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1 EXECUTIVE SUMMARY 

 

This memorandum presents the technical approach for developing planning-level green infrastructure (GI) 

stormwater control measure (SCM) performance curves for indicator bacteria load reduction for use within 

Opti-Tool (U.S. EPA, 2016). The resulting curves provide estimates of relative cumulative bacteria load 
reductions that can be expected from the implementation of various SCMs. Consistent with the other 
performance curves previously developed for the New England region (EPA Region 1), the cumulative 
indicator bacteria performance curves provide estimates of the overall net reductions accomplished by SCMs 
for all storm events that have occurred over an extended period of time (1998–2018). Consequently, the 
curves reflect the known primary dynamic processes involved with both the generation of stormwater runoff 
pollution including the build-up of pollutants on impervious surfaces and the frequency and intensity of 
precipitation, as well as the continuous routing of runoff flow and pollutants through treatment processes in 
SCMs. While these curves provide reasonable long-term performance (in terms of annual average load 
reduction and should not be substituted with event mean concentration reduction) expectations of various 
SCM types and sizes, they are not suitable for estimating SCM bacteria load reductions for a single design 
storm event or for quantifying expected changes in indicator bacteria concentrations. 
 

When applying these curves to specific sites and watersheds, baseline bacteria loading should be estimated 
from local monitoring data if available. Otherwise, the bacteria loading rates provided in Opti-Tool could 
be used to estimate cumulative bacteria loads to assist users in developing planning level information that 
quantifies the expected overall long-term benefits of various SCMs for addressing waterbody bacteria 
impairments. Use of these curves is especially encouraged in cases where quantification of SCM benefits 
otherwise rely on a single published SCM removal rate for a specific design storm or water quality volume 
that may not be applicable to the size or type of SCMs being assessed.  
 
The Storm Water Management Model (SWMM) (U.S. EPA. 2015) and the System for Urban Stormwater 
Treatment and Analysis Integration (SUSTAIN) GI simulation engine (U.S. EPA. 2009) were utilized in 
curve development to estimate stormwater quantity and quality boundary conditions and establish 
relationships between SCM storage capacity and bacteria load reduction, respectively. A literature review 
identified event mean concentration (EMC), unit area loading values, and SWMM buildup/washoff values 

used to establish boundary conditions. The SCM efficiency values were also derived from values in the 
literature review.  
 
Several factors may contribute to bacteria removal efficiency within an SCM with the major mechanisms 
being physical processes including sedimentation, sorption, and filtration. However, other factors impacting 
bacteria removal include SCM holding time, temperature, sunlight, salinity, and predation. Careful 
consideration of SCM types and associated processes is necessary when applying these curves to specific 
sites and watersheds. For example, it is well documented that infiltration practices are highly effective at 
achieving bacterial reductions as runoff exfiltrates through subsoils. Consequently, practitioners may 
confidently select infiltration SCMs to address excessive SW bacteria loading wherever site conditions are 
favorable for infiltration. However, there is greater uncertainty in bacteria removal performances associated 
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with flow-through SCMs that rely primarily on sedimentation or vegetative filtering because of the potential 
bacterial regrowth and subsequent entrainment during storm events resulting in the SCM becoming a source 
of bacteria to surface waters. Generally, users should first consider infiltration SCMs followed by filtering 
systems and last other SCMs to address excessive SW bacterial loading.  
 
While such due diligence can help facilitate the implementation of SCMs that can achieve the estimated 
bacteria load reductions given local conditions, there is still a large amount of uncertainty involved in 
estimating both bacterial loading and long-term cumulative performances of SCMs especially for flow-
through SCMs. The removal curves provide estimates of bacterial load removal efficiency based on the 
literature rather than detailed model calibrations of individual SCMs with extensive performance data. 
Consequently, the curves represent planning level information for developing management plans and 
quantifying potential benefits. SCMs intended to achieve the reductions presented in Opti-Tool should be 
installed and maintained in a manner that promotes the identified bacteria removal processes and 
mechanisms. Regular inspections and ambient water quality monitoring are recommended to help ensure 
that the SMCs are operating as expected. 

2 INTRODUCTION 

Performance curves representing indicator bacteria (E. coli) load reductions that may be achieved by SCM 

treatment of stormwater were developed based on simulated runoff from impervious Hydrologic Response 

Units (HRUs). The curves may also be applied to other indicator bacteria, such as Enterococcus load 

reductions if the underlying mechanisms for the SCM performance are similar to other indicator bacteria. 
The SCM performance curves represent long-term average annual indicator bacteria load reductions (as a 
percent) that can be expected for a wide range of SCM storage capacities. Rainfall-runoff response timeseries 

from impervious HRUs were simulated using the SWMM hydrology model (U.S. EPA. 2015). The SCM 

performance curves were developed using the SUSTAIN GI simulation engine (U.S. EPA. 2009) through 
Opti-Tool (U.S. EPA. 2016). This modeling approach has previously been used to provide performance 
curves for total nitrogen (TN), total phosphorus (TP)), sediments (Total Suspended Sediment (TSS)), and 

zinc (Zn). Both models (SWMM and SUSTAIN) for Opti-Tool were calibrated using New England’s 

regional monitoring data, observed pollutant event mean concentrations (EMCs) in stormwater runoff and 
observed inflow/outflow pollutant concentrations from stormwater SCMs that were studied to assess 
pollutant reduction performances. HRU timeseries for bacteria were developed for the impervious surfaces 
of the urbanized New England community of Tisbury, MA, located on Martha’s Vineyard. A literature 
review identified concentration, loading, and buildup/washoff values used to develop the timeseries. The 
resulting concentrations and loadings represent generalized conditions for purposes of SCM performance 
curve development and do not reflect the specific bacteria loading conditions in Tisbury, MA. A literature 
review was also completed to identify SCM efficiency values to include in SUSTAIN GI simulation. For a 
given depth of runoff volume storage capacity from the impervious cover by an SCM, the curves provide an 
estimated bacteria load reduction given as a percentage of total loading. Due to a lack of literature values for 
SCM removal efficiencies for Enterococcus, the rates for E. coli were used for both fecal bacteria indicators. 

3 IMPERVIOUS HRU TIMESERIES FOR INDICATOR BACTERIA 

The SUSTAIN model requires hourly timeseries of flow and pollutant load as a boundary condition to run. 
To develop impervious HRU timeseries, the HRU SWMM hydrology model, developed previously for Opti-
Tool, was used for hourly flow simulation. The same model was updated for water quality by adding two 
fecal bacteria indicators (E. coli and Enterococcus). The hourly precipitation timeseries and daily air 

temperature data collected at the Martha’s Vineyard Airport was used in the HRU SWMM model to 
represent the local patterns of precipitation, including dry periods between storm events when pollutants 
accumulate on impervious surfaces. The output timeseries from the SWMM model were formatted for the 
Opti-Tool using a utility tool, SWMM2Opti-Tool, available in the Opti-Tool package. The following 

subsections describe the steps for developing the impervious HRU timeseries for indicator bacteria.  
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3.1 Literature Review  

3.1.1 Introduction 
A literature review was conducted to find stormwater related EMCs (MPN1/100 ml) and average annual 
export rates (MPN/ac/yr) for E. coli and Enterococcus from impervious land cover. Recent journal 

publications, conference papers, and data from the national stormwater quality database (NSQD) were 
reviewed to obtain information specific to these types of indicator bacteria. Several published sources of 
bacteria EMCs from urban areas were identified and summarized. A limited number of observed average 
annual export rates were found, therefore the literature review was expanded to include published export 
rates for fecal coliform. The literature review also included an evaluation of previous SWMM models and 
associated buildup/washoff values for E. coli and Enterococcus.  

3.1.2 Event Mean Concentrations 
An EMC is a flow proportional concentration of a pollutant, when applied to bacteria it is calculated as the 
total constituent number of bacteria divided by total runoff volume for a single event. Several physical, 

biological, and chemical factors can impact the fate and transport of microbes within a watershed, including 
temperature, moisture, sunlight, nutrients, settling, adsorption/desorption processes, hydrologic processes 
and predation (Ferguson et al., 2003). While sanitary sewage pollution contamination can contribute to high 
bacteria concentrations, elevated levels are often observed in areas not impacted by sewage (Shergill and 
Pitt, 2004). Unsurprisingly, monitoring studies often show tremendous variability in bacteria concentrations 
(Table 1-1). Figure 1-1 and Figure 1-2 summarize the EMCs for residential, commercial, industrial, and 
transportation land uses. Residential areas generally had the highest E. coli EMCs, followed by commercial, 

industrial, and transportation. While residential EMS were also relatively high for Enterococcus, the highest 

observed EMC (Stein et al., 2008) was from commercial land. Additionally, transportation had a higher 
EMC than industrial land uses. However, care should be taken in drawing conclusions about the relative 
bacteria loading from different impervious surfaces given the limited and highly variable data.  
 
Because of the uncertainty associated with bacteria EMCs, models such as the water treatment model 

(WTM) use the median urban runoff value for fecal coliform from National Urban Runoff Program (NURP) 
data (Pitt, 1998) of 20,000 MPN/100 ml as the default model value for bacteria (Caraco, 2013). Table 1-1 
presents published EMC for E. coli and Enterococcus from developed land uses. Values with associated error, 

designated with a ± in Table 1-1 indicate EMCs reported as a mean of multiple events, potentially from 
multiple sites of the same land use. EMCs from six studies as well as the NSQD were found for E. coli. Only 

three studies were identified that reported EMCs for Enterococcus. 

 
EMCs for E. coli ranged from a low of 5/100 ml from a parking lot (transportation land use) in Maryland 

(Li and Davis, 2009) to a high of (5.3 ± 1.7) x 105/100 ml from recreational land in California (Stein et al., 
2008). Hathaway and Hunt (2010) found a mean E. coli EMC of 2.5671 x 103/100 ml from an urban 

watershed in Raleigh, North Carolina, although individual samples ranged from 0.71 x 103 to 85.233 x 103 
/100 ml. Additionally, Hathaway and Hunt (2010) found a mean Enterococcus EMC of 2.155 x 103/100 ml 

from the same urban watershed, although individual samples ranged from 1.306 x 103 to 181.846 x 103/100 
ml. Enterococcus EMCs from urban land uses in California ranged from (8.9 ± 4.4) x 103 from transportation 

to (1.4 ± 0.82) x 105 from recreational areas (Stein, 2008).  

 
1 where, MPN refers to “most probable number”. Fecal coliform and E. coli in compost or leachate is usually 

reported in MPN per g compost or MPN per 100 mL water (or leachate). MPN/100ml is a statistical probability of 

the number of organisms. Refer to, American Public Health Association, American Water Works Association, Water 

Environment Federation (2012), Standard Methods for the Examination of Water and Waste Water. Depending on 

circumstances, US EPA may prefer MPN rather than Colony Forming Units (CFU) (actual plate count) “because a 

colony in a CFU test might have originated from a clump of bacteria instead of an individual, the count is not 

necessarily a count of separate individuals.” Environmental Regulations and Technology. Control of Pathogens and 

Vector Attraction in Sewage Sludge (Including Domestic Septage) Under 40 CFR Part 503, EPA/625/R-92/013 

(https://www.epa.gov/sites/production/files/2015-

04/documents/control_of_pathogens_and_vector_attraction_in_sewage_sludge_july_2003.pdf). 

https://www.epa.gov/sites/production/files/2015-04/documents/control_of_pathogens_and_vector_attraction_in_sewage_sludge_july_2003.pdf
https://www.epa.gov/sites/production/files/2015-04/documents/control_of_pathogens_and_vector_attraction_in_sewage_sludge_july_2003.pdf


4 
 

3.1.3 Export rates 
Studies of bacteria export from urban areas relied on stream sampling for estimates. Therefore, there is 

additionally uncertainty associated with applying these rates to areas such as Tisbury, MA where stormwater 
is not conveyed to a receiving stream or river but is instead discharged directly into a coastal ecosystem. Line 
et al. (2008) monitored stream concentrations of fecal coliform from industrial and residential sites in North 
Carolina. Loading from these urban areas ranged from 180,024 to 477,654 million MPN/ac/yr. These 
values were higher than observed E. coli loading estimated in Maryland from a watershed consisting of 

medium-to-high density residential and open urban land uses resulted (EA Engineering, 2010) (Table 1-2). 
CDM (2012) estimated loading from several sites in Boston’s municipal separate storm sewer system (MS4). 
Export was highly variable, E. coli ranged from 22 billion CFU/ac/yr to 1.4 trillion CFU/ac/yr. Site 

imperviousness ranged from 25% to 94%, although the loading estimates did not distinguish between urban 
land use types. 
 

3.1.4 Buildup/Washoff Values 
The pollutant buildup and washoff functions in SWMM are similar to the equations developed for the 
accumulation and washoff of dust and dirt on street surfaces (APWA, 1969; Sartor et al., 1974). Previous 
applications of SWMM to simulate the buildup and washoff of E. coli and Enterococcus were reviewed and 

summarized. Two studies were identified, one for Boston’s MS4 (CMD Smith, 2012) and another for the 
city of Lakewood, Ohio (CT Consultants, 2016). Both studies relied on local bacteria monitoring data to 
calibrate the models. The calibrated parameter values for both studies are presented in Table 1-3.  
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Table 1-1 Observed Event Mean Concentration (EMC) for E. coli and Enterococci by land use type 

 
 
 
 

 EMC (MPN/100ml)  

Land use Residential Recreational Commercial location Source 

E. coli 

(3.0 ± 1.8) x 104 (Low Residential) (5.3 ± 1.7) x 105 (1.1 ± 0.88) x 104 CA Stein, 2008 

(8.2 ± 7.7) x 103 (High Residential) - - CA Stein, 2008 

2.938 x 103 - - NC Krometis et al., 2009 

1 x 101 – 3.5 x 104 - - MA NSQD 

25.671 x 103 (Medium Residential) - - NC Hathaway and Hunt, 
2010 

Enterococcus 

2.166 x 104  - - NC Krometis et al., 2009 

(5.5 ± 3.7) x 104 (Low Residential) (1.4 ± 0.82) x 105 (7.7 ± 9.2) x 104 CA Stein et al, 2008 

(2.7 ± 3.6) x 104 (High Residential)  - - CA Stein et al, 2008 

25.155x 103 (Medium Residential) - - NC Hathaway and Hunt, 
2010 

18.00 x 103 (Multifamily)  13.00 x 103 MA Breault et al., 2002 

27.00 x 103 (Single Family)   MA Breault et al., 2002 

 EMC (MPN/100ml)  

Land use Urban Industrial Transportation location Source 

E. coli 

- (3.8 ± 2.3) x 103 (1.4 ± 2.7) x 103 CA Stein, 2008 

10.846 x 103 - - TN, TX, WA, WI Schueler, 2000 

15.01 x 103 - - NC McCarthy et al., 2012 

- - 5  MD Li and Davis, 2009 

- - 92 MD Li and Davis, 2009 

25.671 x 103 ± 24.393 x 103 - - NC Hathaway and Hunt, 
2010 

Enterococcus - (2.1 ± 2.2) x 104 (8.9 ± 4.4) x 103 CA Stein et al, 2008 
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Figure 1-1. Mean observed EMCs for E. coli from literature (See Table 1-1) 
 
 

 
 

Figure 1-2. Mean observed EMCs for Enterococcus from literature (See Table 1-1) 
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Table 1-2 . Observed Bacteria Loading from urban areas 

 Land use Billion MPN/ac/yr Source 

Fecal 
Coliform  

Urban 190.024 – 477.654 (Line et al, 2008) 

E. coli  

Open Urban 13.789 – 60.482 (EA Engineering, 2010) 

Residential/Commercial 9.00 – 3.80 

Various 22 - 1,397  CDM Smith, 2012* 

Enterococcus Various 64 – 930  CDM Smith, 2012* 

*Units in CFUs, not MPN 

 

Table 1-3 Summary of previously calibration SWMM buildup and washoff values for E. coli and Enterococcus 

  Study Location 

  Boston, MA Lakewood, OH 

(Single-family) Low-density residential 

Buildup Equation  Exponential Saturation 

Max per acre (C1) 
E. coli 85.6 x 109 6.9 x 1011 

Enterococci 26.6 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 10 

Enterococci 2 - 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli 18 10 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2 0.5 

Enterococci 2.2 - 

(Multi- family) Medium density residential 

Buildup Equation  Exponential Saturation 

Max per acre (C1) E. coli 85.6 x 109 2.5 x 1010 

Enterococci 25.6 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 10 

Enterococci 2 - 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli 18 10 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2 0.5 

Enterococci 2.2 - 

High density residential 

Buildup Equation  Exponential Saturation 

Max per acre (C1) E. coli - 1.41 x 1011 

Enterococci - - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli - 10 

Enterococci - - 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli - 10 

Enterococci - - 

Exponent – C2 
 

E. coli - 0.5 

Enterococci - - 

Commercial 

Buildup Equation  Exponential Saturation 

Max per acre (C1) E. coli 0.42 x 109 1.4 x 1012 

Enterococci 0.72 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 10 

Enterococci 2 - 
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  Study Location 

  Boston, MA Lakewood, OH 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli 18 10 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2 0.5 

Enterococci 2.2 - 

Industrial 

Buildup Equation  Exponential Saturation 

Max per acre (C1) E. coli 1.26 x 109 1.4 x 1012 

Enterococci 2.12 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 10 

Enterococci 2 - 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli 18 10 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2 0.5 

Enterococci 2.2 - 

Transportation 

Buildup Equation  Exponential NA 

Max per acre (C1) E. coli 0.001 x 109 - 

Enterococci 0.002 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 - 

Enterococci 2 - 

Washoff Equation  Exponential NA 

Coefficient – C1 E. coli 18 - 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2  

Enterococci 2.2 - 

Open Space 

Buildup Equation  Exponential Saturation 

Max per acre (C1) E. coli 126 x 109 1.25 x 1010* 

Enterococci 214 x 109 - 

C2 - Buildup rate constant (1/days) or Days to ½ max 
buildup 

E. coli 2 10* 

Enterococci 2 - 

Washoff Equation  Exponential Exponential 

Coefficient – C1 E. coli 18 10* 

Enterococci 18 - 

Exponent – C2 
 

E. coli 2.2 0.5 

Enterococci 2.2 - 

 
Buildup in SWMM can occur as either a mass per unit of sub catchment area or per unit of curb length 
(Rossman, 2010). The amount of buildup is a function of antecedent dry weather days. The user can choose 
a power, exponential, or saturation function to compute buildup, or use an external time series to describe 
the rate of buildup per day as a function of time (Rossman, 2010). CMD Smith (2012) used an exponential 
buildup and a rate constant (1/days) of 2, which is equivalent to 0.3 days to reach ½ max buildup. 
Alternatively, CT Consultants (2016) used the saturation function and a value of 10 days to reach ½ max 
buildup. The exponential function builds up pollutants very rapidly, then slows down to the maximum value 
while the saturation function has a less rapid buildup and a more gradual approach to the maximum value. 
Additionally, CMD Smith (2012) also added a term to represent bed load growth of bacteria to account for 
the potential for rapid population changes within the collection system, although this had minimal impact 
on overall model results. 
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SWMM can simulate washoff on user-defined land use categories using exponential, rating curve, or EMC 
functions. Exponential functions have been used to describe the washoff of dust and dirt from streets (Sartor 
et al., 1974). SWMM relies on user defined values for washoff coefficients and exponents, the runoff rate 
per unit area and the pollutant buildup in mass units to calculate exponential washoff. Both CDM Smith 
(2012) and CT Consultants (2016) used the exponential function to simulate washoff, with coefficients 
ranging from 10 to 18 and exponents ranging from 0.5 to 2.2. 

3.1.5 Conclusions 
Results of studies on the export of bacteria from urban watersheds had highly variable results; observed 
EMCs range over orders of magnitude. Fewer studies evaluated Enterococcus than E. coli and limited data 

was found on observed bacteria loading from urban areas. Previous studies using SWMM to model 
bacteria buildup and washoff relied on both exponential and saturation buildup functions. Using functions 
originally developed for the buildup and washoff of dust and dirt on streets to simulate the export of 
organisms is a simplified approach to a complex phenomenon. Several factors that can influence the 
propagation and die-off of bacteria in a watershed are necessarily omitted. For any bacteria export 

modeling effort, robust local monitoring data can help to inform model calibration and increase confidence 
in modeling results.  

3.2 Climate Data (Precipitation and Air Temperature) 

Historical climate data for the latest 21 years (1998 – 2018) from local gages at Martha’s Vineyard airport 
was used for impervious HRU timeseries development. The climate data included: 

• Hourly continuous precipitation timeseries (in/hr)  

• Daily minimum and maximum temperature timeseries (oF) 

 
The climate data was reviewed for its completeness and quality. After QA/QC was complete, the annual 
and monthly summary statistics were estimated to review and identify any data gaps/issues. The data was 
then formatted to the required input format for the HRU SWMM model. Additional discussion of climate 
data can be found in the task 4B memo “Opti-Tool Analyses for Quantifying Stormwater Runoff Volume 
and Pollutant Loadings from Watershed Source Areas (Task 4B)”.  

3.3 HRU SWMM Model (Initial Setup and Run) 

Local climate data was used to update the boundary conditions in the Opti-Tool HRU SWMM model. 
Buildup/wash off parameters for modeling indicator bacteria load on the impervious HRU were initially set 
to the calibrated parameters used for Boston’s MS4 (CMD Smith, 2012). The model output timeseries was 
used to statistically summarize the predicted indicator bacteria EMC distributions and average annual 
pollutant export rates. For further analysis, box and whisker plots and bar graphs were created to compare 
these model timeseries to literature values. 

3.4 HRU Timeseries (Hourly Flow and Bacteria Concentration and Load Estimates) 

SWMM model output timeseries were structured into the required format for the SUSTAIN model using a 

spreadsheet-based utility tool, SWMM2Opti-Tool, available in Opti-Tool (Figure 3-3). The HRU timeseries 
format for the Opti-Tool is identical to the format needed in SUSTAIN (the Opti-Tool uses the SUSTAIN 
model as a backend GI simulation engine). 
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Figure 3-3. The user interfaces for SWMM2Opti-Tool, a utility to reformat SWMM output to Opti-Tool HRU timeseries. 

Figure 3-4 and Figure 3-5 present simulated E. coli and Enterococci concentrations, respectfully, based on 

the calibrated buildup/washoff values from CDM Smith (2012). Bacteria concentrations were highest from 
residential land uses and lowest from transportation. These results are reflective of the maximum buildup 
values attributed to each land use (Table 1-3). Maximum buildup for residential land uses was set to 85.6 x 
109 MPN/acre while the maximum buildup on transportation land uses was set to 0.001 x 109 MPN/acre. 
Sources of E. coli and Enterococcus include both human and animal sources. Therefore, it is not surprising 

that bacteria export is lower from transportation land uses than from other land uses where it is more likely 
to find warm blooded animals interacting with the land surface. Additionally, this pattern is representative 

of the EMCs presented in Figure 1-1. The median simulated E. coli concentrations from residential areas of 

33,651/100ml is similar to observed EMCs found in the literature. Based on NSWD data, the highest E. 

coli EMC from residential land uses in Massachusetts was 35,000 MPN/100ml. Relatively high EMCs 

were also observed by Stein (2008) who found E. coli EMCs of 30,000 ± 18,000 MPN/100ml from 

residential areas in California. Simulated concentrations of Enterococcus were generally lower than 

observed EMCs presented in Table 1-1. Data from Breault et al. (2002) was included in Figure 3-5 since 
median and upper and lower quartiles were reported and therefore allowed for visual comparison with the 
distribution of the simulated data. Observed values included data from single family and multifamily 
residential land uses as well as the entire Charles River Watershed. The median simulated concentration 
for residential land use was 10,456 MPN/100ml, which was lower than the median observed values. The 
lowest observed EMC was 13,000 CFU/100 ml observed in the Charles River watershed (Breault et al., 
2002) while the highest was 55,000 ± 37,000 CFU/100 ml (Stein et al., 2008). 
 
Figure 3-6 and Figure 3-7 present simulated E. coli and Enterococci unit area loading, respectfully, based on 

the calibrated buildup/washoff values from CDM Smith (2012). The values are generally in good agreement 
with observed data. The mean simulated E. coli unit area loading ranged from 0.32 to 1,753 billion/ac/yr 

while CDM Smith (2012) observed an E. coli export of 22 - 1,397 billion/ac/yr from Boston’s MS4. Simulated 

Enterococcus unit area loading ranged from 0.04 to 544.84 Billion/ac/yr, while observed loading from the 

Boston’s MS4 ranged from 64 – 930 Billion/ac/yr (Table 1-2). The unit area loadings for bacteria show the 
same trend as the concentrations. For example, E. coli has highest concentrations and loadings from 

residential land uses, followed by industrial, commercial, then transportation. This is expected given that 
loading was calculated as concentration multiplied by volume. While the four land uses have different build 
up-washoff values for bacteria, they all represent an impervious surface which converts the same amount of 
rainfall to runoff. The same stormwater volume applied to different concentrations will result in the same 
pattern of loading compared to concentration.  
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Figure 3-4. Simulated average daily E. coli concentrations from developed land uses in Tisbury, MA for the period  

 

 
Figure 3-5. Simulated average daily Enterococci concentrations from developed land uses in Tisbury, MA for the 

period 1998-2018. (Observed data source: Breault et al., 2002) 
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Figure 3-6. Average annual E. coli export from developed land uses in Tisbury, MA for the period 1998-2018. 

 

 
Figure 3-7. Average annual Enterococcus export from developed land uses in Tisbury, MA for the period 1998-2018. 
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4 SCM PERFORMANCE CURVES FOR INDICATOR BACTERIA 

The Opti-Tool previously included SCM performance curves (U.S. EPA. 2010) for estimating the 
cumulative pollutant load reductions from infiltration, filtration, and detention practices for nutrients (TP, 
TN), sediments (TSS) and Zn. The Opti-Tool performance curves for indicator bacteria were developed for 
the SCM types shown in Table 4-1. The SCM efficiencies for E.coli and Enterococcus in Table 4-1 are based 

on an analysis of published data presented in Table 4-2. Since some of the SCMs used in Opti-Tool did not 
have published information on their bacteria load reduction efficiencies, it was necessary to equate the SCMs 
without data to those that did in Table 4-2. For example, the efficiencies attributed to Infiltration Basin, 
Infiltration Trench, and Sand Filter in Table 4-1 are based on data for media filters (Table 4-2) obtained from 
the International Stormwater BMP database (Clary et al., 2017). Additionally, only three studies with SCM 
efficiencies of Enterococcus were identified. Due to insufficient data, efficiencies for E. coli were used for 

Enterococcus. Since removal efficiencies were assumed to be identical, only curves for E. coli were developed. 

 

Table 4-1. SCM types and associated removal efficiencies for developing indicator bacteria performance curves 

SCM Type Underdrain Option E. coli Efficiency 
Enterococcus 

Efficiency 

Major Processes 
for Bacteria 

Removal 

Biofiltration Yes 0.76 0.76 Adsorption, filtration 

Biofiltration with ISR Yes 0.76 0.76 Adsorption, filtration 

Dry Pond No 0.64 0.64 Settling 

Infiltration Basin No 0.76 0.76 Adsorption, filtration 

Infiltration Trench No 0.76 0.76 Adsorption, filtration 

Sand Filter Yes 0.76 0.76 Filtration 

Subsurface Gravel 
Wetland 

Yes 
0.60 0.60 Adsorption, filtration 

Wet Pond No 0.96 0.96 Settling 

 

Table 4-1 includes the major processes that are assumed to be responsible for bacteria removal. However, 
the major mechanisms which remove bacteria in SMCs are not fully understood. While dominant removal 
processes include settling, filtration and adsorption, there are other biological and physical processes 
occurring in SCMs that may reduce bacteria concentrations as well as increase them. Settling is likely the 
dominant removal process occurring within the water column. Bacteria may enter a SCM ‘free’, existing as 
individual organisms/groups, or may be associated with particles. Bacteria attached to denser particles will 
tend to settle out of the water column more quickly than free phase organisms or those associated with less 
dense, more mobile particles. Characklis et al. (2005) found that an average of 30-55% of E. Coli and 

Enterococcus organisms were associated with settleable particles in stormwater samples. E. coli is a rod-shaped 

bacteria with a diameter ranging from 2-6 µm and a length ranging from 1.1-1.5 µm. Within porous soil 
media, adsorption is likely a major removal mechanism due to the small size of E. coli (Lan et al., 2010). 

Sorption rates can be affected by several factors, including media texture, organic matter, temperature, flow 
rate, ionic strength, pH, hydrophobicity, chemotaxis and electrostatic charge (Stevik et al., 2004). 

Temperature has also been cited as an important environmental factor for bacteria die-off, with increasing 
temperatures associated with higher removal rates (USEPA, 2006). Additionally, sun exposure can result in 
increased pathogen inactivation and removal through treatment by ultraviolet light.  
 
The wet, nutrient rich environments found in many stormwater SCMs can limit their ability to reduce 
bacteria loading (Hathaway et al., 2008). Rusciano and Obropta (2007) found viable bacteria retained in the 
soil substrate of a bioretention column 36 days after performing the last stormwater simulation. SCMs can 
result in increased bacteria concentrations, indicated by negative values in Table 4-2. Performance data of 
infiltration SCMs only represents removal processes that occur within the infiltration SCM as filtered runoff 
is captured by an underdrain to assess performance of an in-system removal. Consequently, these data do 
not reflect the additional removal accomplished as exfiltrate flows through subsoils beyond the performance 
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monitoring collection system. Runoff events that are completely captured and infiltrated achieve 100% 
removal of bacteria. 
 
Unpublished research (Houle, et al., 2014) evaluated SCMs in New Hampshire whose primary treatment 
mechanisms included settling, enhanced settling using a hydrodynamic separator, and filtration. The results 
suggest SCMs using conventional settling techniques were often a source of bacteria, having higher outflow 
concentrations compared to inflow, especially during summer months when concentrations were highest 
and conditions for regrowth are most favorable. The study also found that systems using filtration and 
infiltration performed better, generally having lower concentrations in the outflow compared to inflow. 
Periods of high influent flow rates can cause turbulent conditions within SCMs, resuspending sediment and 
associated bacteria, resulting in possible increases in effluent concentrations. Sediment resuspension is more 
likely to occur in SCMs that are poorly designed, not well maintained, or have reached their design life 
(EPA, 2006). Zarriello et al (2002) estimated the effect of SCMs and street sweeping on reducing fecal 
coliform in the Lower Charles River, MA watershed. The SCMs treated runoff depths ranging from 0.25 to 
1.0 and had a median removal efficiency for fecal coliform of 13%.  
 

Bioretention areas, wet ponds and infiltration-based SCMs appear to be the most effective at reducing 
bacteria concentrations (Table 4-2). EPA (2006) found that settling was a contributing but not primary 
factory in bacteria removal and that bacteria concentrations decreased with time in a constructed wetland 
and dry pond. Bacteria load reduction may be higher in SCMs which limit the opportunity for sediment 
resuspension, such as infiltration based SCMs. 
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Table 4-2. – Observed SCM efficiencies for E. coli and Enterococcus 

 SCM with published efficiency data 

Location Source 

 Bioretention Grass 
swale 

Dry 
detention 

Media Filter Wet 
Pond 

Wetland Wetland/ 
Retention 
Pond 

 Opti-Tool equivalent 

 Biofiltration 
Biofiltration 
with ISR 

NA Dry Pond Infiltration 
Basin/Trench,  
Sand Filter 

Wet 
Pond 

Subsurface 
gravel 
wetland 

Wet Pond 

E. coli 

0.71       NC Hunt et al., 2008 

0.48 – 0.97       TX Kim et al., 2012 

0.72 – 0.97       Laboratory 
& synthetic 
stormwater 

Zhang et al., 2011 

0.71  0.05 - 0.14  0.18 0.22-0.92  North 
Carolina 

Hathaway et al. 2008 

0.80 -0.26 0.64* 0.76* 0.96 0.64 0.80 – 0.96 National Clary et al., 2017 

Enterococcus 

-0.76 – 0.01    0.49 0.06-0.93  NC Hunt et al., 2008 

  0.63   0.61 0.78 National Clary et al., 2017 

 -0.60 -1.96   0.21 0.78 NH Houle et al., 2014 
unpublished 

*Data for fecal coliform 
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The following subsections describe the steps for developing the SCM performance curves for the indicator 
bacteria. 
 

4.1 SUSTAIN SCM Model (Setup and Run) 

The SUSTAIN GI module is a process-based continuous simulation model that requires two performance 
parameters to estimate cumulative load reduction: 1) a first-order decay rate in the ponded water column 
and 2) an underdrain pollutant removal rate to account for the filtration mechanism. These parameters were 
adjusted to predict SCM performance comparable to SCM efficiency numbers reported in the literature. A 
value of 0.1 was used as a default decay rate for E.coli for all SCMs. The model output timeseries were 

summarized into average annual pollutant loads with and without SCM simulation to estimate long-term 
pollutant load reductions. The SCM scenarios for a wide range of storage capacities, up to 2 inches of runoff 
depth from the impervious area, were developed for each SCM type listed in Table 4-1. Three hundred and 
sixty SCM simulation scenarios for 8 SCM types and a range of inifltraition rates for infiltration-based SCMs 
were developed and a continuous hourly flow and pollutant load simulation for 20 years were performed. 

Each SCM was sized to have a physical capacity to instantaneously store 20 runoff depths ranging from 0.1 
to 2.0 inches from a 100% impervious drainage area. A wilting point of 0.01 was included in the 
representation of each SCM’s soil layer to account for unavailable storage due to strongly retained water. 

4.2 SCM Performance Curves (Storage Capacity versus Pollutant Load Reduction) 

The SUSTAIN model output for each scenario was processed to estimate the indicator bacteria load 
reduction for modeled storage capacity to develop performance curves for SCMs listed in Table 4-1. 
Performance curves for SCMs from the Opti-Tool for E. coli are shown in Figure 4-1 - Figure 4-20. Appendix-

A1, Appendix-A2, and Appendix-A3 contain the tabular data for the curves. The infiltration practices were 
the most effective SCMs for bacteria load reduction due the infiltration mechanism of water loss through 
background soil. The wet pond was the least effective due to the bottom sealed without any infiltration loss 
from the available storage. The performance curves reflect the effectiveness of infiltration techniques 
compared to ones relying on settling and filtration mechanism. Appendix-B shows SCMs design 

specifications modeled in the Opti-Tool to develop the performance curves. Appendix-C shows methods for 
determining stormwater control design volume for using the SCMs performance curves and provides 
crosswalk between stormwater control types and the SCMs available in Opti-Tool.  
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Figure 4-1. Biofiltration performance curve for annual average E. coli load reduction. 

 

 
Figure 4-2. Biofiltration with ISR performance curve for annual average E. coli load reduction. 
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Figure 4-3. Dry Pond performance curve for annual average E. coli load reduction. 

 

 
Figure 4-4. Wet Pond performance curve for annual average E. coli load reduction. 
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Figure 4-5. Sand Filter performance curve for annual average E. coli load reduction. 

 

 
 

Figure 4-6. Subsurface Gravel Wetland performance curve for annual average E. coli load reduction. 
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Figure 4-7. Infiltration Basin (0.17 in/hr) performance curve for annual average E. coli load reduction. 

 
 
 

 

Figure 4-8. Infiltration Basin (0.27 in/hr) performance curve for annual average E. coli load reduction. 
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Figure 4-9. Infiltration Basin (0.52 in/hr) performance curve for annual average E. coli load reduction. 

 
 
 

 
Figure 4-10. Infiltration Basin (1.02 in/hr) performance curve for annual average E. coli load reduction. 
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Figure 4-11. Infiltration Basin (1.50 in/hr) performance curve for annual average E. coli load reduction. 

 
 
 

 
Figure 4-12. Infiltration Basin (2.41 in/hr) performance curve for annual average E. coli load reduction. 
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Figure 4-13. Infiltration Basin (8.27 in/hr) performance curve for annual average E. coli load reduction. 

 
 
 

 
 

Figure 4-14. Infiltration Trench (0.17 in/hr) performance curve for annual average E. coli load reduction.  
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Figure 4-15. Infiltration Trench (0.27 in/hr) performance curve for annual average E. coli load reduction.  
 
 
 

 
Figure 4-16. Infiltration Trench (0.52 in/hr) performance curve for annual average E. coli load reduction.  
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Figure 4-17. Infiltration Trench (1.02 in/hr) performance curve for annual average E. coli load reduction.  
 
 
 

 
Figure 4-18. Infiltration Trench (1.50 in/hr) performance curve for annual average E. coli load reduction.  
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Figure 4-19. Infiltration Trench (2.41 in/hr) performance curve for annual average E. coli load reduction.  
 
 
 

 
Figure 4-20. Infiltration Trench (8.27 in/hr) performance curve for annual average E. coli load reduction.  
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APPENDIX-A1: E. COLI AVERAGE ANNUAL LOAD REDUCTIONS (%) 
FOR BIOFILTRATION, BIOFILTRATION WITH ISR, DRY POND, WET 
POND, SAND FILTER, AND SUBSURFACE GRAEL WETLAND 

Runoff Capture 
Depth (inches) 

E. coli Average Annual Load Reduction (%) 

Biofiltration 
Biofiltration 

with ISR 
Dry Pond Wet Pond Sand Filter 

Subsurface 
Gravel 

Wetland 

0.1 
10.99% 27.89% 0.00% 14.52% 33.64% 30.29% 

0.2 
18.50% 44.92% 0.00% 23.70% 52.20% 47.21% 

0.3 
24.54% 56.12% 0.02% 31.56% 64.01% 58.14% 

0.4 
30.21% 64.16% 0.07% 38.59% 72.22% 65.51% 

0.5 
35.44% 70.24% 0.20% 44.69% 77.86% 70.07% 

0.6 
40.15% 74.98% 0.40% 49.94% 81.68% 72.63% 

0.7 
44.44% 78.61% 0.61% 54.40% 84.11% 74.00% 

0.8 
48.36% 81.41% 0.85% 58.17% 85.74% 74.80% 

0.9 
51.92% 83.50% 1.10% 61.39% 86.84% 75.51% 

1.0 
55.04% 85.14% 1.37% 64.16% 87.68% 76.07% 

1.1 
57.86% 86.36% 1.65% 66.57% 88.32% 76.51% 

1.2 
60.49% 87.38% 1.95% 68.68% 88.91% 77.06% 

1.3 
62.79% 88.19% 2.23% 70.54% 89.38% 77.52% 

1.4 
64.93% 88.85% 2.51% 72.21% 89.84% 77.92% 

1.5 
66.81% 89.39% 2.80% 73.69% 90.22% 78.39% 

1.6 
68.57% 89.86% 3.09% 75.01% 90.58% 78.87% 

1.7 
70.20% 90.27% 3.37% 76.22% 90.94% 79.31% 

1.8 
71.69% 90.65% 3.65% 77.29% 91.28% 79.77% 

1.9 
73.15% 91.00% 3.96% 78.27% 91.60% 80.22% 

2.0 
74.70% 91.29% 4.26% 79.20% 91.90% 80.67% 
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APPENDIX-A2: E. COLI AVERAGE ANNUAL LOAD REDUCTIONS (%) 
FOR INFILTRATION BASIN 

 
 
 
 
 

Runoff 
Capture 
Depth 

(inches) 

E. coli Average Annual Load Reduction (%) for Background Infiltration Rates 

0.17 (in/hr) 0.27 (in/hr) 0.52 (in/hr) 1.02 (in/hr) 1.50 (in/hr) 2.41 (in/hr) 8.27 (in/hr) 

0.1 
23.58% 25.88% 29.56% 33.99% 36.93% 41.68% 60.24% 

0.2 
39.65% 43.40% 48.64% 54.79% 59.17% 65.64% 87.09% 

0.3 
52.82% 57.15% 62.71% 69.39% 74.05% 80.66% 96.90% 

0.4 
63.39% 67.71% 73.38% 80.00% 84.44% 90.06% 99.20% 

0.5 
71.91% 76.09% 81.52% 87.49% 91.08% 95.08% 99.76% 

0.6 
78.52% 82.48% 87.41% 92.30% 94.99% 97.59% 99.94% 

0.7 
83.76% 87.34% 91.44% 95.32% 97.20% 98.74% 99.99% 

0.8 
87.78% 90.86% 94.21% 97.12% 98.31% 99.34% 100.00% 

0.9 
90.70% 93.36% 96.05% 98.16% 98.98% 99.64% 100.00% 

1.0 
92.94% 95.16% 97.28% 98.77% 99.36% 99.82% 100.00% 

1.1 
94.65% 96.43% 98.08% 99.19% 99.62% 99.89% 100.00% 

1.2 
95.93% 97.34% 98.63% 99.46% 99.76% 99.93% 100.00% 

1.3 
96.87% 98.00% 99.01% 99.64% 99.83% 99.97% 100.00% 

1.4 
97.56% 98.49% 99.28% 99.74% 99.89% 99.99% 100.00% 

1.5 
98.10% 98.86% 99.47% 99.82% 99.94% 100.00% 100.00% 

1.6 
98.50% 99.14% 99.60% 99.88% 99.97% 100.00% 100.00% 

1.7 
98.81% 99.35% 99.70% 99.93% 99.98% 100.00% 100.00% 

1.8 
99.07% 99.51% 99.79% 99.95% 99.99% 100.00% 100.00% 

1.9 
99.28% 99.63% 99.85% 99.97% 100.00% 100.00% 100.00% 

2.0 
99.45% 99.72% 99.89% 99.98% 100.00% 100.00% 100.00% 
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APPENDIX-A3: E. COLI AVERAGE ANNUAL LOAD REDUCTIONS (%) 
FOR INFILTRATION TRENCH 

Runoff 
Capture 
Depth 

(inches) 

E. coli Average Annual Load Reduction (%) for Background Infiltration Rates 

0.17 (in/hr) 0.27 (in/hr) 0.52 (in/hr) 1.02 (in/hr) 1.50 (in/hr) 2.41 (in/hr) 8.27 (in/hr) 

0.1 
21.59% 22.40% 24.42% 27.49% 29.70% 33.56% 50.19% 

0.2 
34.63% 36.48% 39.88% 44.54% 48.02% 53.55% 74.76% 

0.3 
44.86% 47.32% 51.17% 56.74% 60.77% 66.74% 87.14% 

0.4 
53.68% 56.34% 60.69% 66.50% 70.55% 76.44% 93.67% 

0.5 
61.44% 64.24% 68.73% 74.27% 78.13% 83.70% 96.77% 

0.6 
68.09% 70.95% 75.15% 80.39% 84.00% 88.83% 98.37% 

0.7 
73.54% 76.33% 80.17% 85.09% 88.39% 92.45% 99.07% 

0.8 
78.04% 80.69% 84.28% 88.85% 91.64% 94.90% 99.44% 

0.9 
81.79% 84.26% 87.60% 91.68% 93.99% 96.57% 99.64% 

1.0 
84.91% 87.18% 90.30% 93.77% 95.67% 97.59% 99.74% 

1.1 
87.49% 89.57% 92.38% 95.34% 96.84% 98.29% 99.81% 

1.2 
89.62% 91.52% 93.97% 96.47% 97.65% 98.75% 99.88% 

1.3 
91.36% 93.09% 95.24% 97.30% 98.24% 99.08% 99.93% 

1.4 
92.80% 94.38% 96.24% 97.93% 98.65% 99.33% 99.95% 

1.5 
94.03% 95.42% 97.01% 98.37% 98.96% 99.50% 99.96% 

1.6 
95.03% 96.26% 97.60% 98.71% 99.20% 99.61% 99.97% 

1.7 
95.85% 96.90% 98.05% 98.98% 99.37% 99.68% 99.98% 

1.8 
96.52% 97.44% 98.40% 99.19% 99.50% 99.74% 99.98% 

1.9 
97.08% 97.88% 98.70% 99.34% 99.60% 99.79% 99.99% 

2.0 
97.55% 98.22% 98.92% 99.46% 99.67% 99.83% 99.99% 
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APPENDIX-B: SCM DESIGN CONFIURATION FOR THE PERFORMANCE CURVES 

General 
Information 

BMP Parameters Biofiltration 
Biofiltration 

with ISR 
Infiltration 

Basin 
Infiltration 

Trench 
Dry Pond Wet Pond Sand Filter 

Subsurface 
Gravel 

Wetland 

Surface 
Storage 
Configuration 

Orifice Height (ft) 0 0 0 0 0 0 0 0 

Orifice Diameter 
(in.) 

0 0 0 0 4 0 0 0 

Rectangular or 
Triangular Weir 

Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular 

Weir Height 
(ft)/Ponding 
Depth (ft) 

0.5 0.33 2 0.5 6.0 6.0 0.5 2.2 

Crest Width (ft) 30 30 30 30 30 30 30 6 

Soil 
Properties 

Depth of Soil (ft) 2.5 2.0 0.001 6.0 0.001 0.001 2.5 0.67 

Soil Porosity (0-1) 0.2 0.45 0.4 0.4 0.3 0.3 0.3 0.4 

Vegetative 
Parameter A 

0.9 0.6 0.9 0.9 0.1 0.1 0.8 0.9 

Soil Infiltration 
(in/hr) 

2.5 4.5 
background 
infiltration 

background 
infiltration 

0 0 2.5 4.4 

Underdrain 
Properties 

Consider 
Underdrain 
Structure? 

Yes Yes No No No No Yes Yes 

Storage Depth (ft) 1 2.5 0 0 0 0 1 2 

Media Void 
Fraction (0-1) 

0.40 0.42 0 0 0 0 0.40 0.4 

Background 
Infiltration (in/hr) 

0 0 
see 

Appendix 
A2 

see 
Appendix 

A3 
0 0 0 0 

Decay Rates E.coli (1/hr) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Underdrain 
Removal 
Rates 

E.coli (%, 0-1) 0.76 0.76 0.96 0.76 0.64 0.96 0.76 0.60 
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APPENDIX-C: METHOD FOR DETERMINING STORMWATER CONTROL DESIGN VOLUME (DSV) 
(I.E., CAPACITY) USING LONG-TERM CUMULATIVE PERFORMANCE CURVES 

 




