).
 - Depth, velocity, slope, existing substrate (reported values).
 - Validated by Fisher et al. (2015) with field measurements.
- No construction on existing spawning areas.
- No construction in or near shipping channels.

Prioritizing Restoration Areas

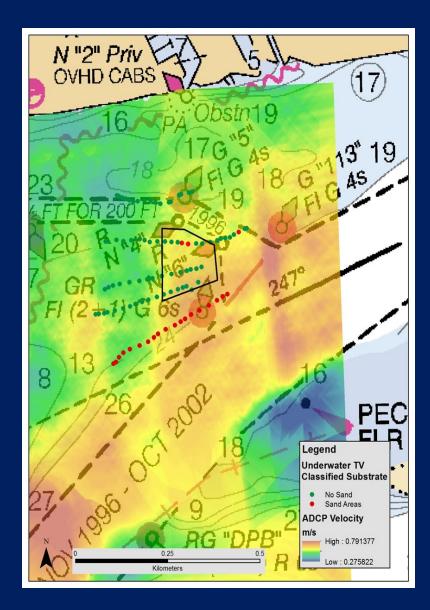
GIS model to find deep, fast flowing areas

Additional considerations:

- Proximity to historic or current spawning sites
- Connectivity to nursery habitats
- Known contamination

Bennion and Manny 2014, Journal of Great Lakes Research 40: 43-51

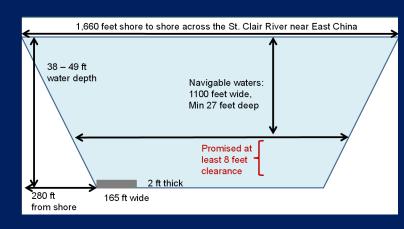
Ē

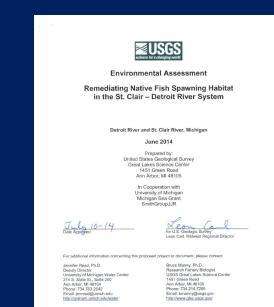

Selecting Reef Coordinates

Field Investigations:

- Water velocity
 - ADCP
- River bottom topography and sediments
 - Side scan sonar
 - Underwater video
 - Scuba diving
- Biological activity
 - Egg collection
 - Adult fish surveys

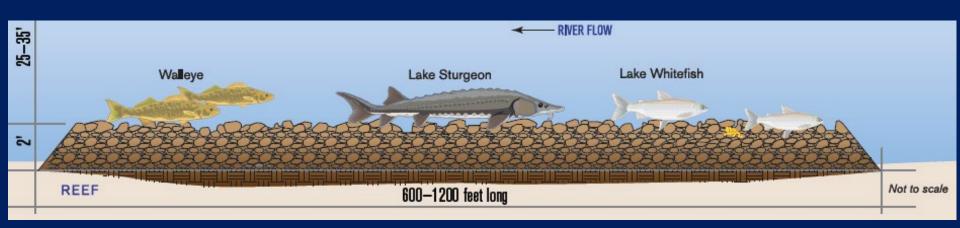
Hydrodynamic Modeling:


 USGS Geomorphology and Sediment Transport Laboratory



Ę

Project Permitting


- State permit (MDEQ)
 - Adjacent landowner permission
- Federal permit (USACE)
 - Public comment
 - Letter from Lake Carriers Association
- International review (DoS and DFAIT)
 - Water levels and flows
- National Environmental Protection Act
 - Environmental Assessment
 - State Historic Preservation Office review
 - Rare species review (MNFI)

Engineering and Design

- Old "no-miss" design across entire channel flawed.
- Oriented lengthwise with river flow.

Engineering and Design

Contracted to private company. Size, shape, arrangement, orientation.

Initial Projects - Experimental

- Multiple reef beds, materials
- Spanned the channel "no-miss" design

Recent Projects – Refined

- One large reef
- Optimally located within the channel
- Avoid depositional areas

Material Selection

- Life history and spawning preferences.
- Larger than preferred for Sea Lamprey (*Petromyzon marinus*).
- Experimental design at Belle Isle (2004) and Fighting Island.
 - Different rock types (fractured limestone, field stone, mixed rock, coal cinders.
 - No statistically significant difference in egg deposition.
- Cost also considered.

Material Selected

- 100 –200 mm angular native limestone.
- Local, clean, affordable
- Fish use it

Material Deployment

Crane and clamshell bucket

Dump barge

What determines reef viability & performance?

- Fish use
- Physical integrity

Lake Sturgeon Eggs at Middle Channel Reef photo credit: Jeff Allen USGS

Monitoring

- Techniques that match the system
- Comprehensive monitoring (biological and physical)
- Coordinated across agencies
- Focused research with universities
- Robust evaluation of changes

How are reefs assessed?

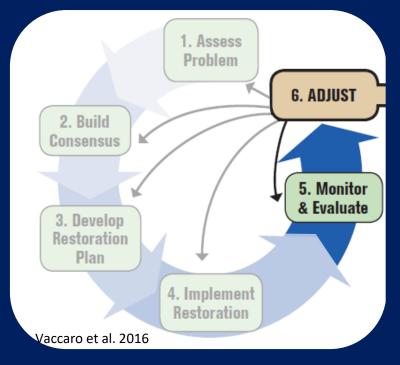
- Control sites, before & after construction for most reefs (BACI).
- Biological
 - Spawning activity (several publications)
 - Fish production (several publications on larval drift)
 - Creel survey (Castle et al., in review)
 - Genetic aspects of lake sturgeon (Marranca et al. 2015; Hunter et al., in review)
- Physical status (Fisher et al. pubs and in review)
 - Size, permanence, sediment, infilling, scour, etc.

Immediate and repeated spawning

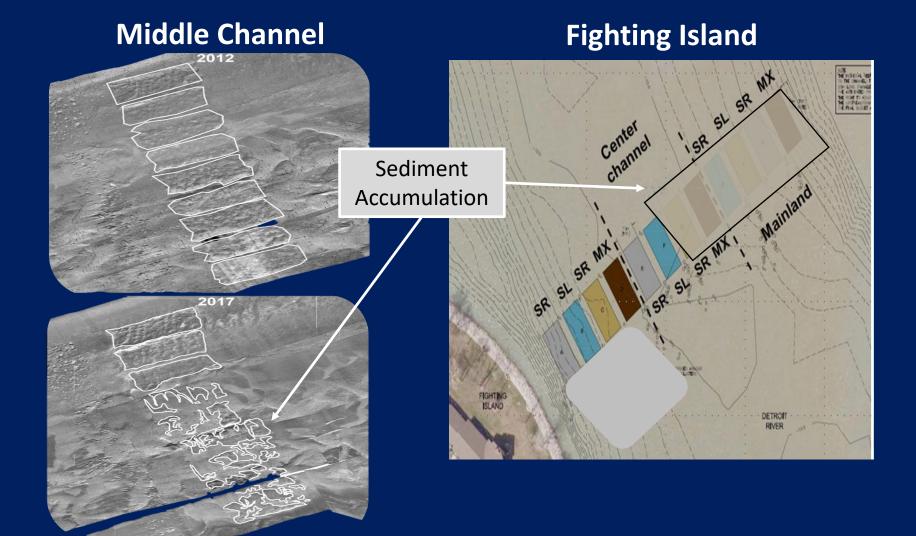
Eggs

Ripe adults

Other life stage

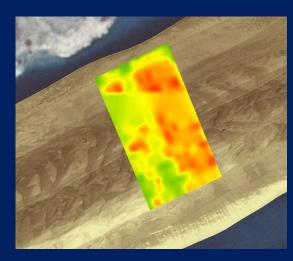

Vaccaro et al. 2016. *"Science in Action: Lessons Learned..."* University of Michigan.

	Belle Isle	Fighting Island	Middle Channel	Pointe Aux Chenes	Harts Light
Fish that show signs of spawning activity on reefs					
Black redhorse*					
Emerald shiner	•				
Golden redhorse*					
Lake sturgeon		• 🔺		•	
Lake whitefish	• 🔺	• 🔺			
Northern hog sucker*	•				
Quillback*	•				
Rock bass					
Round goby (non-native)					
Shorthead redhorse*	•				
Silver redhorse*	•				
Smallmouth bass					
Stonecat					
Trout-perch	•	•			
Walleye	•	•	•	•	
White bass ^					
White perch (non-native)^					
White sucker*	•				


Ē

Need for Physical Monitoring

- Restoration is a large initial investment
 - Ensure return on investment (e.g., objectives are meet)
- Reef longevity is finite
 - Large lakes and rivers are dynamic
- Determine if maintenance is required
- Essential part of the adaptive management cycle



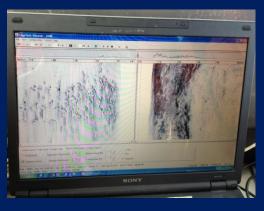
Sand Accumulation on Early Reefs


Decreased Reef Performance

- Infilling, burial, decline & cessation of fish spawning.
- Occurred within 2 years after construction.
- Degree of infilling/sedimentation varies annually.

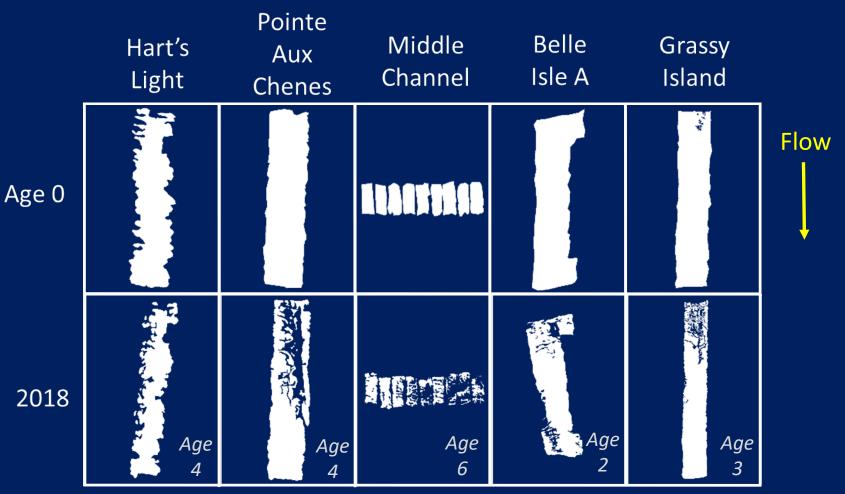
Hardness Index Middle Channel SCR (Todd Wills, MDNR)

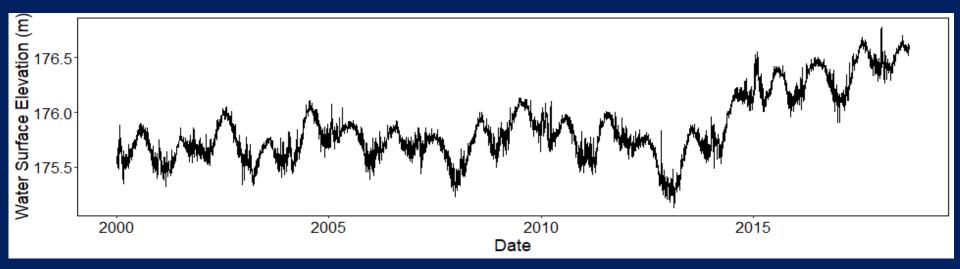
> Red – most hard Green – least hard




Enhanced Physical Assessment

- Side scan sonar
- Underwater video
- ADCP (flow)
- Hydrodynamic modeling
- Scuba diving
- Upstream sediment sources
- Dredging records




Reef Area Decreasing

Not scaled to size

Potential Sediment Sources

- 1. Small, but persistent bedload
 - SCDRS is "sediment starved"
- 2. Increased sediment from episodic events
 - Ice jam
 - Occurred Jan. 2018
 - Record high water levels

Reef Degradation Across the Great Lakes

Biological fouling

- Clog interstitial spaces
- Deplete oxygen and create • waste

ex: Cladophora & Dressenid mussels

Sedimentation

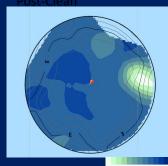
- Clog interstitial spaces
- Prevents flow of oxygen rich water

ex: resuspension & runoff

How can we maintain/repair poorly functioning reefs?

- GLRI sponsored project FY18-19.
- Wide-spread interest & applicability across Great Lakes.
- Partnered with Purdue University.
 - Testing 2 different techniques to clean reefs.
- Objectives:
 - Portable, affordable methods to clean reefs
- Measure of success:
 - Positive response by fish

Prototype Methods to Remove Sediment and Biofouling (Purdue)



Propulsion Sled

Hydro-Jet Sled

Reef Maintenance Preliminary Results (Alex Gatch - Purdue)

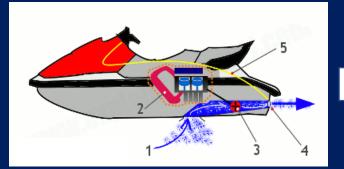
- Relative hardness
 - Post > pre
 - Propulsion > Jet
- Egg deposition:
 - Lake whitefish
 - Treated > control
 - Propulsion > Jet

- Walleye
 - Propulsion > Jet at North Island
- 2019 Workplan
 - Additional cleaning and monitoring for fall spawners

Literature review of reef repair and maintenance (Baetz – USGS)

- Marine and freshwater
- Marine engineering, archaeology, navigation industries

Induction Dredging


Air Lift

Sandsucker Dredge

Reef Blaster for Lotic Systems

- Jet ski powered propulsion water blaster.
- Allows for reef cleaning without contact with reef, dragging bottom, diving.

Summary and Conclusions: Measurable Impacts of Restoration

- Based on BUI delisting criteria, all reef projects are completed.
- Immediate & continued use of restored spawning reefs.
- More lake sturgeon being caught
 - MI DNR & USFWS surveys, Anglers
- Diversified Spawning Stock Portfolio
 - Walleye, Lake Whitefish, Lake Sturgeon
 - Population resilience
- Public Satisfaction
 - Creel survey results, high angler use
 - Excellent walleye, lake sturgeon fishing

Summary

• Functional spawning habitat can be restored.

- Immediate & repeated response by several native species.
- If physical integrity remains, fish will spawn.
- Spawning reef restoration is a viable component of the renaissance for urban waterways.
 - Reviving economic, social, & cultural values.

Many Partners to Thank

