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Glossary 
Term Definition 
AIC Akaike Information Criterion 
AICc Akaike Information Criterion adjusted for small sample size 
EC10 Concentration expected to cause an effect in 10% of test subjects 
ECDF Empirical Cumulative Distribution Function 
GUI Graphical User Interface 
GoF Goodness-of-fit 
HC05 Concentration expected to be hazardous to 5% of species tested 
HCp Concentration expected to be hazardous to p% of species tested 
Hessian Matrix Matrix of second derivatives of the Log-likelihood at the MLE 
LC50 Concentration expected to be lethal to 50% of test subjects 
LD50 Dose expected to be lethal to 50% of test subjects 
MCMC Markov Chain Monte Carlo 
MCR Matlab Compiler Runtime 
mg a.i./kg bw Milligrams active ingredient per kilogram body weight 
MLE Maximum Likelihood Estimator 
SSD Species Sensitivity Distribution 

 

Introduction 
Species sensitivity distributions are a common tool used for setting safe limits on chemical 
concentrations in surface waters (Posthuma et al. 2002, Suter 2002, Chapman et al. 2007, 
TenBrook et al. 2010).  Although the analysis and interpretation of species sensitivity 
distributions varies widely, the basic methodology is quite general and can be summarized as a 
three-step procedure.  First, results from separate toxicity tests on a given chemical using 
several species are compiled.  Second, a statistical distribution to which the test results are 
thought to conform is chosen and fit to the data.  Third, the fitted distribution is used to infer a 
concentration that will be protective of a desired proportion of similar species for which 
inference is desired. 

The procedure described above necessarily relies upon policy decisions, for example, 
concerning the proportion of species that should be protected and the necessary level of 
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confidence with which the protective concentration is identified.  This manual focuses on 
procedures for fitting statistical distributions and providing risk assessors with the information 
to assess the quality of a fitted distribution.  As such its content concerns the three steps laid 
out in the previous paragraph, each of which can be accomplished in different ways, with 
different results.  This manual does not consider the underlying policy decisions required for 
application of species sensitivity distributions to regulatory decision making. This manual is 
intended to be a companion to the SSD Toolbox User’s Guide, which gives step-by-step 
instructions on how to use the software. 

Data 
An important consideration in data compilation is the distribution of available data across 
species.  Strictly speaking, an assumption of all the methods considered below is that the data 
(test results) pertain to a random sample of species from the species group for which the 
analysis is intended to apply.  This assumption is always violated; a relatively limited subset of 
taxa makes up the greater part of all toxicity tests. Therefore, in using SSDs to derive protection 
goals, one should consider the potential biases in the data set relative to the group for which 
the protection goal is intended to apply. Another important, and related, consideration 
concerns the independence of data.  Again, strictly speaking, an assumption underlying most 
SSD methods is that the data are independent and identically distributed, but this assumption 
may be violated if closely related species (with a similar toxicity response) are included in the 
data (Moore et al. 2019). 

In most cases, the set of data used for fitting an SSD will require considerable curation prior to 
distribution fitting.  While the specific steps required will differ among applications and 
datasets, some important common steps should be employed: 

1) Endpoints should be commensurate across species (e.g., all endpoints are LC50s, or 
all endpoints are EC10s).  

2) All endpoints should be expressed in the same units (e.g., mg a.i./kg bw). 

3) Endpoints should be derived from studies with similar designs (e.g., similar exposure 
durations).  

Other considerations may also apply, at the user’s discretion.  The goal of such steps is to 
ensure that the variation observed represents true variation among species, where 
confounding factors are controlled to the greatest extent possible.  However, exclusion of test 
results due to data curation will reduce sample size, resulting in greater uncertainty (sampling 
variance & confidence limits) in the desired inferential endpoint (e.g., the HC05), but potentially 
less bias. 
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Transformations and Body-weight scaling 
When data are imported to the SSD Toolbox, several transformations may be performed in the 
following order.  First, when the body-weight scaling function is used, the individual toxicity 
endpoints are first rescaled according to the body weight scaling function provided by Mineau 
et al. (1996): 

Eq. (1) 
(𝑥𝑥−1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿50 = 𝐿𝐿𝐿𝐿50 �𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇ℎ𝑇𝑇�
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇ℎ𝑇𝑇

In Eq. (1), LD50 is the unscaled LD50 resulting from the toxicity test, Tested Weight is the mean 
weight of tested birds, and Target Weight is the weight to which the toxicity data are intended 
to be standardized (default = 100g). The resulting Scaled LD50s are used for all subsequent 
analyses.  Second, when there are multiple toxicity values for a given taxon the geometric mean 
of those values is calculated.  This applies equally to unscaled and scaled (i.e., as per step one, 
above) toxicity values.  Finally, when the normal, logistic, triangular, or Gumbel distributions are 
fit to the geometric mean toxicity values, those values are first common log (log10) transformed. 
The resulting HC05 estimates are provided on the natural scale. 

Choosing and fitting a distribution 
Many statistical distributions have been used for fitting SSDs (e.g., log-normal, log-logistic, 
BurrIII, etc.); however, several analyses have shown that no one distribution is preferred across 
datasets (Newman et al. 2000, Zajdlik & Associates 2005, Chapman et al. 2007).  Deciding which 
statistical distribution to fit to a set of data has been described as one of the most important 
and difficult choices in the use of species sensitivity distributions (Chapman et al. 2007). Two 
important additional decisions must be made when fitting a distribution to empirical data.  The 
first concerns how the distribution will be fit to the data, which is equivalent to the problem of 
parameter estimation.  The second choice concerns how to assess the quality or accuracy of the 
fitted distribution as a general representation of the data, or goodness-of-fit.  A related concern 
involves deciding how to choose among the fitted distributions when multiple distributions are 
fit to the same data. For many types of distributions (e.g., normal, logistic, triangular, Gumbel) 
data are usually transformed prior to analysis, most frequently using the common log (log10) 
transformation.  This complicates comparisons between distributions fit to transformed versus 
untransformed data.   

Four methods commonly used for estimating the parameters of SSDs are implemented in the 
SSD Toolbox.  These are maximum likelihood, moment estimators, graphical methods, and 
Bayesian methods (specifically the Metropolis-Hastings algorithm). These methods are 
described in more detail below.  Not all methods can be used with all distributions.  
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Newman et al. (2000) recommended a non-parametric method for fitting SSDs using empirical 
bootstrapping.  However, given the common regulatory interest in the fifth percentile of acute 
values, bootstrap estimation does not seem feasible because it would require at least 19 data 
points to estimate the fifth percentile of the empirical cumulative distribution function (ECDF).  
Bootstrap methods are used below to test goodness-of-fit and to estimate sampling variance. 

Chapman et al. (2007) emphasized the importance of visual inspection of fitted distributions 
against the empirical data to which they are fit.  With small sample sizes, visual inspection may 
be the most reliable method for assessing fit, despite its obvious subjectivity. The SSD toolbox 
emphasizes data and curve visualization to facilitate such inspection. More details on 
estimating posterior goodness-of-fit are provided below. 

Maximum likelihood 
Maximum likelihood methods for SSDs were first tested by Kooijman (1987) who reported 
substantial bias in estimation of the scale parameter (β) for the logistic distribution with sample 
sizes ≤ 5 (logistic formulae given below).  Shao (2000) described maximum likelihood estimators 
for the BurrIII distribution; these estimators are implemented by the software BurrliOZ 
(Campbell et al. 2000).  Several recent reports on the application and analysis of species 
sensitivity distributions have employed maximum likelihood with other distributions (Zajdlik 
and Associates 2005, Chapman et al. 2007), often citing the first of the following desirable 
properties.  First, when data fit the assumed distribution, maximum likelihood parameter 
estimators (MLEs) are the most efficient parameter estimators possible (i.e., the estimators that 
produce the smallest sampling variance, Edwards 1992), though they may be biased.  Second, 
the use of maximum likelihood allows the fit of different distributions to be compared using 
information theoretic methods for comparing models (Burnham and Anderson 2002).  Third, 
use of maximum likelihood allows model-averaging of estimated quantiles, such as the HC05 
(Burnham and Anderson 2002) across multiple distributions.  Fourth, maximum likelihood and 
restricted maximum likelihood (Harville 1977), allow specification of hierarchical models that 
may otherwise be very difficult to fit.  

The SSD Toolbox formulates the log-likelihood equations for each of the five distributions as the 
natural logarithm of the probability density function (f) for that distribution.  The resulting log-
likelihood is summed over all data points: 

Eq. (2) 𝐿𝐿(𝜽𝜽|𝑿𝑿) ∝ ∑ 𝑆𝑆𝑙𝑙�𝑓𝑓(𝑥𝑥𝑊𝑊|𝜽𝜽)�𝑛𝑛
𝑊𝑊=1  

Maximum likelihood estimates (MLEs) of distribution parameters (here represented as a vector, 
θ) are those values that, when substituted into Eq. 2 maximize its value. These are found by 
numerical search, which can be slow. Note that in some cases (e.g., normal distribution) closed-
form arithmetic expressions are available for the MLEs. However, the SSD Toolbox does not 
make use of closed-form estimators, in part to force all maximum likelihood estimates to be 
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obtained in the same way, and in part to take advantage of the numerical estimation of the 
Hessian matrix, which is useful for estimating the sampling variance of the parameters and the 
hazardous concentrations (HCp). 

Moment Estimators 
Moment estimators are a common method for fitting SSDs (Kooijman 1987, Van Straalen and 
Deneman 1989).  In practice, they work by equating the mean and variance of a sample to the 
parametric mean and variance of a chosen distribution, which are functions of the parameters 
of that distribution.  This creates two equations in two unknowns, which can then be solved for 
the unknown parameters.  The resulting solution is an estimate of the parameters of the 
distribution expressed as functions of the sample mean and sample variance.  Although this 
procedure has been described in terms of the mean and variance (the first two moments), it 
could be extended to higher moments as well if a distribution (e.g., BurrIII) has more than two 
parameters. 

Moment estimators were derived, wherever possible, by setting the expected distributional 
mean and variance equal to the sample mean and variance and solving for the distributional 
parameters.  For example, let �̄�𝑥 and s2 represent the sample mean and variance, respectively 
(regardless of assumed distribution).  The mean and variance of a logistic distribution are α and 
𝜋𝜋2

3
𝛽𝛽2.  Setting 𝛼𝛼 = �̄�𝑥 and 𝑠𝑠2 = 𝜋𝜋2

3
𝛽𝛽2and solving for α and β results in the two moment 

estimators 𝛼𝛼� = �̄�𝑥 and �̂�𝛽 = 𝑇𝑇
𝜋𝜋 √3, where the circumflex over the parameter symbols indicates 

that they are estimated quantities.  For the BurrIII distribution, moment estimators were not 
derived because the Burr distribution has three parameters, requiring three equations, but an 
equation for the third moment of the BurrIII distribution was not immediately available. 
Moment estimators for four distributions (normal, logistic, triangular, Gumbel) are included in 
the SSD Toolbox and presented below. 

Linearization 
Linearization, or graphical methods, for use in SSDs was described by Erickson and Stephan 
(1988).  Linearization is a subset of the general theory of order statistics (Arnold et al. 2008) and 
has two unique attributes that make it attractive for use in fitting SSDs (TenBrook et al. 2008).  
First, once data have been ordered and the empirical percentiles obtained, the linear 
estimation model can be weighted toward the lower tail of the distribution, which is generally 
the portion of the distribution of interest for regulation and risk assessment.  This can alleviate 
potential biases resulting from skewed toxicity distributions.  Second, and related to the first, 
toxicity test results that are right-censored (known only to be greater than the highest tested 
concentration or dose) can often be accommodated (Erickson and Stephan 1988).  Linearization 
can be used on any distribution for which the cumulative distribution function can be linearized 
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through transformation.  Of the six distributions in the SSD Toolbox, the normal, logistic, 
triangular and Gumbel and Weibull can be fit using graphical methods.   

Graphical estimation is implemented in the SSD Toolbox using a linearization of the cumulative 
distribution function or a standard form of the distribution (parameters chosen so that mean = 
0, variance = 1). For example, a normal distribution can be standardized (i.e., to z scores) as 𝑧𝑧 =
𝑦𝑦−𝜇𝜇
𝜎𝜎

, where y = log10 toxicity value, and μ and σ are the usual parameters of the normal 

distribution.  The z-scores are the quantiles of the standard normal distribution.  Rearranging 
this equation gives: 

Eq. (3)  𝑦𝑦 = 𝜎𝜎𝑧𝑧 + 𝜇𝜇 

Equation (3) is a linear function with slope σ and intercept μ. Given paired values of z and y, σ 
and μ can be estimated by linear regression.  Importantly, σ and μ can be estimated from any 
subset of ordered pairs of zi and yi, such as the lower 50% of values.  It should be noted, 
however, that the standard error of σ and μ will grow as the quantile is lowered, because the 
linear regression (Eq. 2) will include fewer data points. 

Paired values of z and y for use in Eq. (2) are obtained using the empirical cumulative 
distribution function (ECDF) of y, which gives the cumulative probability associated with each 
value in y. Using these probabilities, the standard scores for the desired distribution can be 
obtained from the inverse cumulative distribution function (F-1) for the standard form of the 
chosen distribution. For the normal distribution, these are typically referred to as z-scores.  A 
similar linearization procedure, with some variation in details, is followed for other distributions 
fit using graphical methods.  

The empirical cumulative probabilities (p) for the ECDF in the SSD Toolbox are calculated for the 
ith variate in y as: 

Eq. (4)   𝑝𝑝𝑊𝑊 = 𝑇𝑇𝑖𝑖
𝑛𝑛+1

 

In Equation (4) ri is the rank of the ith variate in y and n is the number of variates (species for 
which toxicity test results are available).  Alternative choices for calculating the pi (sometimes 
referred to as plotting points) exist in the literature (reviewed by Erickson and Stephan 1988), 
however, the SSD Toolbox has adopted Eq. (3) in part because it corresponds to quantiles for 
the well-defined ECDF. Alternative plotting positions would result in different estimates of the 
hazardous concentrations. 

Bayesian Methods 
Bayesian methods, like maximum likelihood, rely on the likelihood function for the distribution 
parameters given the data.  However, Bayesian estimation also incorporates existing knowledge 
in the form of prior distributions on model parameters (i.e., the distribution parameters in the 
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SSD context).  Bayesian methods work by sampling from the posterior distribution of the 
parameters, conditional on the priors and the likelihood evaluated on the data (King et al. 2010, 
Link et al. 2010).  In rare cases the posterior distribution is analytically tractable, but those cases 
are not considered here. Often posterior distributions are sampled using a Markov Chain Monte 
Carlo algorithm (MCMC, Link et al. 2010).  The specific MCMC algorithm implemented in the 
SSD Toolbox is the Metropolis-Hastings algorithm (Hastings 1970). In the current version, the 
SSD Toolbox employs vague priors (uniform over the range of potential parameter values).  A 
future version will allow greater user control over prior distributions. 

Goodness-of-fit 
Goodness-of-fit is a measure of how well an assumed distribution fits a set of data, given the 
data and the values of the estimated parameters of the distribution.  Numerical tests for 
goodness-of-fit can be divided into parametric and non-parametric methods.  In either case, the 
test begins with the definition of a test statistic that can be reliably predicted to increase in 
magnitude with lack of fit. In the SSD Toolbox the discrepancy statistic is the sum of the 
squared differences between the percentiles of the ECDF and the cumulative distribution 
function (F) for the fitted distribution.  With parametric goodness-of-fit tests, a theoretical 
distribution for the test statistic can be derived, and probabilities are estimated from that 
theoretical distribution.  The derivation of the theoretical distribution of the test statistic often 
depends on the hypothesized distribution for the data.  Therefore, parametric goodness-of-fit 
tests tend not to work well at small sample sizes and generally apply to only one distribution 
(often the normal distribution).  In contrast, non-parametric methods often work by statistical 
resampling methods (Efron and Tibshirani 1994) and probabilities are assessed as simple ranks 
of observed statistics among a set of simulated statistics.  They can be applied to any 
continuous distribution and are valid regardless of sample size.  However, both parametric and 
non-parametric methods lack power at small sample sizes. Thus, for sample sizes typically 
available for SSD analysis, visual inspection may be a more reliable method for diagnosing lack-
of-fit than numerical analyses. 

Luttik and Aldenberg (1997), Aldenberg and Luttik (2002), and Newman et al. (2000) all 
considered parametric goodness-of-fit tests.  Zajdlik & Associates (2005) recommended the 
Anderson-Darling test for all distributions, except the normal and log-normal distributions for 
which they recommended the Shapiro-Wilks test. Chapman et al. (2007) carried out extensive 
simulations of the power properties of goodness-of-fit tests for the normal distribution and 
concluded that power to detect non-normality (lack of fit) was extremely low, especially at 
sample sizes < 20. 

Newman et al. (2000) and Shao (2000) employed non-parametric goodness-of-fit tests based on 
empirical bootstrap sampling (Efron and Tibshirani 1994, Manly 1997).  Chapman et al. (2007) 
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described a parametric bootstrap procedure (also described by Efron and Tibshirani 1994) but 
did not apply it to goodness-of-fit testing for SSDs. Because of their utility at all sample sizes, 
and applicability to all continuous distributions, only bootstrap methods are implemented in 
the current version of the SSD Toolbox, however parametric tests may be added to a future 
release.   

Numerical methods 
The SSD Toolbox uses bootstrap sampling to generate replicate sets of data based on the data 
under analysis. The process begins after a distribution is fit to the data and the discrepancy 
statistic described above is calculated (the sum of squared distances between the empirical and 
parametric cumulative distribution functions). New data sets, of the same size as the original 
data, are generated by drawing random samples from the fitted distribution (parametric 
bootstrap).  These random samples represent plausible data sets, of the same size as the 
original data, that could be observed if the distribution truly fits the original data.  To these new 
data sets the same distribution is fit and the discrepancy statistic is calculated for the simulated 
data under the newly fitted distribution. This process is repeated a specified number of times 
(the SSD Toolbox default is 1,000 bootstrap samples) to generate a distribution of test statistics 
that would be expected if the data were drawn from the fitted distribution. Large values of the 
discrepancy statistic indicate poorer fit, whereas small values indicate better fit.  The 
proportion of simulated discrepancy statistics that are greater than or equal to the observed 
discrepancy statistic for the empirical data is interpreted as the P-value for lack of fit.  Small P-
values indicate that the discrepancy statistic for the empirical data is larger than most of the 
simulated values, suggesting that the distribution fits the empirical data more poorly than 
would be expected by chance. 

The procedure described immediately above also generates a distribution of parameter values 
that can be used to estimate sampling variance, which is described in greater detail below. 

Visual inspection 
At sample sizes typically available for fitting SSDs in ecotoxicology (often less than 20), 
numerical methods for assessing fit will suffer from low statistical power, resulting in poor 
ability to identify lack of fit (Chapman 2007).  Therefore, visual inspection is an important step 
in acceptance/rejection of a candidate distribution for a dataset and for deciding what kind of 
inference should be made from the fitted distribution.  However, visual inspection is necessarily 
a subjective exercise and should be used cautiously and transparently.  Below I provide some 
examples using permethrin LC50 data for a variety of aquatic taxa taken from Fojut et al. (2012) 
and chlorpyrifos LC50 data for aquatic invertebrates taken from USEPA 2016. 

Upon import, the SSD Toolbox gives you the choice to view histograms of sampling density 
(number of toxicity values per taxon), toxicity (number of geometric mean values in binned 
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ranges of toxicity) and a plot of the ECDF. The latter two are intended for use in thinking about 
fitting a distribution.  For example, Figures 1 and 2, below show sample datasets that are both 
skewed, but in opposite directions, suggesting that different distributions may be required to fit 
the two respective datasets.  

Figure 1. Histogram of log10 LC50s for invertebrates exposed to Chlorpyrifos 
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In Figures 2 and 3, below, the chlorpyrifos invertebrate data are fit using a Gumbel distribution 
(Fig. 2), and a Weibull distribution (Fig. 3).  Although model selection criteria (e.g., AICc, BIC) 
would objectively score the Gumbel higher, the superior performance of Gumbel is easily seen 
by visual inspection. 

Figure 2. Gumbel Cumulative Distribution Function for log10 LC50s for aquatic invertebrates 
exposed to Chlorpyrifos 
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Figure 3. Weibull Cumulative Distribution Function for LC50s for aquatic invertebrates exposed 
to Chlorpyrifos 

 

 

Q-Q plots can also be very useful for diagnosing lack of fit.  In Figures 3 and 4, below, Q-Q plots 
for Gumbel and Weibull are is shown for the same Chlorpyrifos invertebrate data. In the Q-Q 
plots, the horizontal axis gives the empirical quantiles and the vertical axis gives the predicted 
quantiles (from the fitted distribution).  If the model fit the data perfectly, the empirical and 
predicted quantiles would be the same (solid line).  Figure 4 shows relatively good fit. In 
contrast, the Q-Q plot for the Weibull distribution fit to the same data (Fig. 5) reveals poor fit, 
especially in the lower tail of the distribution. 
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Mytilus galloprovincialis
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Figure 4. Normal Q-Q plot for log10 LC50s for invertebrates exposed to Chlorpyrifos. 
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Figure 5. Normal Q-Q plot for log10 LC50s for invertebrates exposed to Chlorpyrifos 

 
 

Assessing Bayesian fits using posterior diagnostics 
The functions provided for evaluating distributions fit using the Metropolis-Hastings algorithm 
are standard methods from the Bayesian literature (King et al. 2010). Like visual goodness-of-fit 
evaluations described above for other methods, many Bayesian goodness of fit methods 
involve inspection of graphical output, looking for evidence for poor fit. As above, this 
necessarily involves some degree of subjectivity.  Below, these methods are reviewed to 
highlight patterns indicating lack of fit.  
 
Bayesian p-values are a posterior measure of fit.  As calculated here, they compare a 
discrepancy statistic calculated on hypothetical data generated from parameter sets from the 
posterior distribution to the same statistic calculated for the empirical data using expected 
(marginal) parameter values calculated over the full posterior distribution (Link & Barker 2010).  
In general, the discrepancy statistic for the observed data and expected parameter values 
should not be markedly larger (or smaller) than the set of values calculated using specific 
iterations of the Markov chain Monte Carlo (MCMC).  The SSD Toolbox calculates this statistic 
based on 10,000 random samples from the posterior distribution. The discrepancy statistic used 
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by the SSD Toolbox is the sum of the squared distances between the empirical and fitted 
cumulative distribution functions (i.e., the same function used by the bootstrap goodness-of-fit 
routine described above). In general, the larger the deviation of the Bayesian p-value from 0.5, 
the greater the indication of lack of fit. In other words, both large and small Bayesian p-values 
indicate lack of fit.  However, I am aware of no “rule of thumb” indicating a threshold Bayesian 
p-value for rejection of a distribution. In Figure 6, below, the Bayesian P-values suggest that 
only the Gumbel and BurrIII distributions are competitive for the Chlorpyrifos invertebrate data, 
in good agreement with the maximum likelihood analysis above. 
  
Figure 6. SSD Toolbox output table with Bayesian p-values for distributions fit to the 
Chlorpyrifos invertebrate data 

 
 
Autocorrelation plots describe the relative independence among sequentially sampled points 
in the posterior distribution.  A high degree of autocorrelation may indicate that the posterior 



  EPA/600/R-19/104 
 
 

Page 18 
 

distribution is poorly sampled. Below, autocorrelation plots for the Gumbel distribution fit to 
the Chlorpyrifos invertebrate data are shown (Fig. 7).  
 
Figure 7. Sample autocorrelation plots for the posterior distributions of Gumbel parameters (μ, 
β), showing decay of autocorrelation among sequential points 

 

Sample Autocorrelations
 

1 15 29 43 57 71 85 100

Lag Length

0

0.2

0.4

0.6

0.8

1

Au
to

co
r. 

(m
u)

.

 

Sample Autocorrelations
 

1 15 29 43 57 71 85 100

Lag Length

0

0.2

0.4

0.6

0.8

1

Au
to

co
r. 

(b
et

a)
.

 
 
Trace plots graphically display the actual sequence of values sampled from the posterior 
distribution.  Figure 8 shows the sequences sampled for the Gumbel distribution fit to the 
Chlorpyrifos data.  
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Figure 8. Trace plots for the Gumbel distribution fit to the Chlorpyrifos data 

 
 
 
Posterior distribution plots offer a final graphical diagnostic for Bayesian model fits. Figure 9 
shows the posterior marginal distributions (diagonal) for each parameter and the joint posterior 
distributions for each parameter pair (off-diagonal) for the Gumbel distribution fit to the 
Chlorpyrifos data.  The densities are fairly smooth, and the joint distributions suggest little or no 
covariance to be concerned about (unstructured scatter-plots of joint values). 
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Figure 9. Posterior parameter distributions for Gumbel distribution fit to the Chlorpyrifos data 

 

Uncertainty in the fitted distribution 
All analyses of parametric species sensitivity distributions begin by estimating the parameters 
of the distribution (see above).  Thus, the distributional parameters are a universal inferential 
endpoint (excluding non-parametric SSDs, Newman et al. 2000). Once the parameters are 
estimated, a given percentile (p) of the distribution is often chosen to represent the 
concentration at which (no more than) p% of species will be at risk of adverse effects, referred 
to herein as the HCp. Regardless of how the distribution is fit, an HCp is easily estimated using 
the quantile function for the fitted distribution.  However, estimates of percentiles are subject 
to bias (if the distribution doesn’t fit the data very well) and uncertainty (especially when the 
number of test results are limited).  Methods for handling these aspects of distribution fitting 
vary widely in the SSD literature.  Erickson and Stephan (1988) also pointed out that, by 
Jensen’s inequality, an unbiased estimator for the HCp, might be a biased estimator of the 
percentile (intended to be p) of species protected at the estimated HCp if the quantile function 
is non-linear in p (as is generally the case). 
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Sampling variance and standard error 
Distributional parameters estimated from empirical data are subject to sampling variance.  In 
other words, given data that conform to a specified distribution, if equal sized (but different) 
sets of data are drawn from the same distribution, the parameter estimates will differ with 
each set of data, resulting in a distribution of parameter estimates.  The variance of this 
theoretical distribution of parameter estimates is termed the sampling variance of the 
parameter estimates.  If the estimation procedure is unbiased the average of the parameter 
estimates will be arbitrarily close to the ‘true’ values as the procedure is repeated more and 
more times.  However, the expected variance in these parameter estimates may be quite large 
and is generally inversely related to the size of the data sample.  This sampling variance is 
present in all four fitting techniques described above (maximum likelihood, moment 
estimators, linearization, and Bayesian methods), though it may differ among techniques.  
Sampling variance of parameter estimates translates directly (though not necessarily linearly) 
into sampling variance of quantiles of a distribution (i.e., the estimated HC05).  Common 
methods for estimating sampling variance around quantiles in an SSD include the delta method 
(Seber 1982, Shao 2000) and the bootstrap (Newman et al. 2000).  The standard error of the 
HCp is the square root of the sampling variance of the HCp. 

The SSD Toolbox offers three methods for calculating the sampling variance (and therefore 
standard error) of the quantiles of fitted distribution.  If the distribution has been fit using 
maximum likelihood then the covariance matrix of the distribution parameters (e.g., μ and σ 
from a normal distribution, etc.) are calculated from the negative inverse Hessian Matrix 
(matrix of second derivatives of the log-likelihood evaluated at the MLE).  From the covariance 
matrix, the sampling variance and standard error of the quantiles are estimated with the delta 
method.  However, the negative inverse Hessian only asymptotically converges on the true 
covariance matrix and may be unreliable at small sample sizes.  Therefore, the sampling 
variances may also be estimated using parametric bootstrap sampling (described in Goodness-
of-fit section).  This method also has the advantage of being available for fitting methods other 
than maximum likelihood.  Finally, when a distribution is fit using Metropolis Hastings, the 
sampling variances of percentiles are calculated from the posterior distribution of parameters.  

Confidence limits 
Confidence limits for an estimated hazardous concentration (HCp) are an alternative expression 
of uncertainty in the model parameter estimates.  These can be one-sided expressions of 
confidence that the true HCp is greater than a specified concentration (Kooijman 1987, van 
Straalen and Deneman 1989, Aldenberg and Slob 1993) or two-sided limits related to the 
probability that the region defined by a lower and upper bound would contain the true HCp 
(Shao 2000, Newman et al. 2000).  In the SSD Toolbox, confidence limits are calculated using 
three different methods, depending on the method used to fit the distribution.  
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When maximum likelihood is used, the covariance matrix for the distribution parameters (e.g., 
μ, σ from a normal distribution) is available as a byproduct of the estimation routine (i.e., as the 
negative inverse of the Hessian matrix, as described above).  Using the estimated covariance 
matrix, the delta method is used to calculate the sampling variance of a percentile (e.g., the 
HC05).  The sampling variance of the percentile is then used to calculate the confidence limit 
around the hazardous concentration using the z-score corresponding to a 95% confidence level 
(z = 1.96).  

For moment estimators and linearization, the sampling variance must be estimated using 
parametric bootstrapping.  This is done using the goodness-of-fit algorithm (see above), from 
which the sampling distribution of the hazardous concentration (HC) is estimated.  The samples 
from the sampling distribution of the HC are ordered and then used to calculate percentiles 
from the sampling distribution. With the ordered sample and corresponding percentiles, the 
central 95% of the distribution is estimated by finding the values corresponding to the lower 
2.5% and upper 97.5% of the sampling distribution. When values do not correspond exactly to 
the desired percentile, the software conservatively choses the outer values. For example, the 
lower CL is calculated as the largest value from the sampling distribution with a corresponding 
percentile that is less than or equal to the desired percentile (e.g., 2.5), and similarly (greater 
than or equal to) for the upper CL. Parametric bootstrapping may also be used with 
distributions fit using maximum likelihood, if desired. 

When distributions are fit using the Metropolis Hastings algorithm, 95% Bayesian Credible 
intervals are calculated from the posterior distribution for each quantile.   

Model selection & multidistributional inference  
Many researchers have discussed the important (and difficult) choice of which distribution to 
employ for an SSD (Newman et al. 2000, Zajdlik & Associates 2005, Chapman et al. 2007). 
Assessing the goodness-of-fit (see section above) of a distribution provides only limited 
information for comparing distributions because discrepancies of fit will generally decrease 
monotonically with increasing number of estimated parameters.  Yet an over-parameterized 
model may have poor predictive ability.  Formal model selection criteria impose a penalty for 
each estimated parameter, which creates a tradeoff between parsimony and fit.  The fact that 
most species sensitivity distributions have two estimated parameters (though the BurrIII 
distribution has three) alleviates this concern somewhat.  However, model selection methods 
are also useful for ranking the performance of alternative distributions and for formally 
averaging model predictions when multiple models are fit (Burnham and Anderson 2002).  
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AIC, AICc, & BIC 
Elphick (2011) used Akaike’s Information Criterion (AIC) to compare several candidate 
distributions, including log-normal, log-logistic, log-Gumbel and Weibull and report similar 
performance.  AIC may be used only when distributions are fit using maximum likelihood. The 
equation for AIC is: 

Eq. (5) AIC = −2𝐿𝐿 + 2𝐾𝐾 

In Eq. (5), L is the maximized log-likelihood function, and K is the number of parameters 
estimated in fitting the distribution.  AIC is derived from asymptotic results (i.e., as sample size 
approaches infinity; Akaike 1974).  With small sample size it tends to be biased in favor of more 
highly parameterized models.  Thus, with limited data, the small sample size version of AIC 
(AICc) is recommended (Burnham and Anderson 2002).  The formula for AICc is given in Eq. (6). 

Eq. (6) AIC𝑐𝑐 = −2𝐿𝐿 + 2𝐾𝐾 � 𝑛𝑛
𝑛𝑛−𝐾𝐾−1

� 

In Eq. (6), L and K are as above and n is the sample size.  The second term on the right-hand 
side of the above equation is a penalty term.  It increases the AICc statistic with each additional 
parameter estimated.  Because the denominator of the quotient within the parentheses is zero 
or negative whenever n ≤ K + 1, AICc cannot be applied to such cases. In practice, n should 
greatly exceed K when fitting SSDs. 

Schwarz (1978) proposed an alternative to AIC that is often referred to as the Bayesian 
Information Criterion (BIC). It is similar in form and design to AIC and is available in the SSD 
Toolbox for distributions fit using the Metropolis-Hastings algorithm. The formula for BIC is 
given in Eq. (7), where K, L, and n are as defined above. 

Eq. (7) 𝐵𝐵𝐵𝐵𝐵𝐵 = −2𝐿𝐿 + 𝐾𝐾𝑆𝑆𝑙𝑙(𝑙𝑙)  

Model averaged HCp 
Model-averaged HCp values may be calculated as weighted averages of the HCp values from 
each individual distribution fit to the same data set using Akaike weights (Δi = difference in AICc 
between the ith model and the model with the lowest AICc, Burnham and Anderson 2002).  The 
formula for Akaike weights is given in Eq. (8). 

Eq. (8)  𝑤𝑤𝑊𝑊 =
𝑇𝑇𝑥𝑥𝑒𝑒�−12𝛥𝛥𝑖𝑖�

∑ 𝑇𝑇𝑥𝑥𝑒𝑒�−12𝛥𝛥𝑗𝑗�
𝑚𝑚
𝑗𝑗=1

 

In the above equation, 𝛥𝛥𝑊𝑊 = AIC𝑐𝑐(distribution i) −𝑚𝑚𝑚𝑚𝑙𝑙(AIC𝑐𝑐) and the summation is over all 
(m) distributions compared.  Model-averaged estimates of the HCp may be calculated using Eq. 
(9). 

Eq. (9) HCp = ∑ 𝑤𝑤𝑗𝑗HCp𝑗𝑗𝑚𝑚
𝑗𝑗=1  
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In the above equation, the HCpj is the estimate of the HCp from the jth distribution considered. 
Sampling variance of the HCp may be estimated using equation 4.9 of Burnham and Anderson 
(2002:162), here given as Eq. (10). 

Eq. (10) 𝑣𝑣𝑆𝑆𝑣𝑣�HCp� = ∑ 𝑤𝑤𝑊𝑊�𝑣𝑣𝑆𝑆𝑣𝑣�HCp𝑗𝑗� + �HCp𝑗𝑗 − HCp�
2𝑚𝑚

𝑗𝑗=1  

Bayesian model-averaging methods are implemented for distributions fit using the Metropolis-
Hastings algorithm using the same equations presented above, but with BIC substituted for AICc 
in calculating Δi. 

Transformations 
When the normal, logistic, triangular, or Gumbel distribution are used, the data are first 
common-log transformed (log10) in the SSD Toolbox.  When the Weibull or Burr distribution are 
used, the data are untransformed.  This complicates comparisons among distributions, 
especially using maximum likelihood and AICc.  To solve this problem, the likelihoods for the 
normal, logistic, triangular, and Gumbel distributions are reformulated as follows. First, let: 

Eq. (11) 𝑦𝑦 = 𝑆𝑆𝑙𝑙𝑙𝑙10(𝑥𝑥) 

Therefore, the cumulative distribution functions for the four distributions using log10-
transformed data are of the form: 𝐹𝐹(𝑦𝑦|𝜽𝜽).  Thus, the probability density functions for the 
untransformed data (x) can be calculated using the product rule. 

Eq. (12) 𝑓𝑓(𝑥𝑥|𝜽𝜽) = 𝑇𝑇
𝑇𝑇𝑥𝑥
𝐹𝐹(𝑦𝑦|𝜽𝜽) = 𝑇𝑇

𝑇𝑇𝑦𝑦
𝐹𝐹(𝑦𝑦|𝜽𝜽) 𝑇𝑇𝑦𝑦

𝑇𝑇𝑥𝑥
= 𝑓𝑓(𝑦𝑦|𝜽𝜽) 1

𝑥𝑥 𝑙𝑙𝑛𝑛(10) 

In Eq. (12), the expressions 𝑓𝑓(𝑦𝑦|𝜽𝜽) are the probability densities for the log10-transformed data 
for the respective distributions.  When the likelihood is maximized over the transformed data 

the transformation factor 1
𝑥𝑥 𝑙𝑙𝑛𝑛(10) can be ignored for the purposes of obtaining the MLEs 

because the transformation factor does not contain the parameters of interest.  However, to 
compare distributions using AICc or BIC the factor must be included so that the AICc values are 
on the same scale.  Thus, for distributions on log10-transformed data, the log-likelihood on the 
untransformed scale is given by Eq. (13). 

Eq. (13) 𝐿𝐿(𝜽𝜽|𝑿𝑿) ∝ ∑ 𝑆𝑆𝑙𝑙 � 1
𝑥𝑥𝑖𝑖 𝑙𝑙𝑛𝑛(10)𝑓𝑓(𝑦𝑦|𝜽𝜽)�𝑛𝑛

𝑊𝑊=1 = 𝐿𝐿(𝜽𝜽|𝒀𝒀) − 𝑆𝑆𝑙𝑙(10)∑ 𝑦𝑦𝑊𝑊𝑛𝑛
𝑊𝑊=1 − 𝑙𝑙 𝑆𝑆𝑙𝑙(𝑆𝑆𝑙𝑙(10)) 
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Distributions 

The SSD toolbox contains functions for fitting six distributions (normal, logistic, triangular, 
Gumbel, Weibull, and BurrIII). Table 4 gives some standard statistical notation used in describing 
the distributions.  Table 5 gives a list of distribution functions available in the SSD toolbox. 

 
Table 4. Statistical notation for the description of distributions tested as candidates for use in 
estimating the HCp 
Symbol description 

n sample size 

�̅�𝑥 sample mean: 1
𝑛𝑛
∑ 𝑥𝑥𝑊𝑊𝑛𝑛
𝑊𝑊=1  

s sample standard deviation: � 1
𝑛𝑛−1

∑ (𝑥𝑥𝑊𝑊 − �̄�𝑥)2𝑁𝑁
𝑊𝑊=1  

exp(x) exponential function (ex) 

X column-vector of untransformed data (mean toxicity values) 

Y column-vector of log10-transformed data (mean toxicity values) 

θ column-vector of parameters for any given distribution 

f(x|θ), f(y|θ) probability density at x (y if transformed) conditional on θ 

F(x|θ), F(y|θ) cumulative distribution function at x (y if transformed) conditional on θ 

F-1(x|θ), F-1(y|θ) quantile function at x (y if transformed) conditional on θ 

L(θ|X), L(θ|Y), or L log-likelihood for θ conditional on X (Y if transformed)  

 

Table 5.  Distribution functions in the SSD toolbox 
distribution pdf cdf quantile likelihood moments random variates 

normal 1normpdf 1normcdf 1norminv normlik normmom 1randn 

logistic logipdf logicdf logiinv logilik logimom logirnd 
2triangular triapdf triacdf triainv trialik trimom triarnd 

Gumbel gumpdf gumcdf guminv gumlik gummom gumrnd 

Weibull 1wblpdf 1wblcdf 1wblinv wbllik n/a 1wblrnd 

Burr burpdf burcdf burinv burlik n/a burrnd 
1functions included in standard Matlab (pdf = probability density function, cdf = cumulative 
distribution function). 
2Triangular functions written for the symmetric triangular distribution only 
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Normal distribution  
Parameters: 𝜽𝜽 = [𝜇𝜇;𝜎𝜎] 

μ (location) 

σ (scale) 

Transformation: 𝑦𝑦𝑊𝑊 = 𝑆𝑆𝑙𝑙𝑙𝑙10(𝑥𝑥𝑊𝑊) 

𝑓𝑓(𝑦𝑦|𝜇𝜇,𝜎𝜎) =
1

√2𝜋𝜋𝜎𝜎2
𝑆𝑆𝑥𝑥𝑝𝑝 �−

(𝑦𝑦 − 𝜇𝜇)2

2𝜎𝜎2
� 

𝐹𝐹(𝑦𝑦|𝜇𝜇,𝜎𝜎) = � 𝑓𝑓(𝑧𝑧)
𝑦𝑦

−∞
𝑆𝑆𝑧𝑧 

𝐹𝐹−1(𝑝𝑝) = 𝛷𝛷(𝑝𝑝) 

𝐿𝐿(𝜽𝜽|𝒀𝒀) ∝ −
𝑙𝑙
2
𝑆𝑆𝑙𝑙(2𝜋𝜋) − 𝑙𝑙 𝑆𝑆𝑙𝑙(𝜎𝜎) +

1
2𝜎𝜎2

�(𝑦𝑦𝑊𝑊 − 𝜇𝜇)2
𝑛𝑛

𝑊𝑊=1

 

𝑆𝑆𝐿𝐿
𝑆𝑆𝜇𝜇

= −
1
𝜎𝜎2

�(𝑦𝑦𝑊𝑊 − 𝜇𝜇)
𝑛𝑛

𝑊𝑊=1

 

𝑆𝑆𝐿𝐿
𝑆𝑆𝜎𝜎

= −
1
𝜎𝜎 �

𝑙𝑙 +
1
𝜎𝜎2

�(𝑦𝑦𝑊𝑊 − 𝜇𝜇)2
𝑛𝑛

𝑊𝑊=1

� 

Mean =µ  and  Variance = 2σ  

Neither the cdf (F) nor the quantile function (F-1) has explicit form.  However, both can be 
readily approximated to arbitrary precision in most mathematical software. 

Linearization for graphical estimation makes use of the z-scores, which are the percentiles of a 
standard normal distribution with mean 0 and unit variance. These are given by the equation 
𝑧𝑧 = 𝑦𝑦−𝜇𝜇

𝜎𝜎
, which yields the linear equation 𝑦𝑦 = 𝜎𝜎𝑧𝑧 + 𝜇𝜇. Given z and y, σ and μ can be estimated 

using linear regression. 

Moment Estimators: 

�̂�𝜇 = �̄�𝑦  𝜎𝜎� = 𝑠𝑠 
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Logistic distribution 
Parameters: 𝜽𝜽 = [𝛼𝛼;𝛽𝛽] 

α (location) 

β (scale) 

Transformation: 𝑦𝑦𝑊𝑊 = 𝑆𝑆𝑙𝑙𝑙𝑙10(𝑥𝑥𝑊𝑊) 

𝑓𝑓(𝑦𝑦:𝛼𝛼,𝛽𝛽) =
𝑆𝑆𝑥𝑥𝑝𝑝(−(𝑦𝑦 − 𝛼𝛼)/𝛽𝛽)

𝛽𝛽(1 + 𝑆𝑆𝑥𝑥𝑝𝑝(−(𝑦𝑦 − 𝛼𝛼)/𝛽𝛽))2 

𝐹𝐹(𝑦𝑦:𝛼𝛼,𝛽𝛽) =
1

1 + 𝑆𝑆𝑥𝑥𝑝𝑝(−(𝑦𝑦 − 𝛼𝛼)/𝛽𝛽) 

𝐹𝐹−1(𝑝𝑝) = 𝛼𝛼 + 𝛽𝛽 𝑆𝑆𝑙𝑙 �
𝑝𝑝

1 − 𝑝𝑝�
 

Let: 

𝑣𝑣𝑊𝑊 = 𝑦𝑦𝑊𝑊 − 𝛼𝛼  and  𝑚𝑚𝑊𝑊 = 𝑆𝑆𝑥𝑥𝑝𝑝 �− 𝑇𝑇𝑖𝑖
𝛽𝛽
� 

𝐿𝐿(𝜽𝜽|𝒀𝒀) ∝
1
𝛽𝛽
�(𝑣𝑣𝑊𝑊)
𝑛𝑛

𝑊𝑊=1

− 𝑙𝑙 𝑆𝑆𝑙𝑙(𝛽𝛽) − 2�𝑆𝑆𝑙𝑙(1 + 𝑚𝑚𝑊𝑊)
𝑛𝑛

𝑊𝑊=1

 

1

2
1

n
i

i i

mdL n
d mα β β =

 
= −  + 

∑  

2 2
1 1

1 2
1

n n
i i

i
i i i

rmdL nr
d mβ β β β= =

= − −
+∑ ∑  

Mean = 𝛼𝛼 and Variance = 𝜋𝜋
2

3
𝛽𝛽2 

Linearization for graphical estimation can be done using a standard logistic distribution ( 𝛼𝛼 = 0, 

𝛽𝛽 = √3
𝜋𝜋

), with standard quantiles (zL) defined as 𝑧𝑧𝐿𝐿 =  √3 𝑦𝑦−𝛼𝛼
𝜋𝜋𝛽𝛽

, which yields the linear equation 

𝑦𝑦 = 𝜋𝜋
√3
𝛽𝛽𝑧𝑧𝐿𝐿 + 𝛼𝛼.   

Moment Estimators: 

𝛼𝛼� = �̄�𝑦  and �̂�𝛽 = 𝑠𝑠 √3
𝜋𝜋
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Triangular distribution (symmetric) 
Parameters: 𝜽𝜽 = [𝑆𝑆 ; 𝑏𝑏] 

a (minimum)  

b (maximum) 

Transformation: 𝑦𝑦𝑊𝑊 = 𝑆𝑆𝑙𝑙𝑙𝑙10(𝑥𝑥𝑊𝑊) 
If: 𝑆𝑆 ≤ 𝑦𝑦 ≤ 𝑇𝑇+𝑏𝑏

2
: If: 𝑇𝑇+𝑏𝑏

2
< 𝑦𝑦 ≤ 𝑏𝑏: 

𝑓𝑓(𝑦𝑦|𝑆𝑆, 𝑏𝑏) =
4(𝑦𝑦 − 𝑆𝑆)
(𝑏𝑏 − 𝑆𝑆)2  𝑓𝑓(𝑦𝑦|𝑆𝑆, 𝑏𝑏) =

4(𝑏𝑏 − 𝑦𝑦)
(𝑏𝑏 − 𝑆𝑆)2  

𝐹𝐹(𝑦𝑦|𝑆𝑆, 𝑏𝑏) =
2(𝑦𝑦 − 𝑆𝑆)2

(𝑏𝑏 − 𝑆𝑆)2  𝐹𝐹(𝑦𝑦|𝑆𝑆, 𝑏𝑏) = 1 −
2(𝑦𝑦 − 𝑏𝑏)2

(𝑏𝑏 − 𝑆𝑆)2  

𝐿𝐿(𝜽𝜽|𝒀𝒀) ∝ −2 𝑆𝑆𝑙𝑙(𝑏𝑏 − 𝑆𝑆) + 𝑆𝑆𝑙𝑙(4)

+ �(𝑦𝑦𝑊𝑊 − 𝑆𝑆)
𝑛𝑛

𝑊𝑊=1

 

𝐿𝐿(𝜽𝜽|𝒀𝒀) ∝ −2 𝑆𝑆𝑙𝑙(𝑏𝑏 − 𝑆𝑆)

+ 𝑆𝑆𝑙𝑙(4) + �(𝑏𝑏 − 𝑦𝑦𝑊𝑊)
𝑛𝑛

𝑊𝑊=1

 

 

If: p ≤ 0.5
 

If: p > 0.5
 

𝐹𝐹−1(𝑝𝑝) = 𝑆𝑆 + �𝑝𝑝(𝑏𝑏 − 𝑆𝑆)2

2  
𝐹𝐹−1(𝑝𝑝) = 𝑏𝑏 + �(1 − 𝑝𝑝)(𝑏𝑏 − 𝑆𝑆)2

2  

  

 

Mean =  𝑇𝑇+𝑏𝑏
2

  and Variance = (𝑏𝑏−𝑇𝑇)2

24
 

Linearization of the triangular distribution makes use of the standard symmetric triangular 
distribution (𝑆𝑆 = −√6 and 𝑏𝑏 = √6). Defining percentiles of the standard symmetric triangular 

as zT, we have 𝑧𝑧𝑇𝑇 =
𝑦𝑦−𝑎𝑎+𝑏𝑏2
𝑏𝑏−𝑎𝑎
√24

, which yields the linear equation: 𝑦𝑦 = 𝑧𝑧𝑇𝑇
(𝑏𝑏−𝑇𝑇)
√24

+ (𝑇𝑇+𝑏𝑏)
2

.  This is a 

linear equation with 𝑠𝑠𝑆𝑆𝑙𝑙𝑝𝑝𝑆𝑆 = (𝑏𝑏−𝑇𝑇)
√24

 and 𝑚𝑚𝑙𝑙𝑖𝑖𝑆𝑆𝑣𝑣𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖 =  (𝑇𝑇+𝑏𝑏)
2

, which can be estimated using linear 

regression. Linear substitution can then be used to solve for a and b: 

𝑆𝑆� =  𝑚𝑚𝑙𝑙𝑖𝑖𝑆𝑆𝑣𝑣𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖 − 𝑠𝑠𝑆𝑆𝑙𝑙𝑝𝑝𝑆𝑆√6  and  𝑏𝑏� = 𝑚𝑚𝑙𝑙𝑖𝑖𝑆𝑆𝑣𝑣𝑆𝑆𝑆𝑆𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑆𝑆𝑙𝑙𝑝𝑝𝑆𝑆√6 

Moment Estimators:  

𝑆𝑆� = �̄�𝑦 − 𝑠𝑠√6  and  𝑏𝑏� = �̄�𝑦 + 𝑠𝑠√6 
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Gumbel (Gompertz, Extreme Value Type 1) distribution 
Parameters: 𝜽𝜽 = [𝜇𝜇,𝛽𝛽] 

µ (location) 

β (scale) 

Transformation: 𝑦𝑦𝑊𝑊 = 𝑆𝑆𝑙𝑙𝑙𝑙10(𝑥𝑥𝑊𝑊) 

𝐹𝐹(𝑦𝑦) = 𝑆𝑆𝑥𝑥𝑝𝑝 �−𝑆𝑆𝑥𝑥𝑝𝑝 �
𝜇𝜇 − 𝑦𝑦
𝛽𝛽 �� 

𝑓𝑓(𝑦𝑦) =
1
𝛽𝛽
𝑆𝑆𝑥𝑥𝑝𝑝 �

𝜇𝜇 − 𝑦𝑦
𝛽𝛽

− 𝑆𝑆𝑥𝑥𝑝𝑝 �
𝜇𝜇 − 𝑦𝑦
𝛽𝛽 �� 

𝐹𝐹−1(𝑝𝑝) = 𝜇𝜇 − 𝛽𝛽 𝑆𝑆𝑙𝑙(− 𝑆𝑆𝑙𝑙(𝑝𝑝)) 

Let: 
 𝑧𝑧𝑊𝑊 = 𝜇𝜇−𝑦𝑦𝑖𝑖

𝛽𝛽
 

Then: 

 𝐿𝐿(𝜽𝜽|𝒀𝒀) ∝ −𝑙𝑙 𝑆𝑆𝑙𝑙(𝛽𝛽) + ∑ 𝑧𝑧𝑊𝑊𝑛𝑛
𝑊𝑊=1 − ∑ 𝑆𝑆𝑥𝑥𝑝𝑝(𝑧𝑧𝑊𝑊)𝑛𝑛

𝑊𝑊=1  

Note:  
𝑇𝑇𝐿𝐿
𝑇𝑇𝑧𝑧𝑖𝑖

= −1 + 𝑆𝑆𝑥𝑥𝑝𝑝(𝑧𝑧𝑊𝑊)   𝑇𝑇𝑧𝑧𝑖𝑖
𝑇𝑇𝜇𝜇

= 1
𝛽𝛽

  and  𝑇𝑇𝑧𝑧𝑖𝑖
𝑇𝑇𝛽𝛽

= −𝜇𝜇−𝑦𝑦𝑖𝑖
𝛽𝛽2

 

 𝑇𝑇𝐿𝐿
𝑇𝑇𝜇𝜇

= 1
𝛽𝛽
∑ (1 − 𝑆𝑆𝑥𝑥𝑝𝑝(𝑧𝑧𝑊𝑊))𝑛𝑛
𝑊𝑊=1   and   𝑇𝑇𝐿𝐿

𝑇𝑇𝛽𝛽
= −𝑛𝑛−1

𝛽𝛽
∑ 𝑧𝑧𝑊𝑊(1 − 𝑆𝑆𝑥𝑥𝑝𝑝(𝑧𝑧𝑊𝑊))𝑛𝑛
𝑊𝑊=1  

Mean: 

𝜇𝜇 + 𝛽𝛽𝛽𝛽  where γ = Euler-Mascheroni constant.   

Variance 

 𝛽𝛽2𝜋𝜋2

6
 

Linearization of the Gumbel quantile function can be performed directly by setting F(y) = 
ECDF(y), which yields the linear equation 𝑦𝑦 = 𝛽𝛽(−𝑆𝑆𝑙𝑙[− 𝑆𝑆𝑙𝑙(𝐸𝐸𝐵𝐵𝐿𝐿𝐹𝐹(𝑦𝑦)]) + 𝜇𝜇. 

 Moment Estimators: 

�̂�𝛽 = 𝑇𝑇
𝜋𝜋 √6 and �̂�𝜇 = �̄�𝑦 − �̂�𝛽𝛽𝛽 
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Weibull (Extreme Value Type III) distribution 
Parameters: 𝜽𝜽 = [𝜆𝜆; 𝑘𝑘] 

λ (scale) 
k (shape) 

Transformation: none 

𝑭𝑭(𝒙𝒙) = 𝟏𝟏 − 𝑆𝑆𝑥𝑥𝑝𝑝 �−�
𝑥𝑥
𝜆𝜆
�
𝑘𝑘
�

 
𝒇𝒇(𝒙𝒙) =

𝒌𝒌
𝝀𝝀
�
𝒙𝒙
𝝀𝝀
�
𝒌𝒌−𝟏𝟏

𝒆𝒆𝒙𝒙𝒆𝒆�−�
𝒙𝒙
𝝀𝝀
�
𝒌𝒌
�

 𝑭𝑭−𝟏𝟏(𝒆𝒆) = 𝝀𝝀(−𝒍𝒍𝒍𝒍(𝟏𝟏 − 𝒆𝒆))𝟏𝟏/𝒌𝒌 

𝑳𝑳(𝜽𝜽|𝑿𝑿) = 𝒍𝒍 𝒍𝒍𝒍𝒍(𝒌𝒌) − 𝒌𝒌𝒍𝒍 𝒍𝒍𝒍𝒍(𝝀𝝀) + (𝒌𝒌 − 𝟏𝟏)�𝒍𝒍𝒍𝒍(𝒙𝒙𝒊𝒊) −
𝒍𝒍

𝒊𝒊=𝟏𝟏

��
𝒙𝒙𝒊𝒊
𝝀𝝀
�
𝒌𝒌𝒍𝒍

𝒊𝒊=𝟏𝟏

 

𝒅𝒅𝑳𝑳
𝒅𝒅𝝀𝝀

= −
𝒌𝒌
𝝀𝝀
�𝒍𝒍 −��

𝒙𝒙𝒊𝒊
𝝀𝝀
�
𝒌𝒌𝒍𝒍

𝒊𝒊=𝟏𝟏

� 

𝒅𝒅𝑳𝑳
𝒅𝒅𝒌𝒌

=
𝒍𝒍
𝒌𝒌
− 𝒍𝒍 𝒍𝒍𝒍𝒍(𝝀𝝀) + �𝒍𝒍𝒍𝒍(𝒙𝒙𝒊𝒊)

𝒍𝒍

𝒊𝒊=𝟏𝟏

−���
𝒙𝒙𝒊𝒊
𝝀𝝀
�
𝒌𝒌
𝒍𝒍𝒍𝒍 �

𝒙𝒙𝒊𝒊
𝝀𝝀
��

𝒍𝒍

𝒊𝒊=𝟏𝟏  
The mean and variance of the Weibull distribution are: 

 𝝀𝝀𝝀𝝀 �𝟏𝟏 + 𝟏𝟏
𝒌𝒌
� and  𝝀𝝀𝟐𝟐𝝀𝝀 �𝟏𝟏 + 𝟐𝟐

𝒌𝒌
� − �𝝀𝝀𝝀𝝀 �𝟏𝟏 + 𝟏𝟏

𝒌𝒌
��

𝟐𝟐
 

In the above equations Γ is the gamma function.  
 
Linearization of the Weibull distribution is accomplished by setting F(x) = ECDF(x), which yields the 

linear equation 𝑆𝑆𝑙𝑙(𝑥𝑥) = 1
𝑘𝑘
𝑆𝑆𝑙𝑙 �−𝑆𝑆𝑙𝑙�𝟏𝟏 − 𝐸𝐸𝐵𝐵𝐿𝐿𝑭𝑭(𝒙𝒙)�� + 𝑆𝑆𝑙𝑙(𝜆𝜆).

 
 
The gamma functions in the equations for the mean and variance prevent moment estimators from 
being derived. 
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BurrIII distribution  
Note: this is the BurrIII distribution from Shao (2000) 

Parameters:  𝜽𝜽 = [𝑏𝑏 ; 𝑆𝑆 ; 𝑘𝑘] 

𝐹𝐹(𝑥𝑥) =
1

�1 + �𝑏𝑏𝑥𝑥�
𝑐𝑐
�
𝑘𝑘 

𝑓𝑓(𝑥𝑥) = 𝑘𝑘𝑐𝑐
𝑏𝑏

�𝑏𝑏𝑥𝑥�
𝑐𝑐+1

�1+�𝑏𝑏𝑥𝑥�
𝑐𝑐
�
𝑘𝑘+1.  

𝑭𝑭−𝟏𝟏(𝒆𝒆) = 𝑏𝑏�𝑝𝑝−1 𝑘𝑘⁄ − 1�
−1 𝑐𝑐⁄  

Note that Shao (2000, Eq. 8) incorrectly gives the pdf as: 𝑓𝑓(𝑥𝑥) = 𝑘𝑘𝑐𝑐
𝑏𝑏

�𝑏𝑏𝑥𝑥�
𝑐𝑐+1

�1+�𝑏𝑏𝑥𝑥�
𝑐𝑐+1

�
𝑘𝑘+1 

𝐿𝐿(𝜽𝜽|𝑿𝑿) ∝ 𝑙𝑙 𝑆𝑆𝑙𝑙(𝑆𝑆) + 𝑙𝑙 𝑆𝑆𝑙𝑙(𝑘𝑘) + 𝑆𝑆𝑙𝑙 𝑆𝑆𝑙𝑙(𝑏𝑏) − (𝑆𝑆 + 1)�𝑆𝑆𝑙𝑙(𝑥𝑥𝑊𝑊)
𝑛𝑛

𝑊𝑊=1

− (𝑘𝑘 + 1)�𝑆𝑆𝑙𝑙�1 + �
𝑏𝑏
𝑥𝑥𝑊𝑊
�
𝑐𝑐

�
𝑛𝑛

𝑊𝑊=1  

Let: 

𝑧𝑧𝑊𝑊 = 1 + �𝑏𝑏
𝑥𝑥𝑖𝑖
�
𝑐𝑐
  

Then: 

 𝑇𝑇𝑧𝑧𝑖𝑖
𝑇𝑇𝑏𝑏

= 𝑐𝑐
𝑏𝑏
�𝑏𝑏
𝑥𝑥𝑖𝑖
�
𝑐𝑐
 and 

 𝑇𝑇𝑧𝑧𝑖𝑖
𝑇𝑇𝑐𝑐

= 𝑆𝑆𝑙𝑙 �𝑏𝑏
𝑥𝑥𝑖𝑖
� �𝑏𝑏

𝑥𝑥𝑖𝑖
�
𝑐𝑐
  

𝑇𝑇𝐿𝐿
𝑇𝑇𝑏𝑏

= 𝑐𝑐𝑛𝑛
𝑏𝑏
− (𝑘𝑘 + 1)∑ 1

𝑧𝑧𝑖𝑖
𝑛𝑛
𝑊𝑊=1

𝑇𝑇𝑧𝑧𝑖𝑖
𝑇𝑇𝑏𝑏

  

𝑆𝑆𝐿𝐿
𝑆𝑆𝑆𝑆

=
𝑙𝑙
𝑆𝑆

+ 𝑙𝑙 𝑆𝑆𝑙𝑙(𝑏𝑏) −�𝑆𝑆𝑙𝑙(𝑥𝑥𝑊𝑊) − (𝑘𝑘 + 1)�
1
𝑧𝑧𝑊𝑊

𝑛𝑛

𝑊𝑊=1

𝑛𝑛

𝑊𝑊=1

𝑆𝑆𝑧𝑧𝑊𝑊
𝑆𝑆𝑆𝑆

 

𝑆𝑆𝐿𝐿
𝑆𝑆𝑘𝑘

=
𝑙𝑙
𝑘𝑘
−�𝑆𝑆𝑙𝑙(𝑧𝑧𝑊𝑊)

𝑛𝑛

𝑊𝑊=1

 

Moment estimators are not available for the BurrIII distribution. 
Linearization methods are not available for the BurrIII distribution. 
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