Model Evaluation Requires Credible and Comprehensive Measurement Data

- Modeled and observed values are paired in space and time before calculating statistics (bias, error, correlation etc)
 - Typical model spatial resolution

Hemispheric simulation: 108 Km x 108 km

Contiguous US: 12 km x 12 km

Local studies: 4km x 4km

Model temporal resolution: hourly

- Having broad spatial and temporal measurement coverage is critical for comprehensive model evaluation
 - CASTNET monitors often provide ozone data in rural areas without state monitors.
- Understanding measurement limitations and uncertainties is critical context for model evaluations

TRIANGLE=CASTNET_Daily; CIRCLE=AQS_Daily_O3;

CMAQ_2016ff_cb6r3_16j_12US2 O3_8hrmax for CASTNET_Daily for Summer_Southeas CASTNET_Daily CMAQ_2016ff_cb6r3_16j_12US2

Importance of Adequate Monitoring Spatial Coverage

Model-predicted spatial gradients can not be evaluated explicitly for locations without monitors.

Plots courtesy of Barron Henderson and Ben Wells

"Wish List" for Monitoring Network Capabilities

- Broad spatial coverage in urban and rural locations
- Measurements of ozone, speciated PM and precursors (NOx, NOy, SO2, speciated VOCs)
- Long measurement with consistent instrumentation/methods for trends analysis
- For evaluating model treatment of important background and anthropogenic sources
 - Vertical gradients (on tall towers or sondes)
 - Spatial coverage in rural areas
 - Co-located measurements of O3, CO, RH, PM
- Vertically integrated column measurements for comparison with satellites
 - NO2 + HCHO (Pandora)
 - AOD

WOUDC Sondes: by Site (all Times)

