Troubleshooting Noncompliance at the Smallest Wastewater Treatment Plants

Part 1: Conversion

ACTIVATED SLUDGE PROCESS CONTROL

TROUBLESHOOTING CHART

Jon van Dommelen – Ohio EPA, Compliance Assistance Unit

THE COMPLIANCE ASSISTANCE UNIT

- Clean Water Act: Section 104(g)(1)
- In Ohio, the federal grant was used for equipment, supplies, travel and training
- Positions were funded through normal revenues
- Most importantly, the CAU had support of management

THE COMPLIANCE ASSISTANCE UNIT

Provide **on-site** technical assistance to communities

• Typically smaller communities (1500 gpd up to 15+ MGD)

• Help operators to overcome noncompliance with NPDES permits

THE COMPLIANCE ASSISTANCE UNIT

Provide **on-site** technical assistance to communities

• Troubleshooting all aspects of wastewater treatment

• Process optimization using cheap, easy, and effective process control tools

CAU created the Activated Sludge Process Control and Troubleshooting Manual and Flow Chart

Activated Sludge Process Control and Troubleshooting

Training Manual

Division of Surface Water Compliance Assistance Unit March 2015

Target SNC in Small WWTPs in Ohio

• Focus on Design Capacity less than 100,000 gpd

Focus on mechanical systems (not lagoon systems)

Reason:

If we could get the operators to do **process control**, we believed we could solve **Significant Noncompliance** through process optimization

Reason: If we could get the operators to do process control, we believed we could solve Significant Noncompliance through process optimization

Compliance Assistance Unit (CAU)

- View wastewater treatment as a biological process
- Measure the physical characteristics, the visual clues and the chemical trails that bacteria leave behind as they convert the pollutants in wastewater into carbon dioxide, nitrate and more bacteria.

The Universe of Small Discharge Non-compliance

NPDES Permitted WWTPs < 100,000 gpd design SNC at some time over 2 year period

Central	153	37	24%
Private	44	12	
Public	41	11	
Semi-Public	16	3	
Specific	52	11	
Northeast	732	151	21%
Private	109	33	
Public	99	23	
Semi-Public	439	77	
Specific	85	18	
Northwest	389	78	20%
Private	72	19	
Public	105	20	
Semi-Public	178	34	
Specific	34	5	
Southeast	210	52	25%
Private	37	9	
Public	92	24	
Semi-Public	38	11	
Specific	43	8	
Southwest	233	28	12%
Private	75	14	
Public	41	5	
Semi-Public	14	9	
Specific	103	0	
Grand Total	1717	346	10 20%

Ohio NPDES Permit 1 P B 0 0 0 0 5 * A D

Letter	Public	
А	Municipality – Under 0.1 MGD	
В	Municipality – 0.1 to 0.5 MGD	
С	Municipality – 0.5 to 1.0 MGD	
D	Municipality – 1.0 to 10 MGD	
Е	Municipality – 10 to 50 MGD	
F	Municipality – Greater than 50 MGD	
G	County/Sewer District – Under 0.1 MGD	
Н	County/Sewer District – 0.1 to 0.5 MGD	
I	Storm Water	
J	County/Sewer District – 0.5 to 1.0 MGD	
К	County/Sewer District – 1.0 to 10 MGD	
L	County/Sewer District – 10 to 50 MGD	

Μ	County/Sewer District – 50 MGD or more	
Ν	Federal Facility	
0	-	
Ρ	State Facility	
Q	Regional Authority	
R	Semi-Public – less than 0.05 MGD	
S	Semi-Public – Greater than 0.05 MGD	
Т	Schools and Hospitals	
U	PUCO	
V	Mobile Home Parks	
W	Subdivisions and Apartment Complexes	
Х	Miscellaneous	
Y	Mobil Home Parks	
Z	Extension of R's	
		11

Ohio NPDES Permit 1 B 0 0 0 5 * A D

Letter	Public	
А	Municipality – Under 0.1 MGD	
В	Municipality – 0.1 to 0.5 MGD	
С	Municipality – 0.5 to 1.0 MGD	
D	Municipality – 1.0 to 10 MGD	
Е	Municipality – 10 to 50 MGD	
F	Municipality – Greater than 50 MGD	
G	County/Sewer District – Under 0.1 MGD	
Н	County/Sewer District – 0.1 to 0.5 MGD	
T	Storm Water	
J	County/Sewer District – 0.5 to 1.0 MGD	
К	County/Sewer District – 1.0 to 10 MGD	
L	County/Sewer District – 10 to 50 MGD	

Μ	County/Sewer District – 50 MGD or more
Ν	Federal Facility
0	-
Р	State Facility
Q	Regional Authority
R	Semi-Public – less than 0.05 MGD
S	Semi-Public – Greater than 0.05 MGD
Т	Schools and Hospitals
U	PUCO
V	Mobile Home Parks
W	Subdivisions and Apartment Complexes
Х	Miscellaneous
Y	Mobil Home Parks
Z	Extension of R's

Facility Type

STOP THE BLEEDING ...

Type "R" Semi Public < 0.05 MGD

Who are they?

4-H / FFA campsRestaurantsMarinasSchoolsSmall ManufacturingMotelsBars/TavernsChurches

Their #1 business is not the #1 business. Might require more "hand holding".

STOP THE BLEEDING ...

<u>Type "R" Semi Public < 0.05 MGD</u>

What are their issues?

Semi Public < 0.05 MGD (violations by parameter)

STOP THE BLEEDING ...

Type "R" Semi Public < 0.05 MGD

Where are they?

Semi Public < 0.05 MGD **NH3-N violations by district**

The World of Noncompliance – Causes and Fixes

- Operational Issues
 - Process control
 - Maintenance
- Design Issues
 - Increased process control
 - Work arounds
- Administrative Issues
 - Staffing
 - O, M, and R costs

Welcome to our world.

A REAL PROPERTY

The Solution...

The CAU training material:

Activated Sludge Process Control and Troubleshooting

Training Manual

Division of Surface Water Compliance Assistance Unit March 2015

ACTIVATED SLUDGE PROCESS CONTROL

TROUBLESHOOTING CHART

Part One: Conversion
BASIC CONCEPTS

ACTIVATED SLUDGE PROCESS CONTROL

Each box will either request more data or identify the issue.

Begin with Box 1: Clarifier Effluent: Ammonia < 1 mg/L

If response is "no" follow red arrow to left , if response is "yes" follow green arrow to right.

Apply corrective action then return to Box 1: Clarifier Effluent: Ammonia < 1 mg/L

Continue until all issues are eliminated and directed to Box 24: Compliance

BOX # 1 CLARIFIER EFFLUENT: AMMONIA < 1 MG/L

- Conversion Process
 CBOD & NH3
- Ammonia Indicator
 - "sensitive"
 - Early warning
 - < 1 mg/L NH3
 - Conversion Complete
 - > 1 mg/L
 - Conversion problem

BOX # 1 CLARIFIER EFFLUENT: AMMONIA < 1 MG/L

BOX # 2 AERATION EFFLUENT: AMMONIA < 1 MG/L

Aeration Effluent

- Problem: Conversion
- Location: Aeration

- Clarifier Effluent
 - Problem: Re-release
 - Location: Clarifier

- Sources:
 - Scum Baffle
 - Clarifier Surface
 - Clarifier Sludge Blanket

Sources:

- Scum Baffle
- Clarifier Surface
- Clarifier Sludge Blanket

- Sources:
 - Scum Baffle
 - Clarifier Surface
 - Clarifier Sludge Blanket

Sources:

- Scum Baffle
- Clarifier Surface
- Clarifier Sludge Blanket

Sources:

- Scum Baffle
- Clarifier Surface
- Clarifier Sludge Blanket

BOX # 3 AERATION EFFLUENT: WATER TEMPERATURE < 10 C

- WATER temperature impacts growth rate
 - slower growth =
 slower removal rates
- Measure AT effluent water temperature

BOX # 3 AERATION EFFLUENT: WATER TEMPERATURE < 10 C

- WATER temperature impacts growth rate
 - slower growth =
 slower removal rates
- Measure AT effluent water temperature

Loading

Reduce Heat Loss

Aeration Capacity

- Reduce Blower Timers
 - Match supply to load
- Reduce Loss
 - Cover AT, EQ, clarifiers

Reduce Heat Loss

Aeration Capacity

- Reduce Blower Timers
 - Match supply to load
- Reduce Loss
 - Cover AT, EQ, clarifiers

Nitrification

- Consumes alkalinity
 - 7.14 mg/L alkalinity
- No Alkalinity, No Buffer
- pH "post mortem"
 - Drops like a rock

Nitrification

- Consumes alkalinity
 - 7.14 mg/L alkalinity
- No Alkalinity, No Buffer
- pH "post mortem"
 - Drops like a rock

Nitrification

- Consumes alkalinity
 - 7.14 mg/L alkalinity
- No Alkalinity, No Buffer
- pH "post mortem"
 - Drops like a rock

57

BOX # 8 AERATION: INCREASE ALKALINITY IN AERATION TANK

- Bicarb is best for an upset reactor
 - Safer to use in AT
 - Safer to use by operator
- Measure and know
 - Need 100 mg/L residual AND NH3 < 1 mg/L in AT

BOX # 7 AERATION EFFLUENT: DISSOLVED OXYGEN < 2 MG/L

DO Concentration

- Aeration Tank Effluent
- Photo vs Video
- Multiple tanks
 - Parallel = equal value
 - Series = increasing value

Dissolved Oxygen Profile Pleasant Valley Regional Sewer District

BOX # 10 AERATION: INCREASE AIR SUPPLY IN AERATION TANK

Operational Issue

- Blower run time
- System Loading
- Mechanical Issue
 - Blower
 - Motor
 - Air Distribution

BOX # 10 AERATION: INCREASE AIR SUPPLY IN AERATION TANK

Operational Issue

- Blower run time
- System Loading

Mechanical Issue

- Blower
- Motor
- Air Distribution

BOX # 9 AERATION EFFLUENT: CENTRIFUGE SPIN < 4%

- Need bacteria in AT to convert NH3
 Hiding in clarifier?
- Estimate amount in 15 minutes
- Typical range 2-4% by volume

BOX # 9 AERATION EFFLUENT: CENTRIFUGE SPIN < 4%

- Need bacteria in AT to convert NH3
 - Hiding in clarifier?
- Estimate amount in 15 minutes
- Typical range 2-4% by volume

BOX # 12 AERATION: INCREASE BIOMASS IN AERATION TANK

- Aeration Tank
 - 2% to 4% concentration
 - Decrease wasting to increase biomass
 - Colder temps require
 more biomass
 - Increased loadings require more mass

BOX # 11 ORGANIC LOADING RATE: LOADING > DESIGN

Ibs./day/1,000 ft³

- (BOD)(MGD)(8.34)
- <u>(length x width x wd)</u>
 1,000 ft³
- 15 lbs./d/1,000 ft³

BOX # 11 ORGANIC LOADING RATE: LOADING > DESIGN

Typical Design 15 lbs./d/1,000 ft³

Ibs./day/1,000 ft³

AT Dimensions =2[56'x 12'x 15' w.d.}

AT Environment = 0.135 MGD = 218 mg/L BOD₅

lbs./day/BOD = 8.34 x 0.135 MGD x 218 mg/L = 245 lbs./d/ BOD₅

1,000ft3

= (2x56x12x15)/1,000

= 20.1 AT capacity in 1,000 ft³

 $lbs./d/1,000 ft^3$ = 245/20.1

 $= 12.2 \text{ lbs./d/1,000 ft}^{3}$

BOX # 14 CAPACITY: INCREASE CAPACITY OR DECREASE LOADING

Equalize Flows

- Avg. Daily Flow vs. Pumping Rate
- Flow EQ Design
- Evidence of Problem
 "the block"

Add more capacity

BOX # 14 CAPACITY: INCREASE CAPACITY OR DECREASE LOADING

- Equalize Flows
 - Avg. Daily Flow vs. Pumping Rate
 - Flow EQ Design
 - Evidence of Problem
 "the block"
- Add more capacity
BOX # 14 CAPACITY: INCREASE CAPACITY OR DECREASE LOADING

- Equalize Flows
 - Avg. Daily Flow vs.
 Pumping Rate
 - Flow EQ Design
 - Evidence of Problem
 "the block"
- Add more capacity

BOX # 13 AERATION: EVALUATE FOR TOXIC ISSUES.

- Common sources
 - Internal
 - Digester Supernatant
 - Other side streams
- Other sources
 - External
 - Force Mains
 - Septage Receiving
 - Color, corrosion, odor

BOX # 13 AERATION: EVALUATE FOR TOXIC ISSUES.

- Common sources
 - Internal
 - Digester Supernatant
 - Other side streams
- Other sources
 - External
 - Force Mains
 - Septage Receiving
 - Color, corrosion, odor

ACTIVATED SLUDGE PROCESS CONTROL

http://epa.ohio.gov

Divisions and Offices Environmental and Financial Assistance Wastewater Treatment Plants: Get Free Technical Assistance to Improve Compliance Technical Resources Activated Sludge Process Control and Troubleshooting Chart and Manual

Or email me at: jon.vandommelen@epa.ohio.gov