Profiling the ToxCast library with a pluripotent human (H9) embryonic stem cell assay

Todd J. Zurlinden, PhD

Computational Biologist
Center for Computational Toxicology and Exposure
Research Triangle Park NC 27711

4th Annual STAR Organotypic Culture Models (OCM) for Predictive Toxicology Research Centers

<u>zurlinden.todd@epa.gov</u> ORCID 0000-0003-1372-3913

DISCLAIMER: The views expressed are those of the presenters and do not reflect Agency policy.

In a nutshell ...

- Chemical exposure to a pregnant woman has the potential to affect her unborn child, leading to adverse birth outcomes and/or risks to early child development.
- Vast amounts of HTS data from ToxCast/Tox21 can be used for quantitative modeling of toxicological pathways and processes [https://comptox.epa.gov/dashboard].
- Translatability into human-predictive models of developmental toxicity must deal with the embryo as a complex self-organizing system that computes with genetic circuits.
- Computational systems models can help define the applicability domain of HTS data in support of understanding the utility of *in vitro* developmental toxicity assays.

Shifting toxicology to pathway-based approaches

Problem statement: predictive DART

- Objective: increase the diversity and relevance of assays in ToxCast that can be used to profile chemicals for potential adverse effects on human embryonic development.
- Chemical exposure to a pregnant woman has the potential to affect her unborn child, leading to adverse birth outcomes and/or risks to early child development.
- Traditional animal-based methods for assessing prenatal developmental toxicity (OECD TG 414) expose pregnant rats and/or rabbits during organogenesis and necropsy at term.
- Under reauthorized TSCA (2016) EPA must accelerate development of scientifically valid test methods to prioritize large numbers of chemicals with less reliance on animal testing.

Computational synthesis and integration

Fundamental principles:

- initiating mechanisms (MIEs)
- genetic susceptibility (species, individual)
- critical periods (patterning, differentiation)
- bioavailability (chemistry, ADME)
- apical outcomes (pregnancy outcomes)

Case examples:

- explore predictive power of ToCast HTS data when integrated with relevant knowledge;
- inform additional data needs to support regulatory decisions.

ToxCast_STM: devTOX^{qP} assay, Stemina Biomarker Discovery, EPA contract EP-D-13-055

- pluripotent H9 human embryonic stem cells exposed for 3-days
- critical drop in ornithine: cystine ratio is the teratogenic index (TI) [Palmer et al. 2013]
- data processed through the ToxCast pipeline (tcpl, level 6)
- Key point: 183 of 1065 (17%) ToxCast chemicals tested positive

STM versus rat WEC

Key point: exposure-based potential for DevTox predicted by hESC assay on-the-mark both qualitatively and quantitatively.

5HPP-33: synthetic thalidomide analog

- T.I. predicted 9.5 μ M
- AC50 observed 21.2 μM (embryo viability)

TNP-470: synthetic fumagillin analog

- T.I. predicted 0.01 μM
- AC50 observed 0.04 μM (dysmorphogenesis)

STM platform

Anchoring STM performance to DevTox (ToxRefDB v1 endpoint summary)

• Key point: sensitivity (hence balanced accuracy) improves with evidence for DevTox

	Stringency Filter Applied to DevTox Anchor				
Condition ²	Base ^c	Low	Medium	High	
TP	85	60	35	19	
FP	14	37	23	9	
FN	217	127	51	11	
TN	116	208	176	88	
n	432	432	285	127	
sensitivity	0.281	0.321	0.407	0.633	
specificity	0.892	0.849	0.884	0.907	
PPV	0.859	0.619	0.603	0.679	
NPV	0.348	0.621	0.775	0.889	
ACC	46.5%	62.0%	74.0%	84.3%	
МСС	0.190	0.202	0.332	0.554	
	any dLEL rat OR rabbit	SOME evidence rat OR rabbit	CLEAR evidence rat OR rabbit	CLEAR evidence rat AND rabbit	

Biochemical determinants (inferred)

Key point: sensitive pathways can be inferred from functional annotation of MIEs in the STM-positive and STM-negative domains.

DATA SETS

ToxCast_NVS

biochemical AC50

337 inhibited features 83 activated features

ToxCast_STM

binary hit calls

183 STM-positive 882 STM-negative

ASSAY SELECTION

Logistic Regression

Gene Potency Score (GPS)

- · chemical-specific gene score
- · consolidate AC50 homologs
- add up and down extensions

GENE REDUCTION

Phenotype Weighting

HMDC database

- 28 phenotype systems
- 233 GPS bins (0,1,2,3)
- · log2 normalization
- top 40 weighted correlations

FUNCTIONAL ANNOTATION

Pathways and Processes

DAVID 6.8 bioinformatics resources

- GO Direct, KEGG, Reactome, INTERPRO
- Bonferroni adjusted p ≤ 0.05
- redundancies resolved manually by FDR
- 60 category Spearman correlation matrix
- discuss keystone pathways/processes

Keystone Pathways

Sensitive domain: flow of regulatory information points to AKT/FoxO signaling and focal adhesion in the applicability domain (RTK signaling);

Insensitive domain: GPCR signaling via G(q) pathways and most steroid receptors (aside from NR3C1) fall outside the applicability domain.

Key point: integration of MIEs into biological pathways and processes can help define the applicability domain of the hESC response.

Annotation System	n Keystone Pathway / Process		Class
GOTERM_BP_DIRECT	GO:0014066~regulation of phosphatidylinositol 3-kinase signaling	6	TP
KEGG_PATHWAY	hsa04068:FoxO signaling pathway	8	TP
KEGG_PATHWAY	hsa04510:Focal adhesion	13	TP
GOTERM_BP_DIRECT	GO:0007200~phospholipase C-activating G-protein coupled receptor signaling pathway	10	FN
INTERPRO	IPR001723:Steroid hormone receptor	7	FN
GOTERM_MF_DIRECT	GO:0005496~steroid binding	5	FN

On understanding the utility of the STM (hESC) assay

- [1] 17% of 1065 ToxCast chemicals tested here yielded an exposure-based prediction of developmental toxicity.
- [2] Model performance reached 76% to 84% balanced accuracy with excellent specificity (>88%) but modest sensitivity (<66%) when anchored to apical endpoints in DevTox.
- [3] Sensitivity of the STM model improved as more stringent acceptance criteria were applied to the anchoring DevTox animal studies.
- [4] Statistical analysis of the most potent NVS MIEs demarcated positivity or negativity of the STM response, but did not clearly resolve true positives from false negatives.
- [5] Integration of these MIEs across multiple annotation systems revealed insights into pathways and processes in the applicability domain of the STM assay.

Utilizing the STM assay to build an integrative testing strategy

- Machine learning algorithms for ToxCast/Tox21 assay portfolio (>800 features) fit and evaluated using a train/test split of low, medium, and high stringency DevTox models (~200 features selected).
- Key point: STM itself out performs ToxCast alone & augments ToxCast for Low / Medium stringency DevTox models; and points to HTS features that augment the High stringency DevTox model.

Summary and Conclusions

Computer modeling is 3R's compliant!

- 1. Several new approach methods (NAMs) are available for high-throughput screening chemical inventories for DevTox potential.
 - STM assay in ToxCast gives an exposure-based readout of a chemical's DevTox hazard potential with up to 84% balanced accuracy.
 - Assay sensitivity predicted high for kinase signaling converging on FoxO signaling but weak for estrogenic (ESR1) and G(q) signaling.

Special Thanks

Nancy Baker – Leidos / NCCT Richard Spencer - ARA / EMVL John Cowden – NCCT/CSS Keith Houck - NCCT Sid Hunter – NHEERL / ISTD Richard Judson – NCCT Parth Kothiya – NCCT (now Indiana U) Ann Richard – NCCT Nathan Rush - NCCT Kate Saili – NCCT Rusty Thomas – NCCT Todd Zurlinden – NCCT

EPA contract EP-D-13-055

Michael Colwell – Stemina Jessica Palmer - Stemina

Tox21 Cross-Partner Project #6

Nicole Kleinstreuer – NICEATM / NTP / NIEHS
Thomas Knudsen – NCCT / ORD / EPA
Annie Lumen – NCTR / FDA
Menghang Xia – NCATS / NIH
14