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Introduction 

Data on mercury contamination from the Everglades Regional Environmental 
Monitoring and Assessment Program (REMAP) have been modelled by previous 
investigators, notably Kent Thornton (Stober et al. 2001) and Curtis Pollman 
(2014).  These efforts were undertaken approximately midway through the 
history of Everglades REMAP, a program that has gone on for three decades.  
They featured structural equation modeling, and did not include any variables 
that implicitly reflect habitat quality or food web complexity.  This report is based 
on a different modelling technique applied to all REMAP data to date, and it 
includes consideration of habitat and resultant efficiency of biomagnification. 

The objective of this work was to characterize relationships between measured 
covariates and mosquitofish mercury (Hg) levels, using a general statistical 
modeling framework that could enable prediction of variations in mosquitofish 
(fish) Hg concentrations across the public Everglades. This model would help 
identify factors that are most influential on temporal and spatial fluctuations in 
fish Hg. The dataset was comprised of Hg measurements in fish and other 
ecosystem compartments, ambient water and sediment physico-chemistry, and 
categorical environmental factors.  The data come from hundreds of random 
survey points sampled by the United States Environmental Protection Agency 
throughout the greater freshwater Everglades over the past three decades (Figure 
1). 
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Figure 1.  Survey points for Everglades REMAP where mosquitofish were sampled.  
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Methods 

The response variable of interest was Log10 concentrations of total Hg(μg/kg) in 
mosquitofish from various locations in the Florida Everglades. These data (n=774) 
were collected in the dry and wet seasons in three different time periods: the 
mid- to late 1990’s (1995, 1996 and 1999), 2005, and 2014 (wet season only).  Our 
approach was to use Generalized Boosted Models (GBM), a non-linear multiple 
regression decision-tree-based machine learning technique (Friedman 2001) to 
determine which independent covariates in the collected data were most 
influential in determining fish mercury levels. We examined the following 
covariates: 

• Alkaline Phosphatase: Surface Water (umole/L*hr) 
• Ash Free Dry Weight: Soil (%) and Floc (%) 
• Bulk Density: Soil (g/cc) and Floc (g/cc) 
• Chlorophyll A: Surface Water (ug/l) 
• Chloride: Surface Water (mg/l) 
• Conductivity: Surface Water (uSiemens) 
• Depth: Floc (m) and Surface Water (m) 
• Dissolved Oxygen: Surface Water (mg/l) 
• Filtered Ammonia: Surface Water (mg/l) 
• Filtered Nitrate: Surface Water (mg/l) 
• Filtered Nitrite: Surface Water (mg/l) 
• HABCODE (nominal categorical factor): five different habitat 

characterizations about where the sample was collected: 

Sawgrass Marsh (n=430) 
Wet Prairie (n=279) 
Cattail (n=36) 
Slough (n=23) 
Other (n=6); 1 Pond, 4 Willow, 1 Brush 
 

• Methyl Mercury: Soil (ug/kg), Surface Water (ng/l), Floc (ug/kg), and 
Periphyton (ug/kg) 

• pH: Soil and Surface Water 
• Redox Potential: Surface Water (mV) and Pore Water (mV) 
• Season (binary categorical factor): Wet or Dry 
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• SUBAREA (nominal categorical factor): five different collection zones within 
the Everglades study area: 

Arthur R. Marshall Loxahatchee National Wildlife Refuge 
Water Conservation Area 2 
Water Conservation Area 3 north of Interstate 75 
Water Conservation Area 3 south of Interstate 75 
Everglades National Park 
 

• Soluble Reactive Phosphorus: Surface Water(mg/l) and Pore Water (mg/l) 
• Sulfate: Soil (ug/kg) and Surface Water (mg/l) 
• Sulfide: Pore Water (mg/l) 
• Temperature: Surface Water (C) 
• Thickness: Soil (m) 
• Total Carbon: Soil (%) 
• Total Mercury: Soil (ug/kg), Surface Water (ng/l), Floc (ug/kg) and 

Periphyton (ug/kg) 
• Total Nitrogen: Soil (%) and Surface Water (mg/l) 
• Total Organic Carbon: Surface Water (mg/l) 
• Total Phosphorus: Soil (ug/g), Surface Water (ug/l) and Floc (ug/g) 
• Turbidity: Surface Water (NTU) 
• Sampling Date 

 

Using the GBM package (version 2.1.5, Greenwell et al. 2019) in R (R Core Team 
2018) we developed seven different models: 

• All data 
• All time periods – wet season only 
• All time periods excluding 2014 – dry season only 
• 2005 (wet and dry season) and 2014 (wet season) only 
• 1990’s only 
• 1990’s, wet season only 
• 1990’s, dry season only 
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The data were parsed in the above manner to explore potential differences in the 
influence of covariates over time and season.  Rainfall, discharge, and water level 
have varied widely during REMAP; and more stormwater runoff enters the public 
Everglades from the agricultural area to the north during the summer wet season 
(Scheidt and Kalla 2007). 

Out of a total of 31734 cells in the covariate data matrix (774 samples x 41 
covariates), there were 9699 (31%) blank cells, where a parameter had not been 
measured during a specific sampling event. The algorithm implemented in this 
GBM package directly incorporates these missing data into the fitting and 
prediction process (Greenwell et al. 2019). At each split in the regression tree, a 
third node is created for samples which are missing that covariate, which may 
lead to further splits or a leaf. Thus, the model accounts for potential correlations 
between absent data and the response variable (García-Laencina et al. 2010). 

Due to the inherent stochasticity in the results of fitting a GBM model to a given 
dataset (i.e., slightly different models will be produced when fitting the same 
dataset), we developed bootstrapped estimates of model metrics by fitting 30 
GBM models for each of these datasets. Bootstrapping was accomplished by 
running multiple iterations of the GBM model. In each iteration, 80% of the 
dataset was randomly placed into a training set to fit the model, and the 
remaining 20% was put into a testing set to examine model predictive capabilities. 

The GBM package in R has an array of model parameters that can affect the fitting 
process and efficacy of the eventual solution: 

• Error Term: Gaussian 
• Maximum Number of Trees: 5000 
• Shrinkage: 0.005 
• Interaction Depth: 3 
• Bag Fraction: 0.5 
• Train Fraction: 1 
• Number of Minimum Observations per Node: 10 
• Cross-Validation Folds: 5 

For an in-depth discussion of these parameters, see the GBM package 
documentation (Greenwell et al., 2019). Recommendations within Greenwell et 
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al. 2019 were followed for setting parameter values, with some modifications 
based on best professional judgement.  Train Fraction was set to 1 because a true 
testing dataset was created at the start of each iteration for assessment of model 
predictive capabilities. In addition, out-of-sample error would be handled by 
examining cross-validation folds, as explained later. A Bag Fraction of 0.5 results 
in each successive tree in the iterative algorithm being fit to a random 50% of the 
observations in the training dataset, which mitigates overfitting of the training 
data. An Interaction Depth of 3 means that up to third-order interactions of 
model covariates can be captured by the model. We did not include interactions 
of an order greater than 3 to preserve model interpretability.  The Minimum 
Number of Observations per Node value prevents the model from being unduly 
influenced by outliers or clusters of odd samples. For datasets with n>500, 10 was 
used for this parameter. For datasets with n between 100 and 500, a value of 5 
was used. Smaller values of the Shrinkage parameter can increase model 
accuracy, but at the cost of increased computational time and more trees in the 
optimal solution. Values between 0.01 and 0.001 are recommended; we used 
0.005. 

As more trees are added to a GBM solution, the training data error (RMSE) will 
continue to decline; the RMSE of out-of-sample data also initially declines as more 
trees are added, but then rises if too many are used, i.e., the model becomes 
overfit. There are several ways to determine the optimum number of trees in the 
GBM solution; we used 5-fold cross-validation to measure the point at which out-
of-sample RMSE began to rise. 

Due to the stochasticity in creating training/testing datasets, a Bag Fraction < 1, 
and the random aliquoting of the training data into cross-validation folds, 
sometimes a GBM model can produce a poor solution. In each iteration of the 
bootstrap process, we used two metrics to ensure a GBM model was “valid”: 

• The optimum solution had less than 5000 trees (maximum allowable, 
meaning convergence was achieved). 

• The number of unique fitted values produced by the model was at least 
25% of the total number of fitted values. 

One hallmark of a poorly-fit GBM model is a solution with few trees, leading to a 
very low number of unique fitted values. However, it is also possible to 
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sometimes reach a good solution with a relatively small number of trees. 
Therefore, it is more robust to assess the quality of the model by examining the 
number of unique fitted values than the number of trees in the solution. 

The bootstrap algorithm was run until 30 “valid” GBM models were produced, 
and then examined their characteristics as follows: 

• R2 of Actual Observations versus Model Fits for the Training Data 
• R2 of Actual Observations versus Model Fits for the Testing Data 
• The Influence of the Covariates 

 

Partial Dependence Plots 

In order to visually inspect how each covariate influences the response variable in 
a GBM model, the GBM package in R provides the ability to create Partial 
Dependence Plots (PDPs), which show the univariate relationship between a 
covariate (values plotted on the X-axis) and the response variable (values plotted 
on the Y-axis), while factoring out the effect of all other covariates. In a default 
GBM model, the PDP for any given covariate can be very complex, rising and 
falling abruptly over the entire range of covariate values. However, the modeler 
may invoke a parameter named “var.monotone” in the GBM model call, which 
can constrain each covariate such that its relationship to the response variable 
must be monotonically increasing, monotonically decreasing, or unconstrained 
(the default case). This can produce a simplified, more interpretable model, and 
may or may not reduce the fit of the model (R2) to a significant extent. Because an 
aggregate PDP over multiple GBM models cannot be created, we had a different 
approach for developing PDPs for a single model fit to the Overall dataset: 

1) Fit a model using the covariates with highest average influence across the 
30 GBM models created previously for the Overall dataset. 

2) Examine the PDPs for these covariates to determine if their response 
relationship could be simplified as monotonically increasing or 
monotonically decreasing. 
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3) Develop a second GBM model using the “var.monotone” parameter to 
indicate what type of relationship to use for each covariate, as identified in 
Step 2. 

4) Plot the PDPs from this model. 
 

Results 

Table 1 summarizes the results of 30 GBM models developed on each of the 
seven different datasets. 

 

Table 1. R-squared values for training and testing data for each of the modeled 
datasets, with standard deviations in parentheses. 

Model n R-Squared Training R-Squared Testing 
Overall 774 0.88 (0.02) 0.59 (0.05) 

Overall, Wet Season 520 0.91 (0.03) 0.61 (0.06) 
Overall, Dry Season 254 0.85 (0.04) 0.56 (0.07) 

2005 and 2014 275 0.85 (0.03) 0.38 (0.09) 
1990's, All Data 499 0.91 (0.03) 0.51 (0.09) 

1990's, Wet Season 305 0.88 (0.04) 0.47 (0.08) 
1990's Dry Season 194 0.87 (0.05) 0.46 (0.12) 

 

For each of these datasets, the average R2 values for the training data were, as 
expected, higher than the average R2 values for the testing data, indicating some 
overfitting of the training data. In Figure 1 (the models fit to the Overall dataset), 
the GBM model for each iteration was used to produce a fitted value for all data 
points, regardless of whether they were in the training or testing data for that 
iteration. Then, the average prediction for all data points across the 30 models 
was computed. 
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Figure 2. Plot of GBM average fitted values (across 30 models) versus 
observations for the overall dataset (n=774). 

 

The R2 of this relationship is close to the average R2 of the training data, even 
though these points represent a mixture of models for which any data point had a 
20% probability of being in the testing data. 

One common occurrence when using GBM to model data is the muted scale of 
the GBM fitted values, as seen by the slope <1 in the regression line shown in 
Figure 1. GBM generally does a good job of fitting the pattern of the observations, 
but it has difficultly with their magnitudes. The largest GBM predictions typically 
are not as large as the largest observations and are not as small as the smallest 
observations. The slope and intercept of the best-fit linear regression line can be 
used to rectify this situation by rotating the data ellipse, expanding the scale of 
the GBM fitted values. If the regression line intercept in Figure 1 (0.4928) is 



LSASD ID 20-0085 Final Report Page 12 of 35 
 

subtracted from every y-value, and then the result is divided by the slope 
(0.7494), an “adjusted” GBM fit is calculated. When these adjusted values are 
plotted versus observations (the blue dots in Figure 2), the R2 value remains 
unchanged, but the slope and intercept become 1 and 0, as would be ideal for a 
plot of model fitted values versus observations. The data ellipse has simply been 
rotated about the mean fitted GBM value. Any original GBM fitted value above 
the mean becomes larger, while any original GBM fitted value below the mean 
becomes smaller. 

 

 

Figure 3. Plot of the average fitted GBM values of the Overall model, rotated using 
the slope and intercept of the regression line of Figure 1. 

 

Finally, we examined the influence of the various covariates on these GBM 
models (Table 2). There was variability from iteration to iteration within a dataset, 
as well as between-dataset variability in the most influential covariates. For each 
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of the seven datasets, we first calculated the mean influence of each covariate 
across the 30 GBM models. Then, we filtered the covariates by their mean 
influence, retaining only those that accounted for at least 2% of the total 
influence for that dataset. Finally, we summed up covariate influence across the 7 
datasets (700 would be the maximum possible value of this sum) as a measure of 
overall significance.  
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Table 2. Summary of the influence of covariates to the various fitted GBM models. The last two columns are the summed and average % 
influence of each covariate in the seven different datasets for which models were developed. This sum could be 700 at most if a certain 
covariate had complete influence in all seven models. The dotted line separates those variables that had a summed influence > 10 across the 
seven datasets.  
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Alkaline Phosphatase in Surface Water had the most influence summed across the 
7 datasets (67.5 of possible 700, or 9.6% average total influence). The 25.1% 
influence for the Overall wet season was the highest for any covariate in the 
seven datasets.  In addition to that covariate, there were 5 others that had > 2% 
influence in all seven models: Methyl Mercury in Surface Water (8.3% average 
influence), Methyl Mercury in Periphyton (6.3%), Surface Water Conductivity 
(5.0%), Sulfate in Surface Water (4.9%), and Total Mercury in Surface Water 
(3.7%).  Those covariates above the dotted line in Table 2 had a summed 
influence of at least 10. 

 
Partial Dependence Plots 

For the PDP analysis, 14 covariates were used that had >2% average influence 
across the 30 GBM models fit to the Overall dataset (i.e., the “Overall” column of 
Table 2, n = 774). After preliminary examination of the PDPs in a model where all 
parameters were unconstrained, we retained an unconstrained definition for 6 of 
the 14 parameters in the final model, because their preliminary PDP was deemed 
to be ill-suited to fitting via a monotonically-increasing or decreasing function. 
The plots below (Figures 4a-n) show the PDPs for these 14 most influential 
covariates in the final model.
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Figure 4a. PDP of mosquitofish Log10 mercury (μg kg-1) on alkaline phosphatase activity 
(μmole L-1 hr-1) in surface water. The x-axis label indicates whether or not the covariate 
was constrained using the “var.monotone” parameter in the GBM model statement. 
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Figure 4b. PDP of mosquitofish Log10 mercury (μg kg-1) on surface water temperature 
(°C). The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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Figure 4c. PDP of mosquitofish Log10 mercury (μg kg-1) on methyl mercury in periphyton 
(ug/kg). The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4d. PDP of mosquitofish Log10 mercury (μg kg-1) on methyl mercury in surface 
water (ng L-1). The x-axis label indicates whether or not the covariate was constrained 
using the “var.monotone” parameter in the GBM model statement. 
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 Figure 4e. PDP of mosquitofish Log10 mercury (μg kg-1) on sulfate (μg kg-1) in soil. The x-
axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4f. PDP of mosquitofish Log10 mercury (μg kg-1) on surface water conductivity 
(uSiemans). The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4g. PDP of mosquitofish Log10 mercury (μg kg-1) on sulfate(mg L-1) in surface 
water. The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4h. PDP of mosquitofish Log10 mercury (μg kg-1) on chlorophyll-a (ug L-1)in surface 
water. The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4i. PDP of mosquitofish Log10 mercury (μg kg-1) on habitat code.  
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 Figure 4j. PDP of mosquitofish Log10 mercury (μg kg-1) on methyl mercury (μg kg-1) in 
soil. The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 
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 Figure 4k. PDP of mosquitofish Log10 mercury on total mercury in surface water 
(ng/L). The x-axis label indicates whether or not the covariate was constrained 
using the “var.monotone” parameter in the GBM model statement. 
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 Figure 4l. PDP of mosquitofish Log10 mercury (μg kg-1) on total organic carbon (mg L-1) in 
surface water. The x-axis label indicates whether or not the covariate was constrained 
using the “var.monotone” parameter in the GBM model statement. 
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 Figure 4m. PDP of mosquitofish Log10 mercury (μg kg-1) on soil pH (S.U.). The x-axis label 
indicates whether or not the covariate was constrained using the “var.monotone” 
parameter in the GBM model statement. 
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 Figure 4n. PDP of mosquitofish Log10 mercury (ug/kg) on total phosphorus in surface water 
(ug/L). The x-axis label indicates whether or not the covariate was constrained using the 
“var.monotone” parameter in the GBM model statement. 

 

Discussion 

 

The R2 Testing values in Table 1 indicate a model that accounts for about one-half 
of the environmental influence on variation in mosquitofish mercury (for 
example, Overall model R-square testing = 0.59).  This outcome is robust for a 
large, disturbed ecosystem such as the Everglades, given its seasonal, annual, and 
spatial differences. 

The PDP for surface water sulfate (Figure 4g) shows an increase in fish Hg 
between 20 and 40 mg/l, which contradicts previous reports that the highest 
mercury methylation occurs in a sulfate range of 1-20 mg/L, or even 2-10 mg/L, 
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with no increase above 20 mg/L (reviewed in Orem et al. 2011). However, the 
PDPs of covariates in a GBM are influenced by the other covariates in a model, as 
their effect is “integrated out” in order to produce the PDP for a specific 
covariate. In a simple GBM model with only Surface Water Sulfate and Surface 
Water Temperature, the PDP for Surface Water Sulfate (Figure 5) is closer to what 
would be expected based on theory. Nevertheless, our model does suggest that 
the influence of surface water sulfate on fish Hg extends further up the range of 
sulfate, beyond 20 mg/L as reported by Orem et al. 2011. 

The PDP for sulfate in soil (Figure 4e) has a spike at the bottom of the range, 
consistent with a unimodal relationship between sulfur and mercury.  This 
relationship could be explained by the activity of sulfate-reducing bacteria, which  
methylate mercury (into its bioavailable form), until inhibition by moderate to 
high levels of sulfide occurs (Orem et al. 2011).  Since  methylation in the 
Everglades can occur in the oxygen-depleted environment of the soil-water 
interface, soil sulfate can be expected to influence fish Hg. 
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Figure 5. PDP of mosquitofish Log10 mercury (μg kg-1) on surface water sulfate (mg L-1) in 
a model fit to the the Overall dataset, with surface water temperature as the only other 
covariate in the model. 

 

Other Partial Dependence Plots 

The curves for mercury (methyl mercury in periphyton Figure 4c, methyl mercury 
in surface water Figure 4d, methyl mercury in soil Figure 4j, total mercury in 
surface water Figure 4k) show a largely straightforward relationship with 
mosquitofish.  Inorganic mercury enters the water from the atmosphere, gets 
methylated, and then is taken up by biota, including periphyton, that form the 
food web leading to fish.  The curve for soil shows a slight drop after the rise 
probably because the parts of the system with the most methyl mercury in the 
soil (Stober et al. 2001) are the same places where the food web has been 
degraded.   Biomagnification is less in these areas (Scheidt and Kalla 2007).  The 
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methyl mercury that cannot be efficiently incorporated into the food web is 
instead sequestered in the soil.  

The curve for conductivity (Figure 4f) resembles the curves for sulfate in Figures 
4e and 5, in that it is unimodal.  The peak may be spatially associated with optimal 
levels of other constituents needed for efficient methylation, namely those of 
organic carbon and sulfur. 

The curve for soil pH (Figure 4m) drops off at about 6.5.  The portion between 6.0 
and 6.5 may have been influenced by the historically high fish Hg concentrations 
(Stober et al. 2001) found in southwestern Water Conservation Area 3.  However, 
all soil pH values less than 6.0 occur in the Refuge, which has low mosquitofsh 
mercury (Scheidt and Kalla 2007).  

The curve for water temperature (Figure 4b), though erratic, has the general form 
of lower fish Hg levels at higher temperatures.  This result may be explained by 
sunlight.  Higher temperatures tend to be found in wet prairies and sloughs 
during daylight because the water is less shaded than in sawgrass marshes and 
cattails.  Photodegradation has been proposed as the predominant mechanism of 
mercury demethylation in surface waters (reviewed in Tai et al. 2014).  Figure 4i 
provides corroboration for this explanation by showing that mosquitofish in wet 
prairies and sloughs have less mercury than those in sawgrass marshes. 

There are three covariates in surface water, total phosphorus (Figure 4n), alkaline 
phosphatase activity (Figure 4a), and chlorophyll-a (Figure 4h), that can be 
associated with trophic state. These three covariates, along with total organic 
carbon (Figure 4l), show less biomagnification of mercury at higher 
concentrations of the covariate. The alkaline phosphatase curve is the inverse of 
the phosphorus curve because there is greater activity in low-phosphorus 
environments.  In addition to sulfur and organic carbon, agricultural runoff that 
enters the Everglades contains phosphorus at levels above the very low 
background concentrations found in the pristine oligotrophic parts of the system 
(reviewed in Scheidt and Kalla 2007).  Over time, this input has led to 
eutrophication in some areas, which in turn degraded the original habitat, 
producing depauperate food webs and short food chains, without periphyton, 
which are less efficient at biomagnification (reviewed in Kalla and Scheidt 2017).  
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The best example of this effect is cattail marshes, which have the least fish Hg of 
any habitat (Figure 4i).       

 

Relative Percent Influence of Covariates 

Of the six most influential covariates (those meeting the threshold in all seven 
models in Table 2), three were mercury in various forms and media, one can be a 
trophic indicator (alkaline phosphatase), one can be a marker of stormwater 
transport (conductivity), and one can be an enabler of methylation (sulfate).  
While these covariates had an average individual influence ranging from 3.7% to 
9.6%, together they accounted for almost 40% of the influence in each model, on 
average.  Sulfate, the enabler, is transported to and through the Everglades by 
canals (reviewed in Scheidt and Kalla 2007), along with phosphorus and organic 
carbon. 

According to our model, mercury’s presence in the food web is affected by sulfur 
(4.9%). Moving water that has high sulfur into parts of the Everglades where food 
webs are complex and food chains are long may result in greater biomagnification 
of mercury. 

One noteworthy contrast in the results is the larger number of influential (>/= 2%) 
covariates in 2005 and 2014 compared to the 1990s.  The covariates below the 
dotted line for 2005 and 2014 may have had more influence in those years simply 
because mosquitofish mercury concentrations were lower in 2005 and even lower 
in 2014, as compared to the 1990s (Scheidt and Kalla 2007, Kalla and Scheidt 
2017).  Sulfate also had lower concentrations in those years (Scheidt and Kalla 
2007, Kalla and Scheidt 2017), which could have allowed other covariates to rise 
in influence.   

Comparing seasons overall, there are more influential covariates in the wet 
season than in the dry season. Perhaps as rewetting of the marsh proceeds during 
the summer the system becomes more varied and complex both ecologically and 
hydrodynamically, with more covariates coming into play. 
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