#### FLAT FILE GENERATION METHODOLOGY

Version: January 2020 Reference Case using EPA Platform v6

#### **SECTION I: INTRODUCTION**

This document provides the flat file generation methodology for the January 2020 Reference Case using EPA Platform v6. The methodology takes Integrated Planning Model (IPM<sup>®</sup>) run results and generates the formatted flat file that the U.S. Environmental Protection Agency (U.S. EPA) uses as inputs into air-quality modeling framework. Section II provides data descriptions. Section III (see page 2) describes data processing steps in detail. Section IV (see page 12) describes the layout of the formatted flat file.

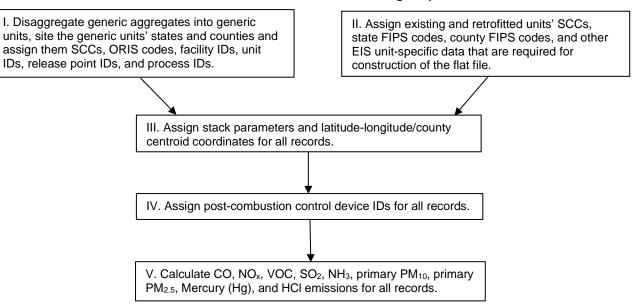
#### SECTION II: DATA DESCRIPTIONS

IPM run results: This file contains IPM run results that have been disaggregated to the unit, emission control technology, and fuel type level. The file provides records of existing and retrofitted units and committed and new-build aggregates<sup>1</sup>. The committed and new-build aggregates are hereafter referred to as "generic" aggregates. All records contain:

- Population characteristics including state FIPS codes, county FIPS codes, recognized ORIS codes (<80,000), and unit IDs for existing and retrofitted units. Generic aggregates have state level information only.
- ii. Sulfur dioxide (SO<sub>2</sub>), nitrogen oxides (NO<sub>x</sub>), and particulate matter (PM) control information for existing and retrofitted units as well as generic aggregates.
- iii. Annual and seasonal heat input (TBtu).
- iv. Heat contents (MMBtu/ton, K gallon, MMcf) and SO<sub>2</sub> and ash contents (lb/MMBtu).
- v. Annual and summer NO<sub>x</sub> emissions (MTon), annual SO<sub>2</sub> emissions (MTon), HCL emissions (MTon), and mercury emissions (Ton).

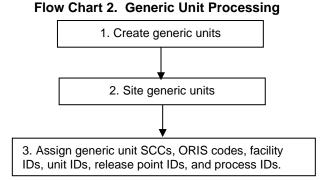
Table 1 provides the rest of the input data descriptions and table locations.

| No. | Table Name                   | Description                                                                                                                                                                                                                                                                                                                                                                                                              | Location                |
|-----|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1   | EIS                          | This table contains Emission Inventory System (EIS) unit-specific<br>data that include unit facility name, facility code, boiler ID, tribal<br>code, reg code, NAICS, longitude, latitude, facility ID, unit ID,<br>release point ID, process ID, agency facility ID, agency unit ID,<br>agency release point ID, agency process ID, stack height, stack<br>diameter, stack temperature, stack flow, and stack velocity. |                         |
| 2   | GenericUnitSite              | This table contains all existing plants that serve as sister plants in siting generic units. The data include NEEDS v6 plant's state FIPS code, county FIPS code, county's most recent 8 hour ozone or PM <sub>2.5</sub> attainment/non-attainment status, ORIS code, latitude-longitude coordinates, and zip code.                                                                                                      | FlatFile_Input<br>s.xls |
| 3   | LatLonDefault                | This table contains latitude-longitude coordinates by ORIS code, state FIPS code, and county FIPS code.                                                                                                                                                                                                                                                                                                                  | FlatFile_Input<br>s.xls |
| 4   | SCC                          | This table contains Source Classification Codes (SCCs) by plant type, fuel type, coal rank, firing, and bottom type (for boilers).                                                                                                                                                                                                                                                                                       | Table 6                 |
| 5   | PlantTypeStackParamet<br>ers | This table contains stack parameters (height, diameter, temperature, and velocity) by plant type.                                                                                                                                                                                                                                                                                                                        | Table 7                 |


#### **Table 1. Input Data Descriptions and Locations**

<sup>&</sup>lt;sup>1</sup> All fossil, geothermal, landfill gas, non-fossil waste, municipal solid waste, tires, and biomass fired units are included in this process. Nuclear, hydro, wind, solar, fuel cell, and energy storage units are not included.

| No. | Table Name                                                         | Description                                                                                                                                                                                                              | Location                |
|-----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6   | SCCDefaultStackParame ters                                         | This table contains default stack parameters (height, diameter, temperature, and velocity) by SCC.                                                                                                                       | Table 8                 |
| 7   | ControlDevices                                                     | This table contains post-combustion control devices and their associated control IDs.                                                                                                                                    | Table 9                 |
| 8   | CO, VOC, and NH <sub>3</sub><br>Emission Factors                   | This table contains carbon monoxide (CO), volatile organic compounds (VOC), and ammonia (NH <sub>3</sub> ) emission factors for existing units of plant types Landfill Gas, Non-fossil Waste, and Municipal Solid Waste. | FlatFile_Input<br>s.xls |
| 9   | Generic CO, VOC, and NH <sub>3</sub> Emission Factors              | This table contains CO, VOC, and NH <sub>3</sub> emission factors for generic units.                                                                                                                                     | Table 10                |
| 10  | SCCDefaultHeatContent                                              | This table contains default heat contents by SCC.                                                                                                                                                                        | Table 11                |
| 11  | SCCEmsFac                                                          | This table contains emission factors for CO, VOC, and NH <sub>3</sub> .                                                                                                                                                  | Table 12                |
| 12  | PM <sub>10</sub> and PM <sub>2.5</sub> Emission<br>Factors         | This table contains $PM_{10}$ and $PM_{2.5}$ emission factors for existing units.                                                                                                                                        | FlatFile_Input<br>s.xls |
| 13  | Generic PM <sub>10</sub> and PM <sub>2.5</sub><br>Emission Factors | This table contains $PM_{10}$ and $PM_{2.5}$ emission factors for generic units.                                                                                                                                         | Table 13                |


#### SECTION III: DETAILED DATA PROCESSING

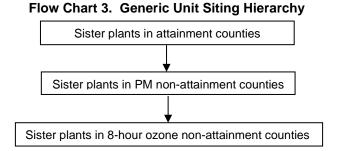
Flow Chart 1 describes general data processing steps. A more detailed description of each step is provided in the subsections followed.



#### Flow Chart 1. Data Processing Steps

Step 1. Disaggregate Generic Aggregates into Individual Generic Units, Site the Generic Units to their States and Counties and Assign SCCs, ORIS Codes, Facility ID's, Release Point IDs, and Process IDs: Generic unit data are prepared by transforming the generic aggregates into units similar to existing units in terms of the available data. First, the generic aggregates are disaggregated to create generic units. Second, the generic units are sited and given the state, county, and county-centroid based latitude-longitude coordinates. Third, the generic units are assigned SCCs, ORIS codes, facility IDs, unit IDs, release point IDs, and process IDs. This process is performed in three steps as described in Flow Chart 2.




1. Creating generic units: Generic aggregates are first disaggregated to create generic units. The process entails two steps: i) The generic aggregates are first aggregated by state, plant type and, for coal steam and IGCC, and coal rank. Ii) They are then split into smaller generic units by dividing the aggregated capacity by a reference capacity. The result is the number of generic units to be created in a given state for each plant type and fuel type. The reference capacity is varied by plant type as shown in Table 2.

| Plant Type         | Reference Capacity (MW) |
|--------------------|-------------------------|
| Biomass            | 600                     |
| Coal Steam         | 600                     |
| Combined Cycle     | 250                     |
| Combustion Turbine | 160                     |
| Fossil Waste       | 030                     |
| IGCC               | 550                     |
| Oil/Gas Steam      | 100                     |
| Landfill Gas       | 030                     |
| Geothermal         | 030                     |

 Table 2. Generic Unit Reference Capacity

Aggregated heat input and emissions are then divided evenly among all generic units created in a given state for each plant type.

2. Siting generic units: The generic units are given a state FIPS code, county FIPS code, and latitudelongitude based on an algorithm that sites generic units in counties within their respective states. The generic unit siting data table, GenericUnitSite, is used in this algorithm to assign each generic unit a sister plant that is in a county based on the county's attainment/non-attainment status. Within a state the hierarchy for assignment of sister plants in the order of county code then ORIS code is shown in Flow Chart 3. All generic units are sited so that their ORIS codes are unique, and the same ORIS code has the same county and latitude-longitude across all runs of the same base case origin.



3. Assigning generic unit SCCs, ORIS codes, facility IDs, unit IDs, release point IDs, and process IDs: SCC assignment is based on unit's plant type, fuel type, and coal rank as shown in Table 3. Generic unit ORIS code consists of a six-digit number. The units are first sorted by plant type in the order of combined cycle, fossil waste, combustion turbine, IGCC, and coal steam.

| Plant Type         | Fuel Type / Coal Rank | SCC      |
|--------------------|-----------------------|----------|
| Coal Steam         | Bituminous            | 10100202 |
| Coal Steam         | Subbituminous         | 10100222 |
| Coal Steam         | Lignite               | 10100301 |
| Fossil Waste       | Process Gas           | 10100701 |
| Biomass            | Biomass               | 10100902 |
| Combined Cycle     | Natural Gas           | 20100201 |
| Combined Cycle     | Oil                   | 20100101 |
| Combustion Turbine | Natural Gas           | 20100201 |
| Combustion Turbine | Oil                   | 20100101 |
| IGCC               | Coal                  | 20100301 |
| IGCC               | Petroleum Coke        | 20100301 |
| Oil/Gas Steam      | Natural Gas           | 10100601 |
| Landfill Gas       | Landfill Gas          | 0000000  |
| Geothermal         | Geothermal            | 0000000  |

| Table 3. | Generic | Unit SCC |
|----------|---------|----------|
|----------|---------|----------|

Then generic unit ORIS codes are assigned. The first digit of the ORIS code represents the unit's plant type as shown in Table 4. The next three digits are a counter, starting with "000" and incrementing with each generic unit created within a given state for each plant type. The last two digits are the state FIPS code. For example, the first combined-cycle generic unit in Arizona used in the example above has a plant ID of "ORIS700104".

| Plant Type         | 1 <sup>st</sup> Digit of the ORIS Code |
|--------------------|----------------------------------------|
| Biomass            | 3                                      |
| Coal Steam         | 9                                      |
| Combined Cycle     | 7                                      |
| Combustion Turbine | 8                                      |
| Fossil Waste       | 5                                      |
| Geothermal         | 2                                      |
| IGCC               | 6                                      |
| Landfill Gas       | 1                                      |
| Oil/Gas Steam      | 4                                      |

Generic unit's facility ID consists of a concatenation of the word "ORIS" and the unit's ORIS code. Generic unit's unit ID consists of a concatenation of a three-letter unit ID code representing the unit's plant type as shown in Table 5 and the unit's state FIPS code. For example, the first combined-cycle generic unit in Arizona used in the example above has a unit ID of "ORISGCC04".

| Plant Type         | Unit ID Code |
|--------------------|--------------|
| Biomass            | GSC          |
| Coal Steam         | GSC          |
| Combined Cycle     | GCC          |
| Combustion Turbine | GGT          |
| Fossil Waste       | GFW          |
| Geothermal         | GGE          |
| IGCC               | IGC          |
| Landfill Gas       | GLF          |
| Oil/Gas Steam      | GSC          |

| Table 5. | Generic | Unit ID | Code |
|----------|---------|---------|------|
|----------|---------|---------|------|

Generic unit's release point ID is the same as the unit's unit ID. Generic unit's process ID is the same as the unit's facility ID.

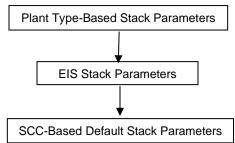
# Step 2. Assigning Existing and Retrofitted Unit's SCCs, State FIPS Codes, County FIPS Codes, Facility IDs, Release Point IDs, Process IDs, and Other EIS Unit-Specific Data That Are Required for Construction of the Flat File.

First, existing and retrofitted units' SCCs are assigned. SCC, or Source Classification Code, describes a generating unit's characteristics. The assignment of SCC for existing and retrofitted units is based on a unit's configuration that includes plant type, fuel type, and, if it's a boiler, firing and bottom type. The SCC is an eight-digit numeric code that describes characteristics of the units. Beginning from the left the first digit of the SCC represents the type of unit (boiler [=1] or turbine [=2]). The third digit of the SCC represents the economic sector of the unit (electric power sector=1). And the fifth through eighth digits of the SCC represent the unit's attributes including fuel type and, if a boiler, bottom and firing type. The second and fourth digits are zero. Table 6 displays the SCCs.

| Plant Type | Boiler /<br>Generator | Fuel Type / Coal<br>Rank | Firing     | Bottom | SCC      |
|------------|-----------------------|--------------------------|------------|--------|----------|
| Coal Steam | Boiler/Generator      | Bituminous               |            | Wet    | 10100201 |
| Coal Steam | Boiler/Generator      | Bituminous               | Vertical   | Wet    | 10100201 |
| Coal Steam | Boiler/Generator      | Bituminous               | Wall       | Wet    | 10100201 |
| Coal Steam | Boiler/Generator      | Bituminous               | Vertical   | Dry    | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               | Wall       | Dry    | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               |            | Dry    | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               |            |        | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               | Wall       |        | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               | Vertical   |        | 10100202 |
| Coal Steam |                       | Bituminous               | Turbo      |        | 10100202 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cyclone    | Wet    | 10100203 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cyclone    | Dry    | 10100203 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cyclone    |        | 10100203 |
| Coal Steam | Boiler/Generator      | Bituminous               | Stoker/SPR | Wet    | 10100204 |
| Coal Steam | Boiler/Generator      | Bituminous               | Stoker/SPR |        | 10100204 |
| Coal Steam | Boiler/Generator      | Bituminous               | Stoker/SPR | Dry    | 10100204 |
| Coal Steam | Boiler/Generator      | Bituminous               | Tangential | Wet    | 10100211 |
| Coal Steam | Boiler/Generator      | Bituminous               | Tangential |        | 10100212 |
| Coal Steam | Boiler/Generator      | Bituminous               | Tangential | Dry    | 10100212 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cell       | Wet    | 10100215 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cell       |        | 10100215 |
| Coal Steam | Boiler/Generator      | Bituminous               | Cell       | Dry    | 10100215 |
| Coal Steam | Boiler/Generator      | Bituminous               | FBC        |        | 10100218 |
| Coal Steam | Boiler/Generator      | Bituminous               | FBC        | Wet    | 10100218 |
| Coal Steam | Boiler/Generator      | Bituminous               | FBC        | Dry    | 10100218 |
| Coal Steam | Boiler/Generator      | Subbituminous            |            | Wet    | 10100221 |
| Coal Steam | Boiler/Generator      | Subbituminous            | Wall       | Wet    | 10100221 |

#### Table 6. SCC Assignment for Existing and Retrofitted Units

| Plant Type   | Boiler /<br>Generator | Fuel Type / Coal<br>Rank | Firing     | Bottom | SCC      |
|--------------|-----------------------|--------------------------|------------|--------|----------|
| Coal Steam   | Boiler/Generator      | Subbituminous            | Vertical   | Wet    | 10100221 |
| Coal Steam   | Boiler/Generator      | Subbituminous            |            |        | 10100222 |
| Coal Steam   | Boiler/Generator      | Subbituminous            |            | Dry    | 10100222 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Vertical   | Dry    | 10100222 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Wall       | Dry    | 10100222 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Wall       |        | 10100222 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cyclone    | Dry    | 10100223 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cyclone    | Wet    | 10100223 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cyclone    |        | 10100223 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Stoker/SPR |        | 10100224 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Stoker/SPR | Wet    | 10100224 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Stoker/SPR | Dry    | 10100224 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Tangential | Wet    | 10100226 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Tangential | Dry    | 10100226 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cell       | Wet    | 10100235 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cell       | Dry    | 10100235 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | Cell       |        | 10100235 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | FBC        | Dry    | 10100238 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | FBC        | Wet    | 10100238 |
| Coal Steam   | Boiler/Generator      | Subbituminous            | FBC        |        | 10100238 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Wall       | Dry    | 10100301 |
| Coal Steam   | Boiler/Generator      | Lignite                  |            | Wet    | 10100301 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Tangential | Wet    | 10100302 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Tangential | Dry    | 10100302 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Cyclone    |        | 10100303 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Cyclone    | Wet    | 10100303 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Stoker/SPR | Wet    | 10100306 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Stoker/SPR |        | 10100306 |
| Coal Steam   | Boiler/Generator      | Lignite                  | Stoker/SPR | Dry    | 10100306 |
| Coal Steam   | Boiler/Generator      | Lignite                  | FBC        |        | 10100318 |
| Coal Steam   | Boiler/Generator      | Lignite                  | FBC        | Wet    | 10100318 |
| Coal Steam   | Boiler/Generator      | Lignite                  | FBC        | Dry    | 10100318 |
| O/G Steam    | Boiler/Generator      | Oil                      |            |        | 10100401 |
| O/G Steam    | Boiler/Generator      | Oil                      | Wall       | Dry    | 10100401 |
| O/G Steam    | Boiler/Generator      | Oil                      | Tangential |        | 10100404 |
| O/G Steam    |                       | Orimulsion               | Wall       |        | 10100409 |
| O/G Steam    |                       | Orimulsion               | Other      |        | 10100409 |
| O/G Steam    | Boiler/Generator      | Natural Gas              |            |        | 10100601 |
| O/G Steam    | Boiler/Generator      | Natural Gas              | Wall       |        | 10100601 |
| O/G Steam    | Boiler/Generator      | Natural Gas              | Wall       | Dry    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Wall       | Wet    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Vertical   | Dry    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Vertical   |        | 10100601 |
| O/G Steam    | _                     | Natural Gas              | Cell       | _      | 10100601 |
| O/G Steam    |                       | Natural Gas              | Cyclone    | Dry    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Cyclone    | Wet    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Cyclone    |        | 10100601 |
| O/G Steam    |                       | Natural Gas              | Other      | Dry    | 10100601 |
| O/G Steam    |                       | Natural Gas              | Tangential | Dry    | 10100604 |
| O/G Steam    |                       | Natural Gas              | Tangential | Wet    | 10100604 |
| O/G Steam    | Boiler/Generator      | Natural Gas              | Tangential |        | 10100604 |
| Fossil Waste | Boiler                | Process Gas              |            |        | 10100701 |
| Coal Steam   | Boiler/Generator      | Petroleum Coke           | Vertical   | Dry    | 10100801 |
| Coal Steam   |                       | Petroleum Coke           | Wall       |        | 10100801 |
| Coal Steam   | Boiler/Generator      | Petroleum Coke           |            |        | 10100801 |
| Coal Steam   | Boiler/Generator      | Petroleum Coke           | FBC        | Dry    | 10100818 |
| Coal Steam   | Boiler/Generator      | Biomass                  |            |        | 10100902 |
| Coal Steam   | Boiler/Generator      | Waste Coal               |            |        | 10102001 |


| Plant Type         | Boiler /<br>Generator | Fuel Type / Coal<br>Rank | Firing | Bottom | SCC      |
|--------------------|-----------------------|--------------------------|--------|--------|----------|
| Coal Steam         | Boiler/Generator      | Waste Coal               | Wall   |        | 10102001 |
| Coal Steam         | Boiler/Generator      | Waste Coal               | FBC    |        | 10102018 |
| Combined Cycle     | Generator             | Oil                      |        |        | 20100101 |
| Combustion Turbine | Boiler/Generator      | Oil                      |        |        | 20100101 |
| Combined Cycle     | Boiler/Generator      | Natural Gas              |        |        | 20100201 |
| Combined Cycle     |                       | Natural Gas              |        |        | 20100201 |
| Combustion Turbine | Boiler/Generator      | Natural Gas              |        |        | 20100201 |
| Fossil Waste       | Generator             | Process Gas              |        |        | 20100201 |
| IGCC               | Boiler/Generator      |                          |        |        | 20100301 |

We then assign existing and retrofitted units' state FIPS codes, county FIPS codes, facility IDs, release point IDs, and process IDs. State FIPS codes, county FIPS codes, facility IDs, release point IDs, and process IDs are obtained from the EIS unit-specific data table. Where the EIS provides no data, default values are used. Appendix A describes the default values in detail.

## Step 3. Assigning Stack Parameters and Latitude-Longitude/County Centroid Coordinates for All Units

Stack Parameters: Existing and retrofitted unit's stack parameters are assigned based on the hierarchy described in Flow Chart 4.





Stack parameters are first assigned based on plant type as shown in Table 7.

Table 7. Plant Type-Based Stack Parameters

| Plant | Stack Height | Stack Diameter | Stack Temperature | Stack Velocity | Stack Flow |
|-------|--------------|----------------|-------------------|----------------|------------|
| Type  | (ft)         | (ft)           | (degree F)        | (ft/sec)       | (cft/sec)  |
| IGCC  | 150          | 19             | 340               | 75.8           | 21491.48   |

If Table 7 provides no plant type-based stack parameters, the units are assigned EIS stack parameters from the EIS unit-specific data table. If the EIS data table provides no stack parameters, the units are assigned default stack parameters based on a unit's SCC as shown in Table 8.

| SCC      | Stack Height<br>(ft) | Stack Diameter<br>(ft) | Stack Temperature (°F) | Stack Velocity<br>(ft/sec) |
|----------|----------------------|------------------------|------------------------|----------------------------|
| 10100201 | 603.2                | 19.8                   | 281.2                  | 076.5                      |
| 10100202 | 509.7                | 14.6                   | 226.0                  | 062.0                      |
| 10100203 | 491.6                | 16.6                   | 278.4                  | 080.5                      |
| 10100204 | 225.0                | 00.6                   | 067.2                  | 002.4                      |
| 10100211 | 490.0                | 17.4                   | 280.0                  | 076.4                      |
| 10100212 | 445.6                | 17.4                   | 275.2                  | 077.6                      |
| 10100215 | 509.7                | 14.6                   | 226.0                  | 062.0                      |
| 10100218 | 399.3                | 10.8                   | 245.6                  | 040.1                      |
| 10100221 | 983.0                | 22.8                   | 350.0                  | 110.0                      |

| SCC      | Stack Height<br>(ft) | Stack Diameter<br>(ft) | Stack Temperature (°F) | Stack Velocity<br>(ft/sec) |
|----------|----------------------|------------------------|------------------------|----------------------------|
| 10100222 | 468.5                | 16.0                   | 254.7                  | 065.6                      |
| 10100223 | 446.8                | 15.9                   | 308.0                  | 093.6                      |
| 10100224 | 255.5                | 10.0                   | 251.3                  | 015.3                      |
| 10100226 | 495.8                | 18.9                   | 259.2                  | 091.2                      |
| 10100235 | 468.5                | 16.0                   | 254.7                  | 065.6                      |
| 10100238 | 600.0                | 22.5                   | 315.0                  | 078.0                      |
| 10100301 | 427.5                | 22.3                   | 232.8                  | 074.2                      |
| 10100302 | 483.5                | 21.0                   | 229.4                  | 092.4                      |
| 10100303 | 462.0                | 21.7                   | 271.3                  | 072.5                      |
| 10100306 | 300.0                | 07.2                   | 441.0                  | 067.0                      |
| 10100318 | 326.7                | 12.3                   | 326.7                  | 074.7                      |
| 10100401 | 252.9                | 10.1                   | 258.1                  | 042.6                      |
| 10100404 | 322.1                | 14.0                   | 301.8                  | 062.8                      |
| 10100409 | 252.9                | 10.1                   | 258.1                  | 042.6                      |
| 10100601 | 263.9                | 10.3                   | 236.0                  | 046.9                      |
| 10100604 | 308.0                | 15.2                   | 275.2                  | 066.0                      |
| 10100701 | 239.2                | 09.4                   | 238.0                  | 042.3                      |
| 10100801 | 371.3                | 05.5                   | 122.4                  | 020.4                      |
| 10100818 | 399.3                | 10.8                   | 245.6                  | 040.1                      |
| 10100902 | 303.4                | 03.3                   | 137.7                  | 016.1                      |
| 10102001 | 509.7                | 14.6                   | 226.0                  | 062.0                      |
| 10102018 | 399.3                | 10.8                   | 245.6                  | 040.1                      |
| 20100101 | 057.7                | 09.6                   | 655.8                  | 064.9                      |
| 20100201 | 062.0                | 10.0                   | 585.3                  | 061.3                      |
| 20100301 | 150.0                | 19.0                   | 340.0                  | 075.8                      |

Generic units are assigned SCC-based default stack parameters.

Stack flow data are assigned from the EIS data table for all existing and retrofitted units, except for IGCC units which receive default stack flow by plant type as shown in Table 7. If the EIS data table does not provide stack flow data or if the SCC-based default stack parameters are assigned, stack flows are calculated as follows:

Stack Flow (cft/sec) = 
$$3.141592 * \left(\frac{\text{Stack Diameter (ft)}}{2}\right)^2 * \text{Stack Velocity (ft/sec)}$$

Coordinates: Latitude-longitude coordinates are assigned from the EIS data table. If the EIS data table provides no data, latitude-longitude coordinates are assigned based on a unit's sister ORIS code from the table LatLonDefault or based on the county centroid.

#### Step 4. Assigning Post-Combustion Control Device IDs for All Units

Control IDs are assigned reflecting all post-combustion control devices at a unit in a particular projection year. The control devices reflect both existing and refrofit controls. Table 9 lists the control devices and their associated control IDs.

| Control ID | Description                   |
|------------|-------------------------------|
| 119        | Dry FGD                       |
| 139        | SCR                           |
| 140        | SNCR or other NO <sub>x</sub> |
| 141        | Wet FGD                       |
| 206        | DSI                           |
| 207        | ACI                           |

**Table 9: Post-Combustion Control Devices** 

# Step 5. Calculating CO, NO<sub>x</sub>, VOC, SO<sub>2</sub>, NH<sub>3</sub>, Primary PM<sub>10</sub>, Primary PM<sub>2.5</sub>, Mercury (Hg), and HCI Emissions

Emissions are calculated at three levels: annual, seasonal, and monthly emissions.

#### Annual emission calculations:

i. Annual NO<sub>x</sub>, SO<sub>2</sub>, mercury (Hg), and HCI emissions (tons) are taken directly from IPM run results.

ii. Annual CO, VOC, and NH<sub>3</sub> emissions (tons) for units of plant types Landfill Gas, Non-fossil Waste, and Municipal Solid Waste are calculated by multiplying the unit's generation and unit specific emission factors as follows:

Annual Emission<sub>Pollutant</sub> (tons) = Annual Generation (MWh) \* Unit Specific Emission Factor<sub>Pollutant</sub> (ton/MWh)

For existing units, unit specific emission factors for CO, VOC, and NH<sub>3</sub> are provided in the COVOCNH3EmissionFactors table. For generic units, emission factors for CO, VOC, and NH<sub>3</sub> are assigned by plant type as shown in Table 10.

Table 10: Generic CO, VOC, and NH<sub>3</sub> Emission Factors (Ton/MWh)

| Plant Type                                                                                | CO EF      | VOC EF     | NH3 EF     |  |
|-------------------------------------------------------------------------------------------|------------|------------|------------|--|
| Landfill Gas                                                                              | 0.00336001 | 0.00038188 | 0.00000432 |  |
| Municipal Solid Waste                                                                     | 0.00035865 | 0.00002872 | 0.00001893 |  |
| Note: CO, VOC, and NH <sub>3</sub> emissions are not calculated for Geothermal and Tires. |            |            |            |  |

iii. Annual CO, VOC, and NH<sub>3</sub> emissions (tons) for units of the remaining plant types are calculated by multiplying the unit's fuel use and emission factors as follows:

$$Annual \ Emissions_{Pollutant} \ (tons) = \frac{Annual \ Fuel \ Use \ (ton, K \ gallon, MMcf) * \ Emission \ Factor_{Pollutant} \ (lb \ per \ ton, K \ gallon, MMcf)}{2000 \ (lb/ton)}$$

Where 2000 converts lb to short ton and the pollutants are CO, VOC, and NH<sub>3</sub>. Annual Fuel Use (ton, K gallon, MMcf) is calculated from IPM run results, which are in MMBtu of annual heat input and converted into physical units of annual fuel use as follows:

 $Fuel Use (ton, K gallon, MMcf) = \left(\frac{Heat Input (MMBtu)}{Heat Content (MMBtu per ton, K gallon, MMcf)}\right)$ 

Where Heat Content (MMBtu per ton, K gallon, MMcf) is assigned using January 2020 Reference Case assumptions for coal and petroleum coke units. All other units are assigned default heat contents based on the unit's SCC as shown in Table 11.

| SCC      | Heat Content |
|----------|--------------|
| 10100401 | 0152         |
| 10100404 | 0152         |
| 10100409 | 0152         |
| 10100601 | 1024         |
| 10100604 | 1024         |
| 10100701 | 0671         |
| 10100902 | 0012         |
| 20100101 | 0138         |
| 20100201 | 1024         |

Emission factor is assigned for CO, VOC, and NH<sub>3</sub> based on a unit's SCC as shown in Table 12.

| SCC      | CO EF | VOC EF | NH <sub>3</sub> EF |
|----------|-------|--------|--------------------|
| 10100201 | 0.5   | 0.04   | 0.03               |
| 10100202 | 0.5   | 0.06   | 0.03               |
| 10100203 | 0.5   | 0.11   | 0.03               |
| 10100204 | 5     | 0.05   | 0.03               |
| 10100211 | 0.5   | 0.04   | 0.03               |
| 10100212 | 0.5   | 0.06   | 0.03               |
| 10100215 | 0.5   | 0.06   | 0.03               |
| 10100218 | 18    | 0.05   | 0.03               |
| 10100221 | 0.5   | 0.04   | 0.03               |
| 10100222 | 0.5   | 0.06   | 0.03               |
| 10100223 | 0.5   | 0.11   | 0.03               |
| 10100224 | 5     | 0.05   | 0.03               |
| 10100226 | 0.5   | 0.06   | 0.03               |
| 10100235 | 0.5   | 0.06   | 0.03               |
| 10100238 | 18    | 0.05   | 0.03               |
| 10100301 | 0.25  | 0.07   | 0.03               |
| 10100302 | 0.6   | 0.07   | 0.03               |
| 10100303 | 0.6   | 0.07   | 0.03               |
| 10100306 | 5     | 0.07   | 0.03               |
| 10100318 | 0.15  | 0.03   | 0.03               |
| 10100401 | 5     | 0.76   | 0.8                |
| 10100404 | 5     | 0.76   | 0.8                |
| 10100409 | 5     | 0.76   | 0.8                |
| 10100601 | 84    | 5.5    | 3.2                |
| 10100604 | 24    | 5.5    | 3.2                |
| 10100701 | 6.57  | 0.43   | 1.2                |
| 10100801 | 0.6   | 0.07   | 0.4                |
| 10100818 | 18    | 0.05   | 0.4                |
| 10100902 | 6.8   | 0.19   | 0.09               |
| 10102001 | 0.25  | 0.07   | 0.03               |
| 10102018 | 0.15  | 0.03   | 0.03               |
| 20100101 | 0.46  | 0.06   | 6.62               |
| 20100201 | 84    | 2.1    | 6.56               |
| 20100301 | 35    | 2.2    | 6.56               |

Table 12: SCC-Based Emission Factors (lb/ton, K gallon, MMcf)

iv. Annual primary PM<sub>10</sub> and PM<sub>2.5</sub> emissions (tons) are calculated by multiplying the unit's generation and unit specific emission factors for PM<sub>10</sub> and PM<sub>2.5</sub> as follows:

 $Annual Emission_{Pollutant} (tons) = \frac{Annual Generation (MWh) * Unit level Emission Factor_{Pollutant} (lb/MWh)}{2000 (lb/ton)}$ 

Where 2000 converts lb to short ton and the pollutants are PM<sub>10</sub> and PM<sub>2.5</sub>. For existing units, unit specific emission factor is assigned for PM10 and PM2.5 as described in Appendix B. For generic units, unit specific emission factor is assigned for PM<sub>10</sub> and PM<sub>2.5</sub> based on plant type as shown in Table 13.

| Plant Type                           | Primary PM10 EF | Primary PM2.5 EF |
|--------------------------------------|-----------------|------------------|
| Ultrasupercritical Coal with 30% CCS | 0.10594280      | 0.08338125       |
| Ultrasupercritical Coal with 90% CCS | 0.10594280      | 0.08338125       |
| Ultrasupercritical Coal without CCS  | 0.10594280      | 0.08338125       |
| Combined Cycle                       | 0.06222523      | 0.06183582       |
| Combined Cycle with Carbon Capture   | 0.06222523      | 0.06183582       |
| Combustion Turbine                   | 0.22368918      | 0.06557471       |
| Biomass                              | 0.14128140      | 0.07452200       |
| Landfill Gas                         | 0.35752155      | 0.35752155       |

Table 13: Generic PM<sub>10</sub> and PM<sub>2.5</sub> Emission Factors (Lb/MWh)

#### Seasonal emission calculations:

Summer Season is the 153 days between May 1 and September 30. Summer NO<sub>x</sub> emissions are taken directly from IPM run results. For all other pollutants, summer emissions are calculated by multiplying the annual emissions by the ratio of the summer to annual heat input.

Winter Season is the 90 days between December 1 and February 28. Winter emissions are calculated by multiplying the annual emissions by the ratio of the winter to annual heat input.

Winter Shoulder Season is the 122 days between October 1 and November 30 and March 1 and April 30. Winter Shoulder emissions are calculated by multiplying the annual emissions by the ratio of the Winter Shoulder to annual heat input.

 $Seasonal \ Emission \ (tons) = Annual \ Emissions \ (tons) * \left(\frac{Seasonal \ Heat \ Input \ (MMBtu)}{Annual \ Heat \ Input \ (MMBtu)}\right)$ 

#### Monthly emission calculations:

Summer, Winter and Winter Shoulder monthly emissions are calculated by multiplying the seasonal emissions by the number of days in a specific month and dividing by the total number of days in that season.

#### SECTION IV: FLAT FILE LAYOUT:

A flat file is generated with the processed data (as explained in sections above) for use in air quality modeling work. Both criteria and HAP emissions are provided in the same file. The pollutants are provided in the following order: CO, NO<sub>x</sub>, VOC, SO<sub>2</sub>, NH<sub>3</sub>, primary PM<sub>10</sub>, primary PM<sub>2.5</sub>, Mercury (Hg), and HCl.

The file's naming convention is as follows:

FlatFile\_<ipm run alpha-numeric only>\_<year4>\_<date created using yyyymmdd>.txt

where:

year4 = 4-digit year of the emissions (e.g., 2030) yyyy = 4-digit year mm = 2-digit month number (e.g. 01 through 12) dd = 2-digit date number (e.g., 01 through 31)

For example: 'FlatFile\_EPA513\_BC\_7c\_2018\_20131108.txt'.

All data fields are comma-delimited and character data, including comma, semi-colon, and space, are enclosed in double-quotes.

The file contains the following header lines:

**#FORMAT=ff10 POINT** #COUNTRY=US #YEAR=<year of emissions> **#VALUE UNITS=TON** #CREATION DATE=<date created> #CREATOR NAME=US EPA-CAMD #DATA\_SET\_ID=1,US EPA IPM #COUNTRY\_CD,REGION\_CD,TRIBAL\_CODE,EIS\_FACILITY\_ID,EIS\_UNIT\_ID,EIS\_REL\_POINT\_ID,EIS\_PRO CESS ID, AGY FACILITY ID, AGY UNIT ID, AGY REL POINT ID, AGY PROCESS ID, SCC, POLL, ANN VALU E,ANN\_PCT\_RED,FACILITY\_NAME,ERPTYPE,STKHGT,STKDIAM,STKTEMP,STKFLOW,STKVEL,NAICS,LON GITUDE, LATITUDE, LL DATUM, HORIZ COLL MTHD, DESIGN CAPACITY, DESIGN CAPACITY UNITS, REG CODES, FAC\_SOURCE\_TYPE, UNIT\_TYPE\_CODE, CONTROL\_IDS, CONTROL\_MEASURES, CURRENT\_COST ,CUMULATIVE\_COST,PROJECTION\_FACTOR,SUBMITTER\_FAC\_ID,CALC\_METHOD,DATA\_SET\_ID,FACIL\_ CATEGORY CODE, ORIS FACILITY CODE, ORIS BOILER ID, IPM YN, CALC YEAR, DATE UPDATED, FUG HEIGHT, FUG WIDTH YDIM, FUG LENGTH XDIM, FUG ANGLE, ZIPCODE, ANNUAL AVG HOURS PER YE AR, JAN\_VALUE, FEB\_VALUE, MAR\_VALUE, APR\_VALUE, MAY\_VALUE, JUN\_VALUE, JUL\_VALUE, AUG\_VALU E,SEP VALUE,OCT VALUE,NOV VALUE,DEC VALUE,JAN PCTRED,FEB PCTRED,MAR PCTRED,APR P CTRED,MAY\_PCTRED,JUN\_PCTRED,JUL\_PCTRED,AUG\_PCTRED,SEP\_PCTRED,OCT\_PCTRED,NOV\_PCT RED, DEC\_PCTRED, COMMENT

The last header line contains comma-delimited field names identifying the data contained in each data field.

### Appendix A

### **Default Values**

| Field Name              | Default Value                                                                       |
|-------------------------|-------------------------------------------------------------------------------------|
| COUNTRY_CD              | N/A                                                                                 |
| <br>REGION_CD           | N/A                                                                                 |
| TRIBAL_CODE             | N/A                                                                                 |
| EIS_FACILITY_ID         | "ORIS" followed by the ORIS_FACILITY_CODE. For example, ORIS55177.                  |
| EIS_UNIT_ID             | "ORIS" followed by the ORIS_BOILER_ID. For example, ORISST1.                        |
|                         | "ORIS" followed by the ORIS_BOILER_ID. That is, the same as the unit ID default     |
| EIS_REL_POINT_ID        | value.                                                                              |
| EIS_PROCESS_ID          | Use the same value as in the [IPM Y/N] field. That is, the NEEDS UniqueID.          |
| AGY_FACILITY_ID         | Blank                                                                               |
| AGY_UNIT_ID             | Blank                                                                               |
| AGY_REL_POINT_ID        | Blank                                                                               |
| AGY_PROCESS_ID          | Blank                                                                               |
| SCC                     | N/A                                                                                 |
|                         | N/A                                                                                 |
| POLL                    |                                                                                     |
| ANN_VALUE               | N/A                                                                                 |
|                         | Blank                                                                               |
| FACILITY_NAME           | NEEDS Plant Name                                                                    |
| ERPTYPE                 | Blank                                                                               |
| STKHGT                  | SCC-based default stack parameters from SCCDefaultStackParameters table.            |
| STKDIAM                 | SCC-based default stack parameters from SCCDefaultStackParameters table.            |
| STKTEMP                 | SCC-based default stack parameters from SCCDefaultStackParameters table.            |
| STKFLOW                 | SCC-based default stack parameters from SCCDefaultStackParameters table.            |
| STKVEL                  | SCC-based default stack parameters from SCCDefaultStackParameters table.            |
| NAICS                   | Blank                                                                               |
|                         | County-centroid based longitude by ORIS code, state FIPS code and country FIPS code |
| LONGITUDE               | from LatLonDefault table.                                                           |
|                         | County-centroid based longitude by ORIS code, state FIPS code and country FIPS code |
| LATITUDE                | from LatLonDefault table.                                                           |
| LL_DATUM                | Blank                                                                               |
| HORIZ_COLL_MTHD         | Blank                                                                               |
| DESIGN_CAPACITY         | N/A                                                                                 |
| DESIGN_CAPACITY_UNITS   | N/A                                                                                 |
| REG_CODES               | Blank                                                                               |
| FAC_SOURCE_TYPE         | "125"                                                                               |
| UNIT_TYPE_CODE          | "100" for Boiler, "120" for Turbine, "140" for combined cycle (boiler/gas turbine). |
| CONTROL_IDS             | N/A                                                                                 |
| CONTROL_MEASURES        | Blank                                                                               |
|                         | Blank                                                                               |
| CUMULATIVE_COST         | Blank                                                                               |
| PROJECTION_FACTOR       | Blank                                                                               |
| SUBMITTER ID            | N/A                                                                                 |
| CALC_METHOD             | N/A                                                                                 |
| DATA_SET_ID             | N/A                                                                                 |
| FACIL_CATEGORY_CODE     | N/A                                                                                 |
| ORIS_FACILITY_CODE      | NEEDS ORIS Code                                                                     |
| ORIS BOILER ID          | NEEDS Unit ID                                                                       |
| IPM_YN                  | N/A                                                                                 |
| INV_YEAR                | N/A                                                                                 |
| DATE UPDATED            | N/A                                                                                 |
| FUG HEIGHT              |                                                                                     |
| FUG_HEIGHT              | Blank                                                                               |
|                         | Blank                                                                               |
| FUG_LENGTH_XDIM         | Blank                                                                               |
| FUG_ANGLE               | Blank                                                                               |
| ZIPCODE                 | N/A                                                                                 |
| ANNUAL_AVG_HOURS_PER_YE | N/A                                                                                 |

| Field Name | Default Value |
|------------|---------------|
| AR         |               |
| JAN_VALUE  | N/A           |
| FEB_VALUE  | N/A           |
| MAR_VALUE  | N/A           |
| APR_VALUE  | N/A           |
| MAY_VALUE  | N/A           |
| JUN_VALUE  | N/A           |
| JUL_VALUE  | N/A           |
| AUG_VALUE  | N/A           |
| SEP_VALUE  | N/A           |
| OCT_VALUE  | N/A           |
| NOV_VALUE  | N/A           |
| DEC_VALUE  | N/A           |
| JAN_PCTRED | Blank         |
| FEB_PCTRED | Blank         |
| MAR_PCTRED | Blank         |
| APR_PCTRED | Blank         |
| MAY_PCTRED | Blank         |
| JUN_PCTRED | Blank         |
| JUL_PCTRED | Blank         |
| AUG_PCTRED | Blank         |
| SEP_PCTRED | Blank         |
| OCT_PCTRED | Blank         |
| NOV_PCTRED | Blank         |
| DEC_PCTRED | Blank         |
| COMMENT    | Blank         |

#### **Appendix B: PM Emissions**

This appendix documents the updated PM Emissions Factor Methodology. This updated approach accomplishes the following:

- Improves consistency of PM emissions rates between the reported base year (2016 NEI inventory) and future year projections (IPM post-processing outputs)
- Enhances transparency by relying on reported emissions rates where possible, and calculating estimates only when necessary.
- Expedites creation and review of future year PM projections.

The steps taken to develop the unit specific primary  $PM_{10}$  and  $PM_{2.5}$  emission factors are explained below. The resulting emission factors are included in the file FlatFile\_Inputs.xls.

- Developed crosswalks between NEEDS v6 and NEI 2016, and NEEDS v6 and 2016 EIA Form 923. We
  identified units that have no PM emissions in NEI 2016 and for those units we reviewed additional
  sources. These sources included NEI 2014, California Air Resources Board 2016, California Air
  Resources Board 2014, New York Emission Inventory 2016, Oklahoma Annual Point Source Emissions
  2016, Pennsylvania Air Emissions Report 2016, and Texas Emission Inventory 2016.
- Calculated NEEDS unit specific primary PM<sub>10</sub> and primary PM<sub>2.5</sub> emission factors in lb/MWh as the ratio between reported PM emissions and reported generation (for those NEEDS units with reported historic emissions and generation).
- Estimated default primary PM<sub>10</sub> and PM<sub>2.5</sub> emission factors by plant type and FGD control status at national level based on NEEDS units with PM emission factors available from step 2 in order to use for those NEEDS units with no matching historic emissions or generation or are considered as outliers. NEEDS units with PM emission factors considered outliers are removed while calculating the default emission factors.
- 4. Identified those units where historic characteristics and projected characteristics are different so that correct emissions factors can be applied. For this purpose, FGD controls and fuel types (coal or natural gas) reported in NEEDS, NEI 2016, 2016 EIA Form 923 are compared with the future year IPM projections.
- 5. If no FGD controls or no coal-to-gas fuel changes were projected in IPM, we used primary PM<sub>10</sub> and primary PM<sub>2.5</sub> emissions factors calculated in step 2 to projected generation (MWh). In instances of biomass co-firing, NEI based unit-level primary PM<sub>10</sub> and primary PM<sub>2.5</sub> emission factors are used.
- 6. For units that have changed or are projected to change fuel from coal to gas, we used default primary PM<sub>10</sub> and PM<sub>2.5</sub> emission factors for natural gas fired units from step 3.
- For units that switch coal rank, we applied unit-specific primary PM<sub>10</sub> and PM<sub>2.5</sub> emission factors from step 2. Note that expected impact of coal rank switching on emissions is minimal, and developing a methodology to capture the projected coal rank switch is complex.
- 8. For coal units projected to add new FGD controls, we applied default primary PM<sub>10</sub> and primary PM<sub>2.5</sub> emission factors for coal units with FGD control from step 3 when the default emission factors from step 3 are lower than the emission factors for the coal units without FGD controls.
- 9. For oil/gas steam, combined cycle, combustion turbine, and all other plant types, we applied steps 1 through 8.
- 10. For new units, we used primary PM<sub>10</sub> and primary PM<sub>2.5</sub> emission factors derived from the NEI for similar units with an online year of 2010 or later.

11. New York and Michigan have emission rules for filterable PM. We ensured that projected PM emissions are within the bounds of these state emission limits. For most units, PM filterable emission limits for NY and MI were higher than the primary PM emission factors estimated. For a few small combustion turbine units where the estimated emission factors were higher than the specified emission limits, the calculated emission factors were used as the primary PM emission factors are higher than the PM filterable emission factors.