Report	IIA 4.4/03 (OECD) / CA 4.1.2/07 (EU)		
Authors (year):	Miller, C. (2014)		
Title:	MMTA: Validation of methodology for the determination of residues in		
	two soil ty	pes	
PMRA No.	2522686		
MRID	49580120 PC: 573101		
Laboratory report no. and date:	JSM0757,	11 December 2014	
Owner:	Ishihara Sangyo Kaisha, Ltd., Japan		
Testing facility and address:	Huntingdon Life Sciences, Woolley Road, Alconbury, Huntingdon,		
	Cambridge	eshire, PE28 4HS, UK	
Dates of experimental work:	23 October 2014 to 3 December 2014		
Guideline(s) followed:	SANCO/825/00 rev. 8.1 (2010)		
Deviations from guidelines:	None		
GLP	Yes	UK Department of Health	

Study Classification:

EPA: Acceptable

Summary written by:	Katherine Keppel-Jones, PMRA, on November 25, 2015		
Peer reviewed by:	Kim Davis, PMRA, on January 26, 2016		
Secondary review by:	Marianne Mannix, EPA Rochelle Bohaty, EPA	Marianne a. Marmip Dig	

Digitally signed by MARIANNE MANNIX Date: 2017.10.04 15:26:51 -04'00'

2018.03.19 13:43:34 -04'00'

Executive summary

A method was validated to determine MMTA in two soil types using LC-MS/MS. The LOQ was 0.001 mg/kg. In control soils fortified at 0.001 and 0.05 mg/kg, mean recovery ranges were 70 - 120% with relative standard deviations \leq 20%, demonstrating acceptable accuracy and precision of the analytical method. The analyte was stable in the final extracts when stored at approximately -20°C for seven days.

RobelleTHBohaty

Analyte / reference substance

Code no.:	MMTA	
CAS no.:	Not available	
Lot/batch no.:	20140226	
Purity:	100%	
Description:	White powder	
Test matrices		
1:	Clay soil (pH _{CaCl2} : 7.3, organic carbon: 4.3%)	
2: Sandy loam soil (pH _{CaCl2} : 5.6, organic carbon		

Principle of the method

Soil samples were extracted with methanol/water (80/20 v/v) containing ammonium formate (0.1 M), citric acid (0.05 M) and hydrochloric acid (0.5% v/v), and the extract cleaned-up with an Oasis HLB solid phase extraction cartridge. Quantification was performed using LC-MS/MS. Ion transitions monitored were m/z 287>184 (quantification) and m/z 287>243 (confirmation).

For each soil type, two samples of untreated soil, five samples of soil fortified at 0.001 mg/kg and five samples of soil fortified at 0.05 mg/kg were analysed.

Specificity

In untreated samples of each soil, there was no apparent response (i.e. <30% of the LOQ) in the regions of the chromatogram at the retention time of MMTA. As the chosen detection principle (LC-MS/MS with two transitions) was highly specific, no separate confirmatory method was required.

Linearity

The response of the LC-MS/MS system to standard solutions of MMTA was linear over the range 0.025 to 10 ng/mL (equivalent to 0.00025 to 0.1 mg/kg in soil) for both the quantification and confirmatory transitions (r \geq 0.9982).

Accuracy

The method was validated at 0.001 and 0.05 mg/kg for the detection of MMTA in the two soil types. Results obtained were within guideline requirements (mean recoveries 70 - 120%).

Precision (repeatability)

Results obtained were within guideline requirements (relative standard deviation ≤20%).

Matrix ^a	Fortification level (mg/kg)	Number of tests	Mean recovery (%)	Coefficient of variation (%)
Quantification transition (m/z 287>184), retention time ~0.9 min				
Clay soil	0.001	5	92	6.5
	0.05	5	96	3.0
		Total = 10	Overall mean = 94	Overall = 5.2
Sandy loam soil	0.001	5	89	4.7
	0.05	5	89	3.4
		Total = 10	Overall mean = 89	Overall = 3.9
Confirmatory transiti	on (<i>m/z</i> 287>243)			
Clay soil	0.001	5	90	8.8
	0.05	5	95	2.8
		Total = 10	Overall mean = 93	Overall = 6.6
Sandy loam soil	0.001	5	98	7.9
	0.05	5	89	2.7
		Total = 10	Overall mean $= 93$	Overall = 7.8

Table 4. Validation data for MMTA in soil

^a Duplicate control samples of each soil type were analysed and no residues were detected

Limit of quantification (LOQ) and limit of detection (LOD)

The LOQ, defined as the lowest fortification level at which acceptable recovery data were obtained, was 0.001 mg/kg in the two soil types tested.

The LOD of the method, defined as the concentration of the lowest calibration standard that gave rise to a measurable chromatographic response, was 0.025 ng/mL (equivalent to 0.00025 mg/kg in the sample matrix). **Storage stability**

A stability test showed that MMTA was stable in the final extracts when stored at approximately -20°C for seven days.

Conclusion

An analytical method for the determination of MMTA in two soils was validated at 0.001 and 0.05 mg/kg in terms of specificity, linearity, accuracy and precision. Residues of MMTA were quantified using the LC-MS/MS ion transitions of m/z 287>184 (quantification) and m/z 287>243 (confirmation). The LOQ was 0.001 mg/kg in the two soil types tested.

Note that an independent laboratory validation (ILV, Ref. #4) was also carried out for MMTA in one soil type which demonstrated similar accuracy and precision to the original results: LOQ of 0.001 mg/kg, recoveries of 91.7 - 93.4%, and RSDs of 1.91 - 8.94%.

Study Classification: EPA: Acceptable

Summary written by:	Katherine Keppel-Jones, PMRA, on November 25, 2015
Peer reviewed by:	Kim Davis, PMRA, on January 26, 2016
Secondary review by:	Marianne Mannix, Rochelle Bohaty EPA, on May 20, 2016