

Glenn Springs Holdings, Inc.

A subsidiary of Occidental Petroleum

5 Greenway Plaza, Suite 110 Houston, TX 77046-0521

May 21, 2020

Mr. Jacob Hassan U.S. Environmental Protection Agency Region 5 77 West Jackson Boulevard Chicago, Illinois – 60604-3507 Send Via E-mail (hassan.jacob@epa.gov)

Dear Mr. Hassan:

Re: Focused Feasibility Study (FSS) Report EPA Docket No. RCRA-05-2017-0009 Cline Avenue Oil Spill Site - Gary, Indiana

The enclosed Focused Feasibility Study (FFS) Report was prepared in accordance with Item E in Section III of Attachment 1 of the Administrative Order on Consent RCRA-05-2017-0009 (AOC) for the Cline Avenue Oil Spill Site in Gary, Indiana for your review and approval.

The following Statement/Certification statement is provided pursuant to Section XIII, Paragraph 52 of the AOC.

Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Please call me at 713-215-7622 if you have any questions regarding this FFS Report.

Respectfully submitted,

GLENN SPRINGS HOLDINGS, INC.

Rick Passmore, OXY Project Coordinator

JEP/kf/5

cc: Todd Gmitro, EPA (gmitro.todd@epa.gov)
 Renee Wawczak, EPA (wawczak.renee@epa.gov)
 Michael Beedle, EPA (beedle.michael@epa.gov)
 Tom Krueger, EPA Council (krueger.thomas@epa.gov)
 Ryan Groves, IDEM (rgroves@idem.in.gov)
 Lloyd Landreth, Landreth Law – OXY Council (llandreth@landrethlaw.com)
 Michael Tomka, GHD (Michael.tomka@ghd.com)

Focused Feasibility Study Report

Cline Avenue Oil Spill Site Gary, Indiana

Glenn Springs Holdings (GSH)

Table of Contents

1.	Introduction and Purpose1								
2.	Back	3ackground1							
3.	Design Investigation Results								
		3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8	Investigation Area Mapping Groundwater Conditions LNAPL Fingerprint Analysis LIF Investigation PAH Dart Investigation Groundwater Investigation Conceptual Site Model Conclusions	3 4 5 5 6					
4.	Resp	onse Actio	n Objectives and Goals	. 7					
5.	Ident	ification of	Remedial Alternatives	. 7					
6.	Descriptions of Remedial Alternatives								
	6.1	Alternativ	e 1 – Continue Current Approach	. 9					
	6.2	Alternativ	e 2 – Line Ditch with HDPE Liner	10					
	6.3	Alternativ	e 3 – Storm Sewer Installation within Ditch	11					
	6.4 Alternative 4 – Barrier Wall Installation East of Ditch								
7.	Evaluation of Alternatives								
	7.1	7.1 Evaluation Criteria							
	7.2	Evaluatio	n of Alternatives with NCP Criteria	16					
		7.2.1 7.2.2 7.2.3 7.2.4 7.2.5	Effectiveness Implementability Cost Risk Evaluation Summary	17 18 18					
8.	Description and Rationale of the Proposed Action								

Figure Index

Figure 6.1	Alternative 1 – Continue Current Approach – Conceptual Sketch
Figure 6.2	Alternative 2 – Line Ditch with HDPE Liner – Conceptual Sketch
Figure 6.4	Alternative 3 – Storm Sewer Installation within Ditch – Conceptual Sketch
Figure 6.6	Alternative 4 – Barrier Wall with Continuing Current Approach – Conceptual Sketch 14
Figures foll	owing text:
Figure 1.1	Investigation Area Location
Figure 1.2	Investigation Area Plan
Figure 3.1	Base Map
Figure 3.2	Ditch Plan and Profile
Figure 3.3	Horizontal Distribution of Hydrocarbon Response Above Water Table
Figure 3.4	Horizontal Distribution of Hydrocarbon Response At Water Table
Figure 3.5	Horizontal Distribution of Hydrocarbon Response Below Water Table
Figure 3.6	Dart Sample Locations
Figure 6.3	Alternative 2 – Line Ditch with HPDE Liner – Plan and Profile
Figure 6.5	Alternative 3 – Storm Sewer Installation within Ditch– Plan and Profile
Figure 6.7	Alternative 4 – Barrier Wall– Plan and Profile

Table Index

Table 7.1	Selection Matrix
-----------	------------------

Tables following text:

Table 3.1	Gauging Summary
Table 6.1	Alternative 1 – Continue Current Approach - Cost Estimate
Table 6.2	Alternative 2 – Line Ditch with HDPE Liner - Cost Estimate
Table 6.3	Alternative 3 – Install Storm Sewer in Ditch and Backfill Ditch with Soil - Cost Estimate
Table 6.4	Alternative 4 – Install Barrier Wall and Continue Current Approach – Cost Estimate

Appendix Index

- Appendix A Design Investigation Report
- Appendix B LIF Results
- Appendix C Dart Literature and Results
- Appendix D DRAFT 90% Design Package

1. Introduction and Purpose

On behalf of Glenn Springs Holdings (GSH), a subsidiary of Occidental Petroleum Corporation, GHD Services Inc. (GHD) has prepared this Focused Feasibility Study (Report) to summarize the Design Investigation Results, including supplemental investigation, and analyses of alternatives to mitigate petroleum sheens from entering the ditch at the Cline Avenue Oil Spill Site, in Gary, Indiana. The Report has been prepared in accordance with the Administrative Order on Consent (AOC) dated March 3, 2017 between Oxy USA, Inc. and United States Environmental Protection Agency (USEPA) Region V (RCRA-05-2017-0009).

As detailed in the AOC and further agreed upon by USEPA and GSH, the purpose of this Report is to assess potential remedial alternatives designed to mitigate petroleum sheens from continuing to impact the ditch.

This report has been prepared in accordance with Section III - E of the Scope of Work (SOW) provided in the AOC. The outline is as follows:

- Section 1 Introduction and Purpose
- Section 2 Background
- Section 3 Design Investigation Results
- Section 4 Response Action Objectives and Goals
- Section 5 Identification of Remedial Alternatives
- Section 6 Description of Alternatives
- Section 7 Evaluation of Alternatives
- Section 8 Description and Rationale of the Proposed Action

2. Background

The investigation area or "Site" is located northeast of the intersection of Gary Avenue and Cline Avenue (Indiana Route 912) in Gary, Lake County, Indiana. The investigation area is bordered by a rail line and Gary International Airport property to the north and east, Gary Avenue to the south, and Cline Avenue to the west. The investigation area lies within the larger, heavily industrialized area to the west of the airport, which has for decades contained numerous manufacturing and industrial operations. The investigation area location associated with the current AOC is presented on Figure 1.1. The investigation area plan is presented on Figure 1.2.

The ditch is located along the western edge of the investigation area and was constructed in the 1960s to collect and carry surface water run-off from Cline Avenue and surrounding industrial areas. The ditch ultimately discharges into the Grand Calumet River. The ditch drains from north to south where it discharges into a culvert just south of the investigation area. The culvert conveys the water to the Grand Calumet River, located approximately 2,200 feet to the south of the investigation area.

As summarized in four USEPA Pollution Reports, dated June 16, 2004, July 22, 2004, August 6, 2004, and November 22, 2004; USEPA responded to a reported release of oil to the Grand Calumet River in June 2004. During the initial investigations, oil was identified as coming from a portion of the ditch along Cline Avenue. Containment and sorbent booms were placed to contain oil entering the ditch. In July 2004, contractors were remobilized to begin cleaning the impacted area. At that time an investigation was also completed in the area of two adjacent pipelines. A 6-inch gasoline pipeline (Marathon) and an 18-inch crude oil pipeline (British Petroleum [BP]) are located adjacent and parallel to the Cline Avenue ditch. Following the removal of impacted soil between the pipelines and the ditch, the area was backfilled and rip-rap was placed along the slope of the ditch to prevent erosion.

As stated in Weston's Site Assessment Report (Revision 1) dated July 20, 2011, the National Response Center received a call in January 2011 regarding the presence of an oil sheen within the Cline Avenue ditch, north of the intersection of Cline and Gary Avenues. BP initially responded to investigate whether one of its pipelines was leaking. BP installed absorbent booms to prevent floating product from migrating to the Grand Calumet River. The report also stated that in March 2011, USEPA and its contractor (Weston Solutions, Inc.) mobilized to place absorbent booms in the ditch and were maintaining the absorbent boom materials to control downstream flow of petroleum sheen originating at the Site. The absorbent materials were placed in the vicinity of seeps on the east bank of the ditch. Figures in Weston's Site Assessment Report (Revision 1) Addendum 1 dated October 21, 2011 identified three separate seep locations, whereas in 2004, five seeps were identified. As of 2017, boom maintenance is being conducted by GSH at two seep areas. The remainder of this report is focused on the petroleum sheen impacts to the ditch that originate, in part, from these two seep areas.

On March 3, 2017, Oxy USA, Inc., entered into an AOC with USEPA, to continue maintaining the absorbent boom materials controlling the sheen impacts in the ditch and to conduct investigations necessary to support the development of a feasibility assessment of potential remedial actions designed to mitigate ongoing sheen impacts to the ditch and determine if solid or hazardous wastes are migrating or will migrate off-Site via groundwater at levels that present unacceptable risks. On April 20, 2017, USEPA transitioned the control of the oil accumulation in the ditch to GSH in accordance with the AOC.

3. **Design Investigation Results**

The following sections summarize the activities conducted by GSH associated with assessing the extent and mobility of the remaining petroleum LNAPL impacts in the vicinity of the Cline Avenue ditch in order to establish the mechanisms of sheen formation, in support of the development of a feasibility assessment for potential remedial actions in accordance with AOC.

The Design Investigation/Focused Feasibility Study (DI/FFS) Work Plan was prepared and submitted to USEPA in accordance with the AOC. The purpose of the Design Investigation (DI) was to investigate petroleum seeps to the Cline Avenue ditch and to collect additional information to support a feasibility assessment of potential remedial alternatives designed to mitigate petroleum sheens from continuing to impact the ditch. The initial DI was conducted by GSH between May and

July 2017. The results of the initial DI are summarized in the DI Report which was submitted to USEPA on September 21, 2017, herein attached as Appendix A. A supplemental phase of investigation was conducted between September and October 2017 to fill in data gaps identified in the initial DI. The results of the supplemental investigation were provided in the November monthly report dated November 24, 2017. The following activities were conducted as part of the DI:

- Investigation Area Mapping
- Groundwater/LNAPL gauging
- LNAPL Fingerprint analysis
- Laser-Induced Fluorescence (LIF) Investigation
- Dart Investigation

The results of the DI are summarized in the following sections.

3.1.1 Investigation Area Mapping

Investigation area mapping activities were completed to generate accurate figures depicting critical features including seep locations, ditch sediment thicknesses, piezometer/well locations, buried pipelines/utilities, topography, etc. Investigation area mapping activities included both topographic and geophysical surveys. Figure 3.1 presents the base map of the investigation area (including topography) and Figure 3.2 presents the plan and profile of the ditch.

The following utilities were located in the investigation area:

- Buckeye Petroleum Pipeline (6-inch diameter at a depth between 4-feet, 5-inches and 7-feet, 4-inches below ground surface (bgs), not active)
- BP Petroleum Pipeline (18-inch diameter at a depth between 5-feet, 5-inches to 6-feet, 9-inches bgs, active)
- NIPSCO Gas Pipeline (30-inch diameter at a depth between 5-feet to 7-feet, 9-inches bgs, active)
- Unidentified Pipeline (4-inches diameter at a depth between 3-feet, 5-inches to 4-feet, 5-inches bgs, inactive)
- Two underground electrical lines
- Overhead electrical lines

3.1.2 Groundwater Conditions

Water level/LNAPL measurements were collected quarterly (May, August, and November) from the twelve piezometers (PZ-1 to PZ-12) and from two monitoring wells (MW-2 and MW-3) to monitor gauged LNAPL thickness and groundwater elevations. Measurements were taken with an oil/water interface probe with an accuracy of ±0.01 feet, to determine the depth to water, LNAPL (where present), and oil/-water interface. The date, depth to product, and depth to water were recorded, and used to calculate the LNAPL thickness (as applicable) and corrected groundwater elevation (where LNAPL was present). These results are summarized in Table 3.1. Groundwater flow at the

Site appears to be to the west towards the ditch, however, it is important to note that there is currently only one monitoring well interior to the Site.

3.1.3 LNAPL Fingerprint Analysis

In order to better understand the type and distribution of LNAPL, six samples of LNAPL were collected from existing piezometers with LNAPL during the initial gauging activities and submitted for hydrocarbon "fingerprint" analyses. The chromatograms and physical property analysis (results provided in Appendix C of the DI Report) indicate that all the samples contain a consistent mixture of hydrocarbon product types in terms of age/degree of weathering and composition. The LNAPL mixture consists of weathered gasoline hydrocarbons, weathered diesel hydrocarbons, and another hydrocarbon material that is slightly heavier than diesel but still within the diesel hydrocarbon range. The LNAPL fingerprinting results are consistent with the LNAPL fingerprinting results of samples previously collected by USEPA and its consultant Weston from the Site in 2011.

3.1.4 LIF Investigation

A LIF investigation was conducted to assist in determining the horizontal and vertical extent of residual hydrocarbons in soil. The Tar Green Optical Screening Tool (TarGOST) LIF system was utilized based on a sample of LNAPL provided to Dakota Technologies (Dakota) (LIF boring contractor) prior to mobilization. A total of 29 LIF borings (results presented in Appendix D of the DI Report herein attached as Appendix A) were completed by Dakota Technologies (Dakota) in July 2017 during the first round of LIF investigation. A total of 32 additional LIF borings (results presented in Appendix B) were completed by Dakota in October 2017 to fill in data gaps from the first round of LIF investigation. Figures 3.3, 3.4, and 3.5 present the horizontal distribution of hydrocarbon response at various elevations based on the LIF results. A 3D model of the LIF results is provided as an interactive PDF in Appendix B.

The LIF investigation reported results in units of percentage of the reference emitter (%RE).¹ ranging from 6.6 to 778 which indicates that there are highly variable hydrocarbon saturation levels. The maximum %RE for LIF borings on the west side of the ditch were at background/insignificant response levels (13.2 and 21.1 %RE), therefore no evidence of a petroleum source from the west side of the ditch was observed. High LIF intensities were observed east of the ditch and in an interior area concentrated approximately 250-500 feet to the east. Based on the gradient in LIF response along with an examination of the elevations/thicknesses of the petroleum-impacted intervals identified during the LIF events, the interior area represents a potential historical source zone. Impacts were noted both above and below the water table as shown in the LIF readings and extend under the ditch as inferred from DART results and observed ebullition.².

The intensity of the LIF responses broadly correlate with hydrocarbon saturation levels. Most of the LIF responses, including some of the highest responses, are below the water table, which typically

¹ % reference emitter (%RE) indicates the fluorescence intensity in comparison to the fluorescence of the standard hydrocarbon mixture used to calibrate the equipment. Results are therefore semi-quantitative and most relevant in a comparative sense.

² Ebullition refers to the sheen formation mechanism whereby petroleum impacts in sediment are mobilized by the upward movement of soil gas bubbles. This is observed at the ditch water surface by bubbling followed by the formation of radial sheens occurring away from the ditch banks (i.e., not due to lateral petroleum seepage).

signifies that the remaining petroleum impacts are largely immobile residual. This suggests that much of the impact to the ditch is resulting from residual petroleum impacts in the vicinity of the ditch, as opposed to being the result of the bulk movement of LNAPL from the interior of the Site towards the ditch currently.

3.1.5 PAH Dart Investigation

A PAH Dart³ investigation was conducted in the ditch sediments to assist in determining the horizontal and vertical extent of residual hydrocarbons in the ditch sediment.

The Darts are designed to quickly screen for the presence of hydrocarbons in sediments and soft soils, where LIF, traditional soil boring, and other mechanized sampling are difficult to implement. The Dart sampler is comprised of a continuous rod coated with solid-phase extraction (SPE) media. The Dart sampler is deployed into the sediments (direct push, vibracore technology, slide hammer, etc.) where hydrocarbon molecules attach to sediment/soil particles, dissolved in sediment pore water, or exist as a component in non-aqueous phase liquids in sediments migrate onto the Dart sampler. This migration onto the surface of the Dart sampler is due to hydrocarbon's (specifically PAHs) high affinity for the SPE material versus its relatively low affinity for water or sediments. Dart samplers were left in place for 24 hours before being collected and shipped offsite for analysis. The Dart samples were then scanned with the UVOST laser. The response from the UVOST laser correlates to the relative concentration of hydrocarbons in the media sampled. This result is similar to what was obtained during the LIF push probe field work. Additional literature on the Dart technology is presented in Appendix C.

In September 2017, nine Darts were installed on the east side of the ditch and six Darts were installed on the west side of the ditch, as presented on Figure 3.6. Dart installation along the centerline of the ditch was attempted but proved infeasible due to the ditch lining materials being impenetrable to the Darts. Appendix C presents the results of the Dart analysis. The maximum %RE readings on the west side ranged from 17.4 to 94.1 and the maximum %RE on the east side of the ditch ranged from 9.8 to 711. The Dart results provide a complimentary line of evidence to the LIF results in indicating the bulk of the petroleum impacts and the potential historical source zone exist on the east side of the ditch.

3.1.6 Groundwater Investigation

A groundwater investigation was conducted at the request of the Indiana Department of Environmental Management (IDEM) to investigate the potential groundwater impacts at the Site prior to and subsequent to forthcoming re-engineering of the Cline Avenue ditch. The groundwater investigation was completed in accordance with the groundwater investigation work plan which was submitted to IDEM on February 13, 2019. The scope of work included the installation of 10 groundwater monitoring wells, gauging of new wells (10); existing wells (2); existing piezometers (12); and existing staff gauges (3); and groundwater sampling of the 10 new monitoring wells and 2 existing monitoring wells, as a baseline evaluation of potential groundwater impacts at the Site.

In August 2019 10 monitoring wells were installed (MW-07-19, MW-08-19, MW-09-19, MW-10-19, MW-11-19, MW-12-19, MW-13-19, MW-14-19, MW-15-19, and MW-16-19. One soil sample was

³ Darts manufactured/supplied by Dakota Technologies. See http://www.dakotatechnologies.com/products/darts.

collected per boring and analyzed for volatile organic compound (VOC), polychlorinated biphenyls (PCBs), semi-volatile organic compounds (SVOCs), and metals, except where hydrovacing was utilized to clear utilities beyond the saturated zone. A round of gauging was conducted between September 4 and 6, 2019 with a dual phase probe to evaluate water table conditions. Groundwater samples were collected using low flow procedures and analyzed for VOCs, PCBs, SVOCs, and metals from all the monitoring wells, except MW-03-07 which could not be located.

The potentiometric surface characterized by the established well network confirms groundwater flows towards the Cline Avenue ditch from both the west and east sides of the ditch. The soil sample results were compared against the IDEM Remediation Closure Guide (RCG) Migration to Groundwater Screening Levels, Residential Direct Contact Screening Levels, Commercial/Industrial Direct Contact Screening Levels, and Excavation Worker Soil Direct Contact Screening Levels. The soil results identified limited on-Site soil impacts and confirmed no soil exceedances off-Site. The groundwater sample results were compared against the IDEM RCG Residential Groundwater Tap Screening Level (RGWTSL). The groundwater results identified petroleum-related groundwater impacts are limited to on-Site monitoring wells, with no detectable VOCs or SVOCs in wells off-Site to the west and southwest.

3.1.7 Conceptual Site Model

Historical data as well as the data collected as part of the DI have been analyzed to develop a Conceptual Site Model (CSM). These data indicate that the petroleum sheens are entering the ditch through two transport models:

- Laterally from sidewalls immediate vicinity of ditch and not as bulk movement internal to the Site (due to the lack of resistance at the ditch bank surface that allows residual LNAPL movement, whereas similarly saturated soil would not allow LNAPL movement in the interior of the Site).
- 2. Ebullition pressure and/or soil gas bubbles periodically dislodge otherwise immobile residual hydrocarbons from beneath the ditch.

The LNAPL is old and primarily located below the water table; therefore, the bulk of the Site LNAPL is likely to be present as hydraulically immobile residual. Where LNAPL is present at residual levels, it will largely exist as discontinuous globules of LNAPL trapped in the pore space. Under this condition, groundwater moves through the pore space around the LNAPL globules without having any effect on the mobility of the LNAPL itself. As such, LNAPL mass recovery efforts will not affect a significant fraction of what is there nor would a significant LNAPL recovery radius of influence be achievable (i.e., recovery efforts are likely to only affect LNAPL in the immediate vicinity of a given extraction point). Observations made during ditch booming activities over several years have identified generally stable conditions of oil entering the ditch, with some fluctuations during precipitation events in dry periods (i.e., sheen impacts are more severe during and following heavy rain events).

3.1.8 Conclusions

Empirical Site data, including the LNAPL chromatograms, LNAPL physical property analysis, and the LIF and Dart results, indicate similar types/mixtures of hydrocarbons present across the

investigated area. The LIF results identified the presence of hydrocarbons across the study area that is expected to exist primarily as residual LNAPL, which is largely immobile under typical Site conditions and would be relatively unaffected by LNAPL mass recovery efforts. Based on the distribution of LIF responses, along with the elevations/thicknesses of the petroleum-impacted intervals identified during the LIF events, an interior area of the Site 250-500 feet east of the ditch appears to be a potential historical source zone. From this area, hydrocarbons underwent some degree of radial spreading with a historical preference for migration towards the ditch. There is no known source of LNAPL on the west side of the ditch.

Visual observation of sheen formation in the ditch identified that sheen formation is due to both lateral seepage from the eastern bank of the ditch and vertically from the bottom of the ditch through ebullition.

4. **Response Action Objectives and Goals**

In accordance with Section III – E of the Statement of Work (SOW) – Attachment 1 provided in the AOC the response action objectives and goals include the following:

- Provide protection of human health and the environment
- Comply with applicable local, State, and Federal regulations
- Mitigate or eliminate oil from entering the ditch
- Provide practical, cost-effective actions
- Utilize actions that may be implemented and completed in an expeditious timeframe, where applicable
- Determine if solid or hazardous wastes are migrating or will migrate off-Site via groundwater at levels that present unacceptable risks

5. Identification of Remedial Alternatives

The remedial alternatives presented in this section were developed to identify viable remedial alternatives to address the purpose of the AOC, to prevent oil from entering the ditch (AOC Section I.1 and SOW-Section I).

The list of alternatives evaluated in this Report are as follows:

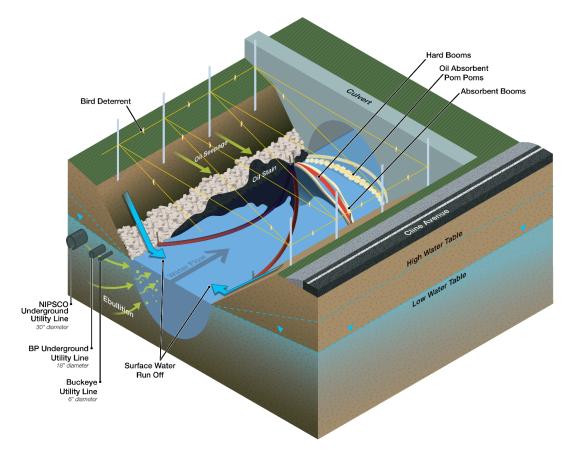
Alternative No.	Description
Alternative 1	Continue Current Approach
	 Perform Boom Maintenance activities in the ditch weekly to remove petroleum impacts and contain sheens to mitigate downstream migration Aquatic Vegetation Control within the ditch Maintain Bird Deterrent across ditch Routine Inspection and Reporting
Alternative 2	Line Ditch with HDPE Liner

Alternative No.	Description
	Install HDPE liner in ditchRoutine monitoring and reporting
Alternative 3	Storm Sewer Pipe Installation within Ditch
	Install Storm Sewer pipe to replace ditchBackfill ditchRoutine monitoring and reporting
Alternative 4	 Barrier Wall and Continue Current Approach Install barrier wall (slurry wall) Include same activities as Alternative 1
Alternative 5	Underflow or Weir Dam

In accordance with Attachment 1, Section I of the AOC, Alternatives 4 and 5 were included, however, the underflow or weir damn proposed in Alternative 5 only provides a modified approach to collecting petroleum that accumulates in the ditch and does not prevent the formation of sheen in the ditch. Therefore, Alternative 5 is not carried through in the more detailed evaluation as it does not meet the objective of the remedial action, to mitigate petroleum sheens from continuing to impact the ditch.

None of the alternatives carried forward include an LNAPL recovery component since it would not add value to any of the remedies due to the largely residual LNAPL conditions. As previously noted, LNAPL mass recovery efforts will not affect a significant fraction of the residual LNAPL, will not be able to achieve a significant LNAPL recovery radius of influence (i.e., recovery efforts are likely to only affect a small fraction of the LNAPL in the immediate vicinity of a given extraction point), and will not mitigate the ebullition mechanism of sheen formation.

For each of the remaining alternatives (Alternatives 1, 2, 3, and 4), present costs have been calculated. Under each alternative, costs have been developed in 2020 dollars for major capital tasks and annual operation and maintenance tasks. For calculating present costs, capital costs were assumed to be incurred within the first year and the annual operation and maintenance costs were assumed to occur for a period of 30 years. Current activity costs included under Alternatives 1 and 4 were estimated from effort expended in 2019 and therefore no contingency was included for the activities. All capital costs developed for Alternatives 2, 3, and 4 include a 20% contingency and the annual operation and maintenance costs developed for Alternatives 2 and 3 also include a 20% contingency. The present estimate was calculated by summing the capital costs (which is to be incurred in the first year) and the present costs of the annual operation and maintenance tasks which was calculated using the Real Discount Rate (0.4% for 30-years) identified on the Whitehouse website (https://www.whitehouse.gov/wp-content/uploads/2019/12/M-20-07.pdf) over the applicable period of 30 years. The discount rate was selected to allow the calculation of a realistic present estimate of the remedial alternatives.


6. **Descriptions of Remedial Alternatives**

Detailed descriptions of the remedial alternatives are provided in the following sections.

6.1 Alternative 1 – Continue Current Approach

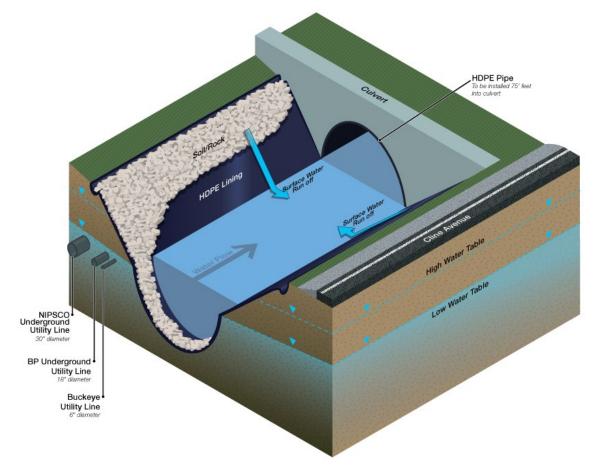
Alternative 1 is the "Continue Current Approach" Alternative. This alternative includes the current ongoing field activities: performing absorbent boom maintenance activities in the ditch weekly, aquatic vegetation control, maintaining bird deterrents over the ditch, and routine monitoring and reporting. The components of Alternative 1 are presented on Figure 6.1.

Figure 6.1 Alternative 1 – Continue Current Approach – Conceptual Sketch

The conceptual configuration of the booms at the two seep areas (North and South) and the Grand Calumet River is presented in Figure 6.1 and includes a combination of hard booms and absorbent booms. The boom maintenance and inspection activities (generally once a week) involve inspecting conditions of booms, removing/replacing "spent" absorbent booms, soaking up any oil present on the water surface with absorbent booms/pads, placing spent absorbent material in plastic bags and placing in the on-Site roll-off box for disposal off-Site when full.

Aquatic vegetation control involves the application of herbicide within the ditch as needed, typically between spring and fall to limit the amount of vegetation growth within the ditch, thereby limiting the presence of habitat that may attract birds.

Bird deterrent is an additional measure put in place to deter birds from landing in the ditch. The first type of bird deterrent is generally installed once a year in the spring and involves tying reflective tape on rope that is strung back and forth across the ditch. In addition to the reflective tape,


predator replicas have been installed along the ditch to discourage birds and other animals from entering the ditch area. The replicas are relocated periodically to provide continued effectiveness.

Currently, inspections of the boom maintenance activities and bird deterrent measures are generally completed weekly at the same time the boom maintenance is completed. Reporting is completed monthly and quarterly in accordance with the AOC and is expected to be completed for 30 years.

A detailed cost breakdown for Alternative 1 is presented in Table 6.1. The total capital cost is estimated to be \$0 and the estimated annual operation and maintenance cost is \$235,000. The total present cost of this alternative is estimated at \$6,639,000.

6.2 Alternative 2 – Line Ditch with HDPE Liner

Alternative 2 includes the installation of a high density polyethylene (HDPE) liner along the impacted length of ditch, along with routine inspections to evaluate the integrity of the HDPE liner and monitoring the ditch for the presence of LNAPL. The expected service life of the HDPE liner is assumed to be 20 years, after which it would require replacement. Figure 6.2 presents a conceptual sketch and Figure 6.3 presents a plan and profile of the Alternative 2 components.

Installation of the HDPE liner will require preparation of the ditch area, including removal of the existing bird deterrent, vegetation clearing, and limited grading to promote positive drainage. The work zone portion of the ditch will need to be isolated and temporary diversion of the stormwater flow in the ditch will be required to facilitate installation of HDPE liner under dry conditions. Due to the proximity of the ditch to nearby gas pipelines, the work will need to be coordinated with the various utility companies. Additionally, associated permitting for the work may be required by the INDOT, City of Gary and/or other agencies.

The isolated work zone portion of the ditch will require dewatering to maintain dry conditions for the installation. The water will be collected, treated, and disposed of. Prior to placement of the HDPE liner, oily/soft sediments in the ditch may require removal. Additional material placement will be required within the ditch to provide a smooth base for the HDPE liner installation. The liner will be keyed into a shallow trench at the top the bank on either side of the ditch and connections made around the terminations (e.g., culverts). The seams of the liner will be tested for integrity and water tightness as construction proceeds. A geotextile will be placed over the liner followed by a cover material (e.g., Fabric-Form concrete or river rock or similar) to protect the liner and to minimize deterioration. In addition, a storm sewer sleeve or in-situ form piping will be extended into the downstream culvert from the termination of the liner to eliminate the potential for LNAPL entering the culverts through cracks in the culvert walls.

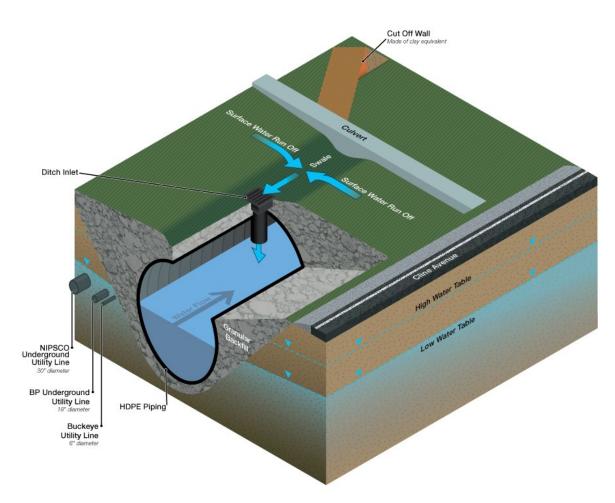
Inspections of the liner and ditch will be performed monthly, to evaluate the integrity of the liner and to monitor for the presence of LNAPL. After one year of monthly inspections, the frequency will reduce to semi-annually. Possible maintenance may include repairs to the liner and removal of vegetation. Periodic routine reporting costs are also included.

A detailed cost breakdown for Alternative 2 is presented in Table 6.2. The total capital cost is estimated to be \$2,375,000 and the estimated annual operation and maintenance cost is \$13,600. The total present cost of this alternative is estimated to be \$4,950,000.

6.3 Alternative 3 – Storm Sewer Installation within Ditch

Alternative 3 includes the installation a storm sewer pipe along the general alignment/invert of the impacted section of the ditch, backfilling the ditch adjacent to and overlying the storm sewer pipe, and regular inspections to evaluate the integrity of the pipe and to monitor for the presence of LNAPL. The expected service life of the storm sewer pipe is approximately 50 years. Figure 6.4 presents a conceptual sketch and Figure 6.5 presents a plan and profile of the Alternative 3 components.

Installation of the storm sewer pipe will require preparation of the Site including removal of the existing bird deterrent, vegetation clearing, surveying, and limited grading to promote positive drainage. In addition, the work zone portion of the ditch will need to be isolated and temporary diversion of stormwater flow in the ditch will be required, to facilitate installation of the storm sewer pipe under dry conditions (typically during the third quarter of the year). Due to the proximity of the ditch to nearby gas pipelines, the work will need to be coordinated with the various utility companies. Additionally, associated permitting for the work may be required by the INDOT, City of Gary and/or other agencies.



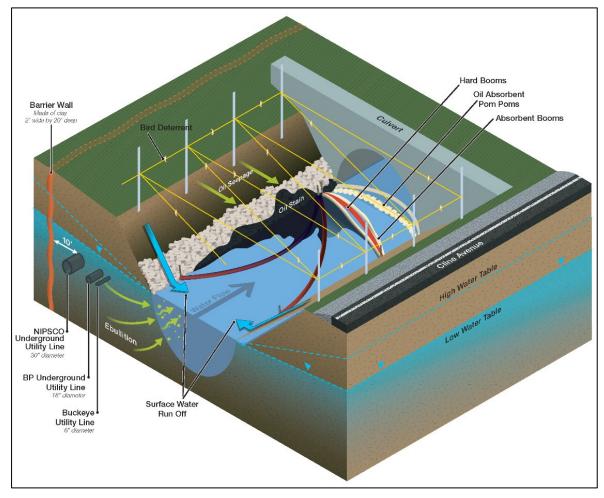
The isolated work zone portion of the ditch will require dewatering to maintain dry conditions for the installation. The water will be collected, treated, and disposed of. Excavation activities will maximize the amount of hydrocarbon stained soil removed within reason. It is estimated that approximately 1,000 cubic yards of material will be removed from within the ditch as well as approximately 800 cubic yards from bank areas and disposed of off-site. Material removed from the bank areas will be limited as the brick lining the ditch is to remain in place to provide support for the new storm sewer pipe, as well as, complexities involved with excavating in close proximity to the existing underground utility lines.

Pipe connections will be sealed to prevent infiltration. Low permeability collars (or engineered equivalents) will be installed around the pipe to prevent preferential migration pathways. Bedding material will be placed above the paver stones currently in the ditch to provide a competent base for the storm sewer pipe installation. The design and construction of the storm sewer pipe joints and connections at terminations (e.g., at culverts, etc.) will be watertight to prevent potential leakage.

For the purposes of this Report it is contemplated that the storm sewer pipe with be constructed of HDPE or another impermeable material. However, the actual pipe material will be selected based on the Final Design. A soil/bentonite cut off wall will be installed east of the transition chamber on the downstream culvert to reduce the potential for LNAPL entering the culverts through cracks in the culvert walls.

Figure 6.4 Alternative 3 – Storm Sewer Installation within Ditch – Conceptual Sketch

Monitoring of the pipe and groundwater monitoring will be included as part of the ongoing operation and maintenance of the ditch and culvert. Visual inspections will initially be performed monthly to evaluate remedy performance. This may include evaluating the integrity of the pipe, monitoring for the presence of LNAPL, and observations of oil upwelling to the ground surface. The monitoring program and inspections will be documented in a separate Operation, Maintenance, and Monitoring (OM&M) Plan that will be submitted for review prior to initiation of construction.


A detailed cost breakdown for Alternative 3 is presented in Table 6.3. Periodic routine reporting costs are included. The total capital cost is estimated to be \$2,362,000 and the estimated annual operation and maintenance cost is \$13,600. The total present cost of this alternative is estimated to be \$2,745,000.

6.4 Alternative 4 – Barrier Wall Installation East of Ditch

Alternative 4 includes the installation of a low permeability barrier wall to the east of the impacted section of the ditch; ongoing maintenance of absorbent booms in the ditch, aquatic vegetation control, bird deterrents over the ditch, and inspections to evaluate the integrity of the barrier wall

and to confirm the effectiveness of the booming, bird deterrents, and vegetation control. The expected service life of the barrier wall is approximately 50 years. Figure 6.6 presents a conceptual sketch and Figure 6.7 presents a plan and profile of the Alternative 4 components.

Figure 6.6 Alternative 4 – Barrier Wall with Continuing Current Approach – Conceptual Sketch

The amount of Site preparation required for installation of a low permeability barrier wall would be dependent upon the type of barrier wall selected during detailed design. For example, installation of a slurry barrier wall would require a moderate amount of ground surface area along the alignment of the wall due to the need to manage excavated soils, whereas a sheet pile barrier wall would require comparatively less area and disturbance of the ground surface. As remedial construction work would not be conducted in the ditch area itself, the existing bird deterrent features and oil absorbent materials would remain in place during and after barrier wall construction. The barrier wall will be constructed as close as reasonably practical, but not interfere with, the pipelines and utilities east of the ditch, therefore the work would need to be coordinated with the various pipeline and utility companies. The anticipated location of a barrier wall is east of the ditch and the pipelines and utilities. Due to the location of the barrier wall, ongoing boom maintenance (Alternative 1 plus barrier wall) is included.

If it is determined that a slurry barrier wall (e.g., soil-bentonite) is the preferred type of barrier wall, then any excess excavated soil that could not be returned to the barrier wall excavation would require off-Site for disposal.

Since the barrier wall is primarily underground, there are only limited surface features that can be monitored. Inspections of the barrier wall at the ground surface would be conducted concurrently with, but less frequently than, the inspection of the other components of this alternative (i.e., boom maintenance activities and bird deterrent measures) that would be conducted at a frequency consistent with Alternative 1. Inspection of the barrier wall at the ground surface would initially be completed quarterly for the first year to monitor potential settlement. After one year of quarterly inspections, the frequency will reduce to semi-annually. Reporting would be monthly and quarterly in accordance with the AOC and is expected to be completed for 30 years.

A detailed cost breakdown for Alternative 4 is presented in Table 6.4. Periodic routine reporting costs are included. The total capital cost is estimated to be \$575,000 and the estimated annual operation and maintenance cost is \$235,000. The total present cost of this alternative is estimated to be \$7,214,000.

7. Evaluation of Alternatives

7.1 Evaluation Criteria

The evaluation of alternatives herein is consistent with the criteria identified in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), which is also provided in the AOC. The evaluation criteria include:

- 1. **Effectiveness** Alternatives shall be assessed for short-term effectiveness and long-term effectiveness and permanence they afford, along with the degree of certainty that the alternative will prove successful. Factors that shall be considered, as appropriate, include the following:
 - a. Short-term risks that might be posed to the community during implementation of an alternative.
 - b. Potential impacts on workers during remedial action and the effectiveness and reliability of protective measures.
 - c. Potential environmental impacts of the remedial action and the effectiveness and reliability of mitigative measures during implementation.
 - d. Time until protection is achieved.
 - e. Magnitude of residual risk remaining from untreated waste or treatment residuals remaining at the conclusion of the remedial activities. The characteristics of the residuals should be considered to the degree that they remain hazardous, taking into account their volume, toxicity, mobility, and propensity to bioaccumulate.
 - f. Adequacy and reliability of controls such as containment systems and institutional controls that are necessary to manage treatment residuals and untreated waste. This

factor addresses in particular the uncertainties associated with land disposal for providing long-term protection from residuals; the assessment of the potential need to replace technical components of the alternative, such as a cap, a slurry wall, or a treatment system; and the potential exposure pathways and risks posed should the remedial action need replacement.

- 2. **Implementability** The ease or difficulty of implementing the alternatives shall be assessed by considering the following types of factors as appropriate:
 - a. Technical feasibility, including technical difficulties and unknowns associated with the construction and operation of a technology, the reliability of the technology, ease of undertaking additional remedial actions, and the ability to monitor the effectiveness of the remedy.
 - b. Administrative feasibility, including activities needed to coordinate with other offices and agencies and the ability and time required to obtain any necessary approvals and permits from other agencies (for off-site actions).
 - c. Availability of services and materials, including the availability of adequate off-site treatment, storage capacity, and disposal capacity and services; the availability of necessary equipment and specialists, and provisions to ensure any necessary additional resources; the availability of services and materials; and availability of prospective technologies.
- 3. **Cost** The types of costs that shall be assessed include the following:
 - a. Capital costs, including both direct and indirect costs.
 - b. Annual operation and maintenance costs.
 - c. Net present value of capital and O&M costs.
- 4. **Risks** Alternatives shall be assessed to determine whether they can adequately protect human health and the environment, in both the short- and long-term, from unacceptable risks posed by hazardous substances, pollutants, or contaminants present at the site by eliminating, reducing, or controlling exposures to levels established during development of remediation.

7.2 Evaluation of Alternatives with NCP Criteria

7.2.1 Effectiveness

Effectiveness is evaluated in two parts, the effect of the alternatives on the local community during implementation and the ability of the alternatives to remain protective over time. The alternatives included involve technologies that have been demonstrated to be effective in a wide range of other projects (e.g., liners and pipe installation).

Alternative 1 is effective at limiting the extent of impacts to within the ditch in the short term. However, Alternative 1 is not protective in the long term since there will continue to be a footprint where the environment will be exposed to LNAPL. In addition, maintenance staff would potentially be exposed to the LNAPL as long as LNAPL continues to seep into the ditch.

Alternatives 2 and 3 are both effective at mitigating the migration of LNAPL impacts to the ditch and therefore limiting the potential for migration of impacts. Both Alternatives 2 and 3, flatten the groundwater table by backfilling the ditch with soil or creating a barrier to groundwater flow (HDPE liner). Slowing the groundwater flow will increase the residence time for degradation. The HDPE liner has a shorter expected service life and would therefore, require replacement sooner than the storm sewer pipe. In addition, the HDPE liner, even when protected by the concrete or other materials, will likely require more maintenance than the storm sewer pipe due to potential breaches (e.g., potential damage from contents flowing down the ditch, refuse). Therefore, Alternative 3 provides a more permanent mitigation of petroleum sheen migration to the ditch and is therefore preferred based on effectiveness. Exposure of construction workers to LNAPL can be effectively managed by a site-specific Health and Safety Plan. Following construction, there would be little to no exposures of the environment to LNAPL.

As identified through the design investigation, the petroleum sheen is forming in the ditch through two processes: laterally through the sidewalls and vertically through ebullition from beneath the ditch. The proposed barrier wall included in Alternative 4 would reduce sheen formation in the ditch through lateral seepage, however continuing current booming activities would still be required to collect the petroleum sheen forming from the ditch from the residual LNAPL between the barrier wall and the ditch through lateral seepage and through ebullition from beneath the ditch. Alternative 4 is effective at preventing the migration of LNAPL impacts interior to the Site to the ditch, however, residual LNAPL impacts between the barrier wall and the ditch will continue to impact the ditch. Performing absorbent boom maintenance activities in the ditch weekly will limit the extent of impacts to within the ditch in the short term. However, Alternative 4 is not protective in the long term since there will continue to be a footprint where the environment will be exposed to LNAPL. In addition, maintenance staff would potentially be exposed to the LNAPL as long as LNAPL continues to seep into the ditch.

7.2.2 Implementability

Implementability refers to the ease or difficulty of implementing the alternatives, considering as appropriate the technical feasibility of constructing, operating, and monitoring the remedy, the administrative feasibility of coordinating with and obtaining necessary approvals and permits from other agencies, and the availability of services and materials, including capacity and location of needed treatment, storage, and disposal services. Implementability issues include the working in close proximity to the underground utility lines (petroleum, electrical and gas) and working within an operating ditch.

Alternative 1 can be implemented safely with minimal engineering and administrative procedures as is currently evidenced by the on-going work.

Alternatives 2 and 3 will be more difficult to implement, however, these alternatives use standard construction approaches (including water bypass systems, working in close proximity to buried utilities, working in close proximity to traffic) and the construction activities would be of comparatively short duration. Alternative 2, will be slightly more difficult to implement as a result of groundwater below the liner tending to float the liner, as well as, the proximity of the tie-ins on the bank to the buried utility lines.

Alternative 4 is also slightly more difficult to implement than Alternative 1, however, it is less difficult than Alternative 2 and 3, since this alternative uses standard construction approaches, does not require construction within the ditch (thereby avoiding dealing with LNAPL impacted water and

sediment), and the work will be completed a safe distance from the underground utilities. However, due to the long-term nature of the ditch maintenance activities, the potential for an incident (e.g., petroleum sheen breach of absorbent boom; safety, slip/trip/fall incident to workers) to occur is high.

A site-specific health and safety plan would be required for implementation of all alternatives, to ensure that construction workers are aware of the hazards associated with implementation of the selected remedy and to establish safe work procedures.

7.2.3 Cost

Estimated costs for the alternatives were developed and presented in Section 6, and are discussed briefly below. The costs to implement Alternative 3 are the lowest and, therefore, is the preferred alternative based on cost. Alternative 2, would have a similar cost, however the service life of the HDPE liner is much shorter than the service life of the storm sewer pipe. Implementation of Alternatives 1 and 4 involve a significant cost increase compared with the other alternatives due to the ongoing nature of the work.

7.2.4 Risk

Alternatives 1 and 4 are protective of human health and the environment through continued maintenance of the ditch to maintain engineering controls (i.e., absorbent boom replacement, aquatic vegetation control, bird deterrents). Alternatives 2 and 3 have the benefit of eliminating exposures of humans and the environment to LNAPL entering the ditch and allowing the ditch area to revert back to a more natural state, without the need for engineering controls.

7.2.5 Evaluation Summary

The following presents a summary of the alternative evaluations by relative ranking of alternatives. A rank of 1 indicates the best alternative when compared to the other alternatives.

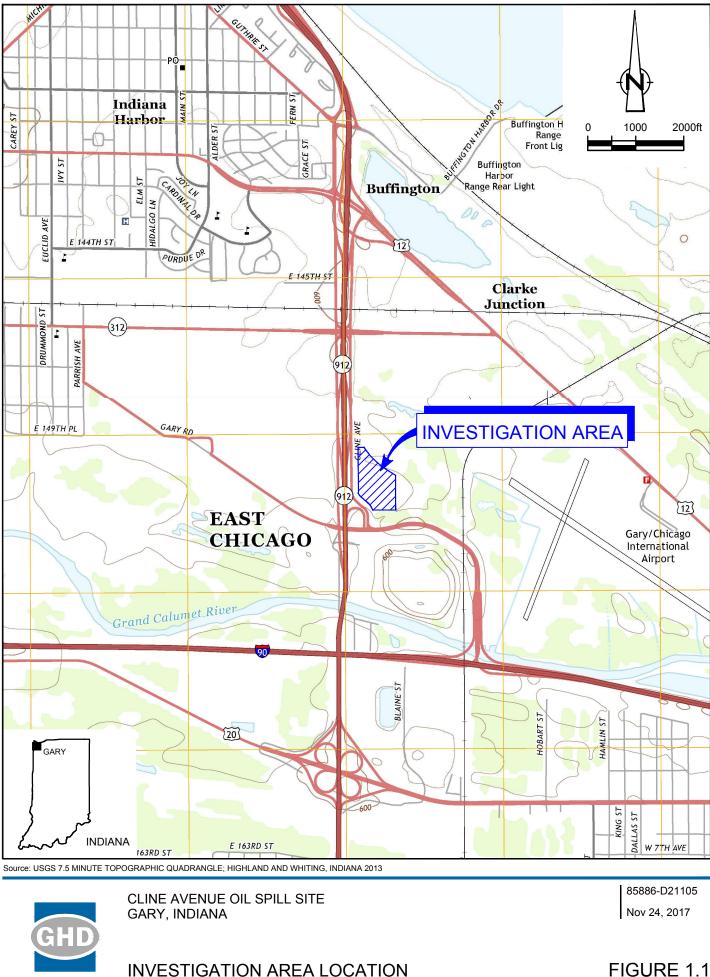
	Technical Effectiveness	Implementability	Cost Effectiveness (Ranking)	Protection of Human Health and the Environment	Total
Alternative 1 Continue Current Approach	4	1	3	4	12
Alternative 2 Line Ditch with HDPE Liner	2	3	2	2	9
Alternative 3 Storm Sewer Installation Within Ditch	1	2	1	1	5
Alternative 4 Barrier Wall and Continue Current Approach	3	4	4	3	14

Table 7.1 Selection Matrix

Based on summing the rankings, Alternative 3 is the preferred option.

8. Description and Rationale of the Proposed Action

To mitigate petroleum sheens from continuing to impact the ditch, Alternative 3 is selected as the proposed remedial alternative for the Site. The current remedial design includes:

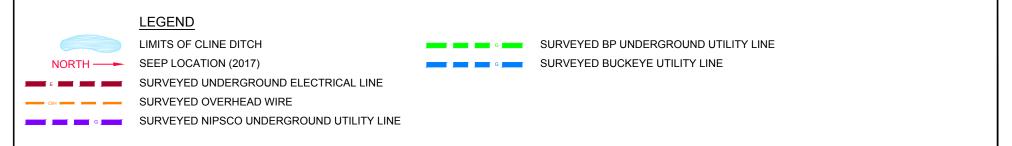

- Installation of a storm sewer pipe to replace the open channel ditch
- Removal of hydrocarbon impacted material above the paver stones within the ditch and in construction areas where impacted soils are disturbed
- Installation of low permeability collars (or engineered equivalents)
- Sealed pipe joints
- Installation of soil/bentonite cut off wall
- Long-term monitoring and reporting

The basis for selecting Alternative 3, as identified in Section 7, is that this alternative is the most effective alternative, is similar to Alternative 2 with regards to implementability and is the most cost effective alternative. Remedial construction costs for this alternative are detailed in various units and quantities in Table 6.3. This alternative also includes removal and off-site disposal of approximately 1,800 cubic yards of impacted material from within the ditch (above the existing paver stones) and from select areas. A Draft 90% design-drawing package for this alternative is included in Appendix D. These documents have been provided in order to provide greater engineering and construction information specific to this alternative.

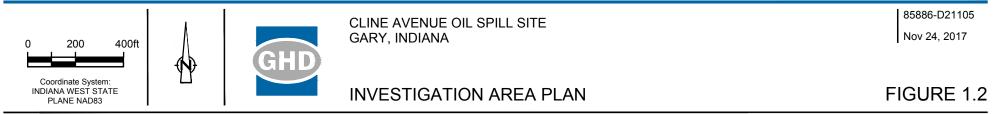
Alternative 1 – Continue Current Approach, does not address the purpose of the remedial alternatives, "to mitigate petroleum sheens from continuing to impact the ditch" and the cost is significantly higher than the other alternatives, therefore Alternative 1 is not a viable option.

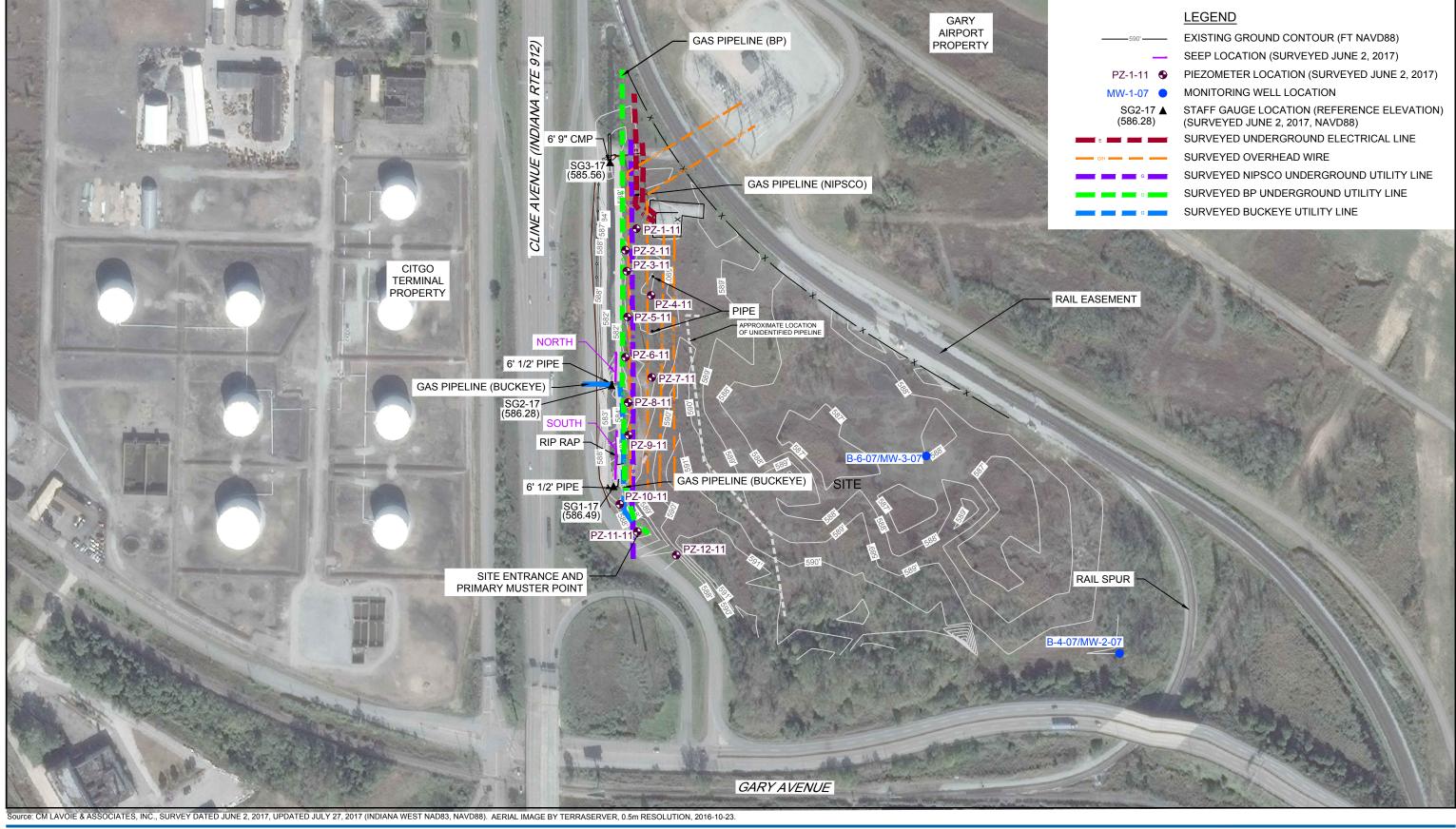
Alternative 2 – Line Ditch with HDPE Liner, is a viable option. However, it is less effective than Alternative 3 since it has a shorter design life and will also require more maintenance. In addition, Alternative 2 is less cost effective than Alternative 3.

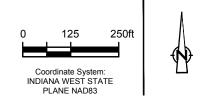
Alternative 4 – Barrier Wall and Continue Current Approach does not address the purpose of the remedial alternatives, "to mitigate petroleum sheens from continuing to impact the ditch" and the cost is significantly higher than the other alternatives, therefore Alternative 4 is not a viable option.



CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(004)\85886-D21105(004)GN\85886-D21105(004)GN\WA002.DWG


FIGURE 1.1

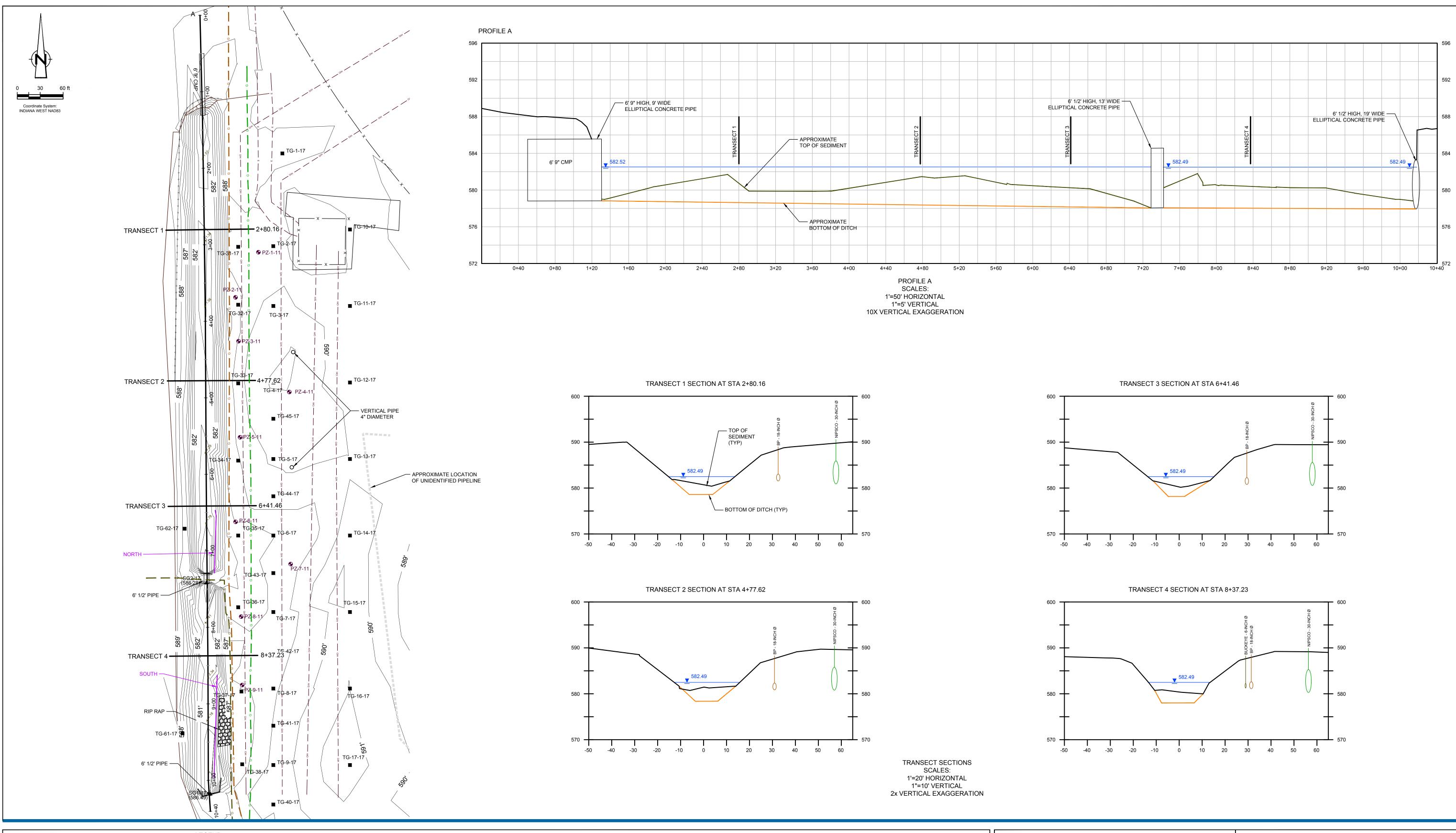


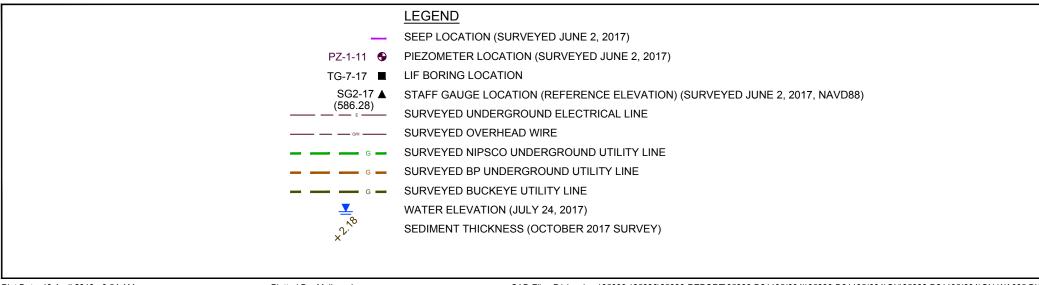


Source: AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

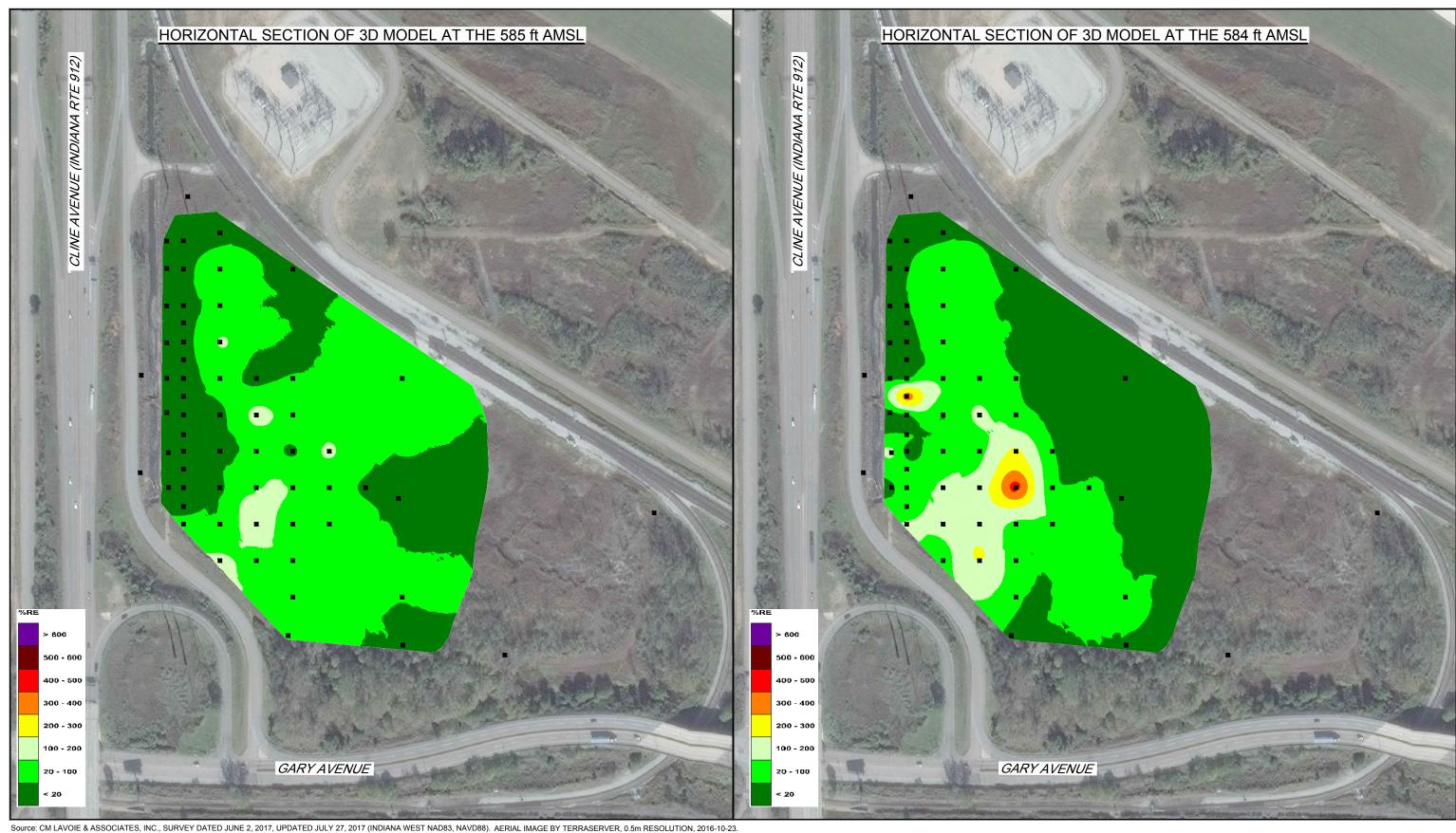
CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(004)\85886-D21105(004)GN\85886-D21105(004)GN\85886-D21105(004)GN

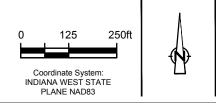
CLINE AVENUE OIL SPILL SITE GARY, INDIANA


BASE MAP


CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(004))85886-D21105(004)GN\85886-D21105(004)GN

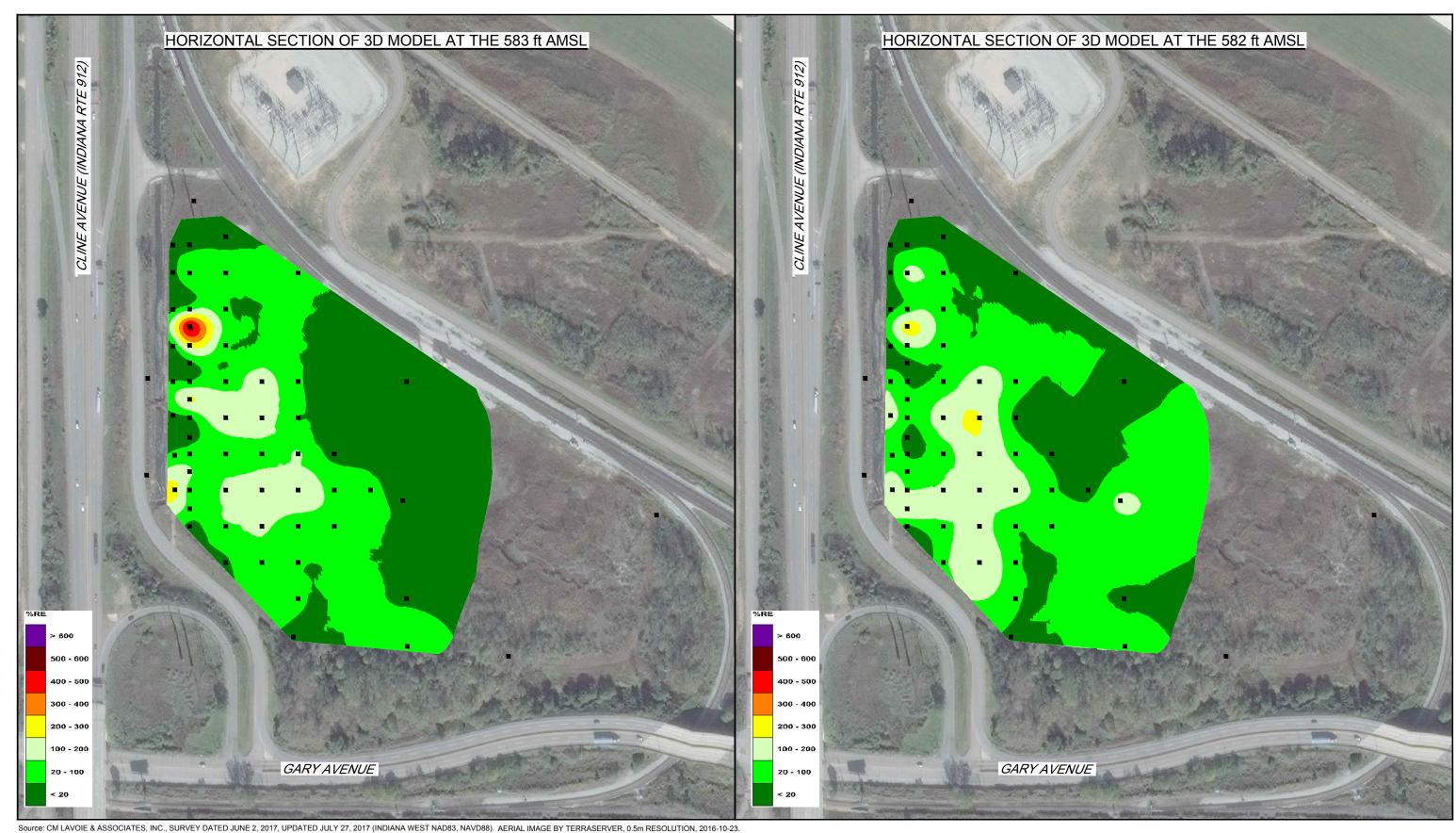
590'
PZ-1-11 🕤
MW-1-07 🔵
SG2-17 ▲ (586.28)
6
G G G
G G


85886-D21105 Apr 16, 2018



AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

LEGEND ■ LIF BORING LOCATION NOTE: THE HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE WAS DEVELOPED THROUGH THE CREATION OF A 3-D MODEL OF 62 LIF BORINGS THAT WERE COMPLETED AT THE SITE IN JULY AND OCTOBER 2017.



CLINE AVENUE OIL SPILL SITE GARY, INDIANA

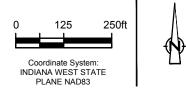
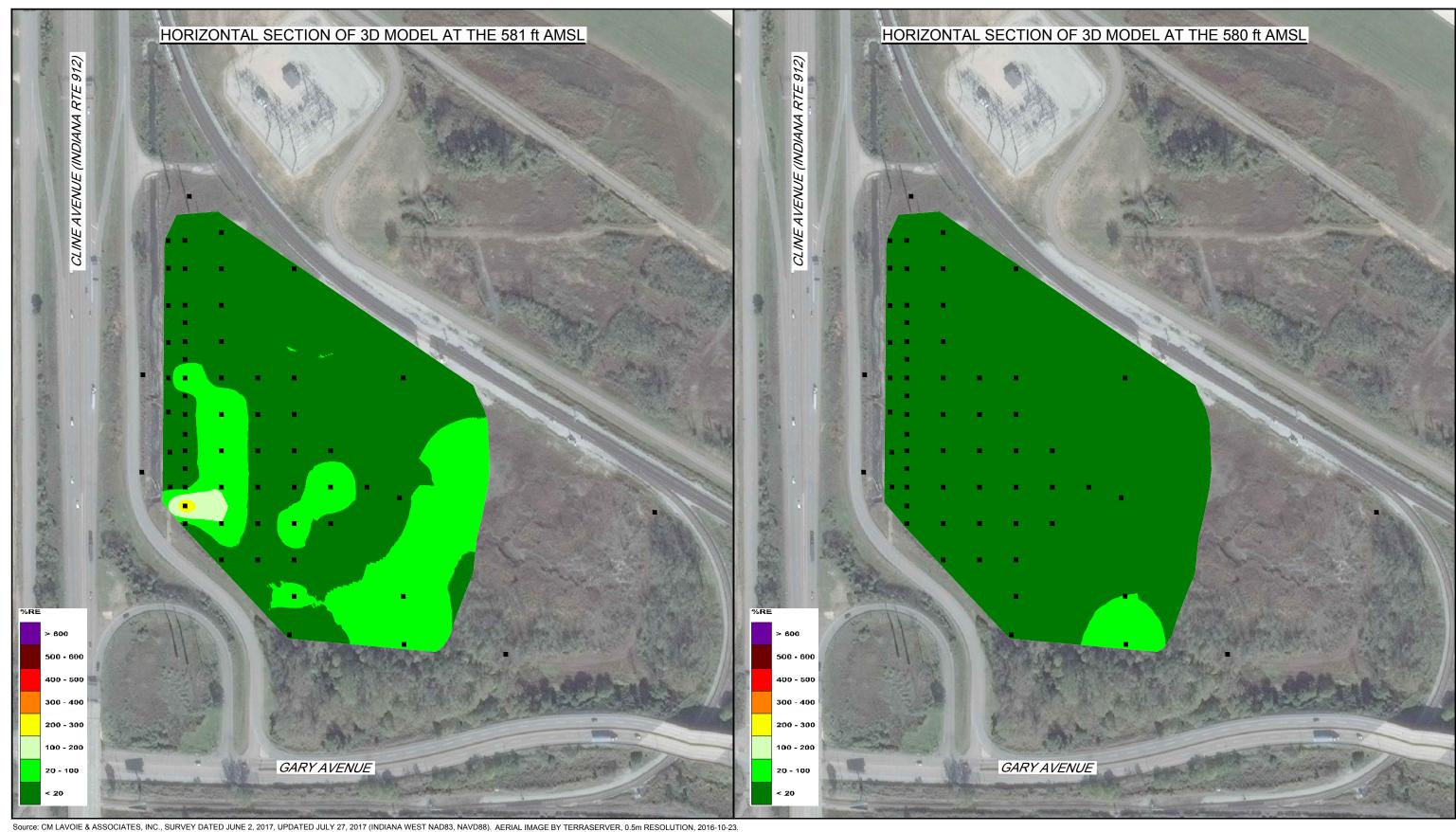

HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE ABOVE WATER TABLE (585 AND 584)

FIGURE 3.3

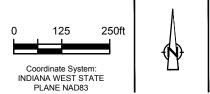
85886-D21105 Nov 27, 2017

LEGEND ■ LIF BORING LOCATION NOTE: THE HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE WAS DEVELOPED THROUGH THE CREATION OF A 3-D MODEL OF 62 LIF BORINGS THAT WERE COMPLETED AT THE SITE IN JULY AND OCTOBER 2017.



CLINE AVENUE OIL SPILL SITE GARY, INDIANA

HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE AT WATER TABLE (583 AND 582)

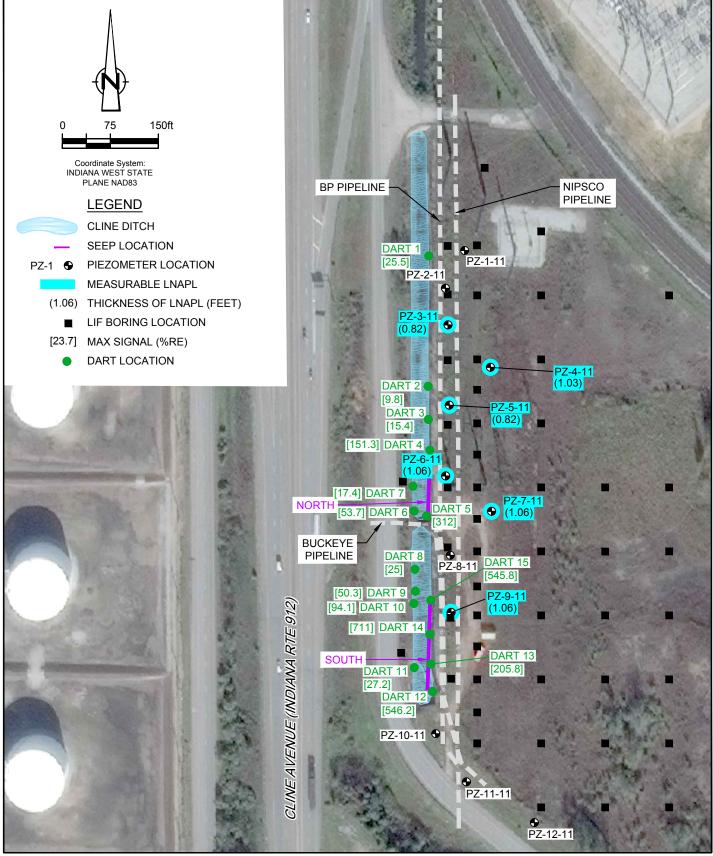

FIGURE 3.4

85886-D21105 Nov 27, 2017

AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

THAT WERE COMPLETED AT THE SITE IN JULY AND OCTOBER 2017.

LEGEND ■ LIF BORING LOCATION NOTE: THE HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE WAS DEVELOPED THROUGH THE CREATION OF A 3-D MODEL OF 62 LIF BORINGS



CLINE AVENUE OIL SPILL SITE GARY, INDIANA

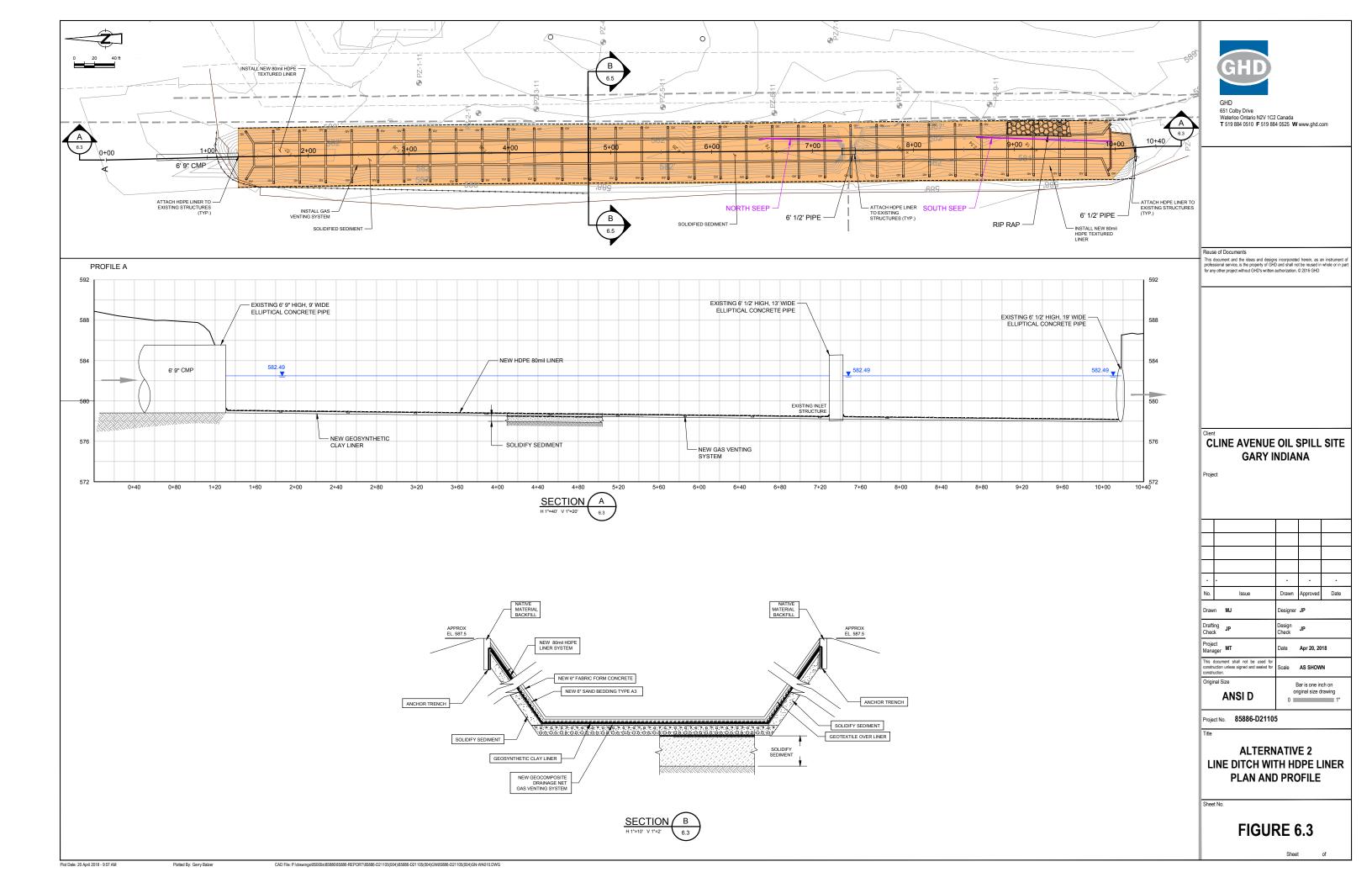
HORIZONTAL DISTRIBUTION OF HYDROCARBON RESPONSE BELOW WATER TABLE (581 AND 580)

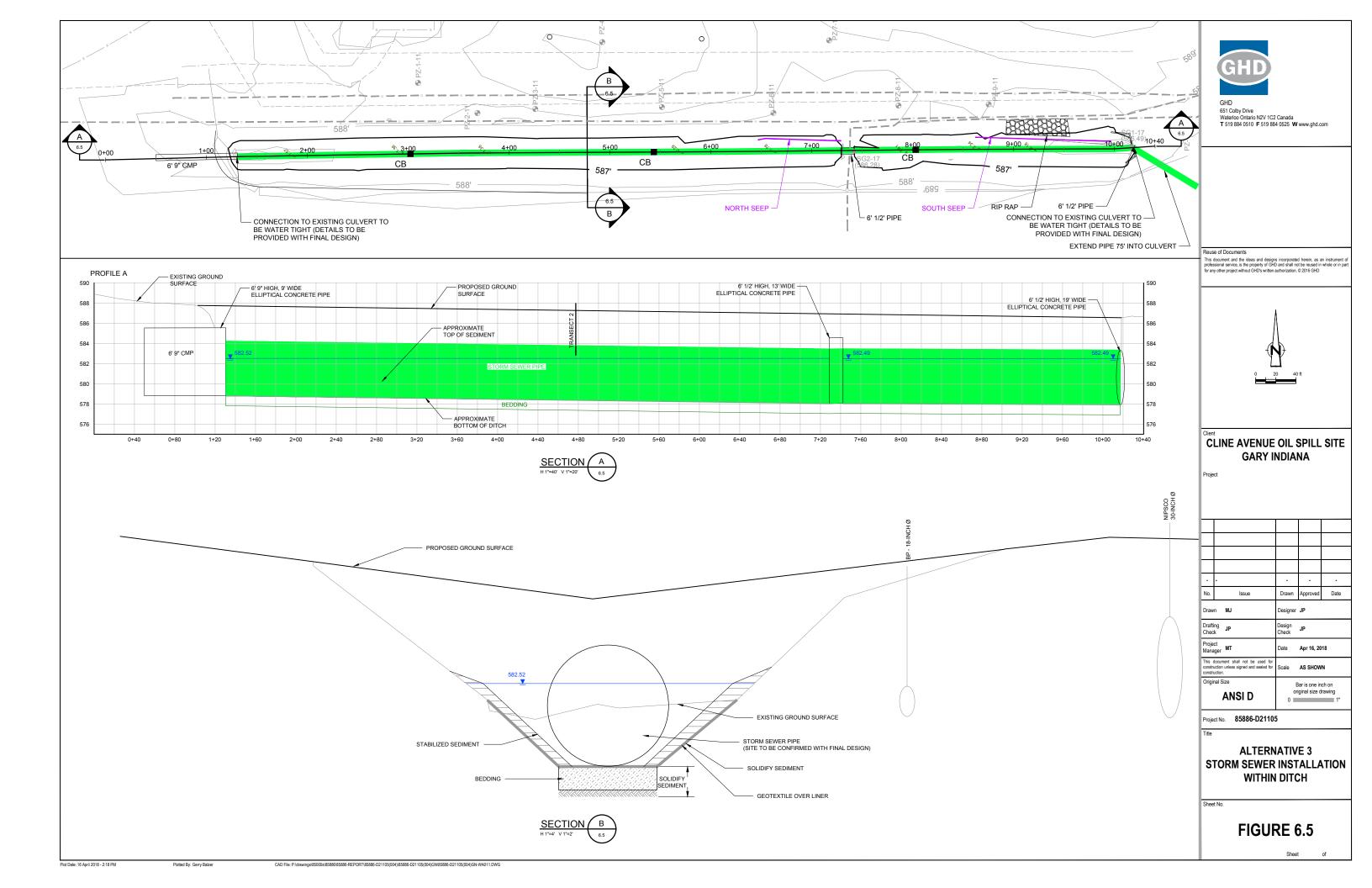
FIGURE 3.5

85886-D21105 Nov 27, 2017

Source: CM LAVOIE & ASSOCIATES, INC., SURVEY DATED JULY 27, 2017 (INDIANA WEST NAD83, NAVD88). AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

Nov 27, 2017




CLINE AVENUE OIL SPILL SITE GARY, INDIANA

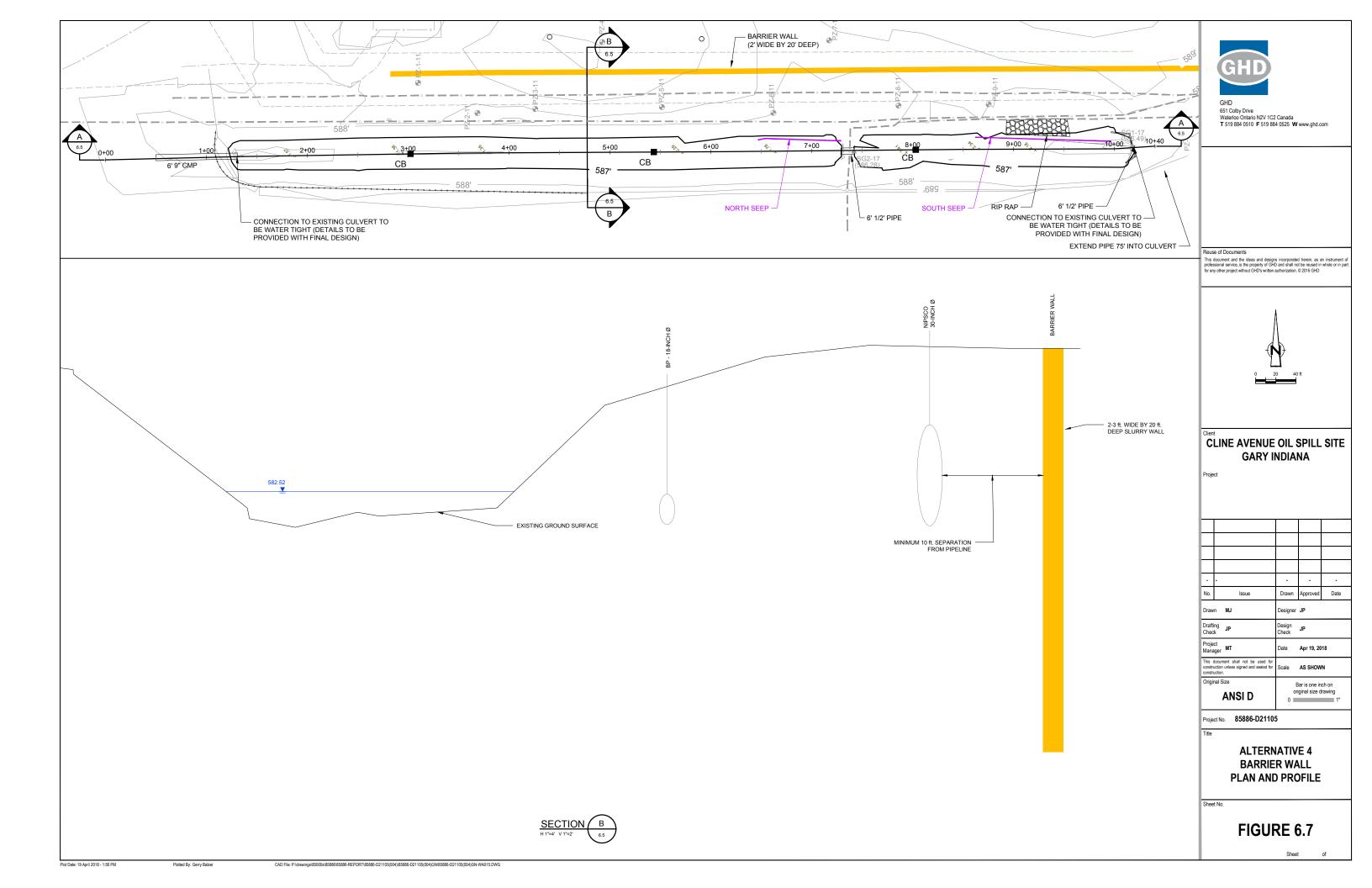

DART SAMPLE LOCATIONS

FIGURE 3.6

CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(004)\85886-D21105(004)GN\85886-D21105(004)GN\85886-D21105(004)GN

Table 3.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

		9/30	/2011	-	/2014		0/2014		4/2014		6/2015		1/2015
Location ID	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to s LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)		Depth to LNAPL (feet)	LNA Thick (fe
Monitoring Wells													
MW-2	592.34												
MW-3	591.42												
Piezometers													
PZ-1	589.12												
PZ-2	588.24												
PZ-3	588.97			6.57	1.65	6.72	1.93	6.60	1.84	6.85	2.13	6.63	1.(
PZ-4	590.86	8.23	3.09	7.92	0.31	8.05	2.02	7.84	1.76	8.28	2.37	6.82	0.7
PZ-5	589.24	7.20	1.01	6.96	1.32	7.15	2.53	6.98	2.77	7.25	3.19	6.98	1.6
PZ-6	587.98	5.99	0.23	5.79	0.49	6.09	1.49	5.89	0.91	6.19	2.37	5.85	1.9
PZ-7	588.43	6.31	0.83	5.40	2.29	5.64	3.31	5.50	2.89	5.86	3.98	5.31	2.1
PZ-8	587.51	7.12	1.23										
PZ-9	587.90	6.72	2.39	5.45	2.18	5.71	3.30	5.48	3.22	5.88	3.54	5.54	2.2
PZ-10	587.14	7.11	1.46										
PZ-11	586.42												
PZ-12	587.94												-
Staff Gauges													
GG-1-17 (south culvert)	586.49												-
SG-2-17 (mid-culvert)	586.28												
GG-3-17 (North Culvert)	585.56												
	Reference	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	
Location ID	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Eleva
	(ft AMSL) ⁽¹⁾	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft Al
Monitoring Wells													
MW-2	592.34	-	-	-	-	-	-	4.64	587.70				
MW-3	591.42	-	-	-	-	-	-	4.15	587.27				
Piezometers													
PZ-1	589.12	6.81	582.31	6.61	582.51	6.73	582.39	6.63	582.49	6.93	582.19	6.52	582
PZ-2	588.24	6.16	582.08	6.02	582.22	6.15	582.09	6.03	582.21	6.31	581.93	5.99	582
PZ-3	588.97	6.92	582.05	8.22		²⁾ 8.65		⁽²⁾ 8.44		(2) 8.98		⁽²⁾ 7.68	582
PZ-4	590.86	11.32	582.32 (2			²⁾ 10.07		⁽²⁾ 9.60	582.84	⁽²⁾ 10.65		⁽²⁾ 7.61	583
PZ-5	589.24	8.21	581.94 (2			²⁾ 9.68		⁽²⁾ 9.75	581.98	⁽²⁾ 10.44		⁽²⁾ 8.67	582
PZ-6	587.98	6.22	581.97 (2	²⁾ 6.28	582.14	²⁾ 7.58	581.74	⁽²⁾ 6.80	582.00	(2) 8.56	581.55	⁽²⁾ 7.84	581
PZ-7	588.43	7.14	582.04 (2	²⁾ 7.69	582.80	²⁾ 8.95	582.46	⁽²⁾ 8.39	582.64	⁽²⁾ 9.84	582.17	⁽²⁾ 7.46	582
PZ-8	587.51	8.35	580.27 (2	²⁾ 5.25	582.26	5.56	581.95	5.23	582.28	5.74	581.77	5.33	582
PZ-9	587.90	9.11	580.94 (2	²⁾ 7.63	582.23	²⁾ 9.01	581.86	(2) 8.70	582.10	⁽²⁾ 9.42	581.67	⁽²⁾ 7.82	582
PZ-10	587.14	8.57	579.88 (2		583.12	4.38	582.76	4.02	583.12	4.67	582.47	4.06	583
PZ-11	586.42	8.55	577.87	2.37	584.05	2.94	583.48	2.36	584.06	3.31	583.11	2.44	583
PZ-12	587.94	8.91	579.03	3.51	584.43	3.82	584.12	3.34	584.60	4.24	583.70	3.16	584
Staff Gauges													
SG-1-17 (south culvert)	586.49												
SG-2-17 (mid-culvert)	586.28												

-- -- -- --

--

--

--

--

Notes:

(1) ft AMSL - feet above mean sea level

(2) Correct Water Elevation due to the presence of LNAPL

NAVD88 - Datum for Elevations

SG-3-17 (North Culvert)

NA - not available

Reference elevations surveyed by C. M. Lavoie on June 2, 2017

585.56

1/2015	9/3/2015					
LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)				
1.05	6.59	1.37				
0.79	NA	NA				
1.69	6.94	1.62				
1.99	5.81	0.44				
2.15	5.43	2.74				
2.28	5.44	2.03				

ו)	Depth to Water (feet)	Water Elevation (ft AMSL)		Depth to Water (feet)	Water Elevation (ft AMSL)	
	6.52	582.60		6.61	582.51	
	5.99	582.25		6.00	582.24	
(2)	7.68	582.24	(2)	7.96	582.24	(2)
(2)	7.61	583.96	(2)	7.87	582.99	(2)
(2)	8.67	582.09	(2)	8.56	582.14	(2)
(2)	7.84	581.93	(2)	6.25	582.13	(2)
(2)	7.46	582.91	(2)	8.17	582.73	(2)
	5.33	582.18		5.23	582.28	
(2)	7.82	582.13	(2)	7.47	582.26	(2)
	4.06	583.08		4.10	583.04	
	2.44	583.98		2.77	583.65	
	3.16	584.78		3.81	584.13	

Table 3.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

		12/3	/2015	3/3/	2016	6/16	/2016	9/29	/2016	12/22	2/2016	5/1	8/20			
Location ID	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	т			
Monitoring Wells																
MW-2	592.34															
MW-3	591.42															
Piezometers																
PZ-1	589.12															
PZ-2	588.24															
PZ-3	588.97	6.52	0.82	6.56	1.23	6.52	0.02	6.30	0.10	6.72	2.59	6.31				
PZ-4	590.86	NA	NA	7.29	0.09			7.73	0.83	8.24	0.64	5.81				
PZ-5	589.24	6.91	0.04	6.94	1.42	6.84	2.13	6.66	0.86	7.11	3.33	6.78				
PZ-6	587.98	5.71	2.65	5.88	0.96	5.68	0.83	5.39	0.96	6.09	1.73	5.43				
PZ-7	588.43	5.34	1.50	5.22	1.54	5.28	2.19	5.21	1.89	5.67	3.48	4.75				
PZ-8	587.51															
PZ-9	587.90	5.50	1.83	5.48	1.93	5.31	1.91	5.13	1.09	5.73	3.45	5.17				
PZ-10	587.14															
PZ-11	586.42															
PZ-12	587.94															
Staff Gauges																
SG-1-17 (south culvert)	586.49															
SG-2-17 (mid-culvert)	586.28															
SG-3-17 (North Culvert)	585.56															
	Reference	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to				
Location ID	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	1			
	(ft AMSL) ⁽¹⁾	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(
Monitoring Wells																
MW-2	592.34											4.16				
MW-3	591.42											3.63				
Piezometers																
	589.12	6.34	582.78	6.43	582.69	6.58	582.54	6.36	582.76	6 78	582.34	6 1 2				
PZ-1 PZ-2	589.12 588.24	6.34 5.87	582.78 582.37	6.43 5.97	582.69 582.27	6.58 5.97	582.54 582.27	6.36 5.71	582.76 582.53	6.78 6.21	582.34 582.03	6.12 5.80				
PZ-1 PZ-2	588.24	5.87	582.37	5.97	582.27	5.97	582.27	5.71	582.53	6.21	582.03	5.80				
PZ-1	588.24 588.97		582.37 582.37 ⁽²	5.97) 7.79	582.27 582.29 ⁽²	5.97) 6.54	582.27 582.45 ⁽²	5.71) 6.40	582.53 582.66	6.21 ⁽²⁾ 9.31	582.03 581.99 ⁽²	5.80 ²⁾ 8.22				
PZ-1 PZ-2 PZ-3 PZ-4	588.24 588.97 590.86	5.87 7.34 7.44	582.37 582.37 ⁽² 583.42 ⁽²	5.97) 7.79) 7.38	582.27 582.29 ⁽² 583.56 ⁽²	5.97 6.54 7.66	582.27 582.45 ⁽² 583.20 ⁽²	5.71) 6.40) 8.56	582.53 582.66 583.05	6.21 (2) 9.31 (2) 8.88	582.03 581.99 ⁽² 582.56 ⁽²	5.80 ²⁾ 8.22 ²⁾ 7.66				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5	588.24 588.97 590.86 589.24	5.87 7.34 7.44 6.95	582.37 582.37 ⁽²⁾ 583.42 ⁽²⁾ 582.33 ⁽²⁾	5.97) 7.79) 7.38) 8.36	582.27 582.29 ⁽² 583.56 ⁽² 582.16 ⁽²	5.97 6.54 7.66 8.97	582.27 582.45 ⁽²⁾ 583.20 ⁽²⁾ 582.19 ⁽²⁾	5.71 5.71 6.40 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.40 5.75	582.53 582.66 583.05 582.49	6.21 (2) 9.31 (2) 8.88 (2) 10.44	582.03 581.99 ⁽²⁾ 582.56 ⁽²⁾ 581.80 ⁽²⁾	5.80 ²⁾ 8.22 ²⁾ 7.66 ²⁾ 9.63				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6	588.24 588.97 590.86 589.24 587.98	5.87 7.34 7.44 6.95 8.36	582.37 582.37 ⁽²⁾ 583.42 ⁽²⁾ 582.33 ⁽²⁾ 582.01 ⁽²⁾	5.97) 7.79) 7.38) 8.36) 6.84	582.27 582.29 ⁽²⁾ 583.56 ⁽²⁾ 582.16 ⁽²⁾ 582.00 ⁽²⁾	5.97 6.54 7.66 8.97 6.51	582.27 582.45 ⁽²⁾ 583.20 ⁽²⁾ 582.19 ⁽²⁾ 582.22 ⁽²⁾	5.71 5.40 5.56 5.71 6.40 5.71 6.40 5.71 6.40 5.71 6.40	582.53 582.66 583.05 582.49 582.49	6.21 (2) 9.31 (2) 8.88 (2) 10.44 (2) 7.82	582.03 581.99 ⁽² 582.56 ⁽² 581.80 ⁽² 581.72 ⁽²	5.80 ²⁾ 8.22 ²⁾ 7.66 ²⁾ 9.63 ²⁾ 6.45				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7	588.24 588.97 590.86 589.24 587.98 588.43	5.87 7.34 7.44 6.95 8.36 6.84	582.37 (2) 582.37 (2) 583.42 (2) 582.33 (2) 582.01 (2) 582.94 (2)	5.97 7.79 7.38 8.36 6.84 6.76	582.27 582.29 (2 583.56 (2 582.16 (2 582.00 (2 583.06 (2	5.97 6.54 7.66 8.97 6.51 7.47	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.93 (2)	5.71 6.40 8.56 7.52 6.35 7.10	582.53 582.66 583.05 582.49 582.49 583.03	6.21 (2) 9.31 (2) 8.88 (2) 10.44 (2) 7.82 (2) 9.15	582.03 581.99 (2 582.56 (2 581.80 (2 581.72 (2 582.41 (2	5.80 2) 8.22 2) 7.66 2) 9.63 2) 6.45 2) 7.69				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8	588.24 588.97 590.86 589.24 587.98 588.43 587.51	5.87 7.34 7.44 6.95 8.36 6.84 5.26	582.37 (2 582.37 (2 583.42 (2 582.33 (2 582.01 (2 582.94 (2 582.25 (2	5.97) 7.79) 7.38) 8.36) 6.84) 6.76 5.25	582.27 582.29 (2 583.56 (2 582.16 (2 582.00 (2 583.06 (2 582.26 (2	5.97 6.54 7.66 8.97 6.51 7.47 5.12	582.27 582.45 583.20 582.19 582.22 582.93 582.39	5.71 6.40 5.56 5.72 5.72 5.752 5.752 5.752 5.752 5.752 7.52 5.71 6.35 7.10 4.82	582.53 582.66 583.05 582.49 582.49 583.03 582.69	6.21 (2) 9.31 (2) 8.88 (2) 10.44 (2) 7.82 (2) 9.15 5.61	582.03 581.99 (2 582.56 (2 581.80 (2 581.72 (2 582.41 (2 581.90 (2	5.80 ²⁾ 8.22 ²⁾ 7.66 ²⁾ 9.63 ²⁾ 6.45 ²⁾ 7.69 4.85				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33	582.37 (2) 582.37 (2) 583.42 (2) 582.33 (2) 582.01 (2) 582.94 (2) 582.25 (2) 582.22 (2)	5.97) 7.79) 7.38) 8.36) 6.84) 6.76 5.25) 7.41	582.27 582.29 (2) 583.56 (2) 582.16 (2) 583.06 (2) 583.06 (2) 582.26 582.23	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.33 (2) 582.39 582.40	5.71 6.40 8.56 7.52 6.35 7.10 4.82 6.22	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66	6.21 (2) 9.31 (2) 8.88 (2) 10.44 (2) 7.82 (2) 9.15 5.61 (2) 9.18	582.03 581.99 (2 582.56 (2 581.80 (2 581.72 (2 582.41 (2 581.90 581.83 581.83 (2	5.80 2 8.22 2 7.66 2 9.63 2 6.45 2 7.69 4.85 2 6.79				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89	582.37 (2 582.37 (2 583.42 (2 582.33 (2 582.01 (2 582.94 (2 582.25 (2 582.22 (2 583.25 (2	5.97) 7.79) 7.38) 8.36) 6.84) 6.76 5.25) 7.41 3.98	582.27 582.29 (2 583.56 (2 582.16 (2 583.06 (2 582.26 582.23 583.16 (2	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22 4.03	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.39 (2) 582.40 (2) 583.11 (2)	5.71 6.40 8.56 7.52 6.35 7.10 4.82 6.22 3.74	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66 583.40	$\begin{array}{cccc} & 6.21 \\ (2) & 9.31 \\ (2) & 8.88 \\ (2) & 10.44 \\ (2) & 7.82 \\ (2) & 9.15 \\ & 5.61 \\ (2) & 9.18 \\ & 4.43 \end{array}$	582.03 581.99 (2 582.56 (2 581.72 (2 582.41 (2 581.90 (2 581.83 (2 581.83 (2 582.71 (2	5.80 2 8.22 2 7.66 2 9.63 2 6.45 2 7.69 4.85 2 6.79 3.36				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33	582.37 (2) 582.37 (2) 583.42 (2) 582.33 (2) 582.01 (2) 582.94 (2) 582.25 (2) 582.22 (2)	5.97) 7.79) 7.38) 8.36) 6.84) 6.76 5.25) 7.41	582.27 582.29 (2) 583.56 (2) 582.16 (2) 583.06 (2) 583.06 (2) 582.26 582.23	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.33 (2) 582.39 582.40	5.71 6.40 8.56 7.52 6.35 7.10 4.82 6.22	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66	6.21 (2) 9.31 (2) 8.88 (2) 10.44 (2) 7.82 (2) 9.15 5.61 (2) 9.18	582.03 581.99 (2 582.56 (2 581.80 (2 581.72 (2 582.41 (2 581.90 581.83 581.83 (2	5.80 2 8.22 2 7.66 2 9.63 2 6.45 2 7.69 4.85 2 6.79				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10 PZ-11 PZ-12	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14 586.42	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28	582.37 (2 582.37 (2 583.42 (2 582.33 (2 582.01 (2 582.94 (2 582.25 (2 583.25 (2 583.25 (2 583.25 (2 584.14 (2	5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33	582.27 582.29 (2 583.56 (2 582.16 (2 583.06 (2 582.26 582.23 583.16 584.09	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22 4.03 2.64	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.39 (2) 582.40 (2) 583.11 583.78	5.71 6.40 8.56 7.52 6.35 7.10 4.82 6.22 3.74 2.37	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66 583.40 584.05	$\begin{array}{cccc} & 6.21 \\ (2) & 9.31 \\ (2) & 8.88 \\ (2) & 10.44 \\ (2) & 7.82 \\ (2) & 9.15 \\ & 5.61 \\ (2) & 9.18 \\ & 4.43 \\ & 3.01 \end{array}$	582.03 581.99 (2 582.56 (2 581.72 (2 582.41 (2 581.90 (2 581.90 (2 581.83 (2 581.83 (2 582.71 582.71 583.41 (2	5.80 2) 8.22 2) 7.66 2) 9.63 2) 6.45 2) 7.69 4.85 2) 6.79 3.36 1.57				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10 PZ-11	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14 586.42	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28	582.37 (2 582.37 (2 583.42 (2 582.33 (2 582.01 (2 582.94 (2 582.25 (2 583.25 (2 583.25 (2 583.25 (2 584.14 (2	5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33	582.27 582.29 (2 583.56 (2 582.16 (2 583.06 (2 582.26 582.23 583.16 584.09	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22 4.03 2.64	582.27 582.45 (2) 583.20 (2) 582.19 (2) 582.22 (2) 582.39 (2) 582.40 (2) 583.11 583.78	5.71 6.40 8.56 7.52 6.35 7.10 4.82 6.22 3.74 2.37	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66 583.40 584.05	$\begin{array}{cccc} & 6.21 \\ (2) & 9.31 \\ (2) & 8.88 \\ (2) & 10.44 \\ (2) & 7.82 \\ (2) & 9.15 \\ & 5.61 \\ (2) & 9.18 \\ & 4.43 \\ & 3.01 \end{array}$	582.03 581.99 (2 582.56 (2 581.72 (2 582.41 (2 581.90 (2 581.90 (2 581.83 (2 581.83 (2 582.71 582.71 583.41 (2	5.80 2) 8.22 2) 7.66 2) 9.63 2) 6.45 2) 7.69 4.85 2) 6.79 3.36 1.57				
PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10 PZ-11 PZ-12 Staff Gauges	588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14 586.42 587.94	5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28 3.04	582.37 (2 583.42 (2 582.33 (2 582.01 (2 582.94 (2 582.25 582.22 583.25 584.14 584.90 584.90	5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33 2.99	582.27 582.29 (2 583.56 (2 582.00 (2 583.06 (2 582.26 582.23 583.16 584.09 584.95 584.95	5.97 6.54 7.66 8.97 6.51 7.47 5.12 7.22 4.03 2.64 3.55	582.27 582.45 (2 583.20 (2 582.19 (2 582.22 (2 582.39 (2 582.40 (2 583.11 583.78 584.39 (2	5.71 6.40 8.56 7.52 6.35 7.10 4.82 0. 6.22 3.74 2.37 3.50	582.53 582.66 583.05 582.49 582.49 583.03 582.69 582.66 583.40 584.05 584.44	6.21 ⁽²⁾ 9.31 ⁽²⁾ 8.88 ⁽²⁾ 10.44 ⁽²⁾ 7.82 ⁽²⁾ 9.15 5.61 ⁽²⁾ 9.18 4.43 3.01 3.87	582.03 581.99 (2 582.56 (2 581.80 (2 581.72 (2 582.41 (2 581.90 581.83 582.71 582.71 583.41 584.07	5.80 2) 8.22 2) 7.66 2) 9.63 2) 6.45 2) 7.69 4.85 2) 6.79 3.36 1.57 2.15				

Notes:

(1) ft AMSL - feet above mean sea level

(2) Correct Water Elevation due to the presence of LNAPL

NAVD88 - Datum for Elevations

NA - not available

Reference elevations surveyed by C. M. Lavoie on June 2, 2017

8/2017	6/27/2017		
LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	
1.91	6.49	1.02	
1.85	7.56	0.23	
2.85	6.81	0.92	
1.02	5.60	0.87	
2.94	5.14	1.86	
1.62	5.26	1.34	

Water Elevation (ft AMSL)		Depth to Water (feet)	Water Elevation (ft AMSL)	
588.18 587.79				
583.00 582.44 582.47 584.87	(2) (2)	 7.51 7.79	 582.38 583.28	(2) (2)
582.18 582.45 583.39	(2) (2) (2)	7.73 6.47 7.00	582.34 582.29 583.10	(2) (2) (2)
582.66 582.57 583.78	(2)	 6.60	 582.51	(2)
584.85 585.79				

Table 3.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

		6/29	/2017	7/6/	2017	7/13	/2017	7/17	/2017	7/24	/2017	7/27	7/2017
Location ID	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)									
Monitoring Wells													
MW-2	592.34												
MW-3	591.42												
Piezometers													
PZ-1	589.12												
PZ-2	588.24												
PZ-3	588.97	6.51	1.10	6.43	0.88			6.29	0.69	5.99	0.82		
PZ-4	590.86	7.76	0.26	7.71	0.60			7.66	1.25	7.37	1.03		
PZ-5	589.24	6.81	0.87	6.65	0.77			6.58	0.79	6.30	0.82		
PZ-6	587.98	5.60	0.54	5.51	0.70			5.39	0.89	5.01	1.06		
PZ-7	588.43	5.17	1.66	5.14	1.65			5.10	1.71	4.86	1.06		
PZ-8	587.51												
PZ-9	587.90	5.26	1.53	5.21	1.46			5.16	1.54	4.75	1.06		
PZ-10	587.14												
PZ-11	586.42												
PZ-12	587.94												
Staff Gauges													
SG-1-17 (south culvert)	586.49												
SG-2-17 (mid-culvert)	586.28												
SG-3-17 (North Culvert)	585.56												

Location ID	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to Water (feet)	Water Elevation (ft AMSL)										
Monitoring Wells													
MW-2	592.34												
MW-3	591.42												
Piezometers													
PZ-1	589.12											6.05	583.07
PZ-2	588.24											5.48	582.76
PZ-3	588.97	7.61	582.35	⁽²⁾ 7.31	582.45	(2)		6.98	582.61	⁽²⁾ 6.81	582.90	(2)	
PZ-4	590.86	8.02	583.07	(2) 8.31	583.09	(2)		8.91	583.08	(2) 8.40	583.39	(2)	
PZ-5	589.24	7.68	582.34	⁽²⁾ 7.42	582.51	(2)		7.37	582.58	⁽²⁾ 7.12	582.86	(2)	
PZ-6	587.98	6.14	582.33	⁽²⁾ 6.21	582.40	(2)		6.28	582.50	(2) 6.07	582.86	(2)	
PZ-7	588.43	6.83	583.09	(2) 6.79	583.13	(2)		6.81	583.16	⁽²⁾ 5.92	583.46	(2)	
PZ-8	587.51											4.61	582.90
PZ-9	587.90	6.79	582.49	(2) 6.67	582.54	(2)		6.70	582.59	⁽²⁾ 5.81	583.04	(2)	
PZ-10	587.14											3.54	583.60
PZ-11	586.42											2.21	584.21
PZ-12	587.94											3.19	584.75
Staff Gauges													
SG-1-17 (south culvert)	586.49			4.41	582.08	4.32	582.17	4.27	582.22	4.00	582.49		
SG-2-17 (mid-culvert)	586.28			4.17	582.11	4.09	582.19	4.06	582.22	3.79	582.49		
SG-3-17 (North Culvert)	585.56			3.44	582.12	3.34	582.22	3.30	582.26	3.04	582.52		

Notes:

	8/10	/2017	8/14/2017			
PL		LNAPL Thickness		Thickness		
et)	(feet)	(feet)	(feet)	(feet)		
			6.30	0.62		
			7.68	1.43		
			6.61	0.71		
			5.33	0.97		
			5.14	2.13		
			5.05	1.40		

Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	
		6.42 5.84	585.92 585.58	
		6.32	582.80	
		5.65	582.59	
		6.92	582.61	(2)
		9.11	583.04	(2)
		7.32	582.56	(2)
		6.30	582.55	(2)
		7.27	583.08	(2)
		4,78	582.73	
		6.45	582.71	(2)
		3.86	583.28	
		2.68	583.74	
		3.78	584.16	
4.34	582.15	4.25	582.24	
4.10	582.18	4.06	582.22	
3.31	582.25	3.27	582.29	

Alternative 1 - Continue Current Approach - Cost Estimate Cline Avenue Oil Spill Site Glenn Springs Holdings Gary, Indiana

Item	Task	Quantity	Unit	Unit Cost	Cost
Annua	al Operation and Maintenance Costs				
1.	Boom Maintenance in Ditch (weekly maintenance for 8 months, twice a week maintenance for 4 months, and required reporting)	82	per visit	\$ 2,500	\$ 205,000
2.	Brush Clearing (for access to ditch)	1	L.S	\$ 8,730	\$ 8,730
3.	Bird Deterrents	1	L.S	\$ 13,865	\$ 13,865
4.	Aquatic Vegetation Control	1	L.S.	\$ 7,703	\$ 7,703
	Total Estimated	Annual Opera	ation and Main	tenance Cost	\$ 235,000
Total	Present Costs				
	Boom Maintenance in Ditch (discount factor of 0.4% for 30 years)				\$ 5,784,446
	Brush Clearing (for access to ditch) (discount factor of 0.4% for 30 years)				\$ 246,319
	Bird Deterrents (discount factor of 0.4% for 30 years)				\$ 391,212
	Aquatic Vegetation Control (discount factor of 0.4% for 30 years)				\$ 217,340
			Total Pre	esent Costs ⁽¹⁾	\$ 6,639,000

Notes:

(1) Total Costs have been rounded to three significant figures.

L.S. Lump Sum

Interest rates: https://www.whitehouse.gov/wp-content/uploads/2019/12/M-20-07.pdf

Alternative 2 - Line Ditch with HDPE Liner - Cost Estimate Cline Avenue Oil Spill Site Glenn Springs Holdings Gary, Indiana

ltem	Task	Quantity	Unit		Unit Cost	Cost
Capita	al Costs - HDPE Liner (Design Life of 20 years)					
1.	Mobilization/Demobilization	1	L.S	\$	118,619	\$ 118,619
2.	Site Setup (General Conditions, Erosion Controls, Staging Areas, surveying)	1	L.S	\$	162,266	\$ 162,266
3.	Creek By-Pass System (setup and operations, assumed 10,000 gpm)	1	L.S	\$	369,720	\$ 369,720
4.	Water Treatment (setup, operations, carbon	1	L.S	\$	71,890	\$ 71,890
5.	Excavation	1800	cubic yard	\$	102.70	\$ 184,900
6.	Liner (GCL, HDPE Liner, Geotextile over Liner, Sand fill, fabric form concrete)	900	linear feet	\$	684.66	\$ 616,200
7.	Install pipe within culvert	75	feet	\$	1,027	\$ 77,025
8.	Transportation and Disposal of Sediment	3000	ton		77.03	231,100
9.	Transportation and Disposal of Water	25000	gallons		0.94	23,600
					Subtotal	\$ 1,855,320
			Con	tinge	ncy (20%)	\$ 371,100
			Engineering and		o ()	\$ 148,400
			Total Estimate	ed Ca	pital Cost	\$ 2,375,000
Future	e Capital Costs					
1.	HDPE Liner Re-installation (at year 20)					\$ 2,375,000
Annua	al Operation and Maintenance Costs					
1.	Monitoring/Inspections	12	per event	\$	514	\$ 6,162
2.	Semi-Annual Reporting	2	L.S	\$	2567.5	\$ 5,135
	Estima	ated Annual	Operation and Ma	intena	ance Cost	\$ 11,297
			-		ncy (20%)	\$ 2,259
	Total Estima	ited Annual	Operation and Ma	intena	ance Cost	\$ 13,600

Alternative 2 - Line Ditch with HDPE Liner - Cost Estimate Cline Avenue Oil Spill Site Glenn Springs Holdings Gary, Indiana

ltem	Task	Quantity	Unit	Unit Cost	Cost
Total	Present Costs				
	Capital Cost - HDPE Liner				\$ 2,375,000
	Future Capital Cost - Replacement HDPE Liner (discount factor of 0.4% for 20 years)				2,192,751
	Monitoring/Inspections (discount factor of 0.4% for 30 years)				\$ 208,646
	Semi-Annual Reporting (discount factor of 0.4% for 30 years)				\$ 173,872
			Total Pres	ent Costs ⁽¹⁾	\$ 4,950,000

Notes:

(1) Total Costs have been rounded to three significant figures

cu yd cubic yard

ft feet

L.S. Lump Sum

Interest rates: https://www.whitehouse.gov/wp-content/uploads/2019/12/M-20-07.pdf

Alternative 3 - Install Storm Sewer in Ditch and Backfill Ditch with Soil - Cost Estimate Cline Avenue Oil Spill Site Glenn Springs Holdings Gary, Indiana

ltem	Task	Quantity	Unit		Unit Cost	Cost		
Capita	al Costs							
1.	Mobilization/Demobilization	1	L.S	\$	118,619	\$	118,619	
2.	Site Setup (General Conditions, Erosion Controls Staging Areas, surveying)	, 1	L.S	\$	162,266	\$	162,266	
3.	Creek By-Pass System (setup and operations, assumed 10,000 gpm)	1	L.S	\$	369,720	\$	369,720	
4.	Water Treatment (setup, operations, carbon)	1	L.S	\$	82,160	\$	82,160	
5.	Excavation/Grading Ditch	1800	cubic yard	\$	102.70	\$	184,900	
6.	Culvert Pipe Install (900 lineal feet, including 1,11 cubic yard of sand fill)	0 900	linear feet	\$	491.13	\$	442,000	
7.	Culvert Connection at downstream end	1	L.S.	\$	205,400		205,400	
8.	Cut-off Wall (25' long x 20' deep)	500	sq.ft.	\$	10.27		5,135	
9.	Transportation and Disposal of Sediment	3000	ton	\$	77.03		231,100	
10.	Transportation and Disposal of Water	25000	gallons	\$	0.94		23,600	
11.	Seeding and Restoration	1	L.S.	\$	20,540		20,500	
			Engineering and Cor		Subtotal sight (8%) ncy (20%)	\$ \$	1,845,400 147,600 369,100	
			Total Estimat	ed Ca	pital Cost	\$	2,362,000	
Annua	al Operation and Maintenance Costs							
1.	Monitoring/Inspections	12	per event	\$	514	\$	6,162	
2.	Semi-Annual Reporting	2	L.S	\$	2567.5	\$	5,135	
	E	stimated Annual	Operation and Ma Cor		ance Cost ncy (20%)	\$ \$	11,297 2,259	

Total Estimated Annual Operation and Maintenance Cost \$ 13,600

Alternative 3 - Install Storm Sewer in Ditch and Backfill Ditch with Soil - Cost Estimate **Cline Avenue Oil Spill Site** Glenn Springs Holdings Gary, Indiana

Item	Task	Quantity	Unit	Unit Cost	Cost
Total	Present Costs				
	Capital Cost - Culvert Pipe				\$ 2,362,000
	Monitoring/Inspections (discount factor of 0.4% for 30 years)				\$ 208,646
	Semi-Annual Reporting (discount factor of 0.4% for 30 years)				\$ 173,872
			Total Pres	ent Costs ⁽¹⁾	\$ 2,745,000
Natao					

Notes:

(1) L.S. Total Costs have been rounded to three significant figures

Lump Sum

Interest rates: https://www.whitehouse.gov/wp-content/uploads/2019/12/M-20-07.pdf

Alternative 4 - Install Barrier Wall and Continue Boom Maintenance - Cost Estimate Cline Avenue Oil Spill Site Glenn Springs Holdings Gary, Indiana

ltem	Task	Quantity	Unit	ι	Jnit Cost		Cost
Capita	Il Costs						
1.	Mobilization/Demobilization	1	L.S	\$	51,350	\$	51,350
2.	Site Setup (General Conditions, Erosion Controls, Staging Areas, surveying)	1	L.S	\$	77,025	\$	77,025
3.	Barrier Wall (slurry wall - 900' long x 20' deep)	18000	sq.ft.	\$	10.27		184,860
4.	Transportation and Disposal of Soil	1500	ton	\$	77.03		115,500
5.	Seeding and Restoration	1	L.S.	\$	20,540		20,500
			Engineering ar C		Subtotal sight (8%) ncy (20%)	\$ \$	449,235 35,900 89,800
Annua	Il Operation and Maintenance Costs		Total Estim	nated Ca	apital Cost	\$	575,000
1.	Boom Maintenance in Ditch (weekly maintenance for 8 months, twice a week maintenance for 4 months, and required reporting)	82	per visit	\$	2,500	\$	205,000
2.	Brush Clearing (for access to ditch)	1	L.S	\$	8,730	\$	8,730
3.	Bird Deterrents	1	L.S	\$	13,865	\$	13,865
4.	Aquatic Vegetation Control	1	L.S.	\$	7,703	\$	7,703
	Total Estim	ated Annual	Operation and I	Mainten	ance Cost	\$	235,000
Total I	Present Costs						
	Capital Cost - Barrier Wall					\$	575,000
	Boom Maintenance in Ditch (discount factor of 0.4% for 30 years)					\$	5,784,446
	Brush Clearing (for access to ditch) (discount factor of 0.4% for 30 years)					\$	246,319
	Bird Deterrents (discount factor of 0.4% for 30 years)					\$	391,212
	Aquatic Vegetation Control (discount factor of 0.4% for 30 years)					\$	217,340
			Tota	l Preser	nt Costs ⁽¹⁾	\$	7,214,000

Notes:

(1) Total Costs have been rounded to three significant figures.
 L.S. Lump Sum
 Interest rates: https://www.whitehouse.gov/wp-content/uploads/2019/12/M-20-07.pdf

GHD | Focused Feasibility Study Report | 085886 (4)

Appendix A Design Investigation Report

Design Investigation Report

Cline Avenue Oil Spill Site Gary, Indiana

Glenn Springs Holdings (GSH)

Table of Contents

1.	Introd	uction		1
2.	Desig	n Investiga	tion Activity Summary	1
	2.1	Investigat	ion Area Mapping	1
		2.1.1 2.1.2 2.1.3	Topographic Mapping Utility Clearances/Buried Utility Mapping Geophysical Analysis	2
	2.2	Investigat	ion Observations	3
	2.3	LNAPL Fi	ngerprint Analysis	3
		2.3.1 2.3.2	Chemical Property Analysis Physical Property Analysis	
	2.4	Groundwa	ater Investigation	4
		2.4.1 2.4.2	Water/LNAPL Level Monitoring Surface Water Level Monitoring	
	2.5	LIF Invest	igation	5
		2.5.1 2.5.2	Methodologies Findings	
3.	Conce	eptual Site	Model of LNAPL Transport	6
4.	Concl	usions		6

Figure Index

Figure 1.1	Investigation Area Location
Figure 1.2	Investigation Area Plan
Figure 2.1	Base Map
Figure 2.2	In-Well LNAPL Thickness at PZ-3 and PZ-4
Figure 2.3	In-Well LNAPL Thickness at PZ-5 and PZ-6
Figure 2.4	In-Well LNAPL Thickness at PZ-7 and PZ-9
Figure 2.5	LIF Results

Table Index

Table 2.1 Gauging Summary

Appendix Index

- Appendix A Utility Clearance Summary
- Appendix B Geophysical Analysis
- Appendix C LNAPL Fingerprint Analysis

Appendix C.1	LNAPL Chromatograms
Appendix C.2	LNAPL Physical Properties Analytical Reports
Appendix C.3	Analysis of NAPL Samples (GSI Environmental)

Appendix D LIF Results

1. Introduction

On behalf of Glenn Springs Holdings (GSH), a subsidiary of Occidental Petroleum Corporation, GHD Services Inc. (GHD) has prepared this Design Investigation Report (Report) to summarize the results from implementation of the Design Investigation/Focused Feasibility Study (DI/FFS) Work Plan for the Cline Avenue Oil Spill Site, in Gary, Indiana. The Report has been prepared in accordance with the Administrative Order on Consent (AOC) dated March 3, 2017 between Oxy USA, Inc. and United States Environmental Protection Agency (USEPA) Region V (RCRA-05-2017-0009). Figure 1.1 presents the investigation area location and Figure 1.2 presents the investigation area plan.

As detailed in the AOC and further agreed upon by USEPA and GSH attorneys, the purpose of this study was to investigate LNAPL seeps to the Cline Avenue ditch and to collect additional information in support of a feasibility assessment for potential remedial actions designed to mitigate petroleum sheens from continuing to impact the ditch.

This report has been prepared in accordance with Section III - B of the Scope of Work (SOW) provided in the AOC. The outline is as follows:

- Section 1 Introduction
- Section 2 Design Investigation Activity Summary
- Section 3 Conclusions and Recommendation

2. Design Investigation Activity Summary

The following sections summarize activities associated with assessing the extent of mobile LNAPL contributing to the Cline Avenue ditch and in support of the development of a feasibility assessment for potential remedial actions associated with preventing petroleum sheens from impacting the ditch in accordance with AOC.

2.1 Investigation Area Mapping

Investigation area mapping activities were completed to generate accurate figures depicting critical features including: seep locations, piezometer/well locations, buried pipelines/utilities, topography, etc. Investigation area mapping activities included both topographic geophysical surveys.

2.1.1 Topographic Mapping

A topographic survey of the investigation area was conducted between May 24th to May 26th, 2017 by C.M. Lavoie and Associates. The survey was completed in the Indiana West State Plane NAD83 horizontal coordinate system and the NAVD 88 vertical datum. The survey information obtained included the following:

- Piezometer, monitoring well, and staff gauge locations and elevations
- Seep locations and extents

- Ditch (top and bottom of bank and bridge/culverts)
- Proposed laser induced fluorescence (LIF) boring locations
- Utility locations (overhead and buried based on existing pipeline markings)
- Spot elevations at 50-foot grid across investigation area (relatively flat ranging from 587 to 591 ft above mean sea level (AMSL))
- Setting three staff gauges at the culverts
- Other investigation area features including but not limited to: fencing, guard rails, edge of Cline Avenue Road

C.M. Lavoie remobilized to the Site on July 27, 2017 to survey the buried utility lines marked out by Blood Hound, additional spot elevations in and around the ditch, and final LIF boring locations that were adjusted due to utilities or accessibility. This information was used to complete an updated investigation area map, as presented on Figure 2.1.

2.1.2 Utility Clearances/Buried Utility Mapping

Utility clearance services were conducted to identify location, extent and configuration for mapping, and to provide assurance that they would not be contacted during intrusive investigations. In addition, data collected from the ground penetrating radar (GPR) survey tools were evaluated to determine if other subsurface information could be determined (e.g. presence of LNAPL, thickness, etc.). These services were provided by Blood Hound, Inc. (Blood Hound) from July 5th to 7th, 2017.

Utility clearance was completed using a Metrotech Vivax vLoc Pro 1 multi-frequency receiver and transmitter combination. Traditional electro-magnetic (EM) locating operations were conducted by attaching the transmitter to a target utility which then applied an electric current to the target line which generated a radio field around the target line at a specific frequency. For utilities where no connections were available, the signal was applied using inductive methods by generating a strong magnetic field at the surface which then induces a current onto the target utility. All utilities identified within the investigation area were marked with paint. These areas were subsequently surveyed per Section 2.1.1.

The following utilities were located in the investigation area:

- Buckeye Petroleum Pipeline
- BP Petroleum Pipeline
- NIPSCO Gas Pipeline
- Two underground electrical lines and
- Overhead electrical lines

In addition to the subsurface utilities identified above, two vertical 4-inch steel pipes, were identified. (see photos in Appendix A). The equipment Blood Hound was using could not trace the depth or direction of these pipes.

Individual LIF boring locations were cleared in the western most North-South row (refer to Figure 2.5). For the remaining LIF boring locations, 10' wide corridors were cleared in a grid pattern

to provide flexibility to move LIF borings, should the real-time LIF field data require a change to the proposed locations.

On July 7th, 2017, advanced GPR surveying was performed by Blood Hound utilizing a SIR 4000 GPR unit with a 350 MHz antenna to determine whether the GPR data correlated with the LNAPL identified at the piezometers (P3, P4, P5, P6, P7, and P9) with measureable LNAPL (see Figure 2.5). Advanced GPR data was collected along 10 profiles aligned with the piezometers in the North-South direction, which covered the distances between piezometers 1 through 10. The data was provided to Environmental Geophysics Associates (EGA) for processing and is further discussed in Section 2.1.3.

2.1.3 Geophysical Analysis

The data collected from the advanced GPR survey was reviewed and assessed by EGA to determine if a better understanding of subsurface conditions could be obtained from the data.

Upon review, there was no reliable correlation between the advanced GPR survey data and Site conditions such as the presence or absence of LNAPL (e.g., as indicated by current/historical piezometer monitoring data). A copy of EGA's report is provided in Appendix B.

2.2 Investigation Observations

A GHD's LNAPL subject matter expert conducted a Site visit on July 12, 2017 to oversee the LIF boring installations and to observe conditions influencing LNAPL movement into the ditch. The following observations were made:

- The LIF borings are identifying hydrocarbon responses across most of the investigation area.
- Similar hydrocarbon responses have been identified across the investigation area as well as next to some of the piezometers that do not have measureable LNAPL. Therefore, the potential for LNAPL to be hydraulically mobile across the investigation area is not significant.
- Sheen/LNAPL is entering the ditch laterally from the sidewalls, which is likely from LNAPL in the immediate vicinity of the ditch.
- Sheen/LNAPL is also entering the ditch vertically from the bottom of the ditch through a process called ebullition (pressure/air bubbles dislodge otherwise immobile LNAPL).

2.3 LNAPL Fingerprint Analysis

In order to better understand the type and distribution of LNAPL, six samples of LNAPL were collected from existing piezometers with sufficient LNAPL during the initial gauging activities. The six samples were submitted to Pace Analytical Energy Services Laboratory for both chemical and physical property analysis.

2.3.1 Chemical Property Analysis

The six LNAPL samples were submitted on June 28th, 2017 and analyzed for C3 to C36 whole oil molecular characterization gas chromatography "fingerprint" by GC/FID as well as C8 to C40 full scan qualitative molecular characterization by GC/MS (refer to lab methods). The results of the

chemical analysis are summarized in Appendix C.1. The following observations were made regarding analysis of the chromatograms:

- The chromatograms appear to show similar age and types of hydrocarbon material
- LNAPL samples appear to contain a wide mixture of hydrocarbons
- The hydrocarbon mixture appears to consist of weathered gasoline, weathered diesel, and heavier hydrocarbon material (e.g., weathered crude oil)

2.3.2 Physical Property Analysis

The six LNAPL samples were submitted to Pace Analytical on June 26th, 2017 and analyzed for viscosity, surface tension and liquid properties. The analyses were subcontracted to Clark Testing. The results of the physical property analysis are summarized in Appendix C.2. The chemical and physical property analysis results were also analyzed by GSI Environmental Inc. (GSI). GSI's observations were consistent with GHD's observations. A copy of GSI's evaluation is provided in Appendix C.3.

Upon review of the physical property data, the observations made on the chemical property analysis did not change (i.e., specific gravity and viscosity results were comparable and consistent with the mixture of petroleum LNAPL types described in Section 2.3.1).

2.4 Groundwater Investigation

The groundwater investigation activities included periodic gauging of piezometers and monitoring wells for LNAPL/groundwater level measurements. In addition, surface water level measurements were measured from the three staff gauges along the ditch.

2.4.1 Water/LNAPL Level Monitoring

Water level/LNAPL measurements were collected in May and August from the twelve piezometers (PZ-1 to PZ-12) and from two monitoring wells (MW-2 and MW-3) to evaluate trends in LNAPL thickness and groundwater levels. Measurements were taken with a dual phase probe with electrical sounding device and accuracy of ±0.01 feet, to determine the depth to water or oil (where present) and oil-water interface. The date, depth to product, and depth to water was recorded, and used to calculate the LNAPL thickness (where present) and corrected groundwater elevation (where LNAPL was present). These results are summarized in Table 2.1. Figures 2.2, 2.3 and 2.4 present a graphical depiction of LNAPL thicknesses and water table elevations.

2.4.2 Surface Water Level Monitoring

Three staff gauges were set during the surveying activities conducted in late May 2017 along the ditch (SG-1, SG-2, and SG-3), which are shown on Figure 2.1. The staff gauges consist of surveyed markings on the existing bridges/culverts that cross the ditch. The staff gauges were used to measure surface water levels/elevations in the ditch for comparison to the groundwater elevations from the piezometers/wells. The use of the bridges/culverts was to ensure longevity of the staff gauges through freezing conditions. Ditch water levels/elevations were measured in August at the same time as the piezometers and monitoring wells. Measurements were taken with an electrical

sounding device with an accuracy of ± 0.01 feet. The depth to water and the date of measurement were recorded and are also summarized in Table 2.1.

2.5 LIF Investigation

An LIF investigation was conducted to assist in determining the horizontal and vertical extent of residual hydrocarbons in soil. A total of 29 LIF borings were completed by Dakota Technologies (Dakota) between July 10 and 14, 2017, with the greater concentration of borings being completed adjacent to the ditch and fewer borings being completed further to the east.

2.5.1 Methodologies

Prior to mobilization, a representative sample of LNAPL was submitted to Dakota Technologies (Dakota) to verify the appropriate laser to be used as part of the LIF investigation. Dakota identified that the Tar Green Optical Screening Tool (TarGOST) LIF system was the appropriate unit for this investigation. The TarGOST is typically used to investigate weathered or heavier types of hydrocarbons. The LIF probe was advanced in the subsurface using a GeoProbe[™]. As such, no soil cuttings were produced during the LIF investigation. Locations were backfilled with cement-bentonite grout immediately following the completion of each LIF push with the appropriate surface restoration.

The LIF probe is equipped with a sapphire window through which a laser is directed. The probe is advanced using a specialized direct-push probe. The laser light is adsorbed by hydrocarbons as the probe is advanced. This addition of energy (photons) causes hydrocarbons to release excess energy as light (fluoresce). A portion of the fluorescence emitted from any encountered hydrocarbons is returned through the sapphire window and conveyed by a fiber optic cable to a detection system at the surface. The emission data from the pulsed laser light is averaged into one reading per one-second intervals and is recorded continuously. The emission data is reported as percent of the fluorescence intensity of a "reference emitter" (%RE). The Reference Emitter is a standard proprietary hydrocarbon mixture used to calibrate the equipment, and LIF readings are a quantification of intensity relative to the fluorescence produced by it. For example, an LIF location producing a reading of 100%RE is fluorescing at exactly the same intensity as the standard hydrocarbon mixture. Other things being equal, LIF response is proportional to the amount of hydrocarbons present (i.e., LIF response is proportional to hydrocarbon saturation). In addition, the LIF instrumentation measures the intensities of four different wavelengths of light produced when a given hydrocarbon fluoresces. The proportions of each wavelength that comprise the overall fluorescence response are unique to a given petroleum product type and are referred to as the spectral fingerprint. These wave lengths are illustrated on the individual LIF logs for each location.

2.5.2 Findings

The LIF boring locations and maximum response at each boring is presented on Figure 2.5. The %RE ranged from 6.6 to 744, confirming the typical scenario of highly variable LNAPL saturation levels across an old LNAPL site. The highest %RE was observed at TG-21-17 (approximately 300' east of the ditch). Other elevated %RE readings were not consistent with a single source area which may indicated multiple source events or preferential migration pathways for the LNAPL. It is noted that the spacing of the LIF points in the Site interior was large enough that additional

investigation may produce results that adjust this interpretation. The northern, eastern, and southern boundaries of the investigation had lower %RE.

The intensity of the responses broadly indicates residual hydrocarbon saturation levels. Most of the hydrocarbon responses, including some of the highest responses, are below the water table, which typically signifies that the LNAPL is largely immobile residual. This suggests that much of the impact to the ditch is resulting from residual LNAPL impacts in the vicinity of the ditch, and is not due to bulk movement of LNAPL from the interior of the Site towards the ditch currently.

A review of the spectral fingerprints from the LIF borings that are presented on the TarGOST output logs indicate a somewhat consistent mixture of LNAPL types across the Site.

3. Conceptual Site Model of LNAPL Transport

Historical data as well as the data recently collected have been analyzed to develop a conceptual site model. These data indicate that LNAPL is entering the ditch through two transport models:

- Laterally from sidewalls immediate vicinity of ditch and not as bulk movement internal to the Site (due to the lack of resistance at the ditch bank surface that allows residual LNAPL movement, whereas similarly saturated soil would not allow LNAPL movement in the interior of the Site).
- 2. Ebullition pressure/air bubbles periodically dislodge otherwise immobile residual hydrocarbons from beneath the ditch.

The LNAPL is old and primarily located below the water table; therefore, the bulk of the Site LNAPL is likely to be present as hydraulically immobile residual. Ditch booming activities have documented generally stable conditions of oil entering the ditch for several years with some fluctuations.

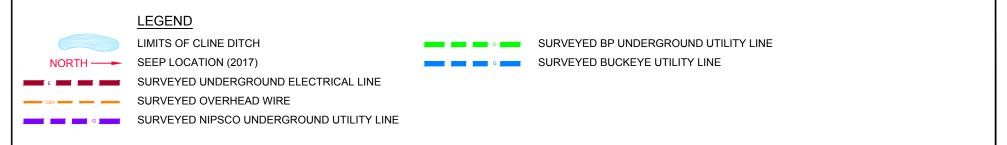
4. Conclusions

Evaluated data, including the LNAPL chromatograms, LNAPL physical property analysis, and the LIF results, indicate similar types/mixtures of hydrocarbons across the investigated area and a somewhat random geographic distribution and concentration gradient. The concentrations of hydrocarbons do not map from a centralized source. The concentration of mapped hydrocarbons appear higher near the existing hydrocarbon pipeline infrastructure.

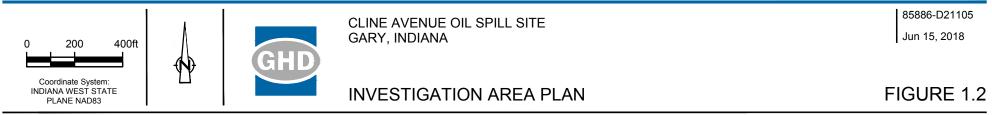
The LIF results identified the presence of residual hydrocarbons across the area that was investigated, however, most of the LIF hydrocarbon responses were below the water table, which typically signifies that it the residual hydrocarbons are immobile.

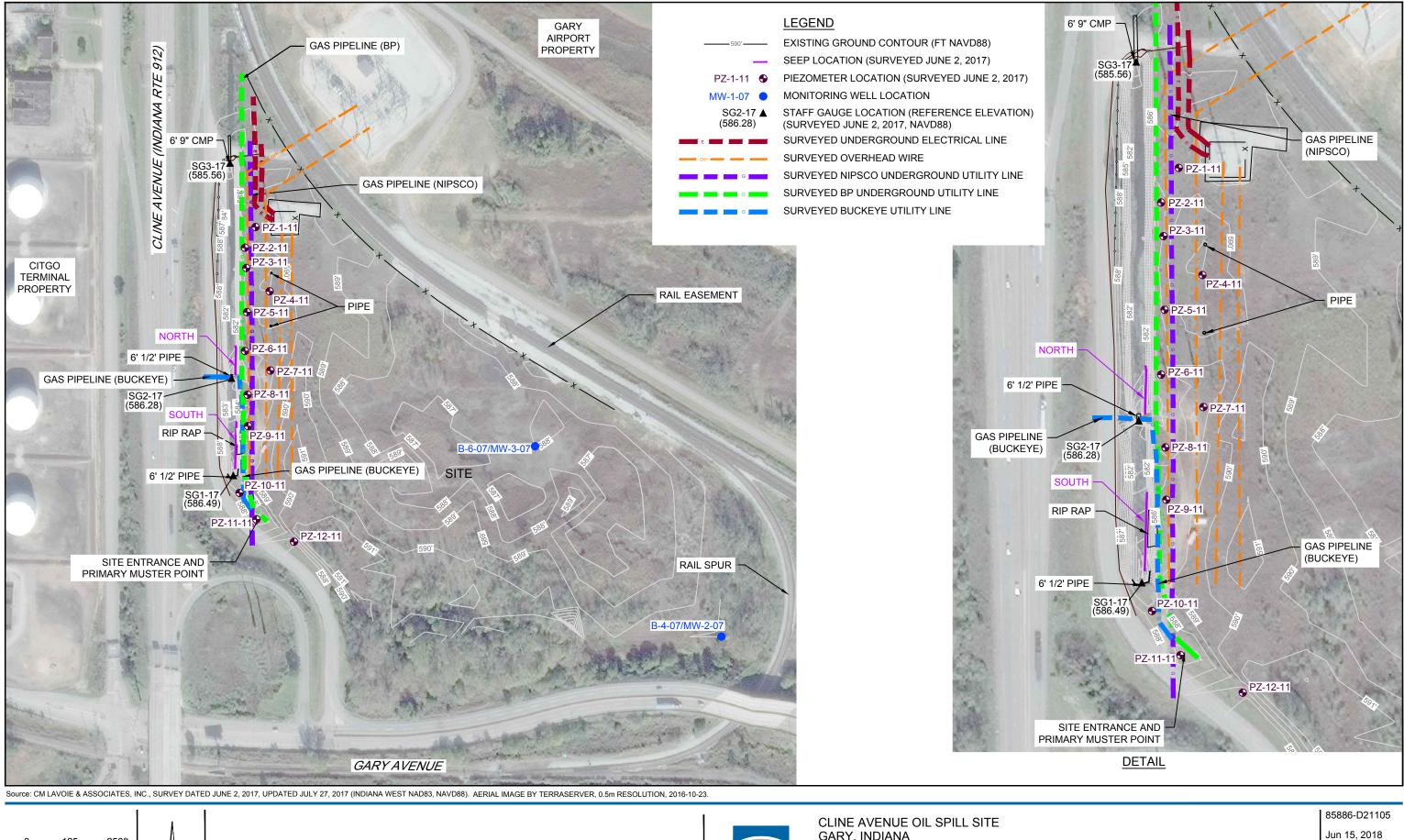
Visual observation of LNAPL entering the ditch identified that LNAPL was entering the ditch both through lateral seepage and vertically from the bottom of the ditch through a process called ebullition.

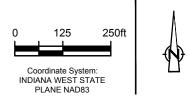
Additional preliminary design investigation (PDI) activities are planned to support the evaluation of potential remedial alternatives.



CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(003)\85886-D21105(003)GN\85886-D21105(003)GN\85886-D21105(003)GN

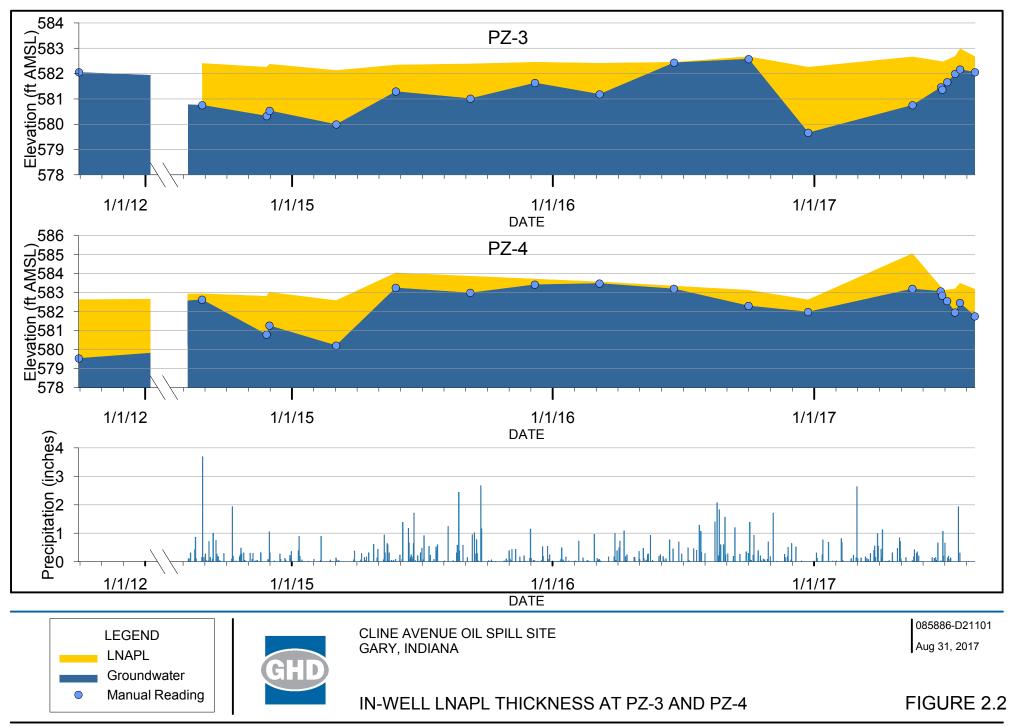

FIGURE 1.1



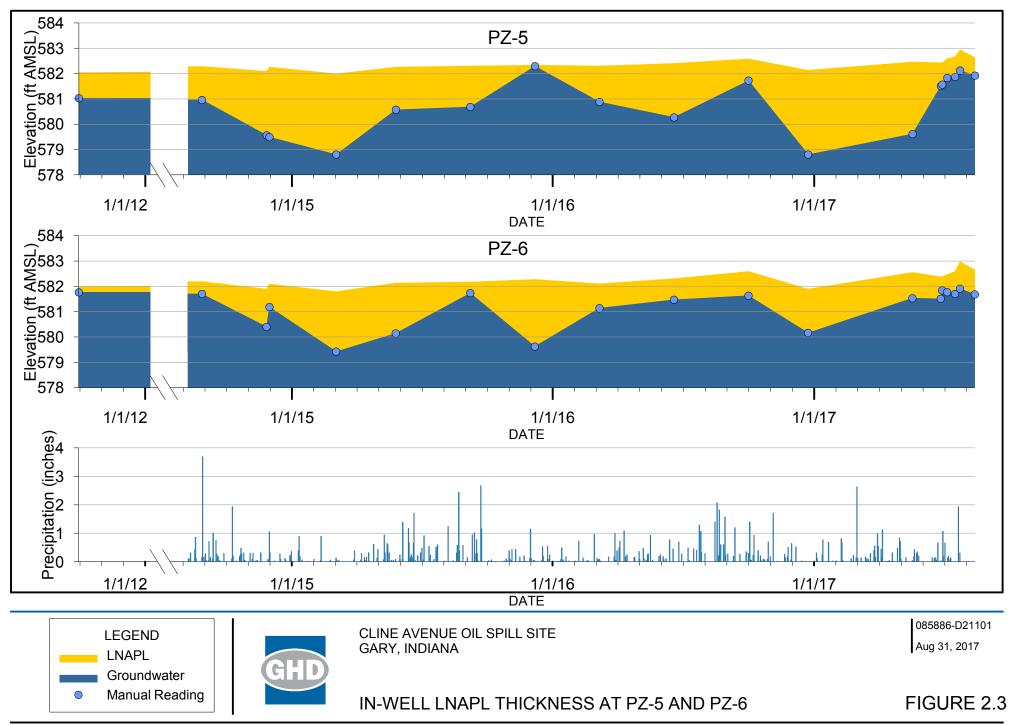


Source: AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

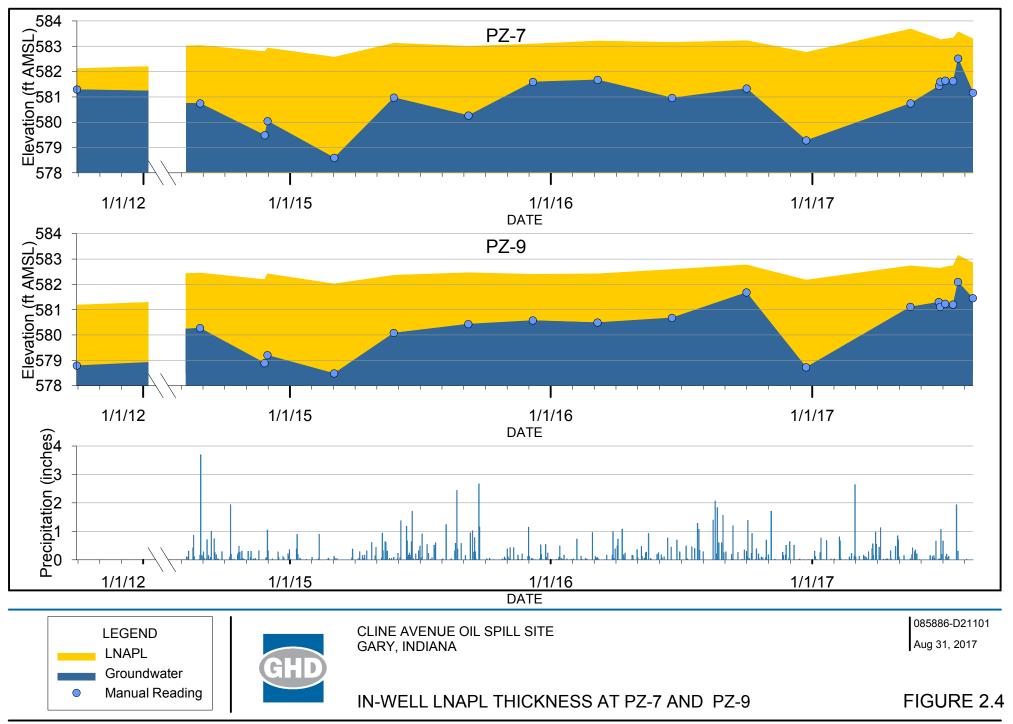
CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(003))85886-D21105(003)GN\85886-D21105(003)GN\85886-D21105(003)GN-WA004.dwg



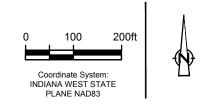
GARY, INDIANA


BASE MAP

CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(003)\85886-D21105(003)GN\85886-D21105(003)GN\85886-D21105(003)GN


FIGURE 2.1

WAT file: I:\IKRGROUP\6-chars\08----\85886-Cline Avenue Ditch\85886 - Data, Analysis\GRAPHER\85886-LNAPL Figure 2.2.grf


WAT file: I:\IKRGROUP\6-chars\08----\85886-Cline Avenue Ditch\85886 - Data, Analysis\GRAPHER\85886-LNAPL Figure 2.3.grf

WAT file: I:\\KRGROUP\6-chars\08----\85886-Cline Avenue Ditch\85886 - Data, Analysis\GRAPHER\85886-LNAPL Figure 2.4.grf

Source: CM LAVOIE & ASSOCIATES, INC., SURVEY DATED JUNE 2, 2017, UPDATED JULY 27, 2017 (INDIANA WEST NAD83, NAVD88). AERIAL IMAGE BY TERRASERVER, 0.5m RESOLUTION, 2016-10-23.

CLINE AVENUE OIL SPILL SITE GARY, INDIANA

LASER INDUCED FLUORESCENCE RESULTS

CAD File: P:\drawings\85000s\85886\85886-REPORT\85886-D21105(003)\85886-D21105(003)GN\85886-D21105(003)GN\85886-D21105(003)GN-WA001.dwg

	LEGEND
	CLINE DITCH
	SEEP LOCATION
PZ-1 🕒	PIEZOMETER LOCATION
	MEASURABLE LNAPL
(1.06)	THICKNESS OF LNAPL (FEET)
TG-30-17 🔳	LIF BORING LOCATION
[23.7]	MAX SIGNAL (%RE)
	MAXIMUM LIF RESULT
•	<100 %REFERENCE EMITTER (%RE)
	100 - 200 %RE
•	200 - 300 %RE
	>300 %RE

85886-D21105 Aug 31, 2017

FIGURE 2.5

Table 2.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

		9/30	0/2011	8/21	1/2014	11/2	0/2014	11/2	4/2014	2/26	6/2015		/2015	9/3	/2015
Location ID	Reference Elevation	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness	Depth to LNAPL	LNAPL Thickness
	(ft AMSL) ⁽¹⁾	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
Monitoring Wells															
MW-2	592.34														
MW-3	591.42														
Piezometers															
PZ-1	589.12														
PZ-2	588.24														
PZ-3	588.97			6.57	1.65	6.72	1.93	6.60	1.84	6.85	2.13	6.63	1.05	6.59	1.37
PZ-4	590.86	8.23	3.09	7.92	0.31	8.05	2.02	7.84	1.76	8.28	2.37	6.82	0.79	NA	NA
PZ-5	589.24	7.20	1.01	6.96	1.32	7.15	2.53	6.98	2.77	7.25	3.19	6.98	1.69	6.94	1.62
PZ-6	587.98	5.99	0.23	5.79	0.49	6.09	1.49	5.89	0.91	6.19	2.37	5.85	1.99	5.81	0.44
PZ-7	588.43	6.31	0.83	5.40	2.29	5.64	3.31	5.50	2.89	5.86	3.98	5.31	2.15	5.43	2.74
PZ-7 PZ-8	587.51	7.12	1.23	5.40		5.04		5.50	2.09	5.00	3.90 	5.51	2.15	5.45	2.74
PZ-8 PZ-9	587.90	6.72	2.39	5.45	2.18		3.30		3.22	5.88	3.54	5.54	2.28		2.03
PZ-9 PZ-10	587.90 587.14	6.72 7.11	2.39 1.46			5.71		5.48						5.44	
PZ-11	586.42														
PZ-12	587.94														
Staff Gauges															
G-1-17 (south culvert)	586.49														
SG-2-17 (mid-culvert)	586.28														
G-3-17 (North Culvert)	585.56														
	Poforonao	Donth to	Water	Donth to	Water	Donth to	Watar	Donth to	Water	Donth to	Motor	Donth to	Motor	Donth to	Water
Location ID	Reference Elevation	Depth to Water	Elevation	Depth to Water	Elevation	Depth to Water	Water Elevation	Depth to Water	Elevation	Depth to Water	Water Elevation	Depth to Water	Water Elevation	Depth to Water	Elevation
Location ib	(ft AMSL) ⁽¹⁾	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)
Monitoring Wells															
MW-2	592.34							4.64	587.70						
MW-3	591.42	-	-	-	-	-	_	4.15	587.27						
									001121						
Piezometers PZ-1	589.12	6.81	582.31	6.61	582.51	6.73	582.39	6.63	582.49	6.93	582.19	6.52	582.60	6.61	582.51
PZ-1	588.24	6.16	582.08	6.02	582.22	6.15	582.09	6.03	582.21	6.31	581.93	5.99	582.00	6.00	582.24
PZ-3	588.97	6.92	582.05	8.22											
PZ-4	590.86	11.32		²⁾ 8.23	582.91 (2			²⁾ 9.60		⁽²⁾ 10.65		²⁾ 7.61	583.96 ⁽²		582.99
PZ-5	589.24	8.21	001.01	²⁾ 8.28	582.15 (2	0.00		²⁾ 9.75	001100	⁽²⁾ 10.44		²⁾ 8.67	582.09 (2	0.00	582.14
PZ-6	587.98	6.22		²⁾ 6.28	582.14 (2			²⁾ 6.80	002.00	⁽²⁾ 8.56	001100	²⁾ 7.84	581.93 (2	0.20	582.13
PZ-7	588.43	7.14		²⁾ 7.69	582.80 (2			²⁾ 8.39		²⁾ 9.84		²⁾ 7.46	582.91 (2	••••	582.73
PZ-8	587.51	8.35		²⁾ 5.25	582.26	5.56	581.95	5.23	582.28	5.74	581.77	5.33	582.18	5.23	582.28
PZ-9	587.90	9.11		²⁾ 7.63	582.23 (2			²⁾ 8.70	002.10	⁽²⁾ 9.42		²⁾ 7.82	582.13 ⁽²		582.26
PZ-10	587.14	8.57		²⁾ 4.02	583.12	4.38	582.76	4.02	583.12	4.67	582.47	4.06	583.08	4.10	583.04
PZ-11 PZ-12	586.42 587.94	8.55 8.91	577.87 579.03	2.37 3.51	584.05 584.43	2.94 3.82	583.48 584.12	2.36 3.34	584.06 584.60	3.31 4.24	583.11 583.70	2.44 3.16	583.98 584.78	2.77 3.81	583.65 584.13
		0.01	010.00	5.61	001.10	0.02	00 1.12	0.04	00 1.00	r. 2 -7	000.10	5.10	001.70	0.01	001.10
Staff Gauges	506 AD														
G-1-17 (south culvert) SG-2-17 (mid-culvert)	586.49 586.28														
SG-3-17 (North Culvert)	585.56														
	000.00														

Notes:

Table 2.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

		12/3	/2015	3/3/	/2016	6/16	/2016	9/29	0/2016	12/22	2/2016	5/18	8/2017	6/27	7/2017
Location ID	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)	Depth to LNAPL (feet)	LNAPL Thickness (feet)
Monitoring Wells															
MW-2	592.34														
MW-3	591.42														
Piezometers															
PZ-1	589.12														
PZ-2	588.24														
PZ-3	588.97	6.52	0.82	6.56	1.23	6.52	0.02	6.30	0.10	6.72	2.59	6.31	1.91	6.49	1.02
PZ-4	590.86	NA	NA	7.29	0.09			7.73	0.83	8.24	0.64	5.81	1.85	7.56	0.23
PZ-5	589.24	6.91	0.04	6.94	1.42	6.84	2.13	6.66	0.86	7.11	3.33	6.78	2.85	6.81	0.92
PZ-6	587.98	5.71	2.65	5.88	0.96	5.68	0.83	5.39	0.96	6.09	1.73	5.43	1.02	5.60	0.87
PZ-7	588.43	5.34	1.50	5.22	1.54	5.28	2.19	5.21	1.89	5.67	3.48	4.75	2.94	5.14	1.86
PZ-8	587.51														
PZ-9	587.90	5.50	1.83	5.48	1.93	5.31	1.91	5.13	1.09	5.73	3.45	5.17	1.62	5.26	1.34
PZ-10	587.14														
PZ-11	586.42														
PZ-11 PZ-12	587.94														
FZ-12	JO1.94														
Staff Gauges															
G-1-17 (south culvert)	586.49														
SG-2-17 (mid-culvert)	586.28														
G-3-17 (North Culvert)	585.56														
	Reference	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water
Location ID	Elevation	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)	Depth to Water (feet)	Water Elevation (ft AMSL)
		Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
Monitoring Wells	Elevation (ft AMSL) ⁽¹⁾	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)
	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
Monitoring Wells MW-2 MW-3	Elevation (ft AMSL) ⁽¹⁾ 592.34	Water (feet) 	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet) 4.16	Elevation (ft AMSL) 588.18	Water (feet)	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42	Water (feet) 	Elevation (ft AMSL) 	Water (feet) 	Elevation (ft AMSL) 	Water (feet) 	Elevation (ft AMSL) 	Water (feet) 	Elevation (ft AMSL) 	Water (feet) 	Elevation (ft AMSL) 	Water (feet) 4.16 3.63	Elevation (ft AMSL) 588.18 587.79	Water (feet) 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12	Water (feet) 6.34	Elevation (ft AMSL) 582.78	Water (feet) 6.43	Elevation (ft AMSL) 582.69	Water (feet) 6.58	Elevation (ft AMSL) 582.54	Water (feet) 6.36	Elevation (ft AMSL) 582.76	Water (feet) 6.78	Elevation (ft AMSL) 582.34	Water (feet) 4.16 3.63 6.12	Elevation (ft AMSL) 588.18 587.79 583.00	Water (feet) 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24	Water (feet) 6.34 5.87	Elevation (ft AMSL) 582.78 582.37	Water (feet) 6.43 5.97	Elevation (ft AMSL) 582.69 582.27	Water (feet) 6.58 5.97	Elevation (ft AMSL) 582.54 582.27	Water (feet) 6.36 5.71	Elevation (ft AMSL) 582.76 582.53	Water (feet) 6.78 6.21	Elevation (ft AMSL) 582.34 582.03	Water (feet) 4.16 3.63 6.12 5.80	Elevation (ft AMSL) 588.18 587.79 583.00 582.44	Water (feet) 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97	Water (feet) 6.34 5.87 7.34	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40	Elevation (ft AMSL) 582.76 582.53 582.66	Water (feet) 6.78 6.21 (2) 9.31	Elevation (ft AMSL) 582.34 582.03 581.99	4.16 3.63 6.12 5.80 (2) 8.22	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47	Water (feet) (2) 7.51	Elevation (ft AMSL) 582.38
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86	Water (feet) 6.34 5.87 7.34 7.44	Elevation (ft AMSL)	• • • • • • • • • • • • • • • • • • •	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56	Elevation (ft AMSL) 582.76 582.53 582.66 583.05	Water (feet) 6.78 6.21 ²⁾ 9.31 ²⁾ 8.88	Elevation (ft AMSL) 582.34 582.03 581.99 582.56	4.16 3.63 6.12 5.80 (2) 8.22 (2) 7.66	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87	Water (feet) (2) (2) 7.51 (2) 7.79	Elevation (ft AMSL) 582.38 583.28
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24	Water (feet) 6.34 5.87 7.34 7.44 6.95	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 2) 8.36	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56 2) 7.52	Elevation (ft AMSL) 582.76 582.53 582.66 583.05 582.49	Water (feet) 6.78 6.21 ²⁾ 9.31 ²⁾ 8.88 ²⁾ 10.44	Elevation (ft AMSL) 582.34 582.03 581.99 582.56 581.80	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 7.66 (2) 9.63	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 589.24 587.98	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56 2) 7.52 2) 6.35	Elevation (ft AMSL) 582.76 582.53 582.66 583.05 582.49 582.49	Water (feet) 6.78 6.21 2) 9.31 2) 8.88 2) 10.44 2) 7.82	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 9.63 (2) 6.45	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 589.24 587.98 588.43	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36 6.84	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 2) 7.38 2) 8.36 2) 6.84 2) 6.76	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51) 7.47	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2 6.40 2) 8.56 2) 7.52 2) 6.35 2) 5.71	Elevation (ft AMSL) 582.76 582.53 582.66 583.05 582.49 582.49 582.49 583.03	Water (feet) 6.78 6.21 2) 9.31 2) 8.88 2) 10.44 2) 7.82 2) 9.15	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 2 8.22 (2) 9.63 (2) 6.45 (2)	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39	Water (feet) (2) 7.51 (2) 7.73 (2) 6.47 (2) 7.00	Elevation (ft AMSL) 582.38 583.28 582.34 582.29 583.10
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 589.24 587.98 588.43 588.43 587.51	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36 6.84 5.26	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51) 7.47 5.12	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56 2) 2) 6.35 2) 6.35 2) 4.82	Elevation (ft AMSL)	Water (feet) 6.78 6.21 ²⁾ 9.31 ²⁾ 8.88 ²⁾ 10.44 ²⁾ 7.82 ²⁾ 9.15 5.61	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 9.63 (2) 6.45 (2) 4.16 3.63	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 588.43 587.51 587.90	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36 6.84 5.26 7.33	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51) 7.47 5.12) 7.22	Elevation (ft AMSL)	Water (feet) 6.36 5.71 6.40 2) 6.40 2) 6.35 2) 7.52 2) 6.35 2) 7.10 4.82 2) 2) 6.22	Elevation (ft AMSL)	Water (feet) 6.78 6.21 2) 9.31 2) 8.88 2) 10.44 2) 9.15 5.61 2) 9.18	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 9.63 (2) 6.45 (2) 4.85 (2)	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51) 7.47 5.12) 7.22 4.03	Elevation (ft AMSL)	Water (feet) 6.36 5.71 6.40 2) 6.40 2) 6.35 2) 6.35 2) 6.35 2) 6.32 2) 6.35 2) 6.32 3.74 6.22	Elevation (ft AMSL)	Water (feet) 6.78 6.21 (2) 9.31 (2) 8.88 (2) 7.82 (2) 9.15 5.61 (2) 9.18 4.43	Elevation (ft AMSL)	 Water (feet) 4.16 3.63 6.12 5.80 8.22 7.66 9.63 6.45 7.69 4.85 6.79 3.36 	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57 583.78	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 588.43 587.51 587.90	Water (feet) 6.34 5.87 7.34 7.34 7.44 6.95 8.36 6.84 5.26 7.33	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41	Elevation (ft AMSL)	Water (feet) 6.58 5.97) 6.54) 7.66) 8.97) 6.51) 7.47 5.12) 7.22	Elevation (ft AMSL)	Water (feet) 6.36 5.71 6.40 2) 6.40 2) 6.35 2) 7.52 2) 6.35 2) 7.10 4.82 2) 2) 6.22	Elevation (ft AMSL)	Water (feet) 6.78 6.21 2) 9.31 2) 8.88 2) 10.44 2) 9.15 5.61 2) 9.18	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 9.63 (2) 6.45 (2) 4.85 (2)	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-9 PZ-10 PZ-11 PZ-12	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14 586.42	Water (feet) 6.34 5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56 2) 7.52 2) 6.35 2) 6.32 2) 6.32 2) 6.32 2) 6.22 3.74 2.37	Elevation (ft AMSL)	Water (feet) 6.78 6.21 2) 9.31 2) 10.44 2) 9.15 5.61 2) 9.18 4.43 3.01	Elevation (ft AMSL)	 Water (feet) 4.16 3.63 6.12 5.80 8.22 7.66 9.63 6.45 7.69 4.85 6.79 3.36 1.57 	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57 583.78 584.85	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-7 PZ-8 PZ-9 PZ-10 PZ-10 PZ-11 PZ-12 Staff Gauges	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.51 587.90 587.14 586.42 587.94	Water (feet) 6.34 5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28 3.04	Elevation (ft AMSL)	6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33 2.99	Elevation (ft AMSL) 582.69 582.27 582.29 583.56 (2 582.00 582.26 582.20 582.20 582.16 (2 583.06 582.23 (2 583.16 584.95	Water (feet)	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 7.52 2) 6.35 2) 7.10 4.82 3.74 2.37 3.50	Elevation (ft AMSL)	Water (feet) 6.78 6.21 2) 9.31 2) 8.88 2) 10.44 2) 7.82 2) 9.15 5.61 2) 9.18 4.43 3.01 3.87	Elevation (ft AMSL)	Water (feet) 4.16 3.63 6.12 5.80 (2) 8.22 (2) 7.66 (2) 9.63 (2) 6.45 (2) 7.69 4.85 (2) 6.79 3.36 1.57 2.15	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57 583.78 584.85 585.79	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60 	Elevation (ft AMSL)
Monitoring Wells MW-2 MW-3 Piezometers PZ-1 PZ-2 PZ-3 PZ-4 PZ-5 PZ-6 PZ-7 PZ-8 PZ-9 PZ-10 PZ-11 PZ-11 PZ-12	Elevation (ft AMSL) ⁽¹⁾ 592.34 591.42 589.12 588.24 588.97 590.86 589.24 587.98 588.43 587.51 587.90 587.14 586.42	Water (feet) 6.34 5.87 7.34 7.44 6.95 8.36 6.84 5.26 7.33 3.89 2.28	Elevation (ft AMSL)	Water (feet) 6.43 5.97 7.79 7.38 8.36 6.84 6.76 5.25 7.41 3.98 2.33	Elevation (ft AMSL)	Water (feet)	Elevation (ft AMSL)	Water (feet) 6.36 5.71 2) 6.40 2) 8.56 2) 7.52 2) 6.35 2) 6.32 2) 6.32 2) 6.32 2) 6.22 3.74 2.37	Elevation (ft AMSL)	Water (feet) 6.78 6.21 2) 9.31 2) 10.44 2) 9.15 5.61 2) 9.18 4.43 3.01	Elevation (ft AMSL)	 Water (feet) 4.16 3.63 6.12 5.80 8.22 7.66 9.63 6.45 7.69 4.85 6.79 3.36 1.57 	Elevation (ft AMSL) 588.18 587.79 583.00 582.44 582.47 584.87 582.18 582.45 583.39 582.66 582.57 583.78 584.85	Water (feet) (2) 7.51 (2) 7.79 (2) 7.73 (2) 6.47 (2) 7.00 (2) 6.60 	Elevation (ft AMSL)

Notes:

Table 2.1

Gauging Summary Cline Avenue Oil Spill Site Gary, Indiana

Location ID Ele		6/29/2017			7/6/2017 7/13/2017			7/17/2017 7/24/2017				//2017		/2017	8/14/2017		
	Reference Elevation (ft AMSL) ⁽¹⁾	Depth to	LNAPL	Depth to	LNAPL	Depth to	LNAPL	Depth to	LNAPL	Depth to	LNAPL	Depth to		Depth to	LNAPL	-	LNAPL
		LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thickness (feet)	LNAPL (feet)	Thicknes: (feet)
		(leet)	(leet)	(leet)	(1661)	(1661)	(1661)	(1661)	(1001)	(leet)	(leet)	(1661)	(1661)	(leet)	(leet)	(ieet)	(leet)
Monitoring Wells																	
MW-2	592.34																
MW-3	591.42																
Piezometers																	
PZ-1	589.12																
PZ-2	588.24																
PZ-3	588.97	6.51	1.10	6.43	0.88			6.29	0.69	5.99	0.82					6.30	0.62
PZ-4	590.86	7.76	0.26	7.71	0.60			7.66	1.25	7.37	1.03					7.68	1.43
PZ-5	589.24	6.81	0.87	6.65	0.77			6.58	0.79	6.30	0.82					6.61	0.71
PZ-6	587.98	5.60	0.54	5.51	0.70			5.39	0.89	5.01	1.06					5.33	0.97
PZ-7	588.43	5.17	1.66	5.14	1.65			5.10	1.71	4.86	1.06					5.14	2.13
PZ-8	587.51			5.14				5.10		4.00							
				F 01				F 1(
PZ-9	587.90	5.26	1.53	5.21	1.46			5.16	1.54	4.75	1.06					5.05	1.40
PZ-10	587.14																
PZ-11	586.42																
PZ-12	587.94																
Staff Gauges																	
G-1-17 (south culvert)	586.49																
SG-2-17 (mid-culvert)	586.28																
G-3-17 (North Culvert)	585.56																
	Reference	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water	Depth to	Water
Location ID	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevation	Water	Elevatio
	(ft AMSL) ⁽¹⁾	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL)	(feet)	(ft AMSL
Monitoring Wells																	
MW-2	592.34															6.42	585.92
MW-3	591.42															5.84	585.58
Piezometers																	
PZ-1	589.12											6.05	583.07			6.32	582.80
PZ-2	588.24											5.48	582.76			5.65	582.59
PZ-3	588.97	7.61		⁽²⁾ 7.31		(2)		6.98		⁽²⁾ 6.81		(2)				6.92	582.61
PZ-4				1.01		(2)				0.01		(0)					
	590.86	8.02		0.01	000.00	(2)		8.91		00	000.00	(2)				9.11	583.04
PZ-5	589.24	7.68	002.0.	1.72	002.01			7.37	002.00	1.12	002.00	(0)				7.32	582.56
PZ-6	587.98	6.14		⁽²⁾ 6.21	002.10	(2)		6.28		⁽²⁾ 6.07	002.00	(2)				6.30	582.55
PZ-7	588.43	6.83	583.09	⁽²⁾ 6.79	583.13	(2)		6.81	583.16	⁽²⁾ 5.92	583.46	(2)				7.27	583.08
PZ-8	587.51											4.61	582.90			4.78	582.73
PZ-9	587.90	6.79	582.49	⁽²⁾ 6.67	582.54	(2)		6.70	582.59	⁽²⁾ 5.81	583.04	(2)				6.45	582.71
PZ-10	587.14											3.54	583.60			3.86	583.28
PZ-11	586.42											2.21	584.21			2.68	583.74
	587.94											3.19	584.75			3.78	584.16
PZ-12																	
Staff Gauges																	
Staff Gauges SG-1-17 (south culvert)	586.49			4.41	582.08	4.32	582.17	4.27	582.22	4.00	582.49			4.34	582.15	4.25	582.24
	586.49 586.28 585.56			4.41 4.17 3.44	582.08 582.11 582.12	4.32 4.09 3.34	582.17 582.19 582.22	4.27 4.06 3.30	582.22 582.22 582.26	4.00 3.79 3.04	582.49 582.49 582.52			4.34 4.10 3.31	582.15 582.18 582.25	4.25 4.06 3.27	582.24 582.22 582.29

Notes:

GHD | Design Investigation Report | 085886 (3)

Appendix A Utility Clearance Summary

Office # 888-858-9830

http://www.BHUG.com

Fax# 888-858-9829

Job Description – On July 5 through July 7, 2017, Brian R. Clem, Director EHS, conducted a Utility Locate and Ground Penetrating Radar (GPR) survey of a portion of the vacant property located to the west of the Gary Municipal Airport near the intersection of Gary Avenue and Cline Avenue in Gary, Indiana. The survey was conducted to clear potential obstructions near proposed soil sample locations scattered throughout the property. In addition several GPR transects were to be collected for later analysis to determine if the presence of a known contamination plume could be identified in the collected geophysical data.

Job Procedure -

Utility locating was completed using a Metrotech Vivax vLoc Pro I multi-frequency receiver and transmitter combination.. Traditional electro-magnetic (EM) locating operations were conducted by attaching the transmitter to the target utility which then applied an electric current to the target line which generated a radio field around the target line at a specific frequency. Alternatively for utilities where no connections were available, the signal was applied using inductive methods by generating a strong magnetic field at the surface which then induces a current onto the target utility. A receiver was then used to detect the resulting radio field on the designated frequency to locate the lateral position of the line. The lateral position of all located lines were marked with pink paint.

The Ground Penetrating Radar survey was conducted using a Geophysical Survey Systems Inc. (GSSI) SIR 400 Ground Penetrating Radar unit equipped with a digital Hyperstacking Antenna operating on a center frequency of 350 MHz. Dielectric constants (signal velocities) were adjusted and calibrated using visual hyperbola matching techniques on an observed gas line present within the survey area. It should be noted that since this value was established based on field observations at a specific location, the velocities in other portions of the site could vary from this established value.

Office # 888-858-9830

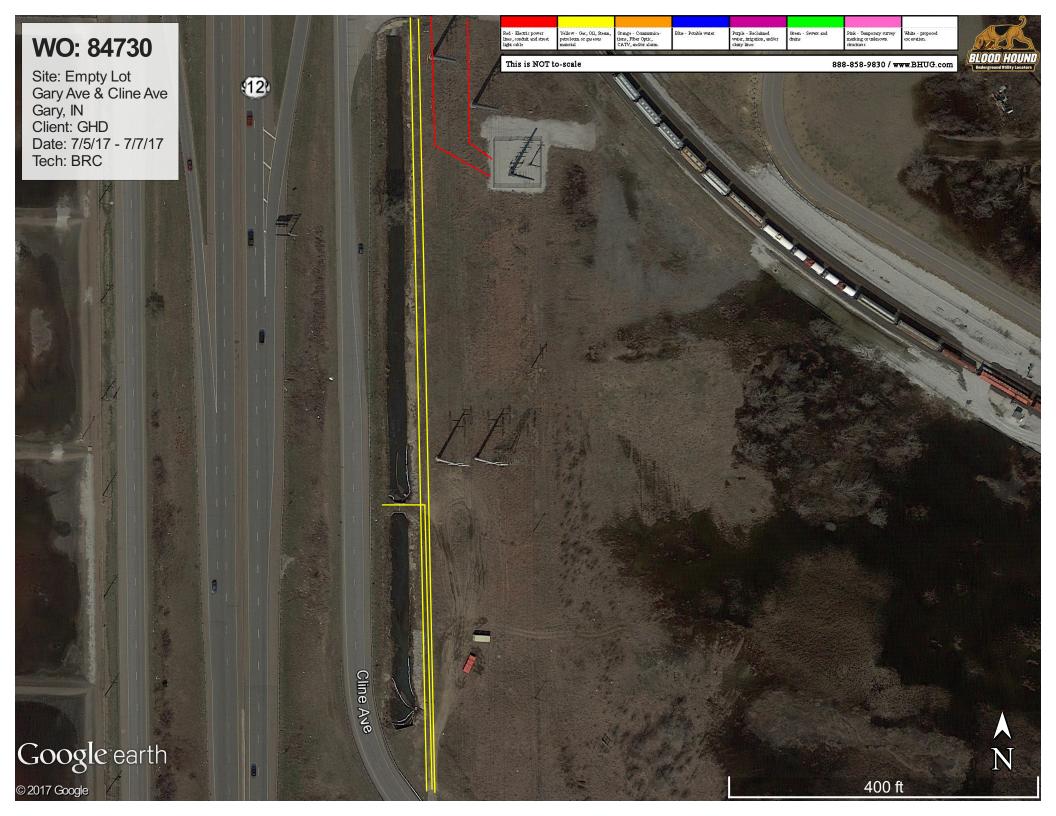
Fax# 888-858-9829

http://www.BHUG.com

Job Results –

Several proposed sample locations were moved due to conflicts with observed anomalies and/or marked utilities. Ground Penetrating Radar test data was collected based on a test plan developed on site based on consultation with Mustafa Saribudak with EGA, who will be performing the majority of the data analysis. Each data line was collected in straight lines starting at the north end of the project area in line with the previously established Piezometer location #. At the data line was collected a marker was placed in the data transect when passing each existing Piezometer location and offset measurements to each of these well locations was established. A total of 9 lines were collected with a 10th line collected by pushing the unit from Piezometer location 1 through 10 passing each one in a straight line between each well location.

	-												
	Offset From (ft)												
GPR Line File	PZ-1	PZ-2	PZ-3	PZ-4	PZ-5	PZ-6	PZ-7	PZ-8	PZ-9	PZ-10			
PR84730_008	36	4.5	8.8	76	9.5	4	77.9	11.7	10.5	-13.5			
PR84730_009	31	-1	4	72	6	-1	73	6.3	10.5	-8.3			
PR84730_010	26	-4	-1	68	1	-4	69	-1	1	-21.5			
PR84730_011	21.5	-9	-4	64.5	-2.3	-8	66	-2.5	-4				
				Rain	Event								
PR84730_012	16	-15	-10.5	57.5	-10	-18	57	-10	-13.5				
PR84730_013	6	-26	-22.5	46.5	-20.5	-27	45	-23	-27				
PR84730_014	-4	-36	-33	35	-34	-42	31	-37	-41				
PR84730_015	-14	-47	-44.5	22	-48	-55	19	-48	-50				
PR84730_016	-24	-57	-54	13	-57	-69	4	-65	-70				


The following chart shows the offsets from each established well for each collected line file. The values were given positive values if the well was located east of the GPR when the line passed the well location and negative values if the well was west of the GPR line.

*Positive values indicates that the well is located to the East of the GPR line and negative values indicate the well is West of the GPR GPR

There was a brief rain event that occurred after the collection of line 11 and before line 12. The event was brief, but intense and consequently signal velocity values may have been impacted due to the addition of moisture into the soil.

Job Conclusions -

Data was collected and provided to Mustafa with EGA for further analysis to be provided separately to determine if the contamination plume can be identified using Ground Penetrating Radar data.

Appendix B Geophysical Analysis

2000 Cullen Avenue, #7. Austin. Texas. Mob:832-368-4004; ega@pdq.net • www.egatx.com

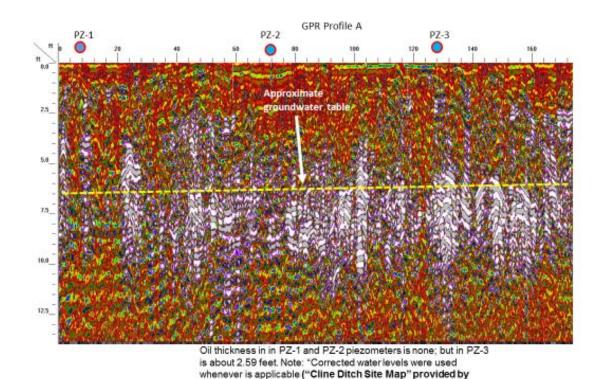
> GPR Data Interpretation Delineation of LNPAL Plume Cline Ditch Site Gary, Indiana

DRAFT

1.0 Purpose of GPR Survey and Survey Design

We collected GPR data, in conjunction of Blood Hound Utility Company, at the Cline Ditch site (Figure 1). The utility company used a SIR 4000 GPR unit-the newest system- with a 350 MHz antenna, which yielded more than 10 feet depth penetration. The purpose of the GPR surveys was to determine whether the GPR data correlate with the LNAPL products that are observed on the majority of the piezometers (P3, P4, P5, P6, P7, and P9), which are located along the ditch (Figure 1).

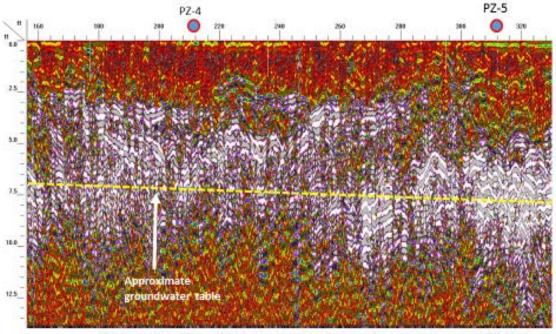
First, we collected GPR data along a profile A (Figure 1). This profile covered the distances between the piezometers 1 through 10. Second, we collected GPR data along nine (9) profiles, which are established in the north-south direction and are aligned with the piezometers (Figure 2).


Fig.	2
------	---

2.0 GPR Data Interpretation-Profile A

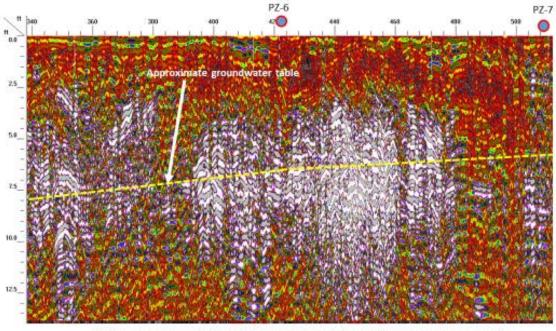
We used Radan 7 GPR software to process the data. We used the following processing parameters: 1) IIR Filters -1000 LP / 50 HP, 2) Position correction, 3) Range gain, and 4) Background removal.

We first processed the profile **A** whose location is shown in Figure 2. Location of the piezometers and the groundwater table (yellow line) are superimposed on the GPR sections in order to make a comparison with the presence of LNAPL products in the subsurface. The length of the GPR data was divided into six sections and are displayed as Figures 3A through 3F.


Locations of three piezometers (PZ-1 through 3) are labeled on Figure 3A. Oil thickness in in PZ-1 and PZ-2 piezometers is none; but PZ-3 contains LNAPL which has a thickness of 2.59 feet. It should be noted that "corrected water levels" were used whenever is applicable (The information is taken by a figure titled "**Cline Ditch Site Map**" which is provided by Mr. David Sweeten. The groundwater table approximately corresponds to the high-amplitude reflectors, which are shown with white and gray colors. The subsurface beneath the PZ-1 does not have high-amplitude reflectors, but PZ-2 has some.

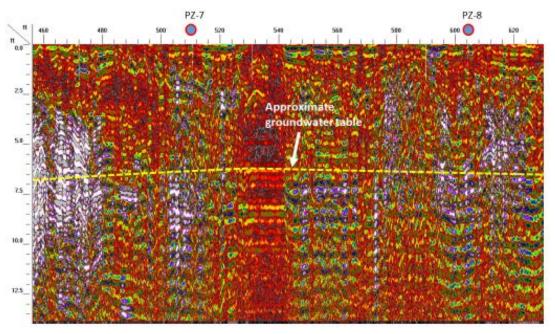
David Sweeten.

Fig. 3A.

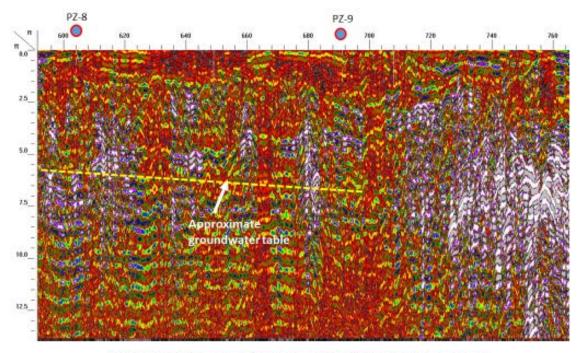

Figure 3B displays the GPR section between PZ-4 and PZ-5. The high-amplitude reflectors are well above the water table in the vicinity of PZ-4. Note that there is a hyperbolic shape of the reflectors in the vicinity of PZ-4. The oil thickness is not provided in this piezometer, but highly viscous oil and oil solids mix encountered in PZ-4 at about 8.24 feet. The oil thickness encountered in PZ-5 is 3.33 feet. The intensity of high reflectors increases beneath PZ-5.

Oil thickness in PZ-4 is 2.59 ft. Highly viscous oil, oil solids mix encountered in PZ-4. Oil thickness encountered in PZ-5 is 3.33 ft. Note the **hyperbolic shape** of the high magnitude reflections (white and gray) underlying the PZ-4.

Fig. 3B.

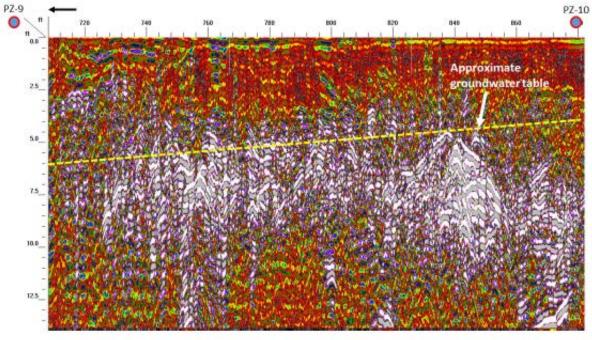

The GPR section, where PZ-6 and PZ-7 are located, is provided in Figure 3C. Oil thickness on both PZ-6 and PZ-7 piezometers is 1.73 and 3.48 feet, respectively. Note the presence and absence of high magnitude reflections beneath PZ-6 and PZ-7, respectively.

Oil thickness on both PZ-6 and PZ-7 piezometers is 1.73 and 3.48 feet, respectively. Note the absence of high magnitude reflections beneath PZ-7.


We purposely provide the overlapping Figure 3D where PZ-7 and PZ-8 are shown in one GPR section. The purpose is to be able to make a correlation between the two. PZ-7 has an oil thickness of 3.48 feet and PZ-8 has none. It is important to note that high-amplitude reflectors are absent beneath, and between these contaminated and uncontaminated piezometers.

Oil thickness in PZ-7 is 3.48 feet. Oil thickness in PZ-8 is none. Note the absence of highmagnitude reflections (white and gray) beneath the piezometers PZ-7 and PZ-8.

Fig. 3D.


Again, we provide Figure 3E, with an overlap, showing the GPR data between piezometers PZ-8 and PZ-9. Oil thickness in PZ-8 is none. Oil thickness in PZ-9 is 3.45 feet. Note the absence of high-amplitude reflections of white/gray beneath the both contaminated and uncontaminated piezometers.

Oil thickness in PZ-8 is none; Oil thickness in PZ-9 is 3.45 feet. Note the absence of high-amplitude reflections of white/gray beneath the both piezometers.

Fig. 3E.

Figure 3F displays the GPR data between piezometers PZ-9 and PZ-10. Oil thickness in PZ-9 is 3.45 feet; in PZ-10 is none. Note that the water level in PZ-10 was "not corrected." We know from Figure 3D that PZ-9 has 3.45 feet LNAPL products and does not show any high-amplitude reflectors. PZ10 also appear to correspond to a location where the high-amplitude reflections are present.

Oil thickness in PZ-9 is 3.45 feet; in PZ-10 is none. Note that the water level in PZ-10 was "not corrected."

3.0 Interpretation of GPR Profile L3

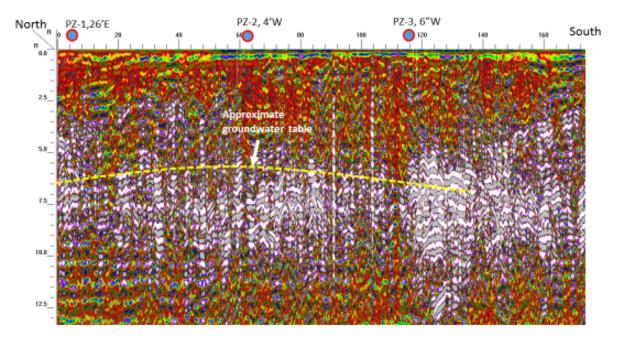
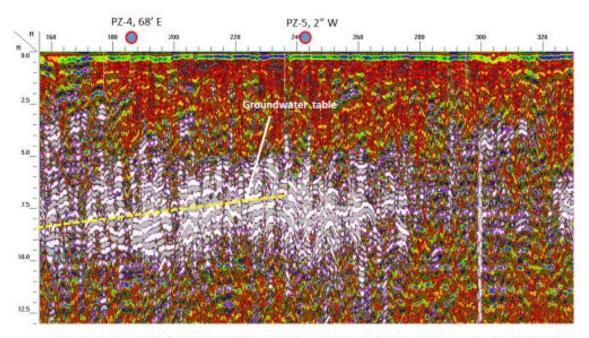

Out of nine GPR profiles that we collected at the study area (see Figure 2), we present here the GPR profile 3 (L3). We chose this profile because it crosses the area, from north to south, where there is no presence of pipelines (Figure 4).

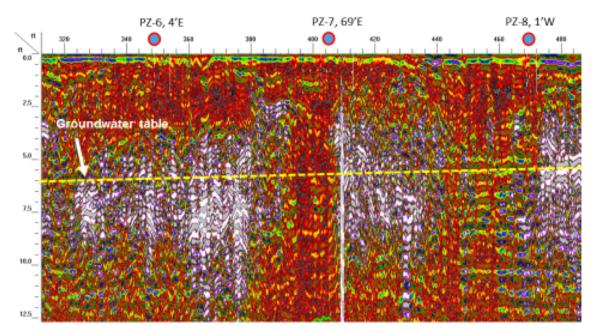
Fig. 4. Location of GPR profile L3 and L4 with respect to the piezometers.

The first GPR section from profile L3 is provided in Figure 5A.


Piezometers PZ-1 and PZ-2 are located 26 feet east and 4 feet west of the GPR profile respectively. The location of PZ-3 is 6 inch to the west of the profile. It contains piezometers of PZ-1, 2 and 3. The groundwater level is superimposed on the profile. PZ-1 and PZ-2 do not contain any oil products but PZ-3 has 2.59 feet of oil-thickness. Note the much higher amplitude of reflections beneath PZ-3.

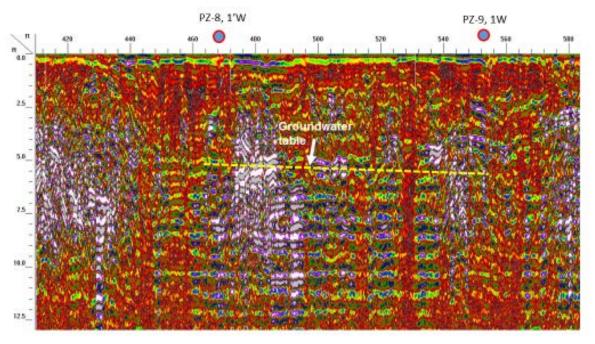
Piezometers PZ-1 and PZ-2 are located 26 feet east and 4 feet west of the GPR profile respectively. The location of PZ-3 is 6 inch to the west of the profile. PZ-1 and PZ-2 do not show any oil product, but PZ-3 has oil thickness of 2.59 feet. Note the relatively high-amplitude reflections beneath the contaminated PZ-3.

Fig. 5A.

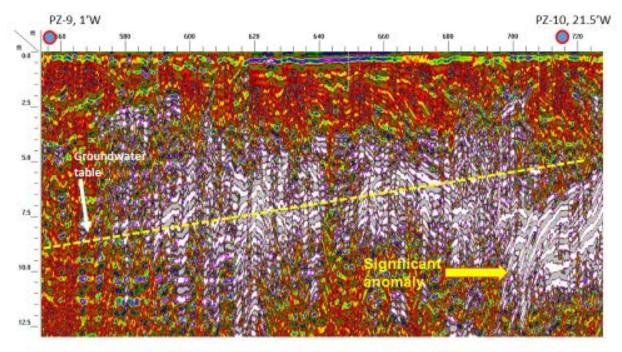

Figure 5B provides the GPR section containing the piezometers PZ-4 and 5. The approximate groundwater table is shown with a yellow line. The piezometer PZ-4 is located 68 feet to the east of the GPR profile whereas PZ-5 is located 2 inch to the west of the profile highly viscous oil, oil solids mix encountered in PZ-4. Oil thickness encountered in PZ-5 is 3.33 feet. Note the high-amplitude reflections beneath PZ-4 and PZ-5.

The piezometer PZ-4 is located 68 feet to the east of the GPR profile whereas PZ-5 is located 2 inch to the west of the profile Highly viscous oil, oil solids mix encountered in PZ-4. Oil thickness encountered in PZ-5 is 3.33 feet

Fig. 5B.

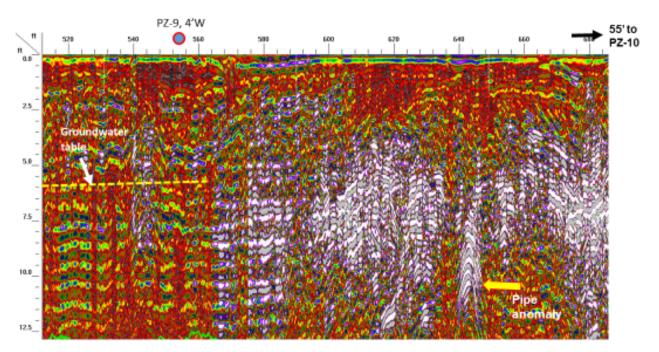

Figure 5C displays the GPR section containing PZ-6, PZ-7 and PZ-8. PZ-6 is located 4 feet to the east of GPR profile L3 whereas PZ-7 is located 69 feet to the east. Both piezometers contain LNAPL products of 1.73 and 3.48 feet in thickness. Note that the profile L3 is very close to PZ-6. Despite the piezometer contains LNAPL, GPR reflections are not as strong as the piezometer PZ-5 (see Figure 5B). PZ-8 is located 1 foot to the west of the profile it does not contain any LNAPL product.

PZ-6 is located 4 feet to the east of GPR profile L3 whereas PZ-7 is located 69 feet to the east. Both piezometers contain LNAPL products of 1.73 and 3.48 feet in thickness. Note that the profile L3 is very close to PZ-6. Despite the piezometer contains LNAPL, GPR reflections are not as strong as the piezometer PZ-5 (see Figure 5B). PZ-8 is located 1 foot to the west of the profile it does not contain any LNAPL product.


Figure 5D shows the GPR section containing piezometers PZ-8 and 9. Piezometers PZ-8 and PZ-9 are located 1 foot to the west of the profile L3. PZ-8 does not contain any LNAPL but PZ-9 has a thickness of 3, 45 feet LNAPL. Both piezometers do not have any significant high-amplitude reflections beneath them.

Piezometers PZ-8 and PZ-9 are located 1 foot to the west of the profile L3. PZ-8 does not contain any LNAPL but PZ-9 has a thickness of 3,45 feet LNAPL. Both piezometers do not have any significant highamplitude reflections beneath them.

The Figure 5E provides the GPR section containing piezometers PZ-9 and 10, which are located 1 and 21.5 feet to the west of the profile L3. PZ-9 contains LNAPL products but PZ-10 does not. However, there is a significant GPR anomaly (sharp, abrupt high amplitude reflections) in the vicinity of PZ-10. The source is not known.



Piezometers PZ-9 and 10 are located 1 and 21.5 feet to the west of the profile L3. PZ-9 contains LNAPL products but PZ-10 does not. However, there is a significant GPR anomaly in the vicinity of PZ-10.

4.0 Interpretation of a GPR Section- L4

In addition to profile L3, we present a here the last section of GPR data along profile L4 (see Figure 4 for location). The GPR profile L4 contains a significant metallic anomaly at the end of the profile (Figure 6). We did not see any other well-defined pipe anomaly along all GPR profiles. Profile L4 is located 5 feet east of profile L3. Note that although PZ-9 contains LNAPL, it does not show any high-amplitude reflections.

This profile is the last section of GPR profile L4, which is located 5 feet to the east of profile L3..PZ-10 is located 55 feet in the south direction. The survey was stopped due to a hindrance. Note that the piezometer PZ-9 has an oil thickness of 3.45 feet and does not contain any high-amplitude reflections. There is a significant metallic (pipe?) GPR anomaly at around station 640 feet.

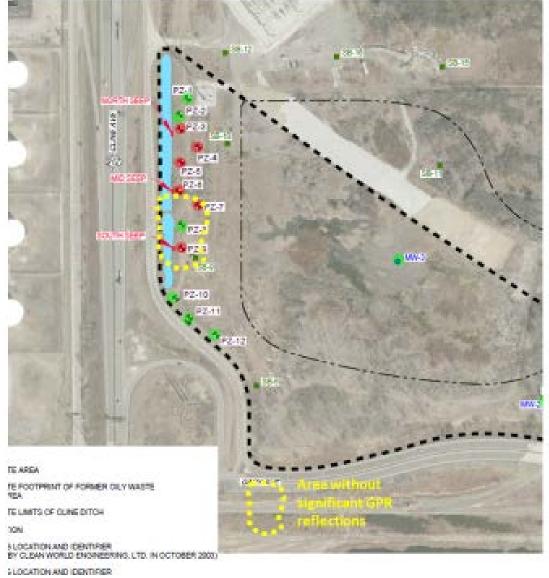
Fig. 6.

5.0 Conclusion

The GPR data obtained from the Cline Ditch Site indicated significant anomalies these anomalies are due to high-amplitude reflections and appear to occur in the vicinity of water table and continued, in some cases, down to 10 feet. The cause of these anomalies **may b**e three fold: 1) A significant dielectric contrast, which the GPR method based on, between the groundwater and sand unit in the subsurface; 2) the presence of several pipelines along the majority of GPR profiles; 3) either the presence-**or absence-** of thick oil products floating in the groundwater.

The purpose of this study was to determine whether the GPR data would provide a recognizable pattern, such that either high-amplitude reflections or faded GPR signals, for the LNAPL products in the near-surface. The current state of research indicates that GPR data display either high- amplitude reflections or amplitude shadows depending on the age of the LNAPL products and near-surface geology (Sources from online research).

Based on the sample GPR data that we reviewed in this study, we present the following results:


- 1) The LNAPL products are located within the both high-amplitude reflections and areas where the GPR signals are attenuated;
- 2) The high-amplitude reflections mostly occur where piezometers PZ-3, PZ-4, PZ-5, and PZ-6 are located;
- The absence of high-amplitude areas mostly occur where piezometers PZ-7, PZ-8 and PZ-9 are located. A picture of this area from the field is shown in Figure 7;
- 4) It should be noted that the presence of high-amplitude reflection in the vicinity of PZ-10 is quite extensive in the horizontal and vertical direction (see Figures 3F and 5E). The reason for this is unknown;
- 5) A well-defined metallic anomaly is observed along profile L4. The approximate depth of this anomaly is about 6 to 7 feet.

Picture showing where, approximately, the absence of high-amplitude reflections are located.

Fig. 7.

In conclusion, LNAPL product exist in the subsurface where presence of highamplitude GPR reflections are recorded. **However**, GPR data does not shown any significant high-amplitude reflections, despite the presence of LNAPL products in some piezometers. A picture is shown in Figure 8 where we observed the absence of high-amplitude GPR data. It should also be noted that the GPR data in the vicinity of PZ-1 and PZ-2 does not show any significant reflections. Both these two piezometers do not contain any LNAPL products.

In summary, there is no pattern in the GPR data that allows us to determine the LNAPL products in the near-surface, with confidence, using the GPR method. We suggests a magnetic gradiometer (or similar) survey run along the GPR profiles to locate any ferrous sources in addition to known pipelines.

Appendix C LNAPL Fingerprint Analysis

Appendix C.1 LNAPL Chromatograms

July 14th, 2017

Angela Bown GHD 9033 Meridian Way West Chester, OH 45069

RE: Cline Ave Ditch Project Number: 85886-023101-403

Pace Analytical received six samples on June 28th, 2017 for analysis labeled 0-062217-JH-01, 0-062217-JH-02, 0-062217-JH-03, 0-062217-JH-04, 0-062217-JH-05, and 0-062217-JH-06. Per client request, the following analyses were performed:

- 1. C3-C36 Whole Oil Molecular Characterization Gas Chromatography "Fingerprint" by GC/FID
- 2. C8-C40 Full Scan Qualitative Molecular Characterization by GC/MS

The sample was performed in house under laboratory number **23114**.

Please call the lab at 412-826-5245, or you may email any questions or concerns to <u>Lauren.McGrath@pacelabs.com</u> regarding any analytical data reports.

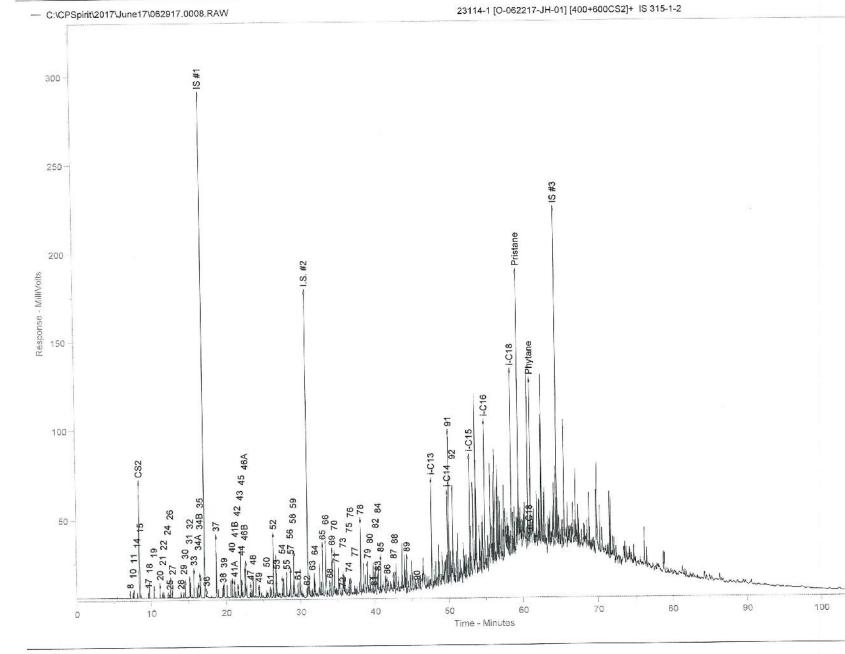
Respectfully submitted,

Lauren E. McGrath

Lauren E. McGrath Project Manager

(C3-C36) Whole-Oil Molecular Characterization Gas Chromatography "Fingerprint" by GC/FID

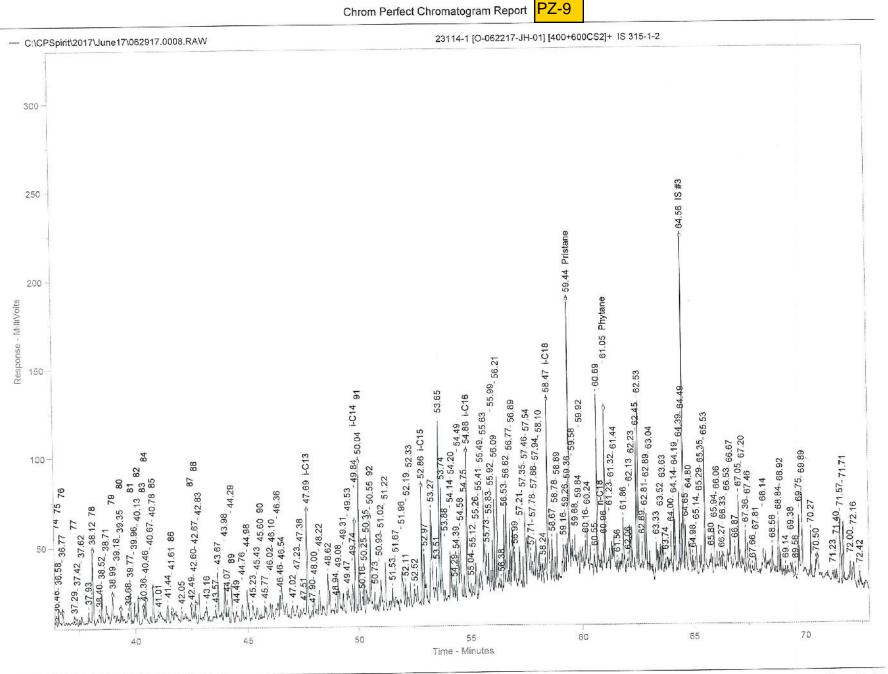
Includes Semi-quantitative screening of over 90 gasoline range PIANO compounds


Pace ID Sample ID	23114-1 O-062217-JH-01 PZ-9
Evaporation	
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.51 0.20
Waterwashing	
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.05 0.23 1.21 3.96
Biodegradation	
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	127.31 6.35 17.28 16.50
Octane rating	
2,2,4,-Trimethylpentane / Methylcyclohexane	0.28
Relative percentages - Bulk hydrocarbon composition	on as PIANO
 % Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic 	2.53 28.30 53.50 13.52 2.14

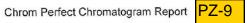
Pace ID Sample ID	ı	23114-1 O-062217-JH-01 PZ	-9
		Relative	
		Area %	
1	Propane	0.00	
2	Isobutane	0.00	
3	Isobutene	0.00	
4	Butane/Methanol	0.00	
5	trans-2-Butene	0.00	
6	cis-2-Butene	0.00	
7	3-Methyl-1-butene	0.00	
8	Isopentane	0.06	
9	1-Pentene	0.00	
10	2-Methyl-1-butene	0.01	
11	Pentane	0.12	
12	trans-2-Pentene	0.00	
13	cis-2-Pentene/t-Butanol	0.00	
14	2-Methyl-2-butene	0.01	
15	2,2-Dimethylbutane	0.00	
16	Cyclopentane	0.00	
17	2,3-Dimethylbutane/MTBE	0.11	
18	2-Methylpentane	0.52	
19	3-Methylpentane	0.00	
20	Hexane	0.52	
21	trans-2-Hexene	0.06 0.04	
22	3-Methylcyclopentene	0.04	
23	3-Methyl-2-pentene	0.00	
24	cis-2-Hexene	0.04	
25	3-Methyl-trans-2-pentene	0.03	
26	Methylcyclopentane	0.02	
27	2,4-Dimethylpentane	0.03	
28	Benzene	0.05	
29	5-Methyl-1-hexene	0.76	
30	Cyclohexane	0.95	
31	2-Methylhexane/TAME	0.61	
32	2,3-Dimethylpentane	1.45	
33	3-Methylhexane	0.61	
34A	1-trans-3-Dimethylcyclopentane	1.26	
34B	1-cis-3-Dimethylcyclopentane	1.11	
35	2,2,4-Trimethylpentane	0.00	
I.S. #1	α, α, α -Trifluorotoluene	0.00	

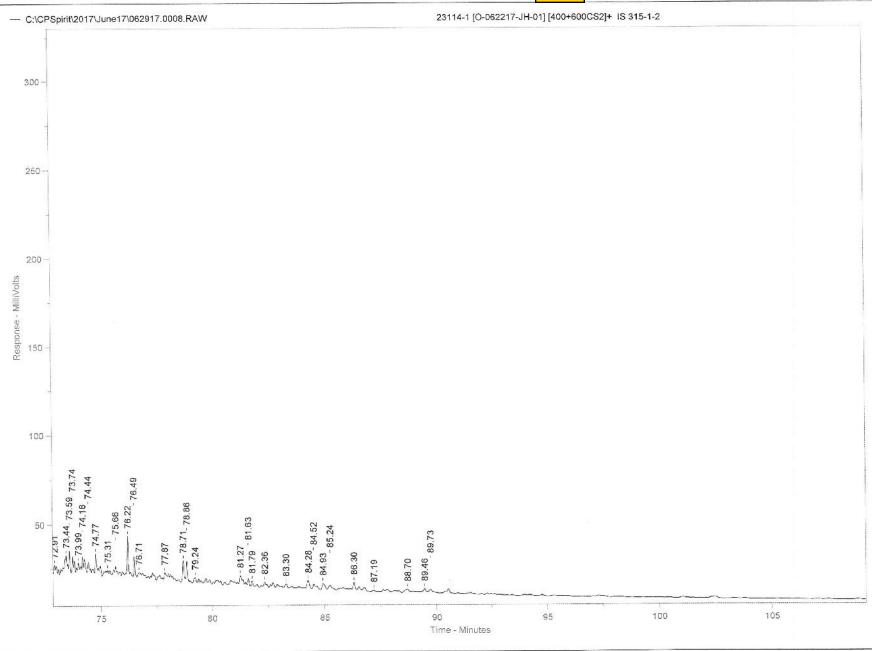
Pace ID Sample ID)	23114-1 O-062217-JH-01 PZ-9	
		Relative	
		Area %	
	- U	0.23	
36	n-Heptane	3.95	
37	Methylcyclohexane	0.45	
38	2,5-Dimethylhexane	0.71	
39	2,4-Dimethylhexane	1.08	
40	2,3,4-Trimethylpentane	0.90	
41	Toluene/2,3,3-Trimethylpentane	0.45	
42	2,3-Dimethylhexane	2.62	
43	2-Methylheptane	0.74	
44	4-Methylheptane	0.24	
45	3,4-Dimethylhexane 3-Ethyl-3-methylpentane	2.81	
46A	1,4-Dimethylcyclohexane	1.54	
46B 47	3-Methylheptane	0.64	
47	2,2,5-Trimethylhexane	1.09	
40 49	n-Octane	0.33	
	2,2-Dimethylheptane	0.15	
50	2,4-Dimethylheptane	0.40	
51 52	Ethylcyclohexane	4.58	
52	2,6-Dimethylheptane	0.64	
53 54	Ethylbenzene	1.00	
54 55	m+p Xylenes	1.57	
55 56	4-Methyloctane	1.39	
57	2-Methyloctane	1.42	
58	3-Ethylheptane	0.15	
58	3-Methyloctane	2.16	
60	o-Xylene	0.00	
61	1-Nonene	0.80	
62	n-Nonane	0.33	
I.S.#2	p-Bromofluorobenzene	0.00	
63	Isopropylbenzene	0.17	
64	3,3,5-Trimethylheptane	0.74	
65	2,4,5-Trimethylheptane	2.88	
66	n-Propylbenzene	5.18	
67	1-Methyl-3-ethylbenzene	0.00	
68	1-Methyl-4-ethylbenzene	1.19	
69	1,3,5-Trimethylbenzene	3.97	
70	3,3,4-Trimethylheptane	2.68	

Pace ID Sample ID)	23114-1 O-062217-JH-01 PZ-9
		Relative
		Area %
71	1-Methyl-2-ethylbenzene	0.00
72	3-Methylnonane	0.00
73	1,2,4-Trimethylbenzene	1.18
74	Isobutylbenzene	0.57
75	sec-Butylbenzene	1.09
76	n-Decane	1.01
77	1,2,3-Trimethylbenzene	0.22
78	Indan	5.66
79	1,3-Diethylbenzene	2.71
80	1,4-Diethylbenzene	0.71
81	n-Butylbenzene	0.00
82	1,3-Dimethyl-5-ethylbenzene	1.60
83	1,4-Dimethyl-2-ethylbenzene	1.65
84	1,3-Dimethyl-4-ethylbenzene	1.99
85	1,2-Dimethyl-4-ethylbenzene	2.21
86	Undecene	1.11
87	1,2,4,5-Tetramethylbenzene	1.03
88	1,2,3,5-Tetramethylbenzene	1.33
89	1,2,3,4-Tetramethylbenzene	2.98
90	Naphthalene	0.06
91	2-Methyl-naphthalene	8.46
92	1-Methyl-naphthalene	6.06
I.S.#3	5α-Androstane	0.00



Chrom Perfect Chromatogram Report


23114-1 [O-062217-JH-01] [400+600CS2]+ IS 315-1-2 - C:\CPSpirit\2017\June17\062917.0008.RAW 17.15 IS#1 300 250 30.99 I.S. #2 200 Response - MilliVolts 150 72 73 46B 34A 34B 100 35.41 - 35.72 - 35.80 - 35.89 - 35.98 8.50 CS2 <u>32.46</u> 32.58-32.70-32.79-32.99 <u>33.26 - 33.44</u> 66 48 -22.09 21.99 22.22 43 44 45 47 70 52 24 25 26 --20.83_20.83_40_41A_41B -21.12-21.25_42_ 22.77 46A 29.62_29.88_29.97_30.12 63 64 19.52-19.60-19.73 38 39 23.26-23.38-23.53-23.62 57 11.56 11.73 21 22 26.71 56 a 18.72 37 ± 25.43 50 ≈ 25.92 26.03 51 5 18 31.58 - 31.85 - 31.94 2-27.55-27.71 54 29 2-9.59-9.65, 9.80 17 - 31.16 -7.21 8 -7.60 7.70 10 11 -8.18 14 - 15 - 13.95 14.00 28 50 -26.78 53 34.49 36 33.94 20.13 18.93 30.82 17.36 19 訪 AN US d JAN. 35 30 25 20 15 5 10 0 Time - Minutes


Chrom Perfect Chromatogram Report

Printed on 7/3/2017 5:11:56 PM

Page 2 of 3

Printed on 7/3/2017 5:11:56 PM

Sample Name = 23114-1 [O-062217-JH-01] [400+600CS2]+ IS 315-1-2

Raw File Name = C:\CPSpirit\2017\June17\062917.0008.RAW

Acquisition Port = DP#

PZ-9

Instrument = Instrument 1 Heading 1 = Heading 2 =

Method File Name = C:\CPSpirit\C344.met

Date Taken (end) = 6/30/2017 6:33:25 PM Method Version = 44 Calibration Version = 1

Method File Name = C:\CPSpirit\C3 Calibration File Name = C:\CPSpirit	
Peak Name 8 10 11 14 CS2	Ret. Time 7.21 7.60 7.70 8.18 8.50 9.59
17 18 20 21	9.65 9.80 11.21 11.56 11.67
22 24 25 26	11.73 12.26 12.50 12.63 13.95
28 29 30 31 32 33	14.00 14.35 14.58 15.16 15.27 15.72 16.14
34A 34B 35 IS #1 36 37	16.32 16.50 16.61 17.15 17.36 18.72 18.93
38 39	19.52 19.60 19.73 20.13 20.63
40 41A 41B 42 43 44 45 46B 46A	20.83 21.12 21.25 21.58 21.99 22.09 22.22 22.51 22.64 22.77
47	23.26 23.38 23.53 23.62
49	23.97 24.39
50	25.43
51	25.92 26.03

Area %	Area
0.0085	1524.87
0.0011	193.57
0.0155	2787.73
	294.48
0.0016	234429.90
1.3044	1329.51
0.0074	
0.0140	2514.30
0.0684	12295.28
0.0685	12317.03
0.0075	1345.73
0.0023	413.12
0.0047	849.42
0.0050	907.11
0.0042	755.42
0.1086	19524.60
0.0117	2104.04
0.0046	832.49
0.0064	1149.27
0.0999	17961.71
0.1255	22554.30
0.0810	14561.39
	34405.06
0.1914	15398.88
0.0857	14413.47
0.0802	
0.1658	29794.66
0.1468	26378.15
3.9237	705152.80
0.0302	5420.67
0.5213	93681.20
0.0740	13296.25
0.0791	14216.84
0.0592	10643.51
0.0936	16830.05
0.1032	18538.85
0.1456	26174.55
0.1421	25529.06
0,1188	21350.72
0.0068	1229.04
0.0589	10585.86
0.3460	62182.48
0.0972	17467.63
0.0316	5672.82
0.2027	36435.87
	66575.15
0.3704	19370.13
0.1078	15230.74
0.0847	
0.0687	12351.77 9815.99
0.0546	
0.1437	25822.00
0.1874	33680.20
0.0438	7866.13
0.0192	3448.49
0.0533	9576.20
0.0804	14457.39
	109631 00

0.6045

52

26.35

108631.90

Chrom Perfect Chromatogram	Report PZ-9	
Union Fenetic Unionalogiam	Topon	

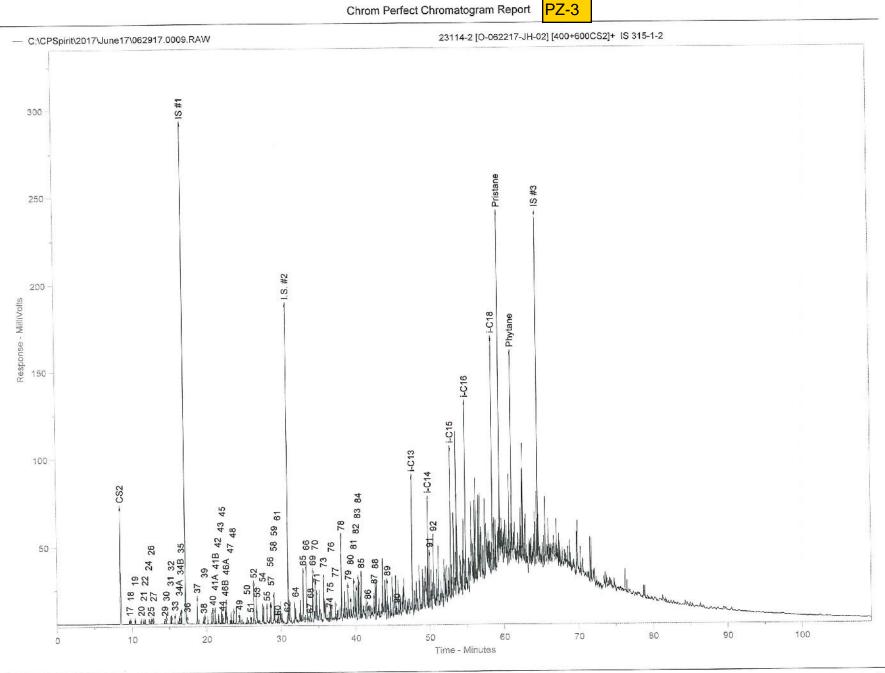
		Shohatografii Keport — O	
Peak Name	Ret. Time	Area %	Area 64225.15
- Cult Humo	26.71	0.3574	15273.32
53	26.78	0.0850	
54	27.55	0.1317	23663.71 27637.40
	27.71	0.1538	37162.39
55	28.12	0.2068	
55	28.50	0.0605	10875.53
56	28.60	0.1833	32939.23
57	28.67	0.1878	33755.03
58	29.02	0.0198	3562.11
59	29.10	0.2845	51137.30
61	29.62	0.1053	18918.71
51	29.88	0.1580	28389.96
	29.97	0.2702	48553.79
	30.12	0.1247	22412.19
~~	30.82	0.0438	7867.35
62	30.99	2.5459	457550.10
.S. #2	31.16	0.2163	38864.23
	31.58	0.0219	3944.45
63		0.2054	36915.87
	31.85	0.0973	17478.23
64	31.94	0.1093	19639.35
	32.46	0.2534	45543.29
	32.58	0.0576	10358.34
	32.70	0.1161	20859.10
	32.79	0.3803	68350.15
65	32.99	0.0659	11837.25
	33.26	0.6833	122795.80
66	33.44		28307.40
68	33.94	0.1575	94094.93
69	34.25	0.5236	18945.46
	34.49	0.1054	63555.89
70	34.61	0.3536	16792.24
	34.85	0.0934	33239.80
	35.14	0.1850	18984.70
	35.41	0.1056	27866.06
73	35.72	0.1551	33517.48
	35.80	0.1865	29851.19
	35.89	0.1661	25490.29
	35.98	0.1418	
74	36.48	0.0753	13529.74
75	36.58	0.1437	25834.20
76	36.77	0.1326	23833.34
77	37.29	0.0296	5320.73
77	37.42	0.0657	11798.74
	37.62	0.1049	18845.41
	37.93	0.1849	33221.71
	38.12	0.7462	134111.60
78	38.40	0.2480	44564.80
	38.52	0.3063	55053.94
	38.71	0.2944	52910.98
	38.99	0.3575	64249.01
79		0.1219	21899.05
	39.18	0.0939	16877.26
80	39.35	0.0927	16667.14
	39.68	0.2954	53086.00
	39.77	0.1946	34973.55
	39.96	0.2115	38019.16
82	40.13	0.2115	39200.17
83	40.36		47193.12
84	40.46	0.2626	11881.67
19 MIN	40.67	0.0661	52318.73
85	40.78	0.2911	11413.67
87253	41.01	0.0635	46691.20
	41.44	0.2598	26371.49
	41.61	0.1467	
86	41.01		00610 17
86	42.05	0.1253	22513.17
		0.1253 0.1355	24345.42
86 87	42.05	0.1253	

	Chrom Perfect C	hromatogram Report PZ-9	
Peak Name	Ret. Time	Area %	Area
Peak Name	42.83	0.3357	60335.09
	43.16	0.2701	48550.43
	43.57	0.0624	11220.91
	43.67	0.4846	87098.50
	43.98	0.3631	65247.50
	44.07	0.1382	24835.32
39	44.29	0.3929	70619.68
59	44.49	0.0842	15131.6
	44.76	0.2035	36579.2
	44.98	0.1836	33003.9
	45.23	0.1889	33942.2
	45.43	0.1528	27458.5
2	45.60	0.0073	1311.1
90	45.77	0.1962	35259.2
	46.02	0.2187	39304.5
	46.10	0.1407	25290.1
	46.36	0.2816	50609.6
	46.46	0.1802	32382.9
		0.4063	73010.6
	46.54	0.2286	41081.7
	47.02	0.2360	42409.1
	47.23	0.1124	20199.4
	47.38	0.1607	28883.2
	47.51	0.9791	175970.7
-C13	47.69	0.0699	12557.8
	47.90	0.2007	36077.1
	48.00		59543.0
	48.22	0.3313	61358.3
	48.62	0.3414	21039.5
	48.94	0.1171	98572.5
	49.08	0.5485	39683.4
	49.31	0.2208	31622.3
	49.47	0.1760	
	49.53	0.4819	86609.3
	49.74	0.3691	66339.8
i-C14	49.84	0.6051	108745.6
91	50.04	1.1154	200455.
91	50.16	0.2338	42009.9
	50.25	0.2727	49008.2
	50.35	0.3198	57468.
~~	50.55	0.7995	143676.
92	50.73	0.1539	27650.
	50.93	0.0894	16072.
	51.02	0.4664	83814.
	51.02	0.4685	84202.
	51.53	0.3604	64769.
		0.3946	70909.
	51.67	0.7325	131644.
	51.96	0.2441	43861.
	52.11	0.2441	43417
	52.19	0.2169	38986
	52.33		30991
	52.52	0.1724	135074
i-C15	52.86	0.7516	119790
	52.97	0.6665	283551
	53.27	1.5778	73554
	53.51	0.4093	234926
	53.65	1.3072	162397
	53.74	0.9036	162397
	53.88	0.0830	
	54.14	0.3948	70960
	54.20	0.2595	46632
	54.20	0.1515	27219
	54.29	0.1811	32547
		0.4513	81110
	54.49	0.7555	135779
	54.58	0.2364	42492
	54.75		184300
		1 0266	104300
i-C16	54.88 55.04	1.0255 0.1343	24137

- 3 V2	D.I.T.	Area %	Are
eak Name	Ret. Time	0.1650	29655.6
	55.12 55.26	0.4644	83455.2
	55.41	0.1369	24599.5
	55.49	0.3191	57346.8
	55.63	1.1383	204568.0
	55.73	0.3295	59216.8
	55.83	0.3170	56963.8
	55.92	0.1487	26729.
	55.99	0.3550	63793.
	56.09	0.5477	98430.
	56.21	0.8250	148270. 15769.
	56.38	0.0877	104739.
	56.53	0.5828	104516.
	56.62	0.5816	75567.
	56.77	0.4205	157538.
	56.89	0.8766	57318.
	56.99	0.3189 0.3551	63826.
	57.21	0.3331	31977.
	57.35	0.7278	130791.
	57.46	0.1256	22581.
	57.54	0.1870	33608
	57.71	0.0982	17647.
	57.78 57.86	0.1657	29786.
	57.94	0.3556	63912
	58.10	0.2481	44586
	58.24	0.2176	39098
-C18	58.47	1.5973	287065
-010	58.67	0.3480	62536
	58.78	0.2340	42049
	58.89	0.2710	48694 66704
	59.16	0.3712	59611
	59.26	0.3317	82710
	59.36	0.4602	377458
Pristane	59.44	2.1003 0.5473	98361
	59.58	0.5907	106162
	59.68	0.2446	43962
	59.84	0.2213	39779
	59.92 60.16	0.1796	32273
	60.24	0.4000	71879
	60.55	0.2347	42188
	60.69	1.2464	223995
	60.96	0.2793	50196
Phytane	61.05	1.1760	211349
Thytano	61.23	0.3395	61005 51797
	61.32	0.2882	63443
	61.44	0.3530	19204
	61.56	0.1069	65388
	61.86	0.3638	37004
	62.06	0.2059	70243
	62.13	0.3909 0.3693	66363
	62.23	0.8613	15478
	62.45	0.9639	17322
	62.53 62.69	0.1859	3341
	62.81	0.3616	6498
	62.89	0.3783	6798
	63.04	0.3477	6248
	63.33	0.5171	9292
	63.52	0.2027	3643
	63.63	0.3700	6650
	63.74	0.0569	1021
	64.00	0.4601	8268
	64.14	0.4271	7675
	64.19	0.3577	6429
	04.10	0.5923	10645

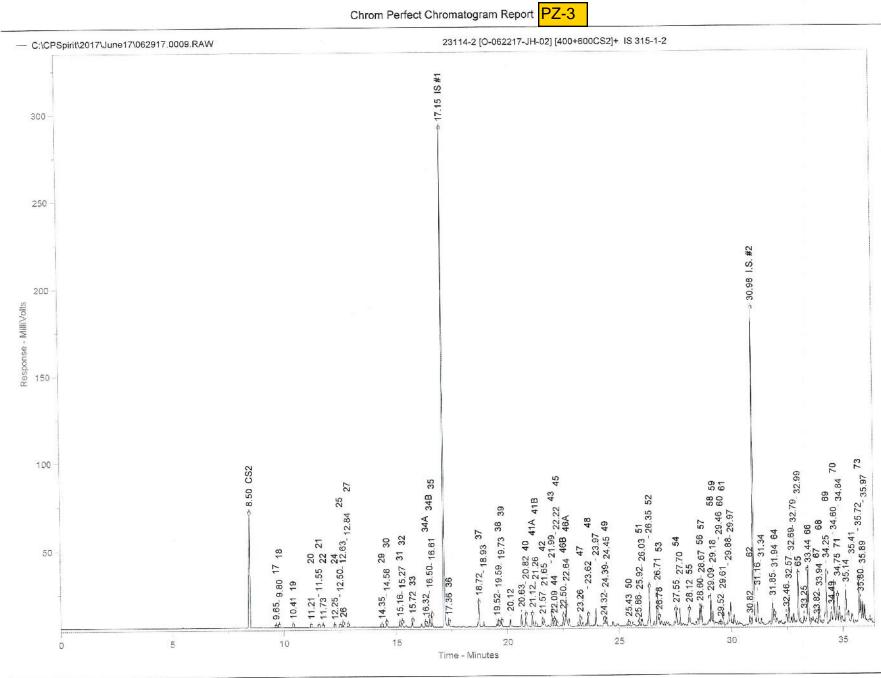
	Chrom Perfect	Chromatogram Report PZ-9	
Peak Name	Ret. Time	Area %	Area 82520.76
	64.49	0.4592 1.9140	343981.80
IS #3	64.56	0.5373	96564.31
	64.65	0.6016	108118.70
	64.80 64.98	0.2091	37579.40
	65.14	0.3389	60906.04
	65.29	0.1135	20398.87
	65.35	0.2260	40622.95
	65.53	1.0874	195430.40
	65.80	0.4772	85766.93 85344.09
	65.94	0.4749	32808.84
	66.06	0.1826	33431.96
	66.27	0.1860 0.3102	55754.29
	66.33	0.1837	33008.78
	66.53	0.4235	76111.02
	66.67 66.87	0.2833	50920.46
	67.05	0.3590	64518.23
	67.20	0.2263	40671.55
	67.36	0.2754	49489.48
	67.46	0.1661	29852.86 16057.83
	67.66	0.0894	44610.25
	67.81	0.2482	50571.03
	68.14	0.2814 0.3624	65138.00
	68.56	0.3624	87651.70
	68.84	0.1678	30164.41
	68.92 69.14	0.0626	11248.19
	69.38	0.1076	19345.70
	69.58	0.0982	17656.39
	69.75	0.5316	95545.74
	69.89	0.7622	136982.50
	70.27	0.3478	62508.82 10267.30
	70.50	0.0571	25827.46
	71.23	0.1437	23907.97
	71.40	0.1330 0.8160	146658.00
	71.57	0.5641	101374.70
	71.71	0.3111	55907.92
	72.00 72.16	0.5125	92109.37
	72.10	0.0916	16466.97
	72.91	0.0682	12253.25
	73.44	0.6181	111084.50
	73.59	0.2035	36565.07 21085.47
	73.74	0.1173	11771.69
	73.99	0.0655 0.0953	17129.32
	74.18	0.1678	30155.04
	74.44	0.1974	35481.80
	74.77 75.31	0.1986	35700.07
	75.66	0.1843	33118.68
	76.22	0.3848	69155.70
	76.49	0.2179	39165.06
	76.71	0.0803	14430.20 15902.28
	77.87	0.0885	56068.05
	78.71	0.3120	55129.02
	78.86	0.3068	19836.81
	79.24	0.1104 0.0942	16929.62
	81.27	0.0942	14787.83
	81.63	0.0713	12817.91
	81.79	0.0519	9330.07
	82.36 83.30	0.0739	13287.80
	83.30	0.1771	31823.27
	84.52	0.0530	9523.70
	84.93	0.1755	31541.46
	85.24	0.1692	30405.14

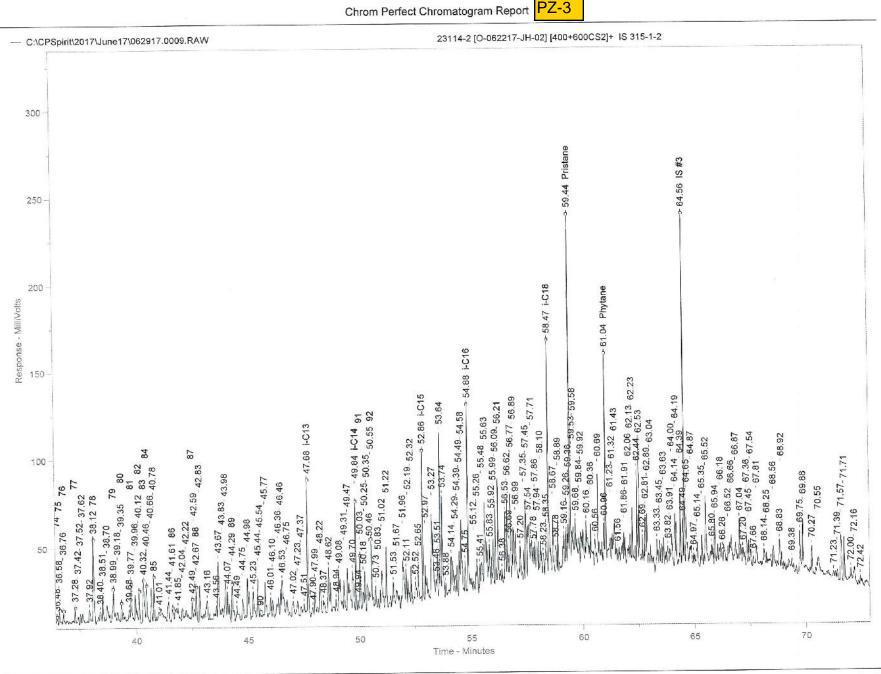
	Chrom Perfect Chromatogr	am Report PZ-9	
Peak Name	Ret. Time 86.30 87.19 88.70 89.46 89.73	Area % 0.1172 0.0448 0.1177 0.0844 0.0714	Area 21070.80 8049.02 21154.33 15170.03 12823.54
Total Area = 1.797182E+07	Total Height = 6082467	Total Amount = 0	


Pace ID Sample ID	23114-2 O-062217-JH-02 PZ-3
Evaporation	
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.00 0.06
Waterwashing	
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.00 0.55 2.34 10.59
Biodegradation	
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	438.43 1.40 5.77 11.47
Octane rating	
2,2,4,-Trimethylpentane / Methylcyclohexane	0.51
Relative percentages - Bulk hydrocarbon composit	ion as PIANO
% Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic	2.34 20.39 68.46 6.47 2.35

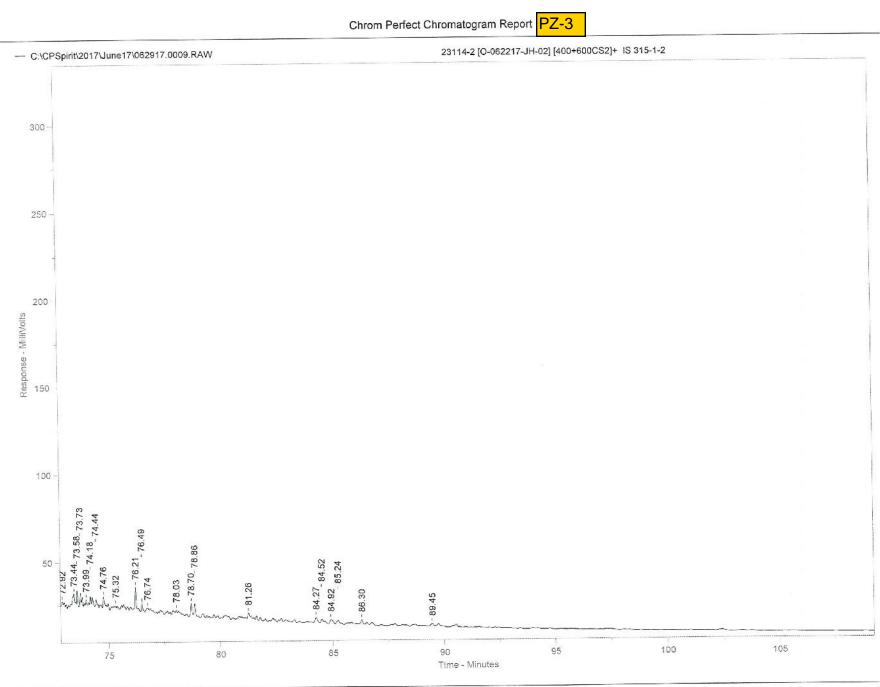
% Naphthenic % Olefinic

Pace ID Sample ID		23114-2 O-062217-JH-02 PZ-3
		Relative
		Area %
1	Propane	0.00
2	Isobutane	0.00
2 3	Isobutene	0.00
4	Butane/Methanol	0.00
5	trans-2-Butene	0.00
6	cis-2-Butene	0.00
7	3-Methyl-1-butene	0.00
8	Isopentane	0.00
9	1-Pentene	0.00
10	2-Methyl-1-butene	0.00
11	Pentane	0.00
12	trans-2-Pentene	0.00
13	cis-2-Pentene/t-Butanol	0.00
14	2-Methyl-2-butene	0.00
15	2,2-Dimethylbutane	0.00
16	Cyclopentane	0.00
17	2,3-Dimethylbutane/MTBE	0.02
18	2-Methylpentane	0.05
19	3-Methylpentane	0.05
20	Hexane	0.03
21	trans-2-Hexene	0.01
22	3-Methylcyclopentene	0.01 0.00
23	3-Methyl-2-pentene	0.00
24	cis-2-Hexene	0.01
25	3-Methyl-trans-2-pentene	0.15
26	Methylcyclopentane	0.13
27	2,4-Dimethylpentane	0.00
28	Benzene	0.02
29	5-Methyl-1-hexene	0.23
30	Cyclohexane	0.17
31	2-Methylhexane/TAME	0.24
32	2,3-Dimethylpentane	0.37
33	3-Methylhexane	0.19
34A	1-trans-3-Dimethylcyclopentane	0.60
34B	1-cis-3-Dimethylcyclopentane	0.79
35	2,2,4-Trimethylpentane	0.00
I.S. #1	a,a,a-Trifluorotoluene	


Pace ID		23114-2
Sample ID		0-062217-JH-02 PZ-3
		Relative
		Area %
~~		0.27
36	n-Heptane	1.54
37	Methylcyclohexane	0.20
38	2,5-Dimethylhexane	0.41
39	2,4-Dimethylhexane	0.92
40	2,3,4-Trimethylpentane Toluene/2,3,3-Trimethylpentane	0.84
41		0.42
42	2,3-Dimethylhexane	0.84
43	2-Methylheptane	0.35
44	4-Methylheptane	0.17
45	3,4-Dimethylhexane 3-Ethyl-3-methylpentane	1.84
46A	3-Emyl-3-methylovolobovano	0.61
46B	1,4-Dimethylcyclohexane	0.48
		0.75
		0.53
		0.13
		0.30
		3.15
		0.50
		1.03
		1.40
		1.08
		1.02
		1.63
	•	0.57
		0.04
		0.85
		0.43
		0.00
		0.00
		0.78
	2.4.5.Trimethylbentane	3.18
		5.35
		0.12
	1_Methyl-4-ethylbenzene	1.27
	1.3.5-Trimethylbenzene	4.79
		3.05
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 I.S.#2 63 64 65 66 67 68 69 70	3-Methylheptane 2,2,5-Trimethylhexane n-Octane 2,2-Dimethylheptane 2,4-Dimethylheptane Ethylcyclohexane 2,6-Dimethylheptane Ethylbenzene m+p Xylenes 4-Methyloctane 2-Methyloctane 3-Ethylheptane 3-Ethylheptane 3-Methyloctane o-Xylene 1-Nonene n-Nonane p-Bromofluorobenzene Isopropylbenzene 3,3,5-Trimethylheptane 2,4,5-Trimethylheptane 1-Methyl-3-ethylbenzene 1,3,5-Trimethylbenzene 3,3,4-Trimethylheptane	0.75 0.53 0.13 0.30 3.15 0.50 1.03 1.40 1.08 1.02 1.63 0.57 0.04 0.85 0.43 0.00 0.00 0.00 0.78 3.18 5.35 0.12 1.27 4.79


Pace ID Sample ID		23114-2 O-062217-JH-02 PZ-3
		Relative
		Area %
71	1-Methyl-2-ethylbenzene	2.16
72	3-Methylnonane	0.00
73	1,2,4-Trimethylbenzene	2.88
74	Isobutylbenzene	0.74
75	sec-Butylbenzene	1.23
76	n-Decane	1.09
77	1,2,3-Trimethylbenzene	0.94
78	Indan	7.03
79	1,3-Diethylbenzene	3.38
80	1,4-Diethylbenzene	1.16
81	n-Butylbenzene	3.18
82	1,3-Dimethyl-5-ethylbenzene	2.26
83	1,4-Dimethyl-2-ethylbenzene	4.69
84	1,3-Dimethyl-4-ethylbenzene	3.21
85	1,2-Dimethyl-4-ethylbenzene	3.12
86	Undecene	1.45
87	1,2,4,5-Tetramethylbenzene	1.49
88	1,2,3,5-Tetramethylbenzene	2.49
89	1,2,3,4-Tetramethylbenzene	3.55
90	Naphthalene	0.25
91	2-Methyl-naphthalene	4.00
92	1-Methyl-naphthalene	5.86
I.S.#3	5α-Androstane	0.00

Printed on 7/3/2017 5:37:26 PM


Page 1 of 1

Printed on 7/3/2017 5:37:16 PM

Page 2 of 3

Printed on 7/3/2017 5:37:16 PM

Page 3 of 3

Chrom	Perfect	Chromatogram	Report
-------	---------	--------------	--------

Sample Name = 23114-2 [O-062217-JH-02] [400+600CS2]+ IS 315-1-2

Acquisition Port = DP#

PZ-3

Instrument = Instrument 1 Heading 1 = Heading 2 =

Raw File Name = C:\CPSpirit\2017\June17\062917.0009.RAW Method File Name = C:\CPSpirit\C344.met Calibration File Name = C:\CPSpirit\061917.cal

Date Taken (end) = 6/30/2017 8:41:42 PM Method Version = 44 Calibration Version = 1

Peak Name	Ret. Time
CS2	8.50
17	9.65
18	9.80
19	10.41
20	11.21
21	11.55
22	11.73
24	12.25
25	12.50
26	12.63
27	12.84
29	14.35
30	14.58
31	15.16
32	15.27
33	15.72
34A	16.32
34B	16.50
35	16.61
IS #1	17.15
36	17.36
37	18.72
	18.93
200	19.52
38	19.59
39	19.73 20.12
	20.63
24	20.82
40	21.12
41A	21.12
41B	21.20
42	21.65
12	21.99
43	22.09
44 45	22.22
	22.50
46B	22.64
46A	23.26
47 48	23.62
40	23.97
	24.32
49	24.39
45	24.45
50	25.43
50	25.86
51	25.92
0.	26.03
52	26.35
	26.71
53	26.78
54	27.55
24202-4	27.70
55	28.12
56	28.60

Area %	Area
1.3019	245049.70
0.0019	358.42
0.0057	1069.87
0.0063	1192.06
0.0037	691.51
0.0011	203.02
0.0008	148.18
0.0008	144.82
0.0010	181.36
0.0172	3240.96
0.0081	1528.37
0.0020	378.88
0.0264	4968.54
0.0192	3611.56
0.0274	5163.70
0.0433	8148.80
0.0223	4197.84
0.0693	13043.67
0.0912	17168.16
3.7492	705714.10
0.0309	5813.27
0.1781	33517.82
0.0435	8183.86
0.0252	4741.37
0.0232	4370.04
0.0475	8942.31
0.0607	11423.31
0.0979	18423.74
0.1064	20030.32
0.0979	18425.02
0.0032	594.63
0.0490	9224.40
0.0585	11009.62
0.0977	18388.08
0.0401	7539.95
0.0195	3662.92
0.0706	13297.35
0.2131	40110.09
0.0560	10536.03
0.0867	16314.31
0.1410	26542.99
0.0297	5594.41
0.0615	11584.31
	14258.27
0.0757	2862.38
0.0152	1372.02
0.0073 0.0347	6531.16
0.0680	12793.85
0.3656	68822.38
	58104.26
0.3087 0.0582	10953.24
0.0582	22375.91
	25260.02
0.1342 0.1622	30539.73
	23592.96
0.1253	20002.00

	Chrom Perfe	ect Chromatogram Report	
Peak Name	Ret. Time	Area %	Area
57	28.67	0.1188	22368.26
58	29.09	0.1884	35470.12 12336.43
59	29.18	0.0655 0.0313	5890.03
	29.46 29.52	0.0047	885.59
60	29.52	0.0980	18448.41
61	29.88	0.1186	22319.48
	29.97	0.2012	37866.20 9281.06
62	30.82	0.0493	491560.60
I.S. #2	30.98	2.6115 0.2386	44909.65
	31.16 31.34	0.0829	15612.71
	31.85	0.1786	33624.98
64	31.94	0.0900	16940.69
01	32.46	0.1137	21398.52 32891.17
	32.57	0.1747	11045.26
	32.69	0.0587 0.0815	15350.03
05	32.79 32.99	0.3686	69380.88
65	33.25	0.0825	15530.91
66	33.44	0.6207	116830.70
67	33.82	0.0139	2614.95 27787.11
68	33.94	0.1476 0.5552	104507.80
69	34.25 34.49	0.1239	23323.04
70	34.60	0.3533	66500.23
70 71	34.75	0.2505	47142.83
	34.84	0.1617	30429.05
	35.14	0.2097	39476.50 21407.53
100	35.41	0.1137 0.3344	62935.38
73	35.72 35.80	0.1915	36038.33
	35.89	0.1662	31287.44
	35.97	0.1261	23739.57
74	36.48	0.0854	16082.92 26889.22
75	36.58	0.1429 0.1261	23735.78
76	36.76 37.28	0.1087	20460.23
77	37.42	0.0747	14065.11
	37.52	0.0964	18145.90
	37.62	0.1562	29410.17 40166.96
	37.92	0.2134 0.8152	153439.40
78	38.12	0.8152	22006.08
	38.40 38.51	0.2361	44440.78
	38.70	0.3153	59355.27
79	38.99	0.3917	73728.29 20719.22
	39.18	0.1101	25306.00
80	39.35	0.1344 0.1012	19047.02
	39.68 39.77	0.3686	69388.70
81	39.96	0.2495	46966.21
82	40.12	0.2622	49348.31
83	40.32	0.5441	102413.60 69938.14
84	40.46	0.3716 0.2847	53595.31
	40.66 40.78	0.3614	68019.68
85	41.01	0.0674	12678.58
	41.44	0.2831	53291.05
86	41.61	0.1684	31701.55
8.F)	41.85	0.3095	58261.45 28450.22
	42.04	0.1511 0.0740	13933.96
	42.22 42.49	0.0740	32554.04
87	42.49	0.1354	25487.05
88	42.67	0.2882	54244.72
	42.83	0.3925	73888.65

	Chrom Perfect	Chromatogram Report PZ-3	
Peak Name	Ret. Time	Area %	Area
r cak hamo	43.16	0.3296	62039.28
	43.56	0.1957	36829.96
	43.67	0.6147	115704.40 16333.68
	43.83	0.0868	70081.00
	43.98	0.3723	32580.08
	44.07	0.1731	77373.27
89	44.29	0.4111 0.2782	52368.98
	44.49	0.2430	45737.79
	44.75	0.2292	43133.40
	44.98 45.23	0.2791	52536.51
	45.23	0.3813	71764.11
00	45.54	0.0288	5416.95
90	45.77	0.3511	66095.99
	46.01	0.1648	31023.63
	46.10	0.1454	27371.79
	46.36	0.3878	72995.15
	46.46	0.2605	49039.06
	46.53	0.5977	112499.70
	46.75	0.2956	55646.54
	47.02	0.2795	52604.38
	47.23	0.2942	55383.78
	47.37	0.1313	24712.02
	47.51	0.2421	45564.52 223463.10
i-C13	47.68	1.1872	14165.87
	47.90	0.0753	43401.56
	47.99	0.2306	74899.20
	48.22	0.3979	40249.69
	48.37	0.2138	67495.85
	48.62	0.3586	20905.02
	48.94	0.1111 0.1749	32925.37
	49.08	0.2426	45672.98
	49.31	0.1938	36488.39
	49.47	0.4581	86232.37
	49.70	0.6802	128027.90
i-C14	49.84 49.94	0.0724	13633.46
	50.03	0.4635	87241.55
91	50.03	0.2299	43275.71
	50.25	0.3126	58833.60
	50.35	0.3690	69451.78
	50.46	0.2491	46888.21
92	50.55	0.6791	127822.80
92	50.73	0.2285	43003.02
	50.83	0.1083	20378.97
	51.02	0.7045	132601.60
	51.22	0.6059	114050.50
	51.53	0.4353	81937.18
	51.67	0.4759	89587.37 161775.10
	51.96	0.8595	64995.64
	52.11	0.3453	62043.41
	52.19	0.3296	62617.66
	52.32	0.3327	86954.02
	52.52	0.4620	83317.49
	52.65	0.4426	185093.20
i-C15	52.86	0.9833	129364.20
	52.97	0.6873 1.6168	304327.50
	53.27	0.2274	42802.47
	53.46	0.3205	60330.40
	53.51	1.2680	238671.70
	53.64	0.8937	168218.10
	53.74	0.1809	34042.79
	53.88	0.3741	70414.63
	54.14	0.2169	40836.51
	EA DO		
	54.29		45717.94
	54.29 54.39 54.49	0.2429 0.4206	

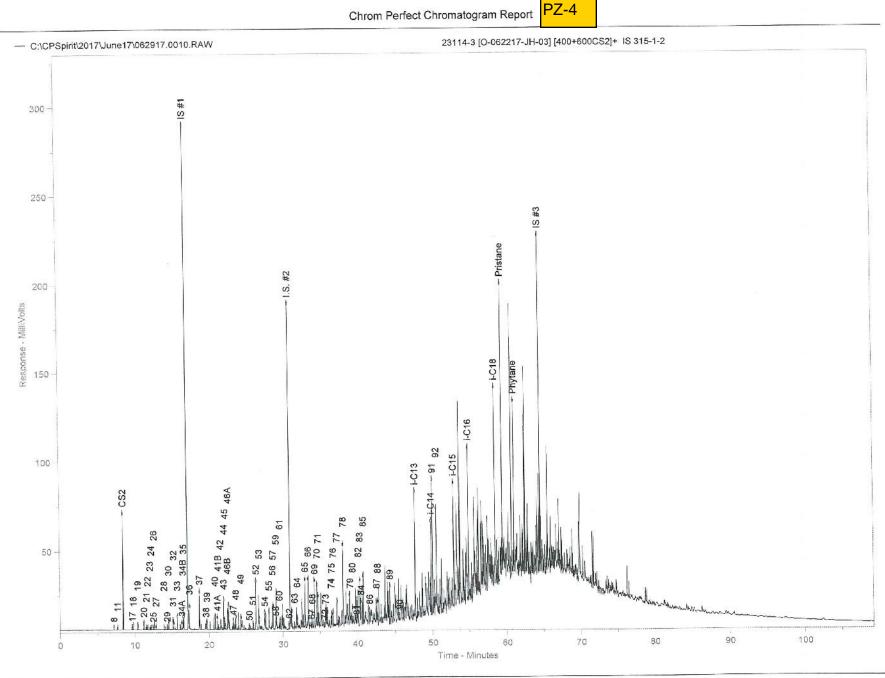
	Chrom Perfect	Chromatogram Report	
Peak Name	Ret. Time	Area %	Area 170479.50
	54.58	0.9057	43292.50
	54.75	0.2300 1.1254	211834.00
C16	54.88 55.12	0.1052	19803.87
	55.26	0.4772	89822.81
	55.41	0.2007	37770.06
	55.48	0.4196	78981.42
	55.63	1.1605	218436.00 95497.71
	55.83	0.5073	37347.38
	55.92	0.1984 0.3427	64505.71
	55.99	0.5071	95452.22
	56.09 56.21	0.7574	142556.80
	56.38	0.1116	21012.79
	56.53	0.6379	120067.20
	56.62	0.5553	104528.60 37133.88
	56.69	0.1973	116450.90
	56.77	0.6187 0.6330	119146.90
	56.89	0.8330	77828.66
	56.99 57.20	0.2965	55806.88
	57.35	0.1604	30192.09
	57.45	0.7645	143899.00
	57.54	0.1317	24781.62
	57.71	0.2056	38691.68 21973.73
	57.78	0.1167	29797.3
	57.86	0.1583 0.4903	92291.33
	57.94 58.10	0.2834	53345.9
	58.23	0.2336	43968.6
	58.35	0.4630	87149.90
i-C18	58.47	1.9967	375838.4
	58.67	0.4522	85118.4 50569.9
	58.78	0.2687	54344.8
	58.89	0.2887 0.4094	77052.9
	59.16 59.26	0.3657	68831.1
	59.36	0.4634	87218.7
Pristane	59.44	2.4848	467721.0
ristalle	59.53	0.2955	55614.7
	59.58	0.2908	54743.9 119781.3
	59.68	0.6364	50005.4
	59.84	0.2657 0.2255	42441.3
	59.92	0.1579	29730.8
	60.16 60.36	0.3700	69638.2
	60.56	0.3577	67328.4
	60.69	0.7940	149449.0
	60.96	0.3352	63101.3 267788.7
Phytane	61.04	1.4227	51292.1
	61.23	0.2725 0.2771	52155.4
	61.32	0.3824	71985.0
	61.43 61.56	0.1108	20846.9
	61.86	0.1254	23601.8
	61.91	0.1491	28069.6
	62.06	0.2375	44709.0
	62.13	0.3018	56805.8 84051.8
	62.23	0.4465	124980.3
	62.44	0.6640 0.6954	130901.5
	62.53	0.6954	33631.9
	62.69 62.81	0.2781	52349.6
	62.89	0.3394	63884.3
	63.04	0.3345	62972.0
	63.33	0.5044 0.3062	94952.3 57642.6

Chrom Perfect Chron	natogram Report PZ-3	
	Area %	Area
Ret. Time	0.4169	78481.34
63.63	0.3155	59390.63
63.82 63.91	0.2041	38416.45
64.00	0.4526	85185.96
64.14	0.4319	81290.52
64.19	0.3480	65507.06
64.39	0.6187	116463.60 88334.73
64.49	0.4693	370928.00
64.56	1.9706	115699.80
64.65	0.6147	93486.74
64.87	0.4967 0.1948	36662.28
64.97	0.3365	63344.93
65.14	0.3188	60007.95
65.35 65.52	0.8467	159378.70
65.80	0.4474	84220.55
65.94	0.4402	82850.71
66.18	0.2068	38926.11
66.26	0.1492	28087.40
66.52	0.1359	25577.84 77554.73
66.66	0.4120	26767.59
66.87	0.1422	36480.71
67.04	0.1938 0.2230	41981.40
67.20	0.2230	46347.68
67.36	0.1879	35371.35
67.45 67.54	0.1625	30578.64
67.66	0.1044	19650.56
67.81	0.3081	57995.57
68.14	0.3120	58722.41
68.25	0.2850	53645.94 54775.06
68.56	0.2910	55126.23
68.83	0.2929	25458.56
68.92	0.1353 0.0614	11554.46
69.38	0.3901	73422.48
69.75	0.4069	76595.76
69.88 70.27	0.2104	39609.98
70.55	0.3593	67636.40
71.23	0.0816	15361.38
71.39	0.0862	16218.15
71.57	0.5081	95644.92 77051.16
71.71	0.4093	35463.87
72.00	0.1884	65459.41
72.16	0.3478 0.0967	18210.24
72.42	0.0464	8735.27
72.92	0.2295	43205.18
73.44 73.58	0.1356	25518.16
73.73	0.0908	17082.01
73.99	0.0521	9810.22
74.18	0.0580	10918.20 21475.94
74.44	0.1141	20679.40
74.76	0.1099	35343.23
75.32	0.1878	40027.56
76.21	0.2127 0.1372	25822.13
76.49	0.0657	12373.19
76.74	0.0852	16041.63
78.03 78.70	0.1888	35545.50
78.86	0.1622	30528.77
81.26	0.0623	11723.97
84.27	0.1134	21346.43 8916.25
84.52	0.0474	21865.97
84.92	0.1162	22905.02
85.24	0.1217	12991.63
86.30	0.0690	177.7, Toxic 777.0

Peak Name

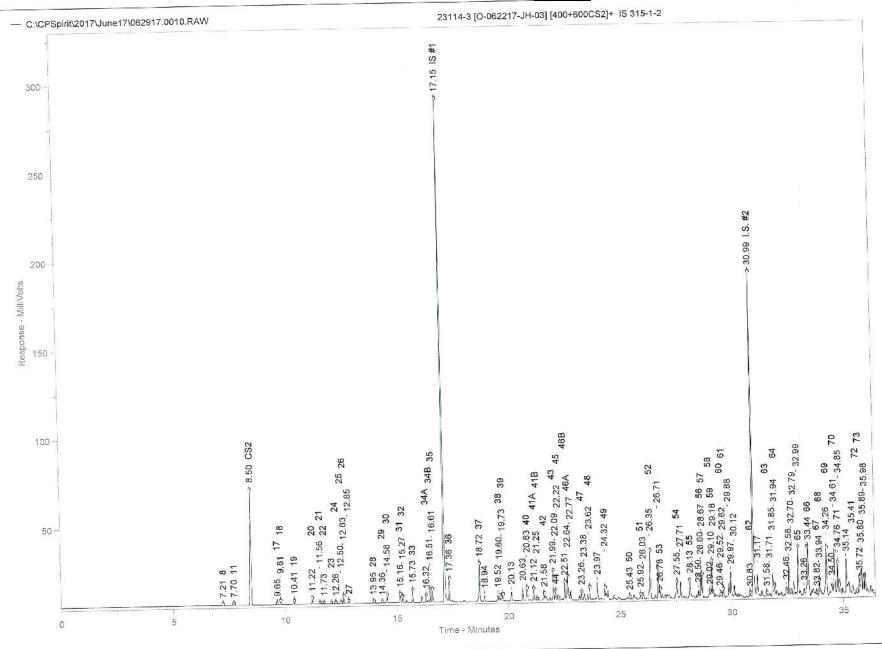
IS #3

	Chrom Perfect Chromato	gram Report PZ-3	
Peak Name	Ret. Time 89.45	Area % 0.0633	Area 11922.55
Total Area = 1.88231E+07	Total Height = 6063803	Total Amount = 0	

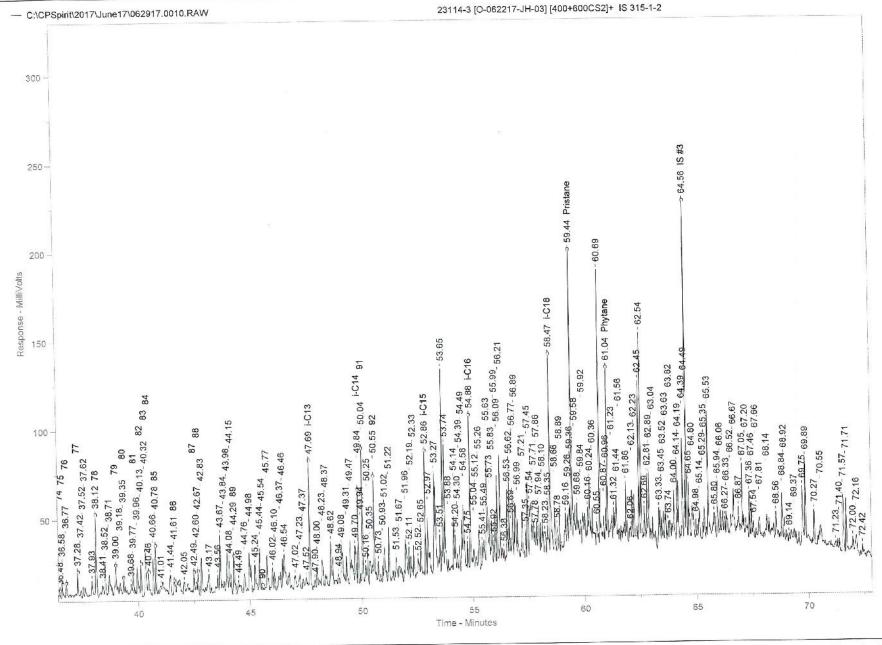

Pace ID Sample ID	23114-3 O-062217-JH-03 <mark>PZ-4</mark>
Evaporation	
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.02 0.08
Waterwashing	
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.13 0.37 1.80 7.40
Biodegradation	
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	298.16 0.55 1.60 9.13
Octane rating	
2,2,4,-Trimethylpentane / Methylcyclohexane	0.39
Relative percentages - Bulk hydrocarbon composit	ion as PIANO
% Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic	3.45 23.01 63.00 8.51 2.02

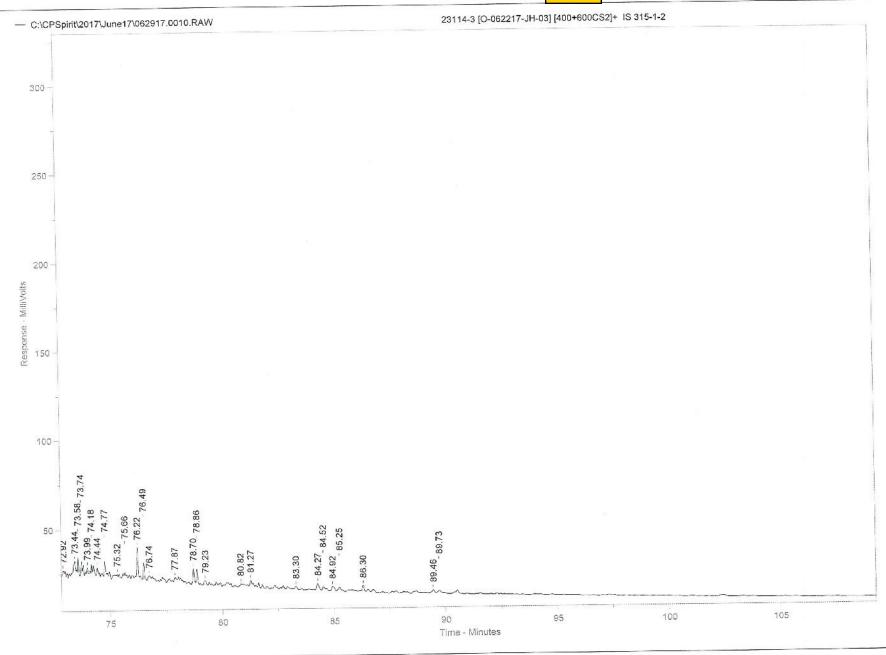
% Olefinic

Pace ID Sample ID		23114-3 O-062217-JH-03 PZ-4
		Relative
		Area %
1	Propane	0.00
2	Isobutane	0.00
3	Isobutene	0.00
4	Butane/Methanol	0.00
5	trans-2-Butene	0.00
6	cis-2-Butene	0.00
7	3-Methyl-1-butene	0.00
8	Isopentane	0.01
9	1-Pentene	0.00
10	2-Methyl-1-butene	0.00
11	Pentane	0.02
12	trans-2-Pentene	0.00
13	cis-2-Pentene/t-Butanol	0.00
14	2-Methyl-2-butene	0.00
15	2,2-Dimethylbutane	0.00
16	Cyclopentane	0.00
17	2,3-Dimethylbutane/MTBE	0.03
18	2-Methylpentane	0.13
19	3-Methylpentane	0.13
20	Hexane	0.25
21	trans-2-Hexene	0.02
22	3-Methylcyclopentene	0.01
23	3-Methyl-2-pentene	0.00
24	cis-2-Hexene	0.02
25	3-Methyl-trans-2-pentene	0.01
26	Methylcyclopentane	0.36
27	2,4-Dimethylpentane	0.11
28	Benzene	0.05
29	5-Methyl-1-hexene	0.02
30	Cyclohexane	0.41
31	2-Methylhexane/TAME	0.42
32	2,3-Dimethylpentane	0.30
33	3-Methylhexane	0.71
34A	1-trans-3-Dimethylcyclopentane	0.35
34B	1-cis-3-Dimethylcyclopentane	0.75
35	2,2,4-Trimethylpentane	0.80 0.00
I.S. #1	a,a,a-Trifluorotoluene	0.00


Pace ID Sample ID		23114-3 O-062217-JH-03 PZ-4
		Relative
		Area %
20	n Hontane	1.29
36 37	n-Heptane Methylcyclohexane	2.07
	2,5-Dimethylhexane	0.31
38 39	2,4-Dimethylhexane	0.49
40	2,3,4-Trimethylpentane	0.87
40	Toluene/2,3,3-Trimethylpentane	0.77
41	2,3-Dimethylhexane	0.32
43	2-Methylheptane	1.73
44	4-Methylheptane	0.49
45	3,4-Dimethylhexane	0.16
46A	3-Ethyl-3-methylpentane	2.04
46B	1,4-Dimethylcyclohexane	1.02
47	3-Methylheptane	0.47
48	2,2,5-Trimethylhexane	0.74
49	n-Octane	0.51
50	2,2-Dimethylheptane	0.10
51	2,4-Dimethylheptane	0.35
52	Ethylcyclohexane	3.55
53	2,6-Dimethylheptane	0.46
54	Ethylbenzene	1.84
55	m+p Xylenes	1.38
56	4-Methyloctane	1.23
57	2-Methyloctane	1.41
58	3-Ethylheptane	0.52
59	3-Methyloctane	2.30
60	o-Xylene	0.10 0.66
61	1-Nonene	0.88
62	n-Nonane	0.29
1.S.#2	p-Bromofluorobenzene	0.25
63	Isopropylbenzene	0.65
64	3,3,5-Trimethylheptane	2.76
65	2,4,5-Trimethylheptane	4.80
66	n-Propylbenzene	0.09
67	1-Methyl-3-ethylbenzene	1.32
68	1-Methyl-4-ethylbenzene	4.10
69	1,3,5-Trimethylbenzene	2.94
70	3,3,4-Trimethylheptane	

Pace ID		23114-3	
Sample ID		O-062217-JH-03	PZ-4
Sample ib			
		Relative	
		Area %	
71	1-Methyl-2-ethylbenzene	2.06	
72	3-Methylnonane	0.00	
73	1,2,4-Trimethylbenzene	0.96	
74	Isobutylbenzene	0.62	
75	sec-Butylbenzene	0.84	
76	n-Decane	1.09	
77	1,2,3-Trimethylbenzene	1.45	
78	Indan	6.18	
79	1,3-Diethylbenzene	2.76	
80	1,4-Diethylbenzene	0.92	
81	n-Butylbenzene	0.00	
82	1,3-Dimethyl-5-ethylbenzene	2.12	
83	1,4-Dimethyl-2-ethylbenzene	4.39	
84	1,3-Dimethyl-4-ethylbenzene	2.14	
85	1,2-Dimethyl-4-ethylbenzene	3.11	
86	Undecene	1.27	
87	1,2,4,5-Tetramethylbenzene	1.39	
88	1,2,3,5-Tetramethylbenzene	1.58	
89	1,2,3,4-Tetramethylbenzene	3.22	
90	Naphthalene	0.20	
91	2-Methyl-naphthalene	7.67	
92	1-Methyl-naphthalene	6.69	
I.S.#3	5α-Androstane	0.00	




Chrom Perfect Chromatogram Report

Printed on 7/3/2017 6:04:31 PM

Page 3 of 3

Chrom	Perfect	Chromatogram	Report

Sample Name = 23114-3 [O-062217-JH-03] [400+600CS2]+ IS 315-1-2

Raw File Name = C:\CPSpirit\2017\June17\062917.0010.RAW

Acquisition Port = DP#

PZ-4

Instrument = Instrument 1 Heading 1 = Heading 2 =

Method File Name = C:\CPSpirit\C344.met

Calibration File Name = C:\CPSpirit\061917.cal

Date Taken (end) = 6/30/2017 10:49:39 PM Method Version = 44 Calibration Version = 1

Peak Name 8	Ret. Time 7.21
11	7.70 8.50
CS2 17	9.65
18 19	9.81 10.41
20	11.22 11.56
21 22	11.73
24 25	12.26 12.50
26 27	12.63 12.85
28	13.95 14.36
29 30	14.58
31 32	15.16 15.27
33 34A	15.73 16.32
34B	16.51
35 IS #1	16.61 17.15
36 37	17.36 18.72
	18.94 19.52
38	19.60 19.73
39	20.13
40	20.63 20.83
41A 41B	21.12 21.25
42	21.58 21.99
43 44	22.09
45 46B	22.22 22.51
46A	22.64 22.77
47	23.26 23.38
48	23.62 23.97
49	24.32 25.43
50 51	25.92 26.03
52	26.03 26.35 26.71
53 54	26.78 27.55 27.71
55	28.13

Area %	Area
0.0015	285.87
0.0026	506.16
1.2433	243571.10
0.0034	673.42
0.0164	3207.40
0.0156	3051.03
0.0305	5976.90
0.0026	507.79
0.0015	299.78
0.0023	447.03
0.0014	279.17
0.0436	8547.66
0.0131	2574.06
0.0063	1237.94
0.0024	471.54
0.0501	9805.42
0.0515	10094.51
0.0363	7111.89
0.0860	16856.26
0.0432	8455.50
0.0912	17870.35
0.0979	19176.88
3.6006	705398.40
0.1574	30826.78
0.2523	49430.53
0.0449	8795.96
0.0443	8669.94
0.0372	7284.05
0.0591	11577.36 12817.25
0.0654	18560.52
0.0947	20851.29
0.1064	18307.66
0.0934 0.0042	814.15
0.0384	7516.06
0.2105	41241.05
0.0597	11703.52
0.0193	3790.04
0.1241	24307.22
0.2488	48734.93
0.0735	14391.11
0.0567	11101.10
0.0491	9615.47
0.0903	17689.08
0.1326	25968.48
0.0617	12096.84
0.0125	2452.99
0.0422	8258.22
0.0619	12133.02
0.4315	84541.66
0.2723	53337.38 11038.31
0.0563	43822.40
0.2237	25033.23
0.1278	32810.75
0.1675	52510.75

	Chrom Perfect	Chromatogram Report PZ-4	
Peak Name	Ret. Time	Area %	Area 12936.35
1 Call Harris	28.50	0.0660	29227.56
56	28.60	0.1492	33695.80
57	28.67	0.1720	12363.80
58	29.02	0.0631 0.2802	54902.36
59	29.10	0.0601	11764.69
	29.18	0.0293	5745.13
	29.46	0.0121	2371.93
60	29.52 29.62	0.0807	15814.51
61	29.88	0.1200	23506.64
	29.97	0.2147	42068.88
	30.12	0.1029	20165.20
62	30.83	0.0353	6913.43
62 I.S. #2	30.99	2.4761	485090.50
1.5. #2	31.17	0.1835	35943.04
63	31.58	0.0309	6050.63
05	31.71	0.0454	8901.42
	31.85	0.1771	34689.50
64	31.94	0.0786	15400.91 19385.18
•••	32.46	0.0989	42747.56
	32.58	0.2182	10154.27
	32.70	0.0518	19886.84
	32.79	0.1015	65894.09
65	32.99	0.3364	12178.31
	33.26	0.0622	114554.10
66	33.44	0.5847	2061.41
67	33.82	0.0105 0.1601	31359.43
68	33.94	0.4991	97781.81
69	34.26	0.1149	22511.76
	34.50	0.3580	70142.11
70	34.61 34.76	0.2505	49078.94
71	34.85	0.1417	27759.93
	35.14	0.2165	42417.49
	35.41	0.0964	18890.20
72	35.72	0.1167	22868.09
73	35.80	0.1963	38452.17
	35.89	0.1543	30234.81
	35.98	0.1393	27283.82
74	36.48	0.0754	14777.78 20135.29
75	36.58	0.1028	26008.41
76	36.77	0.1328	34455.37
77	37.28	0.1759	12953.38
	37.42	0.0661	18415.01
	37.52	0.0940 0.1352	26495.84
	37.62	0.2116	41452.65
	37.93	0.7517	147266.80
78	38.12	0.1092	21395.15
	38.41	0.2694	52768.48
	38.52 38.71	0.1911	37443.72
	39.00	0.3356	65744.07
79	39.18	0.1481	29023.71
	39.35	0.1123	21991.75
80	39.68	0.0900	17639.59
	39.77	0.3205	62790.68
	39.96	0.2438	47772.30
82	40.13	0.2582	50577.14
83	40.32	0.5339	104586.20
84	40.46	0.2607	51073.10 55865.28
UT .	40.66	0.2852	74212.54
85	40.78	0.3788	12119.85
	41.01	0.0619	52465.53
	44 44	0.2678	
	41.44	0 4550	30357.65
86	41.61	0.1550	30357.65 25051.89
86 87		0.1550 0.1279 0.1690	30357.65 25051.89 33102.75

	Chrom Perfect Cl		Area
Peak Name	Ret. Time	Area % 0.1305	25566.84
	42.60	0.1929	37796.78
88	42.67	0.3769	73840.94
	42.83	0.2960	57983.56
	43.17 43.56	0.0961	18817.95
	43.67	0.5428	106332.40
	43.84	0.0946	18535.7 86619.7
	43.98	0.4421	52936.73
	44.08	0.2702	32164.7
	44.15	0.1642	76880.8
89	44.29	0.3924	16602.5
	44.49	0.0847 0.2122	41569.8
	44.76	0.2122	40118.6
	44.98	0.2609	51118.0
	45.24	0.3828	74996.4
	45.44	0.0249	4880.9
90	45.54	0.3279	64234.3
	45.77 46.02	0.1728	33859.9
	46.10	0.1452	28452.8
	46.37	0.3127	61269.1
	46.46	0.2152	42161.8 81248.7
	46.54	0.4147	45741.7
	47.02	0.2335	49102.3
	47.23	0.2506	22740.
	47.37	0.1161	43353.0
	47.52	0.2213	204305.
i-C13	47.69	1.0429 0.0710	13919.
1007.000	47.90	0.2065	40455.
	48.00	0.3430	67194.
	48.23	0.1871	36650.
	48.37 48.62	0.3452	67618.
	48.94	0.1062	20804.
	49.08	0.6156	120593.
	49.31	0.2401	47028.
	49.47	0.1973	38657. 81892.
	49.70	0.4180	108667.
i-C14	49.84	0.5547	13491.
1-014	49.94	0.0689	182847
91	50.04	0.9333	43407
01	50.16	0.2216 0.2672	52354
	50.25	0.3107	60860
	50.35	0.8143	159535
92	50.55	0.1548	30327
	50.73	0.0970	19000
	50.93 51.02	0.4752	93097
	51.02	0.4800	94037
	51.53	0.3546	69467
	51.67	0.3982	78012
	51.96	0.7175	140568
	52.11	0.2868	56183 55152
	52.19	0.2815	52326
	52.33	0.2671	72820
	52.52	0.3717	55905
	52.65	0.2854	149947
i-C15	52.86	0.7654	143474
	52.97	0.7324 1.6182	317019
	53.27	0.4062	79578
	53.51	1.3278	260124
	53.65	0.9155	179358
	53.74 53.88	0.0843	16515
	53.00 54.14	0.3963	7763
	54.20	0.2471	48409
	54.30	0.1470	28798

	Chrom Peneci C	Chromatogram Report PZ-4	
Peak Name	Ret. Time	Area %	Ar
Peak Name	54.39	0.1836	35962.
	54.49	0.4414	86483.
	54.58	0.7808	152959.
	54.75	0.2498	48933.
010	54.88	0.9818	192350.
-C16	55.04	0.1596	31271.
	55.12	0.1551	30394
	55.26	0.4539	88916
	55.41	0.1314	25745
	55.49	0.3016	59094
	55.63	1.0339	202545
	55.73	0.3191	62513
	55.83	0.3102	60768
	55.92	0.1361	26657
		0.3134	61407
	55.99	0.4639	90887
	56.09	0.7200	141061
	56.21	0.0813	15924
	56.38		101077
	56.53	0.5159	99233
	56.62	0.5065	24996
	56.69	0.1276	88285
	56.77	0.4506	115279
	56.89	0.5884	58980
	56.99	0.3011	71420
	57.21	0.3646	28495
	57.35	0.1455	
	57.45	0.6850	134189
	57.54	0.1215	23807
	57.71	0.1769	34665
	57.78	0.0934	18291
	57.86	0.1585	31058
	57.94	0.3516	6887
	58.10	0.2299	45044
	58.23	0.2188	42870
	58.35	0.3981	7800
i-C18	58.47	1.6177	316920
FC18	58.66	0.3616	7083
	58.78	0.2348	4600
	58.89	0.2569	5032
	59.16	0.3498	6852
	59.26	0.3122	6117
		0.4715	9236
	59.36	2.0793	40735
Pristane	59.44 59.58	0.5390	10559
		0.5662	11092
	59.68	0.2447	4793
	59.84	0.2240	4389
	59.92	0.1760	3447
	60.16	0.5018	9829
	60.24	0.3446	6750
	60.36		5875
	60.55	0.2999	31832
	60.69	1.6248	3256
	60.87	0.1662	5419
	60.96	0.2766	22328
Phytane	61.04	1.1397	7370
	61.23	0.3762	5537
	61.32	0.2827	
	61.44	0.3529	6914
	61.56	0.1022	2002
	61.86	0.3837	7516
	62.06	0.1903	3727
	62.13	0.3856	7554
	62.23	0.3456	6770
	62.45	0.9616	18839
	62.54	1.0717	20995
	02.04		3841
	62.69	0.1961	7150

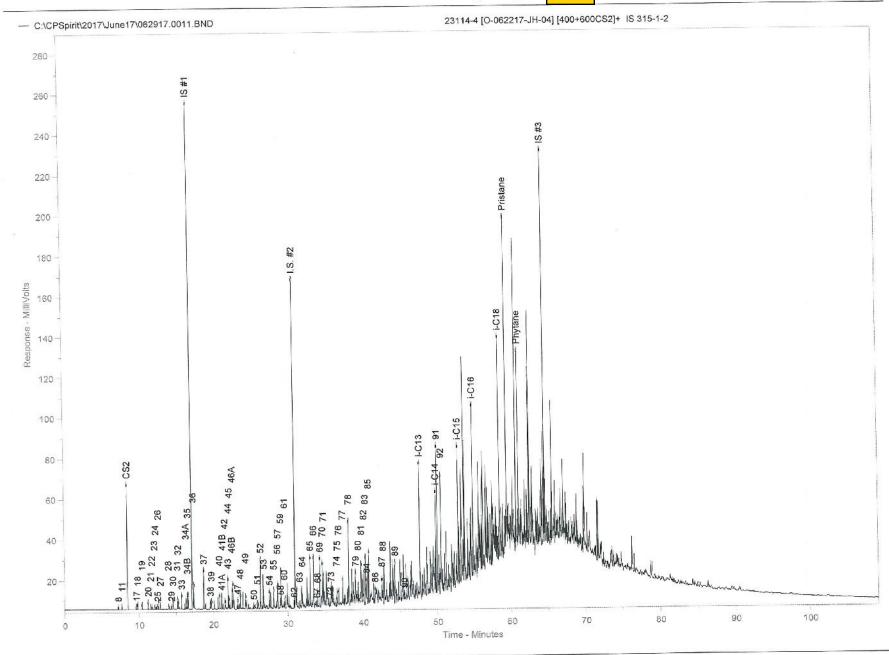
		Chromatogram Report PZ-4	Ar
Peak Name	Ret. Time	0.4313	84492.0
	62.89	0.3518	68913.
	63.04	0.5951	116575.
	63.33	0.2787	54607.
	63.45	0.2405	47124.
	63.52 63.63	0.4594	90009.
	63.74	0.1609	31513.
	63.82	0.3262	63897.
	64.00	0.5903	115636.
	64.14	0.5367	105147.
	64.19	0.4213	82540.
	64.39	0.7580	148493
	64.49	0.5536	108461
IS #3	64.56	1.8220	356950
13 #5	64.65	0.6429	125949
	64.80	0.6357	124539
	64.98	0.2372	46474
	65.14	0.3816	74763
	65.29	0.1081	21172
	65.35	0.2503	49034
	65.53	1.1054	216556
	65.80	0.4863	95266
	65.94	0.4658	91255
	66.06	0.1101	21578
	66.27	0.1340	26254
	66.33	0.2441	47816
	66.52	0.1525	29871 96734
	66.67	0.4938	38495
	66.87	0.1965	59468
	67.05	0.3035	45589
	67.20	0.2327	58320
	67.36	0.2977	46063
	67.46	0.2351	31875
	67.54	0.1627	1852
	67.66	0.0945 0.2592	50774
	67.81	0.2415	4732
	68.14	0.3296	6457
	68.56	0.3831	7504
	68.84	0.1548	3033
	68.92	0.0468	917
	69.14	0.0709	1389
	69.37 69.75	0.4772	9348
	69.89	0.6225	12196
	70.27	0.2469	4837
	70.55	0.3917	7674
	71.23	0.0959	1877
	71.40	0.1008	1975
	71.57	0.6207	12160
	71.71	0.4511	8837
	72.00	0.2045	4006
	72.16	0.3746	7338
	72.42	0.0607	1188
	72.92	0.1211	2371
	73.44	0.2450	4799
	73.58	0.1430	2801
	73.74	0.0929	1819
	73.99	0.0543	1063
	74.18	0.0601	1177
	74.44	0.0680	1331
	74.77	0.1398	2738
	75.32	0.2075	4065
	75.66	0.1325	2595
		0.2791	5468
	76.22		
	76.22 76.49	0.1689	3308
			3308 1342 1001

	Chrom Perfect Chromatogra	am Report PZ-4	
Peak Name	Ret. Time	Area %	Area
Peak Name	78.70	0.2032	39801.80
	78.86	0.1784	34944.23
	79.23	0.0854	16732.31
	80.82	0.0831	16275.74
	81.27	0.0604	11832.39
	83.30	0.0579	11345.12
	84.27	0.1302	25507.08
	84.52	0.1109	21725.68
	84.92	0.1193	23368.44
	85.25	0.1222	23943.38
		0.0901	17652.00
	86.30	0.0829	16242.13
	89.46 89.73	0.1189	23294.57
T-1-1 Ame - 4 0500025+07	Total Height = 6608643	Total Amount = 0	

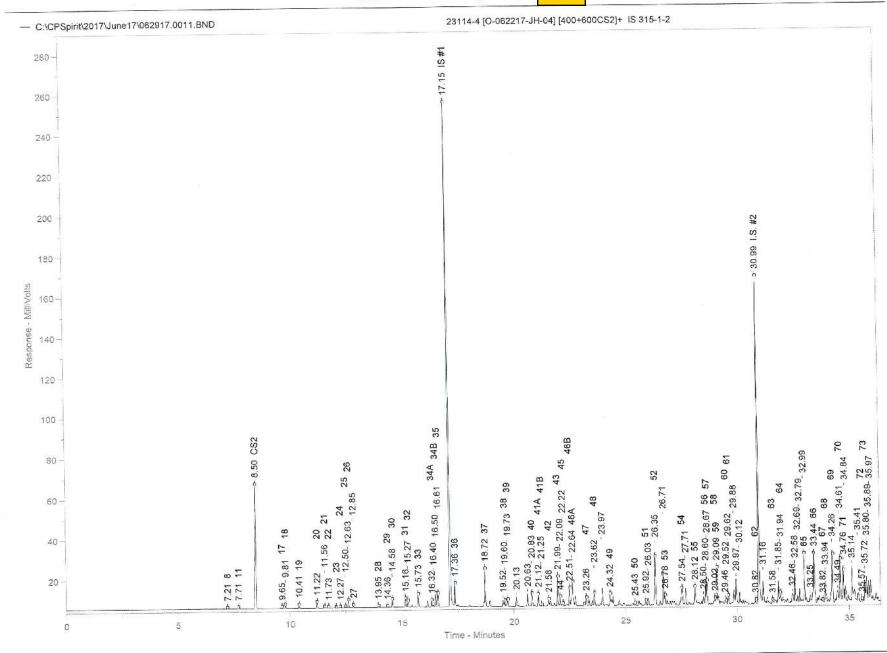
Total Area = 1.959092E+07

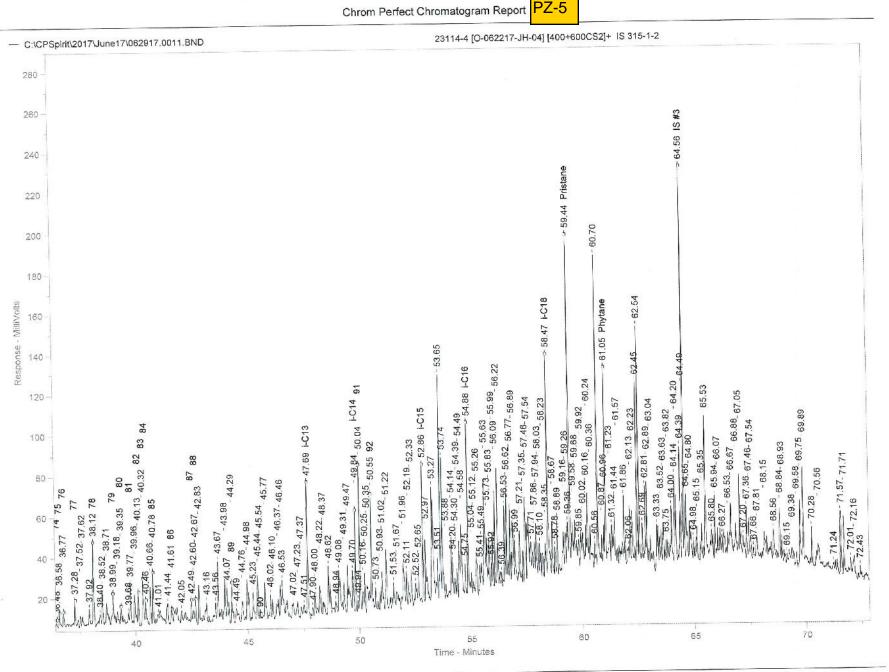
Total Height = 6608643

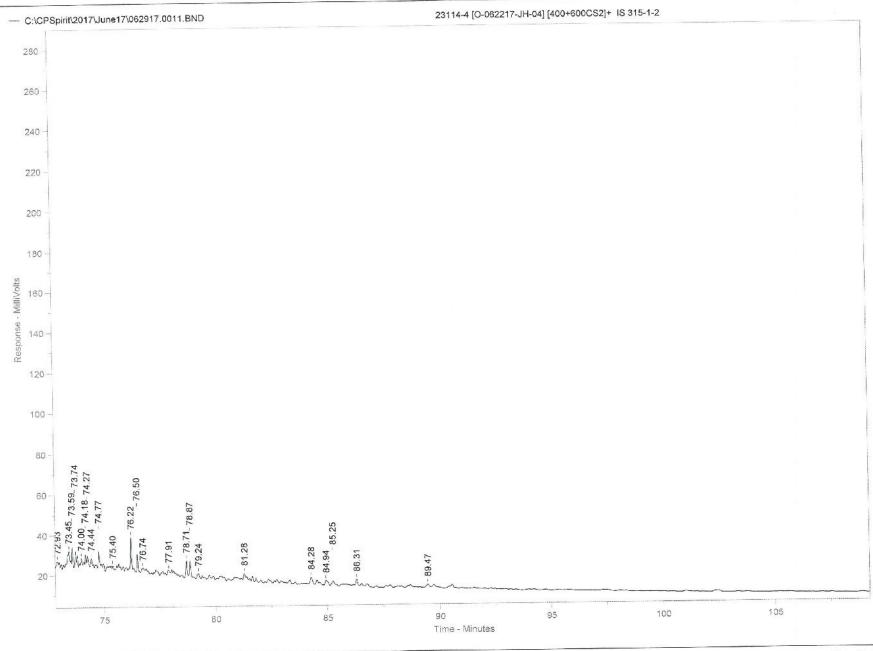
Total Amount = 0


Dece ID	23114-4
Pace ID Sample ID	O-062217-JH-04 PZ-5
Evaporation	
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.02 0.08
Waterwashing	
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.13 0.37 1.97 8.01
Biodegradation	
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	291.31 0.55 1.60 8.95
Octane rating	
2,2,4,-Trimethylpentane / Methylcyclohexane	0.36
Relative percentages - Bulk hydrocarbon composition	on as PIANO
% Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic	3.32 21.58 65.02 8.12 1.96

Pace ID Sample ID)	23114-4 O-062217-JH-04 PZ-5
		Relative
		Area %
2	Branana	0.00
1	Propane Isobutane	0.00
2	Isobutane	0.00
3	Butane/Methanol	0.00
4	trans-2-Butene	0.00
5 6	cis-2-Butene	0.00
7	3-Methyl-1-butene	0.00
8	Isopentane	0.01
9	1-Pentene	0.00
10	2-Methyl-1-butene	0.00
11	Pentane	0.02
12	trans-2-Pentene	0.00
13	cis-2-Pentene/t-Butanol	0.00
14	2-Methyl-2-butene	0.00
15	2,2-Dimethylbutane	0.00
16	Cyclopentane	0.00
17	2,3-Dimethylbutane/MTBE	0.03
18	2-Methylpentane	0.13
19	3-Methylpentane	0.12
20	Hexane	0.24
21	trans-2-Hexene	0.02
22	3-Methylcyclopentene	0.01
23	3-Methyl-2-pentene	0.00
24	cis-2-Hexene	0.02
25	3-Methyl-trans-2-pentene	0.01
26	Methylcyclopentane	0.35
27	2,4-Dimethylpentane	0.11
28	Benzene	0.05
29	5-Methyl-1-hexene	0.02
30	Cyclohexane	0.42
31	2-Methylhexane/TAME	0.43
32	2,3-Dimethylpentane	0.30
33	3-Methylhexane	0.69
34A	1-trans-3-Dimethylcyclopentane	0.34
34B	1-cis-3-Dimethylcyclopentane	0.68
35	2,2,4-Trimethylpentane	0.72
I.S. #1		0.00


Pace ID Sample ID		23114-4 O-062217-JH-04 PZ-5
		Relative
		Area %
36	n-Heptane	1.24
37	Methylcyclohexane	1.99
38	2,5-Dimethylhexane	0.29
39	2,4-Dimethylhexane	0.47
40	2,3,4-Trimethylpentane	0.84
41	Toluene/2,3,3-Trimethylpentane	0.74
42	2,3-Dimethylhexane	0.87
43	2-Methylheptane	1.66
44	4-Methylheptane	0.47
45	3,4-Dimethylhexane	0.15
46A	3-Ethyl-3-methylpentane	1.79
46B	1,4-Dimethylcyclohexane	0.94
47	3-Methylheptane	0.45
48	2,2,5-Trimethylhexane	0.72
49	n-Octane	0.49
50	2,2-Dimethylheptane	0.10
51	2,4-Dimethylheptane	0.21
52	Ethylcyclohexane	3.41
53	2,6-Dimethylheptane	0.45
54	Ethylbenzene	1.72
55	m+p Xylenes	1.33
56	4-Methyloctane	1.12
57	2-Methyloctane	1.27
58	3-Ethylheptane	0.11
59	3-Methyloctane	1.78
60	o-Xylene	0.11
61	1-Nonene	0.62
62	n-Nonane	0.26
I.S.#2	p-Bromofluorobenzene	0.00
63	Isopropylbenzene	0.16
64	3,3,5-Trimethylheptane	0.62
65	2,4,5-Trimethylheptane	2.66
66	n-Propylbenzene	4.63
67	1-Methyl-3-ethylbenzene	0.09
68	1-Methyl-4-ethylbenzene	1.28 3.97
69	1,3,5-Trimethylbenzene	2.84
70	3,3,4-Trimethylheptane	2.04


Pace ID Sample ID)	23114-4 O-062217-JH-04 <mark>PZ-5</mark>
		Relative
		Area %
71	1-Methyl-2-ethylbenzene	1.98
72	3-Methylnonane	0.15
73	1,2,4-Trimethylbenzene	0.92
74	Isobutylbenzene	0.61
75	sec-Butylbenzene	1.08
76	n-Decane	1.06
77	1,2,3-Trimethylbenzene	1.34
78	Indan	6.02
79	1,3-Diethylbenzene	2.69
80	1,4-Diethylbenzene	0.91
81	n-Butylbenzene	2.60
82	1,3-Dimethyl-5-ethylbenzene	2.07
83	1,4-Dimethyl-2-ethylbenzene	4.31
84	1,3-Dimethyl-4-ethylbenzene	2.11
85	1,2-Dimethyl-4-ethylbenzene	3.08
86	Undecene	1.26
87	1,2,4,5-Tetramethylbenzene	1.37
88	1,2,3,5-Tetramethylbenzene	1.57
89	1,2,3,4-Tetramethylbenzene	3.24
90	Naphthalene	0.21
91	2-Methyl-naphthalene	7.92
92	1-Methyl-naphthalene	6.93
I.S.#3	5α-Androstane	0.00



Printed on 7/3/2017 7:02:39 PM

Page 2 of 3

Chrom Perfect Chromatogram Report

PZ-5

Sample Name = 23114-4 [O-062217-JH-04] [400+600CS2]+ IS 315-1-2

Raw File Name = C:\CPSpirit\2017\June17\062917.0011.RAW

Instrument = Instrument 1 Heading 1 = Heading 2 =

Method File Name = C:\CPSpirit\C344.met

Calibration File Name = C:\CPSpirit\061917.cal

Acquisition Port = DP#

Date Taken (end) = 7/1/2017 12:57:05 AM Method Version = 44 Calibration Version = 1

Peak Name	Ret. Time
8	7.21
11	7.71
CS2	8.50
17	9.65
18	9.81
19	10.41
20	11.22
21	11.56
22	11.73
24	12.27
25	12.50
26	12.63 12.85
27	13.95
28	14.36
29	14.58
30	15.16
31	15.27
32	15.73
33 34A	16.32
34A	16.40
34B	16.50
35	16.61
IS #1	17.15
36	17.36
37	18.72
	19.52
38	19.60
39	19.73
	20.13
	20.63
40	20.83
41A	21.12 21.25
41B	21.58
42	21.99
43	22.09
44 45	22.22
45 46B	22.51
46A	22.64
47	23.26
48	23.62
40	23.97
49	24.32
50	25.43
51	25.92
	26.03
52	26.35
	26.71
53	26.78
54	27.54
	27.71
55	28.12
	28.50 28.60
56	20.00

Area %	Area
0.0012	216.61
0.0024	442.97
1,1710	215800.40
0.0034	632.29
0.0159	2933.05
0.0146	2697.20
0.0283	5215.24
0.0021	387.24
0.0013	247.74
0.0022	398.27
0.0016	289.82
0.0412	7585.91
0.0126	2326.51
0.0064	1174.50
0.0025	455.57
0.0496	9131.98
0.0517	9533.38
0.0355	6539.22
0.0818	15072.19 7389.45
0.0401	2137.43
0.0116	15027.62
0.0815	15887.90
0.0862	622254.80
3.3767	27370.61
0.1485 0.2372	43706.00
0.0436	8034.98
0.0343	6314.99
0.0563	10374.50
0.0614	11315.16
0.0858	15805.45
0.1005	18512.10
0.0877	16154.18
0.0045	832.79
0.1033	19043.83
0.1977	36428.52
0.0564	10389.85
0.0179	3298.77
0.1126	20756.91
0.2140	39430.67
0.0538	9905.30 15718.30
0.0853	23067.95
0.1252	10714.33
0.0581	2140.71
0.0116	4520.43
0.0245	10794.04
0.0586	74873.47
0.4063 0.2543	46864.17
0.2543	9970.57
0.2057	37913.91
0.1242	22890.05
0.1583	29170.73
0.0521	9600.52
0.1338	24665.93

	Chrom Perfect C	Chromatogram Report	
Peak Name	Ret. Time	Area %	Area 27884.79
57	28.67	0.1513	2368.19
58	29.02	0.0129	39106.13
59	29.09	0.2122	4805.04
	29.46	0.0261	2434.62
60	29.52	0.0132 0.0743	13689.95
61	29.62	0.1139	20993.15
	29.88 29.97	0.2018	37186.28
	30.12	0.0971	17898.50
	30.82	0.0314	5780.57
62 I.S. #2	30.99	2.3532	433655.10
1.5. #2	31.16	0.1748	32220.78
63	31.58	0.0193	3558.13
03	31.85	0.1682	30995.40
64	31.94	0.0738	13593.00
	32.46	0.0936	17257.48 38027.98
	32.58	0.2064	8901.18
	32.69	0.0483	17599.35
	32.79	0.0955	58448.41
65	32.99	0.3172 0.0591	10882.12
	33.25	0.5521	101737.60
66	33.44 33.82	0.0107	1975.77
67	33.82	0.1524	28078.56
68	34.26	0.4732	87199.55
69	34.49	0.1079	19887.75
70	34.61	0.3392	62508.23
70	34.76	0.2363	43537.75
<i>/</i> 1	34.84	0.1339	24671.55
	35.14	0.2040	37601.56 16909.79
	35.41	0.0918	3196.05
72	35.57	0.0173	20191.32
73	35.72	0.1096 0.1898	34980.03
	35.80	0.1460	26900.97
	35.89	0.1338	24651.68
12%	35.97 36.48	0.0724	13347.44
74	36.58	0.1289	23760.58
75	36.77	0.1270	23410.68
76 77	37.28	0.1600	29491.13
77	37.52	0.0898	16549.33
	37.62	0.1287	23711.01
	37.92	0.2023	37273.20
78	38.12	0.7184	132378.50 19199.08
10	38.40	0.1042	47709.59
	38.52	0.2589	33852.07
	38.71	0.1837	59170.70
79	38.99	0.3211	26066.79
	39.18	0.1415 0.1080	19896.17
80	39.35	0.0834	15360.57
	39.68	0.3097	57079.63
81	39.77	0.2300	42389.02
	39.96 40.13	0.2469	45491.95
82	40.13	0.5142	94752.07
83	40.46	0.2514	46326.30
84	40.66	0.2745	50581.76
85	40.78	0.3671	67656.02
00	41.01	0.0597	11005.15
	41.44	0.2591	47742.14
86	41.61	0.1505	27727.44 22766.75
00	42.05	0.1235	30058.54
87	42.49	0.1631	23832.39
	42.60	0.1293	34497.66
88	42.67	0.1872	68068.02
	42.83	0.3694 0.2869	52862.42
	43.16	0.2003	

	Chrom Perfect (Chromatogram Report PZ-5	
Peak Name	Ret. Time	Area %	Area
1 Bak Humb	43.56	0.0952	17538.63 92622.95
	43.67	0.5026	65475.71
	43.98	0.3553 0.1829	33703.95
	44.07	0.3860	71138.51
89	44.29 44.49	0.0823	15169.26
	44.49	0.2081	38352.32
	44.98	0.2021	37248.12
	45.23	0.2561	47191.61
	45.44	0.3763	69346.26 4627.63
90	45.54	0.0251	59373.06
	45.77	0.3222 0.1721	31715.97
	46.02	0.1440	26545.41
	46.10 46.37	0.3104	57198.97
	46.46	0.2154	39698.07
	46.53	0.4091	75390.37
	47.02	0.2315	42659.63
	47.23	0.2509	46232.89
	47.37	0.1185	21839.33 40185.65
	47.51	0.2181	190564.40
i-C13	47.69	1.0341	13059.57
	47.90	0.0709 0.2050	37782.84
	48.00	0.3437	63338.29
	48.22 48.37	0.1865	34375.69
	48.62	0.3455	63676.56
	48.02	0.1057	19474.89
	49.08	0.6168	113662.40
	49.31	0.2414	44477.77
	49.47	0.1975	36397.24
	49.70	0.4208	77548.27 102807.50
i-C14	49.84	0.5579	12805.84
	49.94	0.0695	174075.90
91	50.04	0.9446 0.2246	41380.54
	50.16	0.2711	49965.18
	50.25 50.35	0.3148	58018.25
02	50.55	0.8271	152411.00
92	50.73	0.1572	28978.01
	50.93	0.0984	18128.67 89248.77
	51.02	0.4843	90031.19
	51.22	0.4886	66481.34
	51.53	0.3608	75042.21
	51.67	0.4072 0.7328	135034.50
	51.96 52.11	0.2941	54191.61
	52.11 52.19	0.2912	53660.59
	52.19	0.2715	50024.66
	52.52	0.3843	70818.09
	52.65	0.3572	65818.33
i-C15	52.86	0.7867	144982.80
1010	52.97	0.7515	138494.10
	53.27	1.6634	306534.60 77328.99
	53.51	0.4196	251679.20
	53.65	1.3657	174001.80
	53.74	0.9442 0.0871	16048.59
	53.88	0.4055	74730.95
	54.14	0.2555	47085.00
	54.20 54.30	0.1515	27922.19
	54.30	0.1895	34912.84
	54.39	0.4509	83088.89
	54.58	0.7943	146383.00
	54.75	0.2349	43288.27
i-C16	54.88	0.9990	184101.50 26294.72
1010	55.04	0.1427	26294.72

P7-5

	Chrom Perfect C		
Peak Name	Ret. Time	Area %	Ar 22153.
	55.12	0.1202	77475.
	55.26	0.4204 0.1507	27769.
	55.41	0.3451	63591.
	55.49	1.0949	201761.
	55.63 55.73	0.3442	63432.
	55.83	0.3381	62306.
	55.92	0.1475	27187.
	55.99	0.3375	62196
	56.09	0.4872	89776
	56.22	0.7598	140022 15710
	56.39	0.0853	98313
	56.53	0.5335	96867
	56.62	0.5257	86678
	56.77	0.4704 0.7580	139676
	56.89	0.3145	57957
	56.99	0.3776	69592
	57.21	0.1508	27795
	57.35 57.46	0.7144	131643
	57.54	0.1219	22470
	57.71	0.1817	33480
	57.86	0.1625	29948
	57.94	0.3644	67149
	58.03	0.1503	27688 5030
	58.10	0.2730	42370
	58.23	0.2299	48875
	58.35	0.2652	298420
i-C18	58.47	1.6194 0.3497	64438
	58.67	0.2368	43639
	58.78 58.89	0.2661	49033
	59.16	0.3663	67496
	59.26	0.3374	6217
	59.36	0.5001	9215
Pristane	59.44	2.1972	40489
Flistalle	59.58	0.6045	11139
	59.68	0.6585	12134 5470
	59.85	0.2969	7429
	59.92	0.4032	6364
	60.02	0.3454	5454
	60.16	0.2960	12836
	60.24	0.6965 0.4315	7951
	60.36	0.2312	4261
	60.56 60.70	1.6964	31262
	60.87	0.1742	3209
	60.96	0.2849	5250
Dhutana	61.05	1.1953	22026
Phytane	61.23	0.3965	7306
	61.32	0.4848	8933
	61.44	0.3663	6750 1940
	61.57	0.1053	7461
	61.86	0.4049	3024
	62.06	0.1641 0.3768	6944
	62.13	0.3354	6180
	62.23	0.9940	18317
	62.45	1.1150	20547
	62.54 62.69	0.2014	3711
	62.89	0.4281	7889
	62.89	0.4506	8304
	63.04	0.3682	6785
	63.33	0.6255	11527 4762
	63.52	0.2585	8885
	63.63	0.4821	3241

			Are
Peak Name	Ret. Time	Area % 0.1202	22153.2
	55.12 55.26	0.4204	77475.3
	55.41	0.1507	27769.7
	55.49	0.3451	63591.1
	55.63	1.0949	201761.4
	55.73	0.3442	63432.4
	55.83	0.3381	62306.4 27187.4
	55.92	0.1475	62196.
	55.99	0.3375	89776.
	56.09	0.4872 0.7598	140022.
	56.22	0.7558	15710.
	56.39	0.5335	98313.
	56.53	0.5257	96867.
	56.62 56.77	0.4704	86678
	56.89	0.7580	139676
	56.99	0.3145	57957
	57.21	0.3776	69592
	57.35	0.1508	27795
	57.46	0.7144	131643 22470
	57.54	0.1219	33480
	57.71	0.1817	29948
	57.86	0.1625 0.3644	67149
	57.94	0.1503	27688
	58.03 58.10	0.2730	50307
	58.23	0.2299	42370
	58.35	0.2652	48875
-C18	58.47	1.6194	298426
-010	58.67	0.3497	64438
	58.78	0.2368	43639
	58.89	0.2661	49033 67496
	59.16	0.3663	62178
	59.26	0.3374	92153
	59.36	0.5001 2.1972	404897
Pristane	59.44	0.6045	111390
	59.58	0.6585	121348
	59.68 59.85	0.2969	54708
	59.92	0.4032	74296
	60.02	0.3454	6364
	60.16	0.2960	5454
	60.24	0.6965	12836
	60.36	0.4315	7951 4261
	60.56	0.2312	31262
	60.70	1.6964 0.1742	3209
	60.87	0.1742	5250
	60.96	1.1953	22026
Phytane	61.05 61.23	0.3965	7306
	61.23	0.4848	8933
	61.44	0.3663	6750
	61.57	0.1053	1940
	61.86	0.4049	7461
	62.06	0.1641	3024 6944
	62.13	0.3768	6180
	62.23	0.3354	18317
	62.45	0.9940	20547
	62.54	1.1150 0.2014	3711
	62.69	0.4281	7889
	62.81	0.4506	8304
	62.89 63.04	0.3682	6785
	63.33	0.6255	11527
	63.52	0.2585	4762
	63.63	0.4821	8885 3241
		0.1759	

	Chrom Perfe	ct Chromatogram Report	
ne	Ret. Time	Area %	Area 63530.68
	63.82	0.3447	113772.60
	64.00	0.6174	104336.30
	64.14	0.5662	80998.59
	64.20	0.4395	146824.30
	64.39	0.7967	107555.30
	64.49	0.5836	361002.70
	64.56	1.9590	123462.50
	64.65	0.6700	123130.90
	64.80	0.6682	46039.82
	64.98	0.2498	73125.98
	65.15	0.3968	48240.27
	65.35	0.2618	232070.10
	65.53	1.2593	92699.09
	65.80	0.5030	84785.62
	65.94	0.4601	21083.98
	66.07	0.1144	26149.65
	66.27	0.1419	28735.21
	66.53	0.1559	75729.91
	66.67	0.4109	46451.13
	66.88	0.2521	58573.17
	67.05	0.3178	17560.67
	67.20	0.0953	57288.92
	67.36	0.3109	45257.44
	67.46	0.2456	31652.37
	67.54	0.1718	17696.02
	67.66	0.0960	49324.5
	67.81	0.2677	31584.0
	68.15	0.1714	56627.9
	68.56	0.3073	75079.9
	68.84	0.4074	30617.7
	68.93	0.1661	9454.2
	69.15	0.0513	13643.8
	69.38	0.0740	20000.1
	69.58	0.1085	89090.1
	69.75	0.4834	119717.5
	69.89	0.6496	47607.1
	70.28	0.2583	30692.1
	70.56	0.1666	13579.9
	71.24	0.0737	119096.1
	71.57	0.6463	93838.3
	71.71	0.5092	40249.8
	72.01	0.2184	73586.3
	72.16	0.3993	28106.8
	72.43	0.1525	23630.7
	72.93	0.1282	46840.5
	73.45	0.2542	27059.4
	73.59	0.1468	18088.0
	73.74	0.0982	12132.8
	74.00	0.0658	17822.6
	74.18	0.0967	21427.2
	74.27	0.1163	12966.2
	74.44	0.0704	26488.7
	74.77	0.1437	36853.0
	75.40	0.2000	52026.3
	76.22	0.2823	32167.1
	76.50	0.1746	12333.
	76.74	0.0669	9421.3
	77.91	0.0511	38467.5
	78.71	0.2087	33823.
	78.87	0.1835	16329.
	79.24	0.0886	
	81.28	0.0599	11033. 24308.
	84.28	0.1319	24308.
	84.94	0.1171	21579 22456.
	85.25	0.1219 0.0891	16427.
	86.31		

IS #3

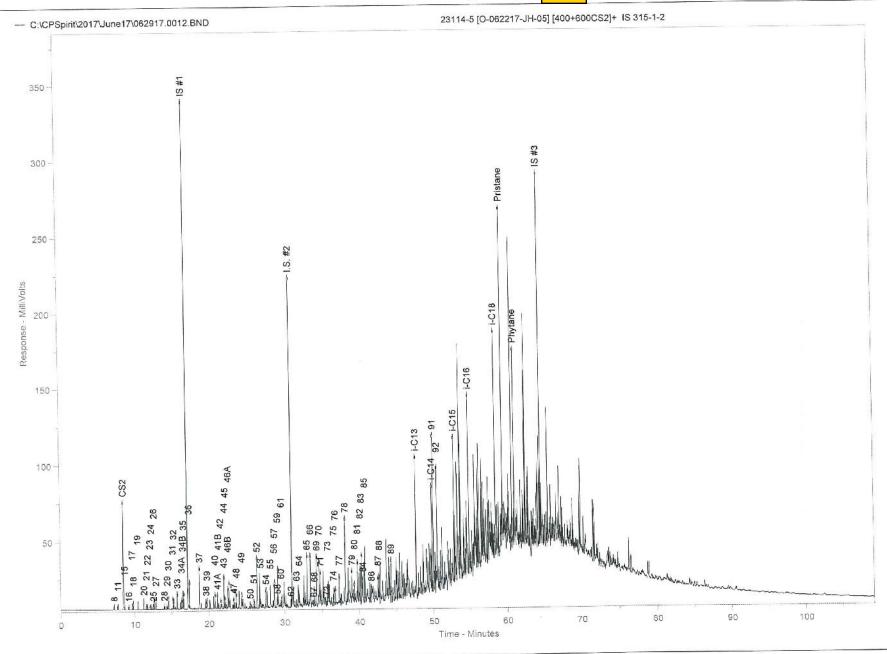
Chrom Perfect Chromatogram Report	PZ-5
Chrom Perfect Chromatogram report	

Total Height = 6243221

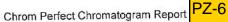
Total Amount = 0

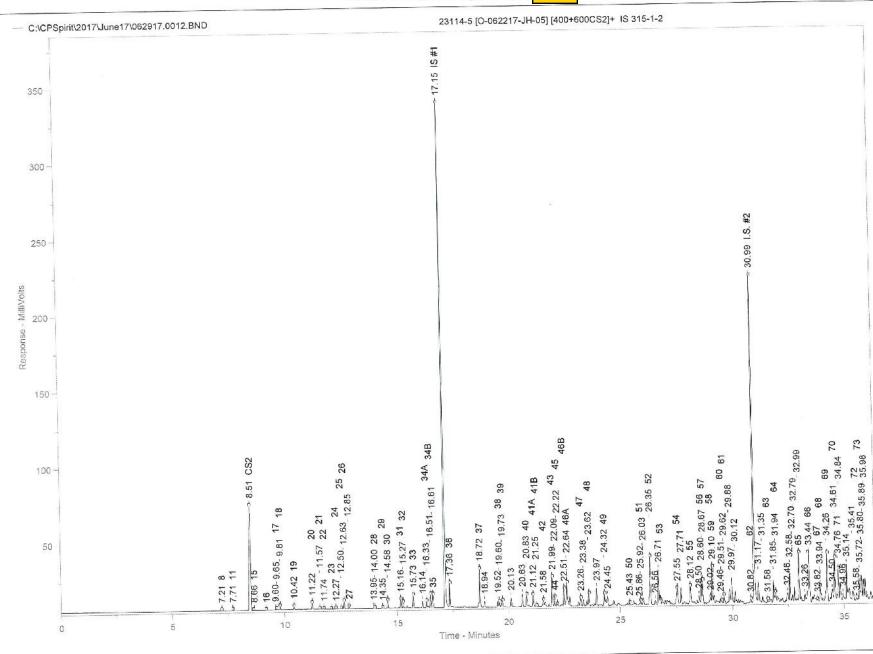
	00114 5
Pace ID Sample ID	23114-5 O-062217-JH-05 PZ-6
Evaporation	
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.02 0.10
Waterwashing	
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.03 0.36 2.01 7.98
Biodegradation	
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	268.23 0.56 1.56 7.74
Octane rating	
2,2,4,-Trimethylpentane / Methylcyclohexane	0.39
Relative percentages - Bulk hydrocarbon composition	on as PIANO
% Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic	3.72 20.60 65.50 8.21 1.97

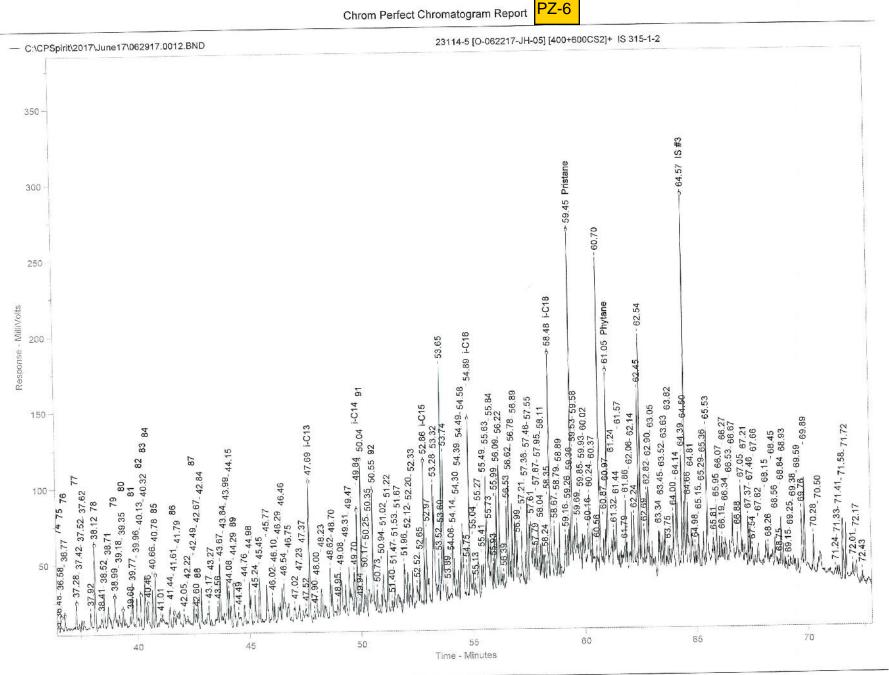
% Naphthenic % Olefinic

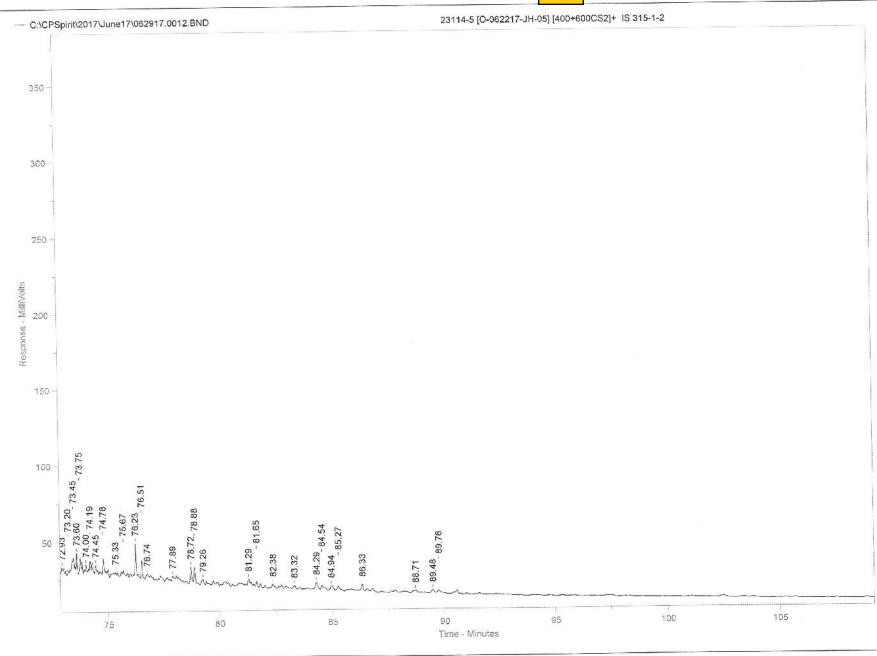

Pace ID Sample ID)	23114-5 O-062217-JH-05 <mark>PZ-6</mark>
		Relative
		Area %
1	Propane	0.00
2	Isobutane	0.00
3	Isobutene	0.00
4	Butane/Methanol	0.00
5	trans-2-Butene	0.00
6	cis-2-Butene	0.00
7	3-Methyl-1-butene	0.00
8	Isopentane	0.02
9	1-Pentene	0.00
10	2-Methyl-1-butene	0.00
11	Pentane	0.03
12	trans-2-Pentene	0.00
13	cis-2-Pentene/t-Butanol	0.00
14	2-Methyl-2-butene	0.00
15	2,2-Dimethylbutane	0.00
16	Cyclopentane	0.00
17	2,3-Dimethylbutane/MTBE	0.04
18	2-Methylpentane	0.17
19	3-Methylpentane	0.14
20	Hexane	0.30
21	trans-2-Hexene	0.02
22	3-Methylcyclopentene	0.01
23	3-Methyl-2-pentene	0.00
24	cis-2-Hexene	0.02
25	3-Methyl-trans-2-pentene	0.01
26	Methylcyclopentane	0.38
27	2,4-Dimethylpentane	0.11
28	Benzene	0.01
29	5-Methyl-1-hexene	0.02
30	Cyclohexane	0.41
31	2-Methylhexane/TAME	0.44
32	2,3-Dimethylpentane	0.30
33	3-Methylhexane	0.72
34A	1-trans-3-Dimethylcyclopentane	0.37
34B	1-cis-3-Dimethylcyclopentane	0.75
35	2,2,4-Trimethylpentane	0.79
I.S. #1	α, α, α -Trifluorotoluene	0.00

Pace ID		23114-5
Sample ID		O-062217-JH-05 PZ-6
		Deletive
		Relative
		Area %
36	n-Heptane	1.29
37	Methylcyclohexane	2.01
38	2,5-Dimethylhexane	0.29
39	2,4-Dimethylhexane	0.47
40	2,3,4-Trimethylpentane	0.83
41	Toluene/2,3,3-Trimethylpentane	0.73
42	2,3-Dimethylhexane	0.30
43	2-Methylheptane	1.65
44	4-Methylheptane	0.47
45	3,4-Dimethylhexane	0.15
46A	3-Ethyl-3-methylpentane	1.77
46B	1,4-Dimethylcyclohexane	0.94
47	3-Methylheptane	0.44
48	2,2,5-Trimethylhexane	0.70
49	n-Octane	0.73
50	2,2-Dimethylheptane	0.09
51	2,4-Dimethylheptane	0.25
52	Ethylcyclohexane	3.34
53	2,6-Dimethylheptane	0.00
54	Ethylbenzene	1.71
55	m+p Xylenes	1.31
56	4-Methyloctane	1.10
57	2-Methyloctane	1.26
58	3-Ethylheptane	0.10
59	3-Methyloctane	1.78
60	o-Xylene	0.11
61	1-Nonene	0.62
62	n-Nonane	0.32
I.S.#2	p-Bromofluorobenzene	0.00
63	Isopropylbenzene	0.16
64	3,3,5-Trimethylheptane	0.58
65	2,4,5-Trimethylheptane	2.63
66	n-Propylbenzene	4.58
67	1-Methyl-3-ethylbenzene	0.09
68	1-Methyl-4-ethylbenzene	1.28
69	1,3,5-Trimethylbenzene	3.93
70	3,3,4-Trimethylheptane	2.82


Pace ID Sample ID)	23114-5 O-062217-JH-05 <mark>PZ-6</mark>	
		Relative	
		Area %	
71	1-Methyl-2-ethylbenzene	1.97	
72	3-Methylnonane	0.14	
73	1,2,4-Trimethylbenzene	0.96	
74	Isobutylbenzene	0.60	
75	sec-Butylbenzene	1.07	
76	n-Decane	1.06	
77	1,2,3-Trimethylbenzene	1.43	
78	Indan	5.97	
79	1,3-Diethylbenzene	2.71	
80	1,4-Diethylbenzene	0.91	
81	n-Butylbenzene	2.58	
82	1,3-Dimethyl-5-ethylbenzene	2.08	
83	1,4-Dimethyl-2-ethylbenzene	4.31	
84	1,3-Dimethyl-4-ethylbenzene	2.11	
85	1,2-Dimethyl-4-ethylbenzene	3.10	
86	Undecene	1.26	
87	1,2,4,5-Tetramethylbenzene	1.39	
88	1,2,3,5-Tetramethylbenzene	1.59	
89	1,2,3,4-Tetramethylbenzene	3.25	
90	Naphthalene	0.00	
91	2-Methyl-naphthalene	8.16	
92	1-Methyl-naphthalene	7.39	
I.S.#3	5α-Androstane	0.00	




Chrom Perfect Chromatogram Report


Printed on 7/3/2017 7:03:42 PM

Printed on 7/3/2017 7:03:55 PM

PZ-6

Acquisition Port = DP#

Sample Name = 23114-5 [O-062217-JH-05] [400+600CS2]+ IS 315-1-2

Instrument = Instrument 1 Heading 1 = Heading 2 =

Raw File Name = C:\CPSpirit\2017\June17\062917.0012.RAWDate Taken (end) = 7/1/2017 3:03:23 AMMethod File Name = C:\CPSpirit\C344.metMethod Version = 44Calibration File Name = C:\CPSpirit\061917.calCalibration Version = 1

Calibration File Name	- C. ICP Spin (ISO 15 17. Sai		
	D (T)	Area %	Area
Peak Name	Ret. Time	0.0021	581.88
8	7.21	0.0034	934.19
11	7,71	1.0036	279291.80
CS2	8.51		121.95
15	8.66	0.0004	551.81
15	9.60	0.0020	1177.57
	9.65	0.0042	
17	9.81	0.0178	4950.23
18	10.42	0.0153	4262.79
19		0.0321	8921.12
20	11.22	0.0021	588.02
21	11.57	0.0012	336.04
22	11.74		558.36
24	12.27	0.0020	403.80
25	12.50	0.0015	11354.61
20	12.63	0.0408	3268.58
26	12.85	0.0117	
27	13.95	0.0041	1130.64
	14.00	0.0015	404.38
28		0.0024	677.47
29	14.35	0.0445	12392.58
30	14.58	0.0471	13103.69
31	15.16		8953.70
32	15.27	0.0322	21557.66
33	15.73	0.0775	11714.07
33	16.14	0.0421	11133.68
	16.33	0.0400	22468.70
34A	16.51	0.0807	
34B	16.61	0.0847	23567.40
35		2.9568	822798.90
IS #1	17.15	0.1385	38531.08
36	17.36	0.2161	60133.45
37	18.72	0.0383	10660.24
	18.94	0.0390	10853.83
	19.52		8726.42
38	19.60	0.0314	14107.65
39	19.73	0.0507	15353.54
29	20.13	0.0552	21281.22
	20.63	0.0765	24930.33
302	20.83	0.0896	
40	21.12	0.0781	21719.53
41A	21.12	0.0039	1094.43
41B		0.0321	8936.63
42	21.58	0.1781	49567.10
43	21.99	0.0505	14057.53
44	22.09	0.0165	4603.71
45	22.22		28310.32
46B	22.51	0.1017	52911.60
	22.64	0.1901	13298.08
46A	23.26	0.0478	11419.27
47	23.38	0.0410	21013.67
	23.62	0.0755	
48	23.97	0.1106	30789.06
		0.0783	21798.40
49	24.32	0.0630	17524.17
di se la deserva	24.45	0.0102	2852.10
50	25.43	0.0074	2053.73
	25.86		7495.91
51	25.92	0.0269	14459.06
51	26.03	0.0520	100105.10
50	26.35	0.3597	100100.10
52			

Chrom Perfect Chromatogram Report PZ-6					
	Det Time	Area %	Area		
Peak Name	Ret. Time 26.56	0.0296	8245.86		
	26.71	0.2728	75904.80		
54	27.55	0.1841	51243.32 30256.34		
54	27.71	0.1087	39362.01		
55	28.12	0.1414	12811.25		
30	28.50	0.0460	32941.70		
56	28.60	0.1184 0.1360	37854.26		
57	28.67	0.0113	3130.76		
58	29.02 29.10	0.1915	53288.66		
59	29.46	0.0241	6698.60		
	29.51	0.0116	3231.04		
60 61	29.62	0.0672	18700.46 27912.64		
01	29.88	0.1003	49813.46		
	29.97	0.1790	23963.54		
	30.12	0.0861 0.0345	9605.67		
62	30.82	2.0923	582247.30		
I.S. #2	30.99 31.17	0.1778	49469.95		
	31.17	0.0615	17115.69		
	31.58	0.0174	4841.97		
63	31.85	0.1382	38449.81 17426.61		
64	31.94	0.0626	23018.12		
04	32.46	0.0827	51233.42		
	32.58	0.1841 0.0432	12012.78		
	32.70	0.0452	23734.31		
	32.79	0.2828	78699.68		
65	32.99 33.26	0.0525	14616.52		
	33.44	0.4932	137236.00		
66 67	33.82	0.0099	2749.49 38256.73		
67 68	33.94	0.1375	117742.50		
69	34.26	0.4231	27076.71		
	34.50	0.0973 0.3036	84479.32		
70	34.61	0.2126	59175.27		
71	34.76	0.1207	33601.01		
	34.84 34.96	0.0395	10991.22		
	35.14	0.1841	51229.25		
	35.41	0.0821	22857.19 4314.38		
72	35.58	0.0155	28719.66		
73	35.72	0.1032 0.1666	46358.36		
	35.80	0.1311	36479.92		
	35.89	0.1186	33008.47		
	35.98 36.48	0.0650	18097.64		
74	36.58	0.1153	32083.34		
75 76	36.77	0.1139	31707.76 42856.15		
77	37.28	0.1540	15669.10		
11	37.42	0.0563	22483.27		
	37.52	0.0808 0.1162	32322.50		
	37.62	0.1838	51140.77		
	37.92 38.12	0.6428	178876.20		
78	38.41	0.2041	56803.06		
	38.52	0.2653	73837.20 69472.45		
	38.71	0.2497	81088.65		
79	38.99	0.2914	36832.64		
	39.18	0.1324 0.0979	27237.28		
80	39.35	0.0757	21059.44		
	39.68	0.2774	77197.13		
81	39.77 39.96	0.2108	58652.04		
	40.13	0.2236	62221.76		
82	40.32	0.4644	129240.30 63350.65		
83 84	40.46	0.2277	69060.20		
7	40.66	0.2482	55055.20		

Chrom Perfect Chromatogram Report					
	Ret. Time	Area %	Area		
Peak Name	40.78	0.3340	92954.80		
85	41.01	0.0532	14810.25		
	41.44	0.2335	64989.70		
	41.61	0.1362	37913.06 28190.96		
86	41.79	0.1013	34386.12		
	42.05	0.1236	21787.82		
	42.22	0.0783	41633.95		
07	42.49	0.1496	31906.64		
87	42.60	0.1147	47773.40		
98	42.67	0.1717	93505.31		
88	42.84	0.3360	74904.55		
	43.17	0.2692	11451.93		
	43.27	0.0412	60731.75		
	43.56	0.2182	147350.10		
	43.67	0.5295	30288.88		
	43.84	0.1088	117767.30		
	43.99	0.4232	69883.27		
	44.08	0.2511 0.1492	41531.77		
	44.15	0.3505	97548.38		
89	44.29	0.0745	20737.43		
~~~	44.49	0.1896	52749.52		
	44.76	0.1858	51713.31		
	44.98	0.2316	64454.00		
	45.24	0.3431	95478.29		
	45.45	0.2928	81476.52		
	45.77	0.1570	43677.34		
	46.02	0.1312	36508.00		
	46.10	0.1945	54113.01		
	46.29	0.2401	66811.90		
	46.46 46.54	0.4821	134150.50		
	46.54	0.2541	70721.43		
	47.02	0.2294	63834.63		
	47.23	0.2475	68869.84		
	47.37	0.1137	31638.64		
	47.52	0.2062	57379.48		
	47.69	0.9473	263599.70 18232.17		
i-C13	47.90	0.0655	51805.71		
	48.00	0.1862	82553.95		
	48.23	0.2967	114592.60		
	48.62	0.4118	51637.07		
	48.70	0.1856	26975.38		
	48.95	0.0969	174575.90		
	49.08	0.6273	61374.50		
	49.31	0.2206 0.1802	50144.08		
	49.47	0.3874	107815.40		
	49.70	0.5122	142538.30		
i-C14	49.84	0.0653	18176.97		
	49.94	0.8792	244653.00		
91	50.04	0.2027	56404.49		
	50.17	0.2510	69855.78		
	50.25	0.2957	82273.37		
	50.35	0.7954	221346.10		
92	50.55 50.73	0.1671	46489.39		
	50.94	0.0944	26270.87		
	51.02	0.4382	121950.40		
	51.02	0.4457	124023.70		
	51.40	0.0841	23403.10 15152.29		
	51.47	0.0545	51379.72		
	51.53	0.1846	28582.72		
	51.67	0.1027	189528.60		
	51.96	0.6811	76570.72		
	52.12	0.2752	77225.55		
	52.20	0.2775	73161.65		
	52.33	0.2629	106502.60		
	52.52	0.3827			

P7-6

	Chrom Perfect	Chromatogram Report PZ-6	
Poak Name	Ret. Time	Area %	Are
Peak Name	52.65	0.3673	102215.4
i-C15	52.86	0.7535	209693.9
FC15	52.97	0.7624	212162.9
	53.28	0.8749	243462.8
	53.32	0.7339	204213.5
	53.52	0.4352	121100.7
	53.60	0.1616	44956.7
	53.65	1.1589	322485.2
	53.74	0.9282	258290.6
	53.89	0.1329	36972.4
	54.06	0.1502	41793.3
	54.14	0.7078	196955.
	54.30	0.1784	49656.
	54.39	0.2032	56555.
	54.49	0.4463	124197.
	54.58	0.7748	215613.
	54.75	0.2579	71755.
	54.89	0.9543	265559.
i-C16	55.04	0.1581	43992.
	55.13	0.1533	42653.
	55.27	0.4386	122062.
	55.41	0.1376	38284
	55.49	0.2968	82588.
	55.63	0.9953	276956
	55.73	0.4096	113992
		0.2992	83248
	55.84	0.1322	36792
	55.93	0.3001	83514
	55.99	0.4405	122585
	56.09	0.7652	212935
	56.22	0.0776	21600
	56.39	0.4872	135563
	56.53		133917
	56.62	0.4812	120023
	56.78	0.4313	192324
	56.89	0.6911	79795
	56.99	0.2867	72593
	57.21	0.2609	38542
	57.36	0.1385	187142
	57.46	0.6725	80180
	57.55	0.2881	162397
	57.61	0.5836	64366
	57.79	0.2313	76144
	57.87	0.2736	
	57.95	0.4395	122291
	58.04	0.1798	50039
	58.11	0.2962	82422
	58.24	0.2319	64534
	58.35	0.3823	106382
1010	58.48	1.5453	430010
i-C18	58.67	0.3479	9681
	58.79	0.2245	6248
	58.89	0.2408	6699
	59.16	0.3322	9244
	59.26	0.3016	8393
		0.4554	126713
	59.36	1.9771	55017
Pristane	59.45	0.2544	7078
	59.53	0.2803	7801
	59.58	0.5996	16684
	59.69	0.2643	7355
	59.85	0.3558	9901
	59.93		8707
	60.02	0.3129	7182
	60.16	0.2581	17433
	60.24	0.6265	10740
	60.37	0.3860	7563
	60.56 60.70	0.2718 1,4786	41147

	Chrom Perfect Ch	nromatogram Report	
Peak Name	Ret. Time	Area %	Area
Peak Name	60.87	0.1380	38389.25 62870.74
	60.97	0.2259	298658.90
Phytane	61.05	1.0732	79627.84
ing taxing	61.24	0.2861	94137.59
	61.32	0.3383 0.2417	67250.05
	61.44	0.0808	22472.87
	61.57	0.0766	21321.80
	61.79	0.2097	58356.84
	61.86 62.06	0.1782	49581.66
	62.14	0.3588	99856.55
	62.24	0.3253	90524.46
	62.45	0.8968	249550.40
	62.54	0.9977	277637.80
	62.69	0.2446	68059.13 97913.53
	62.82	0.3519	140504.00
	62.90	0.5049	41640.93
	63.05	0.1496	152821.20
	63.34	0.5492	70294.9
	63.45	0.2526	63849.0
	63.52	0.2294	148935.6
	63.63	0.5352	45186.4
	63.75	0.1624 0.3137	87296.4
	63.82	0.7510	208998.7
	64.00	0.9269	257922.4
	64.14	0.7370	205095.9
	64.39 64.50	0.5461	151959.8
	64.50	1.6997	472988.8
IS #3	64.66	0.6620	184232.6
	64.81	0.6852	190681.6
	64.98	0.3022	84084.2
	65.15	0.4967	138217.4 42001.1
	65.29	0.1509	84777.0
	65.36	0.3047	313642.6
	65.53	1.1271	197573.3
	65.81	0.7100	173794.0
	65.95	0.6245 0.2645	73612.7
	66.07	0.3340	92951.4
	66.19	0.2919	81217.7
	66.27	0.4190	116592.5
	66.34 66.53	0.2884	80242.4
	66.67	0.5341	148626.
	66.88	0.6666	185499.4
	67.05	0.6589	183355.
	67.21	0.4056	112859. 94581.
	67.37	0.3399	74178.
	67.46	0.2666	62144.
	67.54	0.2233	47276.
	67.66	0.1699	110983.
	67.82	0.3988	88630.
	68.15	0.3185 0.2127	59195.
	68.26	0.1303	36263.
	68.45	0.3246	90323.
	68.56	0.0766	21322.
	68.75	0.3682	102454
	68.84 68.93	0.1440	40062.
	69.15	0.0574	15970.
	69.25	0.1049	29180.
	69.38	0.0703	19551.
	69.59	0.0769	21392
	69.76	0.4222	117501.
	69.89	0.5549	154414. 61159.
	70.28	0.2198	
	10.20	0.0317	8811.

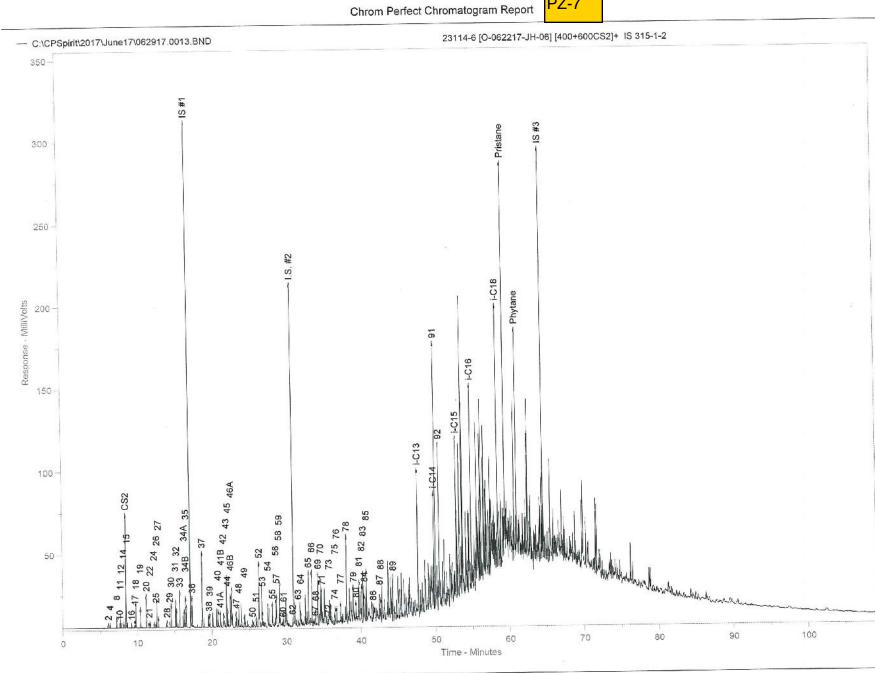
	Chrom Perfect Chromatog		
D. J. Mana	Ret. Time	Area %	Area
Peak Name	71.24	0.0879	24454.00
	71.33	0.0795	22132.07
	71.41	0.0905	25178.36
	71.58	0.5527	153796.60
	71.72	0.4026	112035.20
		0.1915	53288.63
	72.01	0.3385	94202.93
	72.17	0.0526	14647.24
	72.43	0.0383	10654.1
	72.93	0.0471	13095.9
	73.20	0.2673	74385.8
	73.45	0.1411	39252.5
	73.60	0.0869	24176.5
	73.75	0.0497	13818.2
	74.00		15237.3
	74.19	0.0548	16897.8
	74.45	0.0607	35182.7
	74.78	0.1264	39752.7
	75.33	0.1429	32667.2
	75.67	0.1174	68388.8
	76.23	0.2458	42425.3
	76.51	0.1525	17361.9
	76.74	0.0624	12725.4
	77.89	0.0457	50692.9
	78.72	0.1822	44307.6
	78.88	0.1592	22405.1
	79.26	0.0805	
	81.29	0.0550	15294.6
	81.65	0.0494	13750.7
	82.38	0.0790	21983.0
	83.32	0.0502	13975.6
	84.29	0.1192	33179.3
	84.54	0.1029	28621.
	84.94	0.1039	28908.
	85.27	0.1130	31445.0
	86.33	0.0812	22603.4
		0.1438	40007.3
	88.71	0.0907	25250.3
	89.48	0.1071	29790.9
	89.76	0.1011	

Total Area = 2.782768E+07

Total Height = 9005942

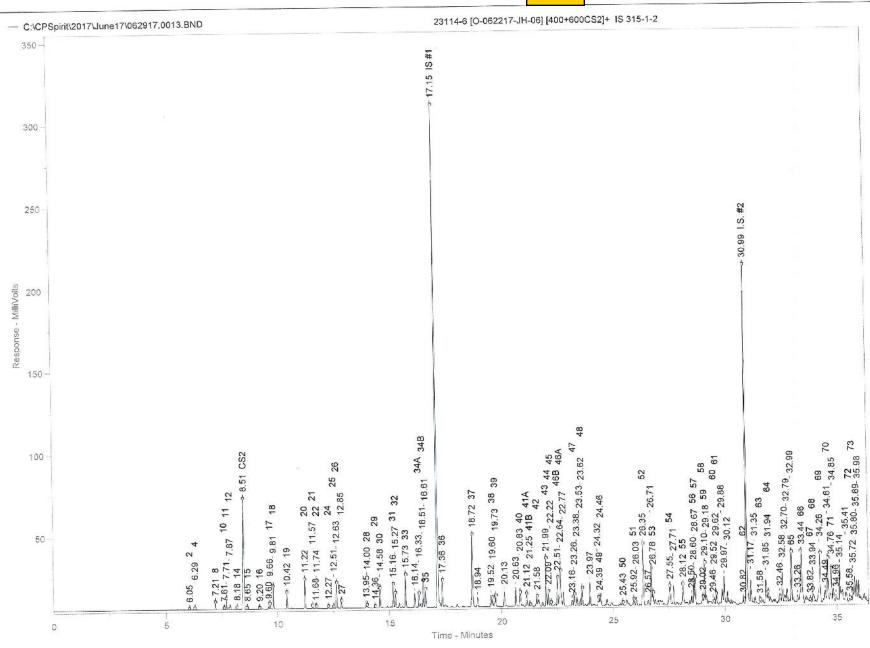
Total Amount = 0

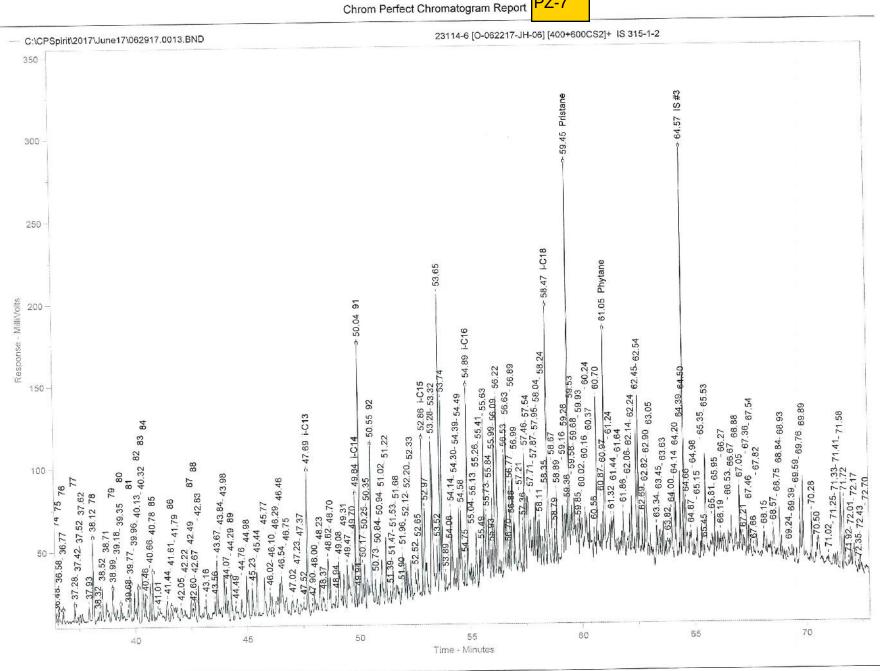
Pace ID Sample ID	23114-6 O-062217-JH-06	PZ-7
Evaporation		
n-Pentane / n-Heptane 2-Methylpentane / 2-Methylheptane	0.23 0.36	
Waterwashing		
Benzene / Cyclohexane Toluene / Methylcyclohexane Aromatics / Total Paraffins (n+iso+cyc) Aromatics / Naphthenes	0.09 0.17 1.39 4.75	
Biodegradation		
(C4 - C8 Para + Isopara) / C4 - C8 Olefins 3-Methylhexane / n-Heptane Methylcyclohexane / n-Heptane Isoparaffins + Naphthenes / Paraffins	93.40 1.23 3.15 9.19	
Octane rating		
2,2,4,-Trimethylpentane / Methylcyclohexane	0.24	
Relative percentages - Bulk hydrocarbon compositi	on as PIANO	
% Paraffinic % Isoparaffinic % Aromatic % Naphthenic % Olefinic	4.04 25.06 57.05 12.02 1.84	5


% Olefinic

Pace ID Sample ID		23114-6 PZ-7 O-062217-JH-06
		Relative
		Area %
		0.00
1	Propane	0.01
2	Isobutane	0.00
3	Isobutene	0.01
4	Butane/Methanol	0.00
5	trans-2-Butene	0.00
6	cis-2-Butene	0.00
7	3-Methyl-1-butene	0.15
8	Isopentane	0.00
9	1-Pentene	0.01
10	2-Methyl-1-butene	0.26
11	Pentane	0.01
12	trans-2-Pentene	0.00
13	cis-2-Pentene/t-Butanol	0.03
14	2-Methyl-2-butene	0.01
15	2,2-Dimethylbutane	0.01
16	Cyclopentane	0.16
17	2,3-Dimethylbutane/MTBE	0.75
18	2-Methylpentane	0.56
19	3-Methylpentane	1.09
20	Hexane	0.08
21	trans-2-Hexene	0.04
22	3-Methylcyclopentene	0.00
23	3-Methyl-2-pentene	0.05
24	cis-2-Hexene	0.03
25	3-Methyl-trans-2-pentene	0.98
26	Methylcyclopentane	0.29
27	2,4-Dimethylpentane	0.07
28	Benzene	0.04
29	5-Methyl-1-hexene	0.82
30	Cyclohexane	0.97
31	2-Methylhexane/TAME	0.61
32	2,3-Dimethylpentane	1.39
33	3-Methylhexane	0.59
34A	1-trans-3-Dimethylcyclopentane	1.17
34B	1-cis-3-Dimethylcyclopentane	0.84
35	2,2,4-Trimethylpentane	0.00
I.S. #1	a,a,a-Trifluorotoluene	0.00

I.S. #1 a,a,a-Trifluorotoluene


Pace ID Sample ID		23114-6 PZ-7 O-062217-JH-06
		Relative
		Area %
36	n-Heptane	1.13
37	Methylcyclohexane	3.57
38	2,5-Dimethylhexane	0.37
39	2,4-Dimethylhexane	0.61
40	2,3,4-Trimethylpentane	0.79
41	Toluene/2,3,3-Trimethylpentane	0.62
42	2,3-Dimethylhexane	0.36
43	2-Methylheptane	2.11
44	4-Methylheptane	0.59 0.18
45	3,4-Dimethylhexane	2.32
46A	3-Ethyl-3-methylpentane	1.51
46B	1,4-Dimethylcyclohexane	0.57
47	3-Methylheptane	0.84
48	2,2,5-Trimethylhexane	0.45
49	n-Octane	0.10
50	2,2-Dimethylheptane	0.31
51	2,4-Dimethylheptane	3.37
52	Ethylcyclohexane	0.47
53	2,6-Dimethylheptane	1.55
54	Ethylbenzene	1.15
55	m+p Xylenes	1.00
56 57	4-Methyloctane 2-Methyloctane	1.16
57 58	3-Ethylheptane	0.47
50	3-Methyloctane	1.92
60	o-Xylene	0.07
61	1-Nonene	0.58
62	n-Nonane	0.29
1.S.#2	p-Bromofluorobenzene	0.00
63	Isopropylbenzene	0.12
64	3,3,5-Trimethylheptane	0.51
65	2,4,5-Trimethylheptane	2.16
66	n-Propylbenzene	3.74
67	1-Methyl-3-ethylbenzene	0.07
68	1-Methyl-4-ethylbenzene	0.93
69	1,3,5-Trimethylbenzene	3.21 2.28
70	3,3,4-Trimethylheptane	2.20

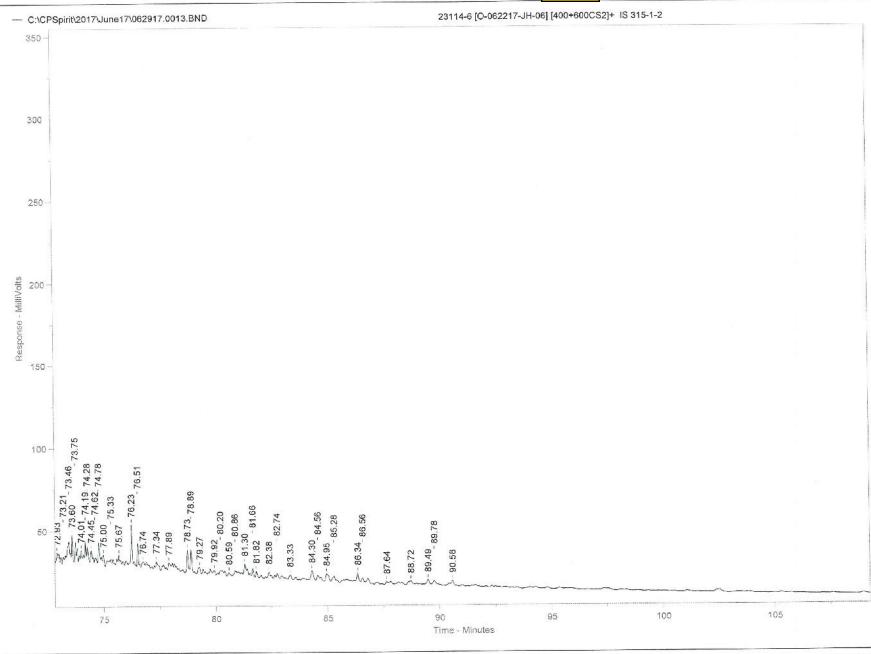

Pace ID Sample ID		23114-6 O-062217-JH-06	PZ-7
Pace ID Sample ID 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87	1-Methyl-2-ethylbenzene 3-Methylnonane 1,2,4-Trimethylbenzene Isobutylbenzene sec-Butylbenzene n-Decane 1,2,3-Trimethylbenzene Indan 1,3-Diethylbenzene 1,4-Diethylbenzene 1,3-Dimethyl-5-ethylbenzene 1,3-Dimethyl-2-ethylbenzene 1,3-Dimethyl-4-ethylbenzene 1,2-Dimethyl-4-ethylbenzene 1,2,4,5-Tetramethylbenzene	O-062217-JH-06 Relative Area % 1.68 0.13 0.37 0.50 0.87 0.80 0.77 4.81 2.29 0.71 1.91 1.65 3.29 1.60 2.32 0.96 1.05	
88	1,2,3,5-Tetramethylbenzene	1.05 1.02 2.67	
89 90 91	1,2,3,4-Tetramethylbenzene Naphthalene 2-Methyl-naphthalene	2.67 0.00 10.54 7.46	
92 I.S.#3	1-Methyl-naphthalene 5α-Androstane	0.00	



PZ-7

Chrom Perfect Chromatogram Report






PZ-7

Printed on 7/3/2017 7:04:57 PM

Page 2 of 3

Chrom Perfect Chromatogram Report PZ-7



Printed on 7/3/2017 7:04:57 PM



### Sample Name = 23114-6 [O-062217-JH-06] [400+600CS2]+ IS 315-1-2

Instrument = Instrument 1 Heading 1 = Heading 2 = Acquisition Port = DP#

Raw File Name = C:\CPSpirit\2017\June17\062917.0013.RAW
Method File Name = C:\CPSpirit\C344.met
Calibration File Name = C:\CPSpirit\061917.cal

Date Taken (end) = 7/1/2017 5:09:08 AM Method Version = 44 Calibration Version = 1

Peak Name	Ret. Time	Area %	Area 235.26
	6.05	0.0009	410.95
2 4	6.29	0.0015	
8	7.21	0.0195	5331.62
10	7.61	0.0011	309.41
	7.71	0.0324	8873.94
11	7.87	0.0010	260.76
12	8.18	0.0040	1090.29
14		0.9509	260337.60
CS2	8.51	0.0015	406.45
15	8.65	0.0008	224.40
16	9.20	0.0108	2958.33
	9.60		5440.73
17	9.66	0.0199	25917.19
18	9.81	0.0947	19377.22
19	10.42	0.0708	37499.74
20	11.22	0.1370	
21	11.57	0.0100	2747.51
21	11.68	0.0030	825.56
22	11.74	0.0055	1514.51
22	12.27	0.0068	1849.25
24	12.51	0.0041	1115.39
25	12.63	0.1239	33922.14
26	12.85	0.0361	9877.57
27		0.0127	3475.37
	13.95	0.0092	2525.84
28	14.00	0.0053	1461.09
29	14.36	0.1028	28154.00
30	14.58		33410.70
31	15.16	0.1220	20876.38
32	15.27	0.0763	48123.52
33	15.73	0.1758	21984.20
	16.14	0.0803	20392.22
34A	16.33	0.0745	40520.28
34B	16.51	0.1480	
35	16.61	0.1064	29117.08
IS #1	17.15	2.7625	756278.40
	17.36	0.1429	39122.29
36	18.72	0.4496	123087.40
37	18.94	0.0625	17100.77
	19.52	0.0678	18566.71
2725	19.60	0.0468	12813.13
38	19.73	0.0764	20907.66
39		0.0836	22895.38
	20.13	0.1099	30083.26
	20.63	0.1002	27440.30
40	20.83	0.0787	21538.70
41A	21.12	0.0063	1720.03
41B	21.25		12287.43
42	21.58	0.0449	72751.90
43	21.99	0.2657	20544.22
44	22.09	0.0750	6380.25
45	22.22	0.0233	52267.45
45 46B	22.51	0.1909	52267.45 80247.50
46A	22.64	0.2931	
40/1	22.77	0.0864	23655.69
	23.16	0.0361	9887.37
	23.26	0.0719	19670.77
47	23.38	0.0565	15465.12
	20.00		

	Chrom Perfect C	hromatogram Report	
Peak Name	Ret. Time	Area %	Area 11473.89
• . • • • • • • • • • • • • • • • • • •	23.53	0.0419 0.1065	29163.15
48	23.62	0.1392	38115.29
	23.97	0.0300	8221.66
WOLLING	24.32	0.0567	15524.12
49	24.39 24.46	0.0746	20429.44
	25.43	0.0126	3459.12
50	25.92	0.0396	10851.33
51	26.03	0.0595	16290.88
52	26.35	0.4247	116281.80
52	26.57	0.0343	9398.52
	26.71	0.2512	68769.56 16269.44
53	26.78	0.0594	53401.99
54	27.55	0.1951	32365.14
	27.71	0.1182 0.1455	39841.91
55	28.12	0.0481	13179.13
	28.50	0.1263	34568.46
56	28.60	0.1462	40018.62
57	28.67	0.0593	16226.96
58	29.02 29.10	0.2419	66225.95
59	29.10	0.0529	14476.55
	29.46	0.0232	6339.73
00	29.52	0.0085	2336.47
60	29.62	0.0733	20057.73
01	29.88	0.1023	28006.46
	29.97	0.1894	51862.13 23854.56
	30.12	0.0871	10083.05
62	30.82	0.0368	555369.70
I.S. #2	30.99	2.0286	48271.06
	31.17	0.1763	16252.55
	31.35	0.0594 0.0148	4044.63
63	31.58	0.1430	39144.75
2222	31.85 31.94	0.0647	17717.67
64	31.94 32.46	0.0806	22074.62
	32.58	0.1705	46663.54
	32.70	0.0428	11710.39
	32.79	0.0777	21278.50
65	32.99	0.2721	74485.98
00	33.26	0.0492	13474.09 129174.60
66	33.44	0.4718	2518.16
67	33.82	0.0092	32103.58
68	33.94	0.1173 0.4045	110745.30
69	34.26	0.0904	24750.51
	34.49	0.2869	78556.44
70	34.61	0.2121	58063.47
71	34.76 34.85	0.0952	26054.46
	34.95	0.0455	12443.80
	35.14	0.1724	47193.57
	35.41	0.0809	22142.63
70	35.58	0.0169	4616.45
72 73	35.72	0.0471	12907.12
15	35.80	0.1557	42620.75
	35.89	0.1251	34234.73 29461.44
	35.98	0.1076	17155.66
74	36.48	0.0627	29880.39
75	36.58	0.1091	27788.99
76	36.77	0.1015	26643.53
77	37.28	0.0973	14707.78
8.870	37.42	0.0537 0.0657	17974.36
	37.52	0.0657	30131.51
	37.62	0.1732	47412.43
	37.93	0.6062	165958.50
78	38.12	0.0767	20989.77
	38.32		

Chrom	Perfect	Chromatogram	Report
-------	---------	--------------	--------

PZ-7

	Chrom Perfect	Chromatogram Report	
	Dat Time	Area %	Area
Peak Name	Ret. Time	0.2360	64618.65
	38.52	0.2441	66830.20
	38.71	0.2886	79004.70
'9	38.99	0.1101	30145.61
	39.18	0.0892	24410.21
80	39.35	0.0685	18746.14
	39.68	0.2404	65814.24
31	39.77	0.1866	51080.06
	39.96	0.2084	57056.18
32	40.13	0.4151	113637.70
33	40.32	0.2021	55316.06
34	40.46	0.2329	63747.16
	40.66	0.2928	80150.27
35	40.78	0.0498	13626.53
	41.01	0.2118	57995.36
	41.44	0.1213	33217.24
36	41.61	0.0908	24864.83
	41.79	0.1131	30968.98
	42.05	0.0552	15104.93
	42.22	0.1326	36298.21
87	42.49	0.1031	28237.94
	42.60	0.1290	35321.52
88	42.67	0.2870	78573.09
	42.83	0.2411	65995.15
	43.16	0.1729	47320.92
	43.56	0.4509	123449.60
	43.67	0.0641	17556.48
	43.84	0.2972	81375.38
	43.98		40223.50
	44.07	0.1469	92135.62
89	44.29	0.3365	19515.63
	44.49	0.0713	47040.49
	44.76	0.1718	46867.32
	44.98	0.1712	59467.89
	45.23	0.2172	86795.47
	45.44	0.3170	80075.94
	45.77	0.2925	57121.55
	46.02	0.2087	36353.74
	46.10	0.1328	47986.31
	46.29	0.1753	56806.43
	46.46	0.2075	125489.40
	46.54	0.4584	62911.63
	46.75	0.2298	58848.59
	47.02	0.2150	60943.29
	47.23	0.2226	27799.98
	47.37	0.1015	51873.80
	47.52	0.1895	251348.30
i-C13	47.69	0.9181	17941.4
1010	47.90	0.0655	49513.4
	48.00	0.1809	83432.24
	48.23	0.3048	46161.5
	48.37	0.1686	111039.4
	48.62	0.4056	47475.2
	48.70	0.1734	· · · · · · · · · · · · · · · · · · ·
	48.94	0.1046	28636.9
	49.08	0.5646	154566.7
	49.31	0.2285	62556.1
	49.47	0.1434	39269.6
	49.70	0.4106	112404.1
: 014	49.84	0.5183	141901.3
i-C14	49.94	0.0722	19759.2
04	50.04	1.3291	363861.7
91	50.04	0.2201	60266.9
	50.25	0.2555	69933.7
	50.25	0.3024	82779.5
			257673.9
	50 55	0.9412	
92	50.55 50.73	0.9412 0.1708	46758.8 18355.4

	Chrom Perfect Cl		(A.S.)
Peak Name	Ret. Time	Area %	Are 27828.7
r eak nume	50.94	0.1017	133263.2
	51.02	0.4868	127310.3
	51.22	0.4650	28309.1
	51.39	0.1034	15368.4
	51.47	0.0561	58462.8
	51.53	0.2136	27954.1
	51.68	0.1021	29426.3
	51.90	0.1075	168664.7
	51.96	0.6161	72066.3
	52.12	0.2632	83684.8
	52.20	0.3057	73501.
	52.33	0.2685 0.2067	56583.3
	52.52	0.3334	91285.3
	52.65		210615.
i-C15	52.86	0.7693 0.8765	239962.
	52.97	0.9908	271235.
	53.28		220912.
	53.32	0.8069	123389.
	53.52	0.4507 1.5318	419353.
	53.65	1.0696	292807
	53.74	0.1395	38186.
	53.89	0.1613	44149
	54.06	0.8314	227620
	54.14	0.1810	49542
	54.30	0.2127	58242
	54.39	0.5091	139373
	54.49	0.7320	200395
	54.58	0.2322	63558
	54.75	1.0112	276823
i-C16	54.89	0.1436	39324
	55.04	0.1835	50230
	55.13	0.4758	130270
	55.26	0.1541	42188
	55.41	0.3193	87414
	55.49	1,1761	321985
	55.63	0.4402	120513
	55.73	0.3107	85055
	55.84	0.1245	34087
	55.93	0.3452	94502
	55.99	0.5857	160347
	56.09	0.8834	241857
	56.22	0.7170	196280
	56.53	0.6627	181420
	56.63	0.1210	33130
	56.70	0.4169	114136
	56.77	0.2189	59914
	56.85	0.7873	215533
	56.89	0.3226	88323
	56.99	0.2903	79486
	57.21	0.1936	5300
	57.36	0.7796	21343
	57.46	0.1391	3808
	57.54	0.1972	5397
	57.71	0.1852	50712
	57.87	0.3646	99820
	57.95	0.1639	44883
	58.04	0.2973	8138
	58.11	0.2161	5916
	58.24	0.3512	9614
	58.35	1.6676	45652
i-C18	58.47	0.3437	9408
	58.67	0.2407	6589
	58.79	0.2938	8044
	58.89	0.3915	10717
	59.16	0.3915	9623
	59.26 59.36	0.3515	12931

	Chrom Perfect C		
Peak Name	Ret. Time	Area %	An
Pristane	59.45	2.1101	577686. 83233.
	59.53	0.3040	86576.
	59.58	0.3162 0.7013	191997.
	59.68	0.3323	90963.
	59.85	0.3998	109438.
	59.93 60.02	0.3523	96455.
	60.16	0.4699	128636.
	60.24	0.3757	102855.
	60.37	0.4932	135021.
	60.56	0.2772	75878.
	60.70	0.9948	272354.
	60.87	0.1939	53093.
	60.97	0.3402	93137
Phytane	61.05	1.2169	333137.
	61.24	0.4225	115655. 149245.
	61.32	0.5452	107583
	61.44	0.3930	104707
	61.64	0.3825	124889
	61.86	0.4562	92589
	62.06	0.3382 0.4117	112720
	62.14	0.4944	135339
	62.24	0.7614	208437
	62.45 62.54	0.7811	213849
	62.69	0.2686	73532
	62.82	0.3195	87468
	62.90	0.6345	173705
	63.05	0.4255	116476
	63.34	0.4500	123191
	63.45	0.2418	66204
	63.63	0.4581	125400
	63.82	0.2592	70963
	64.00	0.5784	158351
	64.14	0.3676	100640
	64.20	0.3196	87487 141954
	64.39	0.5185	112688
	64.50	0.4116	459476
IS #3	64.57	1.6784 0.4957	135699
	64.66	0.4548	124513
	64.87	0.1680	45999
	64.98 65.15	0.2941	80501
	65.35	0.2072	56734
	65.45	0.0699	19142
	65.53	0.7306	200003
	65.81	0.3855	105546
	65.95	0.3813	104375
	66.19	0.1818	49780
	66.27	0.1267	34673
	66.53	0.1375	37646
	66.67	0.2570	70365
	66.88	0.2861	78335 103702
	67.05	0.3788	18343
	67.21	0.0670	5987
	67.36	0.2187	43610
	67.46	0.1593 0.1281	35070
	67.54	0.0774	21183
	67.66	0.1994	5459
	67.82	0.2111	57780
	68.15 68.57	0.2476	67794
	68.57	0.0658	18013
	68.84	0.3354	9181
	68.93	0.1255	34366
	69.24	0.0885	2423
	69.39	0.1198	32784

	Chrom Perfect Chromatogra	am Report PZ-7	
ak Nomo	Ret. Time	Area %	Area
eak Name	69.59	0.0936	25623.29
	69.76	0.4413	120813.40
	69.89	0.4816	131847.00
	70.28	0.2628	71949.29
		0.0407	11139.44
	70.50	0.1197	32771.23
	71.02	0.1092	29892.96
	71.25	0.0796	21785.2
	71.33	0.1018	27869.8
	71.41	0.6257	171299.0
	71.58	0.4465	122250.1
	71.72		33510.5
	71.92	0.1224	60425.6
	72.01	0.2207	115608.1
	72.17	0.4223	11375.5
	72.35	0.0416	17699.3
	72.43	0.0647	47137.3
	72.70	0.1722	14977.3
	72.93	0.0547	17927.1
	73.21	0.0655	100505.1
	73.46	0.3671	47708.8
	73.60	0.1743	27106.4
	73.75	0.0990	
	74.01	0.0627	17164.7
	74.19	0.1259	34471.1
	74.28	0.1290	35305.5
	74.45	0.1109	30372.0
	74.62	0.0719	19695.2
	74.78	0.2089	57199.7
	75.00	0.0995	27231.2
	75.33	0.1241	33963.3
	75.67	0.0747	20459.4
	76.23	0.2795	76530.1
	76.51	0.1804	49380.6
	76.74	0.0681	18632.1
	77.34	0.1034	28301.0
	77.89	0.0657	17999.7
	78.73	0.2365	64751.6
	78.89	0.2420	66244.2
	79.27	0.0974	26651.1
	79.92	0.0433	11853.0
	80.20	0.0564	15448.8
	80.59	0.0464	12696.2
	80.86	0.1047	28651.3
	81.30	0.0797	21816.3
	81.66	0.0697	19078.1
	81.82	0.0606	16587.7
	82.38	0.0472	12911.4
	82.74	0.0994	27207.3
	83.33	0.0626	17124.3
	83.33 84.30	0.1553	42517.4
	84.30 84.56	0.0433	11861.3
		0.1575	43122.3
	84.95	0.1488	40733.6
	85.28	0.0929	25441.8
	86.34	0.0453	12413.0
	86.56	0.0250	6836.4
	87.64	0.1379	37757.0
	88.72	0.1253	34310.1
	89.49		42255.3
	00.70		
	89.78 90.58	0.1543 0.1142	31257.5

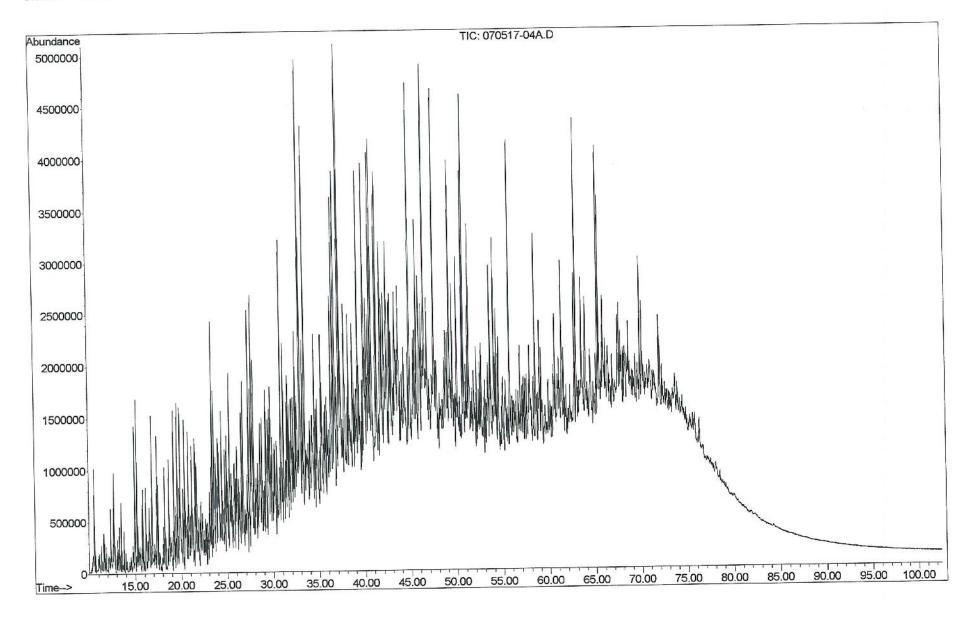
Total Area = 2.737661E+07

Total Height = 8963582

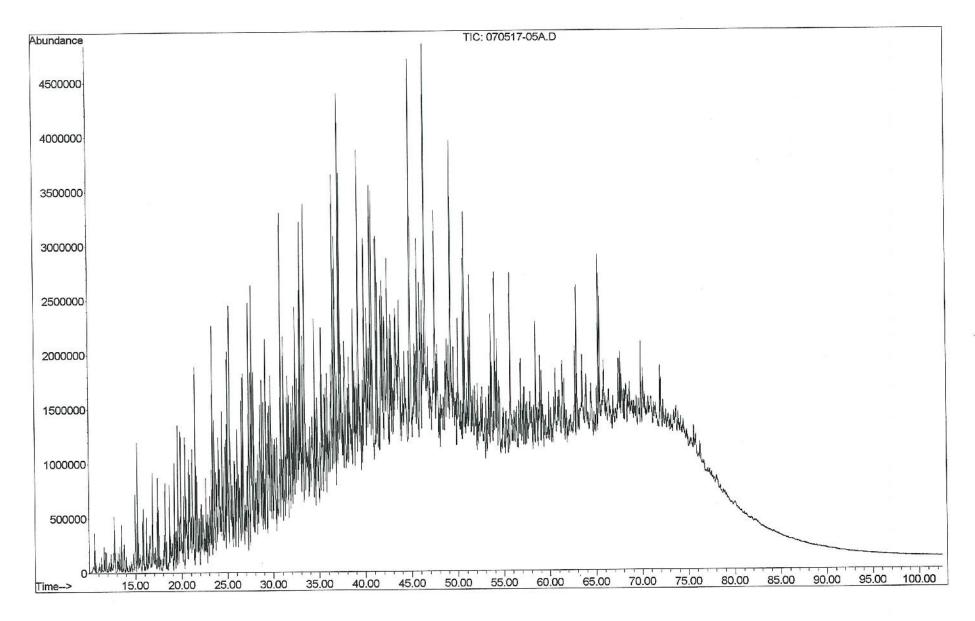
Total Amount = 0



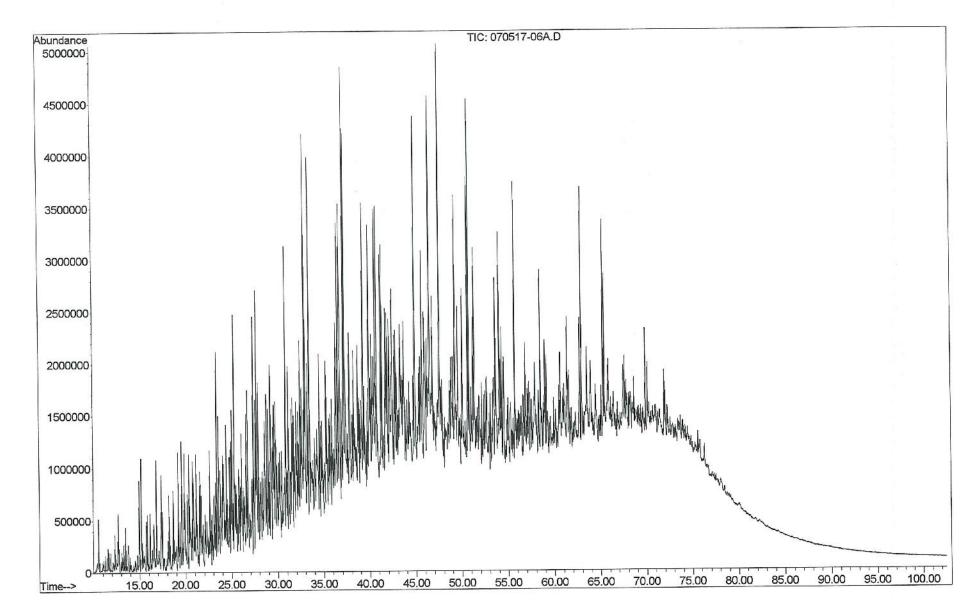
(C8-C40) Qualitative Molecular Characterization by GC/MS - full scan mode TIC, n-Alkanes, Iso-Alkanes, Isoprenoids, Alkylcyclohexanes, C4-monoaromatics, Bicyclanes, Terpanes, Steranes


Pace Analytical®

#### C8-C40 - Qualitative Hydrocarbons Characterization by GC/MS - full scan mode

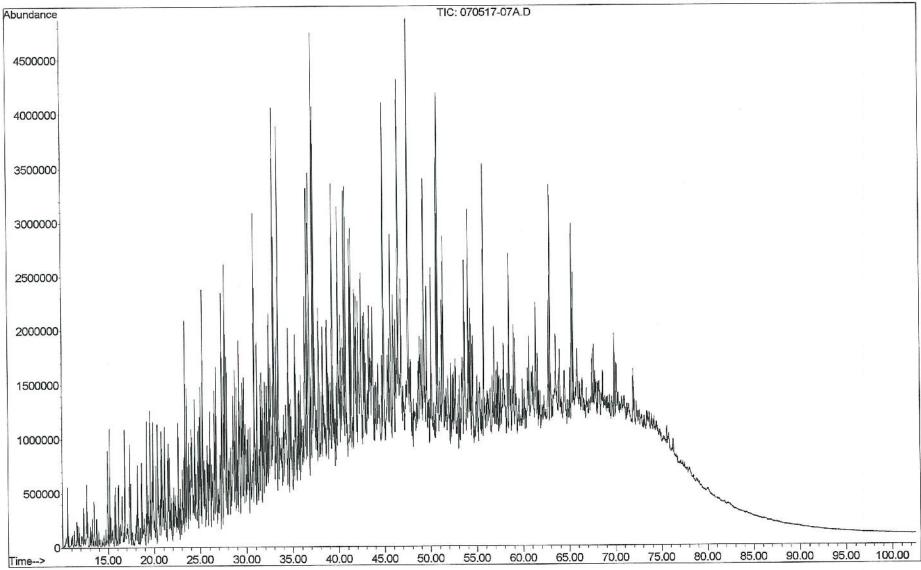

ION (m/z)	Mass Chromatograms	COMPOUND CLASS
TIC		All Compounds
85		n-Alkanes (Paraffins)
113		Iso-Alkanes (Isoparaffins) & Isoprenoids
83		Alkylcyclohexanes
134		C ₄ -benzenes (monoaromatics)
123		Bicyclanes
191		Terpanes
217		Steranes
Bar Diagram		Monoaromatic and Polyaromatic Hydrocarbon Distribution

note: Chromatograms and data follow this cover page.

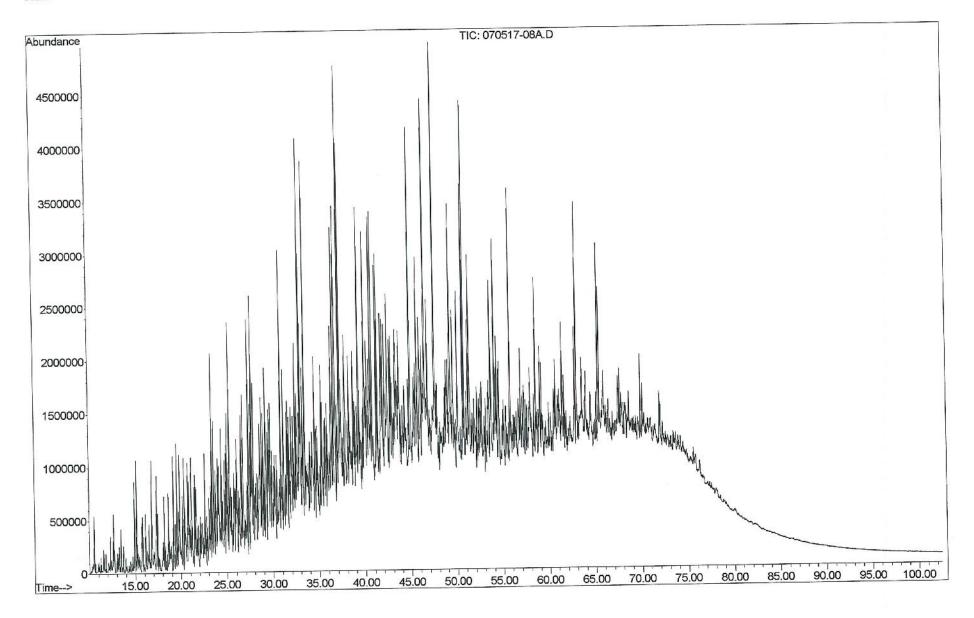

Submitted by, Pace Analytical Energy Services Sample Name: 23114-1 [O-062217-JH-01] 1/5 DILUTION PZ-9 Misc Info :



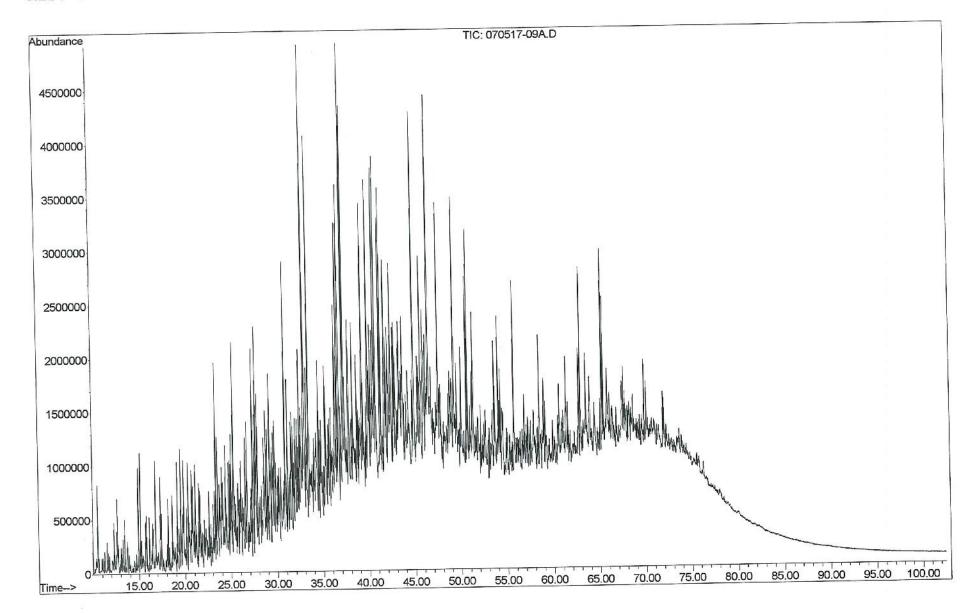
Sample Name: 23114-2 [O-062217-JH-02] 1/5 DILUTION PZ-3 Misc Info :




Sample Name: 23114-3 [O-062217-JH-03] 1/5 DILUTION Misc Info :




PZ-4


Sample Name: 23114-4 [O-062217-JH-04] 1/5 DILUTION PZ-5 Misc Info :



Sample Name: 23114-5 [O-062217-JH-05] 1/5 DILUTION PZ-6 Misc Info :

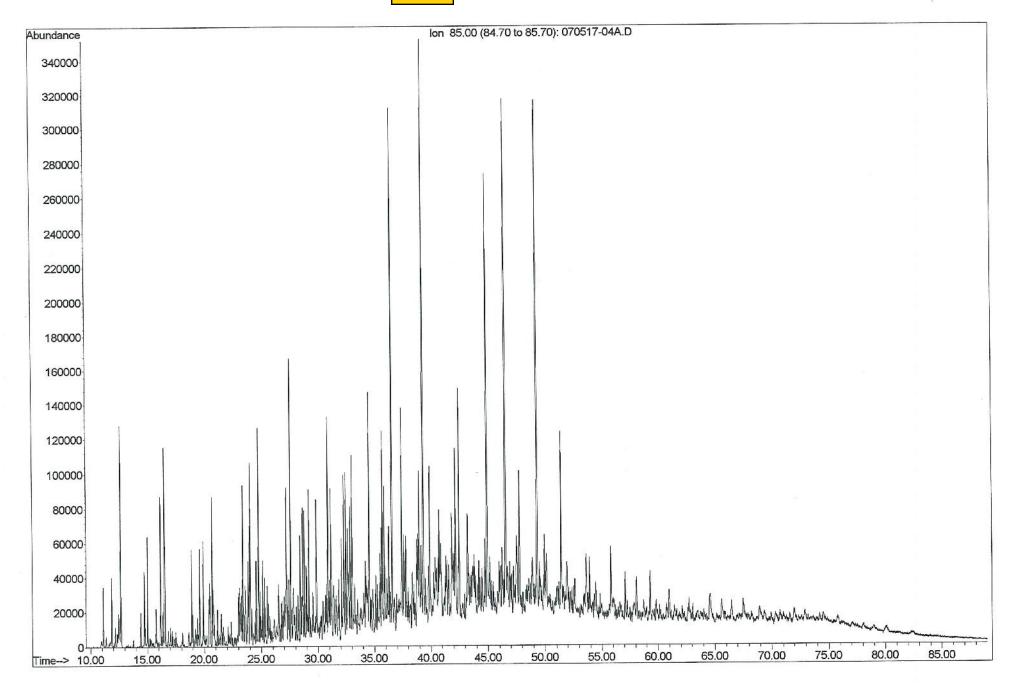


Sample Name: 23114-6 [O-062217-JH-06] 1/5 DILUTION Misc Info :



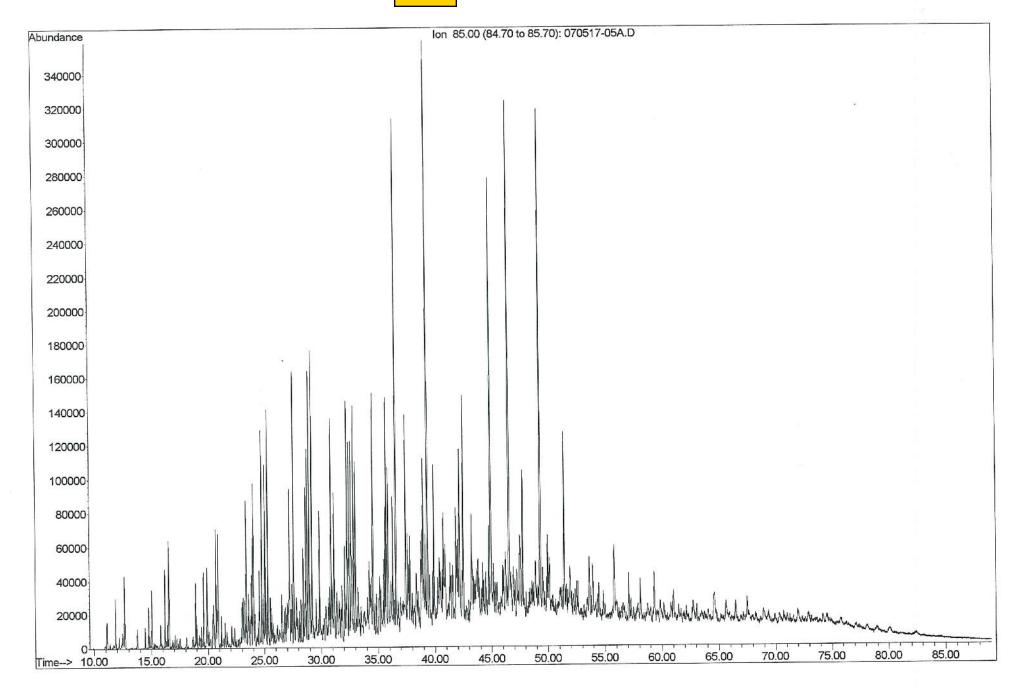
PZ-7




### Key to Chromatogram Symbol Identification

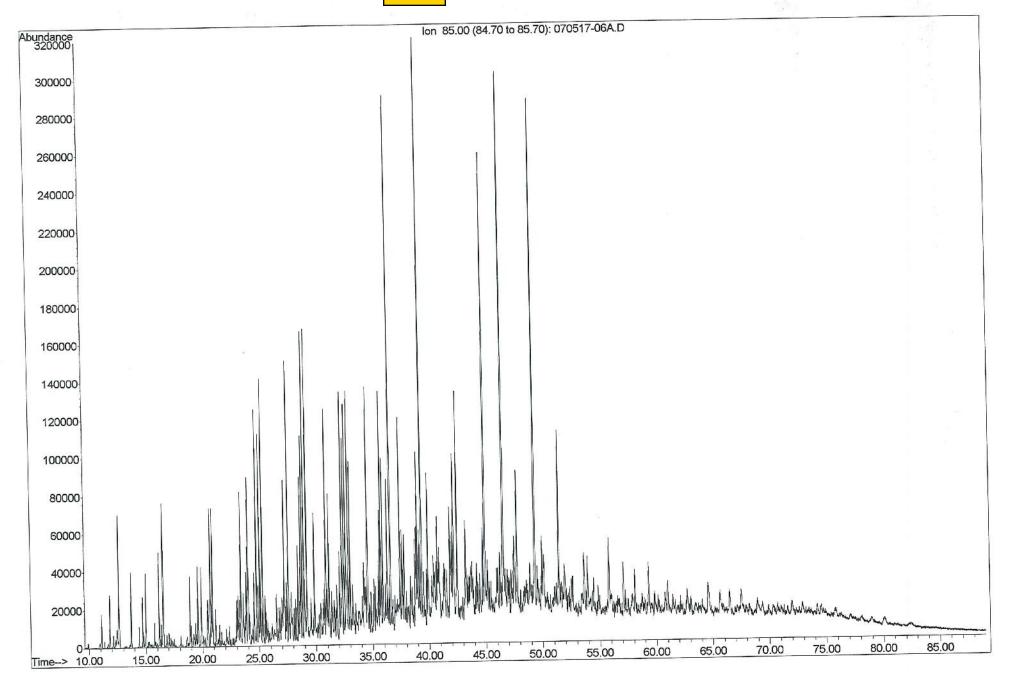
#### For m/z 85 and m/z 113 Paraffins and Isoparaffins

	Symbol	Detail
-		
	i-10	Iso-alkane with 10 carbon atoms
	i-15	Farnesane (isoprenoid with 15 carbon atoms)
	i-16	Isoprenoid with 16 carbon atoms
	Pr	Pristane (isoprenoid with 19 carbon atoms)
	Ph	Phytane (isoprenoid with 20 carbon atoms)
	nC ₈	n-C ₈ normal Alkane
	nC ₁₅	_{n-C} 15 normal Alkane
	i-8	2,5-(2,4)-Dimethylhexane
	i-8 [′]	2,3,4-Trimethylpentane
	i-8 ⁿ	2-3-Dimethylhexane
	CH-n	Alkylcyclohexane (where n indicates the number of carbon atoms in the
	side chain)	


### 23114-1 [0-062217-JH-01] 1/5 DILUTION

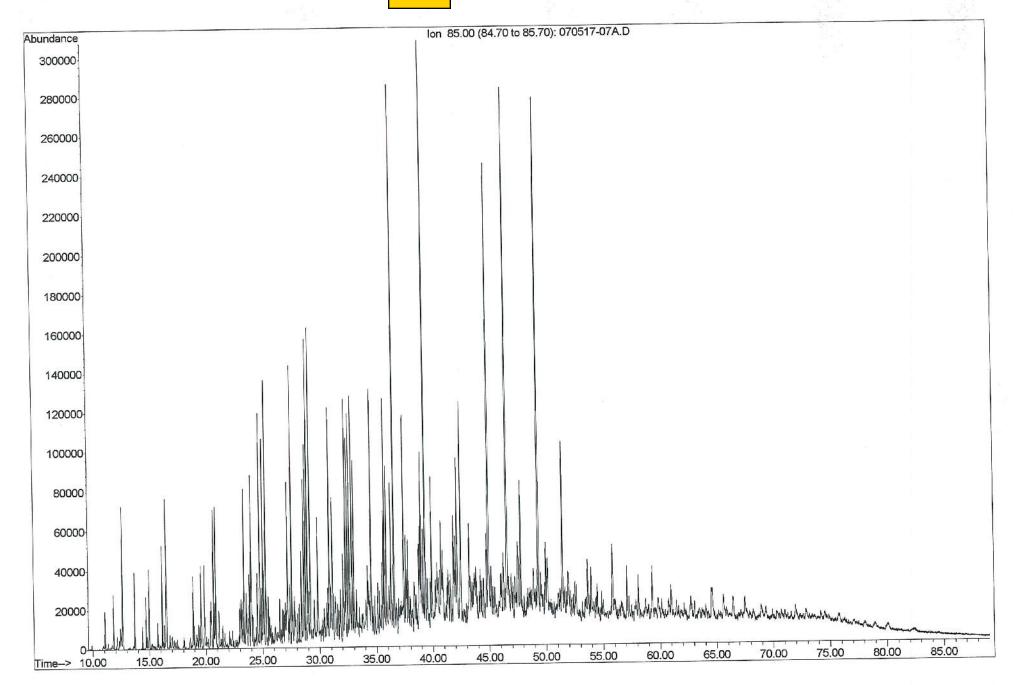





### 23114-2 [O-062217-JH-02] 1/5 DILUTION

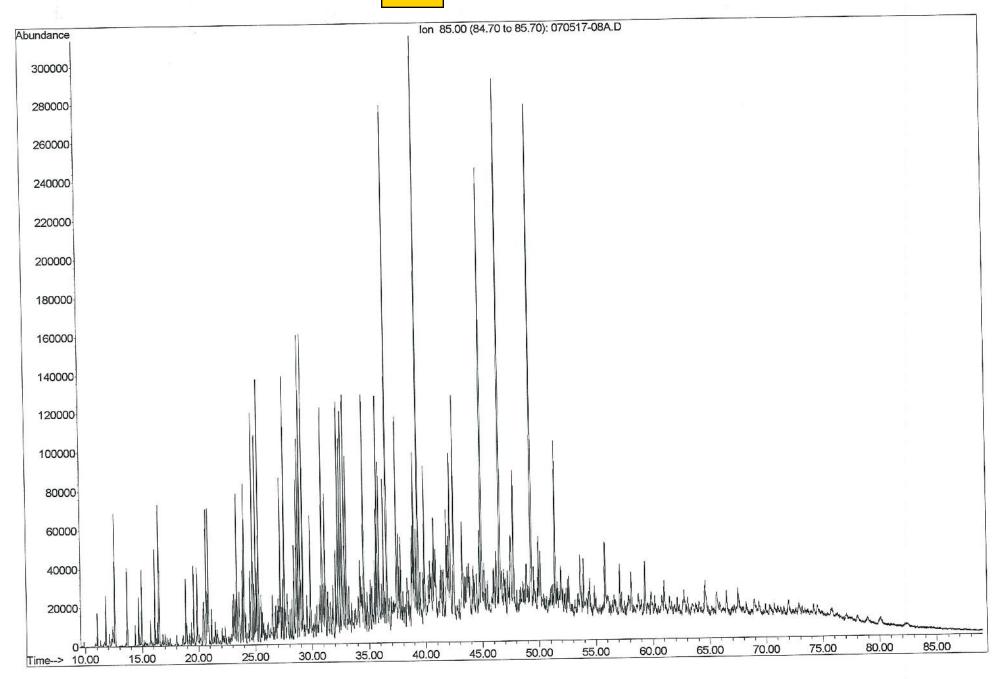





## 23114-3 [O-062217-JH-03] 1/5 DILUTION

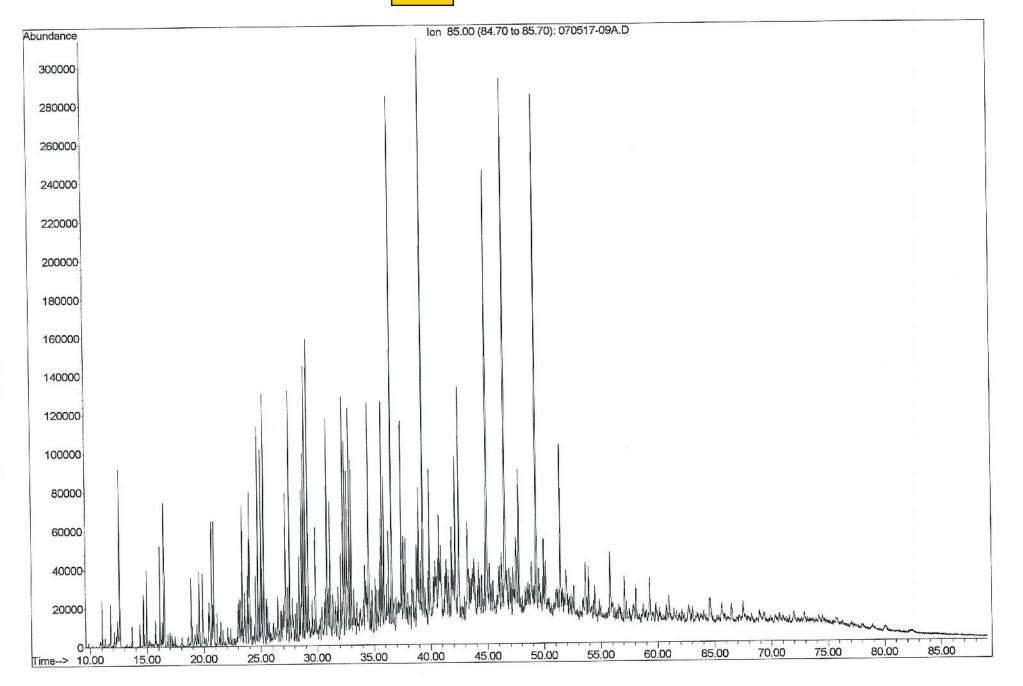





## 23114-4 [O-062217-JH-04] 1/5 DILUTION

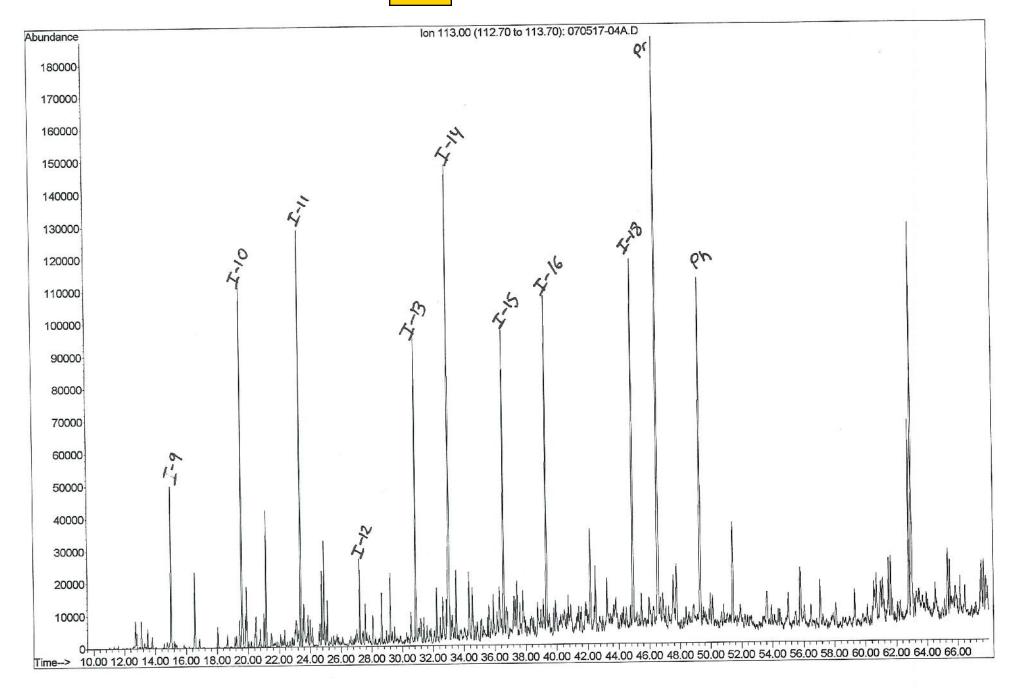





## 23114-5 [0-062217-JH-05] 1/5 DILUTION PZ-6

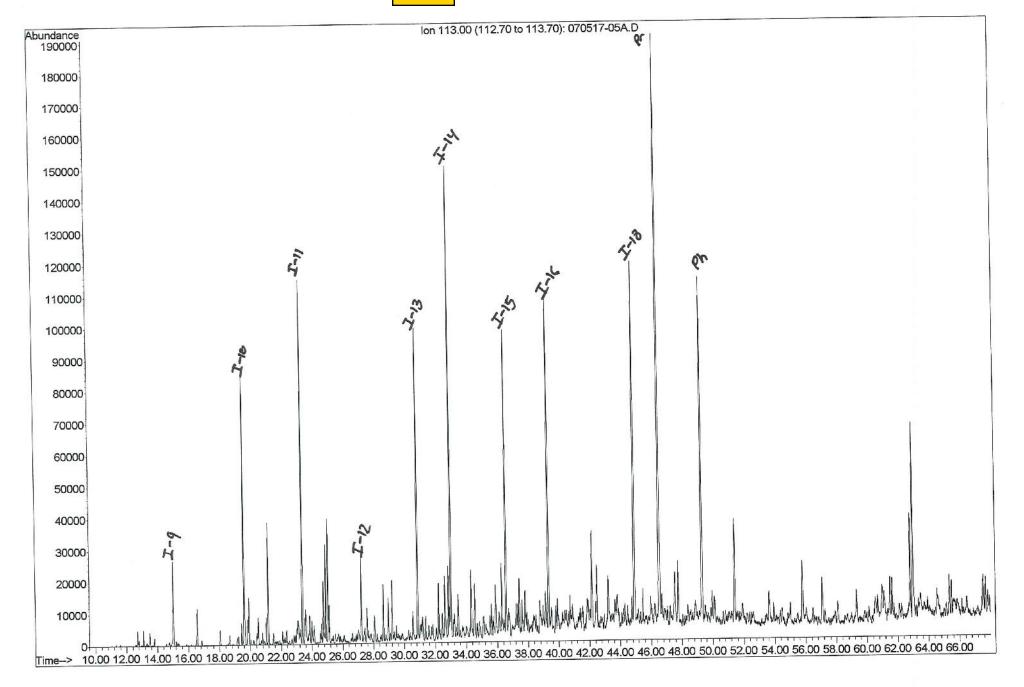





## 23114-6 [O-062217-JH-06] 1/5 DILUTION

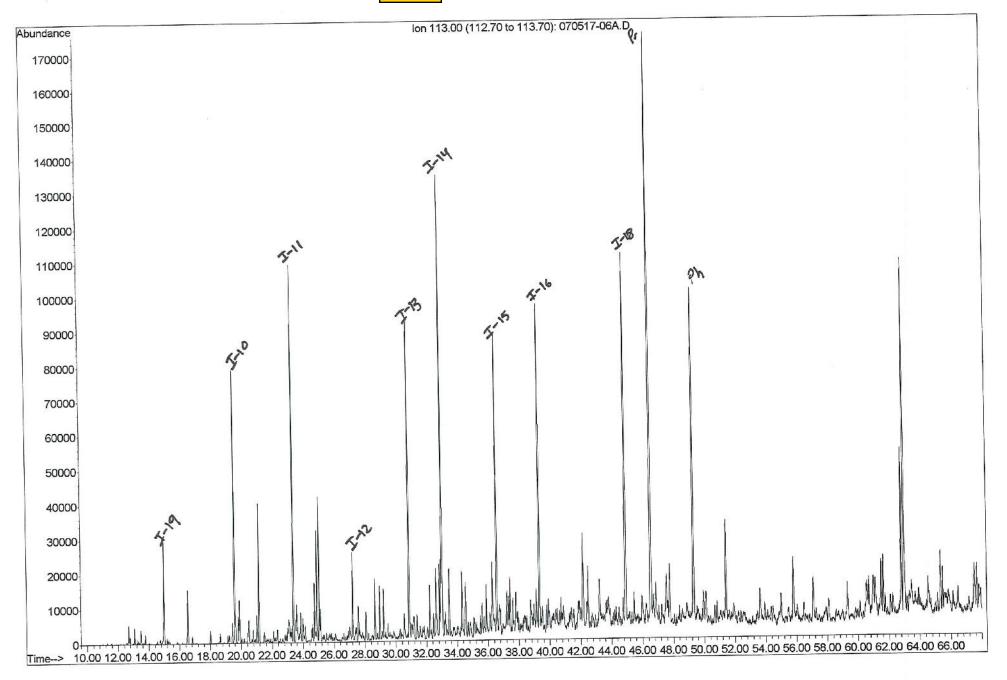





## 23114-1 [O-062217-JH-01] 1/5 DILUTION

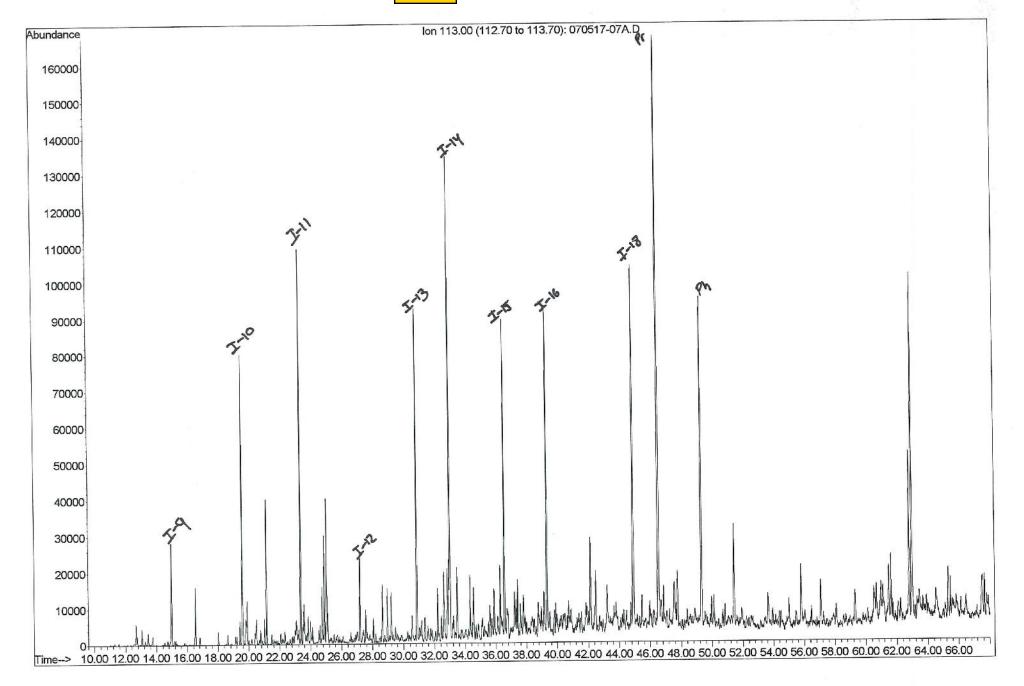





### 23114-2 [O-062217-JH-02] 1/5 DILUTION

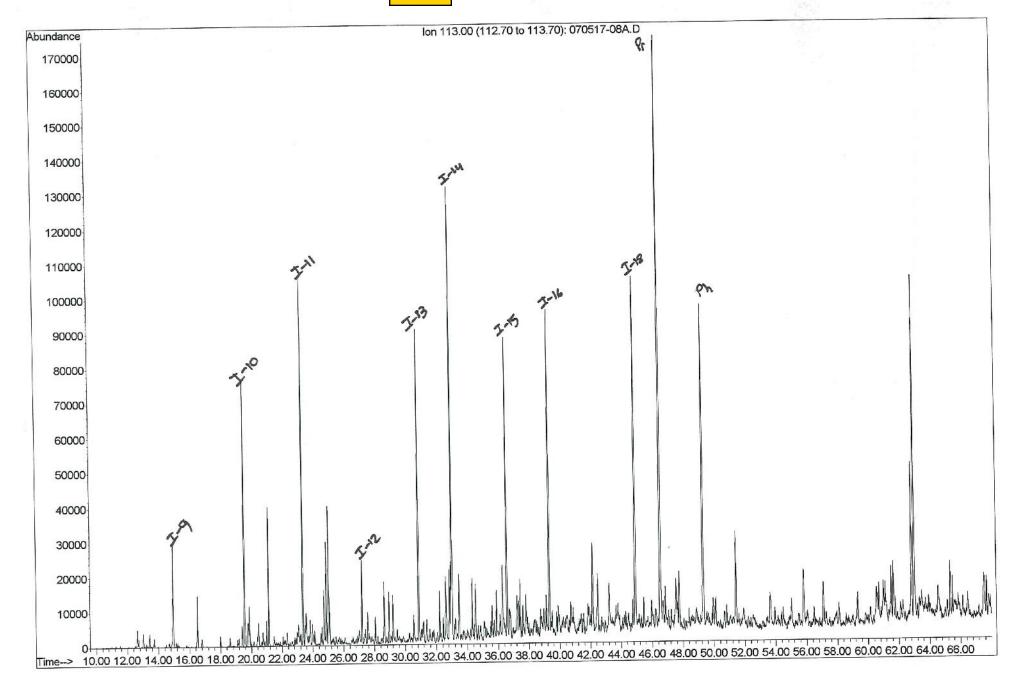





# 23114-3 [0-062217-JH-03] 1/5 DILUTION PZ-4

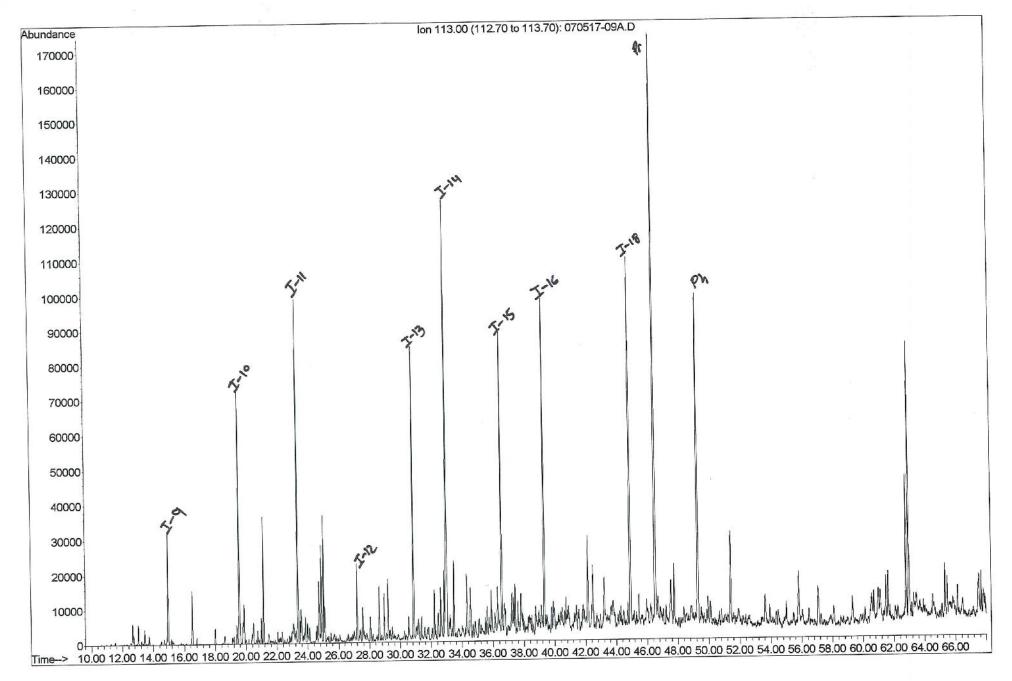





#### 23114-4 [O-062217-JH-04] 1/5 DILUTION






### 23114-5 [O-062217-JH-05] 1/5 DILUTION

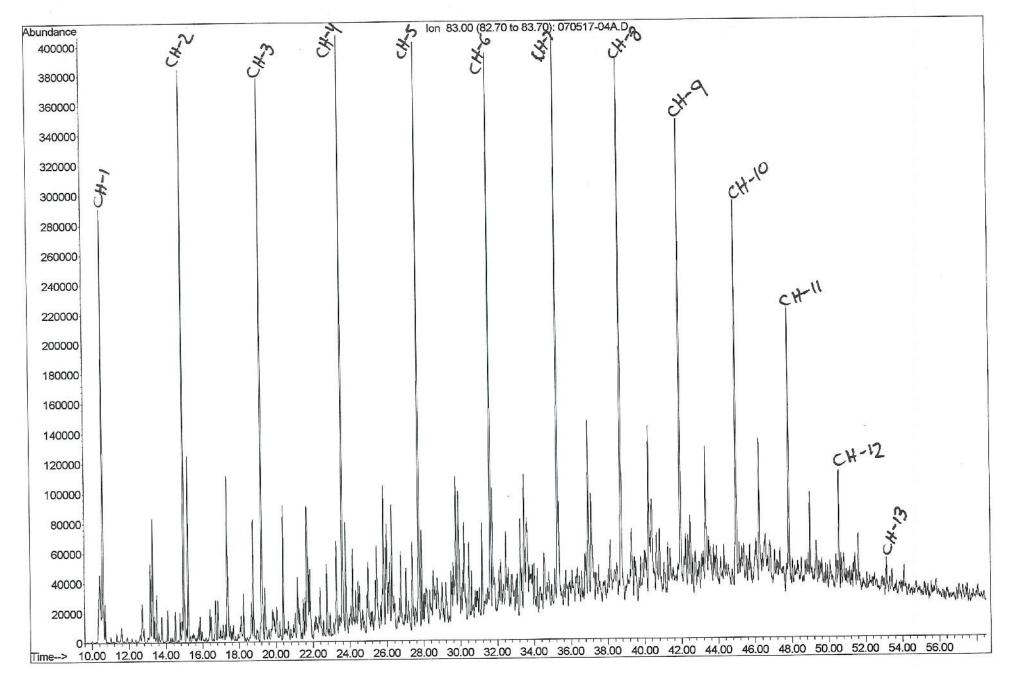




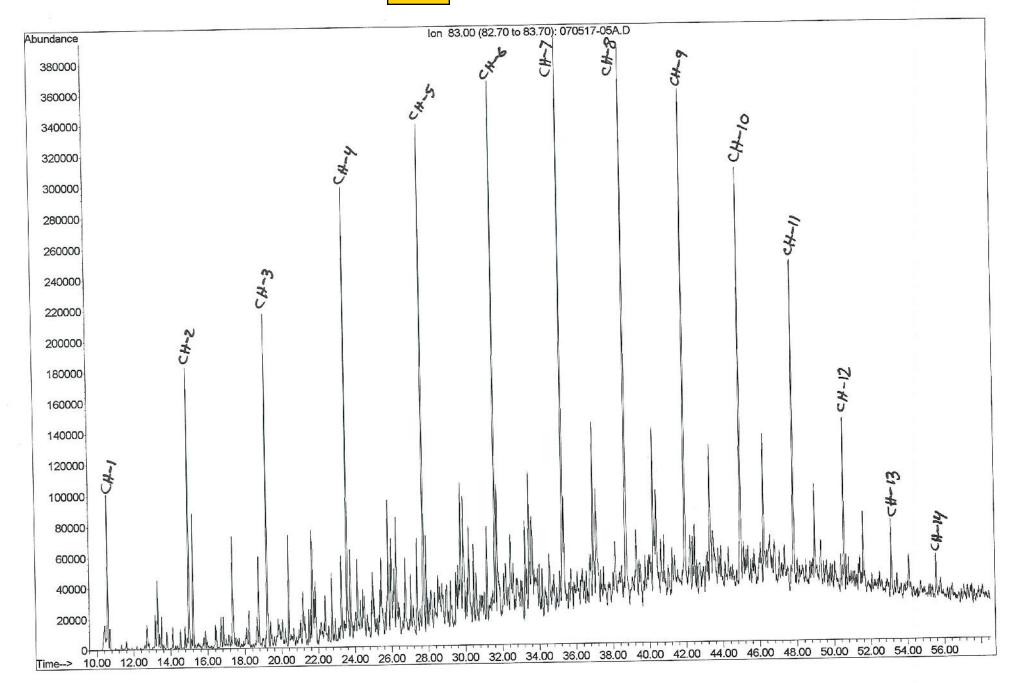
## 23114-6 [O-062217-JH-06] 1/5 DILUTION



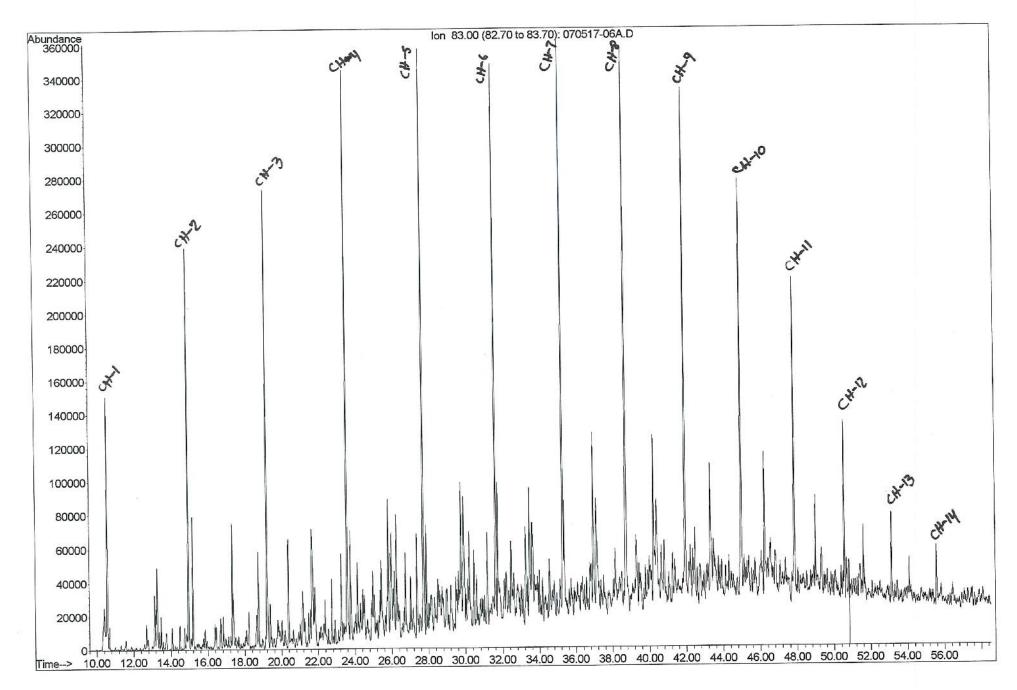




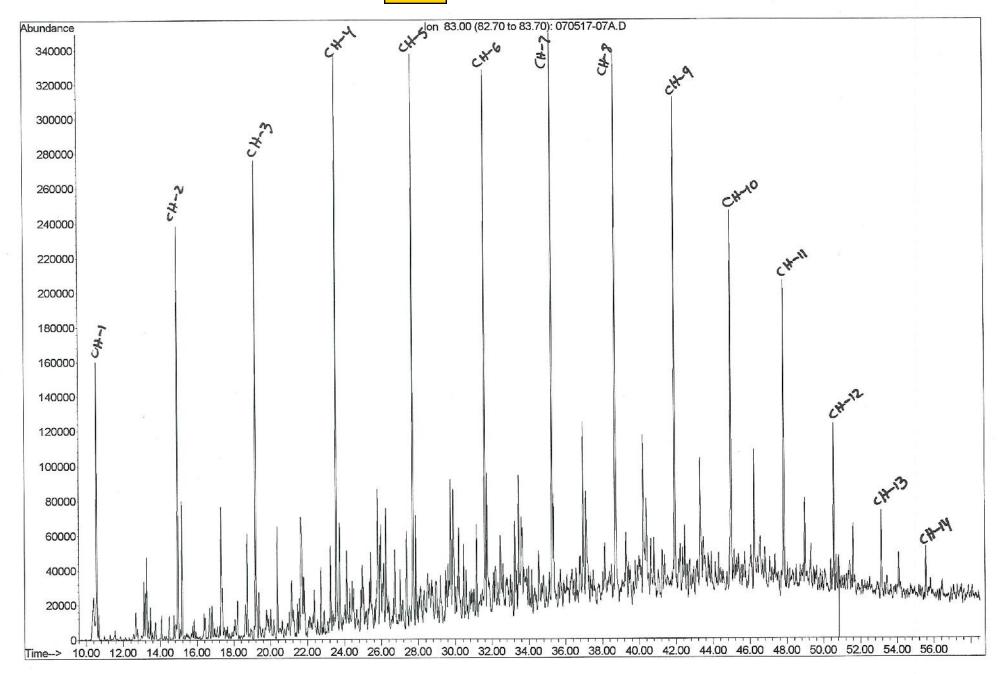

### Key for Alkylcyclohexanes at m/z 83


Symbol	Detail	
 		-
CH-1	Methylcyclohexane	
CH-2	Ethylcyclohexane	
CH-3	Propylcyclohexane	
CH-4	Butylcyclohexane	
CH-5	Pentylcyclohexane	
CH-6	Hexylcyclohexane	
CH-7	Heptylcyclohexane	
CH-8	Octylcyclohexane	
CH-9	Nonylcyclohexane	
CH-10	Decylcyclohexane	
CH-11	Undecylcyclohexane	
CH-12	Dodecylcyclohexane	
CH-13	Tridecylcyclohexane	
CH-14	Tetradecylcyclohexane	
050558945603924050		

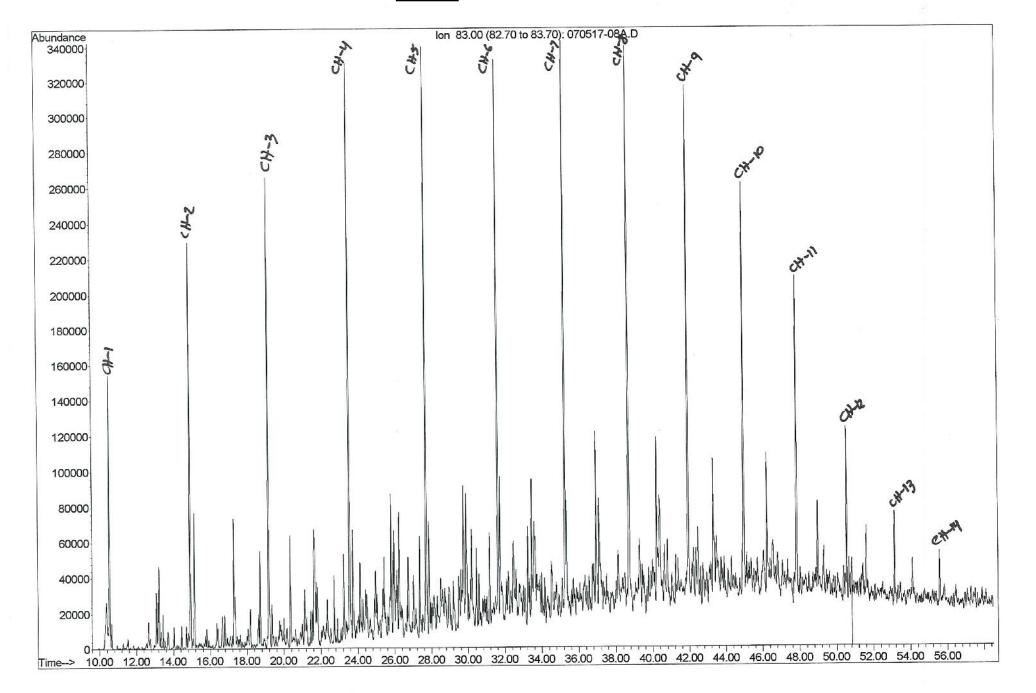
#### 23114-1 [O-062217-JH-01] 1/5 DILUTION





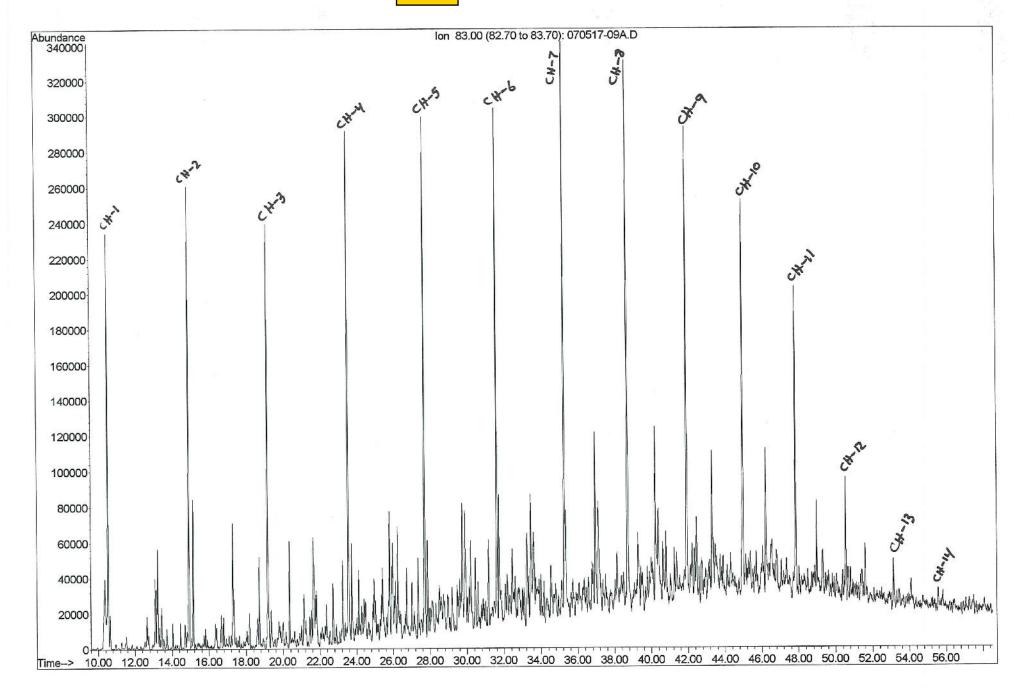


## 23114-2 [0-062217-JH-02] 1/5 DILUTION




#### 23114-3 [0-062217-JH-03] 1/5 DILUTION



#### 23114-4 [O-062217-JH-04] 1/5 DILUTION PZ-5

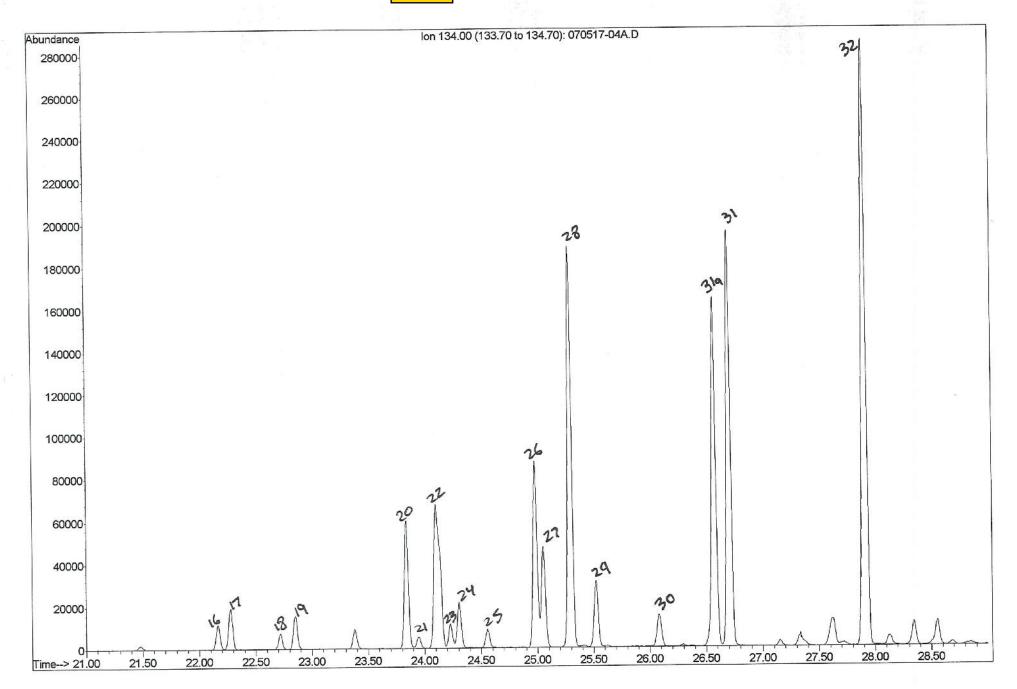



### 23114-5 [0-062217-JH-05] 1/5 DILUTION



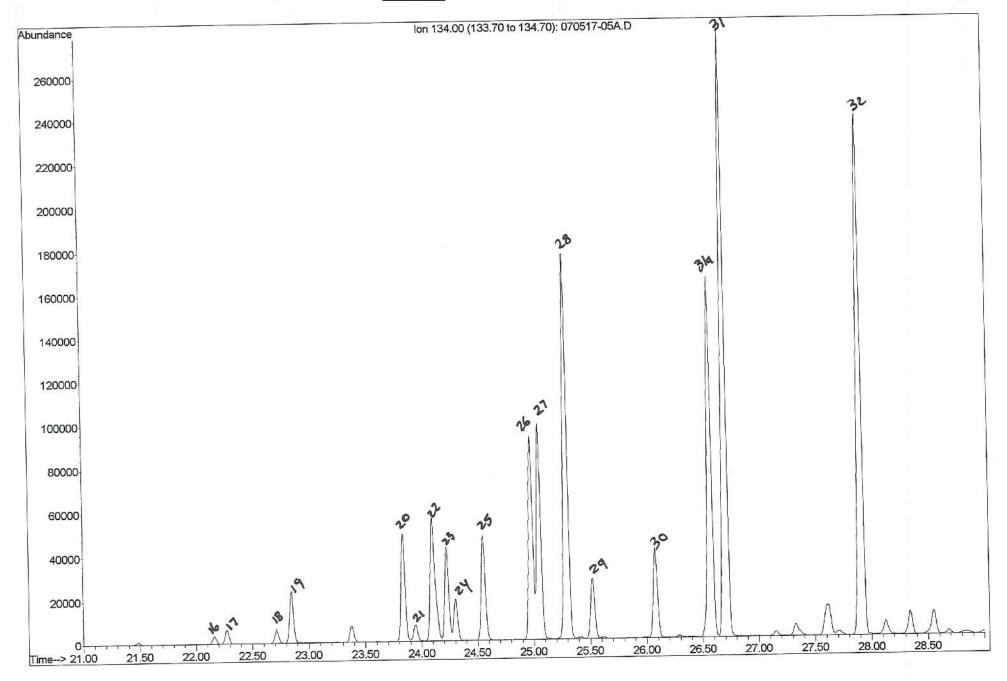
ON PZ-6

#### 23114-6 [0-062217-JH-06] 1/5 DILUTION PZ-7

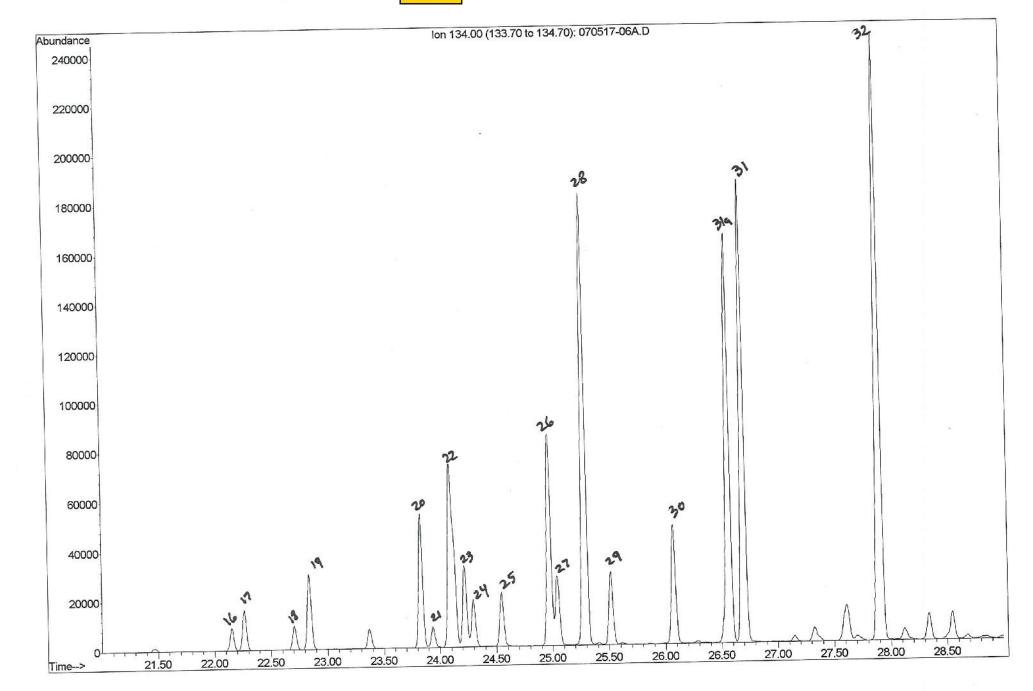




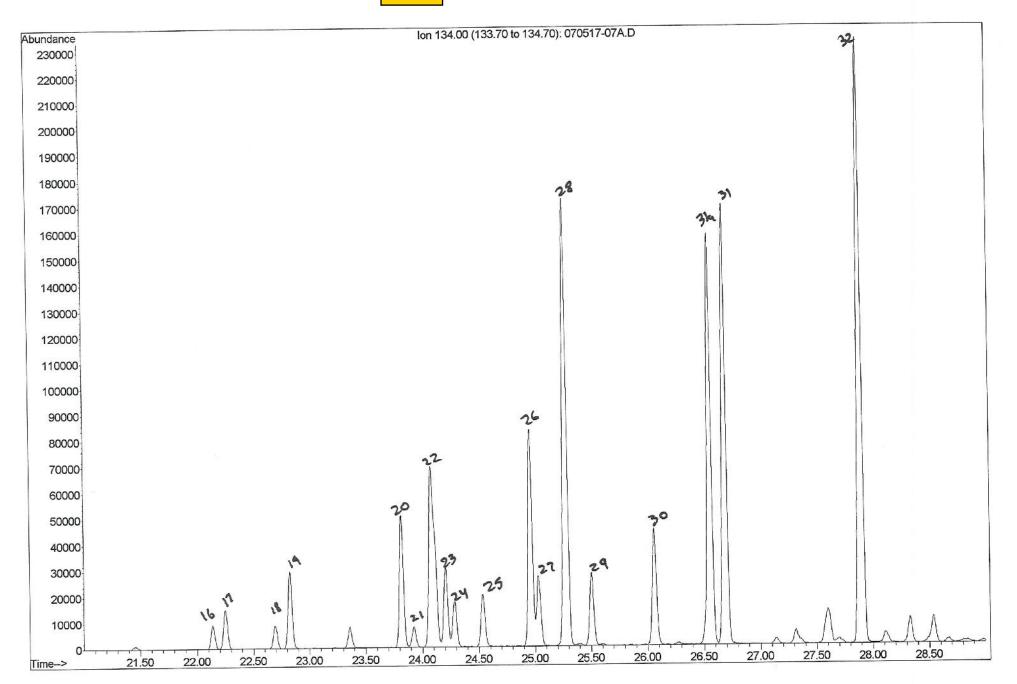

## Key for C₄-Alkylbenzenes (m/z 134)


Symbol	Detail
16	Sec-Butylbenzene
17	1-Methyl-3-Isopropylbenzene
18	1-Methyl-4-Isopropylbenzene
19	1-Methyl-2-Isopropylbenzene
20	1,3-Diethylbenzene
21	1-Methyl-3-Propylbenzene
22	Butylbenzene
23	1,3-Diethyl-5-Ethylbenzene
24	1,2-Diethylbenzene
25	1-Methyl-2-Propylbenzene
26	1,4-Dimethyl-2-Ethylbenzene
27	1,3-Dimethyl-4-Ethylbenzene
28	1,2-Dimethyl-4-Ethylbenzene
29	1,3-Dimethyl-2-Ethylbenzene
30	1,2-Dimethyl-3-Ethylbenzene
31a	1,2,4,5-Tetramethylbenzene
31	1,2,3,5-Tetramethylbenzene
32	1,2,3,4-Tetramethylbenzene

## 23114-1 [O-062217-JH-01] 1/5 DILUTION

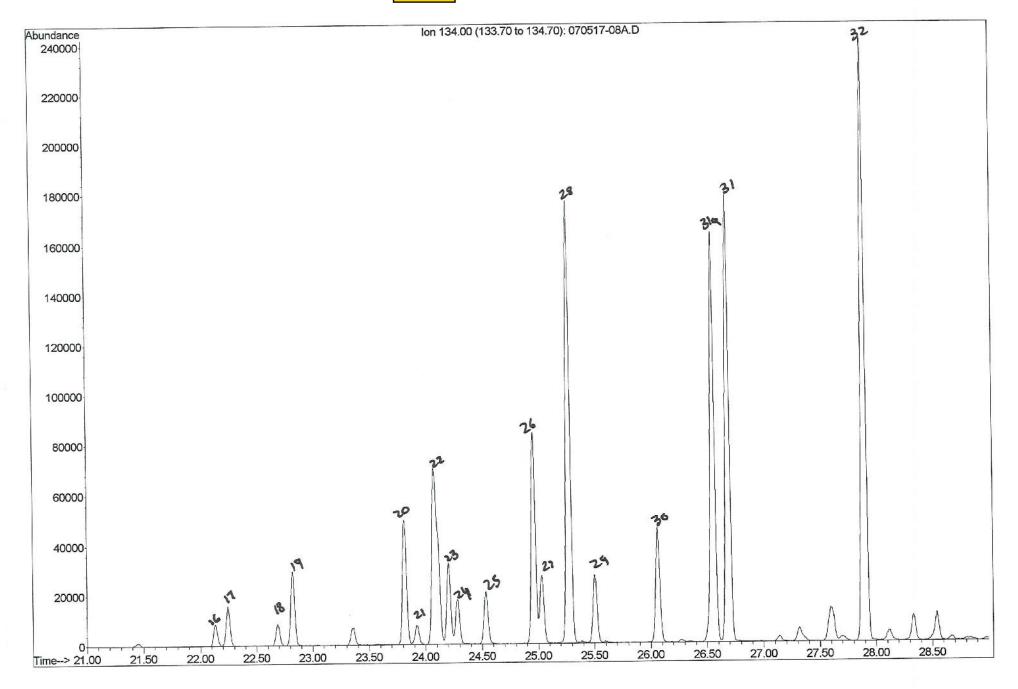



## 23114-2 [0-062217-JH-02] 1/5 DILUTION PZ-3



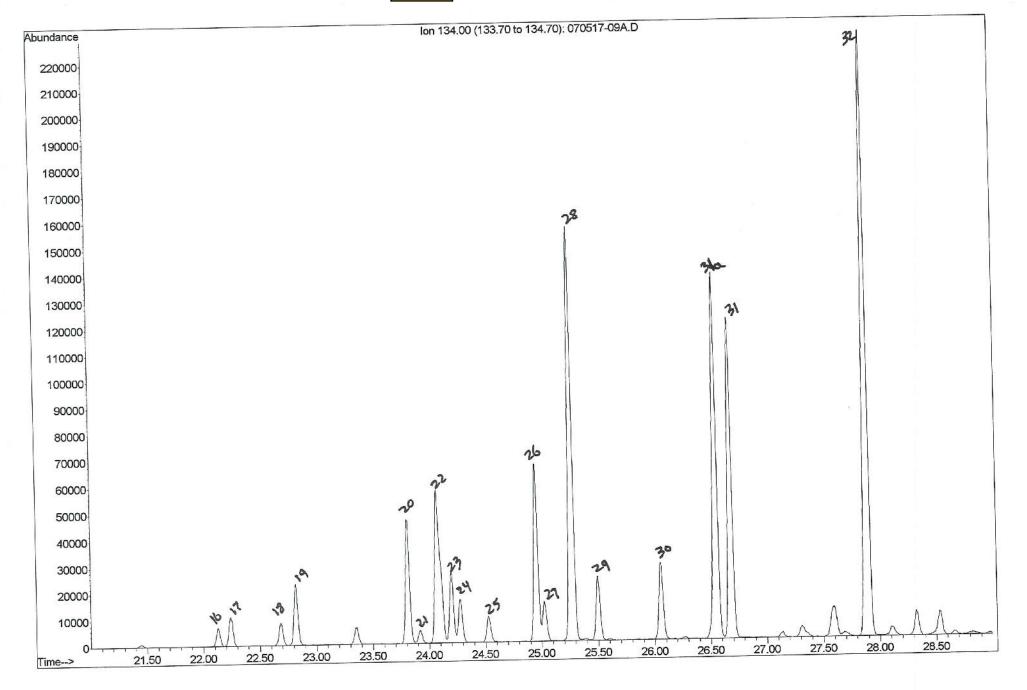



# 23114-3 [0-062217-JH-03] 1/5 DILUTION PZ-4




## 23114-4 [0-062217-JH-04] 1/5 DILUTION PZ-5



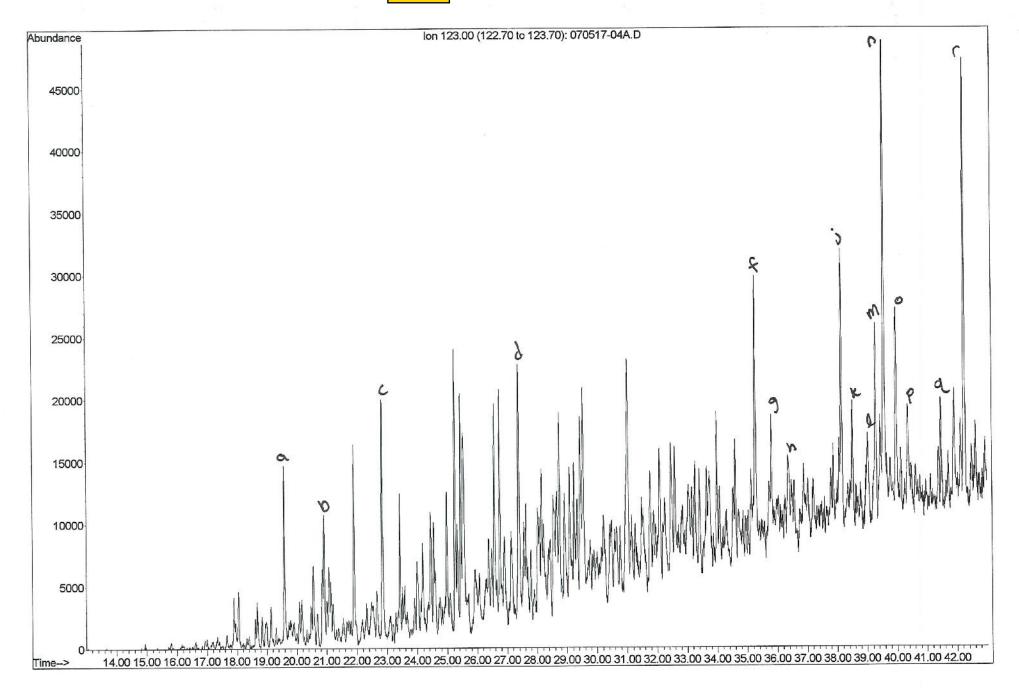

## 23114-5 [0-062217-JH-05] 1/5 DILUTION PZ-6



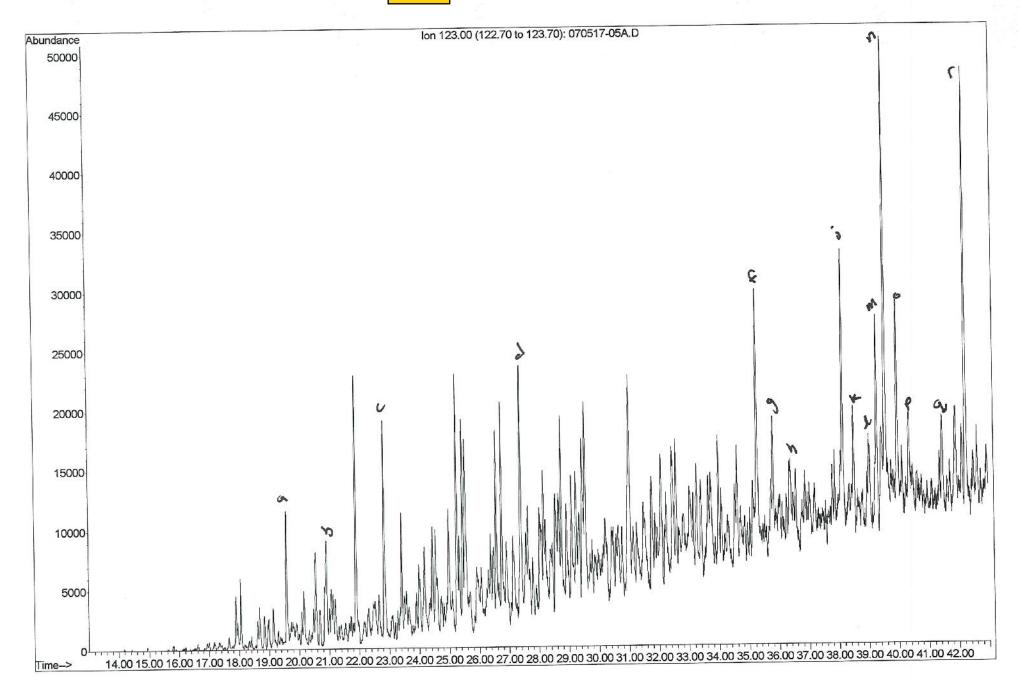


## 23114-6 [O-062217-JH-06] 1/5 DILUTION PZ-7

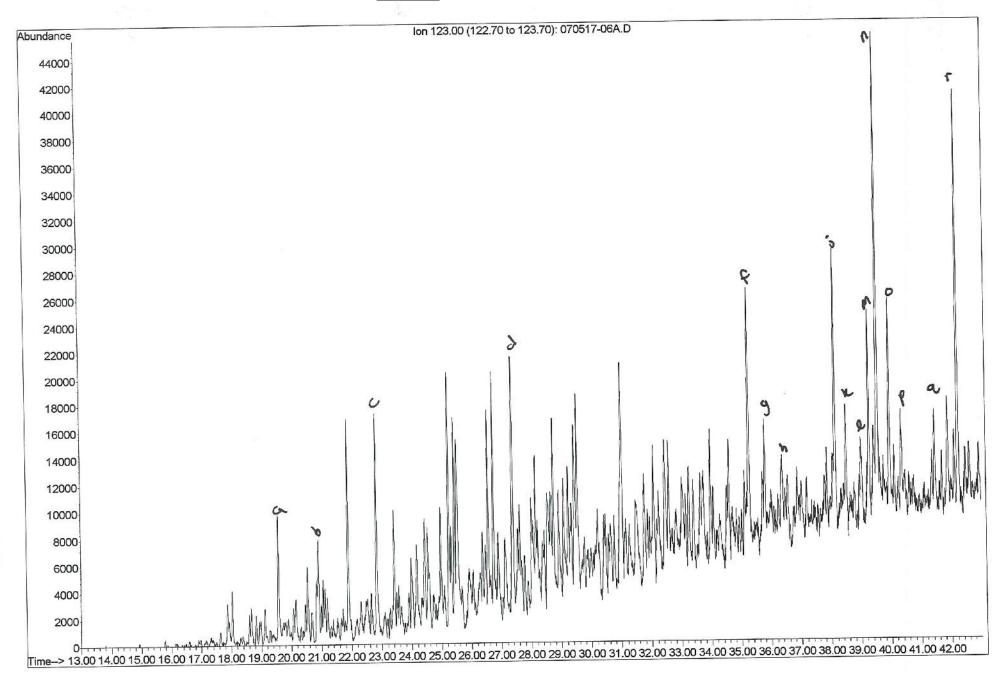




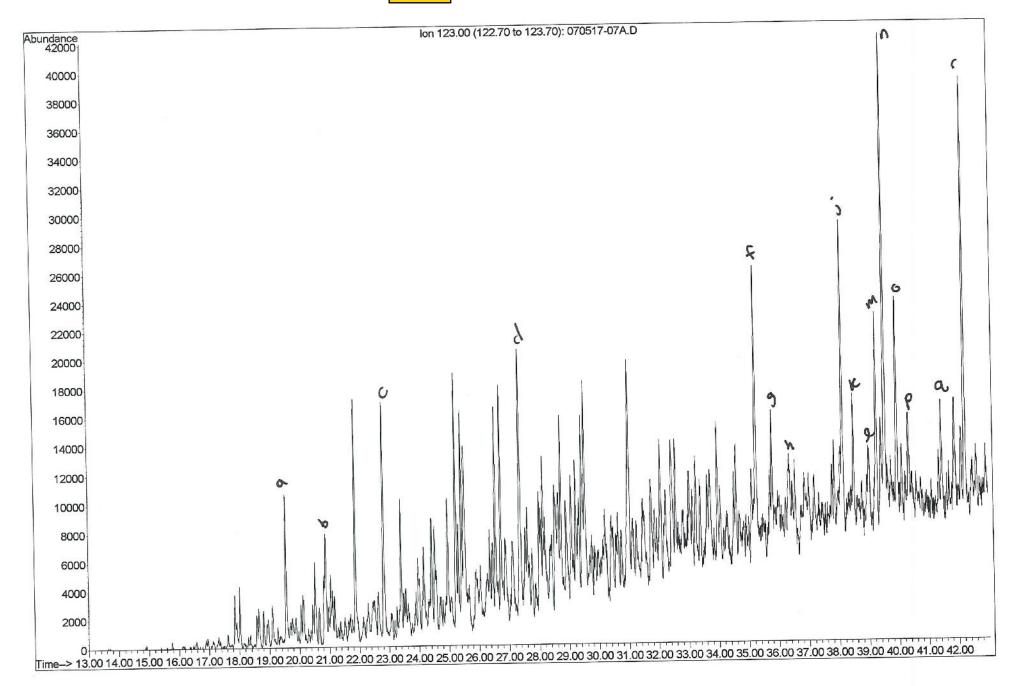




# Key for Identification of the Bicyclanes (m/z 123)

Peak No.	Identity	Formula	M.W.
а	2,2,3-Trimethylbicycloheptane	C10H18	138
b	C ₁₀ bicycloalkane	C ₁₀ H ₁₈	138
с	3,3,7-Trimethylbicycloheptane	C ₁₀ H ₁₈	138
d	C ₁₁ Decalin	$C_{11}H_{20}$	152
f	Nordrimane	$C_{14}H_{26}$	194
g	Nordrimane	$C_{14}H_{26}$	194
h	Rearranged drimane	$C_{15}H_{28}$	208
j	Rearranged drimane	C ₁₅ H ₂₈	208
k	Isomer of Eudesmane	$C_{15}H_{28}$	208
I	4β (H) Eudesmane	$C_{15}H_{28}$	208
m	C ₁₅ Bicyclic Sesquiterpane	$C_{15}H_{28}$	208
n	8β (H) Drimane	$C_{15}H_{28}$	208
0	C ₁₅ Bicyclic Sesquiterpane	C15H28	208
р	C ₁₆ Bicyclic Sesquiterpane	C ₁₆ H ₃₀	222
q	C ₁₆ Bicyclic Sesquiterpane	C ₁₆ H ₃₀	222
r	8β (H) Homodrimane	C ₁₆ H ₃₀	222


# 23114-1 [0-062217-JH-01] 1/5 DILUTION PZ-9

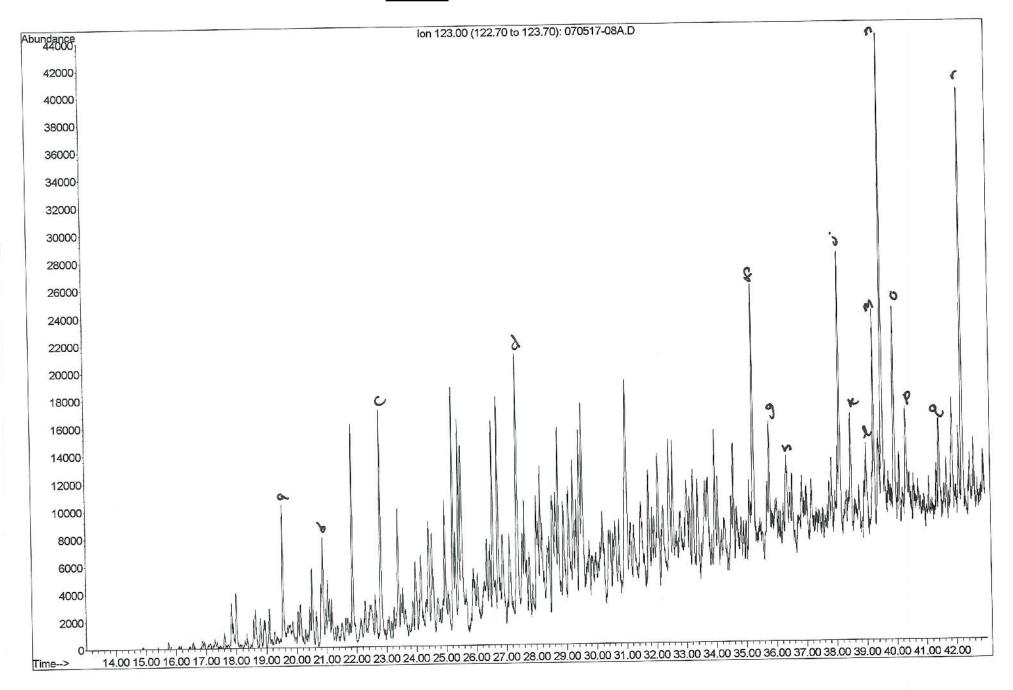



# 23114-2 [0-062217-JH-02] 1/5 DILUTION PZ-3



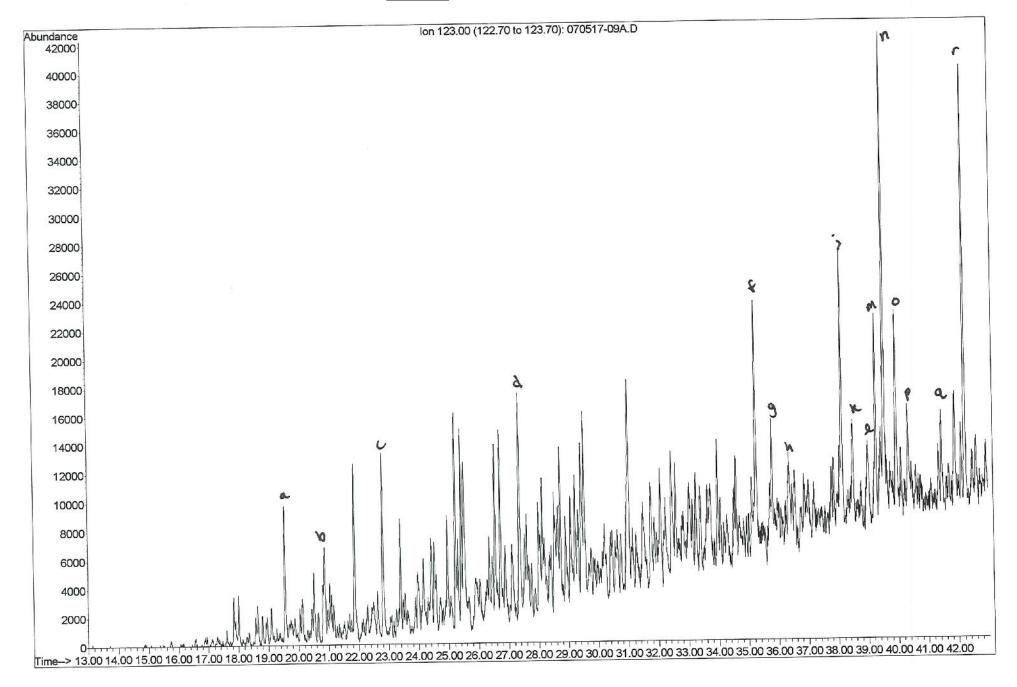
# 23114-3 [0-062217-JH-03] 1/5 DILUTION PZ-4




## 23114-4 [O-062217-JH-04] 1/5 DILUTION F



on <mark>PZ-5</mark>


## 23114-5 [O-062217-JH-05] 1/5 DILUTION





### 23114-6 [0-062217-JH-06] 1/5 DILUTION P

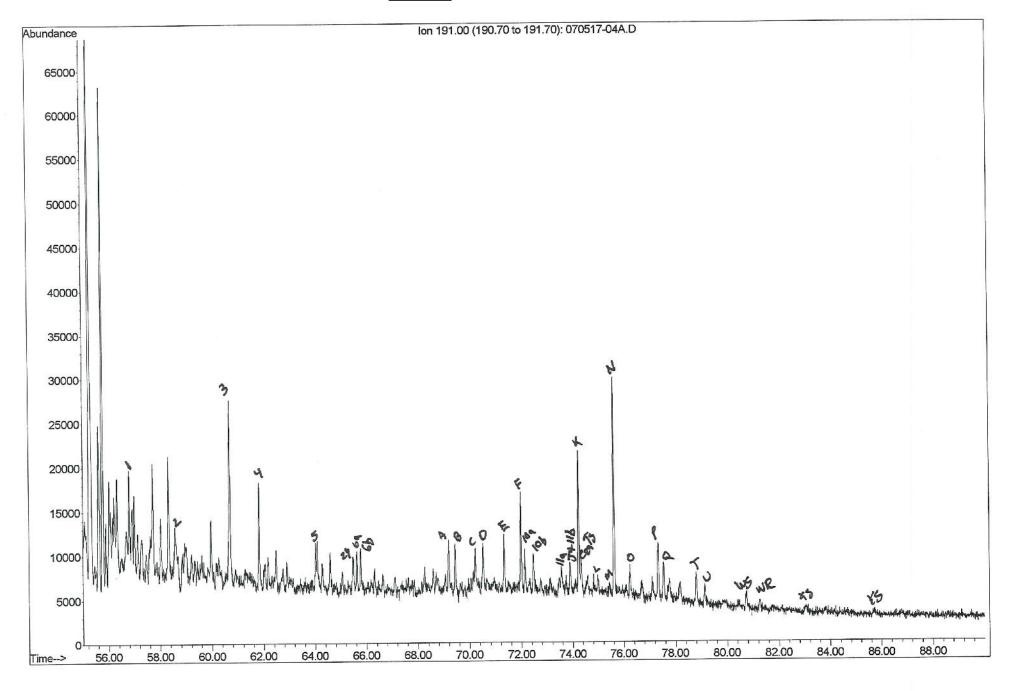




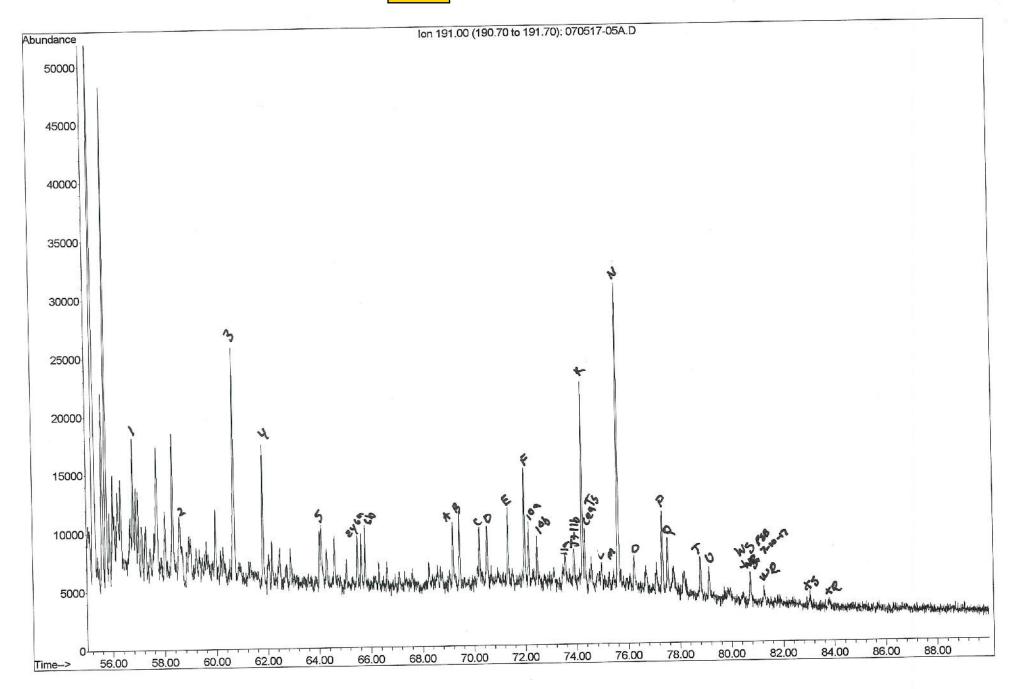


### Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms)

Code	Identity	Carbon #
 0	C ₂₀ -Tricyclic Terpane	20
1	C ₂₁ -Tricyclic Terpane	21
2	C ₂₂ -Tricyclic Terpane	22
3	C ₂₃ -Tricyclic Terpane	23
4	C ₂₄ -Tricyclic Terpane	24
5	C ₂₅ -Tricyclic Terpane	25
Z4	C24-Tetracyclic Terpane	24
6a	C ₂₆ -Tricyclic Terpane	26
6b	C ₂₆ -Tricyclic Terpane	26
7	C ₂₇ -Tricyclic Terpane	27
А	C ₂₈ -Tricyclic Terpane #1	28
В	C ₂₈ -Tricyclic Terpane #2	28
С	C ₂₉ -Tricyclic Terpane #1	29
D	C ₂₉ -Tricyclic Terpane #2	29
E	18 α-22,29,30-Trisnorneohopane (Ts)	27
F	17 α-22,29,30-Trisnorhopane (Tm)	27
G	17 β-22,29,30-Trisnorhopane	27
Н	17 α-23,28-Bisnorlupane	28
10a	C ₃₀ -Tricyclic Terpane #1	30
10b	C ₃₀ -Tricyclic Terpane #2	30
1	17 α-28,30 Bisnorhopane	28
11a	C ₃₁ -Tricyclic Terpane #1	31
J	17α-25-Norhopane	29
11b	C ₃₁ -Tricyclic Terpane #2	31
К	17 α, <b>21</b> β-30-Norhopane	29
C ₂₉ Ts	18α-30-Norneohopane	29
C ₃₀ *	17α-Diahopane	30
L	17β-21α-30-Normoretane	29
Ma	18a-Oleanane	30
Mb	18β-Oleanane	30
N	17α-21β-Hopane	30
0	17β-21α-Moretane	30
13a	C ₃₃ -Tricyclic Terpane #1	33
13b	C ₃₃ -Tricyclic Terpane #2	33

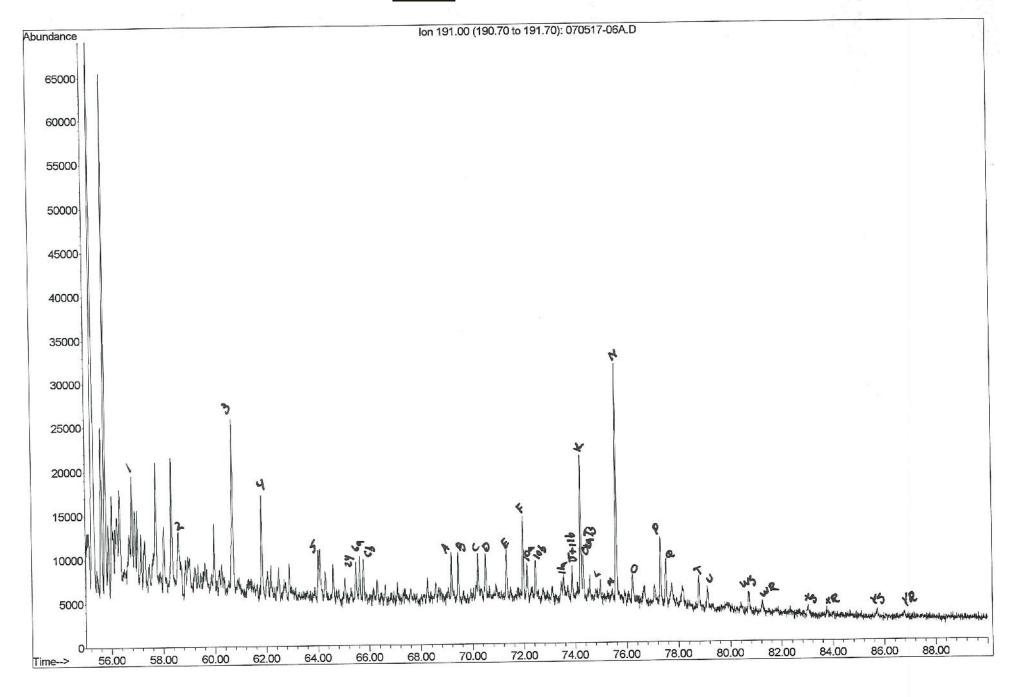



#### Key for Tricyclic, Tetracyclic, and Pentacyclic Terpanes Identification (m/z 191 Mass chromatograms) – Cont.

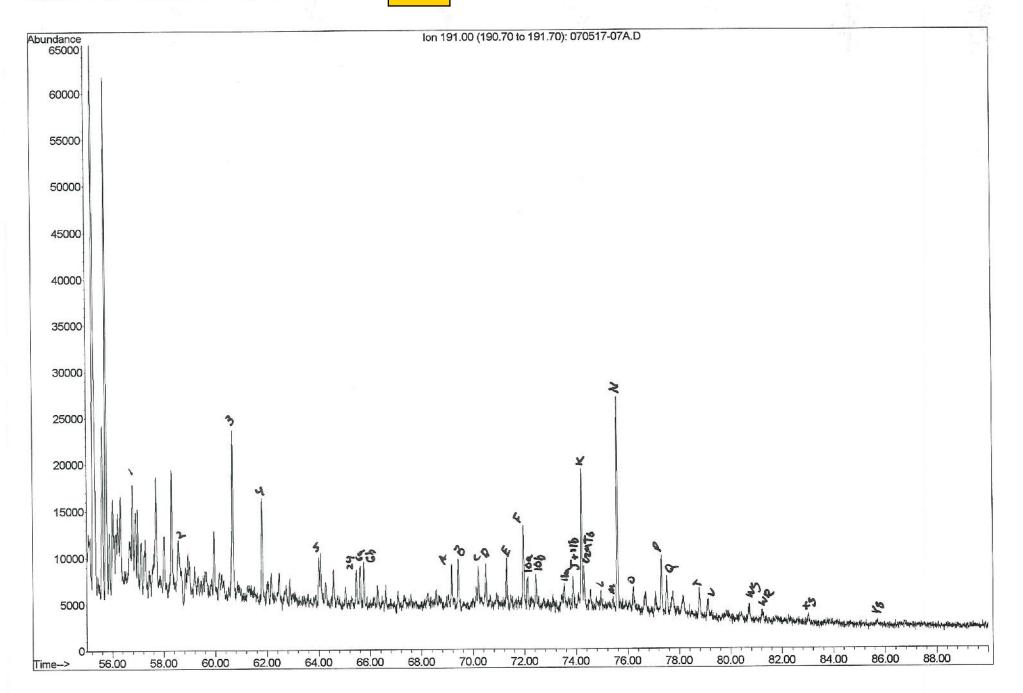

Code	Identity	Carbon #	
 Р	22S-17α,21β-30-Homohopane	31	
Q	22R-17α,21β-30-Homohopane	31	
R	Gammacerane	30	
14a	C ₃₄ -Tricyclic Terpane #1	34	
S	17β,21α-Homomoretane	31	
14b	C ₃₄ -Tricyclic Terpane #2	34	
т	22S-17α,21β-30-Bishomohopane	32	
U	22R-17α,21β-30-Bishomohopane	32	
15a	C ₃₅ -Tricyclic Terpane #1	35	
15b	C ₃₄ -Tricyclic Terpane #2	35	
V	$17\beta$ , $21\alpha$ -C ₃₂ -Bishomomoretane	32	
WS	22S-17α,21β-30-Bishomohopane	33	
WR	22R-17α,21β-30,31,32-Trishomohopane	33	
16a	C ₃₆ -Tricyclic Terpane #1	36	
16b	C ₃₆ -Tricyclic Terpane #2	36	
XS	22S-17α,21β-30,31,32,33-Tetrahomohopane	34	
XR	22R-17α,21β-30,31,32,33-Tetrahomohopane	34	
YS	22S-17α,21β-30,31,32,33,34-Pentahomohopane	35	
YR	22R-17α,21β-30,31,32,33,34-Pentahomohopane	35	

## 23114-1 [O-062217-JH-01] 1/5 DILUTION

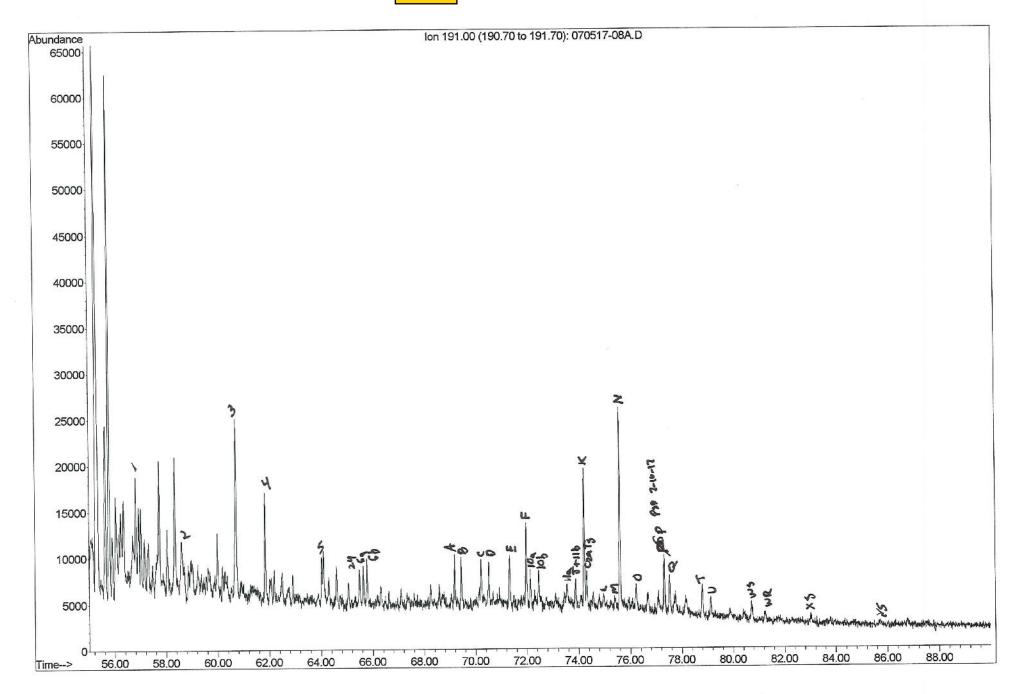




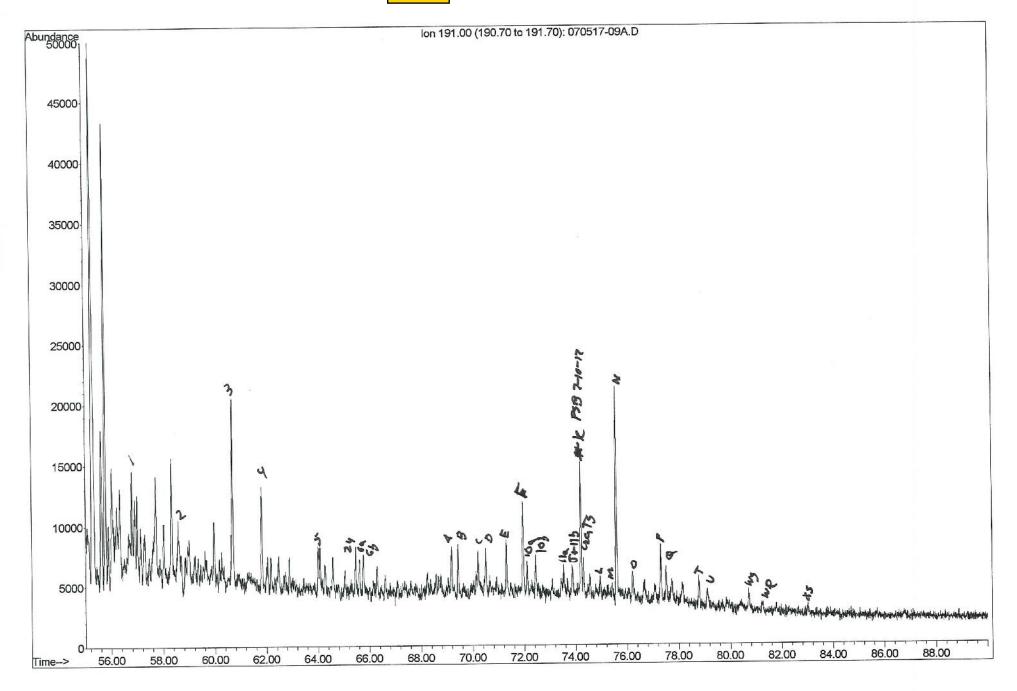

# 23114-2 [0-062217-JH-02] 1/5 DILUTION PZ-3




## 23114-3 [O-062217-JH-03] 1/5 DILUTION





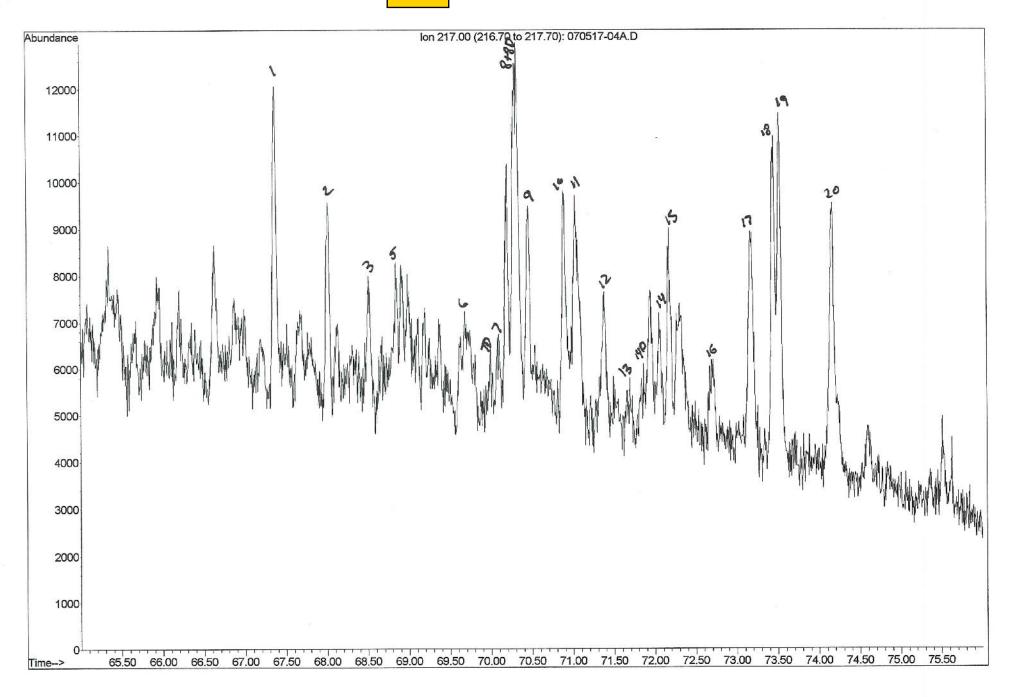


### 23114-4 [0-062217-JH-04] 1/5 DILUTION PZ-5



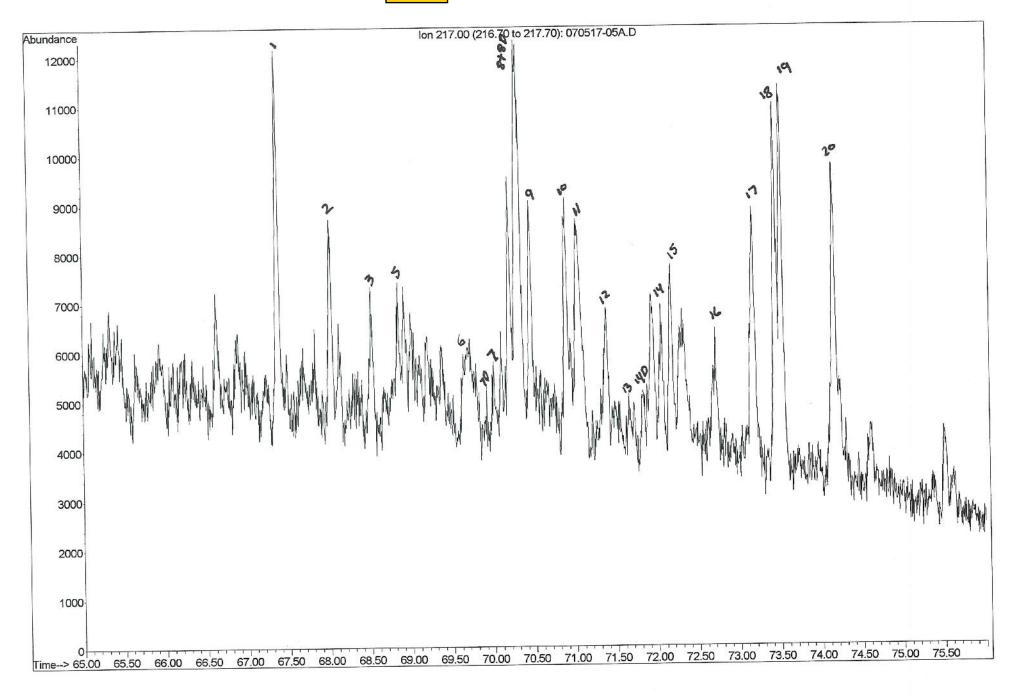
#### 23114-5 [0-062217-JH-05] 1/5 DILUTION F



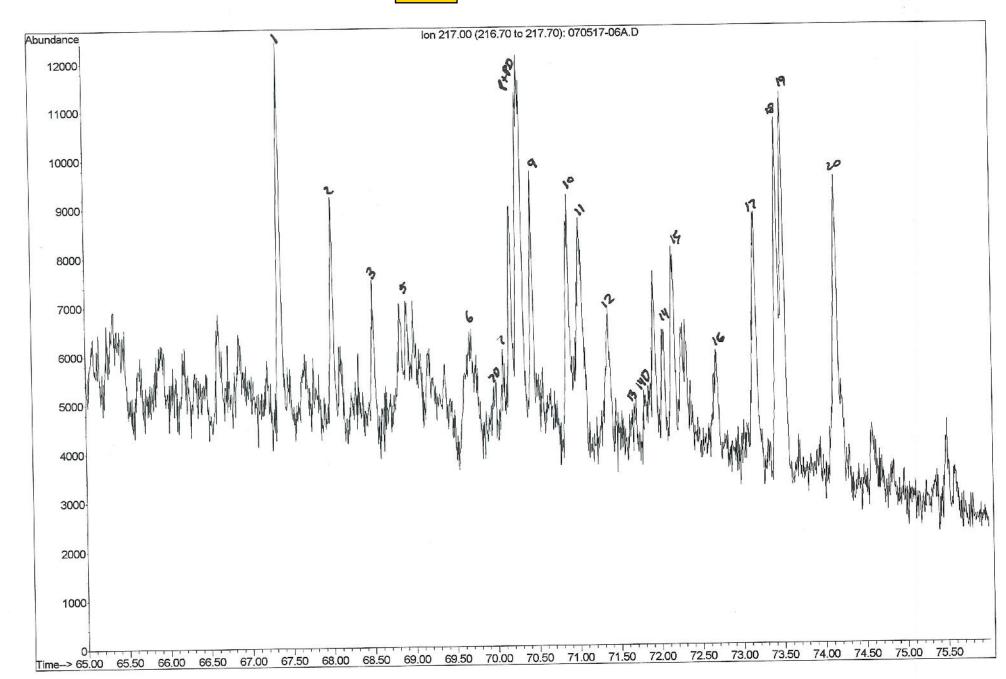
## 23114-6 [O-062217-JH-06] 1/5 DILUTION PZ-7



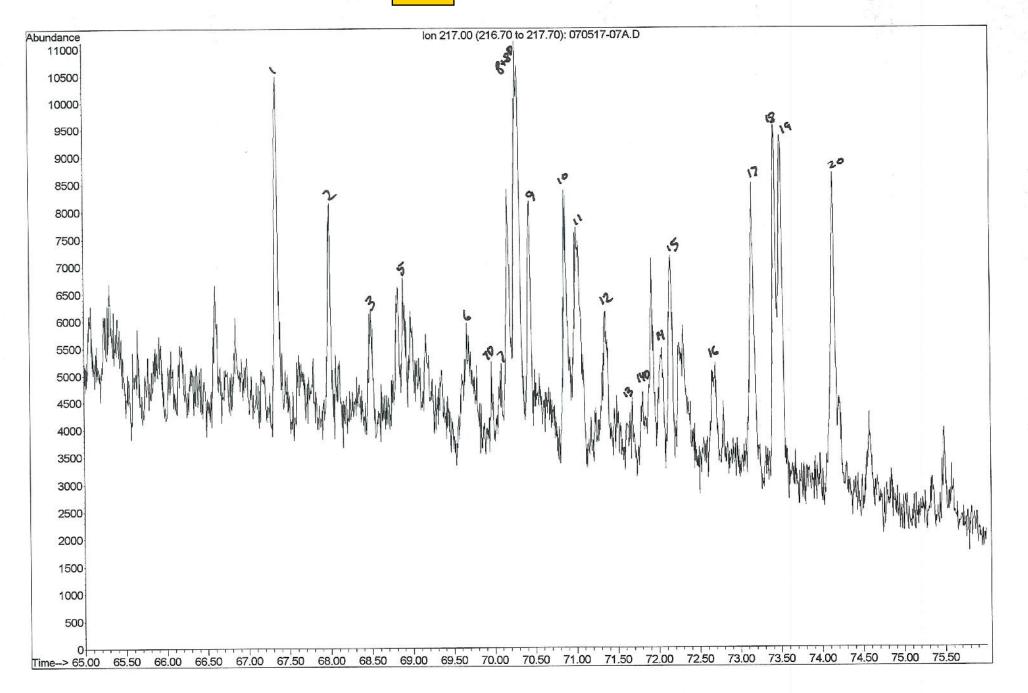




#### Key for Steranes Identification (m/z 217 Mass Chromatogram)

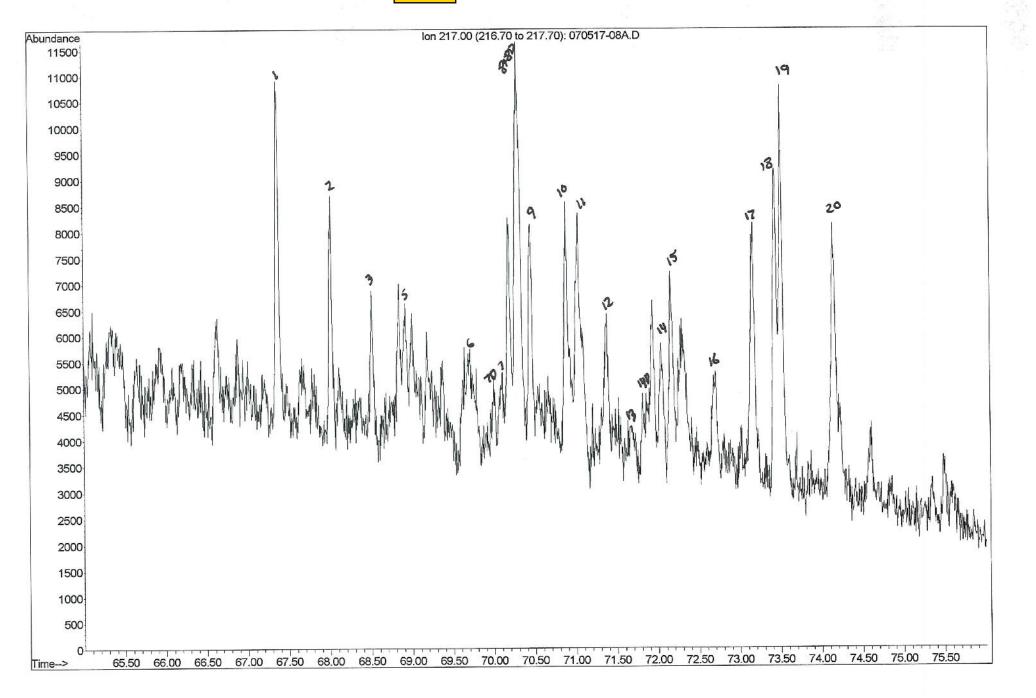
Code	Identity	Carbon #
1	13β, 17α-Diacholestane (20S)	27
2	13β, 17α-Diacholestane (20R)	27
3	13α, 17β-Diacholestane (20S)	27
4	13α, 17β-Diacholestane (20R)	27
5	24-methyl-13 $\beta$ ,17 $\alpha$ -Diacholestane (20S)	28
6	24-methyl-13 $\beta$ ,17 $\alpha$ -Diacholestane (20S)	28
7D	24-methyl-13α,17β-Diacholestane (20S)	28
7	$14\alpha$ , $17\alpha$ -Cholestane (20S)	27
8D	24-ethyl-13β, 17α-Diacholestane (20S)	29
8	14β,17β-Cholestane (20R)	27
9	14β,17β-Cholestane (20S)	27
9D	24-methyl-13 $\alpha$ ,17 $\beta$ -Diacholestane (20R)	28
10	$14\alpha$ ,17 $\alpha$ -Cholestane (20R)	27
11	24-ethyl-13β, 17α-Diacholestane (20R)	29
12	24-ethyl-13α, 17β-Diacholestane (20S)	29
13	24-ethyl-13α, 17α-Diacholestane (20S)	28
14D	24-ethyl-13α, 17β-Diacholestane (20R)	29
14	24-methyl-14β, 17β-Cholestane (20R)	28
15	24-methyl-14β, 17β-Cholestane (20S)	28
16	24-methyl-14 $\alpha$ , 17 $\alpha$ -Cholestane (20R)	28
17	24-ethyl-14α-Cholestane (20S)	29
18	24-ethyl-14β, 17β-Cholestane (20R)	29
19	24-ethyl-14β, 17β-Cholestane (20S)	29
20	24-ethyl-14α, 17α-Cholestane (20R)	29
21A	24-n-Propylcholestane (20S)	30
21B	4-methyl-24-ethylcholestane (20S)	30
22A	4α-methyl-24-ethyl-14β,17β-cholestane (20S)	30
22B	24-n-Propyl-14β,17β-cholestane (20S)	30
23A	4α-methyl-24-ethyl-14β,17β-cholestane (20R)	30
23B	24-n-propyl-14β,17β-cholestane (20R)	30
24A	4α-methyl-24-ethylcholestane (20R)	30
24B	24-n-propylcholestane (20R)	30


#### 23114-1 [0-062217-JH-01] 1/5 DILUTION PZ-9



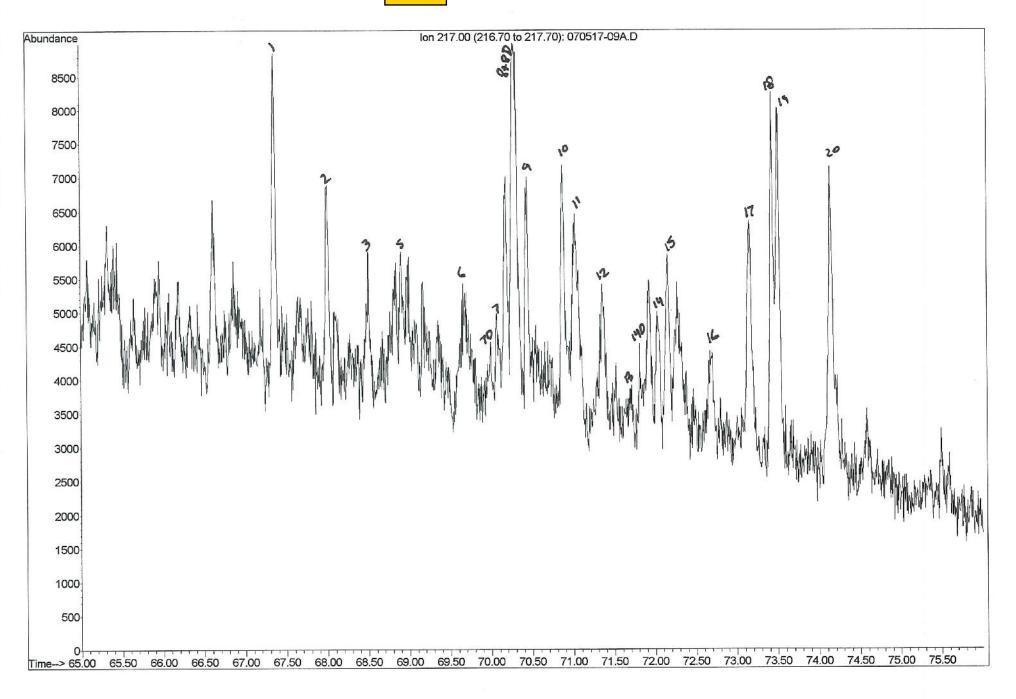

## 23114-2 [O-062217-JH-02] 1/5 DILUTION




## 23114-3 [O-062217-JH-03] 1/5 DILUTION



#### 23114-4 [O-062217-JH-04] 1/5 DILUTION

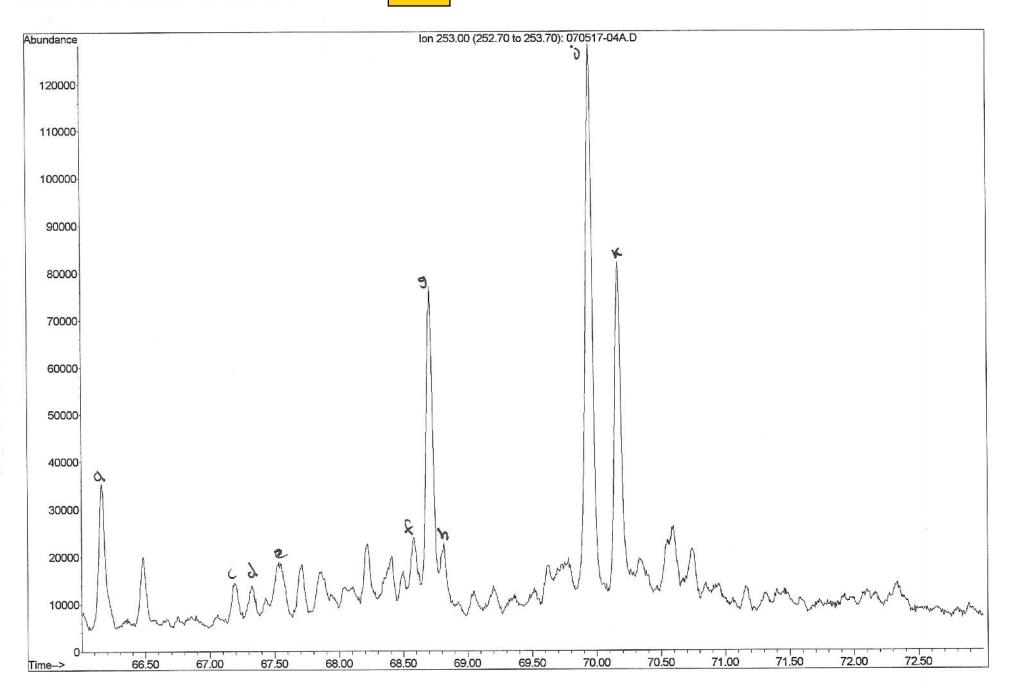



## 23114-5 [O-062217-JH-05] 1/5 DILUTION

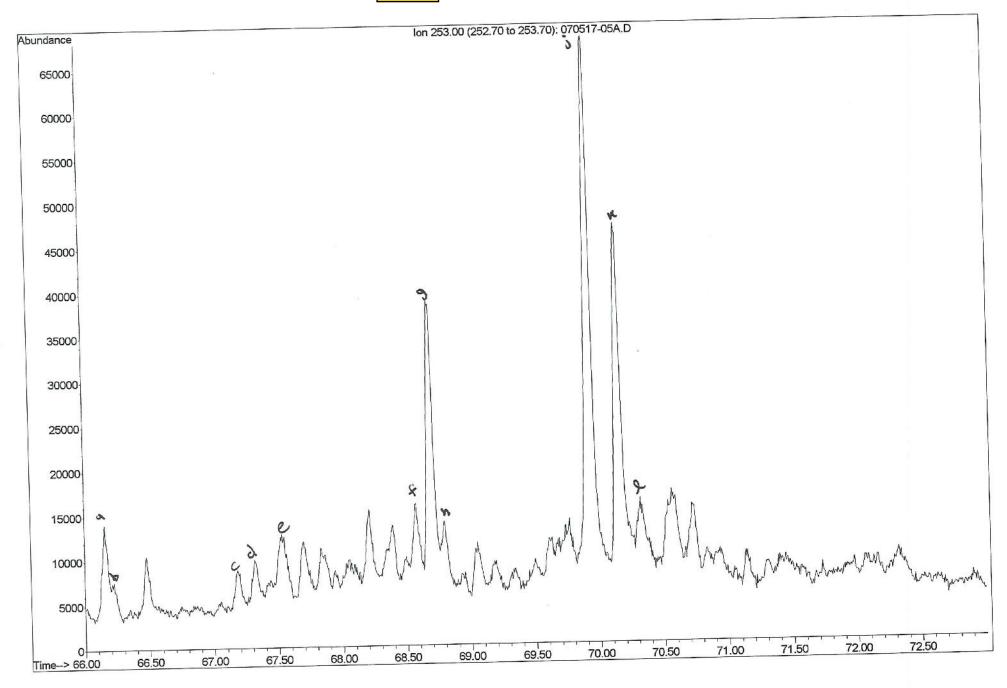


r <mark>PZ-6</mark>

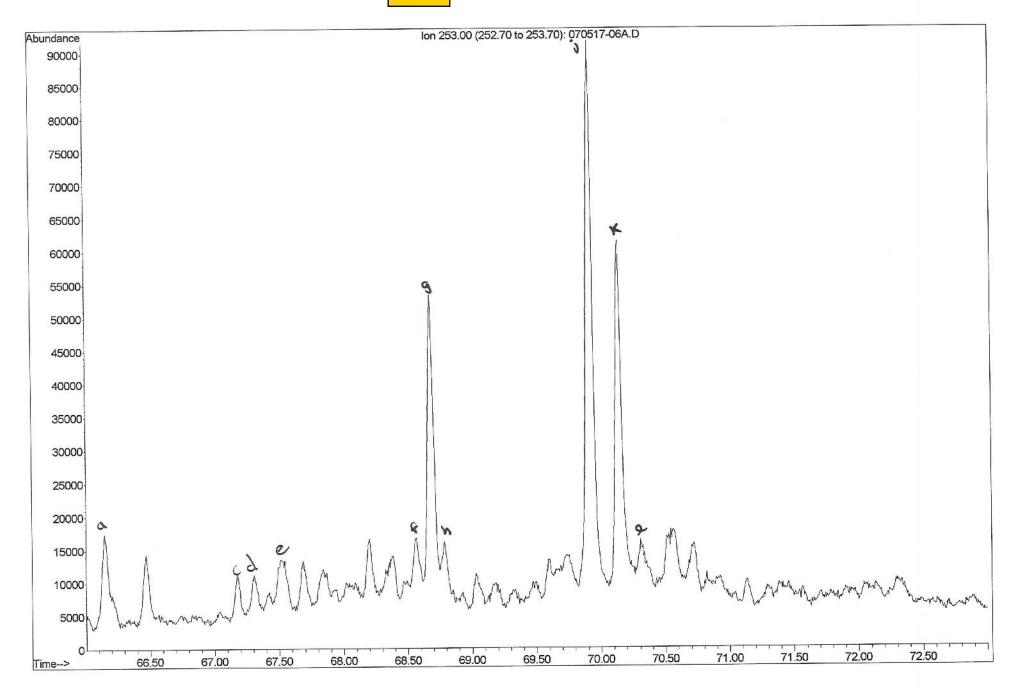
# 23114-6 [0-062217-JH-06] 1/5 DILUTION PZ-7







Key for Monoaromatic Steranes Identification (m/z 253 Mass Chromatogram)

Code	Identity	Elemental Composition
a	20S, 5β C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
b	20S, dia $C_{27}$ -Monoaromatic Sterane	C ₂₇ H ₄₂
c	20R, 5 $\beta$ C ₂₇ -Monoaromatic Sterane + 20R C ₂₇ dia MAS	C ₂₇ H ₄₂
d	20S, 5 $\alpha$ C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
e	20R, 5 $\beta$ C ₂₈ -Monoaromatic Sterane + 20S C ₂₈ dia MAS	C ₂₈ H ₄₄
f	20R, 5 $\alpha$ C ₂₇ -Monoaromatic Sterane	C ₂₇ H ₄₂
g	20S, 5 $\alpha$ C ₂₈ -Monoaromatic Sterane	$C_{28}H_{44}$
h	20R, 5 $\beta$ C ₂₈ -Monoaromatic Sterane + 20R C ₂₈ dia MAS	C ₂₈ H ₄₄
i	20S, 5β C ₂₉ -Monoaromatic Sterane + 20S C ₂₉ dia MAS	$C_{29}H_{46}$
i	20S, 5 $\alpha$ C ₂₉ -Monoaromatic Sterane	$C_{29}H_{46}$
k	20R, 5 $\alpha$ C ₂₈ -Monoaromatic Sterane	$C_{28}H_{44}$
1	20R, 5 $\beta$ C ₂₉ -Monoaromatic Sterane + 20R C ₂₉ dia MAS	$C_{29}H_{46}$
m	20R, $5\alpha C_{29}$ -Monoaromatic Sterane	C ₂₉ H ₄₆


# 23114-1 [0-062217-JH-01] 1/5 DILUTION PZ-9

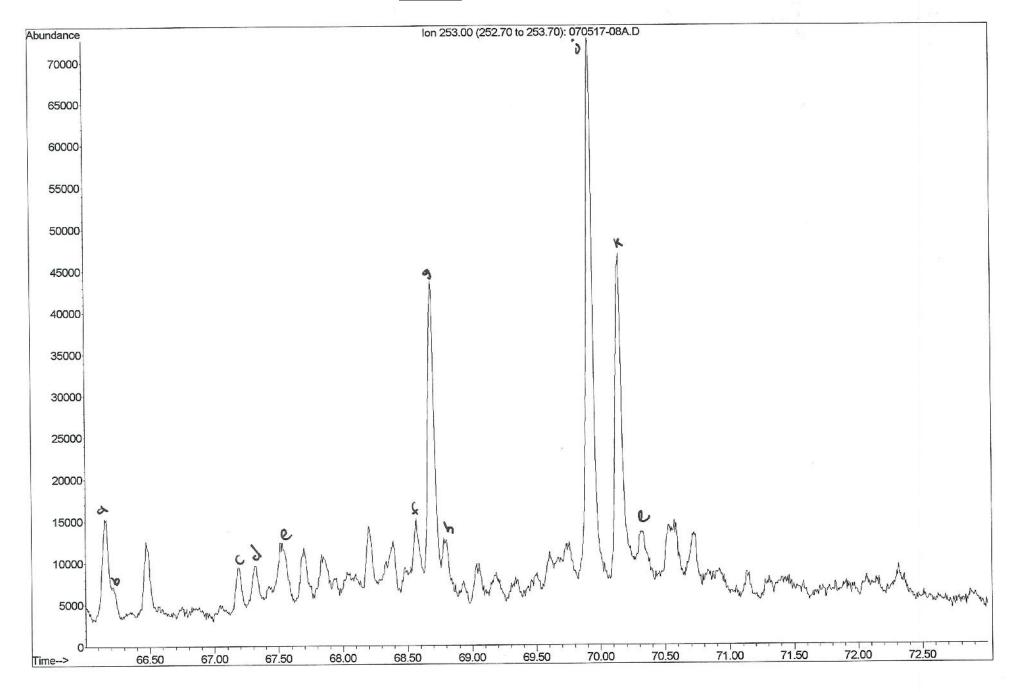


# 23114-2 [0-062217-JH-02] 1/5 DILUTION PZ-3



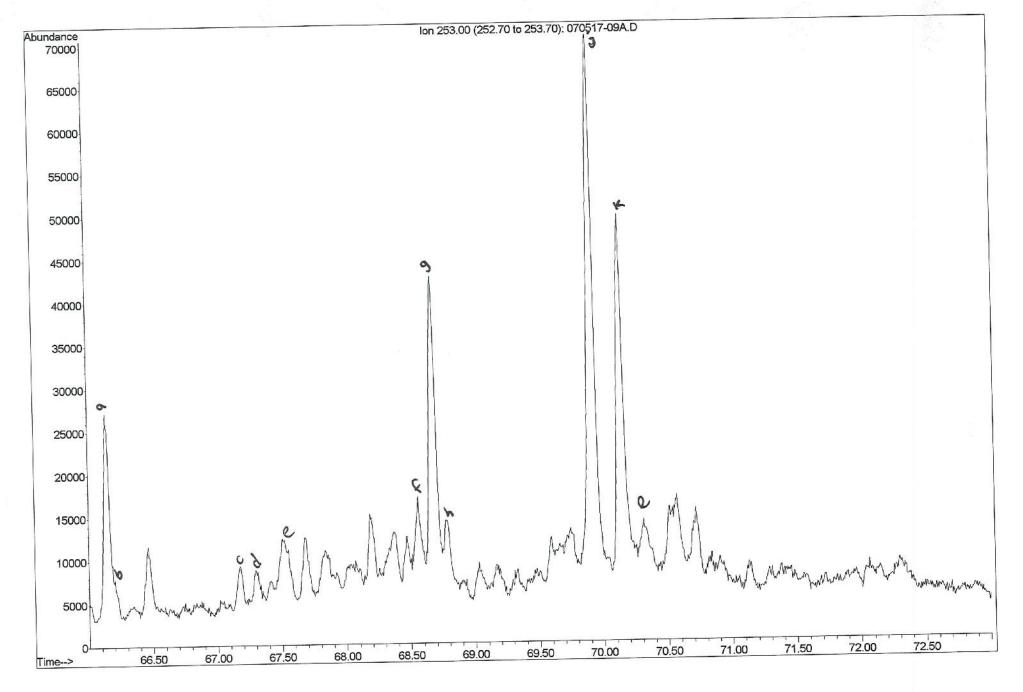

# 23114-3 [0-062217-JH-03] 1/5 DILUTION PZ-4




## 23114-4 [0-062217-JH-04] 1/5 DILUTION PZ-5






## 23114-5 [O-062217-JH-05] 1/5 DILUTION

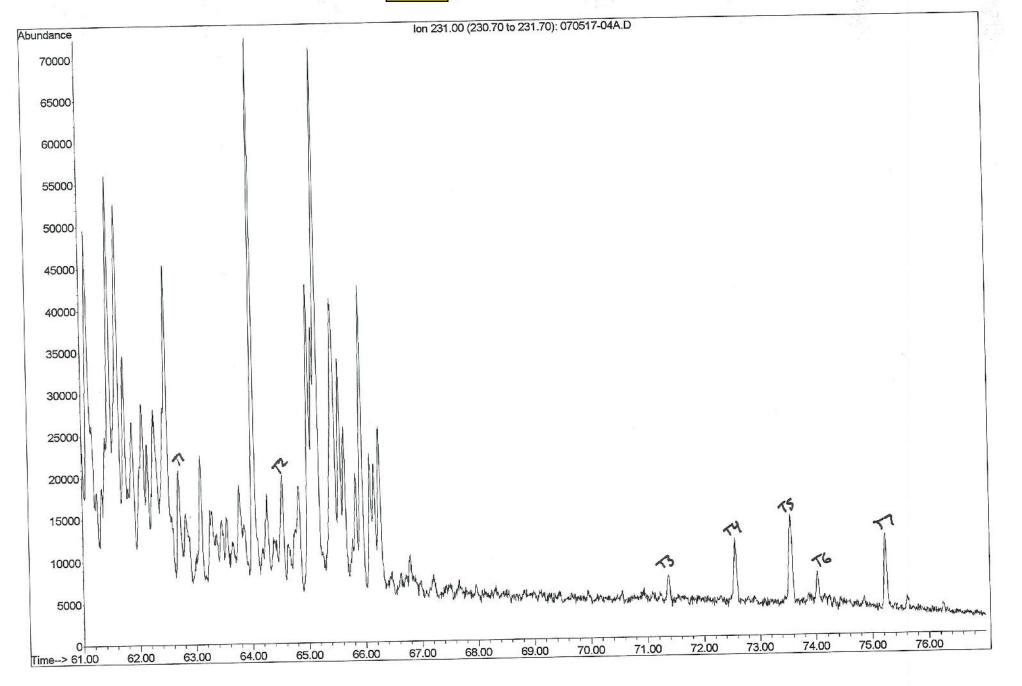




# 23114-6 [0-062217-JH-06] 1/5 DILUTION





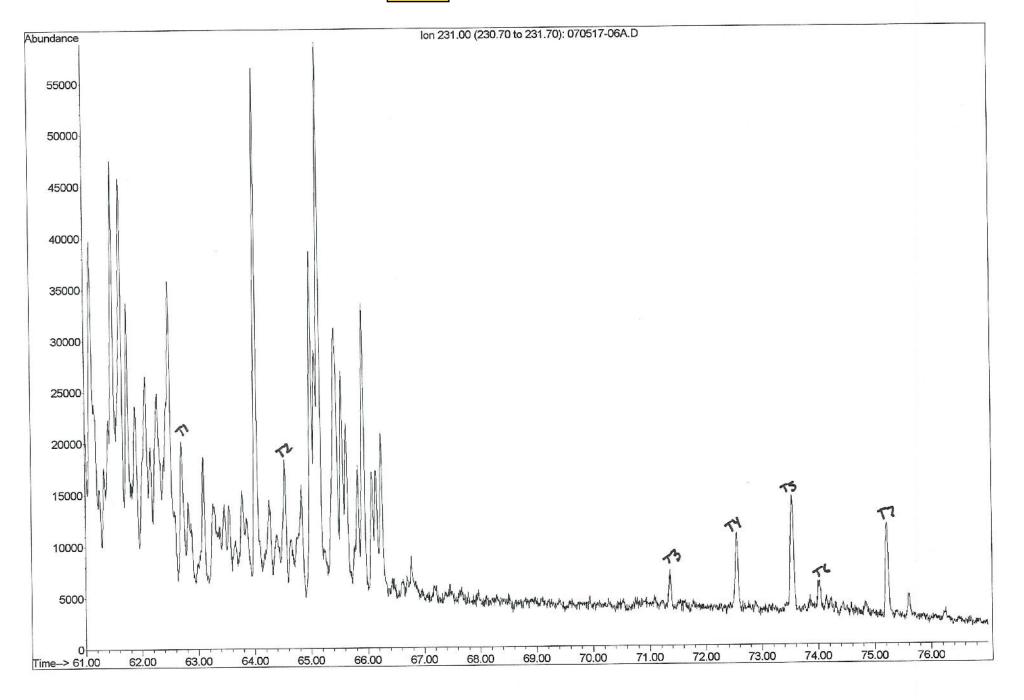



Key for Triaromatic Steranes Identification (m/z 231 Mass Chromatogram)

Code	Identity	Elemental Composition
T1	C ₂₀ Triaromatic Sterane	C ₂₀ H ₂₀
Т2	C ₂₁ Triaromatic Sterane	C ₂₁ H ₂₂
Т3	20S C ₂₆ Triaromatic Sterane	C ₂₆ H ₃₂
T4	20R C ₂₆ + 20S C ₂₇ Triaromatic Steranes	C ₂₆ H ₃₂ + C ₂₇ H ₃₄
T5	20S C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆
Т6	20R C ₂₇ Triaromatic Sterane	C ₂₇ H ₃₄
Т7	20R C ₂₈ Triaromatic Sterane	C ₂₈ H ₃₆

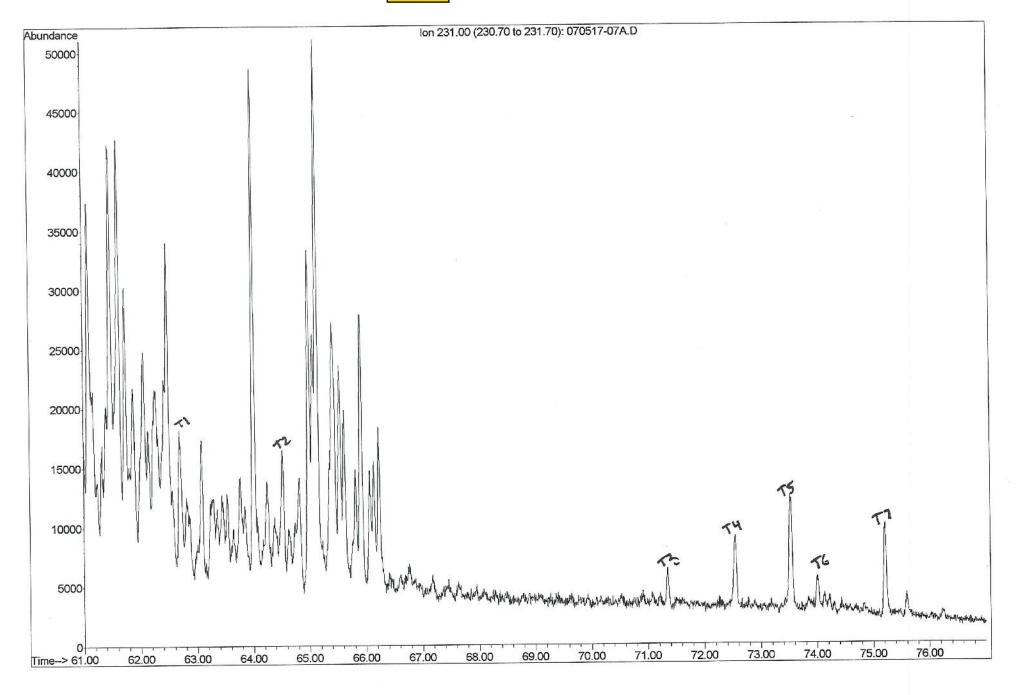
# 23114-1 [O-062217-JH-01] 1/5 DILUTION





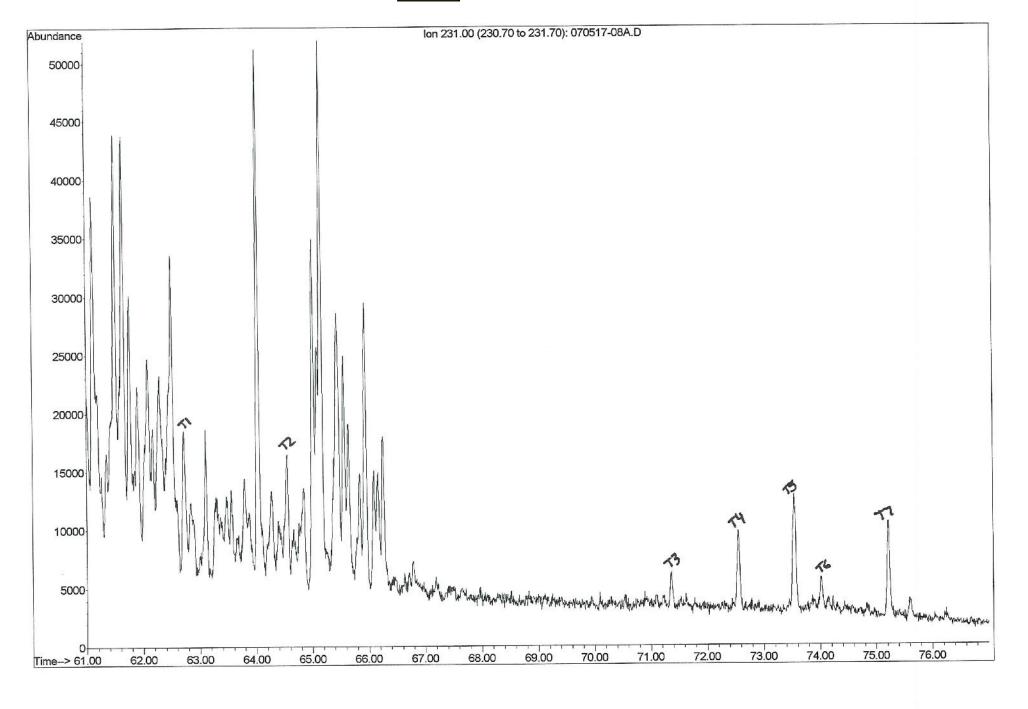

# 23114-2 [0-062217-JH-02] 1/5 DILUTION PZ-3




# 23114-3 [0-062217-JH-03] 1/5 DILUTION PZ-4

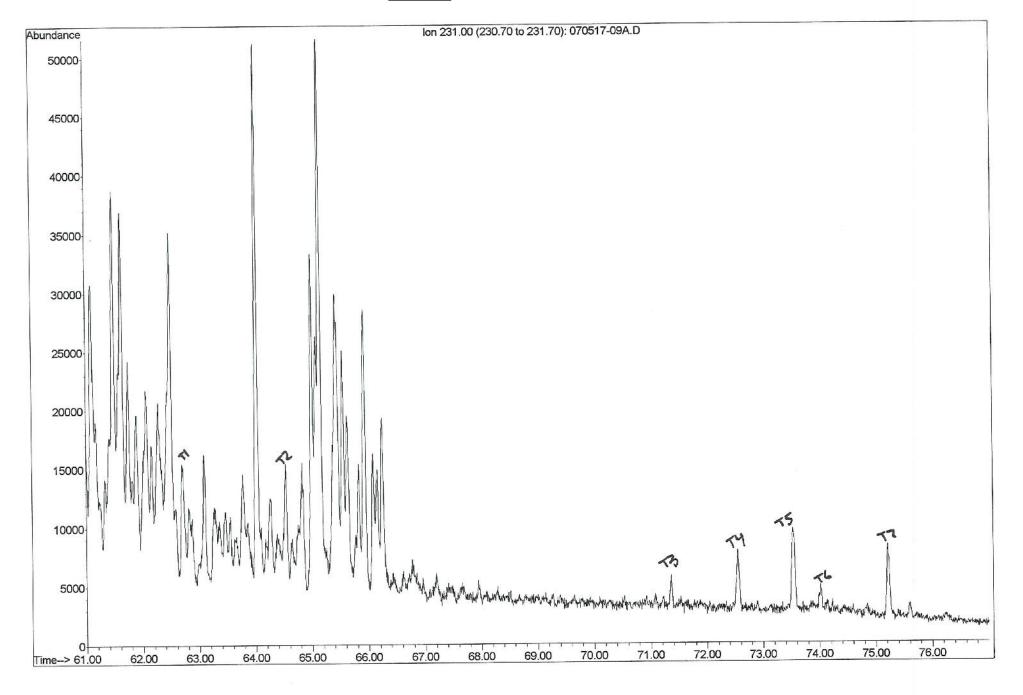





# 23114-4 [0-062217-JH-04] 1/5 DILUTION PZ-5






## 23114-5 [O-062217-JH-05] 1/5 DILUTION



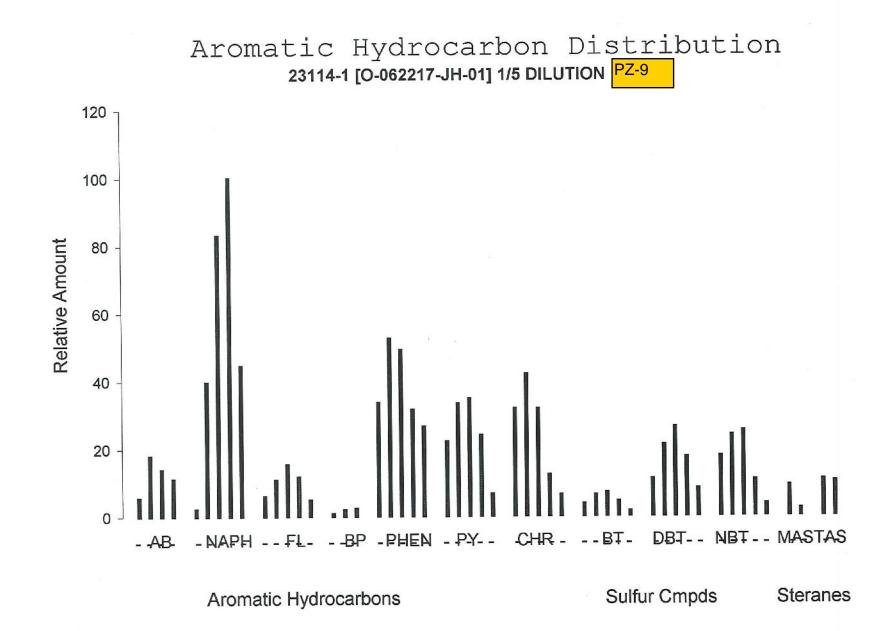


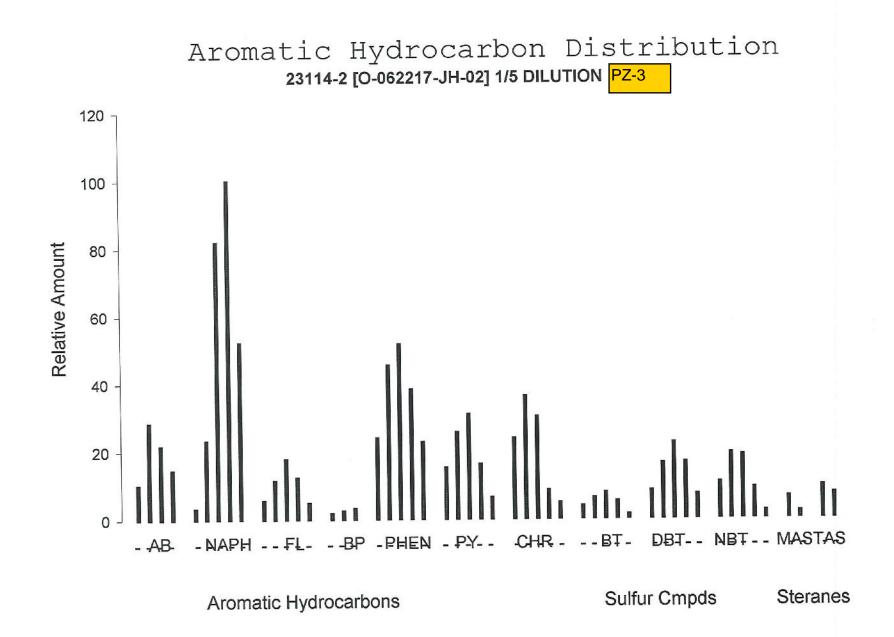
# 23114-6 [0-062217-JH-06] 1/5 DILUTION PZ-7

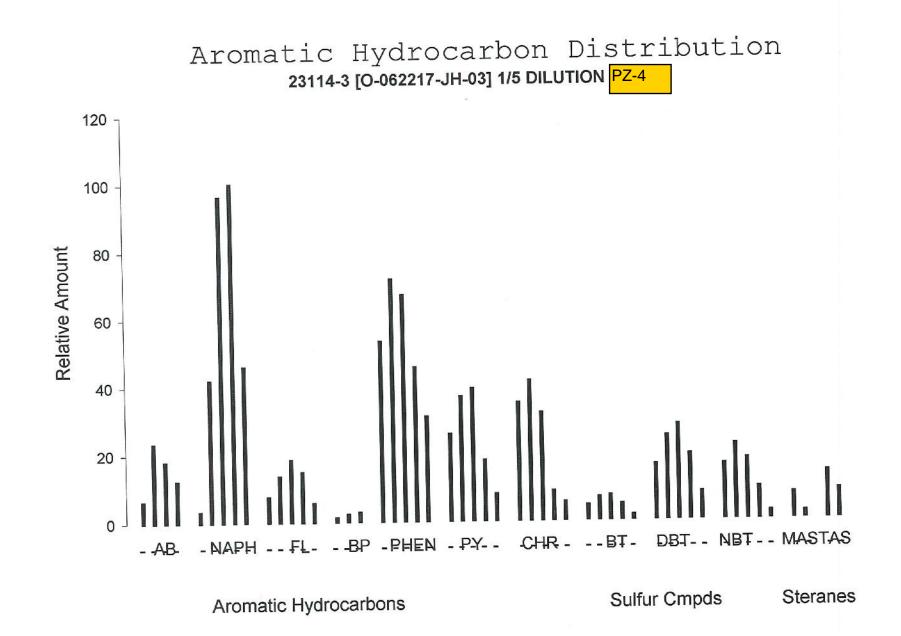


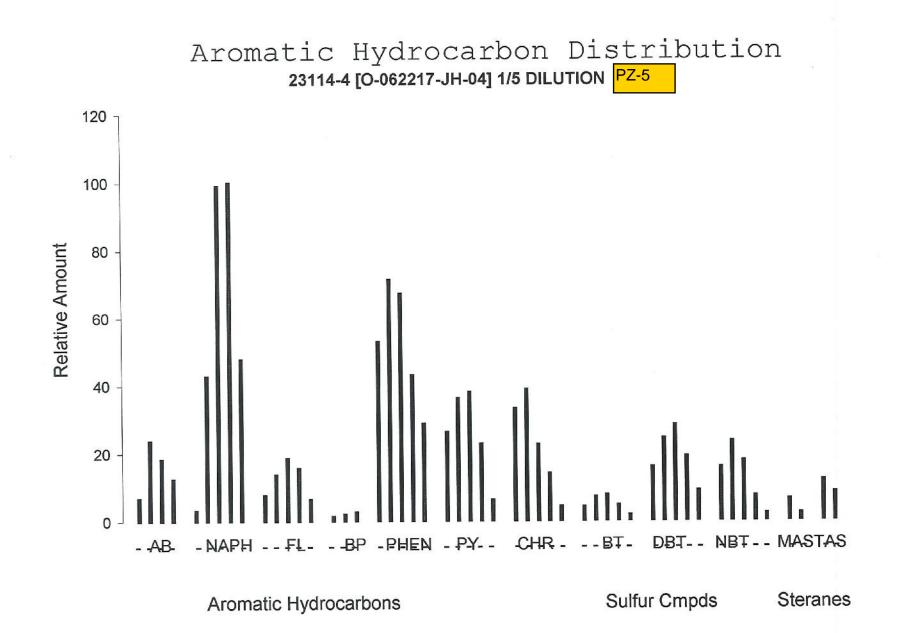


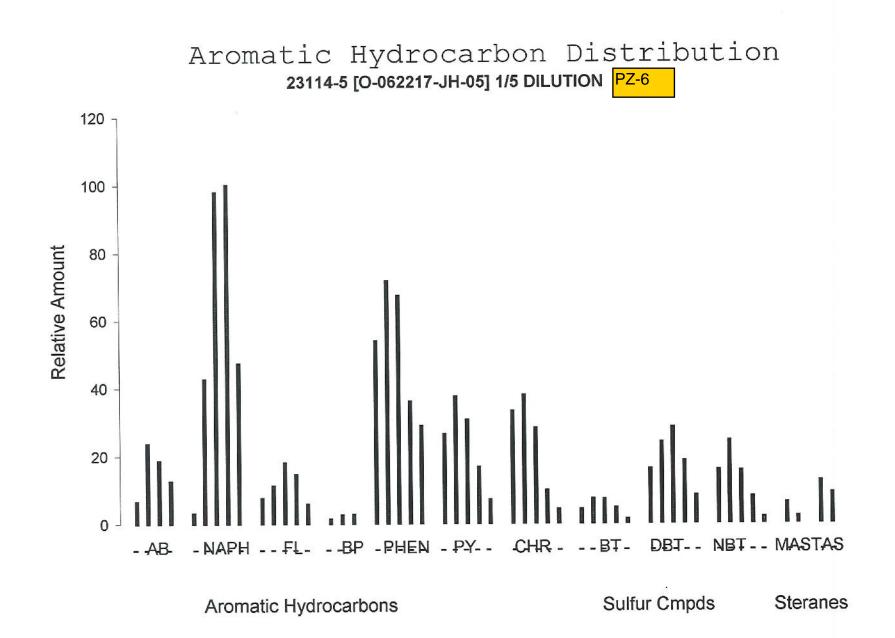


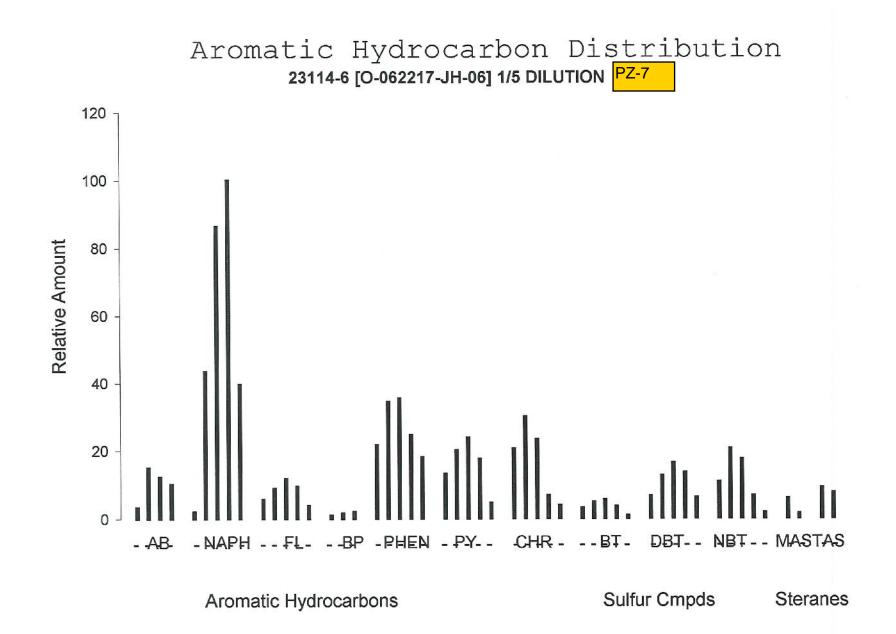

## Key for Identifying Aromatic Hydrocarbons


1       120       AB $C_3$ -alkylbenzenes         2       134 $C_4$ -alkylbenzenes         3       148 $C_3$ -alkylbenzenes         4       162 $C_7$ -alkylbenzenes         5       128       NAPH $C_7$ -naphthalenes         6       142 $C_7$ -naphthalenes $C_7$ -naphthalenes         7       156 $C_7$ -naphthalenes $C_7$ -naphthalenes         8       170 $C_7$ -naphthalenes $C_7$ -naphthalenes         9       184 $C_7$ -naphthalenes $C_7$ -naphthalenes         10       166       FL $C_7$ -fluorene         11       180 $C_7$ -fluorenes $C_7$ -fluorenes         12       194 $C_7$ -fluorenes $C_7$ -fluorenes         13       208 $C_7$ -fluorenes $C_7$ -fluorenes         14       222 $C_7$ -fluorenes $C_7$ -fluorenes         15       154       BP $C_7$ -biphenyl + dibenzofuran         17       182 $C_7$ -phenanthrenes $C_7$ -phenanthrenes         20       206 $C_7$ -phenanthrenes $C_7$ -phenanthrenes         21       220 $C_7$ -pyrenes/fluoranthenes $C_7$ -py	12	No	m/z	Abbreviation	Compound
3148 $C_{5}$ -alkylbenzenes4162 $C_{7}$ -naphthalenes5128NAPH $C_{7}$ -naphthalenes6142 $C_{7}$ -naphthalenes7156 $C_{7}$ -naphthalenes8170 $C_{7}$ -naphthalenes9184 $C_{7}$ -naphthalenes10166FL $C_{7}$ -fluorene11180 $C_{7}$ -fluorenes12194 $C_{7}$ -fluorenes13208 $C_{7}$ -fluorenes14222 $C_{7}$ -fluorenes15154BP $C_{7}$ -bliphenyls16168 $C_{7}$ -bliphenyls + dibenzofuran17182 $C_{7}$ -phenanthrene19192 $C_{7}$ -phenanthrene20206 $C_{7}$ -phenanthrenes21202PY $C_{7}$ -phenanthrenes22234 $C_{7}$ -phenanthrenes23202PY $C_{7}$ -phenanthrenes24216 $C_{7}$ -pyrenes/fluoranthene25230 $C_{7}$ -pyrenes/fluoranthenes28228CHR $C_{7}$ -pyrenes/fluoranthenes29242 $C_{7}$ -chrysenes31270 $C_{7}$ -chrysenes32284 $C_{7}$ -chrysenes33148BT $C_{7}$ -benzothiophenes34162 $C_{7}$ -chrysenes35176 $C_{7}$ -benzothiophenes36190 $C_{7}$ -benzothiophenes		1	120	AB	C ₃ -alkylbenzenes
4162 $C_{e}$ -alkylbenzenes5128NAPH $C_{e}$ -naphthalenes6142 $C_{a}$ -naphthalenes7156 $C_{a}$ -naphthalenes8170 $C_{a}$ -naphthalenes9184 $C_{a}$ -naphthalenes9184 $C_{a}$ -naphthalenes10166FL $C_{a}$ -fluorene11180 $C_{a}$ -fluorenes12194 $C_{a}$ -fluorenes13208 $C_{a}$ -fluorenes14222 $C_{a}$ -fluorenes15154BP $C_{a}$ -biphenyl16168 $C_{a}$ -biphenyl + dibenzofuran17182 $C_{a}$ -phenanthrene19192 $C_{a}$ -phenanthrenes20206 $C_{a}$ -phenanthrenes21220 $C_{a}$ -phenanthrenes22234 $C_{a}$ -phenanthrenes23202PY $C_{a}$ -phenanthrenes24216 $C_{a}$ -pyrenes/fluoranthene25230 $C_{a}$ -pyrenes/fluoranthenes26244 $C_{a}$ -pyrenes/fluoranthenes27258 $C_{a}$ -pyrenes/fluoranthenes28228CHR $C_{a}$ -pyrenes/fluoranthenes29242 $C_{a}$ -chrysenes31270 $C_{a}$ -chrysenes32284BT $C_{a}$ -barzothiophenes33148BT $C_{a}$ -barzothiophenes34162 $C_{a}$ -barzothiophenes35176 $C_{a}$ -barzothiophenes		2	134		C ₄ -alkylbenzenes
5       128       NAPH       Conaphthalene         6       142       Canaphthalenes         7       156       Canaphthalenes         8       170       Canaphthalenes         9       184       Canaphthalenes         9       184       Canaphthalenes         10       166       FL       Cafluorene         11       180       Cafluorenes         12       194       Cafluorenes         13       208       Cafluorenes         14       222       Cafluorenes         15       154       BP       Cafluorenes         16       168       Cafluorenes       Cafluorenes         17       182       Cafluorenes       Cafluorenes         18       178       PHEN       Caphenathrenes         20       206       Caphenathrenes       Caphenathrenes         21       220       Caphenathrenes       Caphenathrenes         22       234       Caphenathrenes       Capprenes/fluoranthenes         23       202       PY       Capprenes/fluoranthenes         24       216       Capprenes/fluoranthenes         25       230       Capprenes/fluoranthenes </td <td></td> <td>3</td> <td>148</td> <td></td> <td>C₅-alkylbenzenes</td>		3	148		C ₅ -alkylbenzenes
5       128       NAPH       Conaphthalene         6       142       Canaphthalenes         7       156       Canaphthalenes         8       170       Canaphthalenes         9       184       Canaphthalenes         9       184       Canaphthalenes         10       166       FL       Cafluorene         11       180       Cafluorenes         12       194       Cafluorenes         13       208       Cafluorenes         14       222       Cafluorenes         15       154       BP       Cafluorenes         16       168       Cafluorenes         17       182       Cafluorenes         18       178       PHEN       Caphenanthrenes         19       192       Caphenanthrenes         21       220       Caphenanthrenes         22       234       Caphenanthrenes         23       202       PY       Caphenanthrenes         24       216       Capyrenes/fluoranthenes         25       230       Capyrenes/fluoranthenes         26       244       Caphysenes/fluoranthenes         27       258		4	162		C ₆ -alkylbenzenes
6142 $C_1$ -naphthalenes7156 $C_2$ -naphthalenes8170 $C_2$ -naphthalenes9184 $C_3$ -naphthalenes10166FL $C_1$ -fluorenes11180 $C_2$ -fluorenes12194 $C_2$ -fluorenes13208 $C_3$ -fluorenes14222 $C_3$ -fluorenes15154BP $C_2$ -biphenyl16168 $C_2$ -biphenyls + Cl Dibenzofuran17182 $C_2$ -phenanthrenes18178PHEN $C_2$ -phenanthrenes20206 $C_3$ -phenanthrenes21220 $C_3$ -phenanthrenes2234 $C_2$ -phenanthrenes23202PY $C_3$ -phenanthrenes24216 $C_3$ -pyrenes/fluoranthenes25230 $C_3$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -physenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284BT $C_3$ -chrysenes33148BT $C_2$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes		5	128	NAPH	C ₀ -naphthalene
7156 $C_2$ -naphthalenes8170 $C_3$ -naphthalenes9184 $C_3$ -naphthalenes10166FL $C_0$ -fluorenes11180 $C_2$ -fluorenes12194 $C_2$ -fluorenes13208 $C_3$ -fluorenes14222 $C_3$ -fluorenes15154BP $C_2$ -biphenyl16168 $C_2$ -biphenyls + dibenzofuran17182 $C_2$ -phinenthrenes18178PHEN $C_2$ -phenathrenes20206 $C_2$ -phenathrenes21220 $C_2$ -phenathrenes23202PY $C_2$ -phenathrenes24216 $C_2$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_2$ -pyrenes/fluoranthenes27258 $C_2$ -phrenes28228CHR $C_2$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284BT $C_2$ -chrysenes33148BT $C_2$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_2$ -benzothiophenes		6	142		C ₁ -naphthalenes
9184 $C_a$ -naphthalenes10166FL $C_a$ -fluorene11180 $C_a$ -fluorenes12194 $C_a$ -fluorenes13208 $C_a$ -fluorenes14222 $C_a$ -fluorenes15154BP $C_a$ -biphenyls + dibenzofuran17182 $C_a$ -biphenyls + dibenzofuran18178PHEN $C_a$ -phenanthrene20206 $C_a$ -phenanthrenes21220 $C_a$ -phenanthrenes22234 $C_a$ -phenanthrenes23202PY $C_a$ -phenanthrenes24216 $C_a$ -pyrenes/fluoranthenes25230 $C_a$ -pyrenes/fluoranthenes26244 $C_a$ -pyrenes/fluoranthenes27258 $C_a$ -pyrenes/fluoranthenes28228CHR $C_a$ -phrysenes30256 $C_a$ -phrysenes31270 $C_a$ -chrysenes32284 $C_a$ -chrysenes33148BT $C_a$ -benzothiophenes34162 $C_a$ -benzothiophenes35176 $C_a$ -benzothiophenes			156		C ₂ -naphthalenes
9184 $C_4$ -naphthalenes10166FL $C_4$ -fluorene11180 $C_7$ -fluorenes12194 $C_7$ -fluorenes13208 $C_3$ -fluorenes14222 $C_4$ -fluorenes15154BP $C_7$ -biphenyl16168 $C_7$ -biphenyls + dibenzofuran17182 $C_7$ -biphenyls + C1 Dibenzofuran18178PHEN $C_7$ -phenanthrene20206 $C_7$ -phenanthrenes21220 $C_7$ -phenanthrenes22234 $C_7$ -phenanthrenes23202PY $C_7$ -phenanthrenes24216 $C_7$ -pyrenes/fluoranthenes25230 $C_7$ -pyrenes/fluoranthenes26244 $C_7$ -pyrenes/fluoranthenes27258 $C_7$ -pyrenes/fluoranthenes28228CHR $C_7$ -pyrenes/fluoranthenes29242 $C_7$ -chrysenes31270 $C_3$ -chrysenes32284 $C_7$ -chrysenes33148BT $C_7$ -benzothiophenes34162 $C_7$ -benzothiophenes35176 $C_7$ -benzothiophenes36190 $C_7$ -benzothiophenes		8	170		C ₃ -naphthalenes
11180 $C_{1}$ -fluorenes12194 $C_{2}$ -fluorenes13208 $C_{3}$ -fluorenes14222 $C_{4}$ -fluorenes15154BP $C_{1}$ -biphenyl16168 $C_{1}$ -biphenyls + dibenzofuran17182 $C_{2}$ -biphenyls + C1 Dibenzofuran18178PHEN $C_{0}$ -phenanthrene19192 $C_{1}$ -phenanthrenes20206 $C_{2}$ -phenanthrenes21220 $C_{1}$ -phenanthrenes22234 $C_{1}$ -phenanthrenes23202PY $C_{0}$ -pyrenes/fluoranthene24216 $C_{2}$ -pyrenes/fluoranthenes25230 $C_{2}$ -pyrenes/fluoranthenes26244 $C_{1}$ -pyrenes/fluoranthenes27258 $C_{1}$ -chrysenes28228CHR $C_{1}$ -chrysenes30256 $C_{2}$ -chrysenes31270 $C_{3}$ -chrysenes33148BT $C_{1}$ -benzothiophenes34162 $C_{2}$ -benzothiophenes35176 $C_{2}$ -benzothiophenes36190 $C_{1}$ -benzothiophenes			184		C ₄ -naphthalenes
11180 $C_2$ -fluorenes12194 $C_2$ -fluorenes13208 $C_3$ -fluorenes14222 $C_4$ -fluorenes15154BP $C_7$ -biphenyl + dibenzofuran16168 $C_7$ -biphenyls + dibenzofuran17182 $C_7$ -biphenyls + C1 Dibenzofuran18178PHEN $C_7$ -phenanthrenes19192 $C_3$ -phenanthrenes20206 $C_7$ -phenanthrenes21220 $C_7$ -phenanthrenes23202PY $C_6$ -pyrene/fluoranthene24216 $C_3$ -pyrenes/fluoranthenes25230 $C_3$ -pyrenes/fluoranthenes26244 $C_7$ -pyrenes/fluoranthenes27258 $C_3$ -pyrenes/fluoranthenes28228CHR $C_7$ -chrysenes30256 $C_3$ -chrysenes31270 $C_3$ -chrysenes33148BT $C_3$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_8$ -benzothiophenes		10	166	FL	C ₀ -fluorene
12194 $C_2$ -fluorenes13208 $C_3$ -fluorenes14222 $C_3$ -fluorenes15154BP $C_0$ -biphenyl16168 $C_1$ -biphenyls + dibenzofuran17182 $C_2$ -biphenyls + C1 Dibenzofuran18178PHEN $C_0$ -phenanthrene19192 $C_2$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_3$ -phenanthrenes22234 $C_3$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthenes24216 $C_2$ -pyrenes/fluoranthenes25230 $C_3$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -phyrene29242 $C_3$ -chrysene29242 $C_3$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284BT $C_3$ -chrysenes33148BT $C_3$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes			180		C1-fluorenes
13208 $C_3$ -fluorenes14222 $C_4$ -fluorenes15154BP $C_2$ -biphenyl16168 $C_2$ -biphenyls + dibenzofuran17182 $C_2$ -biphenyls + C1 Dibenzofuran18178PHEN $C_2$ -phenanthrene19192 $C_2$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_2$ -phenanthrenes22234 $C_3$ -phenanthrenes23202PY $C_q$ -pyrene/fluoranthene24216 $C_1$ -pyrenes/fluoranthenes25230 $C_4$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_2$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284BT $C_1$ -benzothiophenes33148BT $C_2$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes			194		
14222 $C_a$ -fluorenes15154BP $C_a$ -biphenyl16168 $C_a$ -biphenyls + dibenzofuran17182 $C_a$ -biphenyls + C1 Dibenzofuran18178PHEN $C_a$ -phenanthrene19192 $C_a$ -phenanthrenes20206 $C_a$ -phenanthrenes21220 $C_a$ -phenanthrenes22234 $C_a$ -phenanthrenes23202PY $C_a$ -phenanthrenes24216 $C_a$ -pyrene/fluoranthenes25230 $C_a$ -pyrenes/fluoranthenes26244 $C_a$ -pyrenes/fluoranthenes27258 $CHR$ $C_a$ -pyrenes/fluoranthenes28228CHR $C_a$ -chrysenes30256 $C_a$ -chrysenes31270 $C_a$ -chrysenes32284BT $C_a$ -benzothiophenes33148BT $C_a$ -benzothiophenes34162 $C_a$ -benzothiophenes35176 $C_a$ -benzothiophenes36190 $C_a$ -benzothiophenes					C ₃ -fluorenes
15154BP $C_0$ -biphenyl16168 $C_1$ -biphenyls + dibenzofuran17182 $C_2$ -biphenyls + C1 Dibenzofuran18178PHEN $C_0$ -phenanthrene19192 $C_1$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_3$ -phenanthrenes22234 $C_4$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthene24216 $C_2$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_4$ -pyrenes/fluoranthenes27258 $CHR$ $C_0$ -chrysene28228CHR $C_0$ -chrysenes30256 $C_2$ -chrysenes31270 $C_2$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_2$ -benzothiophenes36190 $C_4$ -benzothiophenes					C₄-fluorenes
16168 $C_1$ -biphenyls + dibenzofuran17182 $C_2$ -biphenyls + C1 Dibenzofuran18178PHEN $C_0$ -phenanthrene19192 $C_1$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_3$ -phenanthrenes22234 $C_4$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthene24216 $C_2$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $CHR$ $C_0$ -chrysene28228CHR $C_0$ -chrysenes30256 $C_2$ -chrysenes31270 $C_2$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_2$ -benzothiophenes36190 $C_4$ -benzothiophenes				BP	C _o -biphenyl
17182 $C_2$ -biphenyls + C1 Dibenzofuran18178PHEN $C_0$ -phenanthrene19192 $C_1$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_3$ -phenanthrenes22234 $C_3$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthene24216 $C_1$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284BT $C_1$ -benzothiophenes33148BT $C_1$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes					
18178PHENCo-phenanthrene19192C1-phenanthrenes20206C2-phenanthrenes21220C3-phenanthrenes22234C4-phenanthrenes23202PYCo-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258C4-pyrenes/fluoranthenes28228CHRCo-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284BTC1-benzothiophenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C2-benzothiophenes36190C4-benzothiophenes					C ₂ -biphenyls + C1 Dibenzofuran
19192 $C_1$ -phenanthrenes20206 $C_2$ -phenanthrenes21220 $C_3$ -phenanthrenes22234 $C_3$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthene24216 $C_1$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_4$ -benzothiophenes36190 $C_4$ -benzothiophenes				PHEN	
20206C2-phenanthrenes21220G3-phenanthrenes22234C4-phenanthrenes23202PYCo-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHRCo-chrysene28228CHRC1-chrysenes29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C3-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes					
21220C3-phenanthrenes22234C4-phenanthrenes23202PYCo-pyrene/fluoranthene24216C1-pyrenes/fluoranthenes25230C2-pyrenes/fluoranthenes26244C3-pyrenes/fluoranthenes27258CHR28228CHR29242C1-chrysene30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes					C ₂ -phenanthrenes
22234 $C_4$ -phenanthrenes23202PY $C_0$ -pyrene/fluoranthene24216 $C_1$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_3$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes					C ₃ -phenanthrenes
23202PY $C_0$ -pyrene/fluoranthene24216 $C_1$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes					
24216 $C_1$ -pyrenes/fluoranthenes25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes				РҮ	C ₀ -pyrene/fluoranthene
25230 $C_2$ -pyrenes/fluoranthenes26244 $C_3$ -pyrenes/fluoranthenes27258 $C_4$ -pyrenes/fluoranthenes28228CHR $C_0$ -chrysene29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes					C ₁ -pyrenes/fluoranthenes
$26$ $244$ $C_3$ -pyrenes/fluoranthenes $27$ $258$ $C_4$ -pyrenes/fluoranthenes $28$ $228$ CHR $C_0$ -chrysene $29$ $242$ $C_1$ -chrysenes $30$ $256$ $C_2$ -chrysenes $31$ $270$ $C_3$ -chrysenes $32$ $284$ $C_4$ -chrysenes $33$ $148$ BT $C_1$ -benzothiophenes $34$ $162$ $C_2$ -benzothiophenes $35$ $176$ $C_3$ -benzothiophenes $36$ $190$ $C_4$ -benzothiophenes					C ₂ -pyrenes/fluoranthenes
27258C4-pyrenes/fluoranthenes28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes					C ₃ -pyrenes/fluoranthenes
28228CHRC0-chrysene29242C1-chrysenes30256C2-chrysenes31270C3-chrysenes32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes			258		C ₄ -pyrenes/fluoranthenes
29242 $C_1$ -chrysenes30256 $C_2$ -chrysenes31270 $C_3$ -chrysenes32284 $C_4$ -chrysenes33148BT $C_1$ -benzothiophenes34162 $C_2$ -benzothiophenes35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes				CHR	C ₀ -chrysene
$30$ $256$ $C_2$ -chrysenes $31$ $270$ $C_3$ -chrysenes $32$ $284$ $C_4$ -chrysenes $33$ $148$ BT $C_1$ -benzothiophenes $34$ $162$ $C_2$ -benzothiophenes $35$ $176$ $C_3$ -benzothiophenes $36$ $190$ $C_4$ -benzothiophenes			242		C1-chrysenes
$31$ $270$ $C_3$ -chrysenes $32$ $284$ $C_4$ -chrysenes $33$ $148$ BT $C_1$ -benzothiophenes $34$ $162$ $C_2$ -benzothiophenes $35$ $176$ $C_3$ -benzothiophenes $36$ $190$ $C_4$ -benzothiophenes					C ₂ -chrysenes
32284C4-chrysenes33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes					C ₃ -chrysenes
33148BTC1-benzothiophenes34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes					C ₄ -chrysenes
34162C2-benzothiophenes35176C3-benzothiophenes36190C4-benzothiophenes			148	ВТ	C1-benzothiophenes
35176 $C_3$ -benzothiophenes36190 $C_4$ -benzothiophenes					C ₂ -benzothiophenes
36 190 C ₄ -benzothiophenes					C ₃ -benzothiophenes
					$C_4$ -benzothiophenes
		37			C ₅ -benzothiophenes





No m/z Abbreviatio		Abbreviation	Compound
38	184	DBT	C ₀ -dibenzothiophene
39	198		C1-dibenzothiophenes
40	212		C ₂ -dibenzothiophenes
41	226		C3-dibenzothiophenes
42	240		$C_4$ -dibenzothiophenes
43	234	NBT	C ₀ -naphthobenzthiophene
44	248		C ₁ -naphthobenzthiophenes
45	262		C ₂ -naphthobenzthiophenes
46	276		C ₃ -naphthobenzthiophenes
47	290		C4-naphthobenzthiophenes
48	253	MAS	Monoaromatic steranes
49	267		Monoaromatic steranes
50	239		Monoaromatic steranes
51	231	TAS	Triaromatic steranes
52	245		Triaromatic steranes


## Key for Identifying Aromatic Hydrocarbons - Cont.














		23114	an State - State		e:									222.22			_ OF
Proj	ect No/ Phase/Task Code 75886 — ()	23101- 403	1427	L	aborat	tory l	Vame	ρa	ice				Lab Location	1:		ssow 10: 702-402	-poz-1100
Pro	ect Name:	Ave Dite		L	ab Coi	ntact	R	u+)			lsh					Cooler No:	
Pro	ect Location:		r				ŕ			AN	ALYSIS F			100	Carrier:	Fed-X	
GHI	Gary O Chemistry Contact:	In	A REAL PROPERTY AND	5	AMPLE	TYPI			(	See Ba	ick of CO	C for Dei	finitions)		Airbill	No: 10890600 '	777
San	Angela npler(s):	Bown	-1		(see back of COC) Grab (G) or Comp (C)	VINIA		OT Ane	1.00	SLAD				otal Containers/sample		# of Containers:	1
ltem	SAMPLE IDENTIFICATI		DATE (mm/dd//yy)	Matrix Coo	(see back of COC) Grab (G) or Comp (	Filtered (V/N)		What		Fu II				Total Conta	MS/MSD R	Comments Special Instruc	
	PRI	ESERVATION - (SEE B	ACK OF COC F	OR ABBRI	VIATI	ONS	)										
1	0-06221	17-JH-01	6-22-17	6	DG	-1	Vi	V	V	V				2			
2		02				1	li	V	V	V				2			
3		03		1925-J. 22		-	-1	V	10	V				2			
4		04					L	V	V	1				2			
5		05		1		1	V	V	V	V				2			
6	V	06	V		11	14	12	V	V	V				2			
7	_	and the second second					-	192									
8				1	_	_	_										
9					-	+	+	-	-	-							
10					-	_	_	+									-
11					-	+	+	+	+-	$\vdash$			+		<u> </u>		
12																	
	Required in business da			12		^	lotes,	/ Spec	ial R	equire	ments:						
	RELINQUISHED B		COMPANY	DA			IME				F	RECEIVED	BY		COMPANY	DATE	Тіме
1. 2.	- Golin Ha	gens (	FHD	6-2	7-17	7 /	40	0	1. 2.	-6	195	NE	PAZ	50	5	6.28.17	1130
3.					11				3.								

Cooler	Receipt	Form

lient Name: GOCD Project: Cline Ave Ditchlab Work Order: 23117	
A. Shipping/Container Information (circle appropriate response)	
Courier: FedEx UPS USPS Client Other Air bill Present: Yes No	
Tracking Number:	
Custody Seal on Cooler/Box Present: Yes No Seals Intec: Yes No	
Cooler/Box Packing Materia: Bubble Wrad Absorbent Foam Othen	
Type of Ice: Wet Blue None Ice Intact: Yes Melied	
Cooler Temperature: ha Radiation Screened: Yes a Chain of Custody Present Yes No	
Comments:	
R Laboratory Assignment/Lop-in (check appropriate response)	

	YES	ND	N/4.	Comment Feterence non-Conformance
Chain of Custody properly filled out	V	1		
Chain of Custody relinquished	C	ł		
Sampler Name & Signature on EOC				
Containers intect	$\checkmark$			
Were samples in separate bags	V			
Sample container labels match COC Sample name/date and time collected		V		
Sufficient volume provided	V	1		
PAES containers used	0	T		
Are containers properly preserved for the requested testing? (as labeled)			V	1
if an unknowin preservation state, ware containers checked? Exception: VOA's colliform				्री (फ) इस २४ विकास
Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			C	Í
(ammente)				

Cooler contents exernined/received by : <u>L9</u> Date: <u>6-28.17</u> Project Manager Raview: <u>Jem</u> Date(0)08/17NON-CONFORMANCE FORM

PAES Work Order #: _____23114 Date: 6-28,17 Time of Receipt: 11:30 Receiver: UY Cheni GHED REASON FOR NON-CONFORMANCE No time g collection available ACTION TAKEN: Client name: GHO Date. 6/09/17 Time. 9:03 Ceppoved to continue with analyses Date: (e/29/17 Customer Service Laitizis

F-PAE-Q-014-rev.00, 20 Nov2014

# Appendix C.2 LNAPL Physical Properties Analytical Reports

July 21st, 2017



Angela Bown GHD 9033 Meridian Way West Chester, OH 45069

RE: Cline Ave Ditch Project Number: 0856886 D21103

Pace Analytical received six samples on June 26th, 2017 for analysis labeled GW-062217-JH-01, GW-062217-JH-02, GW-062217-JH-03, GW-062217-JH-04, GW-062217-JH-05, and GW-062217-JH-06. Additional volume was received on June 29th. Per client request, the following analyses were performed:

- 1. Viscosity Subcontracted to Clark Testing
- 2. Surface Tension Subcontracted to Clark Testing
- 3. Liquid Properties Subcontracted to Clark Testing

The sample was performed in house under laboratory number **23078**.

Please call the lab at 412-826-5245, or you may email any questions or concerns to <u>Lauren.McGrath@pacelabs.com</u> regarding any analytical data reports.

Respectfully submitted,

Lauren E. McGrath

Lauren E. McGrath Project Manager

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



Fuels & Lubrication Lab

406941-1 Page 1 of 1

Primary Contact	Pittsburgh, PA	
PO#	23078	
Tracking #	406941-1	
Client Sample #	230780001 GW-062217-JH-01	PZ-9
Received Date	06/27/2017	

Kinematic Viscosity (40	C, 100C, and VI) - new oil	Test Code: D445 / Method: D445/D2270
Result Date	07/20/2017	
Viscosity @ 40C	<i>cSt</i> 10.874	
Comments		
Viscosity @ 100 degrees fails.		

Oil/Water Interface, Inter	rfacial Tension		Test Code: D971 / Method: D971
Result Date		07/20/2017	
Result	Dynes/centimeter	3.61	

Surface Tension		Test Code: D971B / Method: D971B
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	27.80

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.92548

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

#### **General Diagnostic Notes**

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



406941-2 Page 1 of 1

Fuels & Lubrication Lab

Primary Contact	Pittsburgh, PA
PO#	23078
	406941-2
Client Sample #	230780002 GW-062217-JH-02 PZ-3
Received Date	06/27/2017

Kinematic Viscosity (40C, 100C, and VI) - new oil		Test Code: D445 / Method: D445/D2270
Result Date	07/20/2017	
Viscosity @ 40C	<i>cst</i> 9.2929	
Comments		
Viscosity @ 100 degrees fails.		

Oil/Water Interface, Interfacial Tension         Test Code: D971 / Meth		Test Code: D971 / Method: D971	
Result Date		07/20/2017	
Result	Dynes/centimeter	5.52	

Surface Tension		Test Code: D971B / Method: D971
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	24.88

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.90983

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

#### **General Diagnostic Notes**

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



Fuels & Lubrication Lab

406941-3 Page 1 of 1

Primary Contact	Pittsburgh, PA
PO#	23078
Tracking #	406941-3
Client Sample #	230780003 GW-062217-JH-03 PZ-4
Received Date	06/27/2017

Kinematic Viscosity (40C, 100C, and VI) - new oil		new oil	Test Code: D445 / Method: D445/D2270
Result Date	07	/20/2017	
Viscosity @ 40C	<i>cSt</i> 10	0.653	
Comments			
Viscosity @ 100 degrees fails.			

Oil/Water Interface, Interfacial Tension         Test Code: D971 / Meth		Test Code: D971 / Method: D971	
Result Date		07/20/2017	
Result	Dynes/centimeter	3.66	

Surface Tension		Test Code: D971B / Method: D971B
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	26.25

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.96344

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

### **General Diagnostic Notes**

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



Fuels & Lubrication Lab

406941-4 Page 1 of 1

Primary Contact	Pittsburgh, PA
PO#	23078
5	406941-4
Client Sample #	230780004 GW-062217-JH-04 PZ-5
Received Date	06/27/2017

Kinematic Viscosity (40	C, 100C, and VI) - new oil	Test Code: D445 / Method: D445/D2270
Result Date	07/20/2017	
Viscosity @ 40C	cSt 12.375	
Comments		
Viscosity @ 100 degrees fails.		

Oil/Water Interface, Interfacial Tension         Test Code: D971 / Me		Test Code: D971 / Method: D971	
Result Date		07/20/2017	
Result	Dynes/centimeter	1.85	

Surface Tension		Test Code: D971B / Method: D971B
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	26.67

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.92532

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

#### **General Diagnostic Notes**

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



Fuels & Lubrication Lab

406941-5 Page 1 of 1

Primary Contact	Pittsburgh, PA
PO#	23078
Tracking #	406941-5
Client Sample #	230780005 GW-062217-JH-05 PZ-6
Received Date	06/27/2017

Kinematic Viscosity (40	C, 100C, and VI) - new oil	Test Code: D445 / Method: D445/D2270
Result Date	07/20/2017	
Viscosity @ 40C	<i>cSt</i> 9.4691	
Comments		
Viscosity @ 100 degrees fails.		

Oil/Water Interface, Interfacial Tension         Test Code: D971 / Meth		Test Code: D971 / Method: D971	
Result Date		07/20/2017	
Result	Dynes/centimeter	12.25	

Surface Tension		Test Code: D971B / Method: D971B
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	26.88

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.91559

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

#### **General Diagnostic Notes**

Pace Analytical Energy Services Contact: Ruth Welsh Ph: 412-826-4482 Fax: 412-826-3433 Email: Ruth.Welsh@pacelabs.com

**FINAL REPORT** This report and the data within has completed QA/QC review



Fuels & Lubrication Lab

406941-6 Page 1 of 1

Primary Contact	Pittsburgh, PA
PO#	23078
	406941-6
Client Sample #	230780006 GW-062217-JH-06 PZ-7
Received Date	06/27/2017

Kinematic Viscosity (40	C, 100C, and VI) - new oil	Test Code: D445 / Method: D445/D2270
Result Date	07/20/2017	
Viscosity @ 40C	cSt 10.722	
Comments		
Viscosity @ 100 degrees fails.		

Oil/Water Interface, Inter	facial Tension		Test Code: D971 / Method: D971
Result Date		07/20/2017	
Result	Dynes/centimeter	5.45	

Surface Tension		Test Code: D971B / Method: D971B
Result Date		07/20/2017
Surface Tension	Dynes/centimeter	24.18

Digital Density at 15C	Test Code: D4052 / Method: D4052
Result Date	07/19/2017
Result g/cm3	0.92665

Sample Preparation Fee/Extraction	Test Code: Prep / Method:
Result Date	07/20/2017
Result	Prep Required

### **General Diagnostic Notes**

COC NO.: 05404		777- 402 -707- 100	Cooler No:	Fred X	U U		L. Corres of The Port of the	a carl we to the	Conternation											DATE TIME			
	_ Fax:	a ti a cana		Carrier:	Airbill No. MS/MSD Request		1 - Catrice /	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- - - - - - - - - - - - - - - - - - -											COMPANY			<b>m</b>
	1	220			alqmss/sianistrio) istoT				74 pine		يديني ه												
Ω	i L	tion:			. Beneficial and the state of the								-										
N OF CUSTODY RECORD	     	Lab Location:	ţ.	(S																			
Ö	1	Fal Fal	i diana	ANALYSIS REQUESTED See Back of COC for Definitions)																Bγ			
R	i L			For De																RECEIVED BY			
7	1			SIS-RI	דילבר להרינו לנח		2	7	Z	2	1	7							ts:	R			
ō	I I I		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ANALYSIS REQUESTED e Back of COC for Definitio	Py Numic Vision		2	5	7	$\geq$	2								Notes/ Special Requirements:				
S	- I - I - I	. 2	hi'w	A (See	Fluid propertive		$\overline{\overline{)}}$	5	$\frac{\Delta}{\sqrt{2}}$		0	$\overline{\langle}$		-					Requi				
D C C	1	and the second se	S 		Clupped						<u> </u>	4		?	-				oecial		1.	6	<u>м</u>
L I	1	ame:			04047 mar Hay		<u>- Xi</u> - <u>Xi</u> - <u>Xi</u>	f. Freak	- L Seat				-						tes/ S _I	E	600		
	1	tory N	ntact:	E TYPE	Filtered (Y/V)	(SNO	G N			, mittat tiya		$\rightarrow$	<u> </u>						No	TIME			
VIN.	Je: -	Laboratory Name:	Lab Contact:	SAMPLE TYPE	(See back of COC) (C)	≣VIATI	<u>)</u> 102	Supporting salar		******	6									TE	6.7.2		
CHAI Address:_	Phone: _	7	7		Matrix Code (htmm)	- (SEE BACK OF COC FOR ABBREVIATIONS)	2045 W	13/0	530-	355	1425	1500 4							4 <i>Ts</i> ):	DATE	1.23-1		
					DATE	coc F	KANA				(*************************************		<u>. : </u>						<i>lifferent T/</i> □ Other:	٨٧	$\mathcal{D}$		
					D (minik)	CK OI					**************************************	$\Rightarrow$							for dil	COMPANY	245		
				: 	Chemistry Contact: ディッテノュ アリンレンテ oler(s): デレンテレンテ SAMPLE IDENTIFICATION Containers for each sample may be combined on one line)	- (SEE B/		てつ	03.	5 D	() ()	06							<i>TAT Required in business days (use separate COCs for different TATs).</i> □ 1 Day □ 2 Days □ 3 Days □ 1 Week   2 Week □ Other.		~		<u>.</u>
		21103	$D_{i}\gamma_{e}$		the contract of the combined of combined combined of combined of combined of combined combined of combined combined of combined c	PRESERVATION	ーキト												use separa □ 1 Week			-	
			9		Fill the second	ESERV		Latin Article											ays (us ⊐ sta	×	Ellene.	-	
		Project No/ Phase/Task Code: $\mathcal{O}$ $\mathcal{G}$ $\mathcal{G}$ $\mathcal{G}$ $\mathcal{G}$ $\mathcal{O}$ $\mathcal{U}$	Aue		Chemistry Contact: トー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	PRI		int				2					а		ness days	RELINQUISHED BY	Gengense	0	
		se/Tas K (r	19. 17.	ation: Jr a stray	GHD Chem(stry Contact: メーム・シーク Sampler(s): Sampler(s): Containers for each samp		2												d in busin 2 Days [	LINQUIS			
		t No/ Phase 资气 穷务	ame:	ocatio.	mistry H A A s): C A A s): C A A s): C A A the and a for a f		0-4												ired in	RE	and and		
		oject N O &	Project Name:	Project Location: $Gr \sim r$	GHD Chemi Sampler(s): SAMP		GW	1											1T Requ		193	and the second	
		μA	Pr	Pr Pr	(lem Sai			01		4	5	ø	2	ø	σi	10		12	A D		÷	4	e.

	8		OF CL	OF CUSTODY RECORD	ECORD	Ö	coc no.: 53464 base / of /
	2907 & Audress:	Phone:				Fax:	
Project No/ Phase/Task Code: © & 5 & 6 D 21103		Laboratory Name:	v Name: $\rho_{a}$	C C	Lab Location: 2	220 W; Ilian	ssow ib: 702-702-1100
Project Name: Cline Ave Ditch		Lab Contact:	ct: Ruth	Welsh	P. TISburgh PA		Cooler No:
Project Location: Gary In.		SAMPLE TYPE		ANAL YSIS REQUESTED (See Back of COC for Definitions)	ESTED Definitions)	Carrier: Fed	X-J-
GHD Chemistry Contact:		(၁	Øho			Airbill A	
13	5	(202)					ontainers:
		back o back o			,ietno ()	bəy QS	Comments/
SAMPLE IDENTIFICATION (Containers for each sample may be combined on one line)	DATE (mm/dd//yy)	l əəs)	101117 1173			W/SW	COMMENTS/ SPECIAL INSTRUCTIONS:
PRESERVATION - (	BACH	R ABBREVIATION	IS)				
1 GW-062217-JH-C	01 6-22-17 10	1045 WG G	NUTU			1   Small c	quantities of
2		1310	140			Free	product in
3	03     13	1330	100			a/1 co	
4	04	1355	<i>7</i> 7				
2	05 1 14	1425	7 7 7				
90 →	>	1500 4 V	<del>ک</del> 7 2				
7							
α α							
ο 2							
11							
12							
TAT Required in business days (use separate COCs for different TATs):         1 1 Day       2 Days       3 Days       1 Week       2 Week       Other:	use separate COCs for different TA □ 1 Week	Ts):	Notes/ Specia	Notes/ Special Requirements:			
10,000	COMPANY	DATE	TIME	RECEIVED BY	ED BY	COMPANY	DATE TIME
" apply Hangene	GHD	6-23-17	1600	1. Le Dron		P A23	6.26.17 08:00
2. /				7			
з.				3.			
Distribution: WHITE - Fully Executed Copy (CRA)		THE CHAIN OF CUSTODY IS A LEG YELLOW – Receiving Lab	LEGAL DOCUMENT - Laboratory Copy	LEGAL DOCUMENT – ALL FIELDS MUST BE COMPLETED ACCURATELY Laboratory Copy PINK – Shipper GOLDENRC	<i>NPLETED ACCURATELY</i> GOLDENROD – Sampling Crew	Sampling Crew	GHD Form: COC-10B (20110804)

### Cooler Receipt Form

Client	Name: GFCD Project: 085886 D21103ab Work Order:	23078
	Shipping/Container Information (circle appropriate response)	
	Courier: FedEx UPS USPS Client Other: Air bill Present ves No	
	Tracking Number: 9053 42757948	
	Custody Seal on Cooler/Box Present: Yes No Seals Intac:: Yes No	
	Cooler/Box Packing Material: Bubble Wrap Absorbent Foam Other	-
	Type of Ice: Wet Blue None Ice Intact: Yes Melied	
	Cooler Temperature: 4.1°C Radiation Screened: Yes the Chain of Custody Prese	nt Yes No
	Comments:	anagona ana ana ana ana ana ana ana ana ana

B. Laboratory Assignment/Log-in (check appropriate response)

	YES	NO	N/A	Comment
		1		Peference non-Conformance
Chain of Custody properly filled out	iv			
Chain of Custody relinquished	-			
Sampler Name & Signature on CDC	12	1		
Containers intect	V			
Were samples in separate bags	V			
Sample container labels match COC	1			
Sample name/date and time collected			ļ	· · · · · · · · · · · · · · · · · · ·
Sufficient volume provided	$\vee$			
PAES containers used	L			
Are containers properly preserved for the requested testing?				
(as labeled)		1	<u> </u> 	ן 11 ניפג, גאר סר' זסרדו
if an unknown preservation state, were containers checked?				
Exception: VDA's coliform	1	1	i	
Was volume for dissolved tasting field filtered, as noted on				
the COC? Was volume received in a preserved container?				· · · · · · · · · · · · · · · · · · ·
נלהפהיהים:				· · · · · · · · · · · · · · · · · · ·

Cooler contents examined/received by : 69 Date: 6.26,17

Project Manager Raview :_____ Date: 6-26-1)

F-PAE-Q-009-554.00, 20 Nov2014

NON-CONFORMANCE FORM
PAES Work Order #: $23078$
Date: 6.26.17 Time of Receipt: 08:00 Receiver: 69
Cheat: <u>GARD</u>
REASON FOR NON-CONFORMANCE.
1. No time a collection on bettles
1. No time & collection on bottles a. Samples did have product in them.
ACTION TAKEN:
Client name: GHD Date: 3/26/17 Time: 16.00
approved
Y \
· .
Customer Service Initials- Date: 0126/7-

F-PAE-Q-014-rev.00, 20 Nov 2014

## Appendix C.3 Analysis of NAPL Samples (GSI Environmental)



#### MEMORANDUM ENCLOSURES

- **TO:** Mr. David Sweeten, Glenn Spring Holdings, Inc.
- FROM: Ileana Rhodes, Ph.D., GSI Environmental Inc.
- **RE:** Analysis of NAPL Samples Collected 22 June 2017 from the Cline Avenue Site, Gary, Indiana

#### INTRODUCTION

As requested by Glenn Springs Holdings, Inc. (Glenn Springs), GSI Environmental Inc. (GSI) has reviewed the results from a forensics analysis of six LNAPL samples collected from piezometers at the Cline Avenue site. The objective of this additional sampling and analysis was to provide further information on hydrocarbon composition, potential sources, and degree of weathering, as well as to evaluate the consistency of the hydrocarbon impacts across the site. This memorandum summarizes our findings. Please refer to the GSI memorandum dated 4 April 2017 for findings related to the December 2014 hydrocarbon analysis data.

#### SAMPLING AND ANALYSIS

As recommended by GSI, Glenn Springs collected additional samples from piezometers where LNAPL was encountered at the site. Samples were collected from six piezometers on 22 June 2017. The samples were delivered to Pace Analytical in Pittsburg, Pennsylvania, for the following analyses:

- C3 to C36 whole oil analysis by GC/FID
- C8 to C40 full scan by GC/MS, including PAHs and biomarkers

The laboratory reports are included in Appendix 1 and 2.

#### DATA REVIEW

Figure 1 shows the chromatograms obtained from the whole oil analysis (gas chromatography with flame ionization detection, GC/FID). Figure 2 shows the total ion current chromatograms (analogous to the whole oil chromatograms) from the full scan qualitative molecular characterization by gas chromatography with mass spectrometry detection (GC/MS). Review of the two gas chromatographic analyses indicates that all six samples contain a wide range of hydrocarbons spanning from C5 to C36 in the whole oil analysis (C3-C36). The full scan analysis (C8-C40) confirmed the presence of hydrocarbons to C40. The chromatograms for all six samples are visually similar and indicate that all samples contain mixtures of weathered gasoline (<10%), biodegraded diesel/middle distillate, and heavier hydrocarbons (residual oil or crude oil). As further discussed below, forensic analysis of the testing data indicates that, in general, the samples appear to share a common source or sources.



#### Gasoline Range

The presence of small amounts (<10%) of hydrocarbons in the gasoline range is indicated in Figure 1. Figure 3 includes a summary of the relative distribution of paraffins, isoparaffins, aromatics, naphthenes (cycloalkanes) and olefins normalized to the gasoline range only. This information is obtained from the whole oil analysis. There are some differences among the relative distributions of compound classes that could be attributed to weathering or different sources of gasoline with time. The presence of olefins (alkenes) indicates that this portion of the sample is a refined material and likely a gasoline as olefins are not present in condensates or petroleum.

Figures 4a-4f show plots of the relative distribution of selected target compounds. The most prevalent compounds are aromatics which are expected in gasoline, but the samples are relatively depleted of lighter aromatics, such as BTEX, which indicates the LNAPL has undergone weathering by evaporation. Further weathering is evident by the relatively high abundance of methylcyclohexane (MCYH) and ethylcyclohexane (ECYH) in the samples. These cycloalkanes, or naphtheno compounds are less susceptible to biodegradation. They are typically present at low concentrations in gasoline, but become more dominant as gasoline biodegrades in the subsurface.

#### **Diesel/Middle Distillate and Heavier Material**

As shown in Figure 1 and Figure 2, the samples are primarily composed of material in the diesel/middle distillate range and residual oil/crude oil. The diesel/middle distillate range of the samples exhibit depleted n-alkanes (readily biodegraded) and a predominance of isoprenoids. Isoprenoids are highly branched alkanes that are more resistant to biodegradation and ratios of various isoprenoids can be very useful for source assessment.

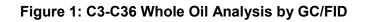
Figure 5 shows the extracted ion chromatograms from the full scan GC/MS analysis for isoprenoids (ion 113). The relative distribution of isoprenoids is very similar for all samples indicating a common source and/or production from the same type of crude oil. Figure 6 presents a cross plot of pairs of ratios of isoprenoids from the whole oil GC/FID analysis and from the full scan GC/MS analysis. Both sets of ratios are in relatively tight clusters suggesting a common source. Also, included in Figure 6 is the cross plot of a pair of ratios of bicyclanes (ion 123). Similar to the isoprenoids, these cyclo-compounds are in the diesel/middle distillate carbon range, are also resistant to biodegradation, and are good source indicators. Like the isoprenoids, the bicyclanes also plot in a tight cluster suggesting a common source.

As previously discussed, the presence of heavier than diesel hydrocarbons in evident in Figure 1 and Figure 2. This is further confirmed by the detection of biomarkers like triaromatic steranes (ion 231), steranes (ion 217) and terpanes/hopanes (ion 191, tricyclic, tetracyclic and pentacyclic terpanes) in the full scan by GC/MS. These compounds are typically in crude oils and residual fuels but are removed from lighter products in the refining process.

Figure 6 includes the cross plots of pairs of ratios of these three types of biomarkers. The clusters, while not as tight as those for the diesel range, also indicate a common source. Figure 7 shows the extracted ion chromatograms from the full scan GC/MS analysis for the tricyclic, tetracyclic and pentacyclic terpanes (ion 191) as an example of what these "fingerprints" look



like. Similar to the isoprenoids discussed above, the chromatogram patterns, or fingerprints, were similar for all samples indicating a common source.


#### SUMMARY

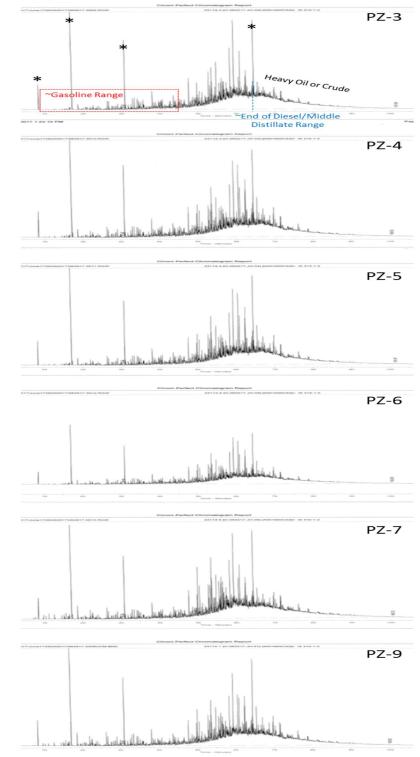

- All samples contained mixtures of weathered gasoline (<10%) and biodegraded diesel/middle distillate and heavier hydrocarbons (residual oil or crude oil). In general, the samples appear to share a common source or sources.
- There are no indications of a recent release.

Figure 1	Chromatograms – C3 to C36 Whole Oil Analysis by GC/FID
Figure 2	Chromatograms – C8 to C40 Molecular Analysis by GC/MS– Total Ion Current (TIC),
Figure 3	Relative distribution of compound classes in the gasoline range only ( <nc12), %="" (c3="" (ft)<="" and="" approximate="" c36="" calculated="" gasoline="" in="" lnapl="" material="" range="" range)="" td="" the="" thickness="" to="" whole=""></nc12),>
Figure 4a-4f	Relative distribution of selected target compounds in the gasoline range ( <nc12)< td=""></nc12)<>
Figure 5	Selective ion (m/z 113) mass chromatogram for identification of isoprenoids (highly branched alkanes).
Figure 6	Source diagnostic biomarker cross plots. Open circles are ratios of biomarkers in the diesel/middle distillate range and solid circles are ratios of biomarkers in the heavier oils
Figure 7	Selective Ion chromatograms for m/z 191 – Tri-, Tetra- and Pentacyclic Terpanes (Hopanes)

Appendix 1 PACE Analytical Reports







*: Lab added solvent or internal standard



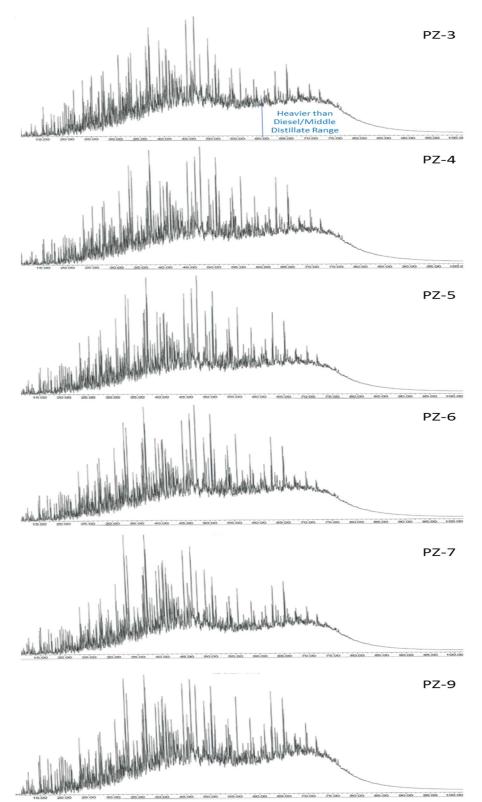



Figure 2: C8-C40 Molecular Analysis by GC/MS – Total Ion Current

GSI Job No. G-4597 Issued: 2 August 2017

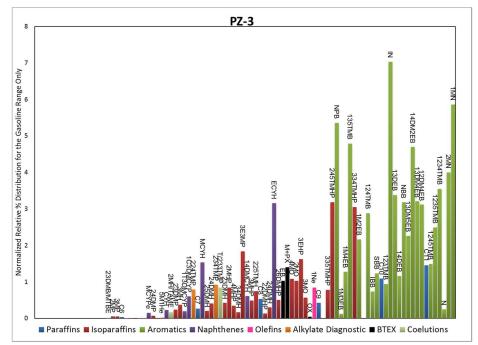
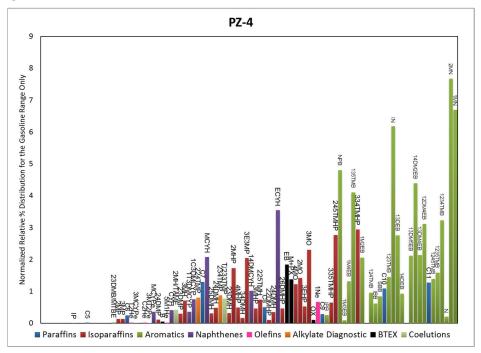


3.0 80 Relative % in the Gasoline Range Only (except for % Gasoline which is for the LNAPL) 70 2.5 ~Gasoline Range 60 in LNAPL is <10% in all samples 0. 2.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 50 40 30 20 0.5 10 0 0.0 PZ-3 PZ-4 PZ-5 PZ-7 PZ-9 PZ-6 98 Paraffinic 2.3 3.5 3.3 3.7 4.0 2.5 📕 % Isoparaffinic 20.4 23.0 21.6 20.6 25.1 28.3 📕 % Aromatic 68.5 63.0 65.0 65.5 57.0 53.5 8.5 % Naphthenic 6.5 8.1 8.2 12.0 13.5 % Olefinic 2.3 2.0 2.0 2.0 1.8 2.1 Casoline Range in LNAPL (<C12) 7.1 8.2 6.5 8.2 8.6 6.0 1.9 Product Thickness, ft 1.9 2.9 1.0 2.9 1.6

Figure 3. Relative distribution of compound classes in the gasoline range only (<nC12), calculated approximate % gasoline range material in the whole LNAPL (C3 to C36 range) and LNAPL thickness (ft.)

Maraffinic 🗰 % Isoparaffinic 🗰 % Aromatic 💼 % Naphthenic 💼 % Olefinic 🔤 ~% Gasoline Range in LNAPL (<C12) —— Product Thickness, ft



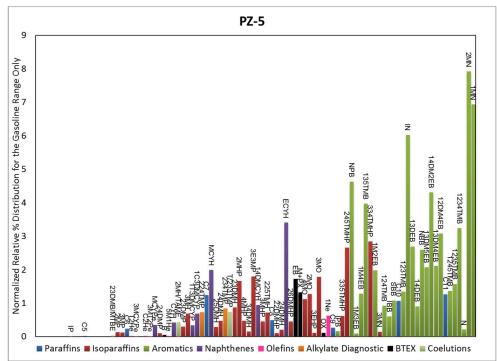
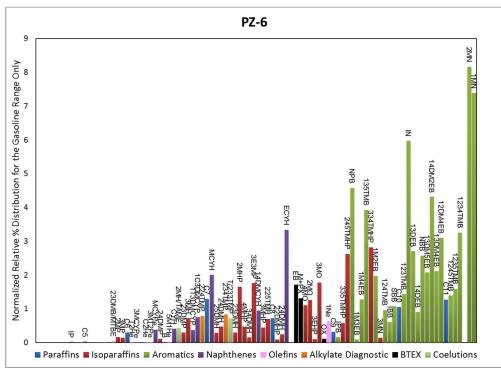


Figure 4a: Relative distribution of selected target compounds in the gasoline range (<nC12) for PZ-3

Figure 4b: Relative distribution of selected target compounds in the gasoline range (<nC12) for PZ-4

















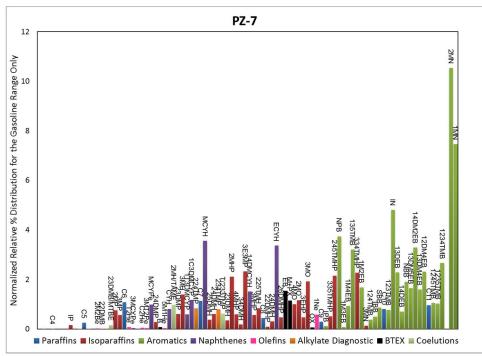
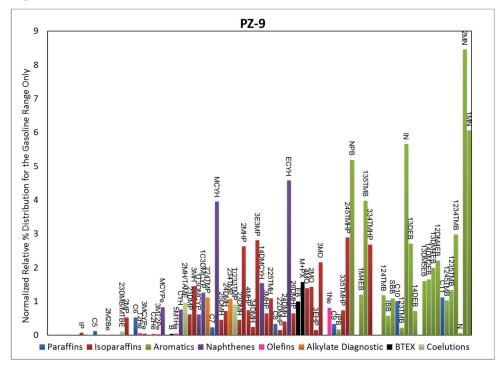
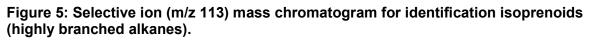
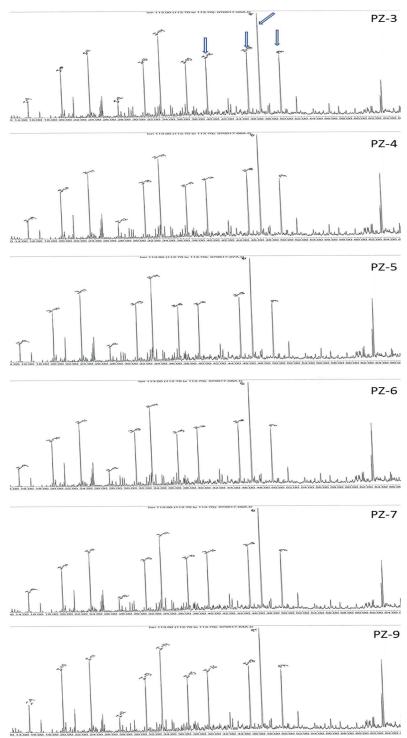
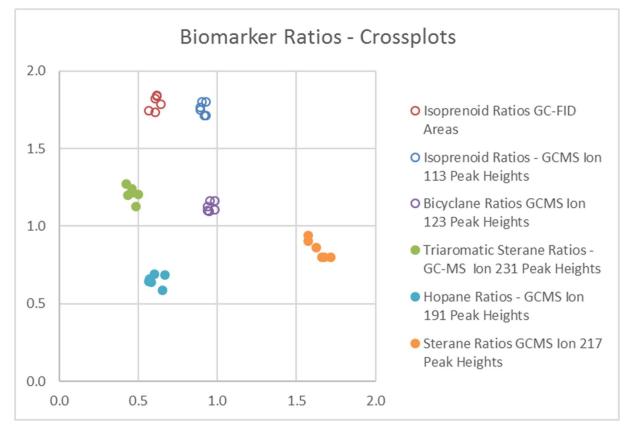







Figure 4f: Relative distribution of selected target compounds in the gasoline range (<nC12) for PZ-9

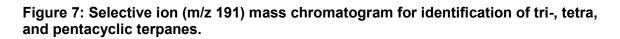


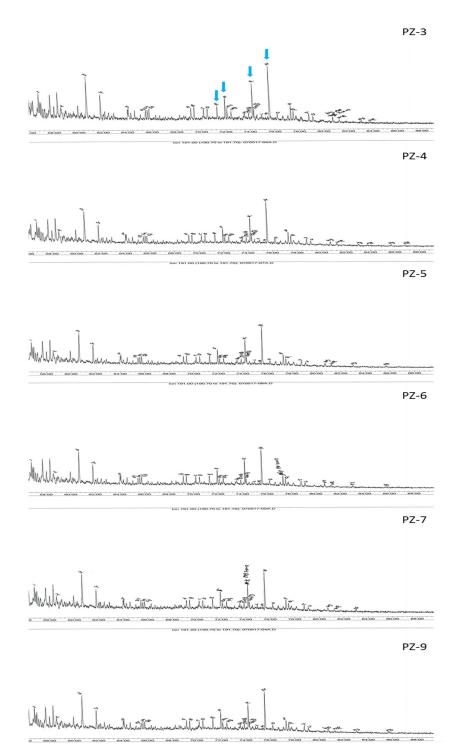








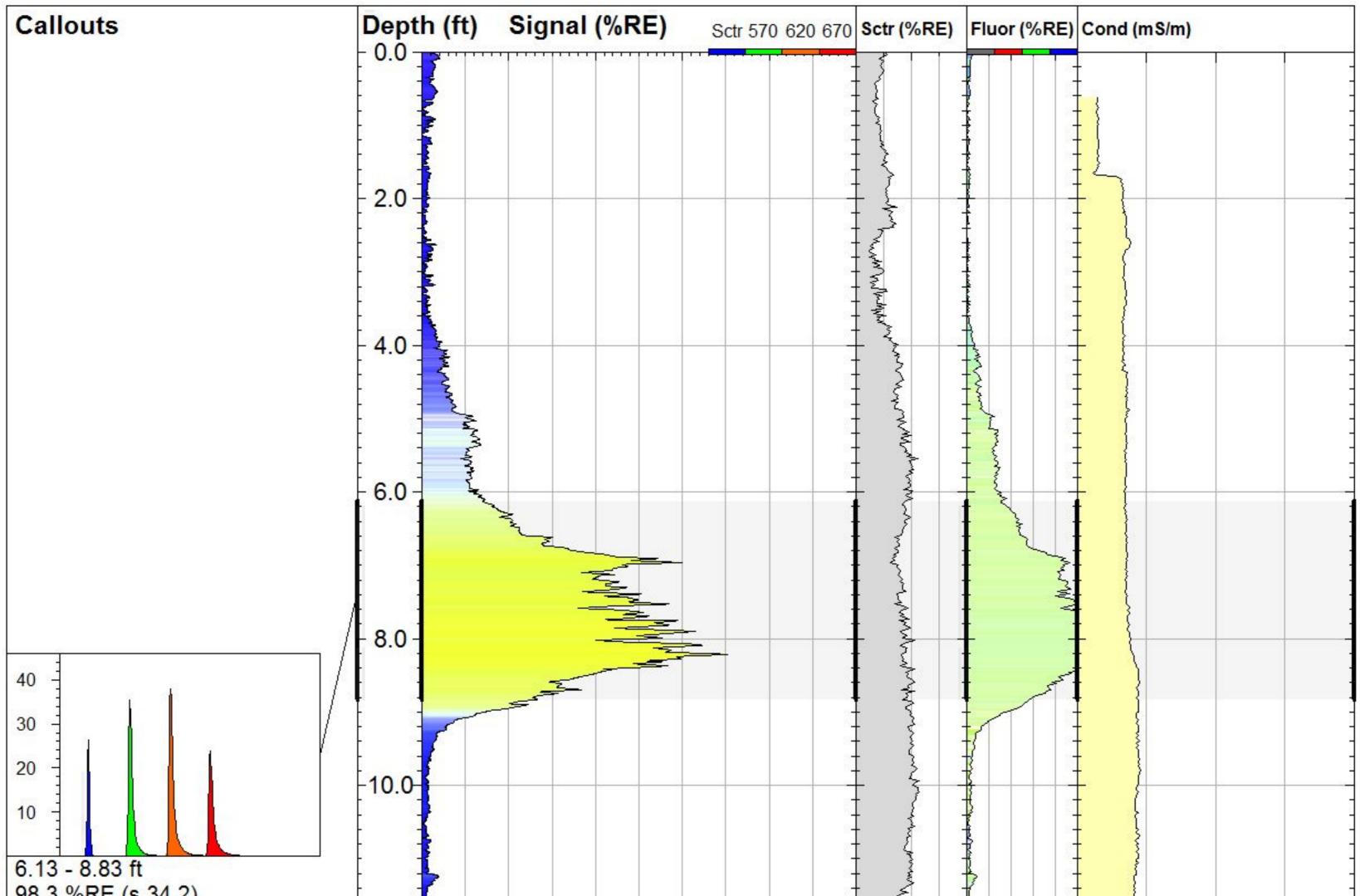


# Figure 6: Source diagnostic biomarker cross plots. Open circles are ratios of biomarkers in the diesel/middle distillate range and solid circles are ratios of biomarkers in the heavier oils




Isoprenoid Ratios:

- Farnesane (iC16)/Norpristane (iC18)
- · Pristane/Phytane
- Bicyclane Ratios:
  - C₁₅H₂₈ Bicyclic Sesquiterpanes
  - $8\beta(H)$ Drimane/ $8\beta(H)$ Homodrimane
- Triaromatic Sterane Ratios:
  - 20S C26 Triaromatic Sterane/20R C26 + 20S C27 Triaromatic Steranes
  - 20S C28 Triaromatic Sterane/20R C28 Triaromatic Sterane
- Hopane Ratios:
  - 18α-22,29,30-Trisnorneohopane (Ts)/17α-22,29,30-Trisnorhopane
    - 17α,21β-30-Norhopane/17α,21β-Hopane
- Sterane Ratios:
  - 13β,17α-Diacholestane (20S)/13β,17α-Diacholestane (20R)
  - 24-ethyl-14α-Cholestane (20S)/24-ethyl-14α,17β-Cholestane (20R)



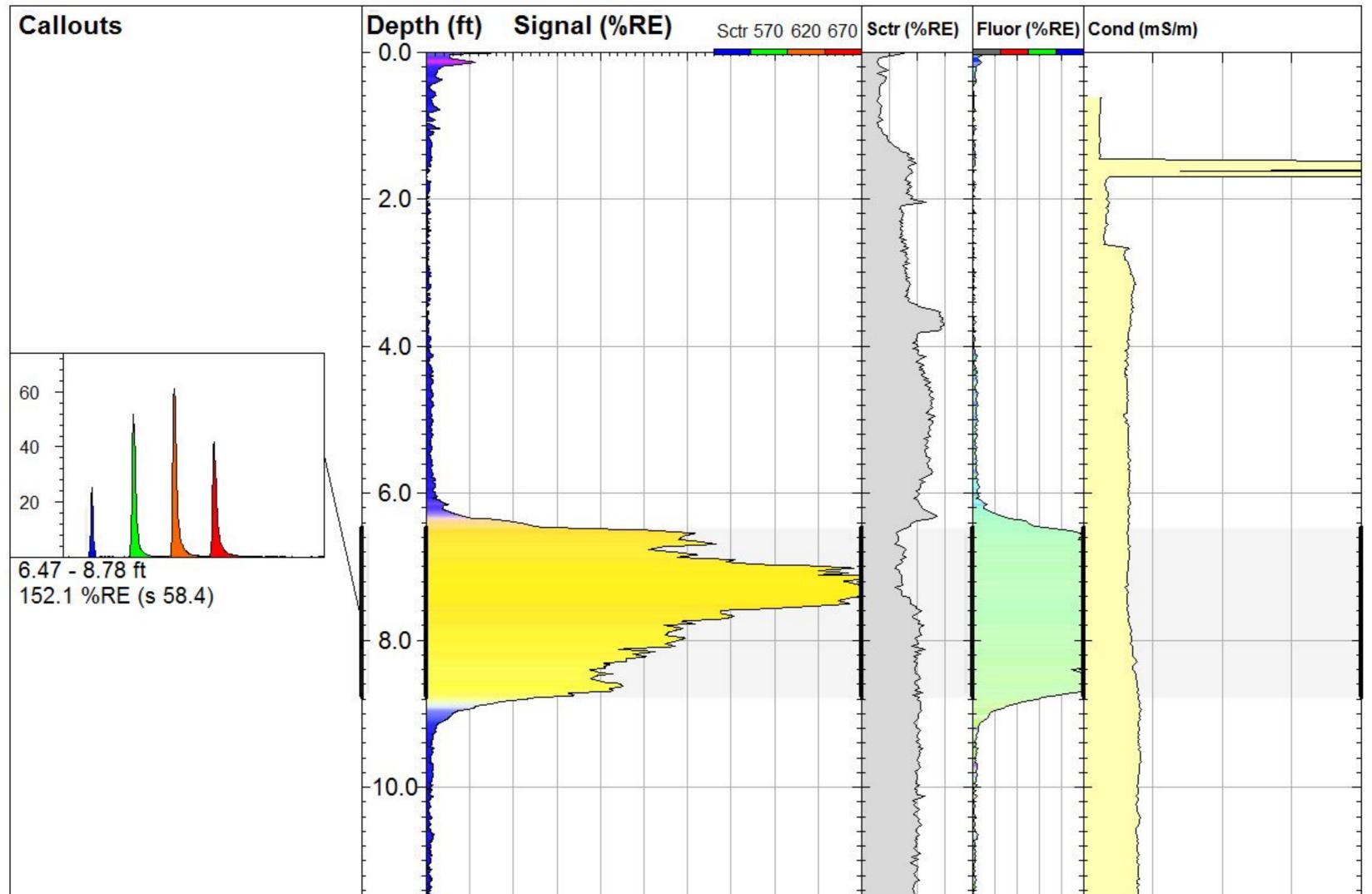




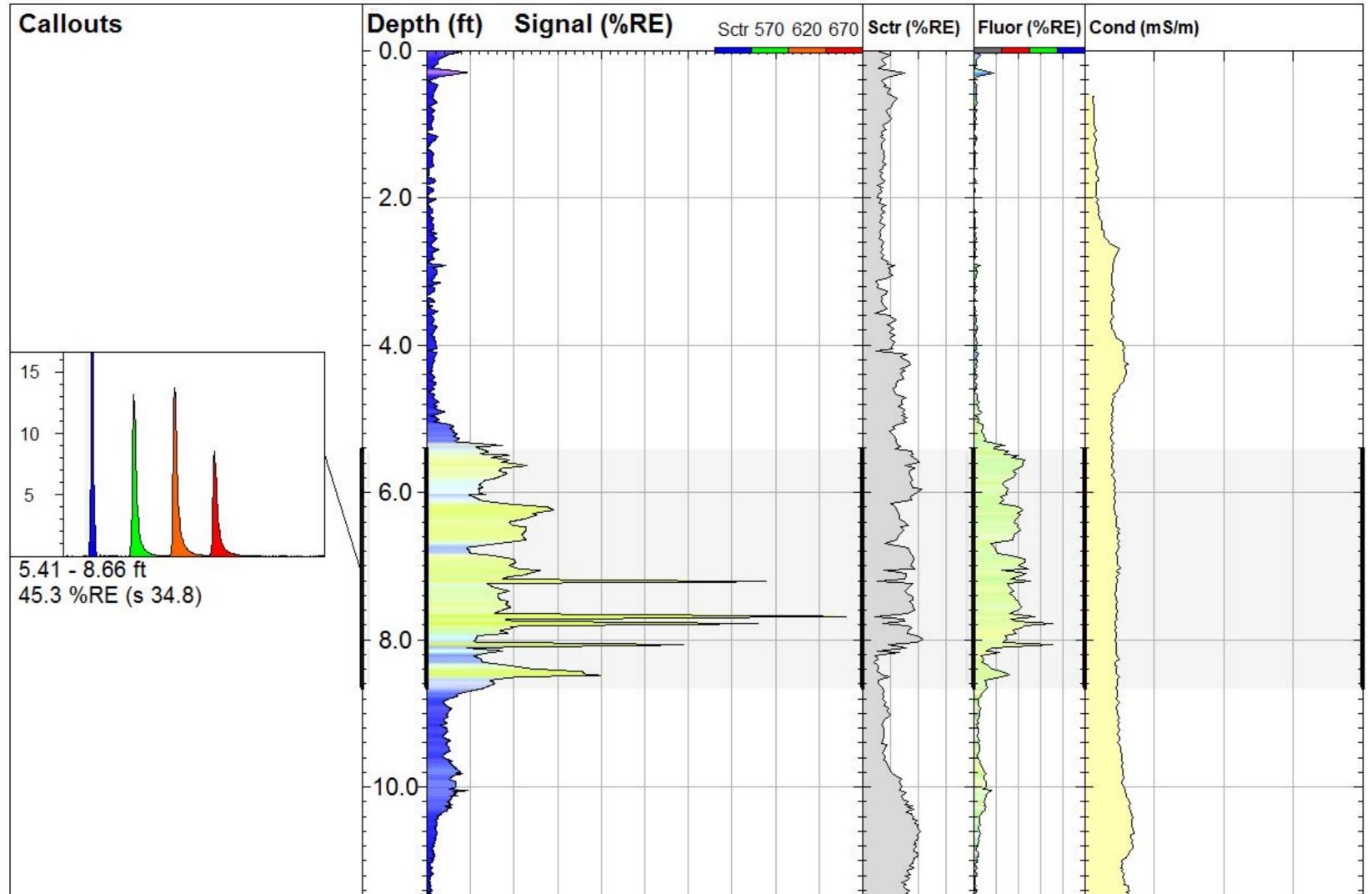


## Appendix D LIF Results

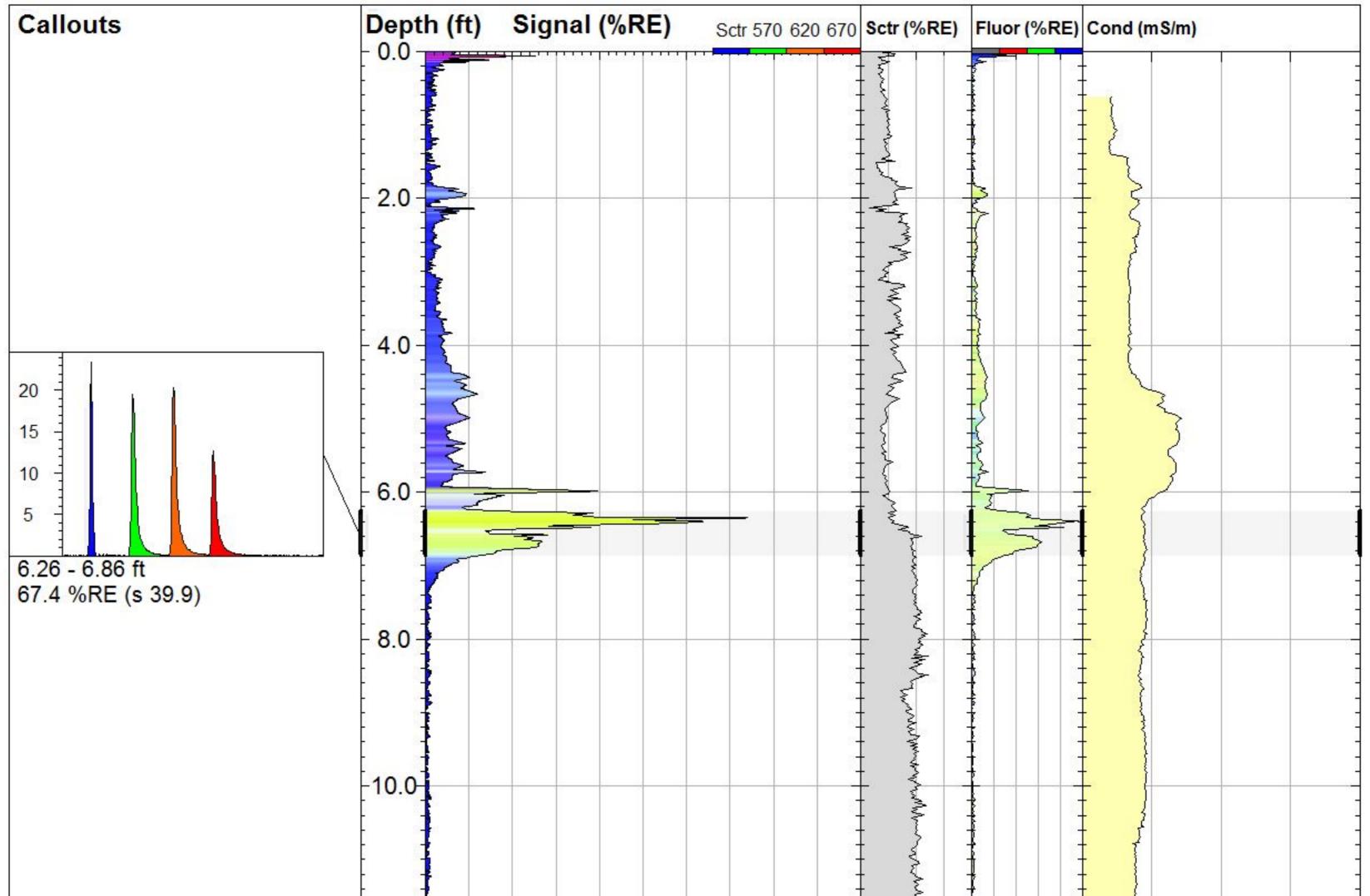
Callouts	Depth (ft)	Signal (%RE)	Sctr 570 620 670	Sctr (%RE)	Fluor (%RE)	Cond (mS/m)	
					+	<u>+</u> }	
				-	Į		
	2.0			+ *			
					4 1		
					*		
	- 4.0						
				τ ζ	4		
	6.0			1			
				+ *			
				- ~			
				1 min			
	8.0			+ }-			
				-			
	-10.0-						
	-10.0			1 5			
				+ +	*		
	-12.0-			+ }	<u>+</u> 		
				+			
				+ 4			
	-14.0-			+			
				- min			
				Ŧ	Ŧ		
	-16.0			+	+		
				+			
					<u>+</u>		
					<u>+</u>		
	-18.0						
				Ŧ	Ŧ		
				1	‡		
	-20.0			4	<u>+</u>		
54	0		50 200	50	20	100	
	TG-01					GOST® By Dako DakotaTechnologies.com	ota
	Site:		Y Coord.(Lat	-N) / Syste	122 1-107	al depth:	
	CLINE AVE		Unavailable	/NA	15.0	01 ft	
DAKOT	Client / Job		X Coord.(Lng			signal:	
TECHNOLOGIE	GHD / 160. Operator /		Unavailable Elevation:	INA		%RE @ 0.14 ft e & Time:	
WWW.DAKOTATECHNOLOG	IES.COM SWM / TG		Unavailable			7-07-13 17:52 CDT	


Callouts	Depth (ft)	Signal (%RE)	Sctr 570 620 670	Sctr (%RE)	Fluor (%RE	) Cond (mS/m)
						<u>+</u> <u>-</u> <u>-</u> <u>-</u>
				-		
	2.0					<b>∓</b> }
					÷ + 4	
			-		ł	
				Mr.Mr.		
	- 4.0		-			<del>-</del> {
				Sanda		
			-	Marshan Arah		<b>+</b> {
	6.0			WVW		
				- Areas	4	
				America		
				wendlin		
	8.0					
				- Am		
				harry		‡ }
	-10.0-			3		
				$\left  \right $		‡ }
				- Jacob - Jaco		
				- Andrews		
	12.0					
				-		
				-		
	11.0			-		
	-14.0-		-	- White and a second se		
				WW		
	16.0				-	
						Ŧ
						‡
	18.0					
	20.0		+ - 			<b>†</b>
	0		50 200	50	20	
	TG-02					GOST® By Dakota DakotaTechnologies.com
	Site:		Y Coord.(Lat-I			al depth:
	CLINE AVE		Unavailable /			01 ft
DAKOT	GHD / 160.		X Coord.(Lng- Unavailable /			x signal: 9 %RE @ 0.01 ft
TECHNOLOGI	ES Operator /		Elevation:			e & Time:
WWW.DAKOTATECHNOLOG	SWM / TG		Unavailable			7-07-13 17:26 CDT

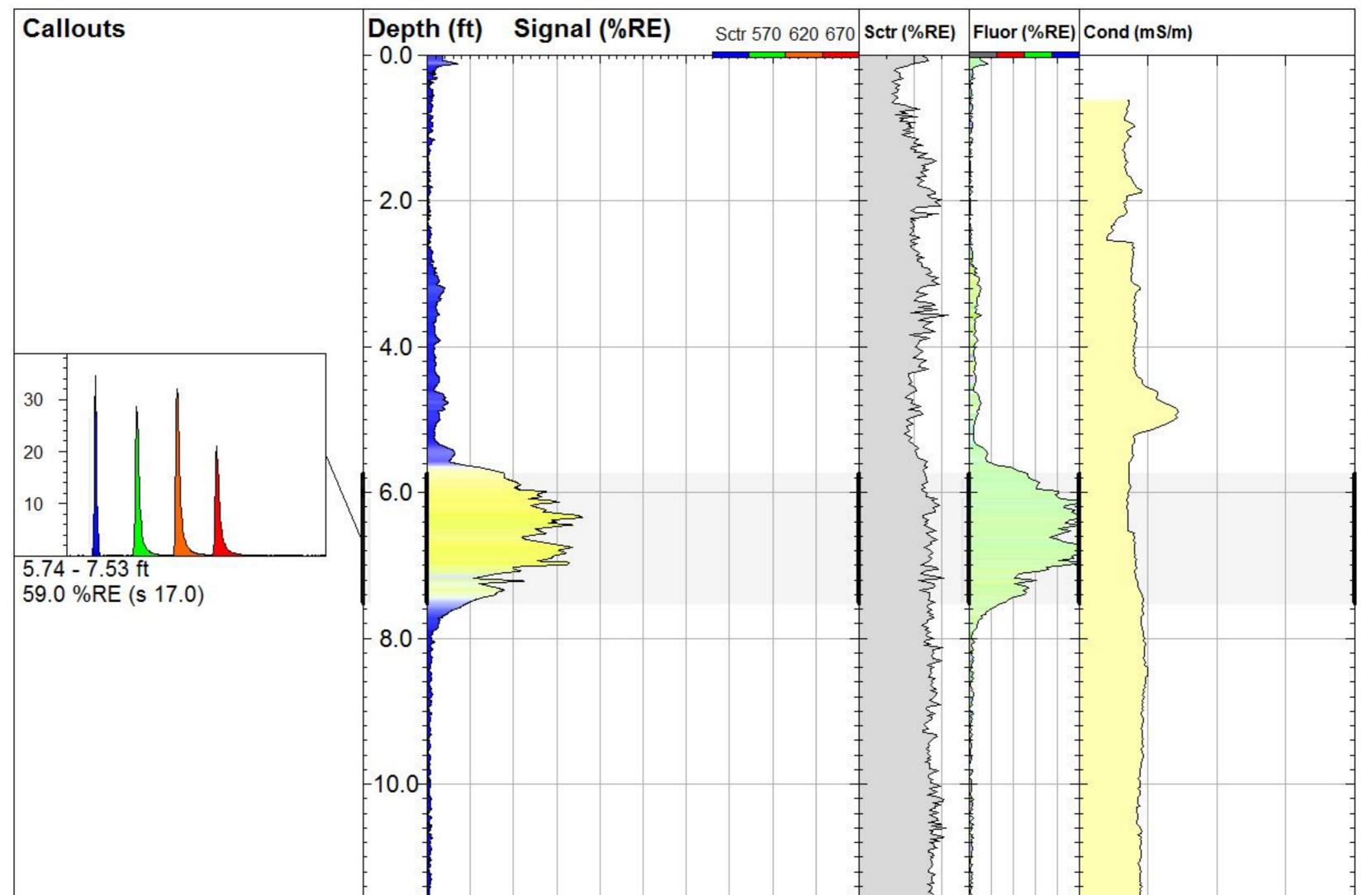



WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 17:02 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 177.6 %RE @ 8.21 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.00 ft
	TG-03		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100	50     200     50     2	0 100
	18.0 		
	-16.0		
	14.0	And the second s	
98.3 %RE (s 34.2)	12.0		

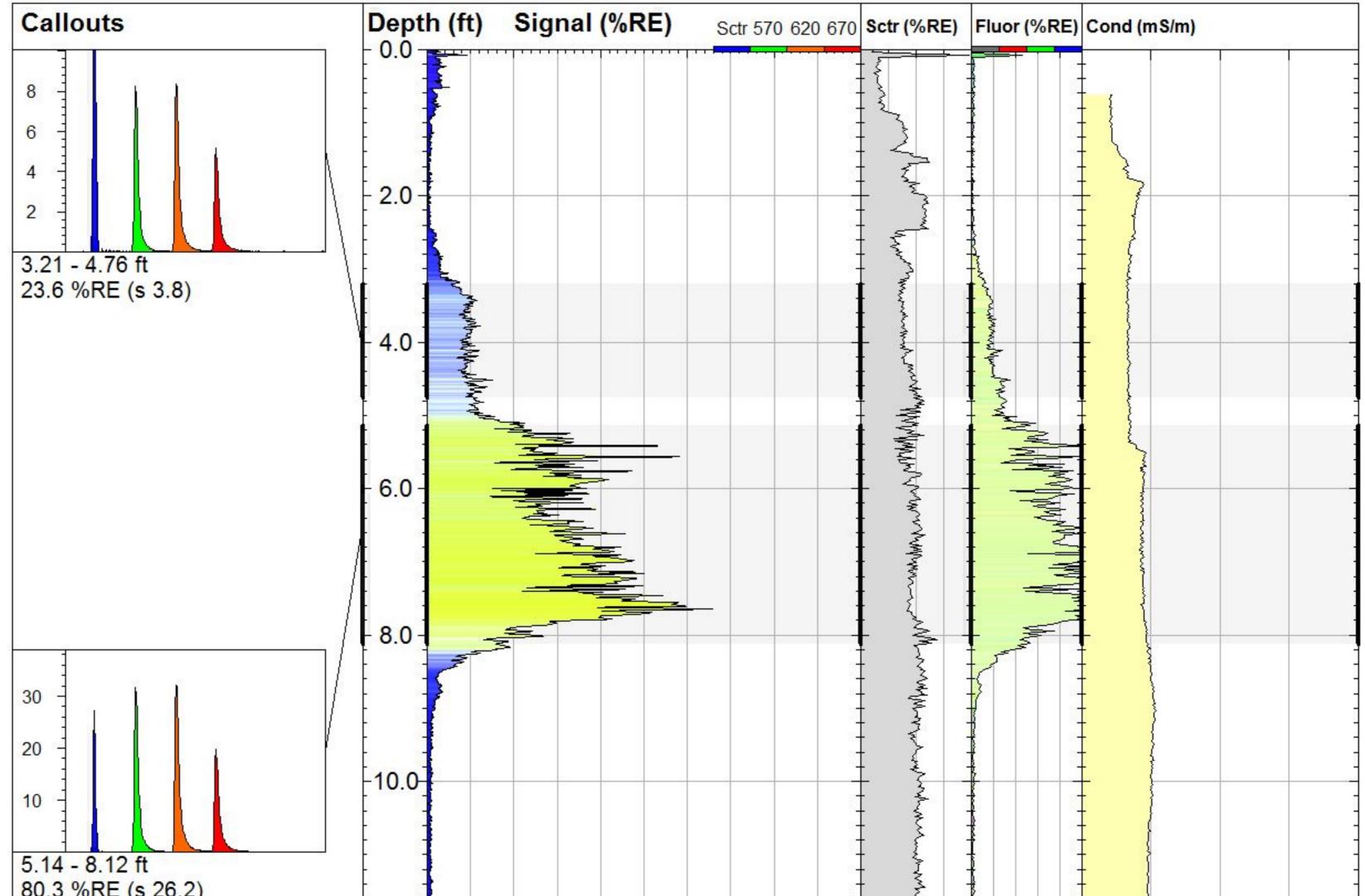



WWW.DAKOTATECHNOLOGIES.COM	SWM / TG1002	Unavailable	2017-07-13 16:39 CDT	
DAKOTA TECHNOLOGIES	GHD / 160.17 Operator / Unit:	X Coord.(Lng-E) / Fix: Unavailable / NA Elevation:	Max signal: <b>131.5 %RE @ 8.83 ft</b> Date & Time:	
	Site: CLINE AVE DITCH Client / Job:	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft	
	TG-04		TarGOST® By Dakota www.DakotaTechnologies.com	
	-20.0	50 200 50 2	0 100	
	-16.0			
	-14.0-			
86.2 %RE (s 25.0)	12.0			



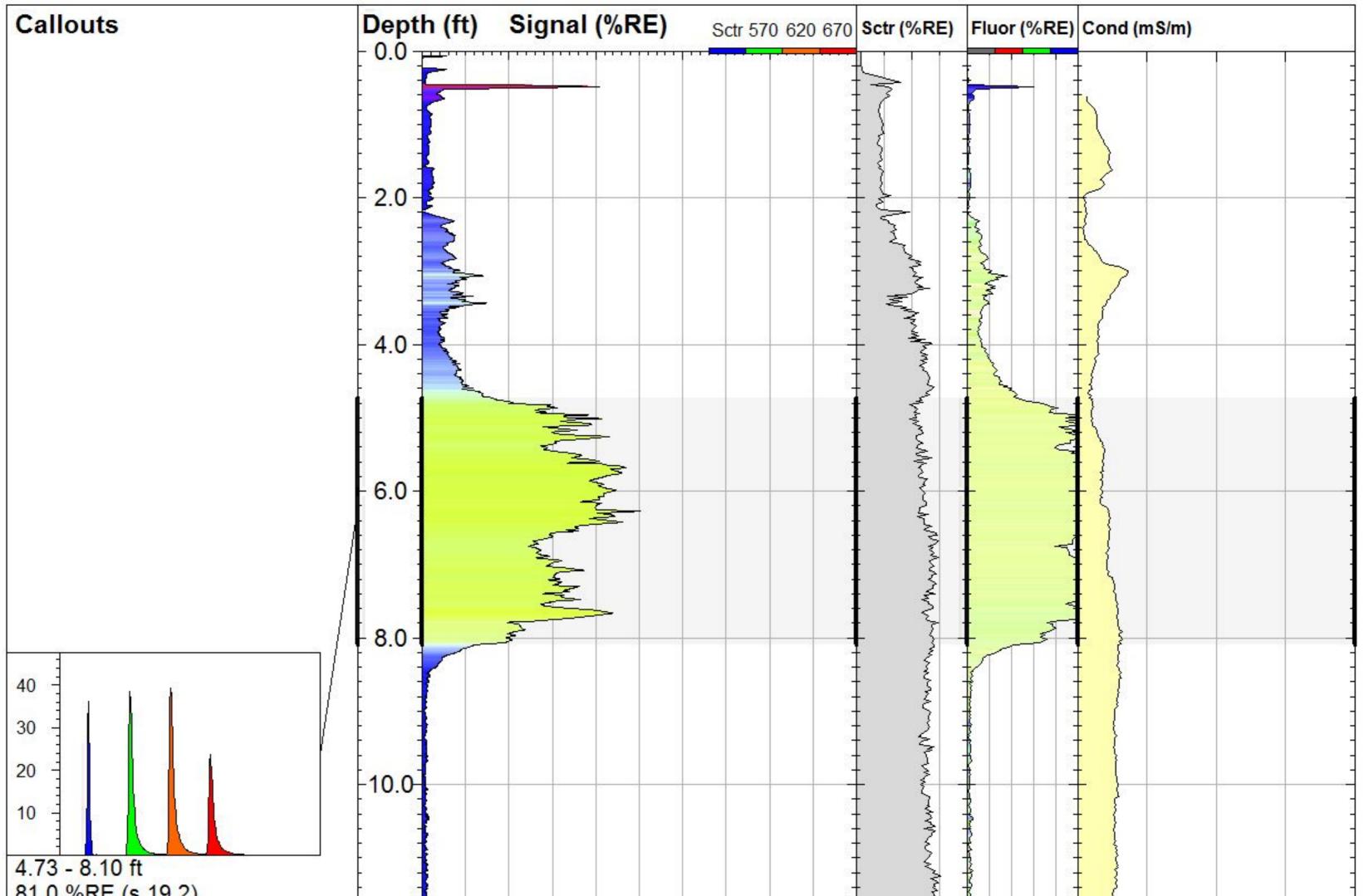

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 16:12 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 301.9 %RE @ 7.29 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft
	TG-05		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 150	50 200 50 20	0 100
	-18.0		
	- <mark>16.0</mark>		
	14.0		
	-12.0		



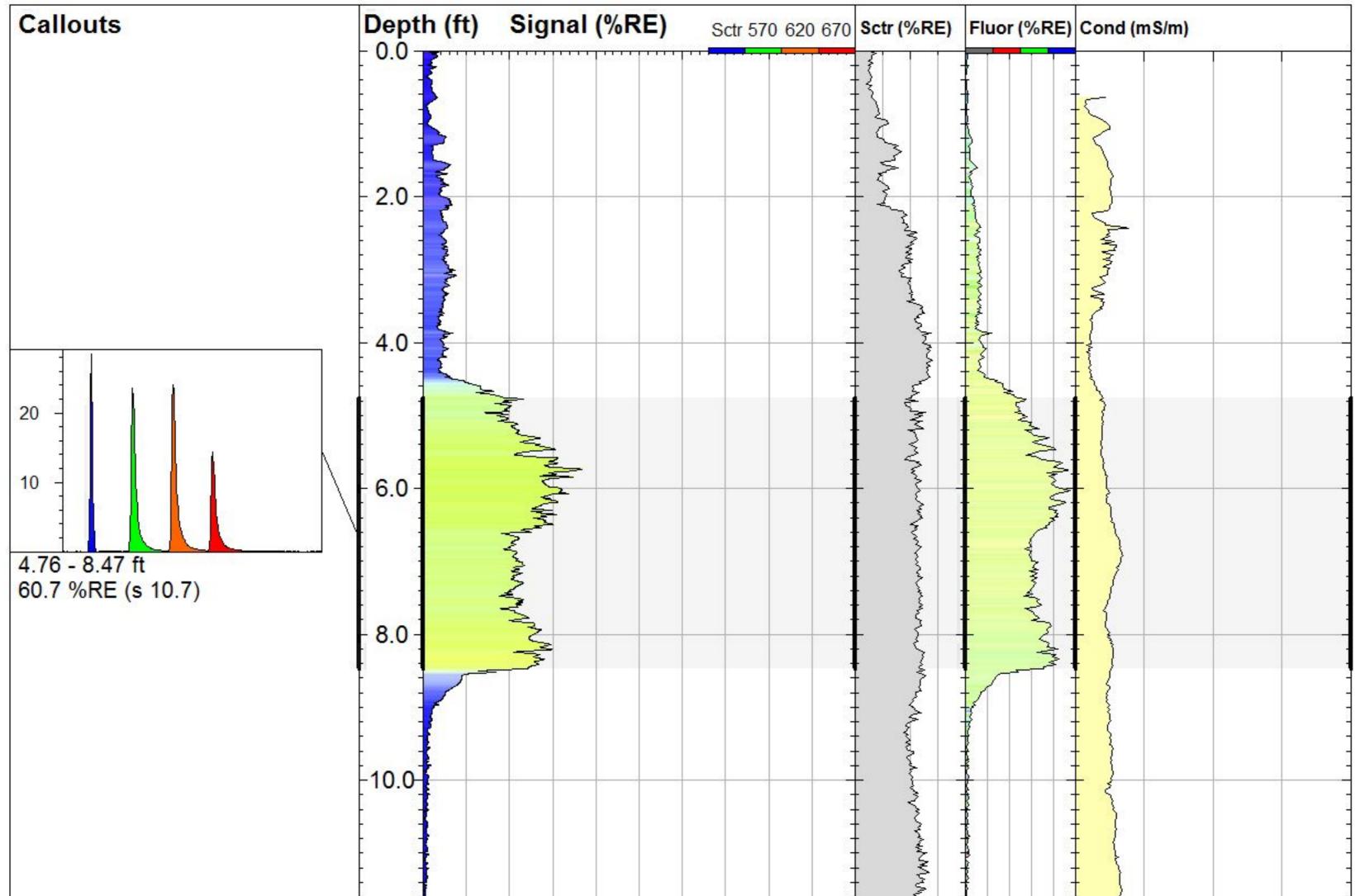

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 15:23 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 243.0 %RE @ 7.68 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.02 ft
	TG-06		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 15	50 200 50 2	0 100
	-18.0		
	-16.0		
	-14.0		
	12.0		



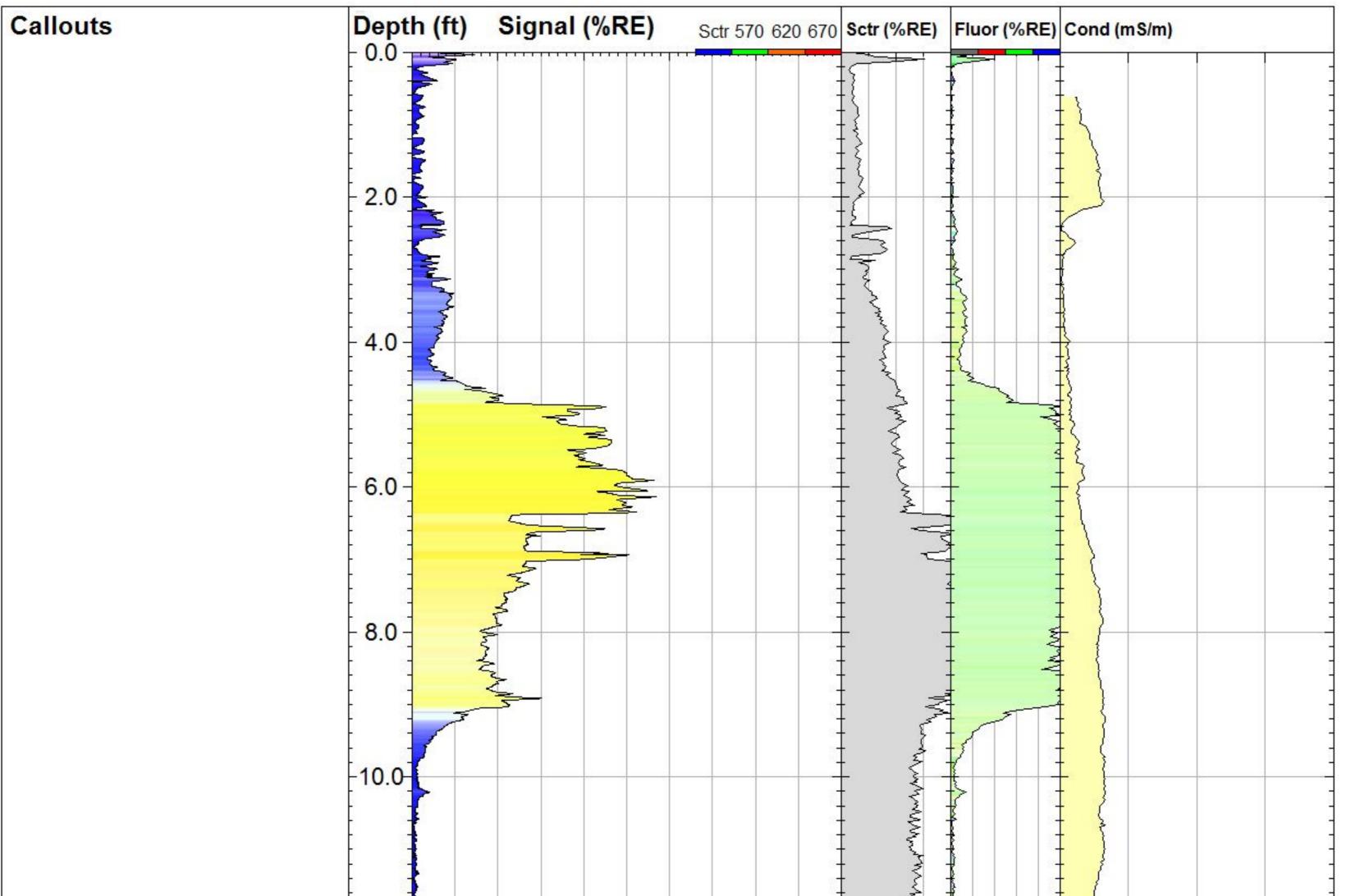
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 14:56 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 188.5 %RE @ 6.35 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.02 ft
	TG-07		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 1	50 200 50 2	0 100
	- 18.0 - 18.0		
	- <mark>16.0</mark>		
	14.0		
	12.0		



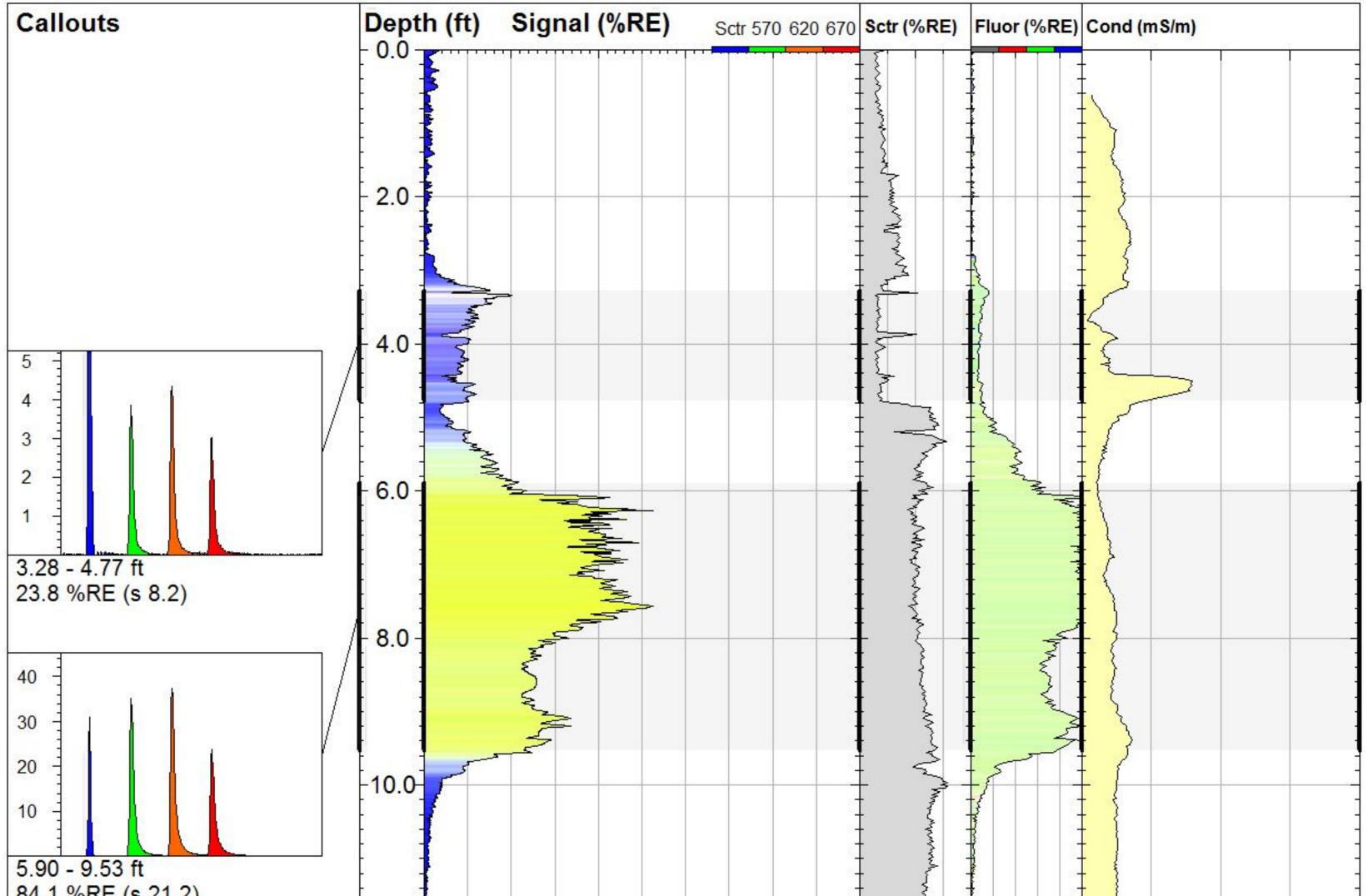

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 14:29 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 90.0 %RE @ 6.35 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.00 ft
	TG-08		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 150	50 200 50 2	0 100
	-18.0		
	-16.0		
	-14.0	+ + + + + + + + + + + + + + + + + + +	
	12.0	+ + + + + + + + + + + + + + + + + + +	



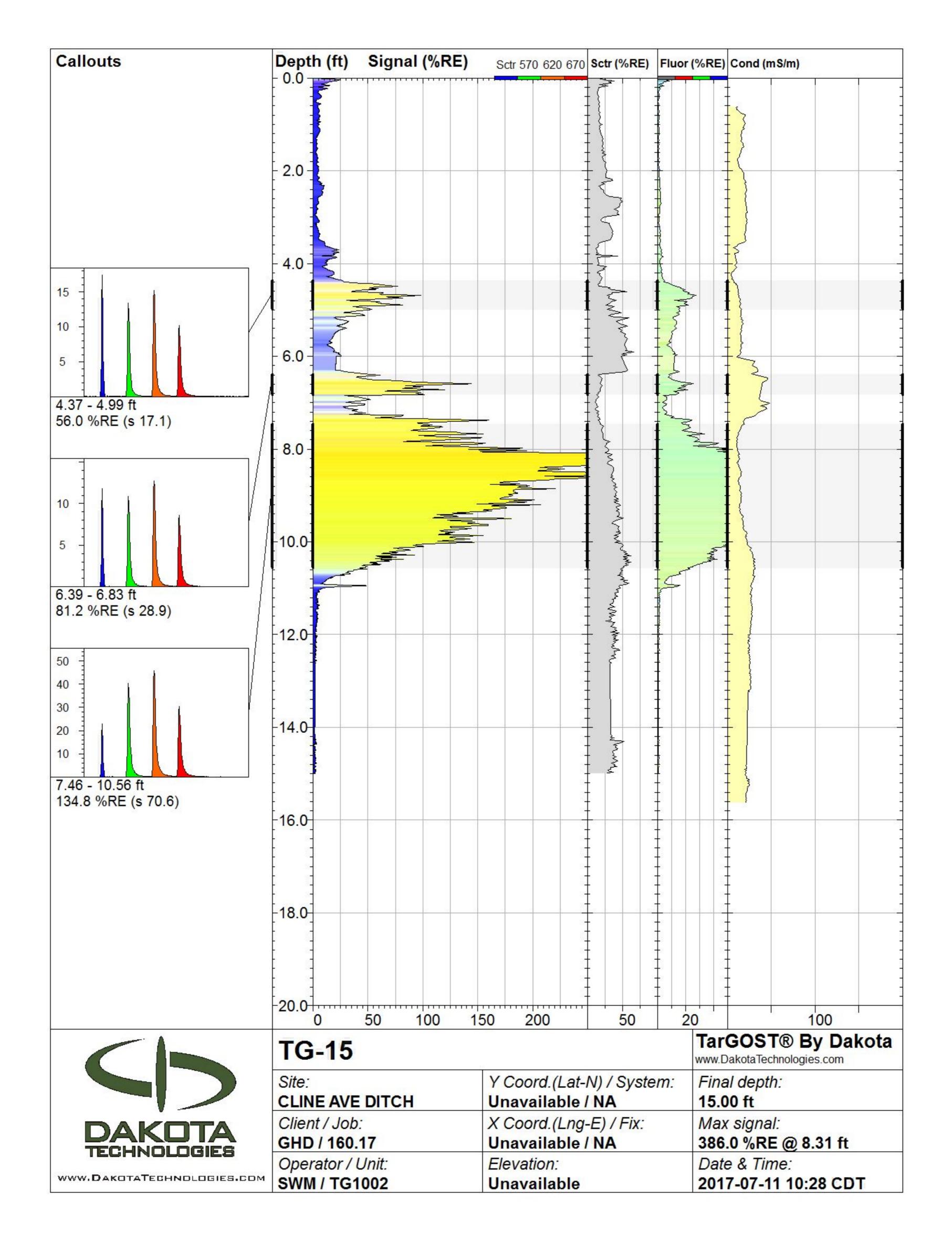

80.3 %RE (s 26.2)			
	-12.0		
	-14.0	+ + + + + + + + + + + + + + + + + + +	
	-16.0		
	-18.0		
	20.0 0 50 100 1	50 200 50 2	0 100
	TG-09		TarGOST® By Dakota www.DakotaTechnologies.com
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.00 ft
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 166.2 %RE @ 7.65 ft
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-13 13:37 CDT

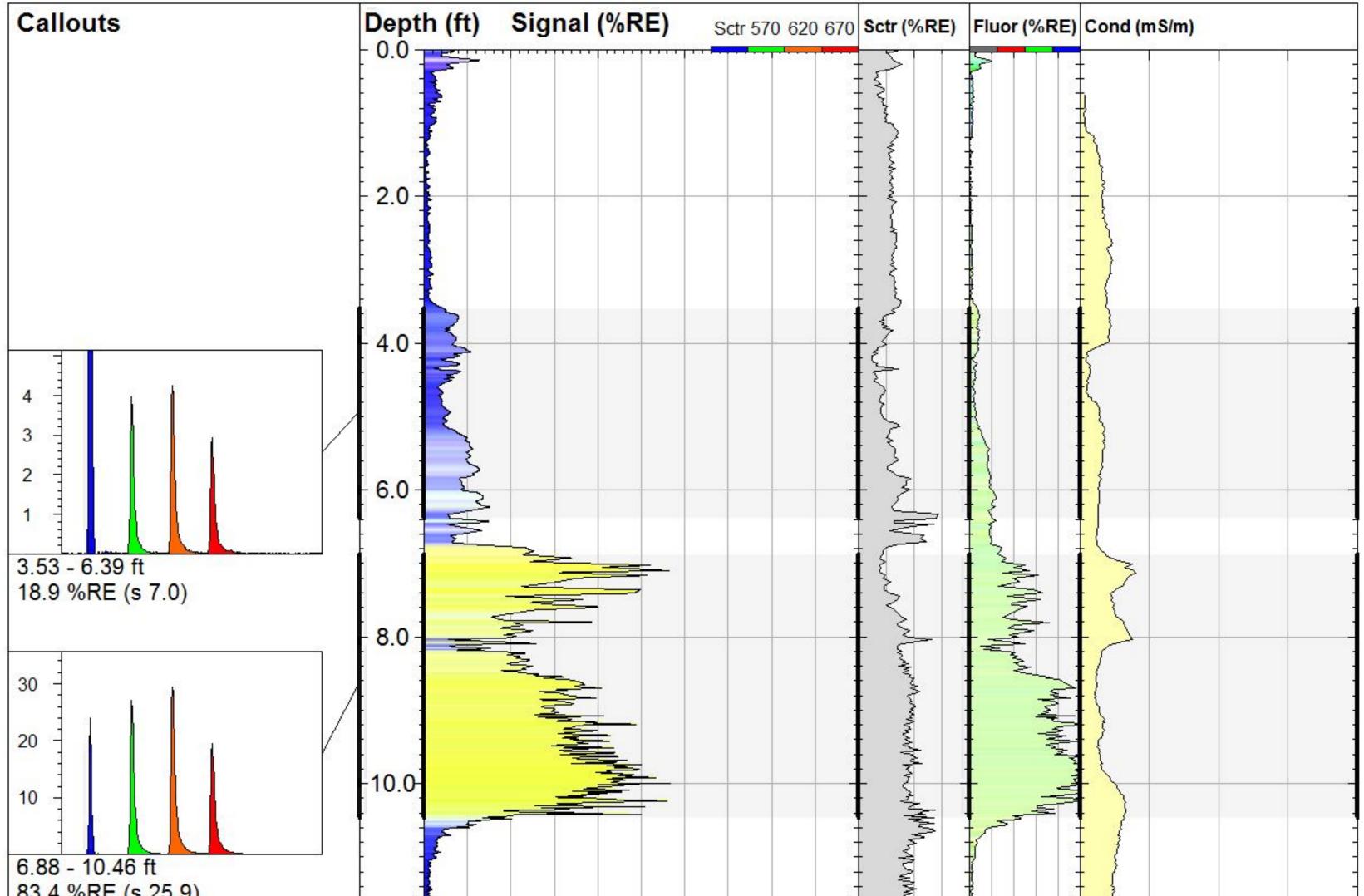

Callouts		Signal (%RE)	Sctr 570 620 670 Sctr (%	6RE) Fluo	r (%RE) Cond (mS/m)
	- 0.0				
				3	
	- 2.0				
	- 4.0			WWW W	
				M. W.	
	6.0				
				A A A A A A A A A A A A A A A A A A A	
				My marine	
	8.0				
				and the	
				AM Marine	
	-10.0			2 WWW	
				M	
				provident	
	12.0			at the	
				www.ww	
				N AMA	
	-14.0			S ANNANA	
				the state of the s	
	16.0				
	18.0				
	20.0				
		50 100 1	50 200 5	50 2	100 TarGOST® By Dakota
	TG-10		V Oceand (I - 1 AD / C	)t.	www.DakotaTechnologies.com
	Site: CLINE AVE	DITCH	Y Coord.(Lat-N) / S Unavailable / NA	system:	Final depth: 15.00 ft
DAKOT	Client / Job		X Coord.(Lng-E) / I	Fix:	Max signal:
TECHNOLOGI	GHD / 160. Operator /		Unavailable / NA Elevation:		49.1 %RE @ 0.03 ft Date & Time:
WWW.DAKOTATECHNOLOG	SWM / TG		Unavailable		2017-07-11 13:58 CDT



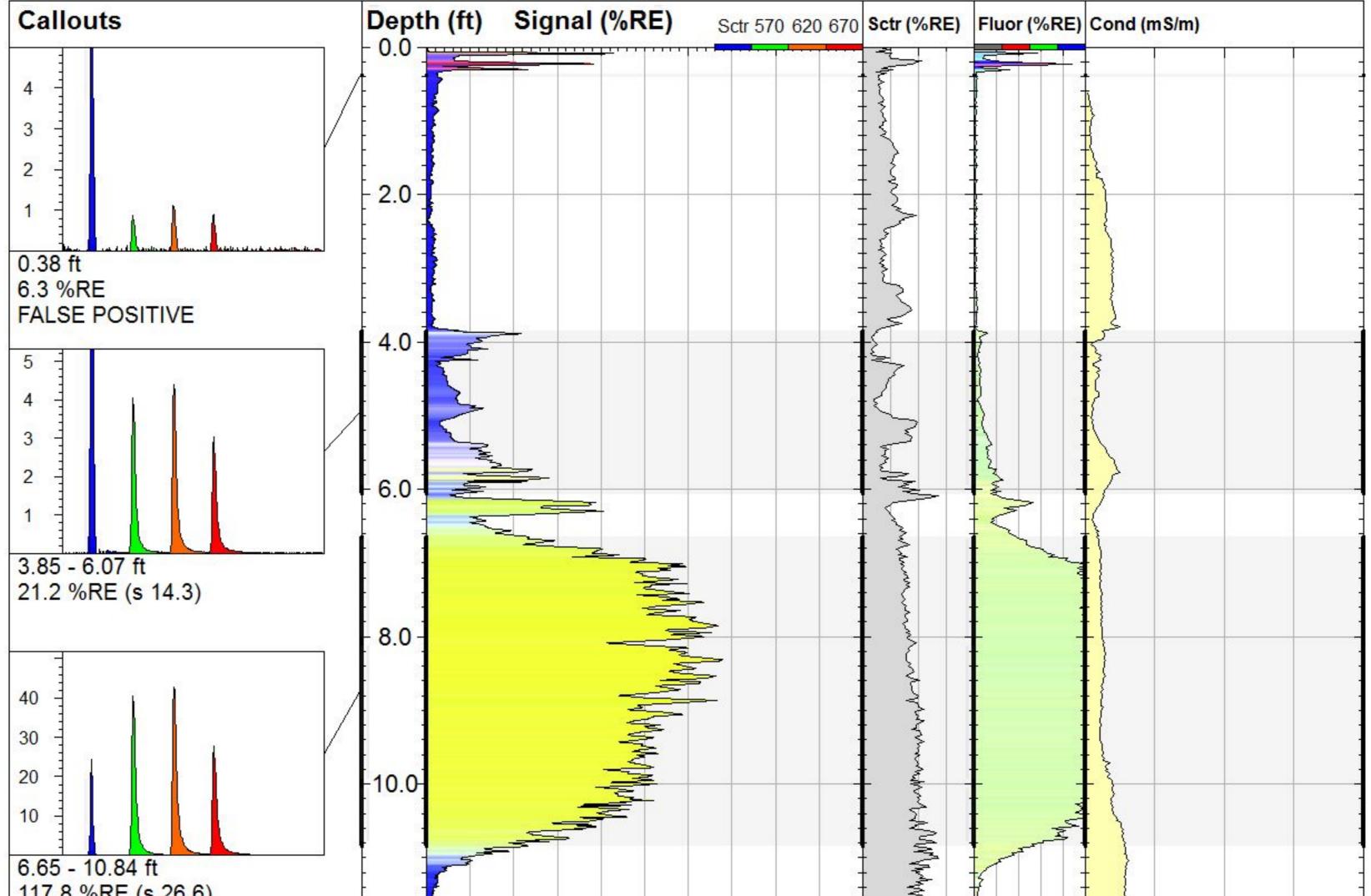

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 13:24 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 127.1 %RE @ 6.27 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.25 ft
	TG-11		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 1	50 200 50 2	0 100
	-18.0- 		
	-16.0		
	-14.0		
81.0 %RE (s 19.2)	12.0		



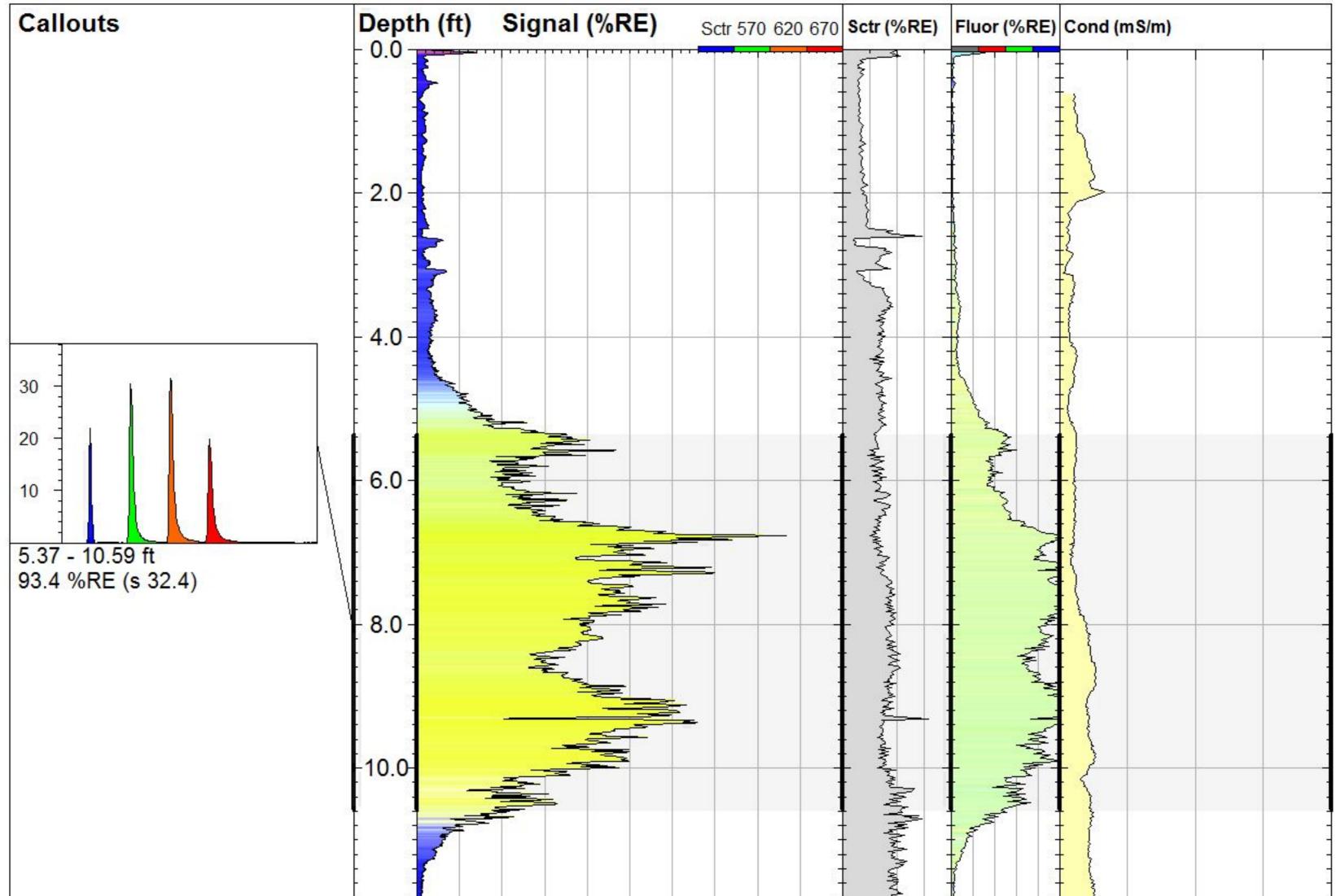

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 12:57 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 91.8 %RE @ 5.74 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.12 ft
	TG-12		TarGOST® By Dakota www.DakotaTechnologies.com
	-20.0 0 50 100 1	50 200 50 2	20 100
	-18.0		
	-16.0		
	-14.0		
	12.0		



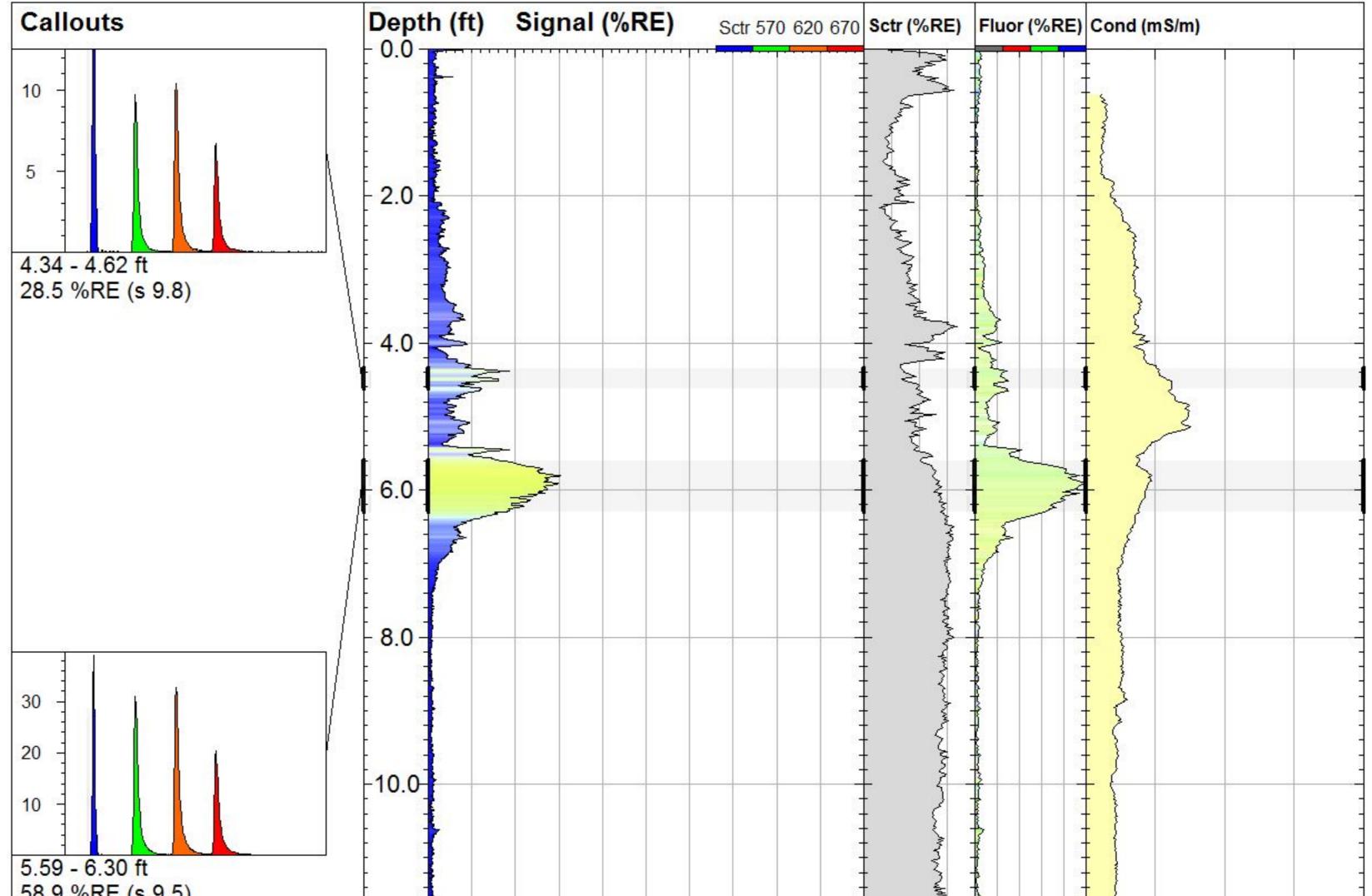

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 11:30 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 142.4 %RE @ 6.14 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft
	TG-13		TarGOST® By Dakota www.DakotaTechnologies.com
	20.0 0 50 100 1	50 200 50 2	0 100
	-18.0 		
	-16.0		
	-14.0		
	-12.0		



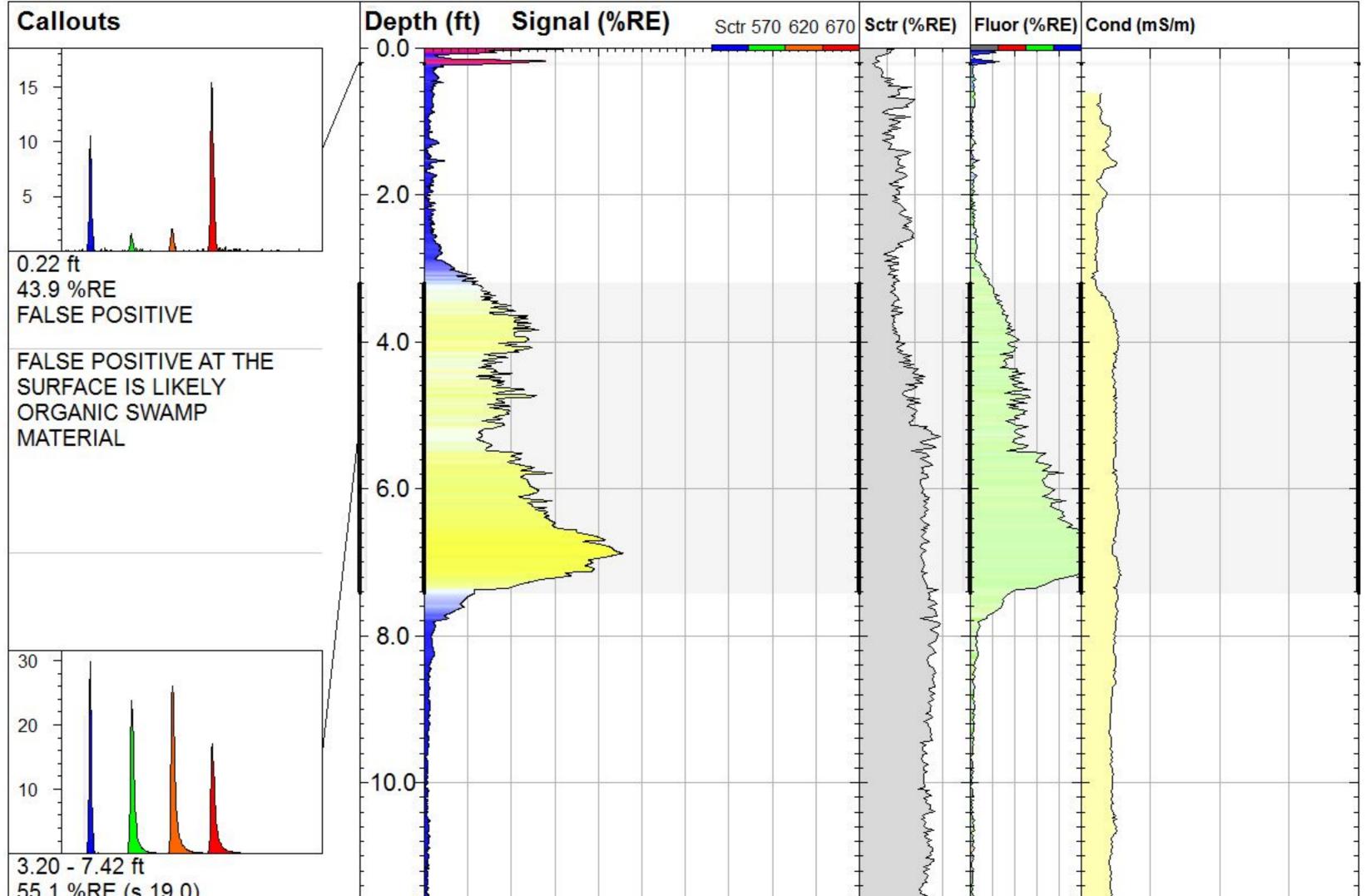

	-20.0 0 50 100 1 TG-14 Site: CLINE AVE DITCH	50 200 50 2 Y Coord.(Lat-N) / System: Unavailable / NA	0 100 TarGOST® By Dakota www.DakotaTechnologies.com <i>Final depth:</i> 15.01 ft
	-14.0 -16.0 -18.0		
84.1 %RE (s 21.2)	12.0		



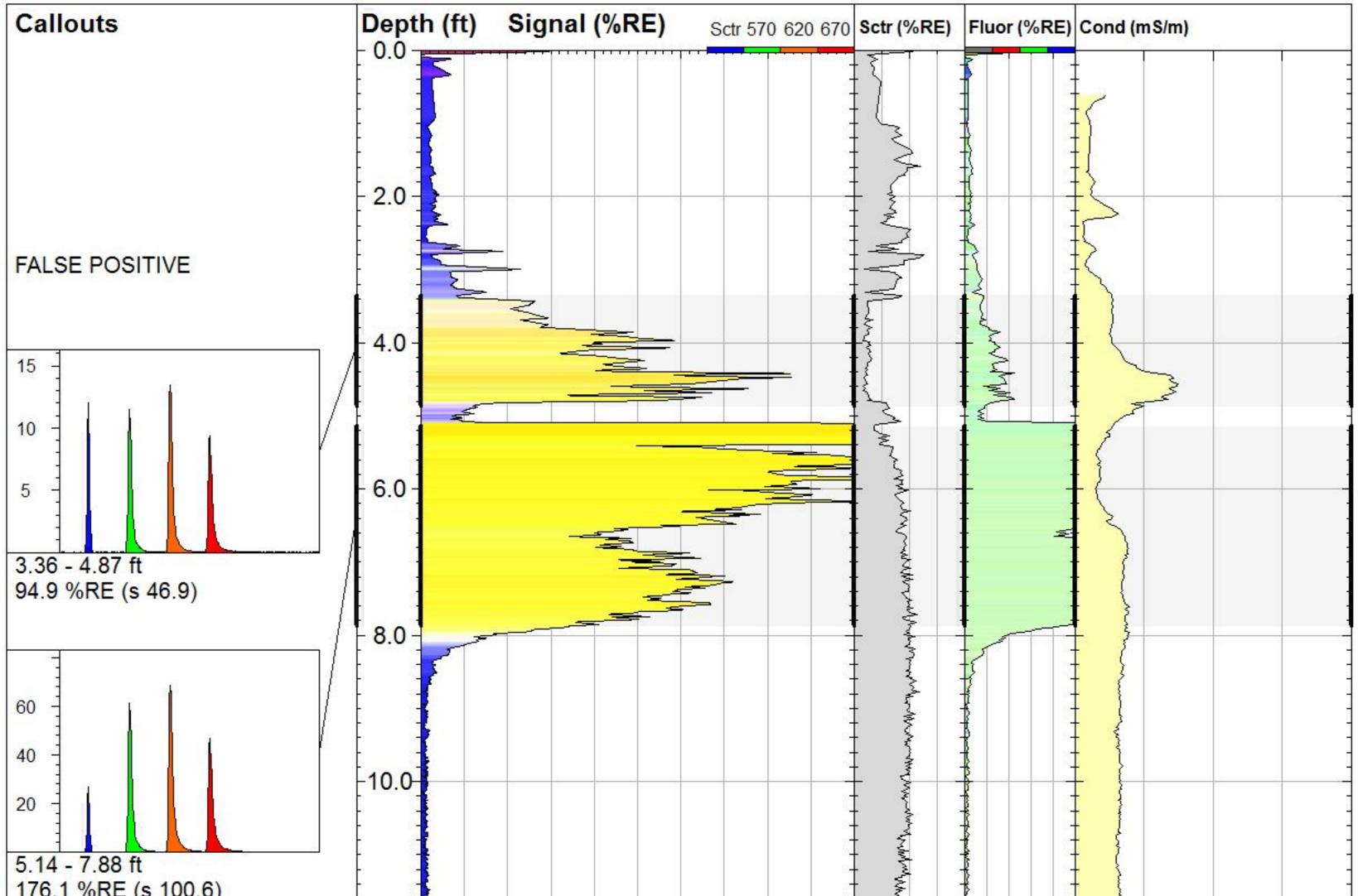




83.4 %RE (s 25.9)	-12.0		
	-14.0	+ + + + + + + + + + + + + + + + + + +	
	- <mark>16.0</mark>		
	-18.0		
	20.0 0 50 100 1	50 200 50 2	0 100
	TG-16		TarGOST® By Dakota www.DakotaTechnologies.com
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft
DAKOTA	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 141.9 %RE @ 10.00 ft
TECHNOLOGIES	Operator / Unit:	Elevation:	Date & Time:
	SWM / TG1002	Unavailable	2017-07-11 09:53 CDT



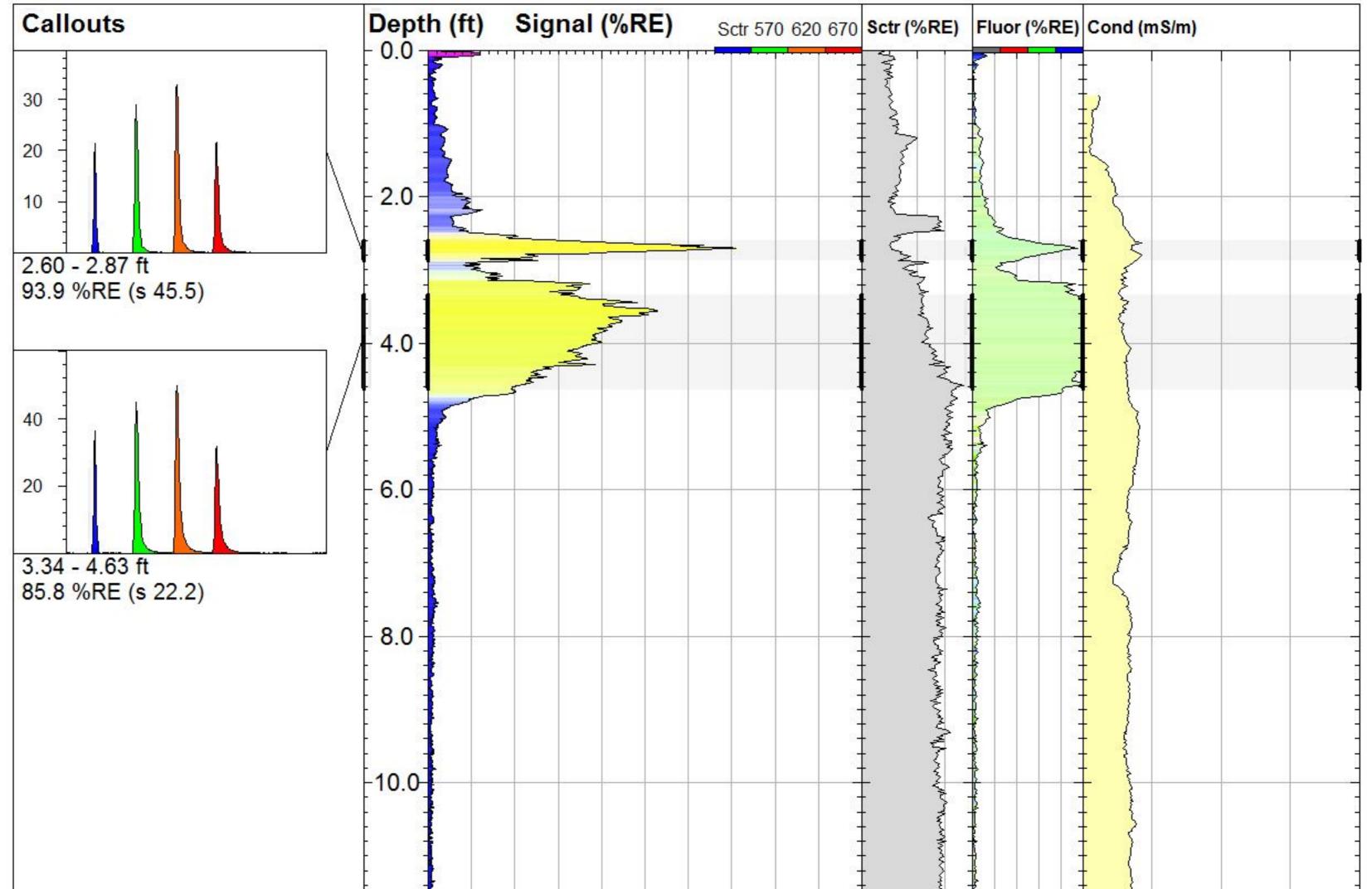

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 09:26 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 169.5 %RE @ 8.31 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.00 ft Mox signal:
	TG-17		TarGOST® By Dakota www.DakotaTechnologies.com
	-20.0 0 50 100 150		
	-14.0 -16.0		
117.8 %RE (s 26.6)	12.0	THE PART AND	



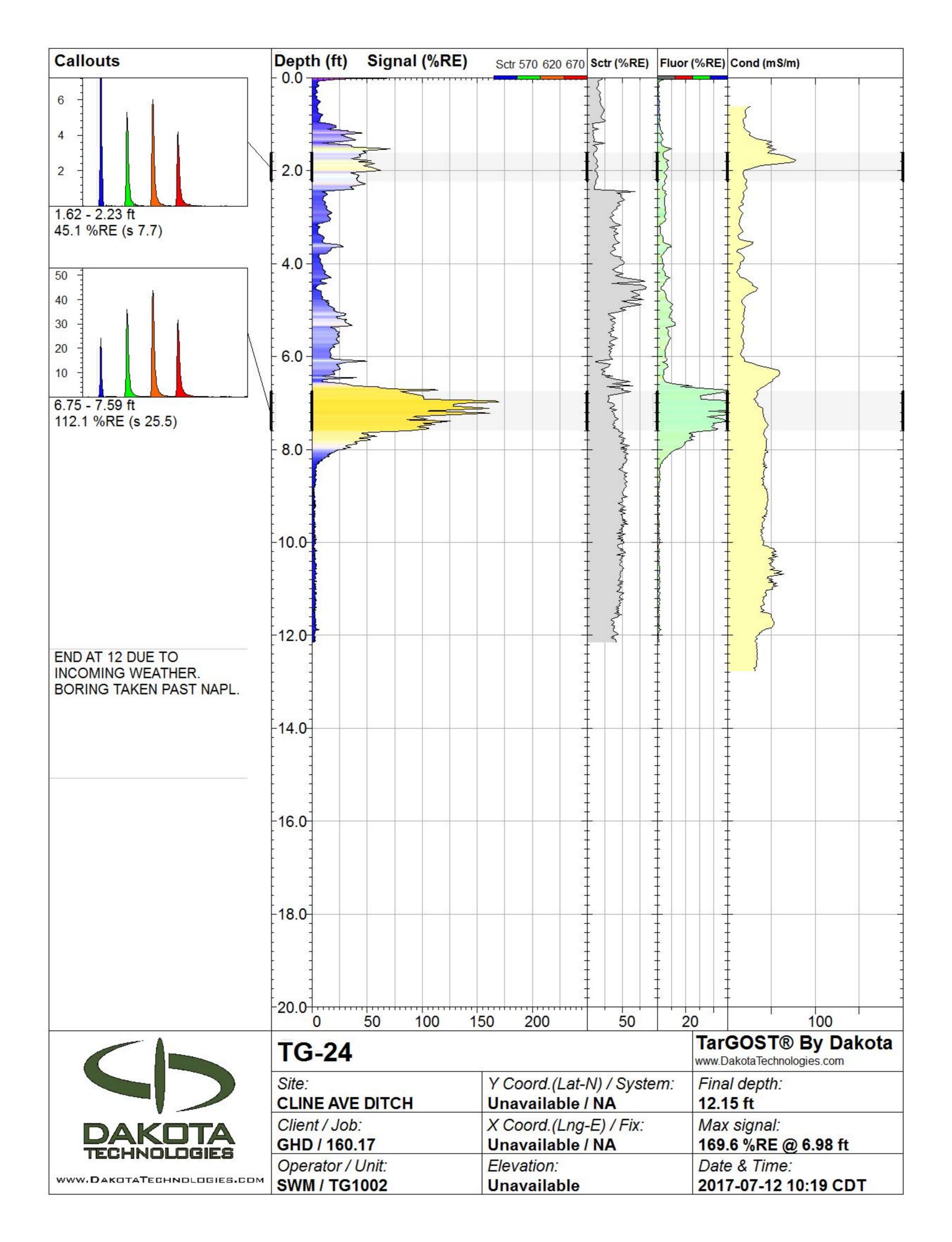

WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 08:50 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 217.7 %RE @ 6.77 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.09 ft
	TG-18		TarGOST® By Dakota www.DakotaTechnologies.com
	-20.0 0 50 100 150	50 200 50 2	0 100
	- <mark>18.0</mark>		
	- <mark>16.0</mark>		
	14.0		
	12.0	- + + + + + + + + + + + + + + + + + + +	

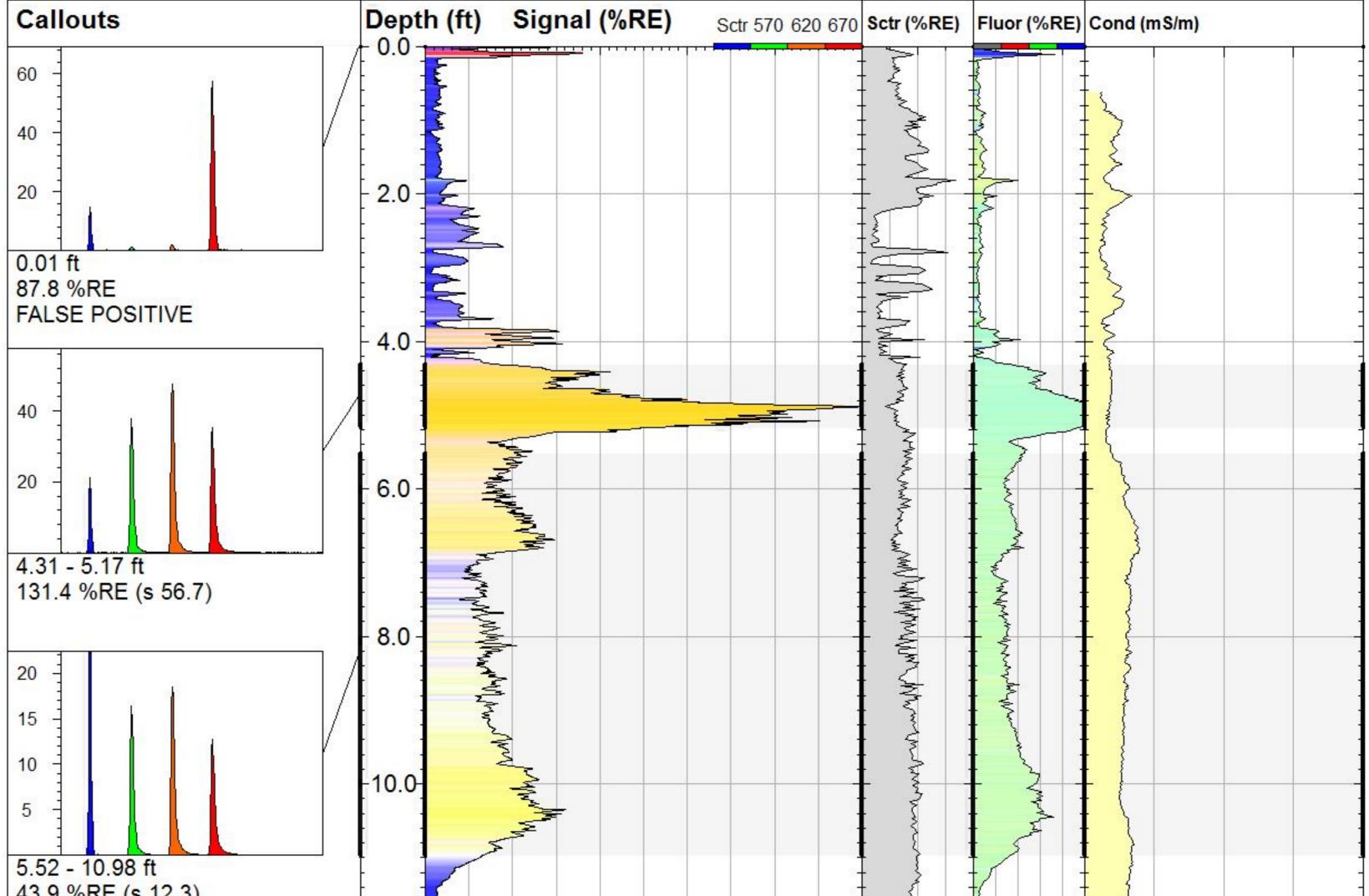



WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-11 15:15 CDT
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 76.4 %RE @ 5.81 ft
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft
	TG-19		TarGOST® By Dakota www.DakotaTechnologies.com
	-18.0 	50 200 50 20	0 100
	-14.0	- + + + + + + + + + + + + + + + + + + +	
58.9 %RE (s 9.5)	12.0		

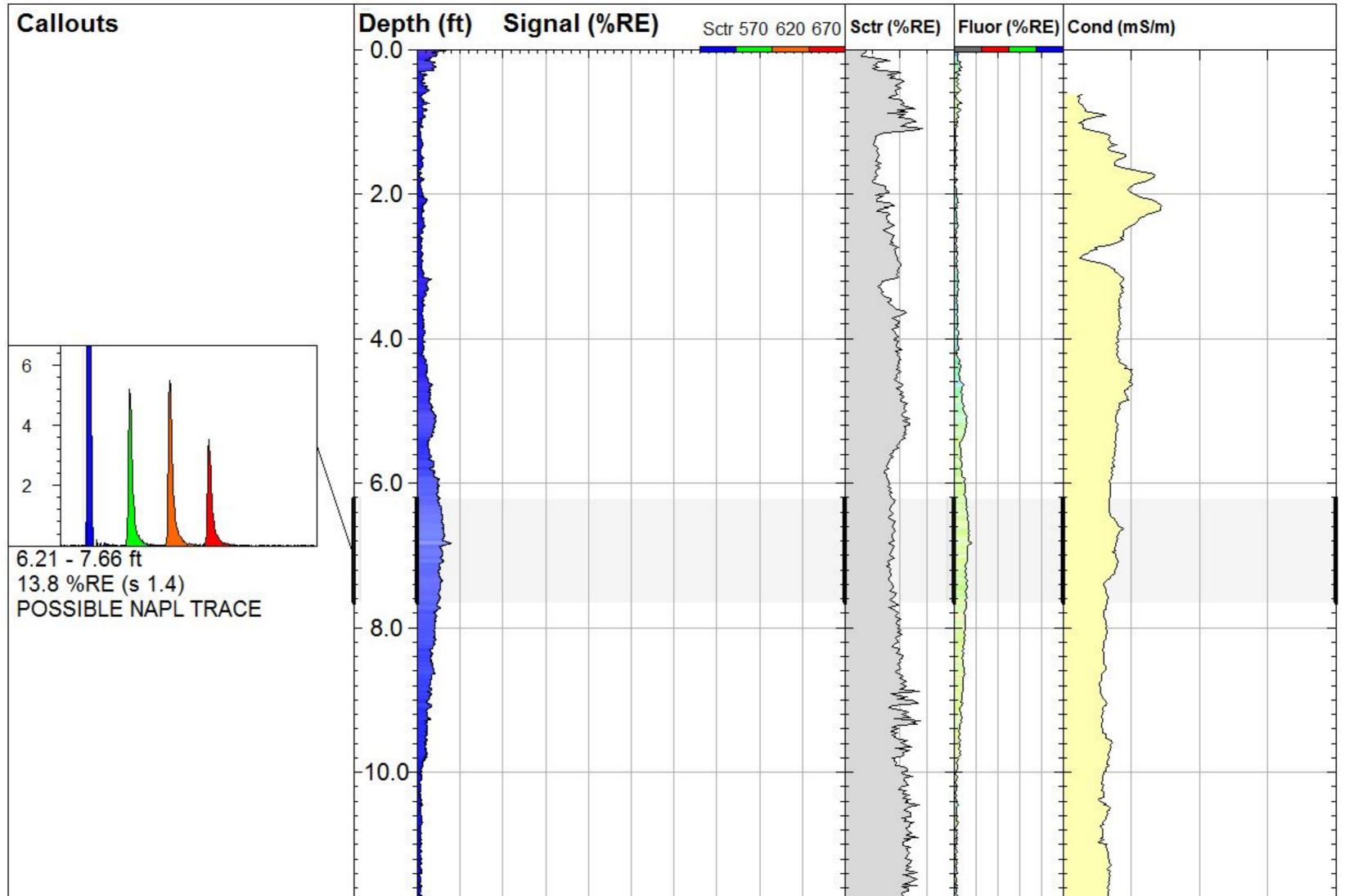



55.1 %RE (s 19.0)					
	12.0				
	14.0				
	16.0				
	18.0				
	20.0				
•	0 50 100 1	50 200 50 2			
	TG-20		TarGOST® By Dakota www.DakotaTechnologies.com		
	Site:	Y Coord.(Lat-N) / System:	Final depth:		
	CLINE AVE DITCH	Unavailable / NA	15.01 ft		
DAKOTA	Client / Job:	X Coord.(Lng-E) / Fix:	Max signal:		
TECHNOLOGIES	GHD / 160.17	Unavailable / NA	114.0 %RE @ 6.88 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:	Elevation:	Date & Time:		
	SWM / TG1002	Unavailable	2017-07-11 15:52 CDT		

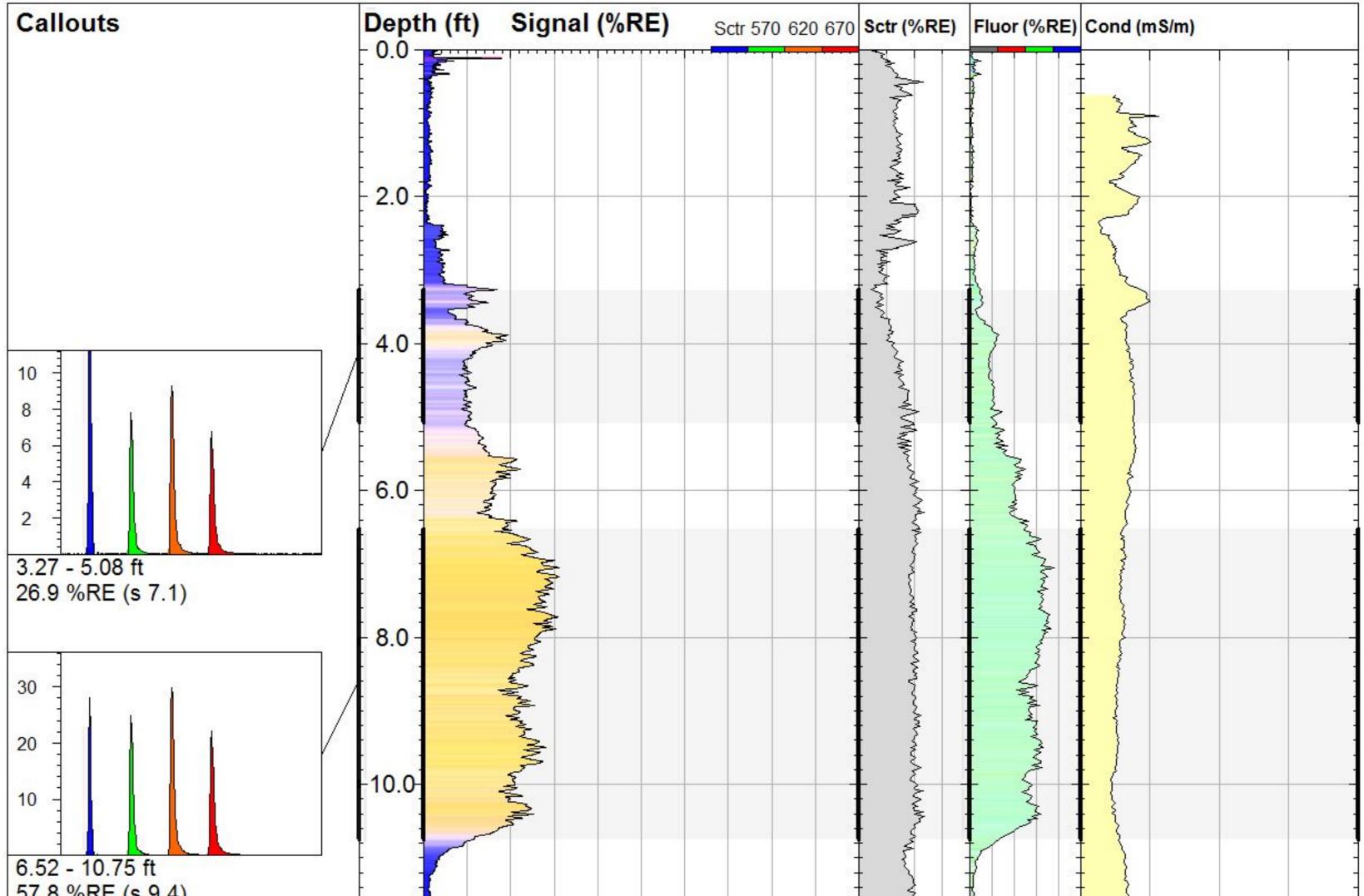




WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Unavailable	Date & Time: 2017-07-11 16:23 CDT		
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA Elevation:	Max signal: 743.8 %RE @ 5.19 ft		
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft		
	TG-21		TarGOST® By Dakota www.DakotaTechnologies.com		
	-12.0 -14.0	Manager			
176.1 %RE (s 100.6)					

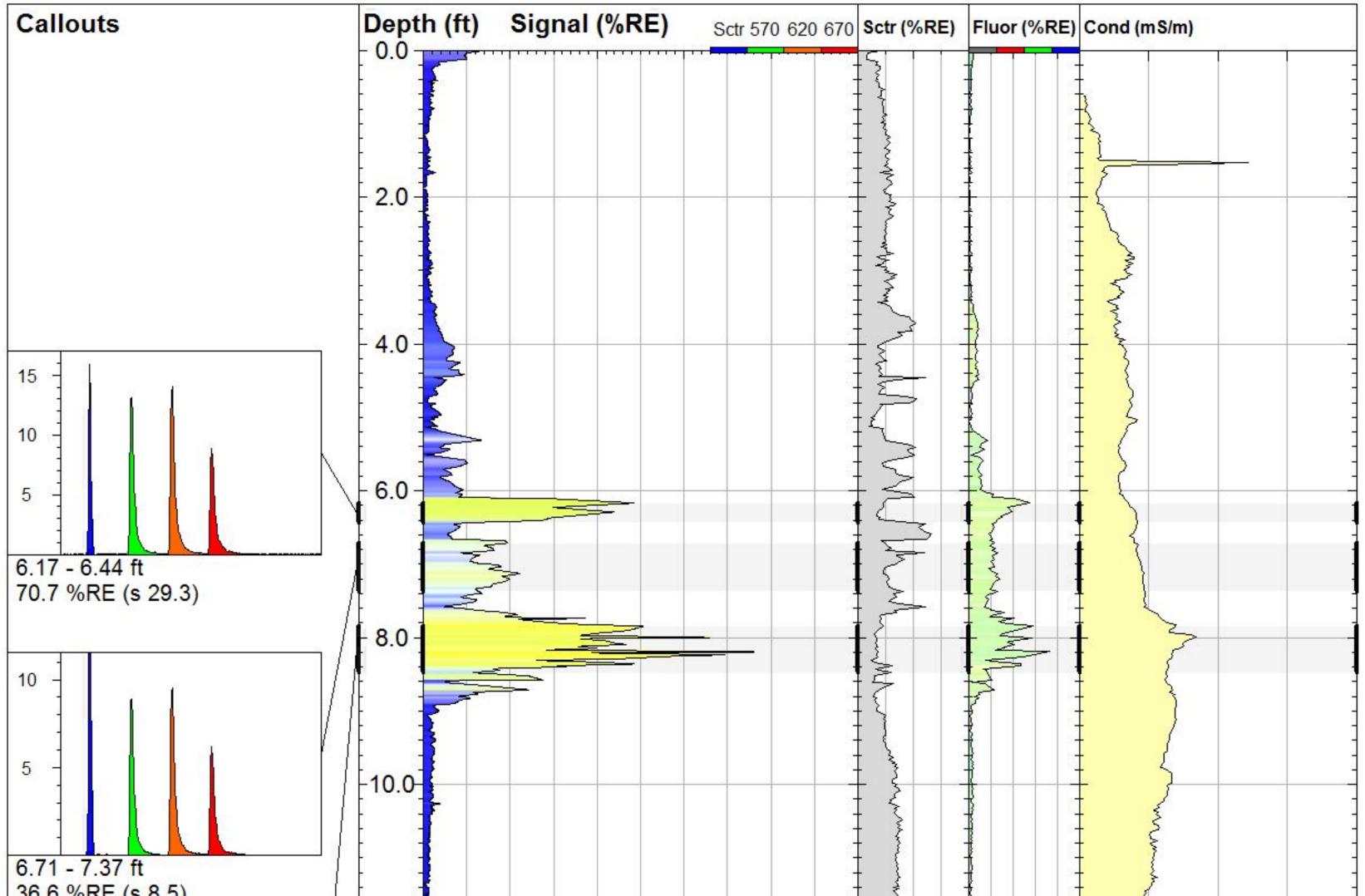





WWW.DAKOTATECHNOLOGIES.COM			⁻ / Unit: G1002				vation availa					te & Time 17-07-11	e: 14:39 CE	т
DAKOTA TECHNOLOGIES	GHD	Client / Job: GHD / 160.17		Un	availa	able /	E) / Fiz NA	K:	177	and a second sec	@ 2.70 ft			
	Site: CLINE AVE DITCH				Un	Y Coord.(Lat-N) / System: Unavailable / NA			15.	al depth: 01 ft				
	TG	i-2	3										By Da     lologies.com	akota
	-20.0	0	5 <mark>0</mark>	10	0	<mark>150</mark>	200	-	50		20		100	
	- <mark>18.0</mark> -		5											
	- <mark>16.0</mark> -		2	12 22			82		505 0.0 0.0					
	-14.0-									WANT MANA MANA				
	-12.0-		5 p1			5			-	Anto Mark				







	Site: CLINE AVE DITCH Client / Job: GHD / 160.17 Operator / Unit:	Y Coord.(Lat-N) / System: Unavailable / NA X Coord.(Lng-E) / Fix: Unavailable / NA Elevation:	www.DakotaTechnologies.com Final depth: 15.02 ft Max signal: 281.7 %RE @ 4.88 ft Date & Time:
		50 200 50 20	TarGOST® By Dakota
	14.0		
43.9 %RE (s 12.3)	12.0		



WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-12 09:36 CDT		
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Final depth: <b>15.00 ft</b> Max signal: <b>19.6 %RE @ 6.83 ft</b>		
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA			
	TG-27		TarGOST® By Dakota www.DakotaTechnologies.com		
	-20.0 0 50 100 150	50 200 50 2	0 100		
	-18.0				
	16.0				
	-14.0	+ + + + + + + + + + + + + + + + + + +			
	12.0				



WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1002	Elevation: Unavailable	Date & Time: 2017-07-12 14:55 CDT		
	Client / Job: GHD / 160.17	X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 78.0 %RE @ 7.05 ft		
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft		
	TG-28		TarGOST® By Dakota www.DakotaTechnologies.com		
	14.0				
57.8 %RE (s 9.4)	12.0				



36.6 %RE (s 8.5)					
15	-12.0	++++++++++++++++++++++++++++++++++++++			
10 5 7.85 - 8.48 ft	14.0	All			
100.5 %RE (s 39.7)	- <mark>16.0</mark>				
	-18.0				
	-20.0	50 200 50 20	0 100		
	TG-29		TarGOST® By Dakota www.DakotaTechnologies.com		
	Site: CLINE AVE DITCH	Y Coord.(Lat-N) / System: Unavailable / NA	Final depth: 15.01 ft		
DAKOTA GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA	Max signal: 197.6 %RE @ 8.20 ft		
TECHNOLOGIES	Operator / Unit:	Elevation:	Date & Time:		

Callouts	Depth (ft)	Signal (	%RE)	Sctr 570 6	20 670	Sctr (%RE)	Fluor (%RE)	) Cond (mS/m)
						1 march		
	2.0					- And		<u>+</u> }
	4.0			6	-			
					1	- wind		
	6.0				-			
	- 8.0 -				-			
						ANA		
	-10.0-							
					-			
					-	Antonia		
	-12.0		20 20		-	- Annota		- {
						My		
						wind a		
	-14.0-					Mulan		
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
						<u></u>		
	-16.0				-			
					-			
	-18.0							
	20.0						+	
- A	0	50 10	0 1	50 200		50	20 Tar	100 GOST® By Dakot
	TG-30			14.0			www.[DakotaTechnologies.com
	Site: CLINE AVE	DITCH		Y Coord. Unavaila	(Lat-	N) / Syste NA		al depth: 00 ft
):		X Coord.	(Lng-	-E) / Fix:	Max	x signal:
TECHNOLOG	GHD / 160. Operator /			Unavaila Elevation		NA		7 %RE @ 0.04 ft e & Time:
WWW.DAKOTATECHNOLD	SWM / TG			Unavaila				7-07-12 15:29 CDT

Appendix B LIF Results

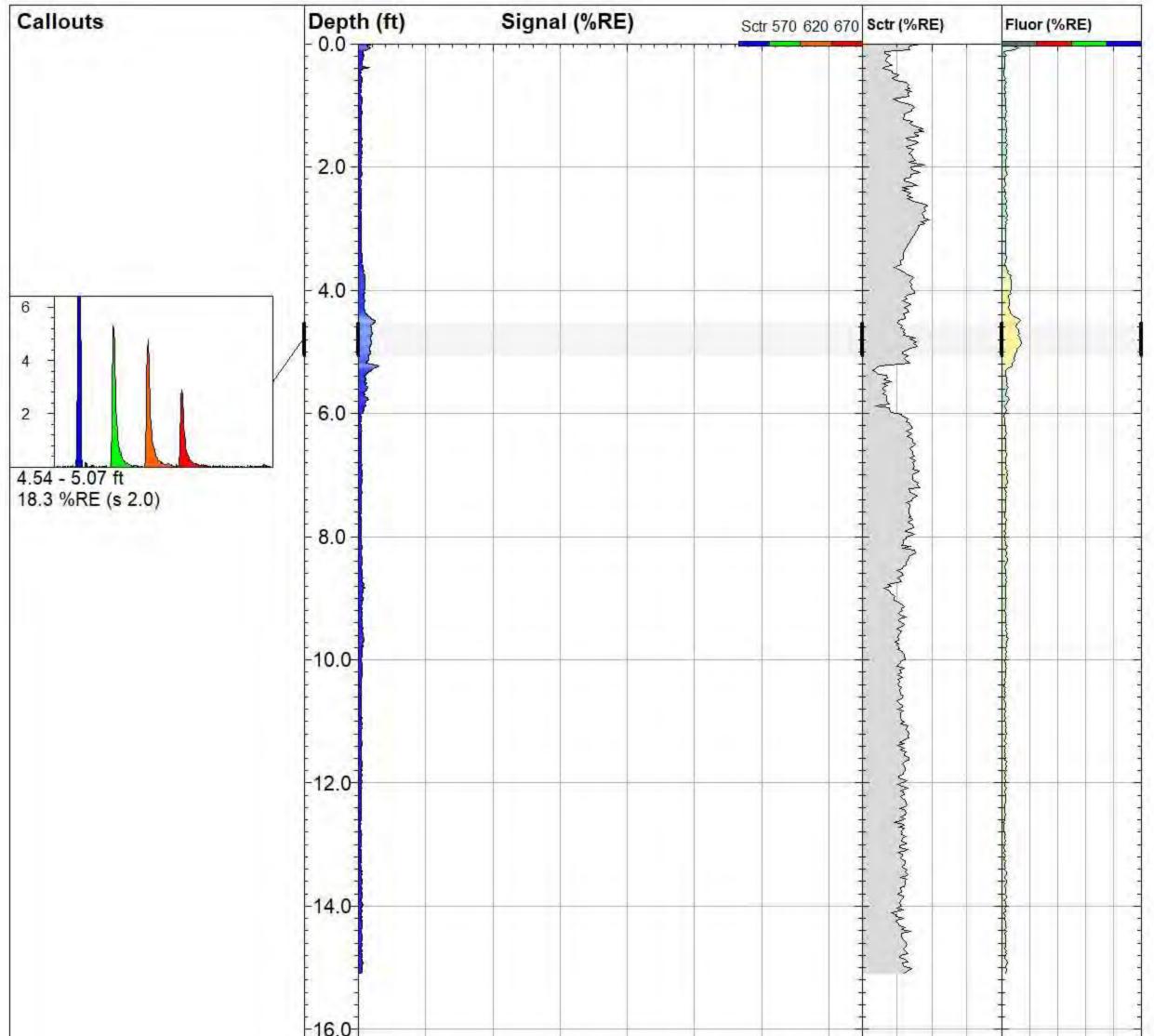
Appendix B.1 3D Model of LIF Results

Z:\HEG\085886\3DV\Deliverable\PRESENTATIONS\085886-00(PRES003)3DV-WA\3DPDFs\085886-00(PRES003)3DV-WA_LNAPL_Body Delineation.PDF created by: aflittle

651 Colby Drive Waterloo ON N2V 1C2 CANADA T 519 884 0510 F 519 725 1394 W www.ghd.com

LNAPL BODY DELINEATION

Date

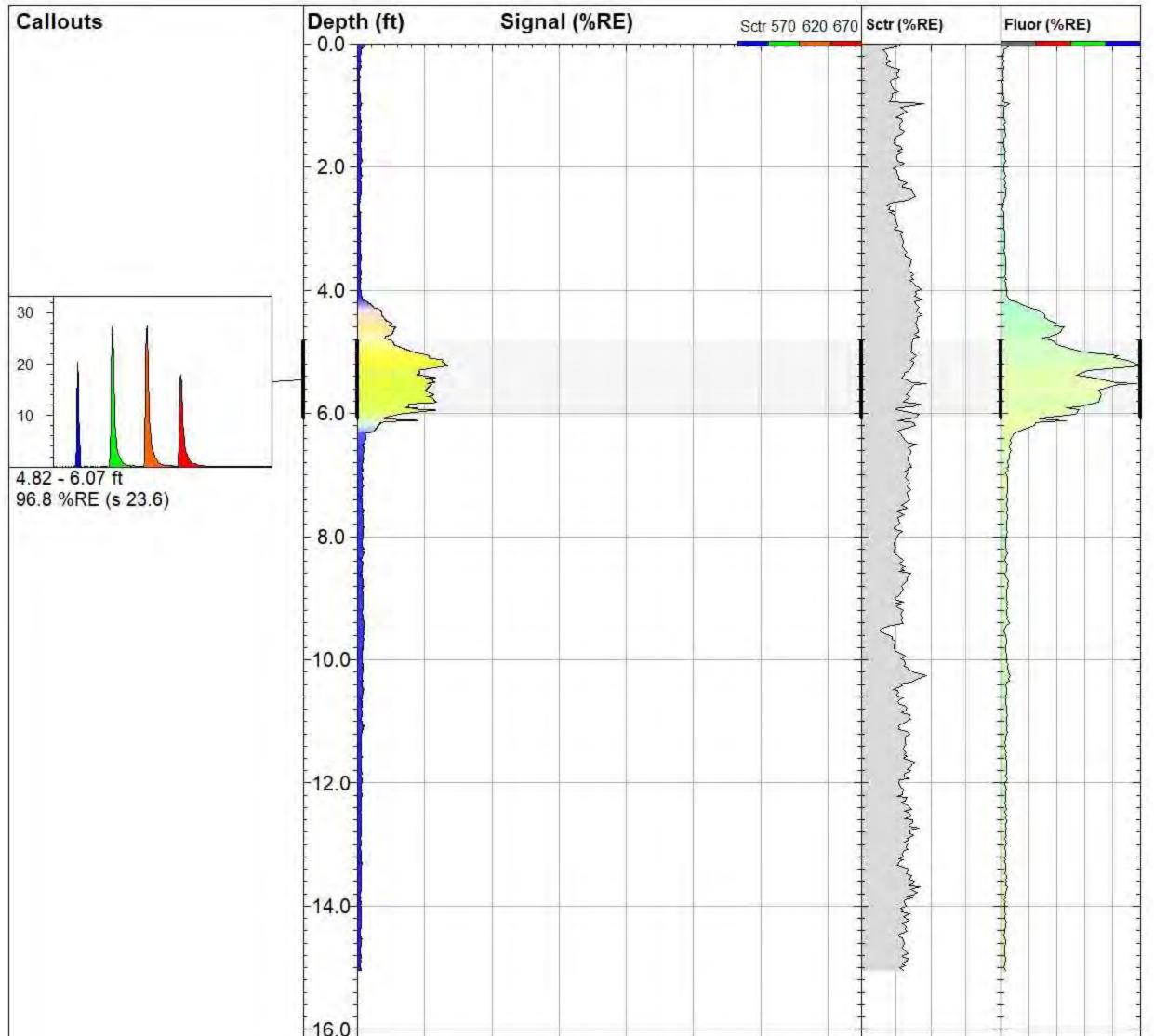

Job Number | 085886-00

NOV 2017

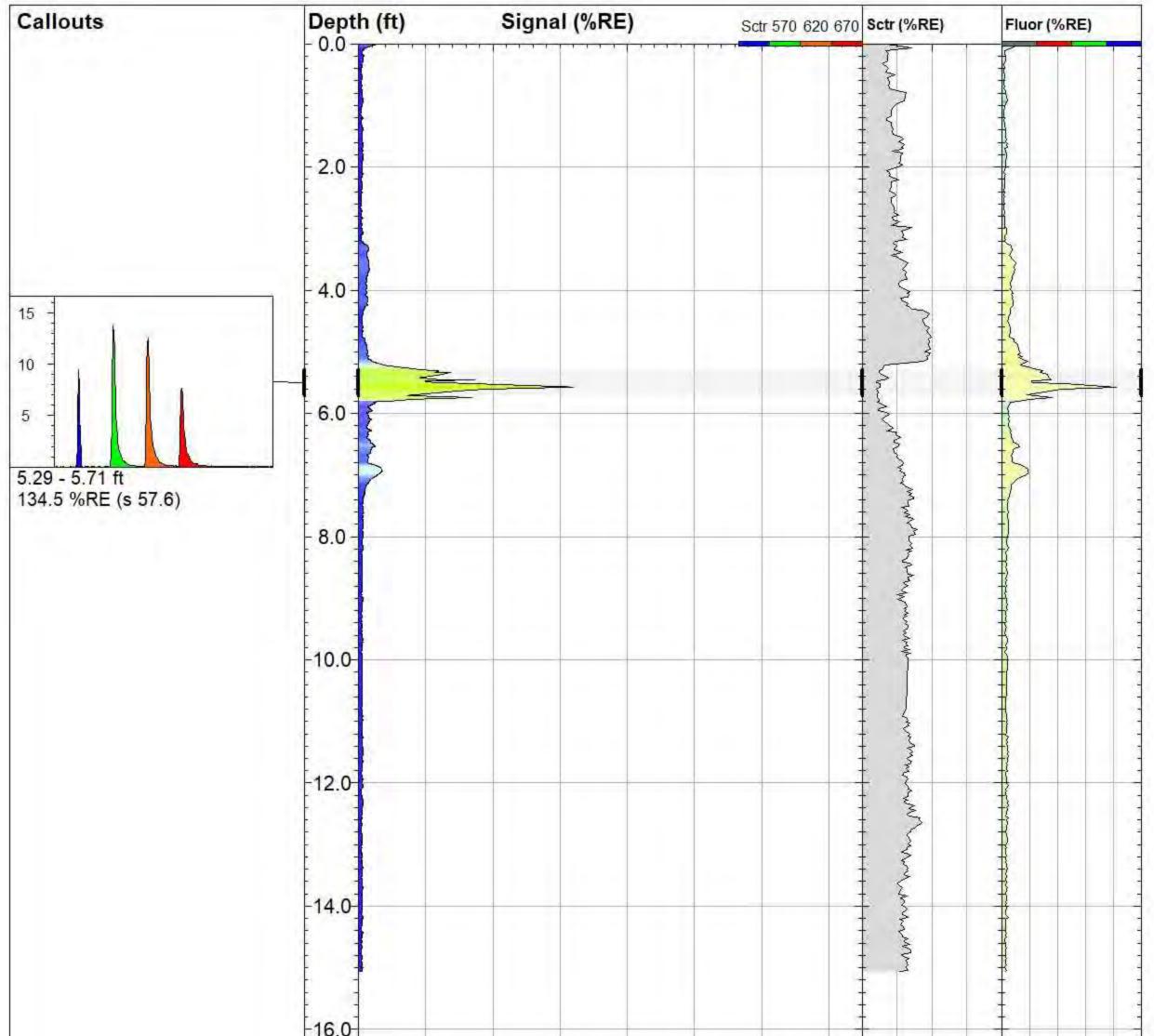
LASER-INDUCED FLUORESCENCE (LIF)

Figure 1

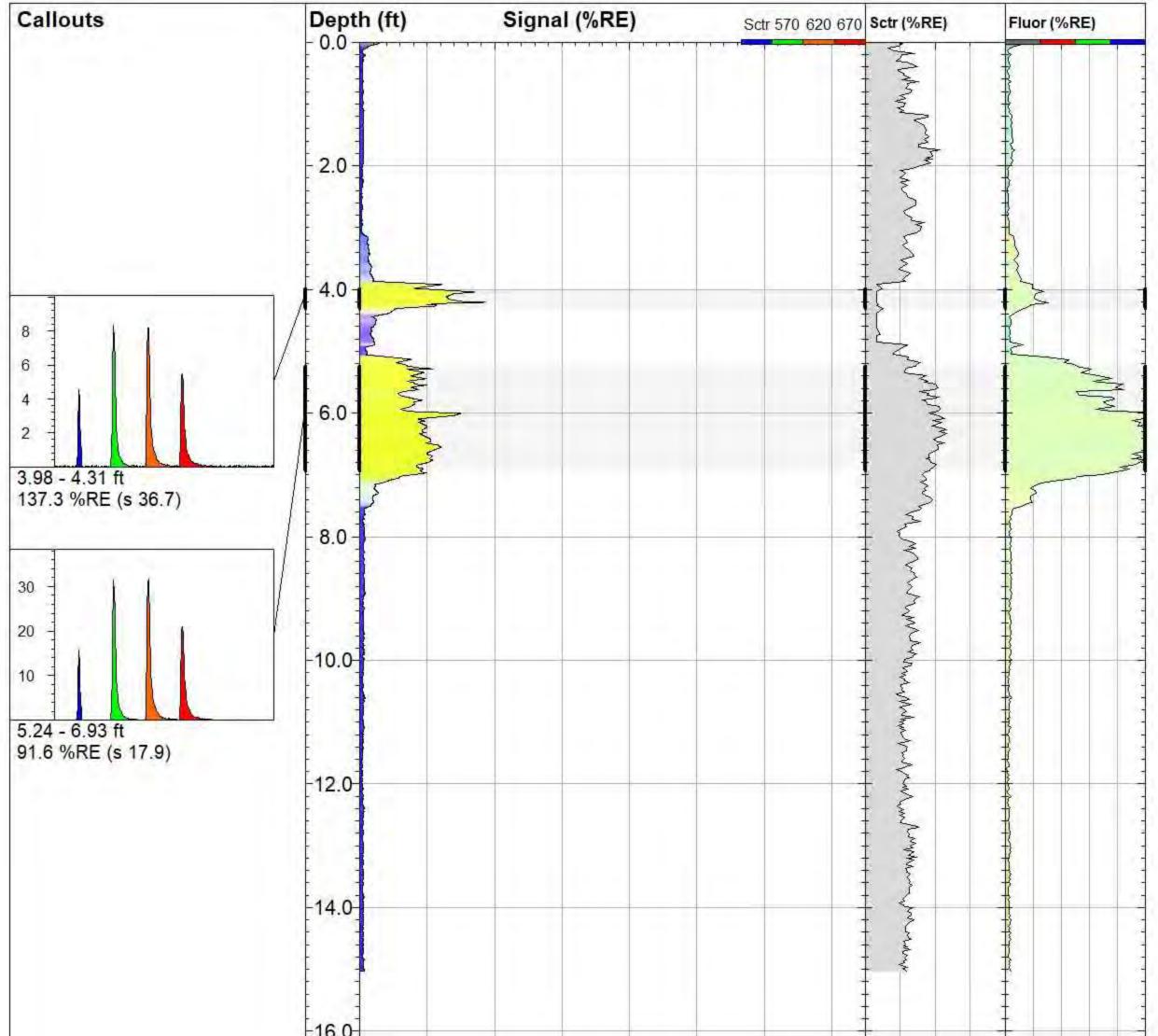
Appendix B.2 LIF Results (TG-31 to TG-62)

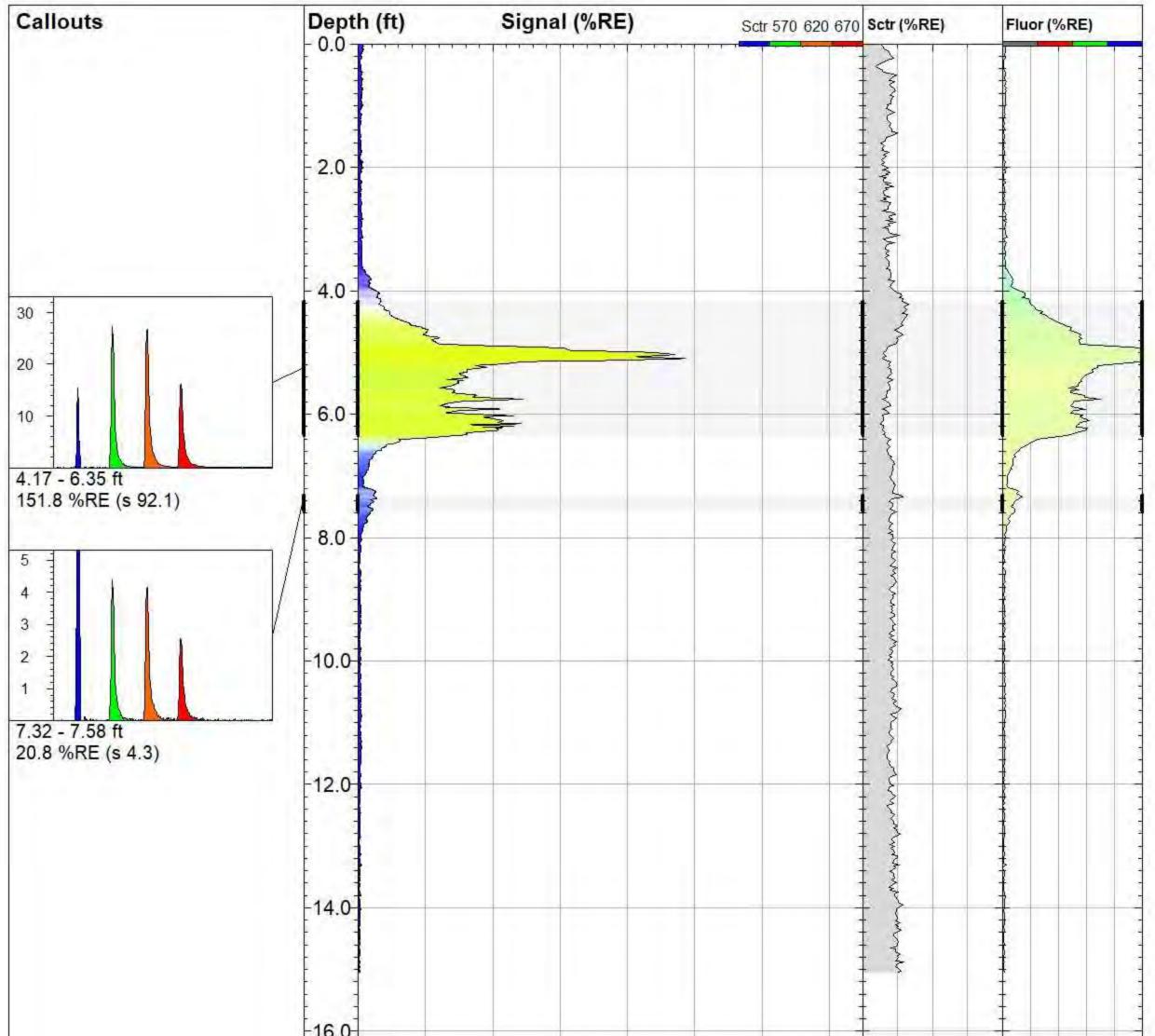


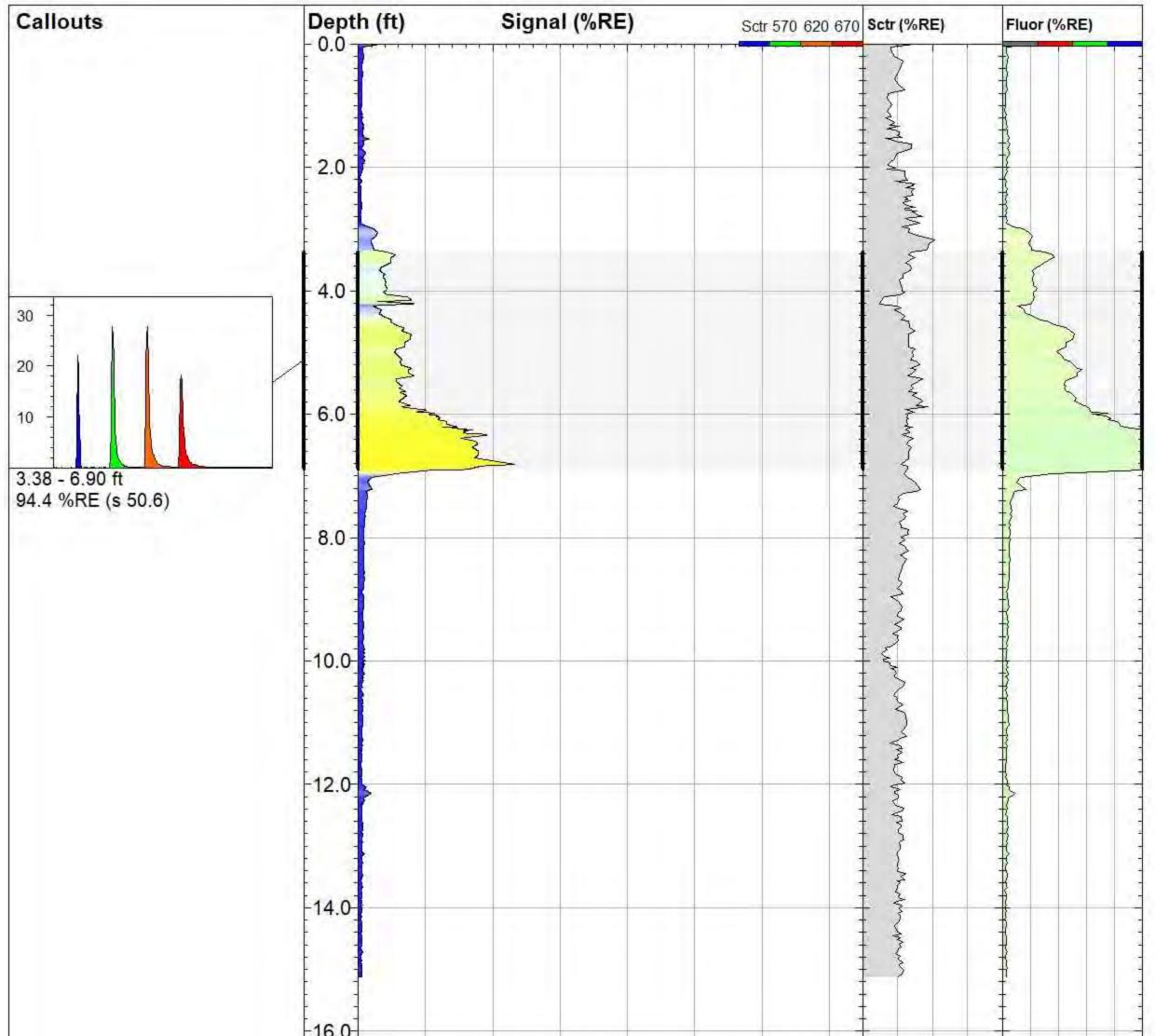
	-16.0					-	T	
	-18.0					- - - - - - -		
	-20.0	200	400	600	50 TarGOST®	20 By Dak	40 ota	
	TG-31				www.DakotaTechnolo		ota	
	Site: CLINE AVE D	ОТСН	Y Coord.(L Unavailab	at-N) / System: le / NA	Final depth: 15.08 ft			
DAKOTA	Client / Job: GHD / 160.17	7	X Coord.(L Unavailab	ng-E) / Fix: le / NA	Max signal: 31.1 %RE @ 5.23 ft			
WWW.DAKOTATECHNOLOGIES.COM	GHD / 160.17 Operator / Unit: SWM / TG1004		Elevation: Unavailab	le	Date & Time: 2017-10-10 13:55 CDT			

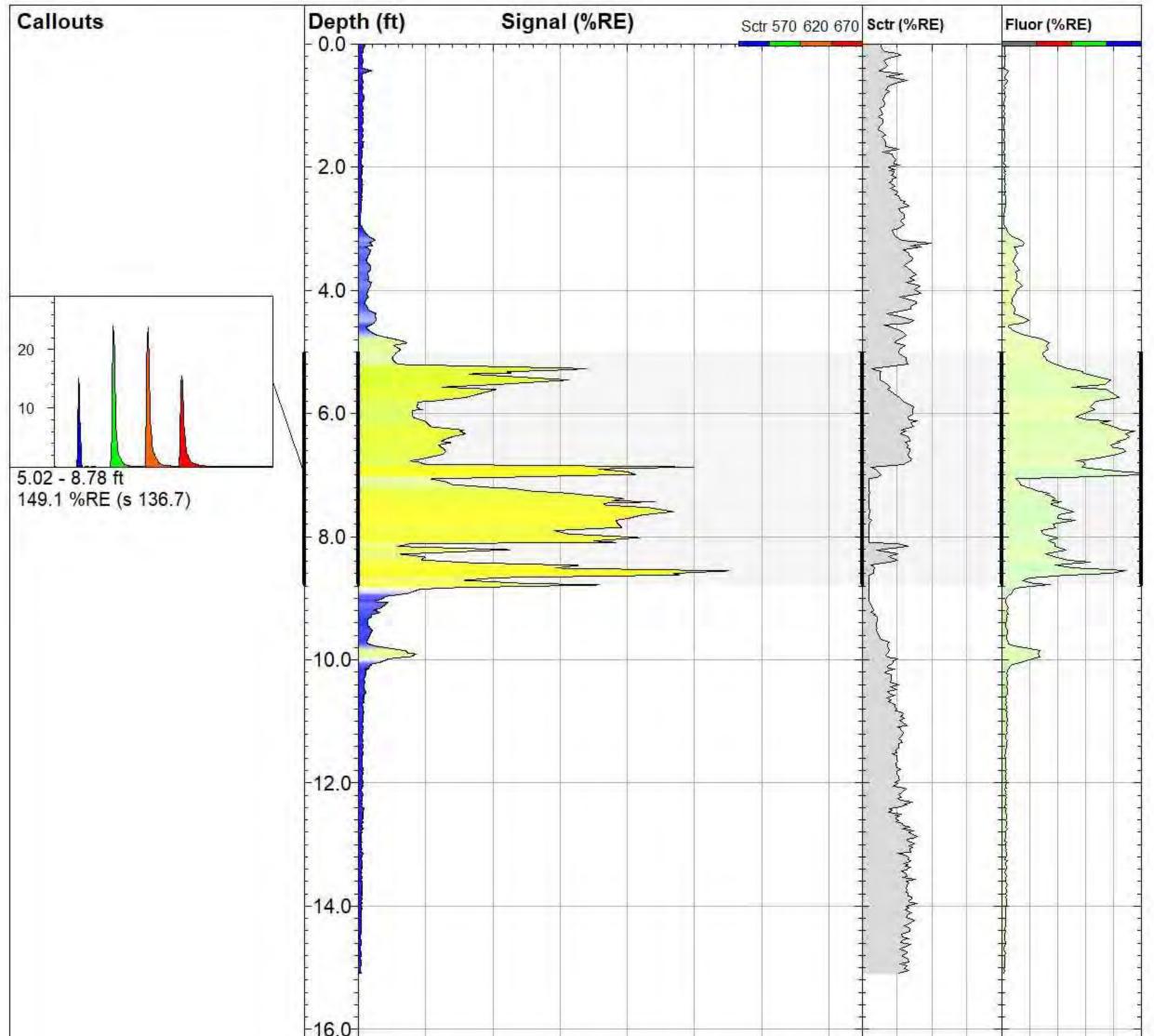

Callouts	Depth (ft)	Signal (%	RE)	Sctr 570 620 670	Sctr (%RE)	Fluor (%RE)
					1	
					Ę	
	- 2.0				5	
					M	
	- 4.0 -				MANANA	
	4.0				ANNA-	+
					t sprange	
	6.0					1
	0.0					
					$\sum_{i=1}^{n}$	1
	- 8.0 -					
					1 Marson	
	-10.0-					
					A A	
	-12.0-					
					and the second	
					when	
	-14.0-				A A A A A A A A A A A A A A A A A A A	
					the second	
					V.	
	-16.0					Ī
	10.0					-
	-18.0-					1
	10.0					
						÷.
	-20 0				T	÷
	-20.0+	200	400	600	50	20 4
	TG-32		A		TarGOST www.DakotaTech	® By Dakot mologies.com
	Site: CLINE AVE DIT	гсн	Y Coord.(Lat Unavailable	-N) / System:	Final depth 15.01 ft	2
DAKOTA	Client / Job:		X Coord.(Lng	g-E) / Fix:	Max signal	
TECHNOLOGIES	GHD / 160.17 Operator / Unit	1	Unavailable Elevation:	/ NA	17.8 %RE (Date & Tim	@ 0.00 ft
WWW.DAKOTATECHNOLOGIES.COM	SWM / TG1004		Unavailable			0 13:34 CDT

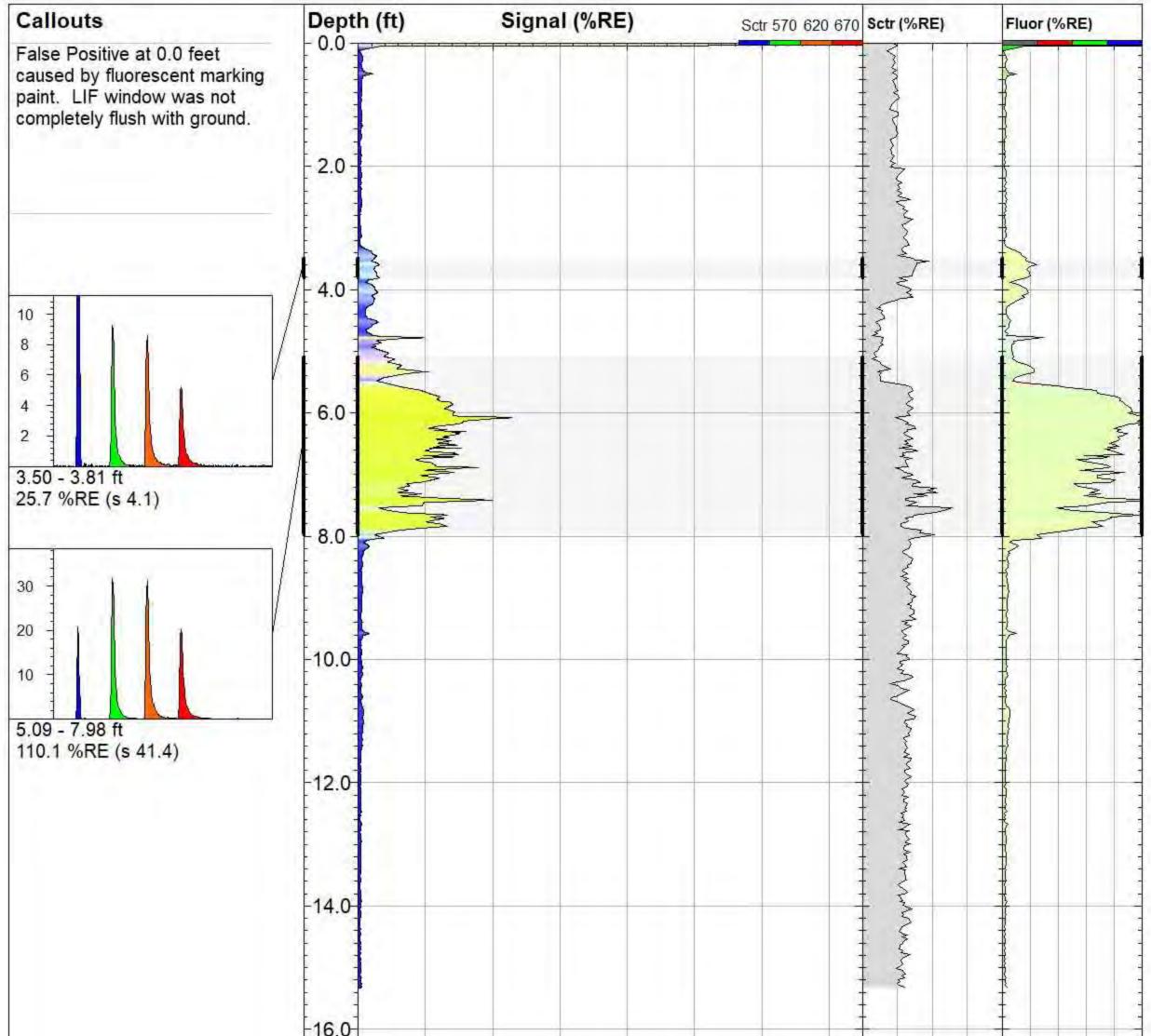
Callouts	Depth (ft)	Signal (%	RE) s	ctr 570 620 670	Sctr (%RE)	Fluor (%RE)	
	0.0						
	2.0						
	4.0						
	6.0				many		
					1 marine		
	- 8.0						
	-10.0-				Jour Manual Survey		
	-12.0						
	-14.0				a for the second s		
	16.0						
	18.0						
	-18.0						
	20.0	200	400	600	50	20 4	
	TG-33				TarGOST	® By Dakota	
	Site: CLINE AVE DITO	н	Y Coord.(Lat-N) / Unavailable / N/	' System: A	www.DakotaTech Final depth 15.04 ft		
	Client / Job: GHD / 160.17 Operator / Unit:		X Coord.(Lng-E) Unavailable / NA Elevation: Unavailable	/ Fix:	Max signal: 13.0 %RE @ 0.02 ft Date & Time: 2017-10-10 13:00 CDT		

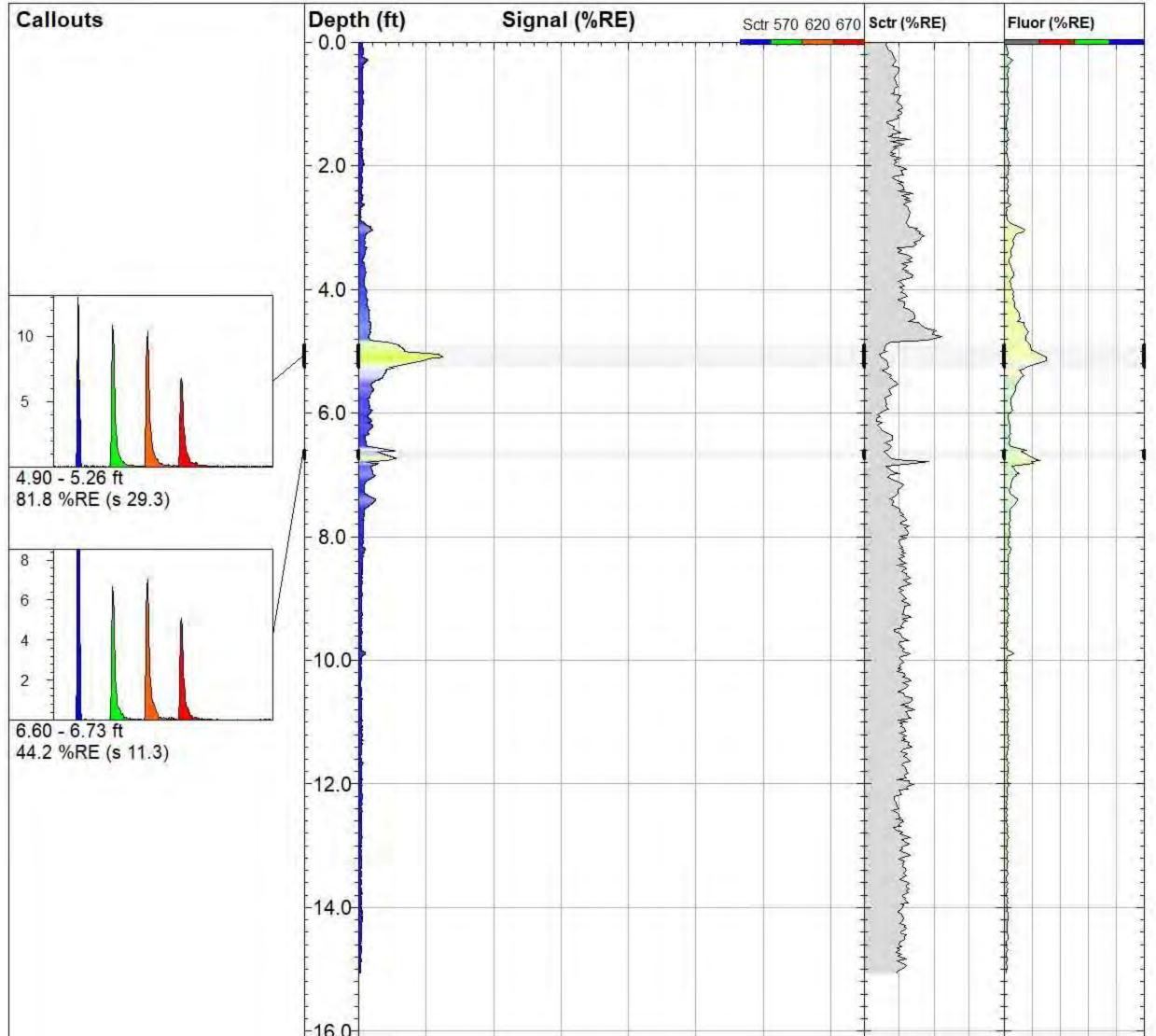

Callouts	Dept	n (ft)	5	Signal (%RE)		Sctr 570 620 67	0 Sctr (%RE)	Fluor	r (%RE)	
	- 0.0										
	2.0								*		
	4.0							Mr. Marine	111111		
	6.0								+++++++++++++++++++++++++++++++++++++++		
	8.0										
	-10.0-							Jun Jun			
	-12.0-							Mary Maryana Mar	tttttttt		
	-14.0							1 + + + + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +		
	-16.0										
	-18.0								+ + + + + + + + + + + + + + + + + + + +		
	-20.0	,, o	20	0	400		600	50	Ţ.	20	40
	TG	-34		Č.				TarGOS www.DakotaTeo		Dak	ota
	Site: CLINE AVE DITCH Client / Job: GHD / 160.17				Y Coc Unav	ord.(Lat-I ailable /	V) / System: NA				
DAKOTA					X Coo Unav	ord.(Lng- ailable /	E) / Fix: NA	Max signa 12.3 %RE	l: @ 0.06	ft	
WWW.DAKOTATECHNOLOGIES.COM	Oper	ator / Ur / TG10	nit:		Eleva	<i>tion:</i> ailable		Date & Tir 2017-10-1	me:		

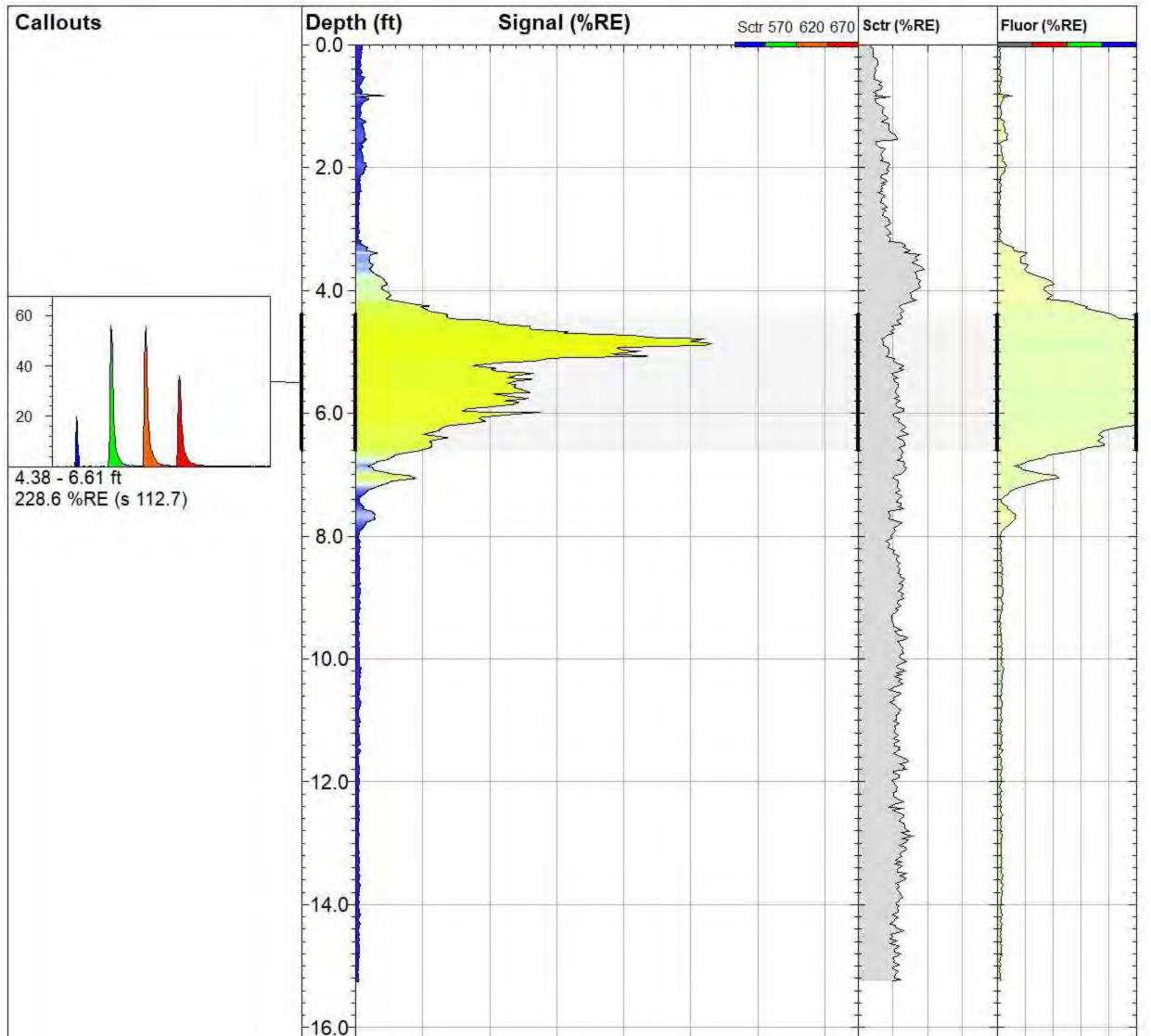

	-16.0				ŧ		
	-18.0					-	
	20.0 0 TG-35	200	400	600	50 TarGOST®		40 ota
	Site: CLINE AVE	DITCH	Y Coord.(Unavaila	Lat-N) / System: ble / NA	www.DakotaTechnol Final depth: 15.05 ft	ogies.com	
DAKOTA	Client / Job: GHD / 160.1		X Coord.(Unavaila	Lng-E) / Fix: ble / NA	Max signal: 134.7 %RE @ 5.23 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / L SWM / TG1		Elevation: Unavaila		Date & Time: 2017-10-10 1		

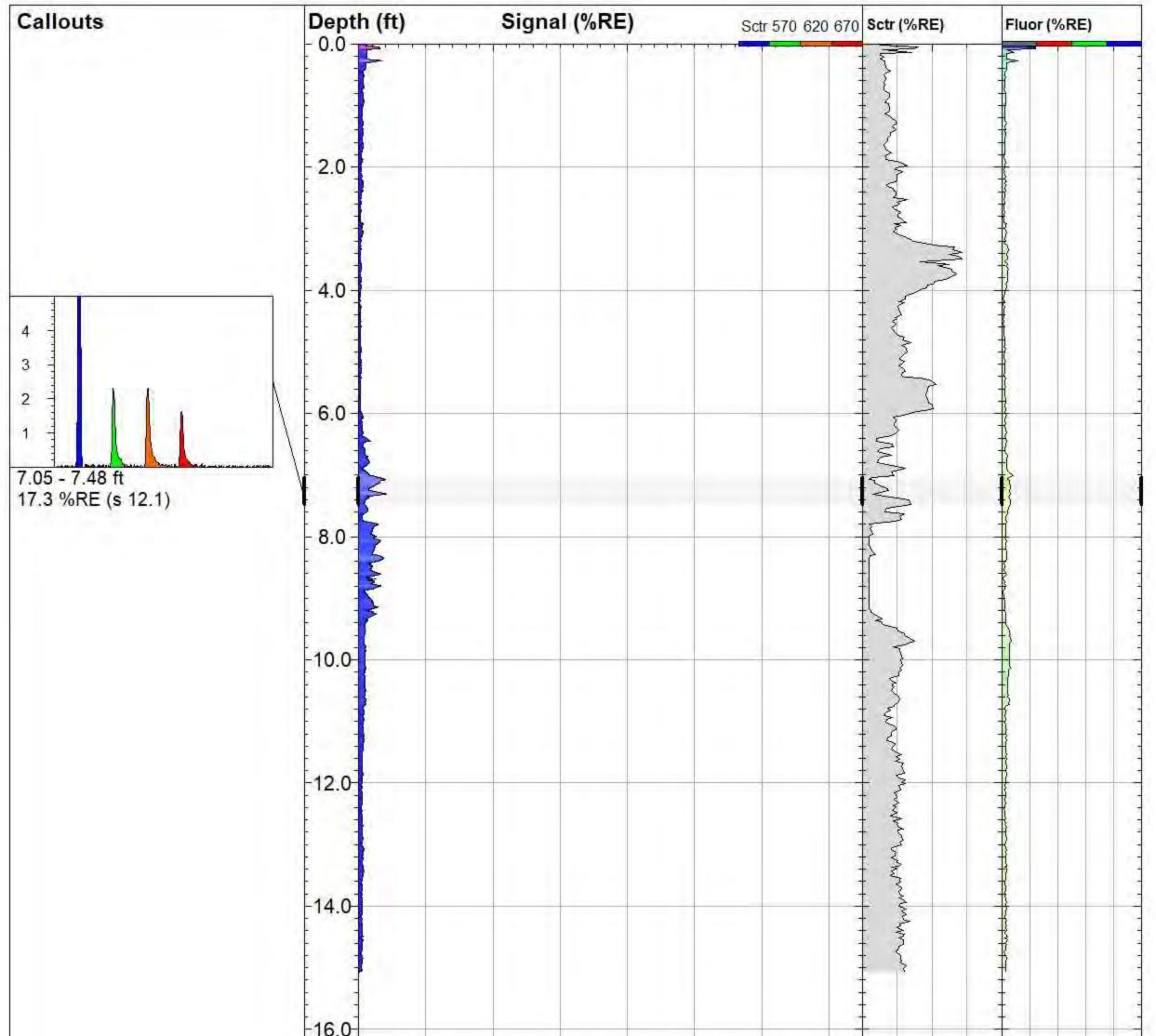

	-16.0					-	T
	-18.0					-	
	20.0	200	400	600	50	20 20	40
	TG-36				TarGOST® www.DakotaTechnolo		ota
	Site: CLINE AVE	ЫТСН	Y Coord.(La Unavailab	at-N) / System: le / NA	m: Final depth: 15.06 ft		
DAKOTA	Client / Job: GHD / 160.1		X Coord.(Li Unavailab		Max signal: 321.4 %RE @	5.57 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / U SWM / TG10		Elevation: Unavailab	le	Date & Time: 2017-10-10 1	0:42 CDT	

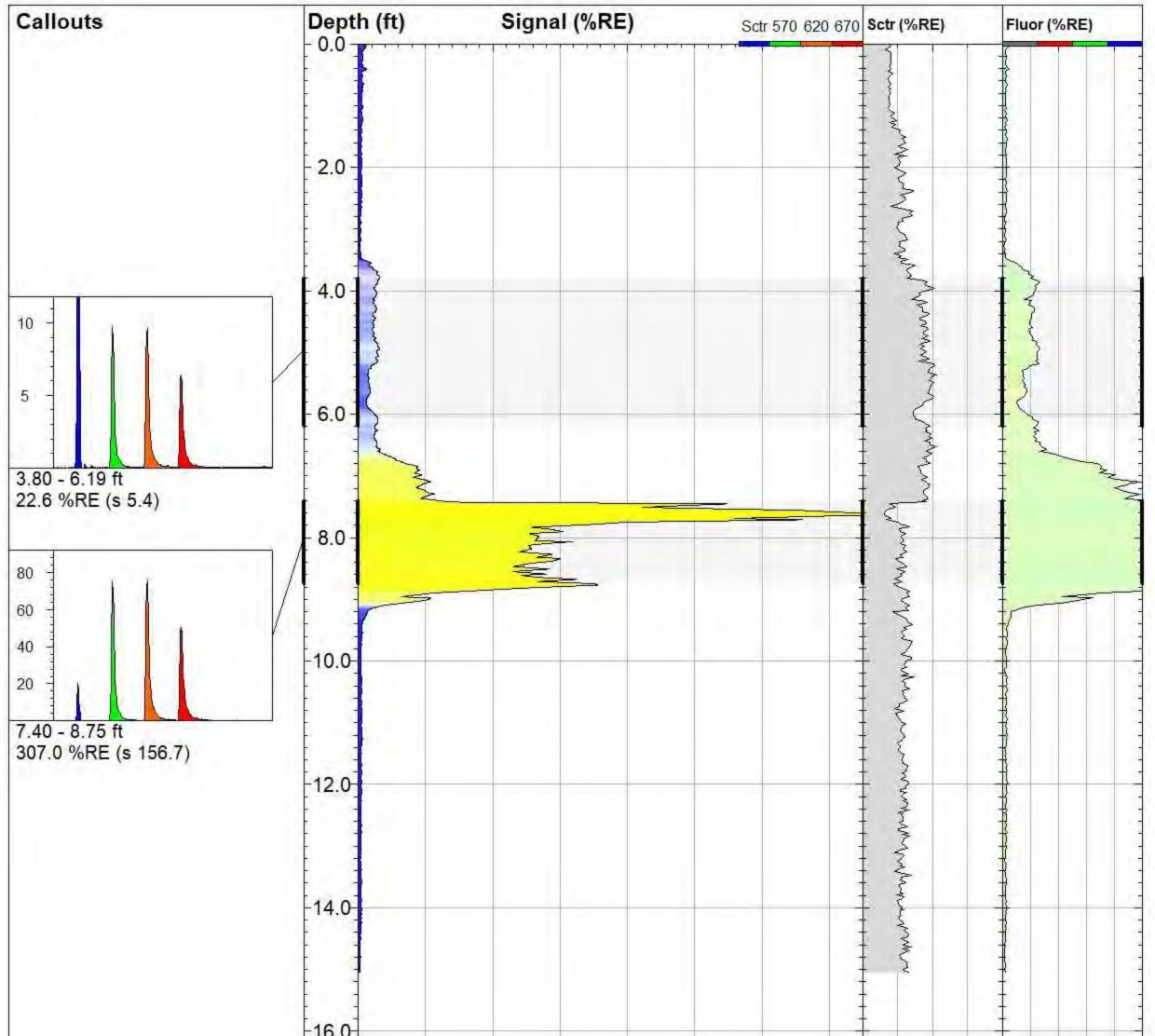

	-16.0					- - - -	
	-18.0						
	20.0	200	400	600	50 TarGOST®	20 By Dak	40
	TG-37				www.DakotaTechnolo		ota
	Site: CLINE AVE D	ОТСН		(Lat-N) / System: able / NA	Final depth: 15.03 ft		
DAKOTA	Client / Job: GHD / 160.17	7		(Lng-E) / Fix: able / NA	Max signal: 189.4 %RE @	4.21 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Ur SWM / TG10		Elevation Unavaila		Date & Time: 2017-10-10 1		

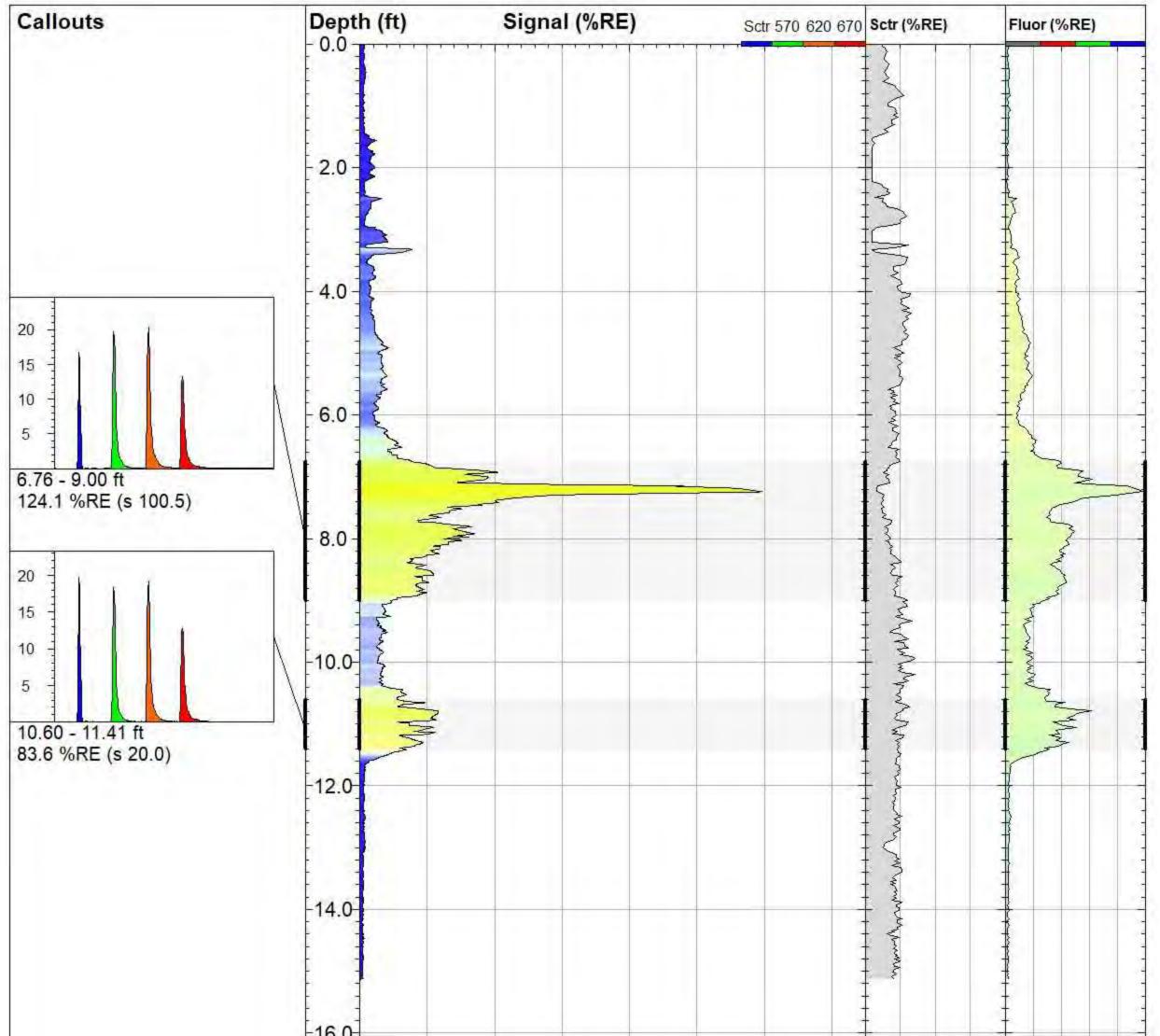

	-16.0						
	-18.0						
	20.0 0 TG-38	200	400	600	50 TarGOST®		40 ota
	Site:	ОТСН	Y Coord.(La Unavailabl	at-N) / System: le / NA	www.DakotaTechnolo Final depth: 15.04 ft	gies.com	
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lr Unavailabl	ng-E) / Fix:	Max signal: 489.0 %RE @	5.10 ft	
TECHNOLOGIES	Operator / Ur SWM / TG10		Elevation: Unavailabl	e	Date & Time: 2017-10-10 0		

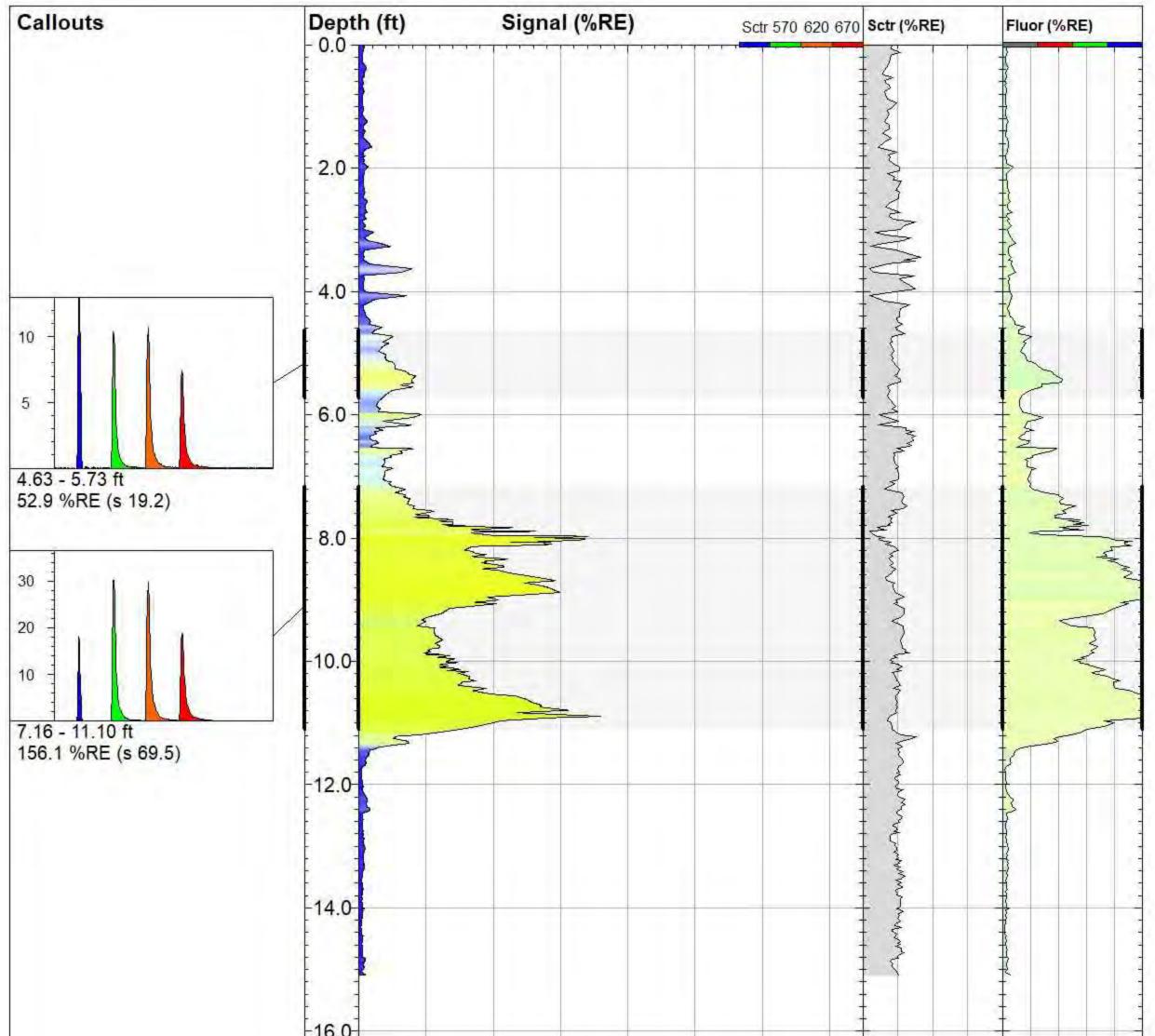

	-16.0						
	-18.0						
	-20.0 0 TG-39	200	400	600	50 TarGOST®	20 By Dak	40 ota
	Site:	ЛТСН	Y Coord.(L Unavailab	.at-N) / System: le / NA	www.DakotaTechnolo Final depth: 15.11 ft	igies.com	
DAKOTA	Client / Job: GHD / 160.1		X Coord.(L Unavailab	.ng-E) / Fix: le / NA	Max signal: 233.5 %RE @	6.81 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / U SWM / TG10		Elevation: Unavailab	le	Date & Time: 2017-10-10 1	6:35 CDT	

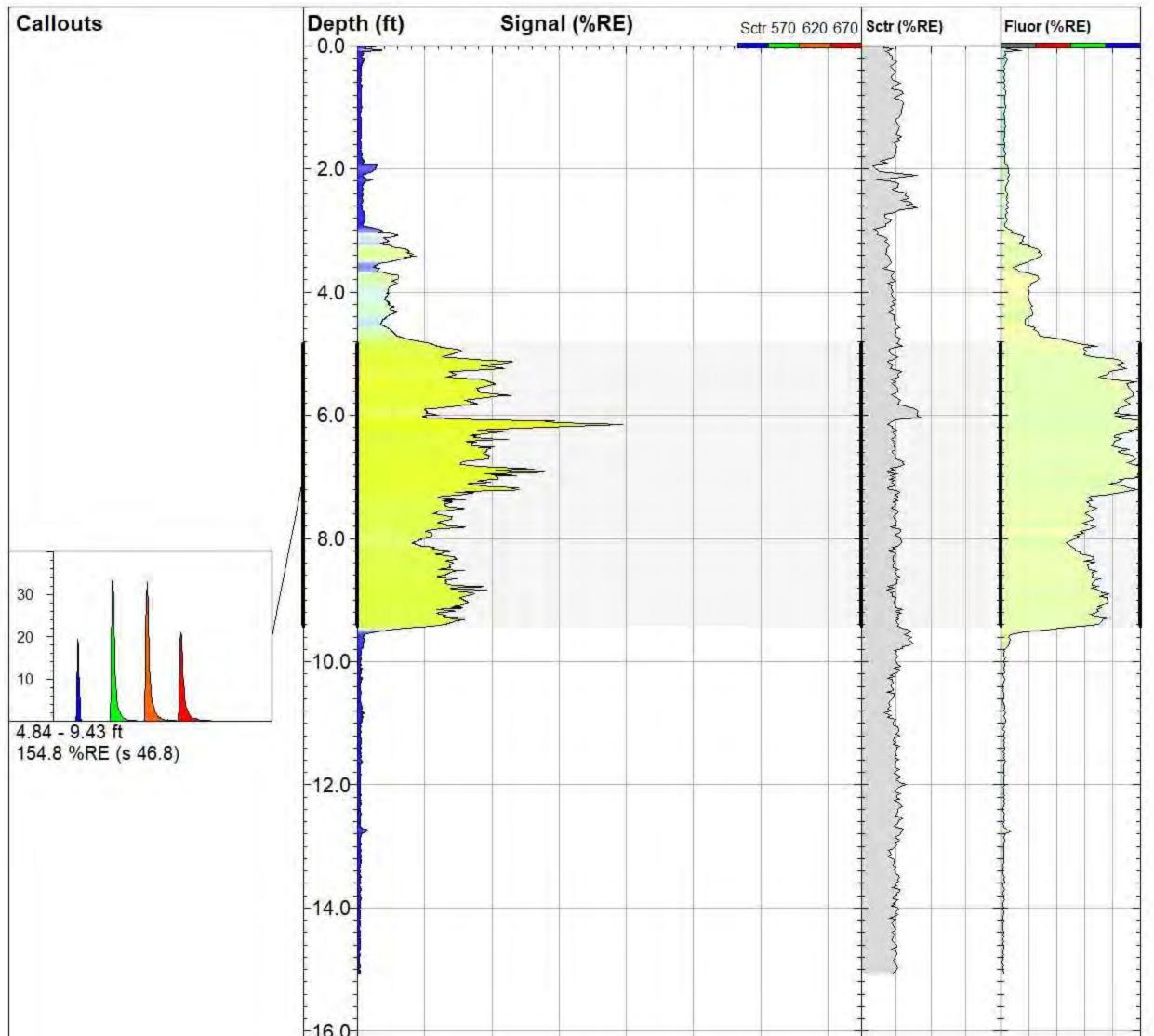

	-16.0					-	÷.			T
	-18.0								_	
	^{20.0} 0 TG-40	200	40	0	600	TarG	50 OST® B otaTechnologie	By D		40 ota
	Site: CLINE AVE DI	тсн		ord.(La	t-N) / System:	Final c	depth:	es.com		-
DAKOTA	Client / Job: GHD / 160.17			ord.(Ln vailable	g-E) / Fix: e / NA	Max si 552.6	ignal: %RE @ 8	.56 f	t	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit SWM / TG1004			ation: vailable		Date & Time: 2017-10-10 16:15 CDT				

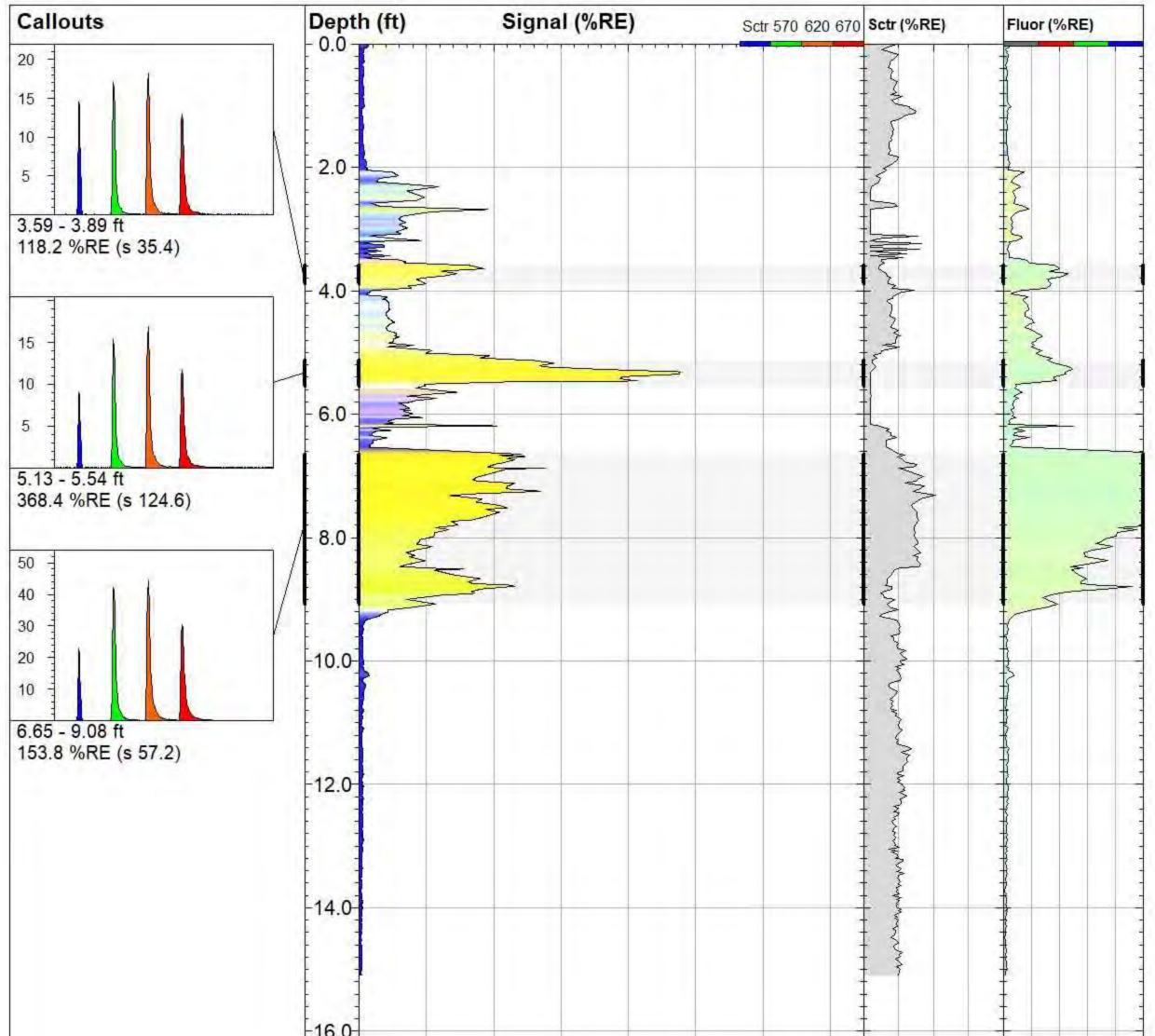

	-16.0						
	-18.0					- - - - - -	
	20.0 0 TG-41	200	400	600	50 TarGOST®		40 (ota
	Site: CLINE AVE D	Y Coord.(Lat-N) / System			stem: Final depth: 15.32 ft	ogies.com	
DAKOTA	Client / Job: GHD / 160.17	7	X Coord.(L Unavailab	_ng-E) / Fix: ble / NA	Max signal: 2102.5 %RE (@ 0.00 ft	
TECHNOLOGIES	Operator / UI SWM / TG10		Elevation: Unavailab		Date & Time: 2017-10-10 1		

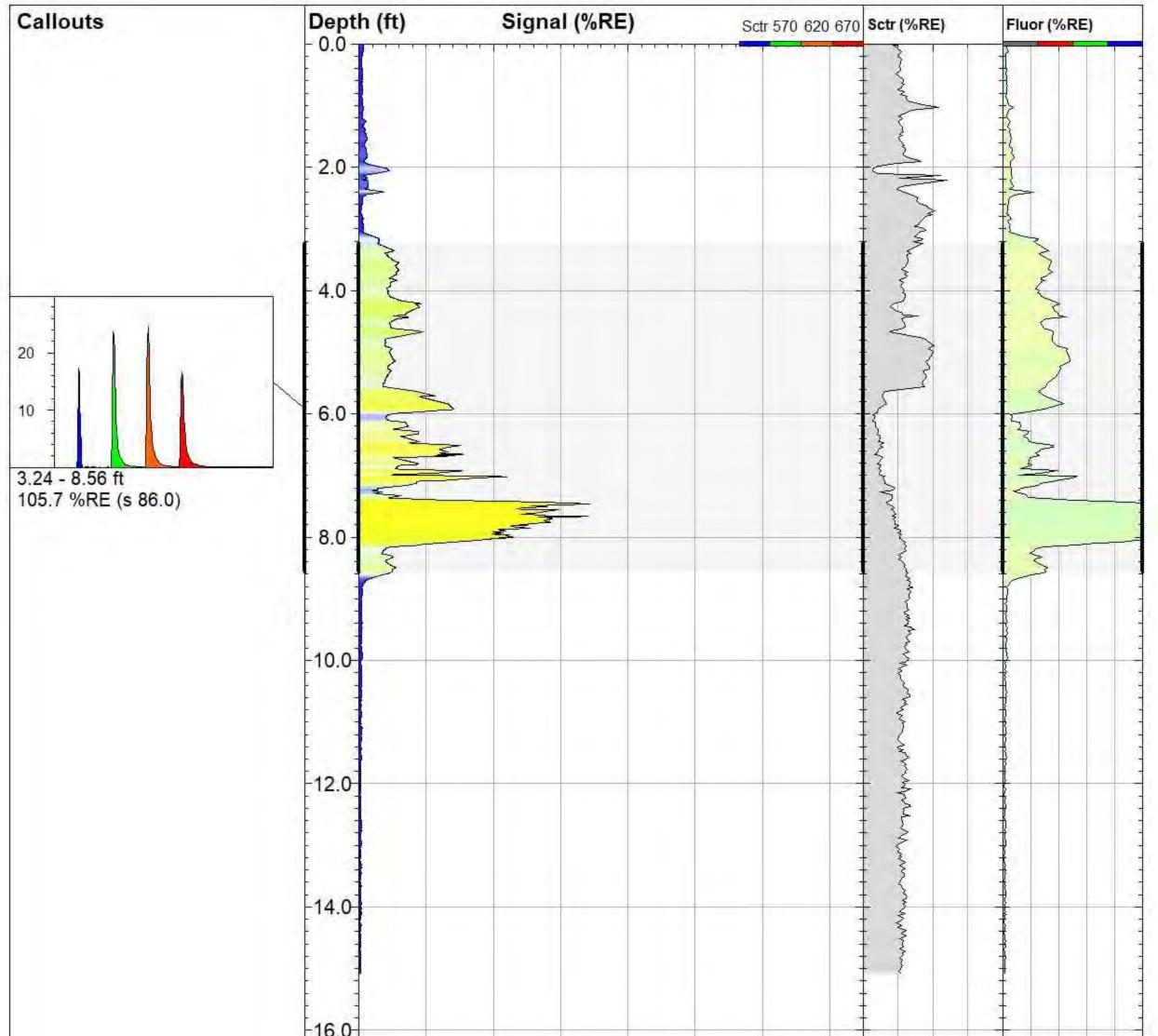

	-16.0						
	-18.0						
	20.0	200	400	600	50 TarGOST®	20 By Dak	40
	TG-42				www.DakotaTechnolo		ota
	Site: CLINE AVE D	лтсн	Y Coord.(I Unavailal	Lat-N) / System: ble / NA	Final depth: 15.05 ft		
DAKOTA	Client / Job: GHD / 160.17	,	X Coord.(I Unavailal	Lng-E) / Fix: ble / NA	Max signal: 125.0 %RE @	5.10 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Un SWM / TG100		Elevation: Unavailal		Date & Time: 2017-10-10 1		

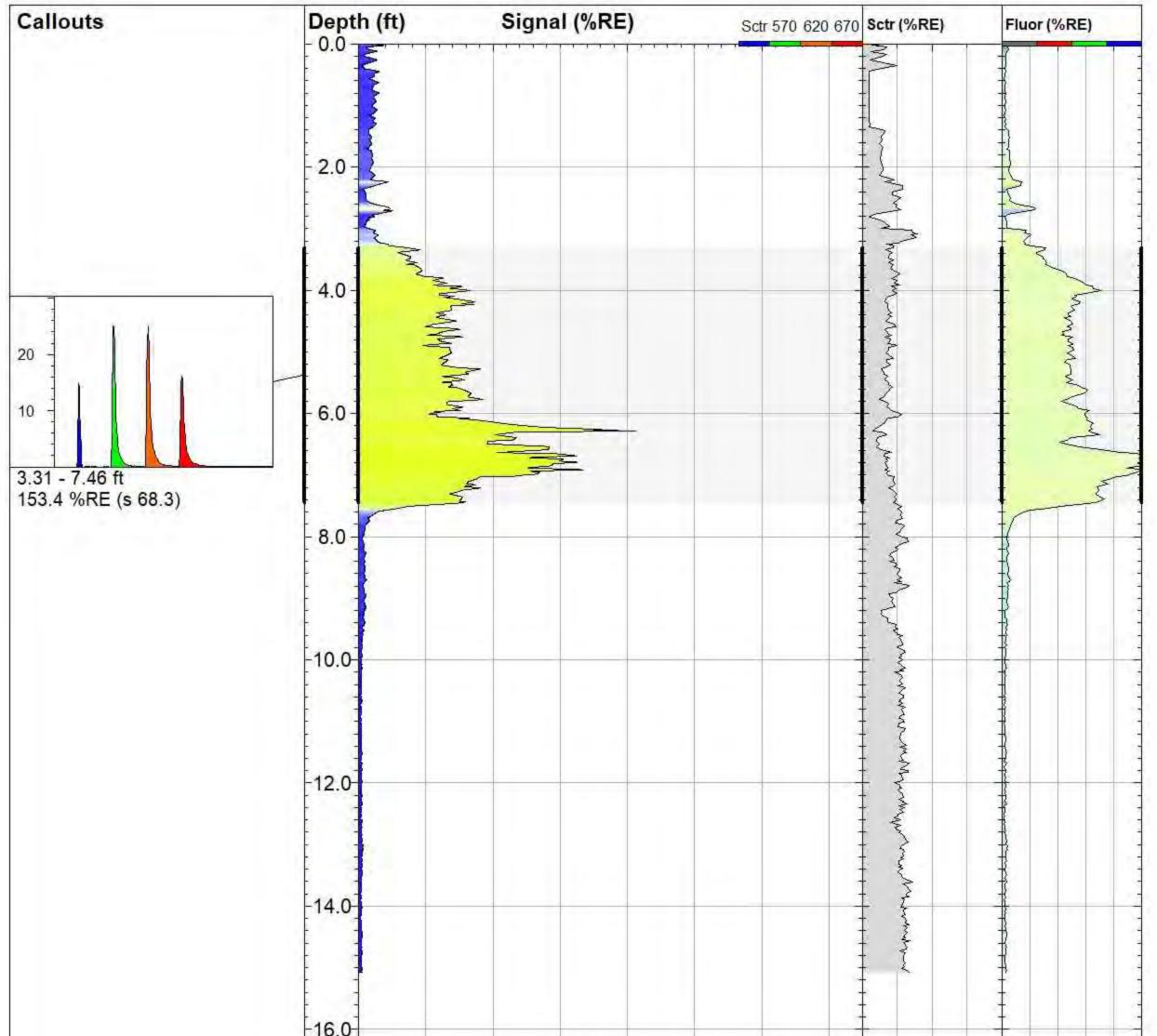

	-16.0					-	
	-18.0						
	20.0	200	400	600	50	20	40
	TG-43				TarGOST® www.DakotaTechnolo		ota
	Site: CLINE AVE D	ОІТСН	Y Coord.(La Unavailab	at-N) / System: le / NA	Final depth: 15.26 ft		
DAKOTA	Client / Job: GHD / 160.17	7	X Coord.(Li Unavailab		Max signal: 531.9 %RE @	4.87 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Ur SWM / TG10		Elevation: Unavailab	le	Date & Time: 2017-10-10 1		

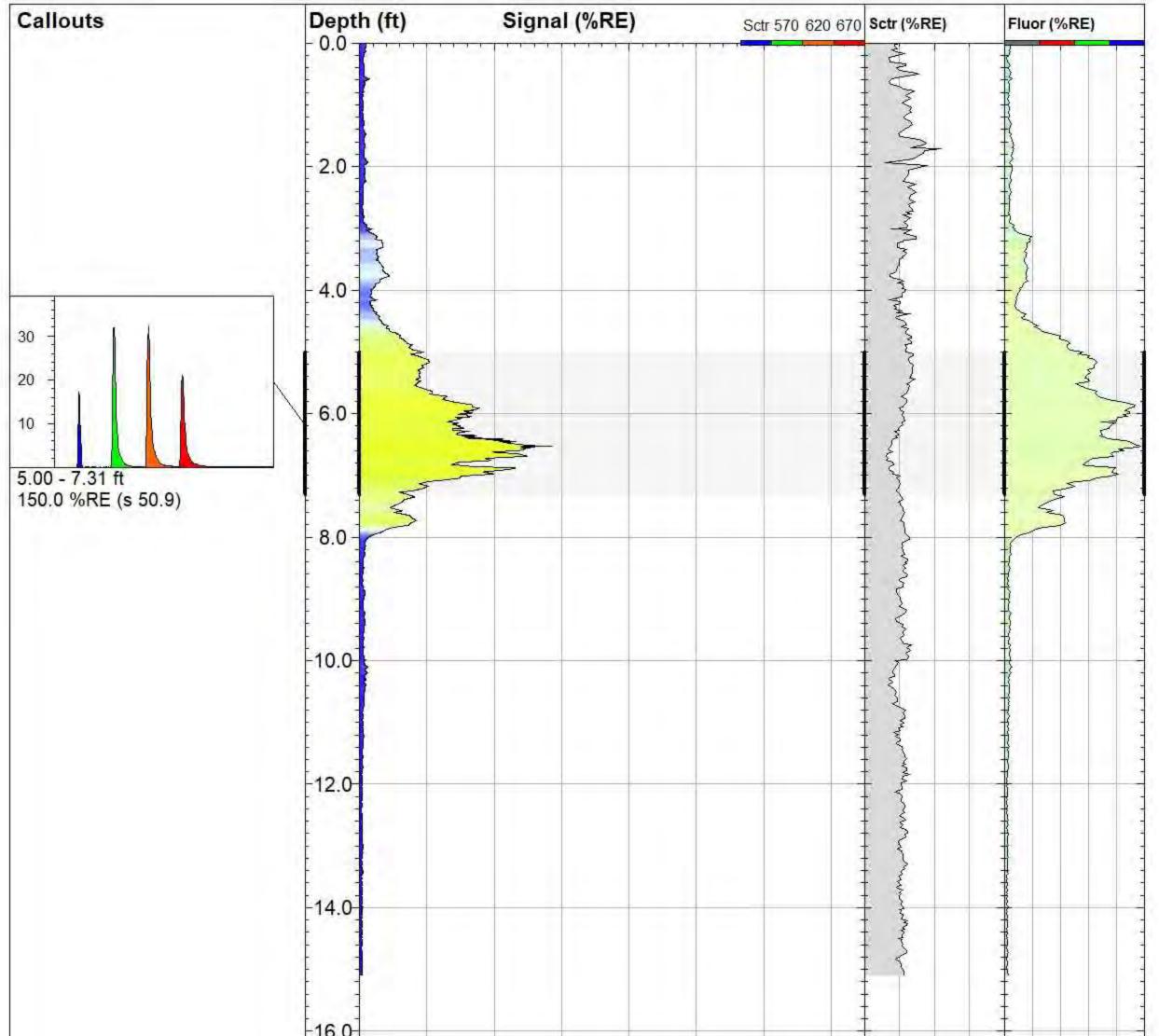

	-16.0						
	-18.0 -20.0 0 TG-44	200	400	600	50 TarGOST@		40 ota
	Site: CLINE AVE D	отсн	Y Coord.(I Unavailat	Lat-N) / System: ble / NA	www.DakotaTechno Final depth: 15.07 ft	blogies.com	
DAKOTA	Client / Job: GHD / 160.17	7	X Coord.(I Unavailat	Lng-E) / Fix: ble / NA	Max signal: 41.5 %RE @	7.31 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Ur SWM / TG10		Elevation: Unavailat		Date & Time 2017-10-10		

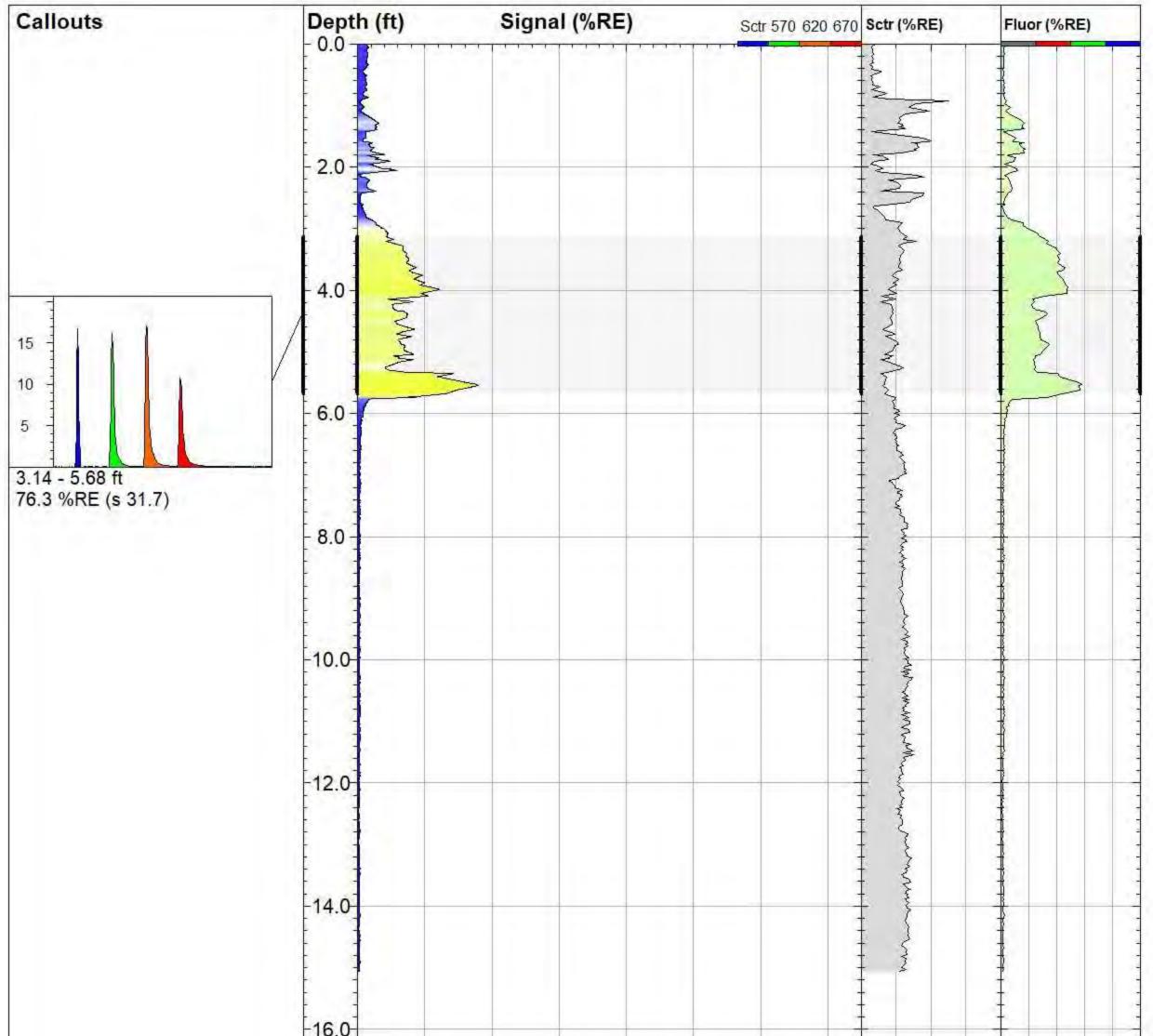

	-16.0					- - -	
	-18.0					- - - - - - -	
	20.0	200	400	600	50 TarGOST®	20 By Dak	40
	TG-45				www.DakotaTechnolo		Ola
	Site: CLINE AVE [ОТСН	Y Coord.(La Unavailabl	at-N) / System: le / NA	n: Final depth: 15.05 ft		
DAKOTA	Client / Job: GHD / 160.1	7	X Coord.(Li Unavailabl	-	Max signal: 778.0 %RE @	7.63 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Ul SWM / TG10		Elevation: Unavailabl	le	Date & Time: 2017-10-10 1		

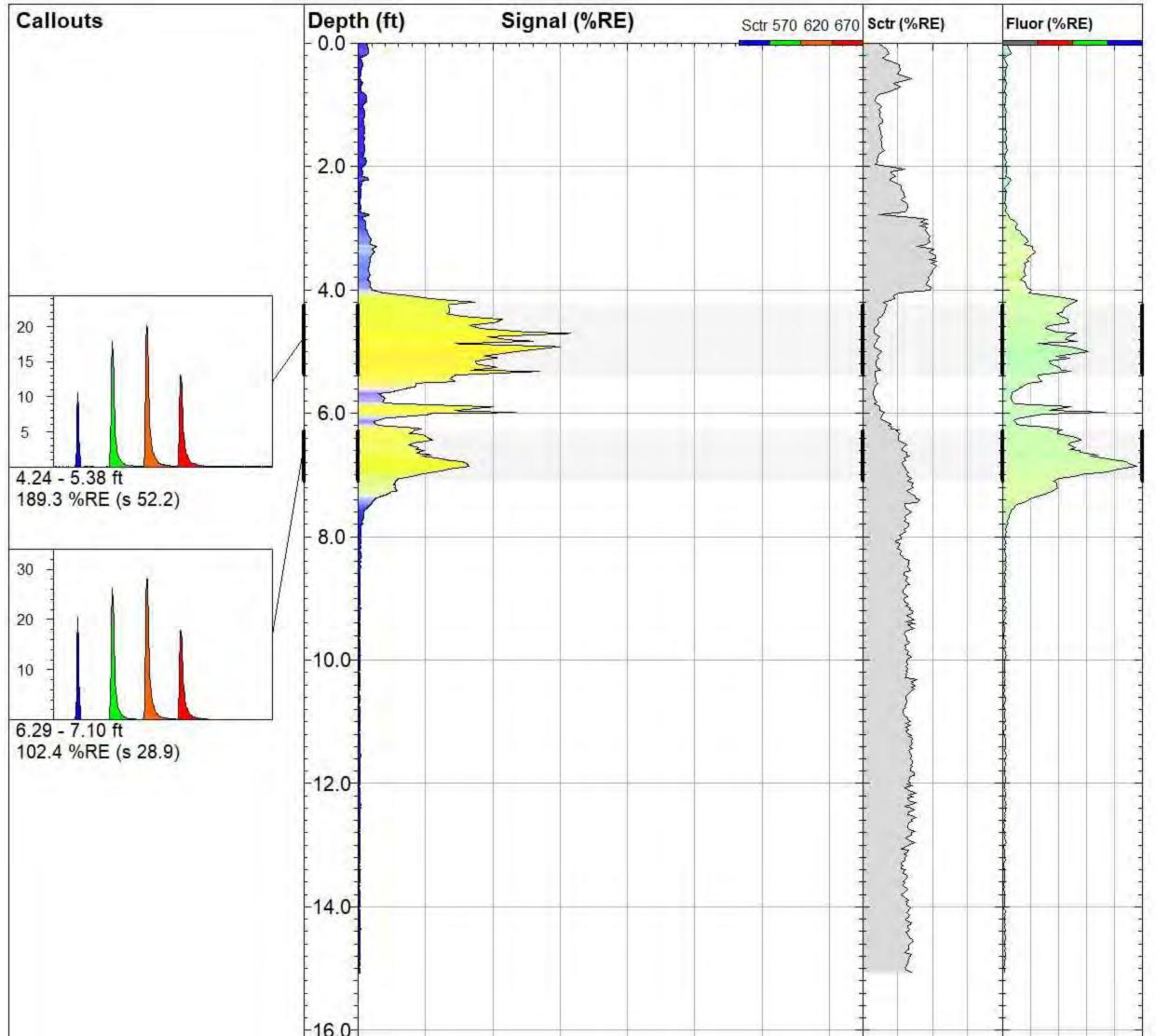

	-16.0					-	
	-18.0					- - - - - - -	
	20.0	200	400	600	50	20	40
	TG-46				TarGOST® www.DakotaTechnolo		ota
	Site: CLINE AVE	DITCH	Y Coord.(La Unavailabl	at-N) / System: le / NA	Final depth: 15.13 ft		
DAKOTA	Client / Job: GHD / 160.1		X Coord.(LI Unavailabl		Max signal: 597.4 %RE @	7.24 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / U SWM / TG10		Elevation: Unavailabl	le	Date & Time: 2017-10-11 1	1:06 CDT	

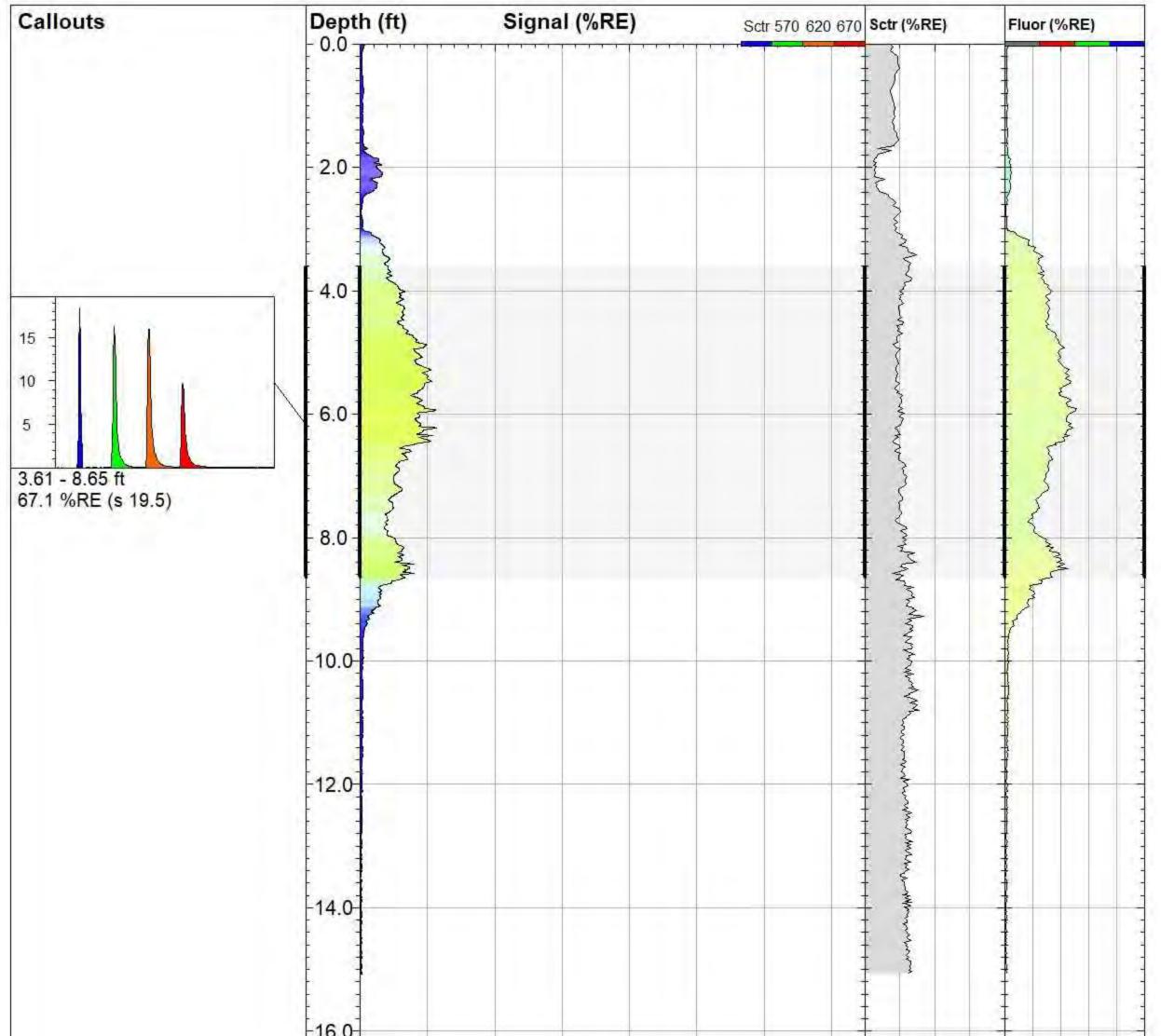

	-16.0					- - -			
	-18.0								
	20.0 0 TG-47	200	400	600	50 TarGOST®		40 (ota		
	Site: CLINE AVE DITCH		Y Coord.(Lat-N) / System			www.DakotaTechnologies.com <i>Final depth:</i> 15.09 ft			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 360.7 %RE @ 10.89 ft				
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 10:43 CDT				

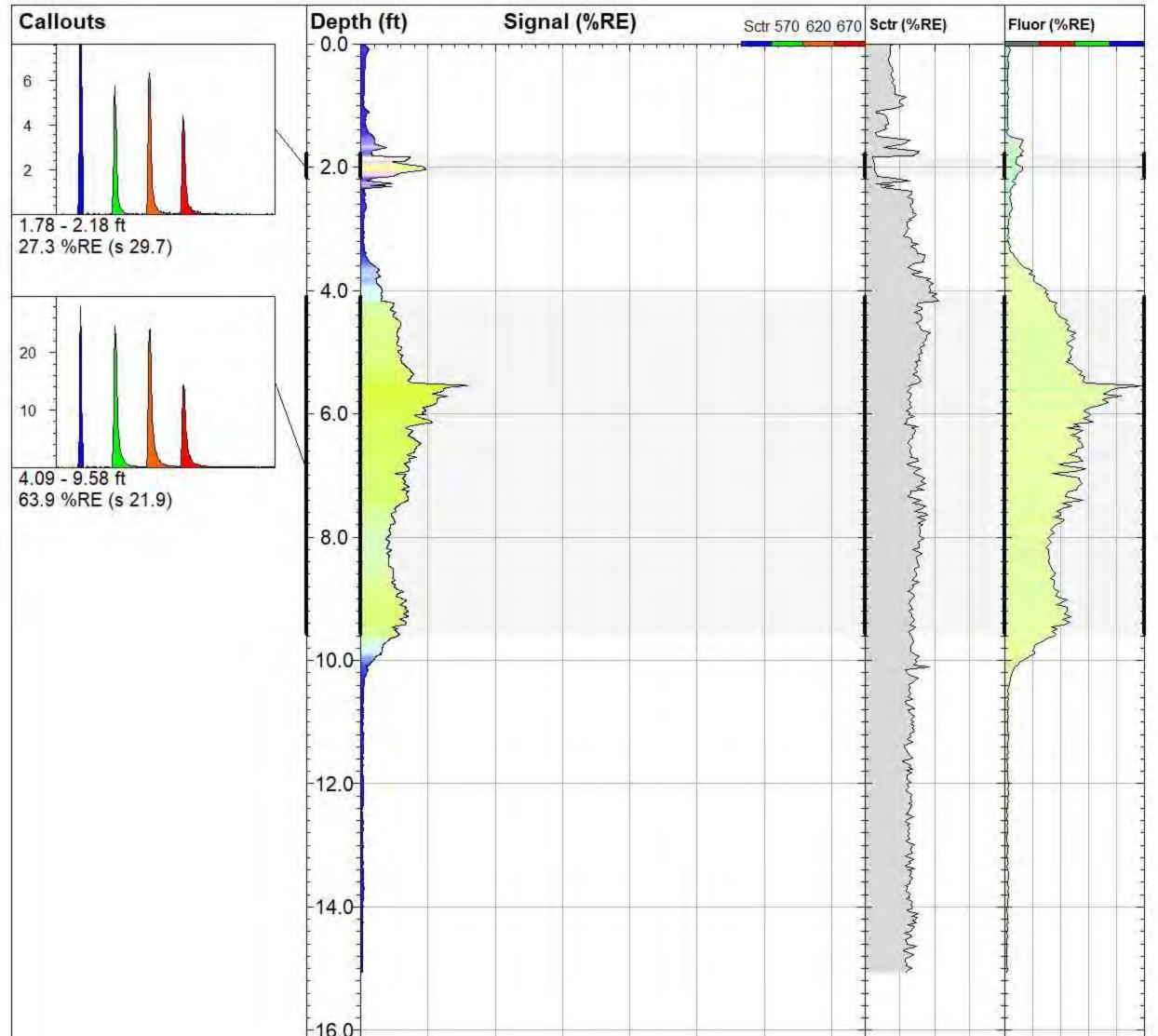

	-16.0						
	-18.0						
	^{20.0} 0 TG-48	200	400	600	50 TarGOST® www.DakotaTechnol		40 ota
	Site: CLINE AVE DITCH		Y Coord.(I Unavailat	Lat-N) / System: ble / NA			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(I Unavailat	Lng-E) / Fix: ble / NA	Max signal: 396.4 %RE @ 6.15 ft		
TECHNOLOGIES WWW.DAKOTATECHNOLOGIES.COM WWW.DAKOTATECHNOLOGIES.COM SWM / TG1004		Elevation: Unavailat		Date & Time: 2017-10-11 10:15 CDT			

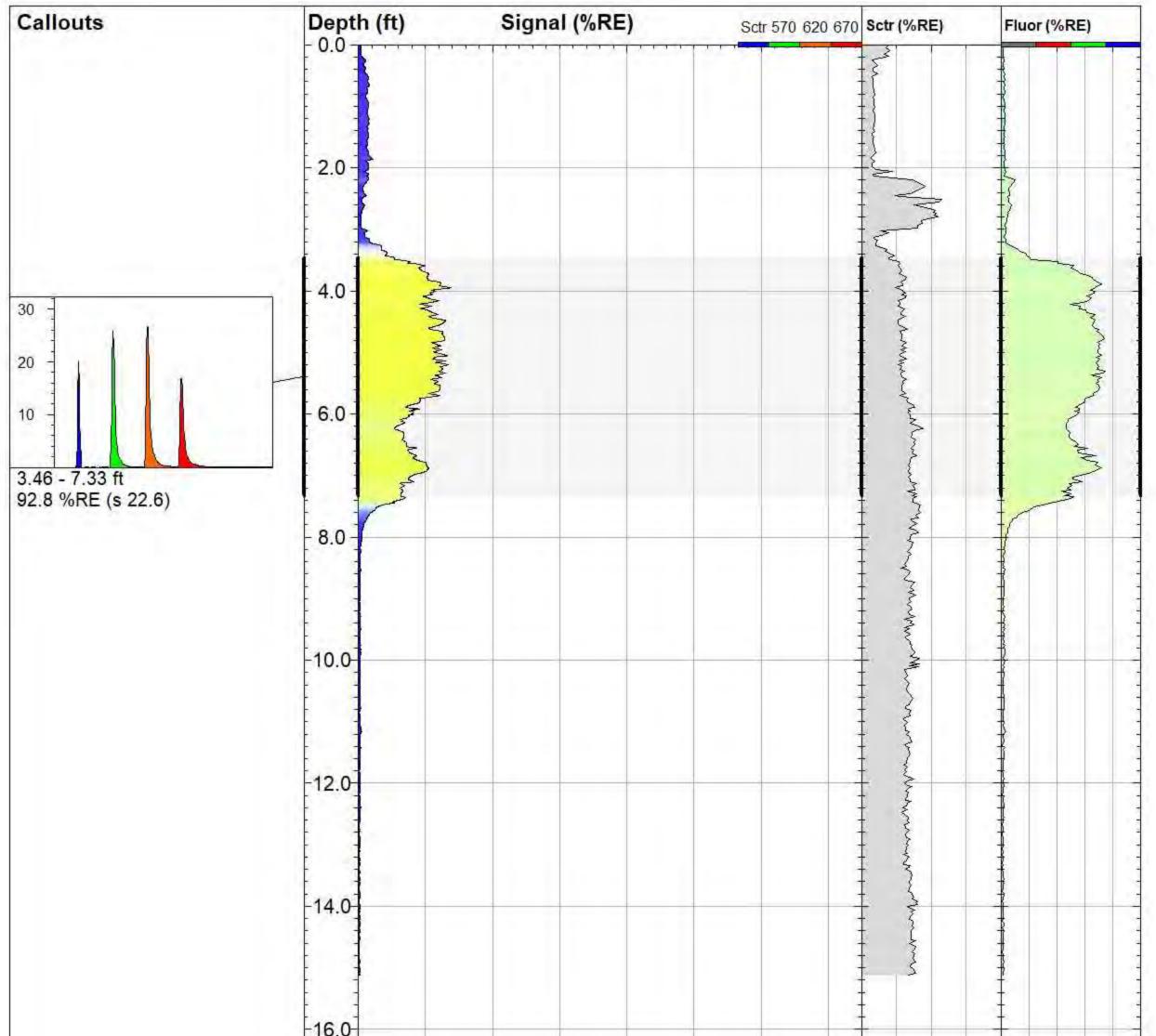

	-16.0								
	18.0								
	20.0 0 TG-49	200	400	600		20 40 By Dakota			
	Site: CLINE AVE DITCH		Y Coord.(Unavaila	(Lat-N) / System: ble / NA	www.DakotaTechnologies.com Final depth: 15.09 ft				
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Unavaila	(Lng-E) / Fix: ble / NA	Max signal: 477.7 %RE @ 5.31 ft				
	Operator / Unit: SWM / TG1004			Elevation: Unavailable		Date & Time: 2017-10-11 09:53 CDT			

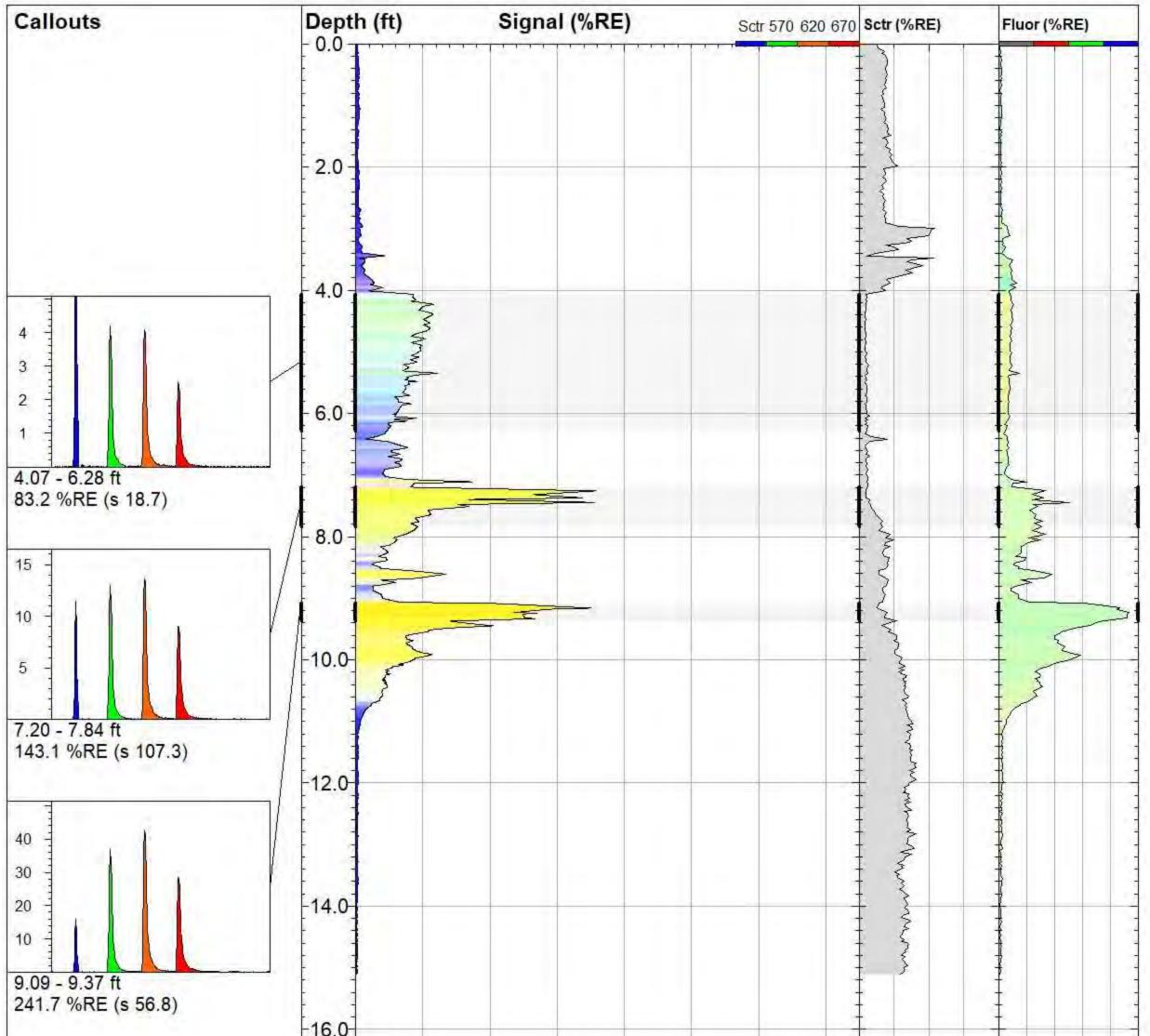

	-16.0			1 1				
	-18.0							
	20.0 0 200 TG-50	400	600	50 TarGOST®	20 By Dake	40 ota		
	Site:	Y Coord.(Lat-N) / System			www.DakotaTechnologies.com : Final depth: 15.08 ft			
DAKOTA	Client / Job: GHD / 160.17		Lng-E) / Fix:	Max signal: 344.1 %RE @ 7.46 ft				
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1004		Elevation: Unavailable		Date & Time: 2017-10-11 09:28 CDT			

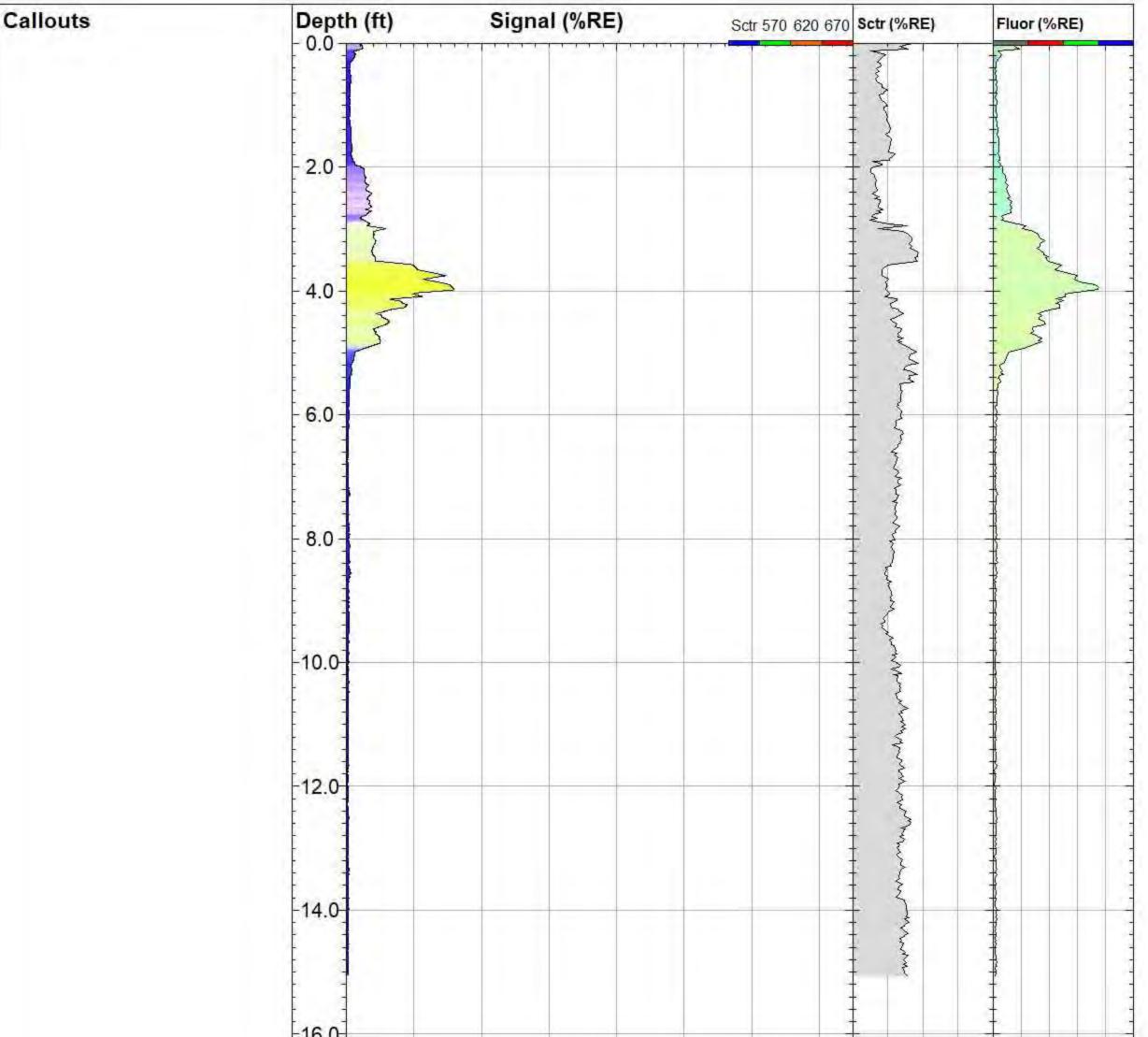

	-16.0					-	ļ		
	-18.0								
	20.0 0 TG-51	200	4	00	600	TarGO	50 DST® E		
	Site: CLINE AVE DITCH		Y Coord.(Lat-N) / System.			www.DakotaTechnologies.com : Final depth: 15.07 ft Max signal: 415.9 %RE @ 6.29 ft			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA						
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 09:06 CDT				

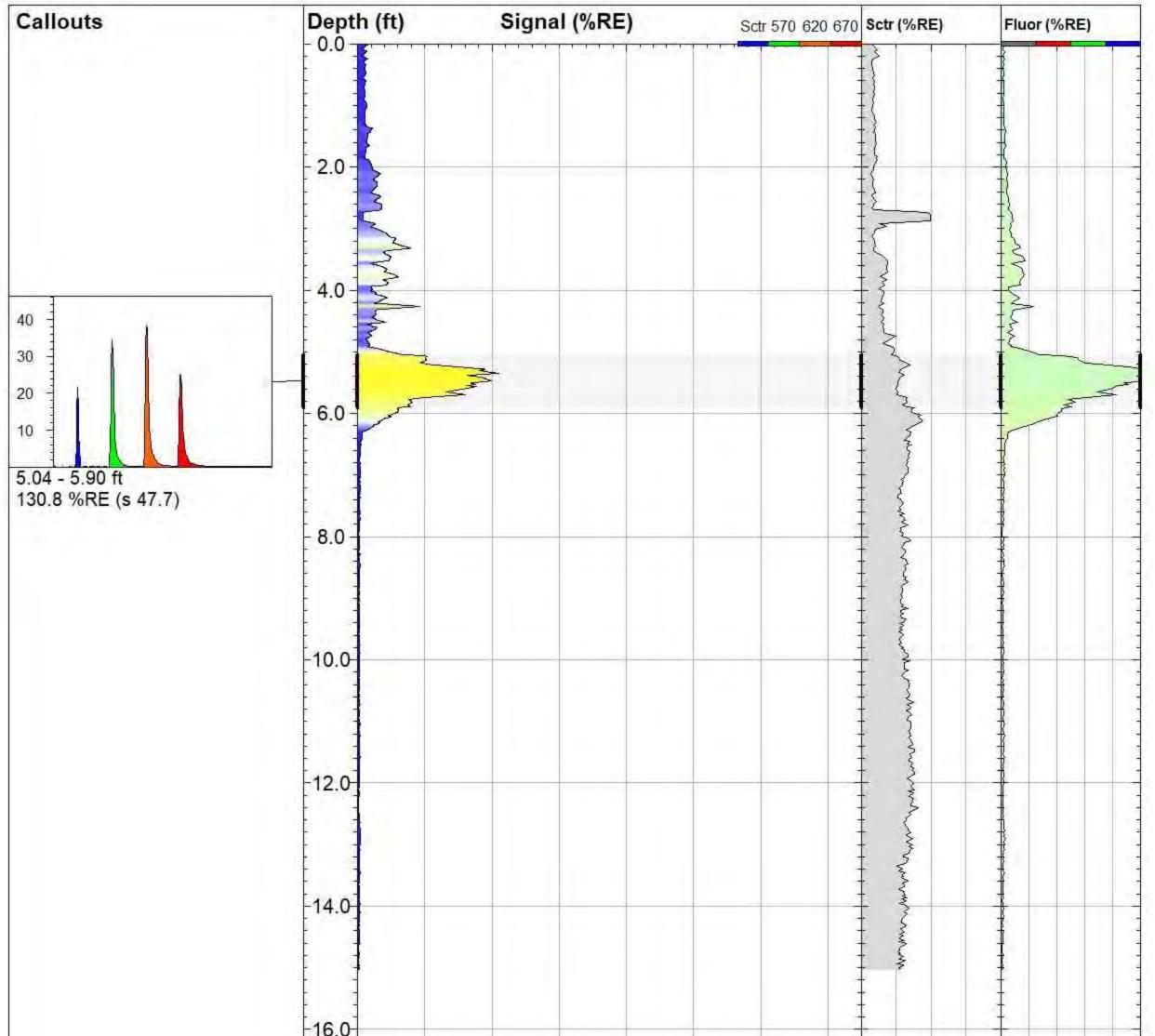

	-16.0							
	-18.0							
	20.0 0 TG-52	200	400	600	50 TarGOST®		40 ota	
	Site:	лтсн	Y Coord.(I Unavailat	Lat-N) / System: ble / NA	www.DakotaTechnologies.com <i>Final depth:</i> 15.09 ft			
DAKOTA	Client / Job: GHD / 160.17	,	X Coord.(I Unavailat	Lng-E) / Fix: ble / NA	Max signal: 288.3 %RE @ 6.52 ft			
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 08:41 CDT			


	-16.0						T
	-18.0					-	
	20.0	200	400	600	50 TarGOST®	20 By Dak	40 ota
	TG-53			and the second	www.DakotaTechnolo		
	Site: CLINE AVE	DITCH	Y Coord.(La Unavailabl	at-N) / System: le / NA	Final depth: 15.06 ft		
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 179.3 %RE @ 5.55 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 14:26 CDT		


	-16.0					-		
	-18.0							
	20.0	200	400	600	50 TarGOST®	20 By Dak	40 ota	
	TG-54				www.DakotaTechnol		Ju	
	Site: CLINE AVE D	лтсн	Y Coord.(Lat-N) / System: Unavailable / NA		Final depth: 15.08 ft			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(L. Unavailab		Max signal: 317.7 %RE @ 4.71 ft			
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 13:53 CDT			


	-16.0						
	20.0 0 TG-55	200	400	600	50 TarGOST® www.DakotaTechnolo		40 ota
	Site: CLINE AVE DIT	сн	Y Coord. Unavaila	(Lat-N) / System: ble / NA	Final depth: 15.07 ft		
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 114.6 %RE @ 6.22 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 13:29 CDT		


	-16.0						T	
	-18.0							
	20.0 0 TG-56	200	400	600	50 TarGOST®	20 By Dak	40 ota	
	Site:	ПТСН	Y Coord.(Unavailal	Lat-N) / System: ble / NA	www.DakotaTechnolo Final depth: 15.06 ft	gies.com		
DAKOTA	Client / Job: GHD / 160.17			X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 159.8 %RE @ 5.54 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:			Elevation: Unavailable		Date & Time: 2017-10-11 13:09 CDT		


	-16.0					- - - -	
	-18.0						
	20.0 0 TG-57	200	400	600	50 TarGOST®		40 ota
	Site: CLINE AVE D	ОІТСН	Y Coord.(L Unavailab	at-N) / System: le / NA	www.DakotaTechnol Final depth: 15.11 ft	ogies.com	
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 139.0 %RE @ 3.95 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Ul SWM / TG10		Elevation: Unavailab	le	Date & Time: 2017-10-11 1		

	-16.0					- - - -		
	-18.0					- - - -		
	20.0	200	400	600	50	20	40	
	TG-58				TarGOST® www.DakotaTechnole		ota	
	Site: CLINE AVE	DITCH	Y Coord.(Lat-N) / System: Unavailable / NA		Final depth: 15.10 ft			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Lng-E) / Fix: Unavailable / NA		Max signal: 358.9 %RE @ 7.26 ft			
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit:		Elevation: Unavailable		Date & Time: 2017-10-11 15:49 CDT			

	-16.0						
	18.0						
	20.0	200	400	600	50	20 40	
	TG-59				TarGOST® www.DakotaTechnol	By Dakota	
	Site: CLINE AVE DITCH	4	Y Coord.(Unavaila	Lat-N) / System: ble / NA	Final depth: 15.05 ft		
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Unavaila	Lng-E) / Fix: ble / NA	Max signal: 159.6 %RE @	0 3.98 ft	
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1004		Elevation: Unavailable		Date & Time: 2017-10-11 14:52 CDT		

	-16.0				-	÷		
	-18.0							
	^{20.0} 0 TG-60	200	400	600		20 F® By Dak	40 ota	
	Site:	н	Y Coord.(La Unavailabl	at-N) / System: le / NA	www.DakotaTech Final depth 15.03 ft			
DAKOTA	Client / Job: GHD / 160.17		X Coord.(Li Unavailabl	ng-E) / Fix:	Max signal	l: E @ 5.35 ft		
WWW.DAKOTATECHNOLOGIES.COM	Operator / Unit: SWM / TG1004		Elevation: Unavailable		Date & Time: 2017-10-11 15:21 CDT			

Callouts	Depth (ft)	Signal	(%RE)	Sctr 570 620 67	0 Sctr (%RE)	Fluor (%RE)
	2.0				= {	
	- 4.0				= {	
					1 5	1
	6.0					
	0.0					
						7
	8.0				= 2	1
					ŧ ŝ	
	-10.0					
	12.0					
	-12.0				= {	
	-14.0				= }	
					= 3	
					+ +	
	16.0				+	+
	-18.0-					
					1	
	20.0					
	0	200	400	600	50 TarGOST	® By Dakota
	TG-61 Site:		V Coord (Lat-N) / System:	www.DakotaTech Final depth	nologies.com
	CLINE AVE D	тсн	Unavailal	ble / NA	15.13 ft	
DAKOTA TECHNOLOGIES	Client / Job: GHD / 160.17		X Coord.(Unavaila	Lng-E) / Fix: ble / NA	Max signal 21.1 %RE	
	Operator / Uni SWM / TG100	it:	Elevation: Unavailal		Date & Tim	

Callouts	Depth (ft)	Signal (%R	E) :	Sctr 570 620 670	Sctr (%RE)	Fluor (%RE)	
					shaw		
					why were		
	- 2.0						
						1	
					- An		
	4.0						
						the second s	
	6.0						1
	8.0					1	_
	-10.0-						
	-12.0						
						the second se	
					- some		
	14.0	_			- when	1	_
					- - -	Ŧ	
	-16.0				-	-	
	-18.0						
						ŧ.	
	20.0	200	400	600	50	20	4
	TG-62				TarGOST www.DakotaTect	® By Dake nnologies.com	ota
	Site: CLINE AVE DIT	CH Ur	Coord.(Lat-N) navailable / N	/ System: A	Final depth 15.09 ft):	
DAKOTA	Client / Job: GHD / 160.17	X	Coord.(Lng-E) navailable / N	/ Fix:	Max signal		
TECHNOLOGIES	Operator / Unit:	Ele	evation:	n.	13.2 %RE Date & Tim	ne:	T
WWW.DAKOTATECHNOLOGIES.COM	SWM / TG1004	Ur	navailable		2017-10-1	1 17:07 CDT	

Appendix C Dart Literature and Results

Appendix C.1 Dart Information Sheet, "Vertical Characterization of MGP in Sediments Using Laser-Induced Fluorescence Based Passive Samplers"

Vertical Characterization of MGP NAPL in Sediments

Using Laser-Induced Fluorescence Based Passive Samplers

R. St. Germain¹, T. Rudolph¹, D. Bessingpas²

(1) Dakota Technologies, Inc., Fargo, North Dakota, USA (2) ARCADIS, Baxter, Minnesota, USA

ABSTRACT

ARCADIS and Dakota Technologies deployed two types of in-situ NAPL screening tools in order to characterize coal tar NAPL in river sediments adjacent to a former MGP site. A Tar-specific Green Optical Screening Tool (TarGOST®) was used to log NAPL vs. depth successfully in most areas Unfortunately TarGOST characterization of sediments within a gas line buffer zone area was deemed too dangerous due to the direct push machinery used to advance TarGOST. As a solution, Dakota developed customized Dart[™] samplers which consist of stiff rods coated with solid phase extraction (SPE) media, which attracts and sorbs PAHs. The Darts were manually installed into the upper 6 to 12 ft of sediments, left in place for 24 hours, and retrieved. Subsequent laser-induced fluorescence (LIF) analysis of the Dart's SPE media indicated the presence and relative availability of PAHs from the sediments in the buffer zone. Site-specific NAPL mixed with clean site sediments were later applied to Darts in the lab in order to improve our understanding of the in-situ Dart sampler's quantitative/qualitative behavior at this particular site.

FIGURE 1. Site map showing utility corridor of concern along with TarGOST and Dart locations (Dart locations in red).

Dart Samplers: How they function and how they're analyzed

The Dart samplers are basically fiberglass rods covered with a nonfluorescent SPE media, similar to that used in solid-phase micro-extraction (SPME) analytical methods. With a Kow ranging from 3 to 6, the hydrophobic PAHs prefer to be in NAPL (or similar organic material). The Dart's organic SPE cladding has a high affinity for PAHs, which they sorb into readily. The PAHs contained in MGP NAPL (coal tar) fluoresce poorly under ultra-violet excitation. But those same PAHs, having transferred into "solid solution" in the Dart's SPE cladding, fluoresce much more intensely. This fluorescence can be sensitively analyzed along the entire length of the Dart with LIF, resulting in a log of the PAH concentration along the Dart's length. The LIF log represents the PAH exposure that occurred while the Dart was exposed to the sediment column.

FIGURE 2. A visual demonstration of how Darts glow in response to various concentrations of MGP NAPL on Fisher Scientific sea sand.

Visual observations with a handheld lamp, while "handy" and intuitive, do not generate the sensitive and quantitative digitized readings that laserinduced fluoresce systems such as UVOST can provide. In order to "read" the sorbed PAHs' fluorescence along the Darts entire length and circumference, a lathe-like device is used to rotate the Dart while the UVOST system logs a detailed reading of the PAH fluorescence ws. "depth".

FIGURE 3. Dart logging system including lathe-based reader and UVOST system – full system (left) and close-up of optics system (right).

VI STAT	Cellouts	Depth (#)	Signal (%RE)	150 400 450 500	Fals (sec)
	200				
	208	0.5			1000
3 4 3 6 7 8 3 19 11 18	0.6 ft 223.0 MM				
		1.0			-
	40	1			-
	208	1.5			-
	1.4 76				6
8 1.1		2.0			Į
1. Ellera anti-	108				-
	60	-2.5			-
	1.4 25 41.7 333				
10 11 21 21 24 15 15 15 15 15 15 15	808	3.0			
Contraction of Contraction of Contraction	40				- 1
1.00	208	-3.6			
	2-3 76 341.9 108	4.0			-
FIGURE 4. Test Dart	····]] .				ſ I
with site-specific NAPL	600	45			Γ.
	200 -	1			1
applied (above) and	2-3 26 245-4 338	5.0 0 100	200 300	400	0.5
resulting Dart		NAPLONDART		UVOSTE	
fluorescence log (right)		Sile: Central Hudson	Latitude / Datum Unavailable / NA	Filsal depth: 4.67 ft	
showing precisely where		Chect: Arcedis	Longitude / Fix: Unavailable / NA	Max signal 473,4 % @ 3	94 N
Dart had been exposed	Farmer, HD VIII. 2007. 2008	Jobr	Operator/Unit TJR/LAD01	Date & Time 2008-06-02	6-27 CDT

Field Deployment

The Dart samplers are inserted into the sediments and left in place for 24 hours to allow PAHs to transfer into the SPE cladding. Buoys were used to pre-mark the Dart locations and divers placed the Darts into the sediment by hand, on occasion using a small customized drive hammer to achieve full penetration. Short lengths of floating cord attached to each Dart allowed the divers to find the Darts 24 hours later and retrieve them. After retrieval, the Darts were wrapped in aluminum foil and taken to shore for UVOST analysis. Analysis of each Dart takes about 30 minutes.

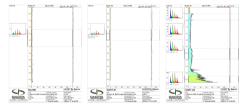


FIGURE wrapped installati diver w drive middle), ready for right), a

FIGURE 5. Plastic wrapped Darts ready for installation (upper left), diver with Dart and drive tool (upper middle), retrieved Dart ready for reading (upper right), and dive boat in buffer zone (bottom).

Analysis Results

Each Dart was scanned on-site with UVOST LIF. Since the PAHs are now "locked into" the SPE cladding and don't require icing, the Darts could have been shipped to Dakota for reading. A variety of responses were observed. Examples logs from the 28 Dart locations are shown below in Figure 6. Notice that most of the logs show a foot or so of clean sediment near the surface. The "spiky" appearance is due to smearing, streaking, or "hot spots" on one side of the Dart, but not the other.

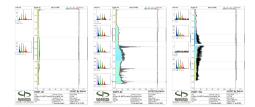


FIGURE 6. Variety of logs generated from the 28 Darts deployed in the buffer zone (utility corridor).

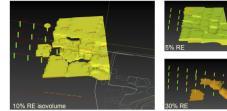


FIGURE 7. 3D visualization of the fluorescence response of the Darts. The fluorescence scaled with PAHs transferred to the SPE of the Darts. Lab Results

Laboratory experiments were conducted using site sediment (a fine dark highly organic sediment) and Fisher Scientific brand sea sand to mimic two extremes of soil types. Site NAPL from a nearby well was spiked onto the two soil types. Test Darts were exposed to these sediments for 24 hours and analyzed with UVOST. The samples were also tested with TarGOST for comparison. See Figure 2 for basic approach.

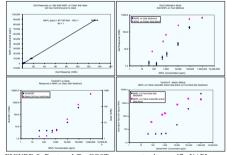


FIGURE 8. Dart and TarGOST response to site-specific NAPL on fine dark organic sediment and Fisher Scientific sea sand.

Conclusions

The use of Dart samplers to delineate the extent of PAH impacted sediments within the gas lue buffer zone area was successful. Like TarGOST, the Darts responded monotonically to NAPL concentration as desired. Just as TarGOST responds to PAHs (NAPL) "available" to the sapphire window, Darts respond to PAHs "available" for direct contact with the SPE cladding. Soil matrix effects influence both TarGOST and Darts, similar to how soil type influences a visual core examination by a geologist. The Dart samplers, like TarGOST, are affected by sediment type and have improving limits of detection with increasing porosity (grain size) and decreasing organic content. Determination of an exact %RE threshold that is equivalent to a "NAPL present" visual assessment was difficult because the presence of NAPL at low concentrations is difficult to define or quantify. Site-specific calibration was useful for rigorously quantifying the Dart's in-situ performance and to provide confidence regarding interpretation of the LIF loos generated during the Dart survey.

Appendix C.2 LIF-Dart Paper, "Laser-Induced Fluorescence Coupled with Solid-Phase Microextraction for In Situ Determination of PAHs in Sediment Pore Water"

Laser-Induced Fluorescence Coupled with Solid-Phase Microextraction for In Situ Determination of PAHs in Sediment Pore Water

STEVEN B. HAWTHORNE,*,[†] RANDY W. ST. GERMAIN,[‡] AND NICHOLAS A. AZZOLINA[§]

Energy and Environmental Research Center, Campus Box 9018, University of North Dakota, Grand Forks, North Dakota 58202, Dakota Technologies, Inc., 2201A 12th Street North, Fargo, North Dakota 58102, and ENSR Corporation, Inc., 1001 West Seneca Street, Suite 204, Ithaca, New York 14850

Received April 28, 2008. Revised manuscript received July 29, 2008. Accepted July 30, 2008.

In situ sampling with solid-phase microextraction (SPME) was coupled with laser-induced fluorescence (LIF) in an effort to develop a simple field-portable method to determine total dissolved PAH (polycyclic aromatic hydrocarbon) concentrations in sediment pore water. Glass fiber rods with a 50 μm coating of optically clear polydimethylsiloxane (PDMS) were inserted directly into sediment/water slurries. After 1-140 h (typically 18 h), the coated rods were recovered, rinsed with water, and their LIF response was measured with excitation wavelength (308 nm) and emission wavelengths (350-500 nm) chosen to monitor 2- to 6-ring PAHs. SPME-LIF response was independent of sediment sample size, as is required for equilibrium sampling methods to be used in situ in the field. Potential interferences from high and variable background fluorescence from dissolved organic matter were eliminated by the use of the nonpolar PDMS sorbent. The detection limit in pore water was ca. 2 ng/mL (as total PAH-34), which corresponds to ca. 0.2 EPA PAH toxic units. Good quantitative agreement ($r^2 = 0.96$) for total PAH-34 pore water concentrations with conventional GC/MS determinations was obtained for 33 surface sediments collected from former manufactured gas plant (MGP) and related sites. Quantitative agreement between SPME-LIF and GC/MS total PAH-34 concentrations was also good for 11 sediment cores ($r^2 = 0.87$), but the predominance of 2-ring PAHs (compared to the other sites) resulted in a lower relative SPME-LIF response compared to the surface sediment samples. The method is very simple to perform, and should be directly applicable to field surveys.

Introduction

Several investigators have demonstrated that using sediment concentrations and conventional organic carbon/water partitioning coefficients (K_{OC}) can over-predict pore water

concentrations of hydrophobic organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) by up to three orders of magnitude, most likely because of the presence of several types of "black" or "soot" carbon (BC) in sediments that tightly bind PAHs (1-5). Therefore, investigations into the bioavailability of PAHs and related hydrophobic organics in sediments have increasingly focused on measuring pore water concentrations, rather than attempting to predict pore water concentrations based on sediment concentrations (6-11). Pore water concentrations are usually measured either by direct exposure of a nondepletive sorbent into the sediment/water slurry (8-11), or by separating the pore water and determining the dissolved PAH concentrations after solvent extraction or by using solid-phase microextraction (SPME) (6, 12).

In addition to the increasing recognition that direct pore water measurements are needed to predict the bioavailability of sediment PAHs, it is becoming apparent that the conventional parent PAHs measured by EPA method 8270 (PAH-16) are not sufficient to represent potential PAH biological effects (7, 13). For example, the PAH-16 only accounts for ca. 40% of the total PAH concentrations in coal tars from manufactured gas plant (MGP) sources, and only ca. 1% of the total PAH concentrations in a petroleum crude oil (14). In recognition of this fact, the U.S. EPA has proposed measuring a more inclusive range of 18 parent and 16 groups of alkyl PAHs (PAH-34) in sediments and sediment pore water (13). Although laboratory methods to measure pore water PAH-34 concentrations have been developed (12), there is a strong desire on the part of site managers and regulatory personnel to determine pore water PAH concentrations on site with in situ samplers, both to reduce the time and cost of site surveys and to minimize alterations to the samples that may occur during sample collection, shipping, and laboratory analysis.

Several groups have used a nondepletive in situ solidphase microextraction (SPME) approach to determine dissolved PAH pore water concentrations. Sorbents such as polydimethylsiloxane (PDMS) or polyoxymethylene (POM) are inserted directly into sediment/water slurries and typically left for weeks to come to equilibrium (8-11). The partitioning of PAHs to such sorbents is controlled primarily by each PAH's octanol/water partitioning coefficient (K_{OW}), and is therefore thought to mimic partitioning of PAHs between sediment pore water and biological lipids. Such sorbents are typically retrieved from the sediment, returned to the laboratory, and solvent extracted to determine PAH concentrations by conventional chromatographic methods. Therefore, these methods tend to retain many of the time and cost disadvantages of collecting sediment samples and shipping them to the laboratory for pore water analysis.

There have also been several attempts to directly measure PAH concentrations in water using laser-induced fluorescence (LIF). Unfortunately, the success of LIF to determine PAH concentrations has been limited by background spectral interferences from natural dissolved organic matter (DOM) (15-19). Time-resolved fluorescence has been used to reduce background DOM emission, but approaches typically measure only a limited number of parent PAHs (15-19). An alternate approach would be to separate the PAHs from the DOM prior to LIF with the use of a nonpolar solvent such as hexane (20), but this requires separation of the sediment and pore water, and is not practical in the field. However, since DOM is polar and has high water solubility, nonpolar sorbents used for in situ pore water sampling (e.g., PDMS) should largely exclude DOM, while collecting the nonpolar

^{*} Corresponding author e-mail: shawthorne@undeerc.org; fax: 701-777-5181.

⁺ University of North Dakota.

[‡] Dakota Technologies, Inc.

[§] ENSR Corporation, Inc. Present address: Foth Infrastructure and Environment.

PAHs. Therefore, the goal of our present study is to combine the ability of in situ SPME methods to determine pore water PAH concentrations with the sorbents' ability to exclude polar DOM in an effort to allow LIF determination of sediment pore water PAH-34 concentrations. SPME rods were selected that had low intrinsic fluorescence background and rapidly approached equilibrium with the pore water. Four emission wavelengths associated with 2- to 6-ring PAHs were monitored and the emission intensities were compared to pore water and sediment concentrations of the PAH-34, and the total PAH "toxic units" (TUs) were calculated using the EPA hydrocarbon narcosis model (*13*).

Experimental Procedures

Sediment Collection and Characterization. Sediment collection procedures and analytical methods have been described in detail in earlier reports (4, 12, 14). In brief, sediments were collected using a Ponar grab sampler or, for the subsurface samples (Site D), using 3-in. Vibracores. Sediment/water slurry samples were field sieved through a 4-mm screen, briefly mixed, transferred to new glass jars with Teflon-lined lids, and immediately placed on ice. This procedure resulted in sediment/water slurries with approximately 40-70% water content. Samples were shipped overnight to the laboratory, and stored in the dark at ca. 4 °C until used. Because of concerns about possible changes in pore water PAH concentrations during storage, GC/MS and SPME-LIF analyses were typically performed within one week of each other, and all sediments were analyzed less than 28 days after collection. TOC and BC were determined by elemental analysis (C, H, N) after acidification with HCl to remove inorganic carbonates. Samples for BC were prepared by oxidation under air at 375 °C for 24 h in a gas chromatographic oven (22).

Sediment and pore water PAH-34 concentrations were determined in quadruplicate using GC/MS as previously described (*12, 14*). Sediment extracts were prepared using 18-h Soxhlet extractions. Pore water samples were prepared using centrifugation followed by flocculation (*12*), and concentrations were determined using commercially available SPME fibers (7 μ m PDMS coating, Supelco, Bellefonte, PA) specifically designed for thermal desorption into a gas chromatograph's injection port. Both methods used 2- to 6-ring perdeuterated PAHs as analytical internal standards. Pore water TUs were calculated using octanol–water coefficients (*K*_{OW}) as specified by the U.S. EPA (*13*).

SPME-LIF Determinations. The SPME sorbent used for the in situ studies was prepared by stripping the nylon buffer from an optical fiber supplied by Fiberguide Industries, Inc. (Stirling, NJ) with hot propylene glycol for approximately 2 min. The remaining PDMS cladding (50 μ m film thickness, 600 μ m core diameter) was found to have the lowest LIF response of any of the various PDMS materials tested. (Note: It is important not to confuse the SPME fibers used for GC/ MS analysis of the flocculated pore water samples described above, and the SPME rods made from optical fibers used for direct insertion into the sediments followed by LIF determinations.) Each rod was cut into 2-cm lengths, rinsed with water, and stored in reverse osmosis purified water (previously determined to be clean of fluorescence via direct measurement with LIF).

SPME sorptions of the PAHs in sediment/water slurries were performed directly in the 250-mL jars used to ship the samples to the laboratory from the field. The rod was simply inserted into the center of the sediment/water slurry and the samples were kept in the dark during the exposure times. No steps were taken to prepare the field samples prior to inserting the cleaned SPME rod. In an effort to best mimic use of the rods in the field (e.g., inserting the rod into the top 10 cm of sediment, or the biologically active zone), no mixing was used. After the selected exposure time, the rod was removed from the sediment, particles were removed with a brief spray of clean water, and the PAH content was analyzed by LIF.

LIF was performed using an Ultra-Violet Optical Screening Tool (UVOST) manufactured by Dakota Technologies, Inc. (Fargo, ND). The sorbent rod was placed in a holder at 90 degrees to collinear excitation and emission optics, located approximately 5 mm from the surface of the rod. This orientation provided an optical interrogation zone approximately 3 mm long at the center of the rod's length, which allowed the sorbent rod to be handled at the ends without disturbing or contaminating the section of the rod interrogated by LIF. Excitation was achieved with 5 ns (full width at half-maximum) pulses from a XeCl excimer laser. Since the goal of this method is to monitor the total alkyl and parent PAHs, excitation was performed at 308 nm in order to excite 2- to 6-ring PAHs, and to avoid fluorescence from monocyclic aromatics such as benzene and toluene. Emission wavelengths were monitored at 350, 400, 450, and 500 nm in order to monitor emission from 2- to 6-ring PAHs, as has previously been demonstrated in soil and sediment samples (21). Calibration was based on a reference emitter (RE) response from a standard solution of 2- to 6-ring PAHs diluted in acetone.

Data Analysis. Data from all four sites were evaluated using Minitab 14 (Minitab, Inc.). The GC/MS pore water concentrations and SPME-LIF intensities were evaluated for normality using the Ryan–Joiner test for data in original and log-transformed units. Data determined to be neither normal nor log-normally distributed were transformed using ranks. Correlations between measurements were determined using either the Pearson product moment (normal data) or Spearman rank correlation (non-normal data). Principal component analysis (PCA) was used to identify which variables explained the largest percentage of the variance in the GC/MS pore water concentrations of 2- through 6-ring PAHs and LIF emission intensities at 350, 400, 450, and 500 nm. PCA was calculated from the correlation matrix.

Results and Discussion

Sediment Characteristics and PAH Concentrations. General characteristics of the MGP sediments used in this study are given in Table 1. (Relative distributions of each of the PAH-34 parent and alkyl groups are shown in Figure S1 in the Supporting Information.) Sites A, B, and C involved MGP surface sediments, and show PAH ring-size distributions that are typical of the vast majority of the 230 sediments that we have analyzed for sediment and pore water PAH-34 (4, 7). Site D was also from an MGP location, but samples consisted of subsurface cores collected from depths greater than 1 ft. below the sediment surface. Site D was included in this study because it showed the highest relative concentrations of low molecular weight PAHs of any of the 14 MGP and aluminum smelter sites analyzed to date. Lastly, Site E included surface sediments from an aluminum smelting site that historically used coal tar pitch in its manufacturing processes. Site E was selected because it represented the highest relative concentrations of high molecular weight PAHs from the sites studied to date. For the 58 sediments used in the present study, PAH-34 concentrations ranged from typical background concentrations of a few μ g/g to impacted sediments as high as 1100 μ g/g PAH-34. Total organic carbon (TOC) ranged from 0.14 to 5.3 wt%, and BC ranged from 0.06 to 2.1% (Table 1). Sediment textures ranged from coarse sand to fine silt and clay. Twenty of the 58 sediments had NAPL (nonaqueous phase liquid) observed in the field during sample collection, and confirmed in the laboratory. However, no attempt was made to remove NAPL droplets prior to SPME-LIF analysis, since no such alteration of the sediments would be possible in an in situ field approach.

TABLE 1. Summary of Sediment and Pore Water Characteristics

	minimum	maximum	median
bulk se	diment ^a		
total PAH-34 (μ g/g) Sites A, B, C ($n = 22$) Site D ($n = 11$) Site E ($n = 10$)	9 46 57	768 1057 902	166 184 135
2- and 3-ring PAHs/total PAH-34, % ^b Sites A, B, C Site D Site E	37 68 8	65 96 19	51 90 13
total organic carbon (TOC) ^c black carbon (BC) ^c fraction (BC/TOC) ^c	0.14 0.06 0.11	5.3 2.1 0.88	1.2 0.47 0.37

sediment pore water

total PAH-34 (ng/mL)	·		
Sites A, B, C	2	501	16
Site D	56	1429	597
Site E	1	27	2

 a Sediment PAH concentrations are on a dry weight basis. b The sum concentration of all 2- and 3-ring PAHs divided by the total PAH-34 concentration. c All sites.



FIGURE 1. SPME-LIF response for sorbent rods exposed to sediments for different times. Sediment characteristics ranged from 0.6 to 2.0 wt.% total organic carbon, 2.5 to 11 mg/L dissolved organic carbon, and 0.6 to 44 pore water PAH-34 TUs.

Effect of Exposure Time on LIF Response. The effect of the SPME exposure time to the sediment/water slurry samples on the SPME-LIF response is shown in Figure 1. Even under the static (no mixing) conditions used to mimic in situ sampling, sorption occurs fairly rapidly. For example, after only 1 h the SPME-LIF signals were ca. 30% of the values attained after 140 h of exposure, and after 18 h the response averaged 77 \pm 7% of the values attained after 140 h. Since 18 h represents a reasonable time frame for deploying and retrieving multiple in situ SPME devices in the field, the 18 h exposure time was chosen for subsequent studies unless otherwise noted. It should also be noted that useful survey data can be achieved with quite short exposure times. For example, with the eight sediments used in the time studies (including those in Figure 1), the linear correlation between the SPME-LIF responses obtained after 1 h compared to the responses at either 18 or 140 h was very strong ($r^2 = 0.96$). These results indicate that useful site mapping survey data could be obtained during field studies on hour time frames,

which would allow near real-time adaptive management of field sampling and analysis plans.

Effect of Sediment Volume on LIF Response. For the SPME approach to apply in the field, the concentrations of PAHs sorbed into the rod coating must be independent of sample size; i.e., a rod placed in the sediment in the lake or river should have the same PAH concentrations and the same fluorescence response as a rod placed in a small jar of the same sediment. In essence, this is the same as saying the SPME extraction must be nondepletive to the exposed sediment/pore water slurry PAH concentrations, as is required for other equilibrium-based in situ methods (8-11). To test if this sample size independence (i.e., nondepletive) requirement was met, the four sediments that were used for the time study in Figure 1 were exposed to 7 and 250 mL sediment/water slurry samples for 18 and 48 h (23). After 18 h the fluorescence signal in the 7 mL samples averaged $96 \pm 11\%$ of the signal in the 250 mL samples, and after 48 h the signals from the 7 mL samples averaged $98 \pm 6\%$ of those for the 250 mL samples (Figure S2 in the Supporting Information). These results demonstrate that there is no dependence on sample size that can be measured compared to the method reproducibility (which has an RSD of ca. 8% based on the LIF response of five rods placed in the same sediment sample for 18 h). Therefore, a rod exposed to sediment in the field will accurately reflect the pore water PAHs in a small sample taken from the same location, and vice-versa.

Background and Detection Limit. The goal of this method was to attain a detection limit for PAHs corresponding to one TU (or lower) as defined by the EPA narcosis model (13), a value which corresponds to a total PAH-34 water concentration of ca. 10 ng/mL for a sediment that has a typical distribution of PAHs from an MGP site. With the LIF system, the fluorescence response does not limit sensitivity; rather the major limitation to achieving low detection limits is the background fluorescence from the PDMS sorbent material. The material chosen for this study was the PDMS found to have the lowest background of those tested. Since alkyl 2and 3-ring PAHs contribute the highest pore water concentrations and generally account for the most TUs of the PAH-34 list (7), it would be desirable to prepare solutions containing "standard" alkylated isomeric clusters for calibration and determining detection limits. However, no standards of the alkylated isomeric clusters exist, and their production from pure compounds is not possible because of the several hundreds of isomers present in PAH-contaminated materials from both petrogenic and pyrogenic sources (14). Therefore, the SPME-LIF method detection limit was estimated by comparing SPME-LIF response to the concentrations measured by the pore water PAH-34 GC/MS method (12) on several sediment samples that had low pore water concentrations. With the preparation described above, the PDMS on the rod selected for this study showed background signals at ca. 10% relative emission (on the scale shown in Figure 1). Based on a 3:1 signal-to-noise ratio, the SPME-LIF method currently has a detection limit for total PAH-34 in pore water of ca. 2 ng/mL, which corresponds to ca. 0.2 TUs. Since these values are below typical urban background levels in sediments (7), the method is sufficiently sensitive to use at industrial and urban sites. However, obtaining PDMS material that has a lower background signal would further reduce the method detection limit, since the LIF signal is still reasonably intense at this background level.

Fluorescence from dissolved organic matter (DOM) has been a major obstacle to direct fluorescence determinations of PAHs in water (*15–19*), but does not appear to affect the SPME-LIF approach since DOM is too polar to preferentially sorb into (or onto) the nonpolar PDMS. For example, a rod soaked for 18 h in a solution of 9 mg/mL Suwannee River

FIGURE 2. Comparison of SPME-LIF response with total pore water PAH-34 TUs (top left), total PAH-34 pore water concentrations (bottom left), total sediment PAH-34 concentrations (top right), and total sediment PAH-34 concentration on an organic carbon basis (bottom right) for the 33 surface sediments from sites A, B, C, and E.

fulvic acid in water showed no detectable change in LIF response from a duplicate rod soaked in clean water, even though the fulvic acid water solution showed an LIF response several times the rod background response (Supporting Information Figure S3). Similarly, water samples equilibrated for 24 h (1:3 wt. to wt. ratio in water) with manure, peat moss, and a 13 wt. % TOC agricultural soil showed no increase in SPME-LIF response compared to clean water, further demonstrating that the SPME sorbent efficiently excludes background fluorescence from natural organic matter.

Potential effects of DOM were also investigated by measuring the SPME-LIF response of 15 clean background sediments that were collected in unimpacted areas from the same 5 sites (in addition to the 43 sediments used in the remainder of this study) that had total PAH-34 pore water concentrations (as measured by the GC/MS method) less than 1 ng/mL, and less than 0.05 TUs. After the 18-h exposure of the SPME rod to the sediment/slurry mix, the only cleaning step was a brief rinse with clean water. For all of these samples, no significant fluorescence above the rod background was observed. The lack of SPME-LIF response in these uncontaminated sediments also demonstrates that colloids which may stick to the rod surface do not cause a detectable change in the LIF signal.

SPME-LIF Response Compared to Laboratory PAH-34 GC/MS Analyses. A comparison of the 18 h SPME-LIF signals with the total sediment and total pore water PAH-34 concentrations, and with the total PAH TUs calculated from the EPA's narcosis model (*13*), was initially performed on a site-by-site basis. These plots showed general agreement for the surface sediments from sites A, B, C, and E, but significant deviations for the subsurface cores from site D (as discussed below). Therefore, subsequent data analysis was performed with the combined data from surface sediments (sites A, B, C, and E), but with the data from the subsurface cores (site D) handled separately unless otherwise noted. It should also be noted that the EPA's hydrocarbon narcosis model (*13*) predicts mortality to *Hyalella azteca* when PAH-34 water concentrations are high enough to contribute 1 TU (equivalent to 2.2 μ mol/g lipid), so the important range for accuracy of the SPME-LIF method might initially be considered ca. <1 to 3 TUs. However, a recent study of 97 PAH-impacted field sediments demonstrated that no mortality occurs below 5 TUs, and that the important range for distinguishing toxic versus nontoxic samples is from ca. 5 to 30 TUs (7). A similar result was obtained by a separate study using pure fluoranthene under controlled laboratory conditions (24). Therefore, evaluation of SPME-LIF in subsequent discussions focuses on PAH-34 concentrations contributing ca. 5 to 30 TUs.

Figure 2 shows the linear correlations between the SPME-LIF response and the pore water TUs, total dissolved pore water concentrations, and the total sediment concentrations for the PAH-34 from sites A, B, C, and E (33 surface sediments). For both total pore water TUs and PAH-34 concentrations, the Pearson correlation is quite good ($r^2 = 0.92$ and 0.95, respectively). However, the correlation between the total sediment concentrations and the SPME-LIF signal is low (r^2 = 0.245), as is the correlation with sediment concentrations expressed on an organic carbon (OC) basis ($r^2 = 0.004$). This poor correlation with the sediment concentrations is expected, since the sorbent coating approaches equilibrium with the pore water fraction, and it is known that pore water PAH concentrations can not be accurately estimated using literature K_{OC} values and sediment PAH concentrations for MGP and other historically contaminated sediments (1-5).

Since several of the 33 sediments shown in Figure 2 had PAH-34 concentrations and SPME-LIF intensities that were neither normal nor log-normally distributed, a Spearman rank correlation was also done, and yielded similar results. For the pore water TUs, PAH-34 concentrations, and sediment concentrations, the Spearman rank correlation coefficients were 0.83, 0.73, and 0.40, respectively (Supporting Information Figure S4).

Effect of PAH Molecular Weight Distribution. As noted above, sediments from sites A, B, and C have PAH molecular

weight distributions that are typical of the vast majority of 230 sediments we have analyzed from 16 MGP and related sites. However, different PAH distributions are likely to be encountered from some locations, and it is important to understand the effect of PAH distribution on the SPME-LIF response. As shown in Table 1 and Supporting Information Figure S1, the sediments from site D had a much higher proportion of low molecular weight PAHs than is typical for surface sediments from MGP sites, as might be expected since the sediments from site D were obtained from cores collected below the sediment surface and had therefore been subjected to less weathering than the surface sediments from sites A, B, and C. Thus, while naphthalene and alkyl naphthalenes normally account for ca. 10% of the total PAH-34 sediment concentrations, they account for ca. 40% for site D sediments. In contrast, sediments at Site E consisted of higher molecular weight PAHs, and only ca. 2% of the sediment PAHs consist of naphthalene and alkyl naphthalenes, as might be expected since the major source of PAHs at Site E was coal tar pitch, which consists of higher molecular weight PAHs than typical MGP tars. However, as shown in Figure 2, the pore water PAH data from Site E do correlate with those from sites A, B, and C despite the differences in molecular weight distribution.

For the subsurface core samples from site D, even though the correlation of SPME-LIF response with total pore water TUs and total pore water PAH-34 remains quite good ($r^2 =$ 0.74 and 0.87, respectively), the SPME-LIF response is significantly lower as evidenced by the slopes of the leastsquares regression lines. The slope of the total pore water PAH-34 concentrations versus LIF response (Supporting Information Figure S5) is 9-fold steeper for site D than for sites A, B, C, and E. Similarly, the slope of the total pore water TUs is 4-fold higher for site D. That is, to get the same SPME-LIF signal for the subsurface core samples from site D as for the other more typical surface sediment samples from the other four sites shown in Figure 2, the pore water must have 9 times the total dissolved PAH concentrations, or 4 times higher TUs.

These results demonstrate that, as might be expected, some knowledge about the molecular weight distribution of PAHs at a particular site will be needed to verify any quantitative determinations of pore water PAH-34 concentrations or TUs based on SPME-LIF response at different sites.

Effect of Monitoring Wavelength. As described above, the LIF emission wavelengths were chosen at 350, 400, 450, and 500 nm to monitor all 2- to 6-ring PAHs with similar sensitivities (19, 20). Based on standard fluorescence spectra of standard pure PAHs, the emission wavelength at 350 nm primarily focuses on 2-ring PAHs, while the higher wavelengths monitor increasing higher molecular weight PAHs. However, real-world MGP samples have hundreds to thousands of individual parents and alkyl isomers (14), as well as heteroatom-containing aromatics including (but not limited to) 2- to 4-ring furans, thiophenes, and pyroles. Therefore, principal component analysis (PCA) was used to evaluate the emission wavelength relationship to the relative percentage of 2- to 6-ring PAHs for the complex mixture of alkyl and parent PAHs found at these sites. The first two principal components (PCs) accounted for 81% of the total variance in emission wavelength and PAH ring size. A loading plot of the first two PCs shows that 2- and 3-ring PAHs are tightly associated with 350 and 400 nm emissions, while the higher molecular weight PAHs are associated with the longer emission wavelengths, which verifies the expectations based on pure compound emission spectra (Figure 3).

Since (as discussed above), the 2- and 3-ring PAHs dominate pore water PAH concentrations and related TUs, we investigated the use of only 350 or 350 and 400 nm

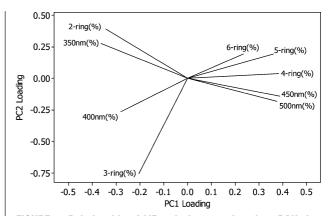


FIGURE 3. Relationship of LIF emission wavelength to PAH ring size for the 43 sediments (all sites) based on principal component analysis.

emission signals. Interestingly, the differences in SPME-LIF response previously shown by the subsurface core samples from site D are reduced compared to the other four sites when only the 350 nm emission is monitored as shown in Supporting Information Figure S6 (the plot from the sum of 350 and 400 nm looks similar). Linear correlation coefficients (r^2) for the five combined sites are 0.72 for the total pore water PAH-34 concentration, but increase to 0.81 for the pore water TUS. Similarly, the Spearman rank correlations are 0.81 for the pore water TUS.

While stronger quantitative correlations would be desirable, the 350 nm data clearly suggest that SPME-LIF should be useful for screening MGP and related sites for pore water PAHs, without the need for prior knowledge of the PAH distribution. The results of combining the four emission wavelength data (as in Figure 1) demonstrate that reasonable quantitative data can be obtained with the technique, as long as the PAH distribution at the site is not highly unusual for an MGP site. The results also demonstrate that the SPME-LIF approach can be used to obtain semiguantitative results with exposure times as short as 1 h, which could greatly aid field real-time adaptive management of sample location selections and analytical programs. Since nearly one-half (20 of 43) of the impacted sediments had NAPL phases present (including samples with high and low PAH-34 concentrations), the good correlation with dissolved pore water concentrations shows that the SPME-LIF procedure is not greatly affected by the presence of a NAPL phase, as is desirable for any field applications of the method.

The SPME-LIF approach may best be used on-site to rapidly map the relative PAH pore water concentrations, and those results could be used to select sampling areas for more complete testing such as pore water PAH-34 by GC/MS and biological toxicity studies. The coated rods are inexpensive and the LIF measurement requires only a few minutes per sample using instrumentation similar to that already routinely deployed in field studies. In addition, no solvents or other hazardous materials are needed to perform SPME-LIF in the field.

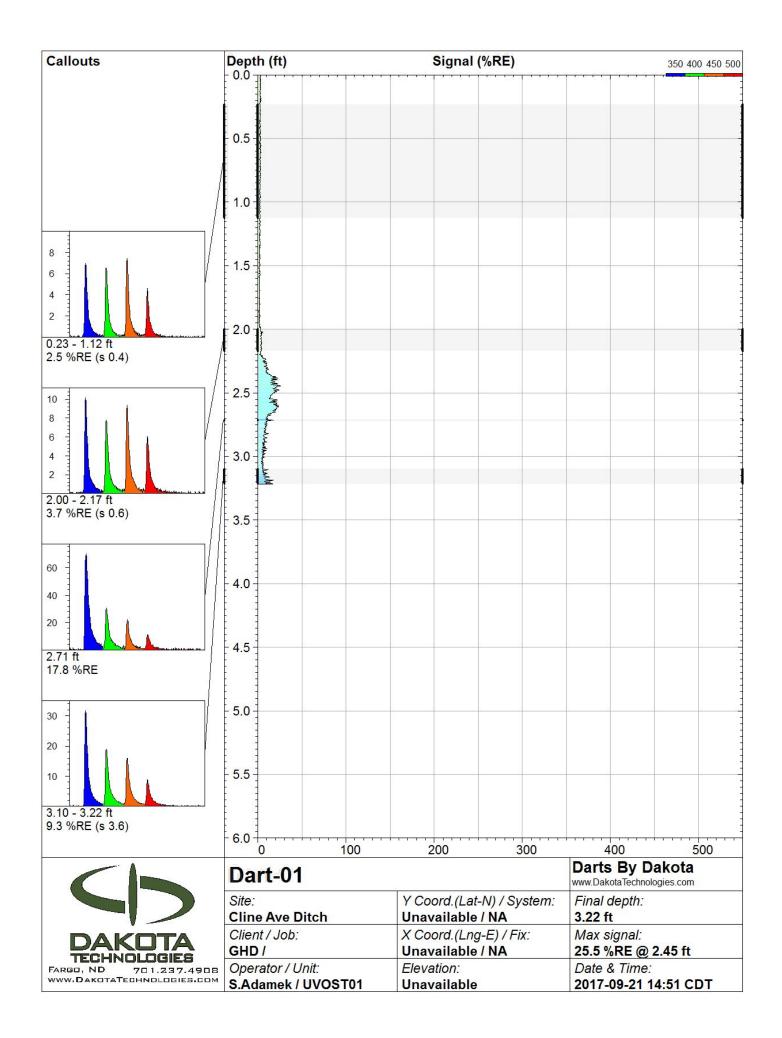
Acknowledgments

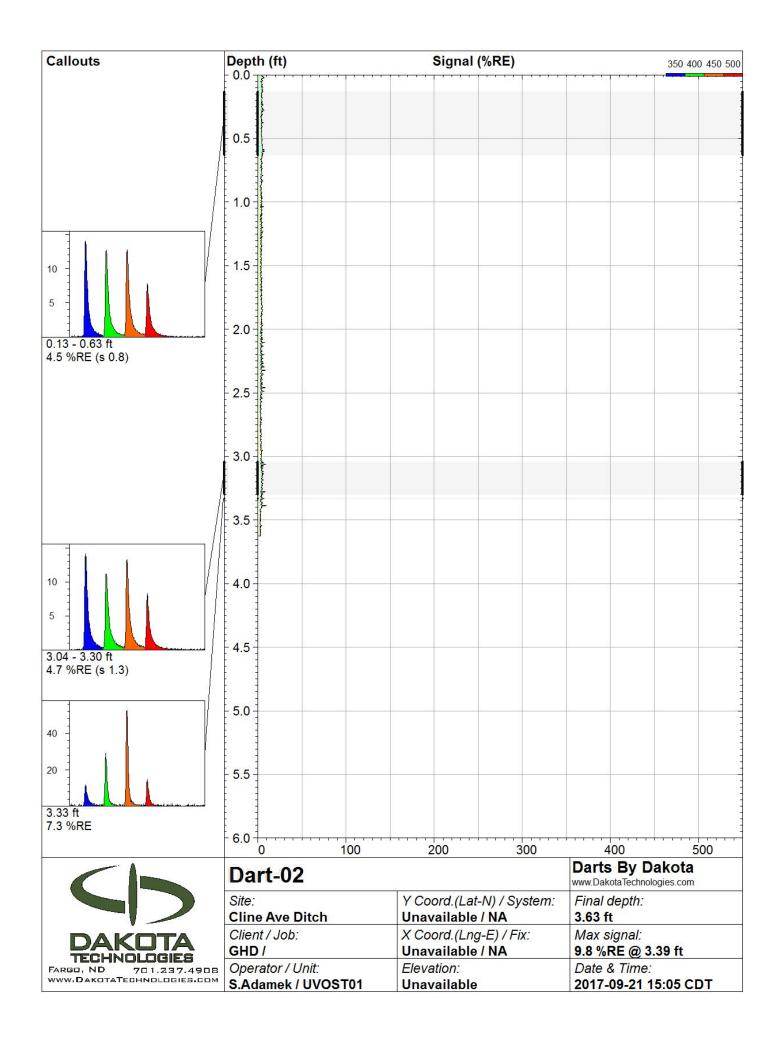
Carol B. Grabanski and David J. Miller are thanked for performing the sediment and pore water PAH-34 analyses.

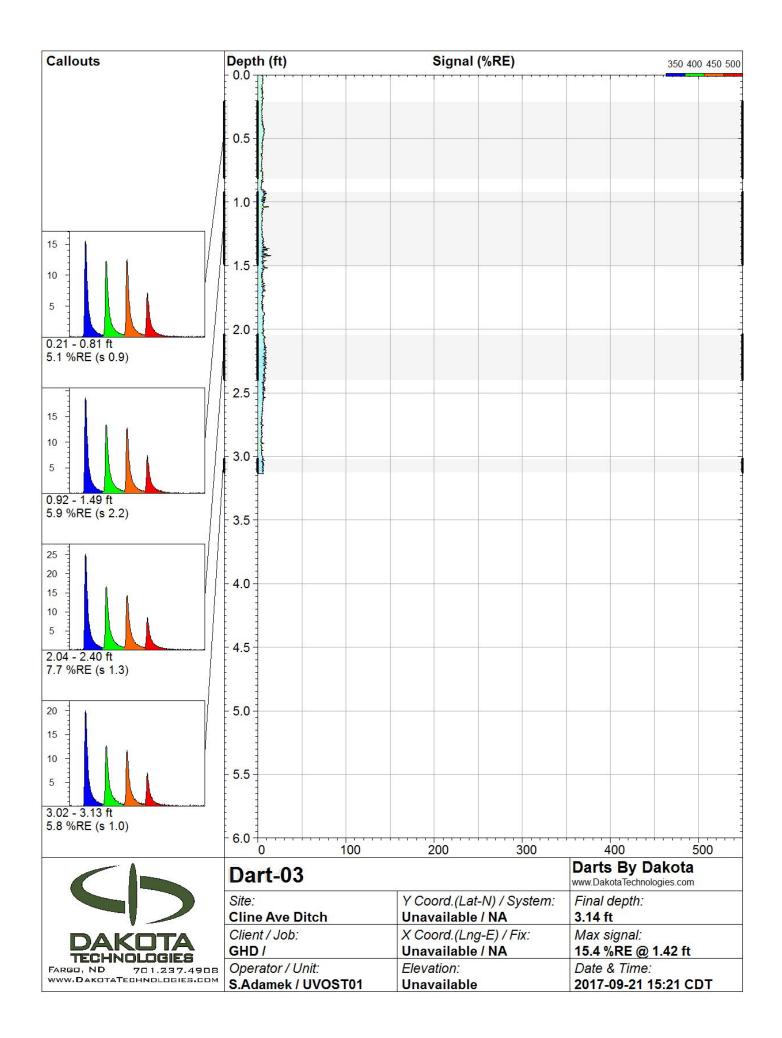
Supporting Information Available

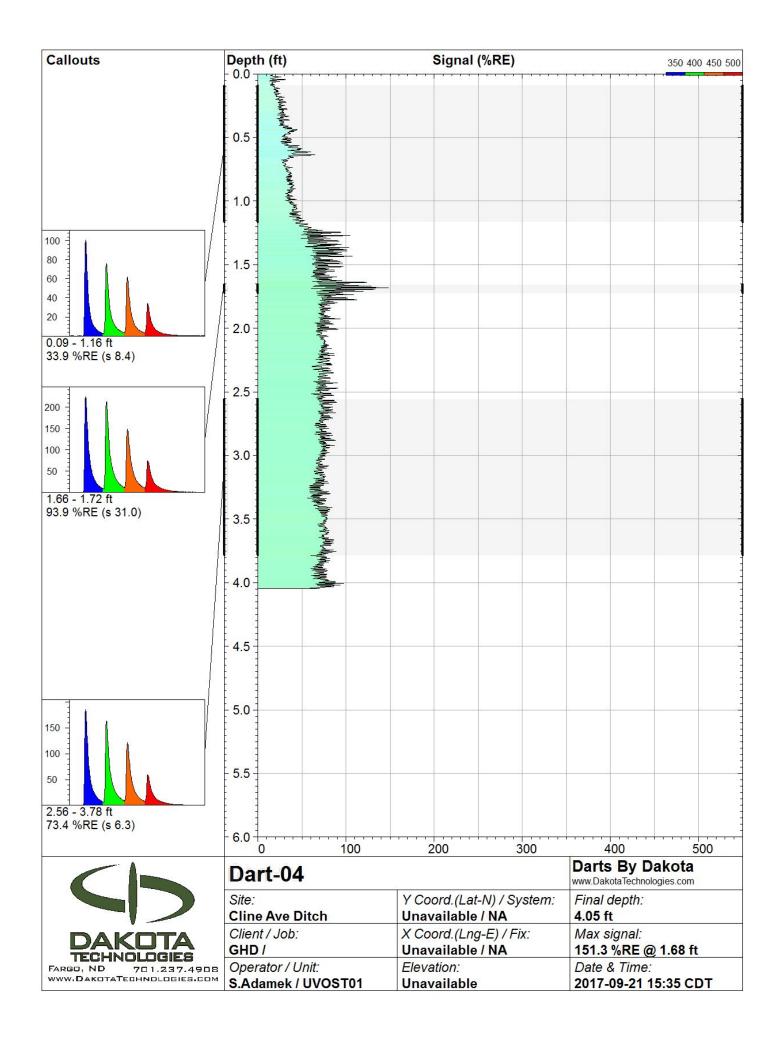
This material is available free of charge via the Internet at http://pubs.acs.org.

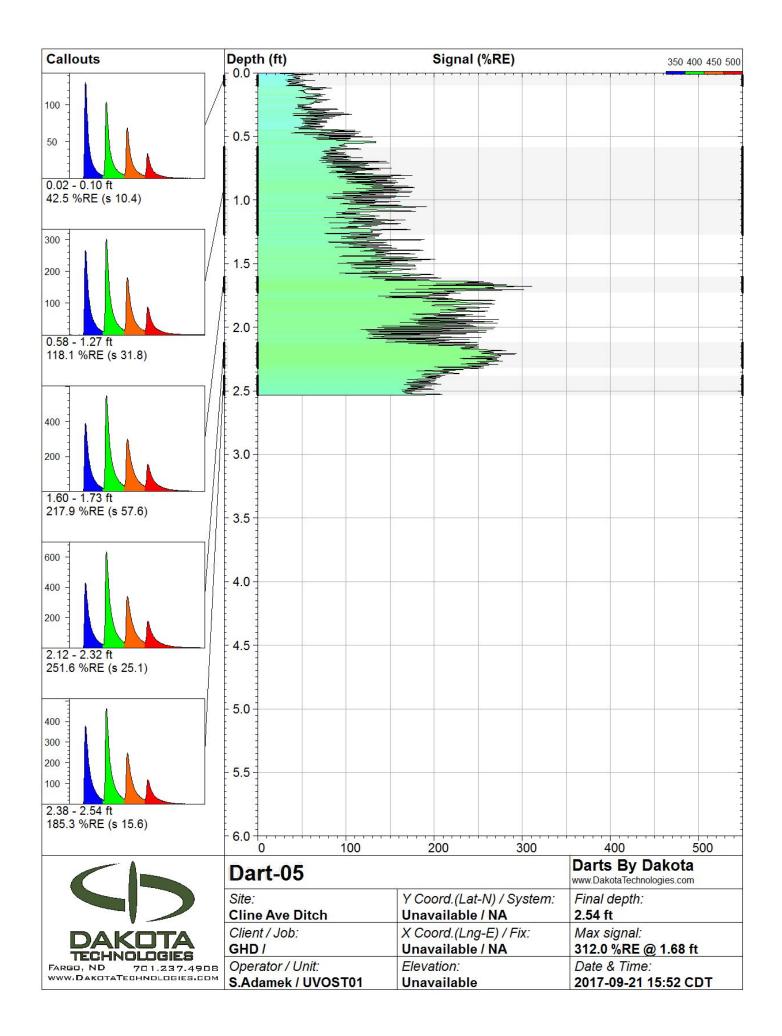
Literature Cited

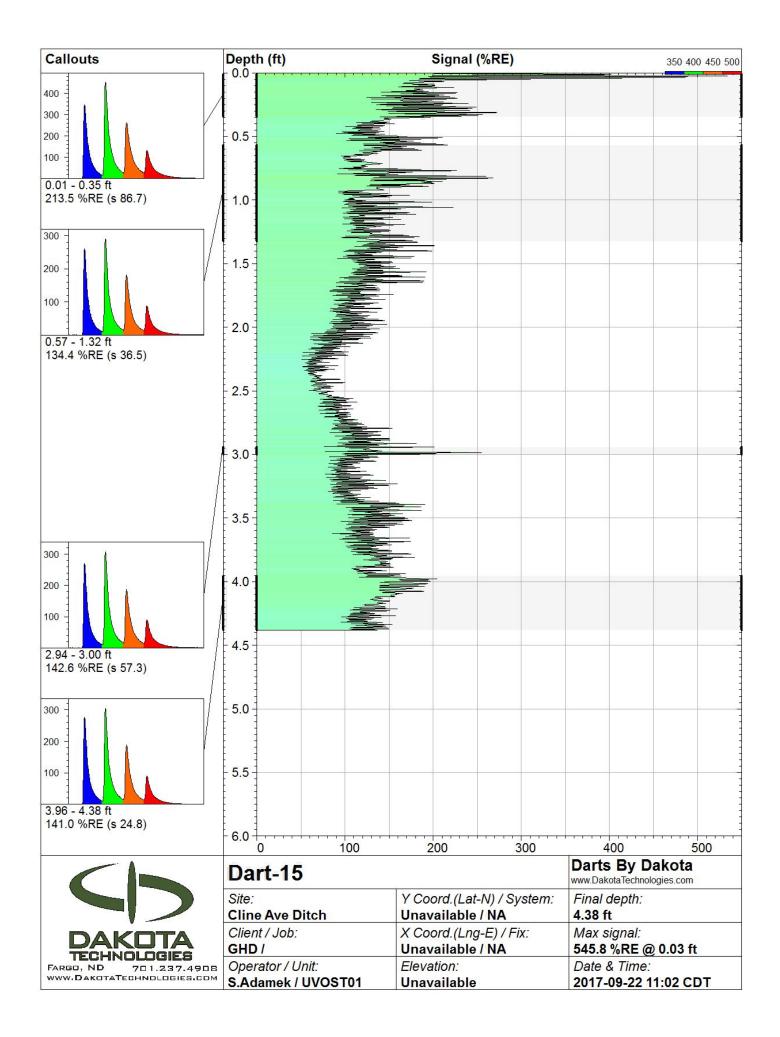

- Jonker, M. T. O.; Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and sootlike materials in the aqueous environment: Mechanistic considerations. *Environ. Sci. Technol.* 2002, *36*, 3725–3734.
- (2) Cornelissen, G.; Gustafsson, O.; Bucheli, T. D.; Jonker, M. T. O.; Koelmans, A. A.; van Noort, P. C. M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. *Environ. Sci. Technol.* 2005, 39, 6881–6895.
- (3) Khalil, M. F.; Ghosh, U.; Kreitinger, J. P. Role of weathered coal tar pitch in the partitioning of polycyclic aromatic hydrocarbons in manufactured gas plant site sediments. *Environ. Sci. Technol.* 2006, 40, 5681–5687.
- (4) Hawthorne, S. B.; Grabanski, C. B.; Miller, D. J. Measured partitioning coefficients for parent and alkyl polycyclic aromatic hydrocarbons in 114 historically contaminated sediments: Part 1. K_{OC} values. *Environ. Toxicol. Chem.* **2006**, *25*, 2901–2911.
- (5) Lohmann, R.; MacFarlane, J. K.; Gschwend, P. M. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. *Environ. Sci. Technol.* 2005, 39, 141–148.
- (6) Xu, Y.; Spurlock, F.; Wang, Z.; Gan, J. Comparison of five methods for measuring sediment toxicity of hydrophobic contaminants. *Environ. Sci. Technol.* 2007, *41*, 8394–8399.
- (7) Hawthorne, S. B.; Azzolina, N. A.; Neuhauser, E. F.; Kreitinger, J. P. Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to *Hyalella azteca* using equilibrium partitioning, supercritical fluid extraction, and pore water concentrations. *Environ. Sci. Technol.* 2007, *41*, 6297–6304.
- (8) Cornelissen, G.; Pettersen, Ar.; Broman, D.; Mayer, P.; Breedveld, G. D. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. *Environ. Toxicol. Chem.* **2008**, *27* (3), 499–508.
- (9) Hunter, W.; Xu, Y.; Spurlock, F.; Gan, J. Using disposable polydimethylsiloxane fibers to assess the bioavailability of permethrin in sediment. *Environ. Toxicol. Chem.* **2008**, *27* (3), 568–575.
- (10) Jonker, M. T. O.; Van Der Heijden, S. A.; Kreitinger, S.; Hawthorne, S. B. Predicting PAH bioaccumulation and toxicity in earthworms exposed to manufactured gas plant soils with solid-phase microextraction. *Environ. Sci. Technol.* 2007, *41*, 7472–7478.
- (11) Styrishave, B.; Mortensen, M.; Krogh, P. H.; Andersen, O.; Jensen, J. Solid-phase microextraction (SPME) as a tool to predict the bioavailability and toxicity of pyrene to the springtail, *Folsomia candida*, under various soil conditions. *Environ. Sci. Technol.* 2008, 42, 1332–1336.
- (12) Hawthorne, S. B.; Grabanski, C. B.; Miller, D. J.; Kreitinger, J. P. Solid-phase microextraction measurement of parent and alkyl

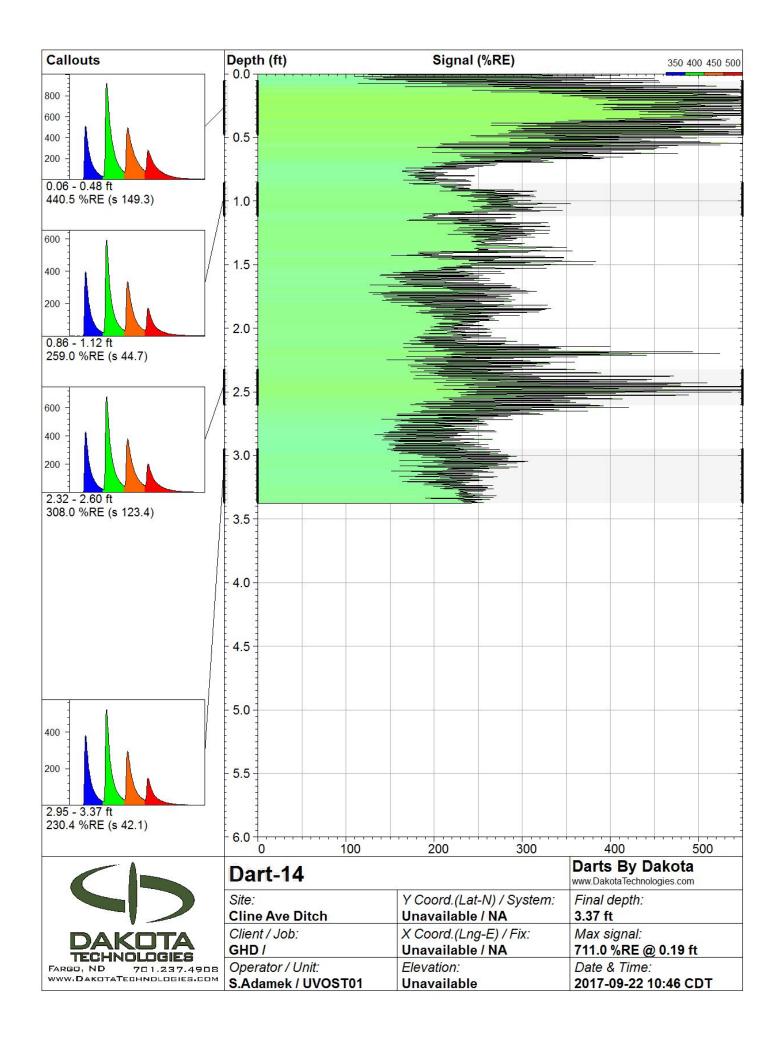

polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K_{DOC} values. *Environ. Sci. Technol.* **2005**, *39*, 2795–2803.

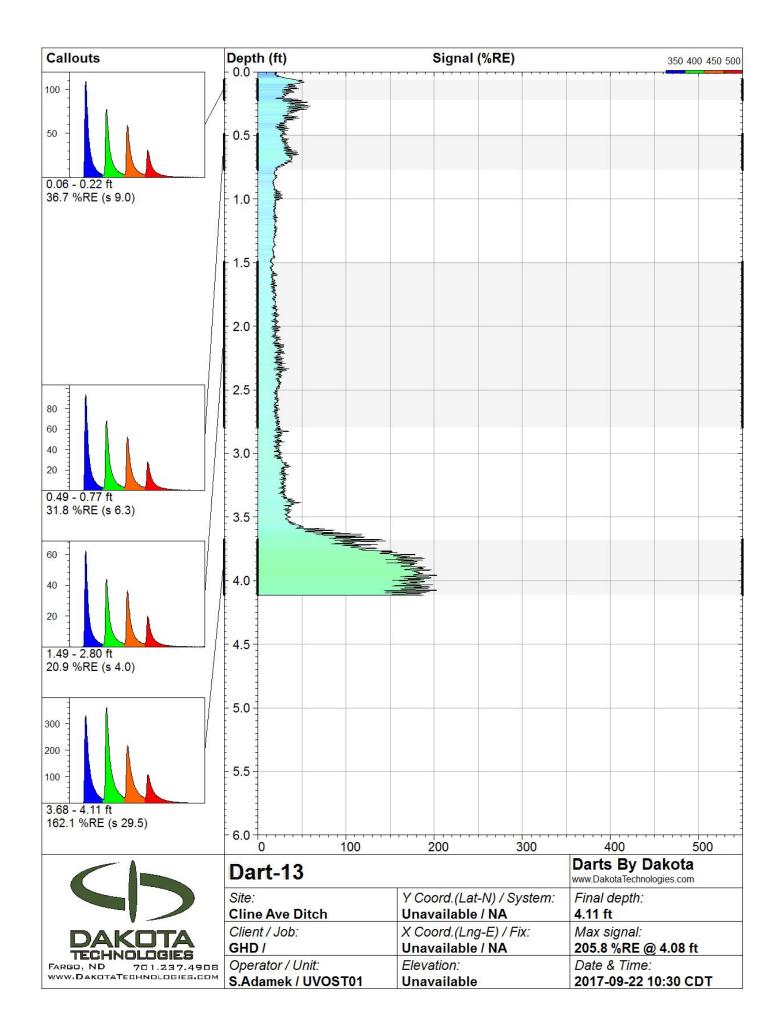

- (13) U.S. Environmental Protection Agency. Procedures for the derivation of ESBs for the protection of benthic organisms: PAH mixtures; EPA/600/R-02/013; Office of Research and Development: Washington, DC, 2003.
- (14) Hawthorne, S. B.; Miller, D. J.; Kreitinger, J. P. Measurement of 'total' PAH concentrations and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites. *Environ. Toxicol. Chem.* **2006**, *25*, 287–296.
- (15) Kuo, D. T. F.; Adams, R. G.; Rudnick, S. M.; Chen, R. F.; Gschwend, P. M. Investigating desorption of native pyrene from sediment on minute- to month-timescales by time-gated fluorescence spectroscopy. *Environ. Sci. Technol.* **2007**, *41* (22), 7752–7758.
- (16) Nahorniak, M. L.; Booksh, K. S. Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices. *Analyst* 2006, 131, 1308–1315.
- (17) Valero-Navarro, A.; Fernández-Sánchez, J. F.; Medina-Castillo, A. L.; Fernández-Ibáñez, F.; Segura-Carretero, A.; Ibáñez, J. M.; Fernández-Gutiérrez, A. A rapid, sensitive screening test for polycyclic aromatic hydrocarbons applied to Antarctic water. *Chemosphere* **2007**, 67, 903–910.
- (18) Rudnik, S. M.; Chen, R. F. Laser-induced fluorescence of pyrene and other polycyclic aromatic hydrocarbons (PAH) in seawater. *Talanta* 1998, 47, 907–919.
- (19) Kotzick, R.; Niessner, R. Application of time-resolved, laserinduced and fiber-optically guided fluorescence for monitoring of a PAH-contaminated remediation site. *Fresenius J. Anal. Chem.* **1996**, 354, 72–76.
- (20) Owen, C. J.; Axler, R. P.; Nordman, D. R.; Schubauer-Berigan, M.; Lodge, K. B.; Shubauer-Berigan, J. P. Screening for PAHs by fluorescence spectroscopy: a comparison of calibrations. *Chemo-sphere* **1995**, *31*, 3345–3356.
- (21) Grundl, T. J.; Aldstadt, J. H.; Harb, J. G.; St. Germain, R. W.; Schweitzer, R. C. Demonstration of a method for the direct determination of polycyclic aromatic hydrocarbons in submerged sediments. *Environ. Sci. Technol.* **2003**, *37*, 1189–1197.
- (22) Gustafsson, O.; Haghseta, F.; Chan, C.; MacFarlane, J.; Gschwend, P. M. Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability. *Environ. Sci. Technol.* **1997**, *31*, 203–209.
- (23) Mayer, P.; Tolls, J.; Hermens, J.; Mackay, D. Equilibrium sampling devices. *Environ. Sci. Technol.* 2003, *37*, 185A–191A.
- (24) Schuler, L. J.; Landrum, P. F.; Lydy, M. Comparative toxicity of fluoranthene and pentachlorobenzene to three freshwater invertebrates. *Environ. Toxicol. Chem.* **2006**, *25*, 985–994.

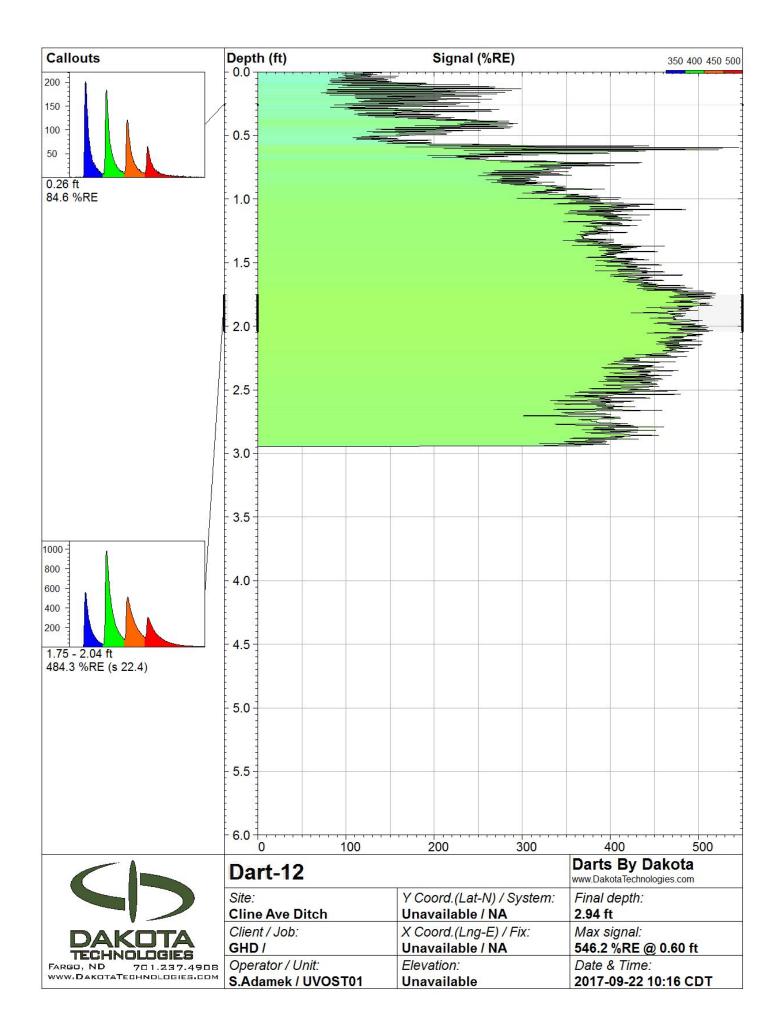

ES8011673

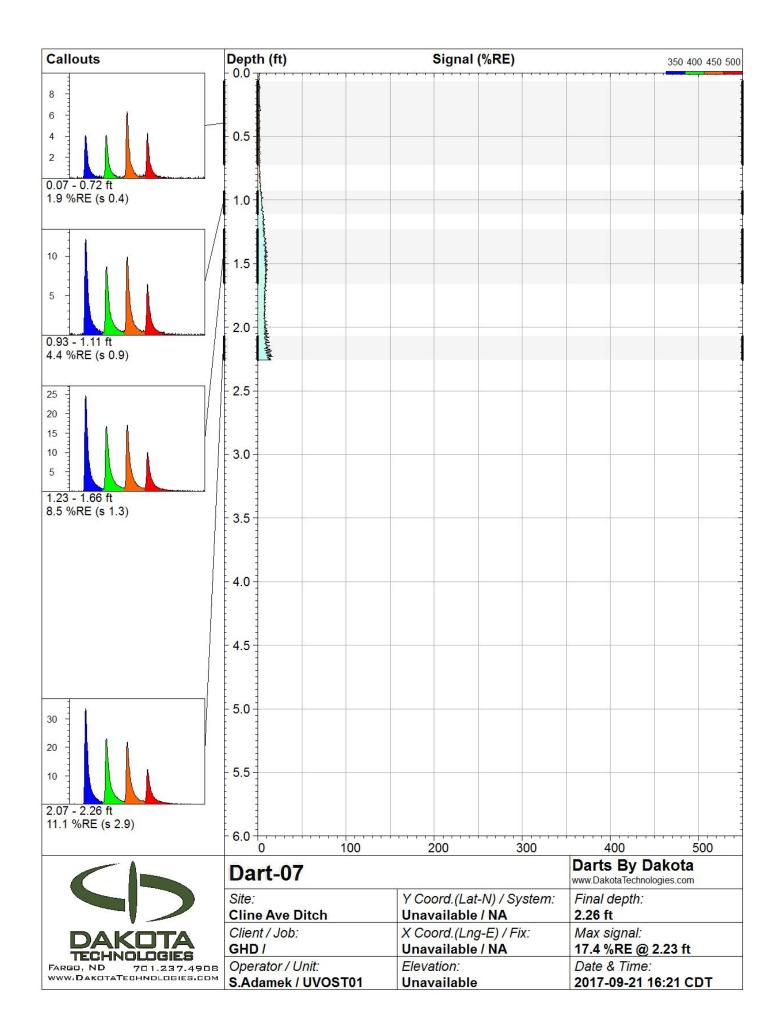

Appendix C.3 Dart Results – East Side of Cline Avenue Ditch

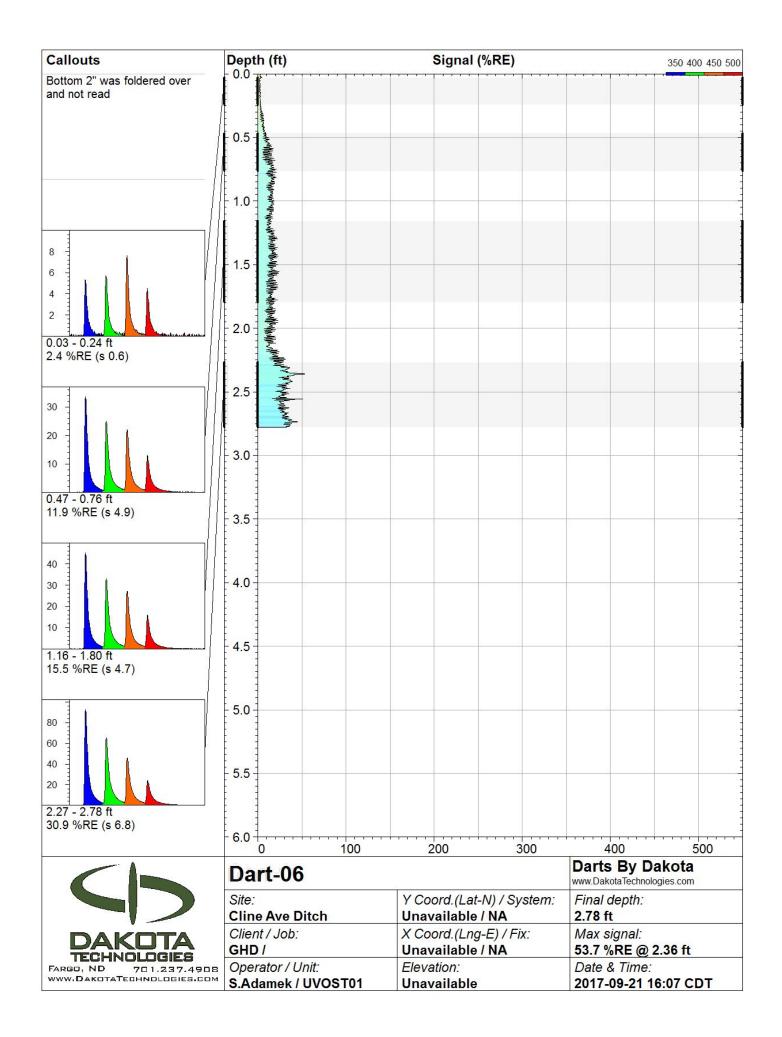


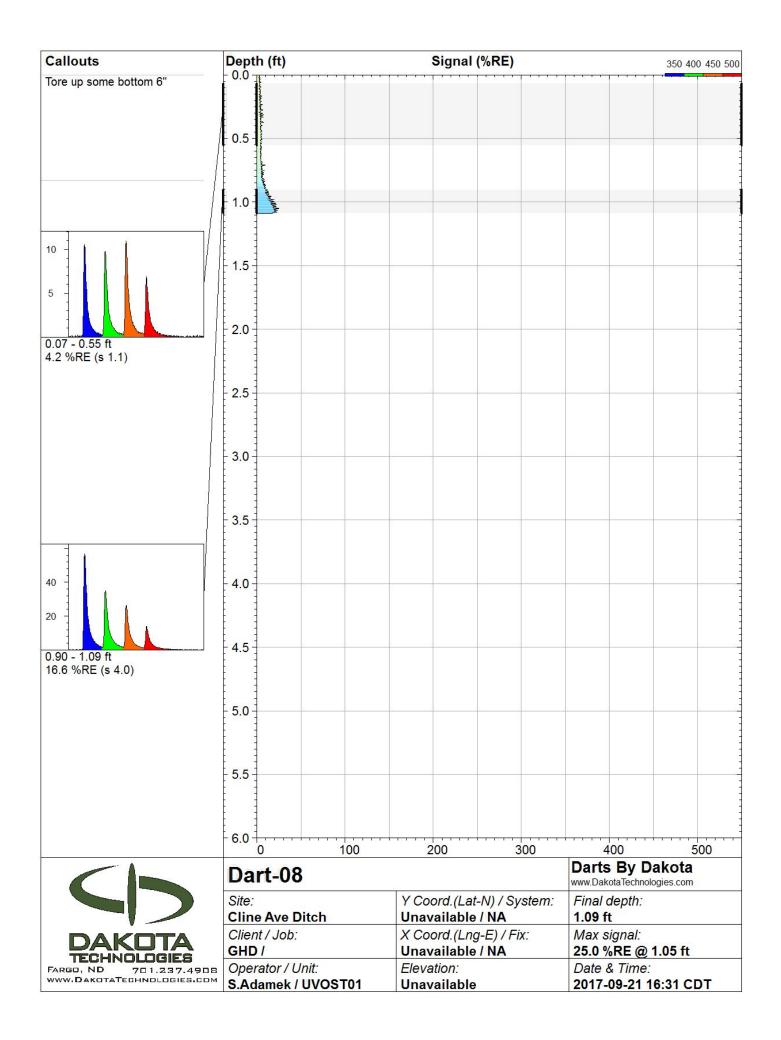


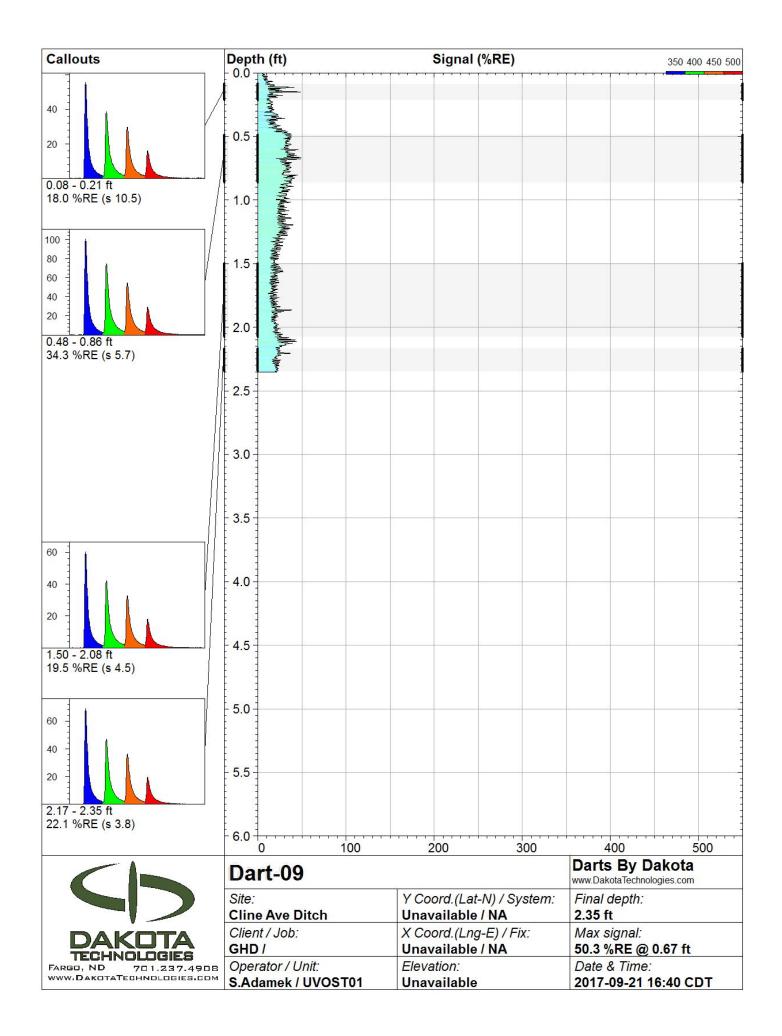


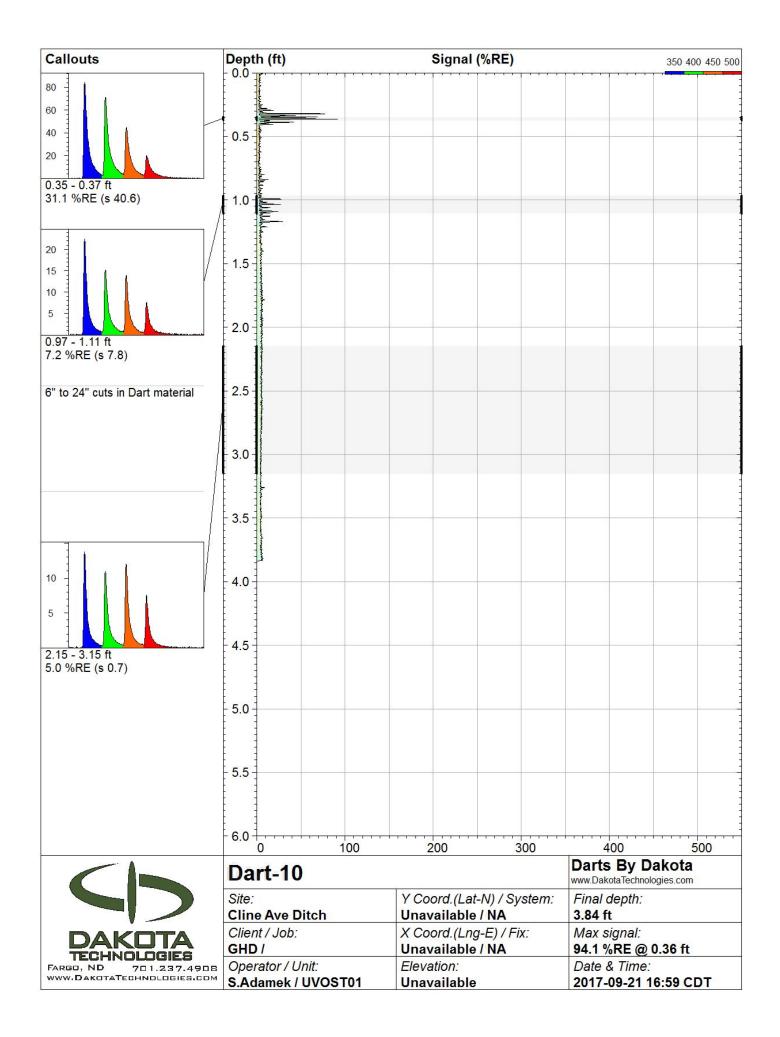


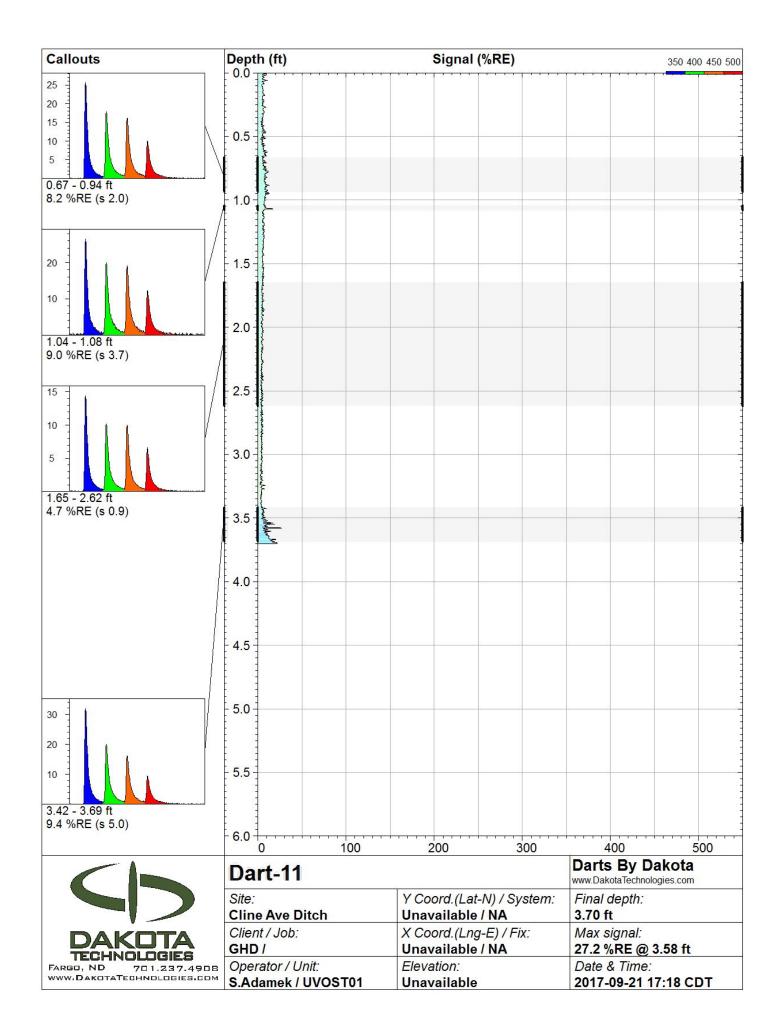


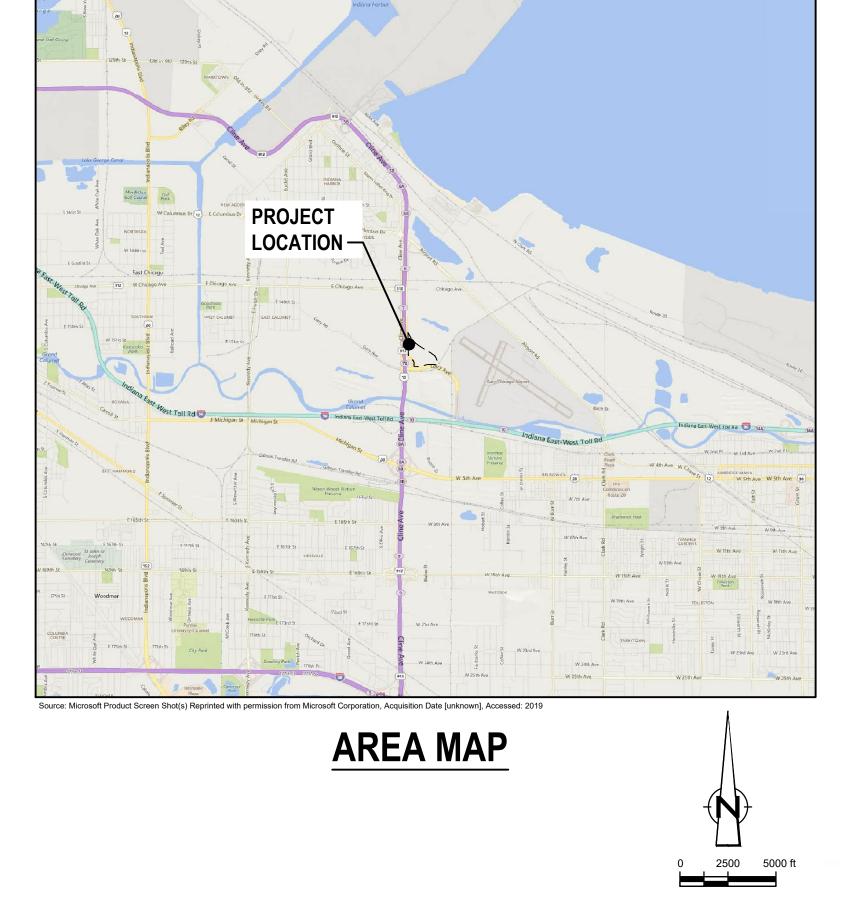


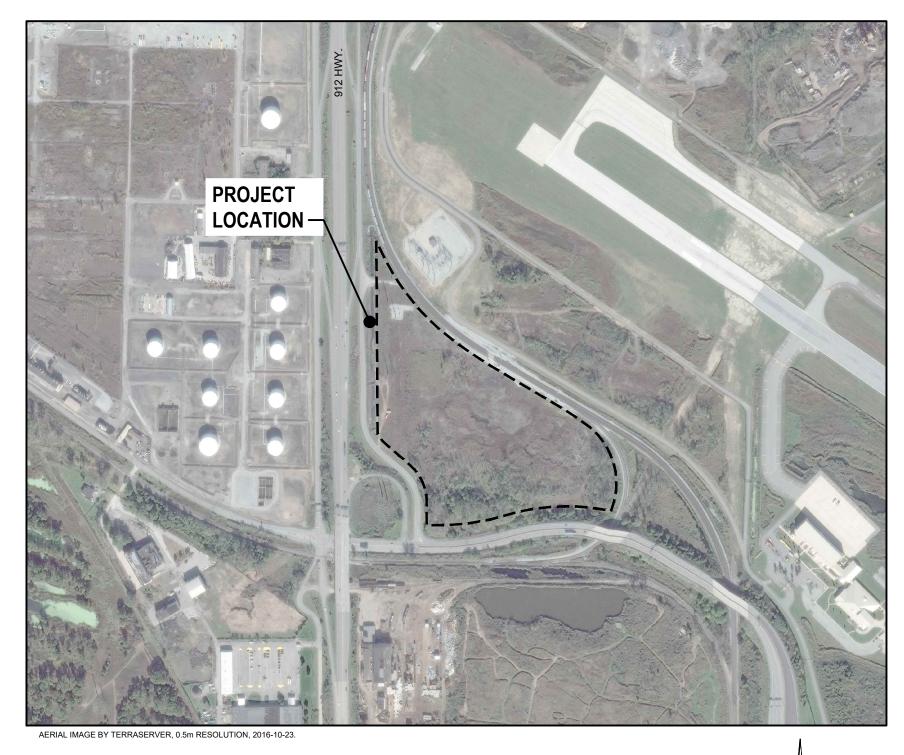





Appendix C.4 Dart Results – West Side of Cline Avenue Ditch







Appendix D DRAFT 90% Design Package

DITCH REMEDIATION CLINE AVENUE OIL SPILL SITE GARY, INDIANA 90% DESIGN MARCH 17, 2020 11198545

Plot Date: 17 March 2020 - 10:05 AM

Plotted By: Bruce Pletz

LOCATION MAP

DRAWING INDEX

DATE

FEBRUARY 2020

TITLE

COVER SHEET

FINAL GRADING PLAN

WITHIN DITCH DETAILS

STRUCTURAL NOTES

EXISTING CONDITIONS PLAN AND PROFILE

SITE WORKS, PROPOSED STORM SEWER

PROPOSED STORM SEWER INSTALLATION

PROPOSED STORM SEWER INSTALLATION

PROPOSED STORM SEWER INSTALLATION WITHIN DITCH DETAILS (SHEET 1 OF 3)

PROPOSED STORM SEWER INSTALLATION WITHIN DITCH DETAILS (SHEET 2 OF 3)

PROPOSED STORM SEWER INSTALLATION WITHIN DITCH DETAILS (SHEET 3 OF 3)

INSTALLATION WITHIN DITCH PLAN AND PROFILE

EXISTING CONDITIONS TRANSECTS

WITHIN DITCH CROSS SECTION

DRAWING NUMBER	FILE NUMBER
G-01	11198545(RPT001)GN-WA001
C-01	11198545(RPT001)CI-WA001
C-02	11198545(RPT001)CI-WA001
C-03	11198545(RPT001)CI-WA002
C-04	11198545(RPT001)CI-WA003
C-05	11198545(RPT001)CI-WA004
C-06	11198545(RPT001)CI-WA005
S-01	11198545(RPT001)ST-WA001
S-02	11198545(RPT001)ST-WA002
S-03	11198545(RPT001)ST-WA003
S-04	11198545(RPT001)ST-WA004

DRAFT

Sheet No.

COVER SHEET

G-01

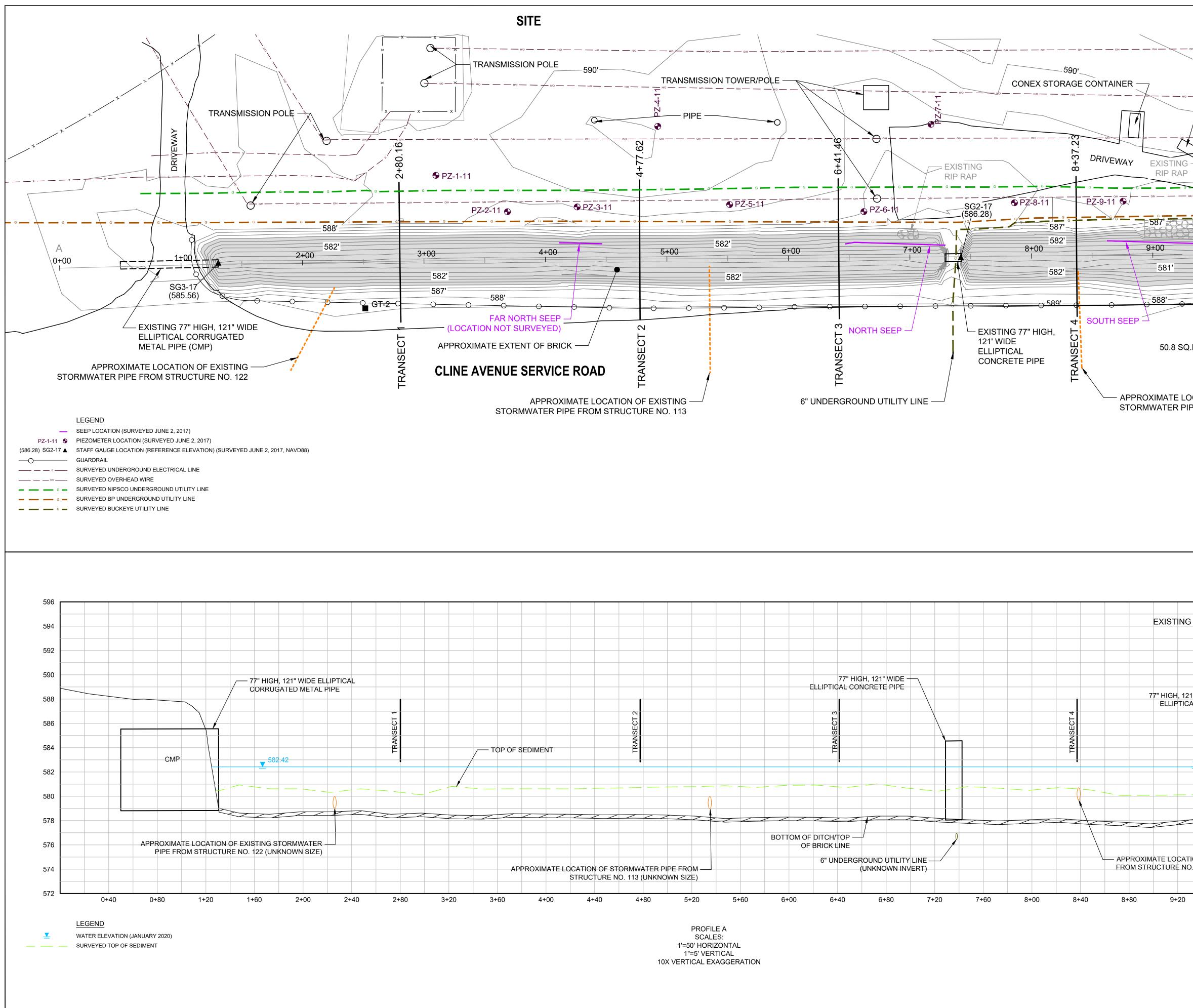
Title

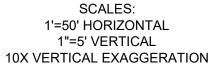
Þ					
2	90% DESIGN (WITH	CJ	МТ	MAR 17, 2020	
	SUBMISSION OF FFS)				
1	60% REVIEW	MJ	МТ	AUG 6, 2019	
No.	lssue	Drawn	Approved	Date	
Draw	n MJ	Designer	AW/RH		
Draft Chec		Design Check	JC		
Proje Mana		Date	Mar 16, 20	020	
constr	document shall not be used for uction unless signed and sealed for uction.	Scale	AS SHOW	/N	
Origi	Original Size ANSI D		Bar is one inch on original size drawing 0 1"		
Proje	ect No. 11198545				

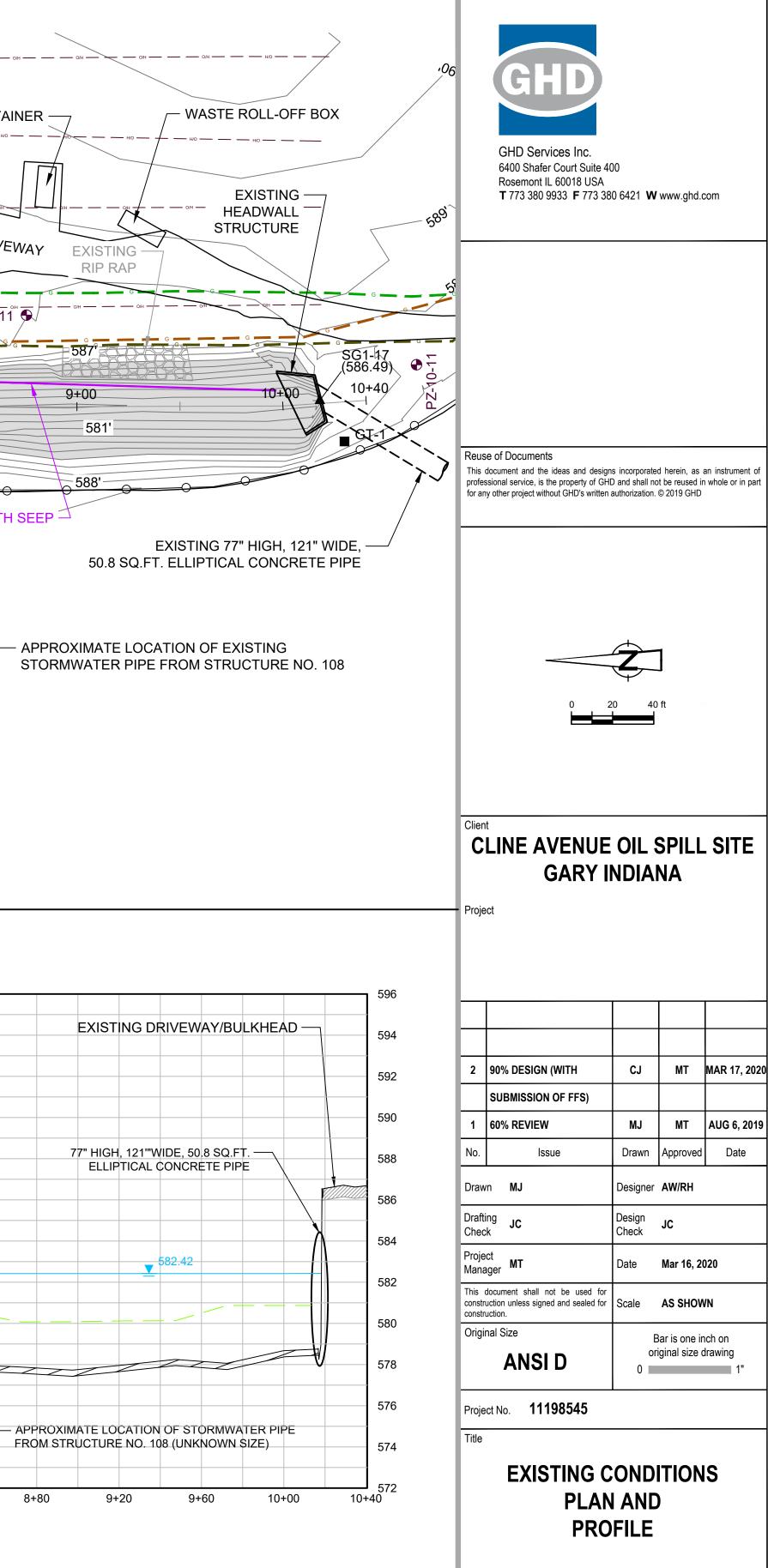
Project

CLINE AVENUE OIL SPILL SITE GARY INDIANA

Reuse of Documents This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2020 GHD

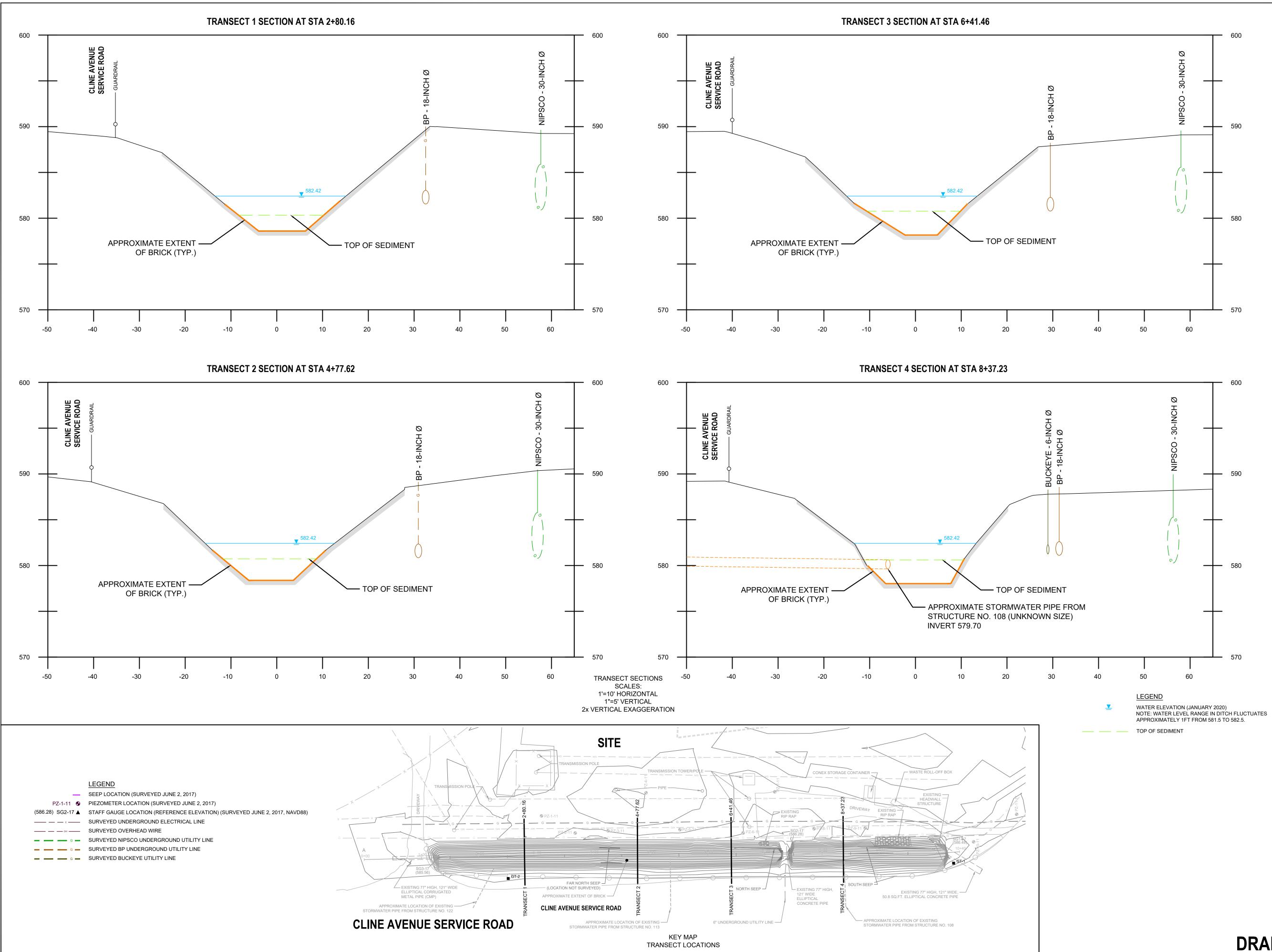




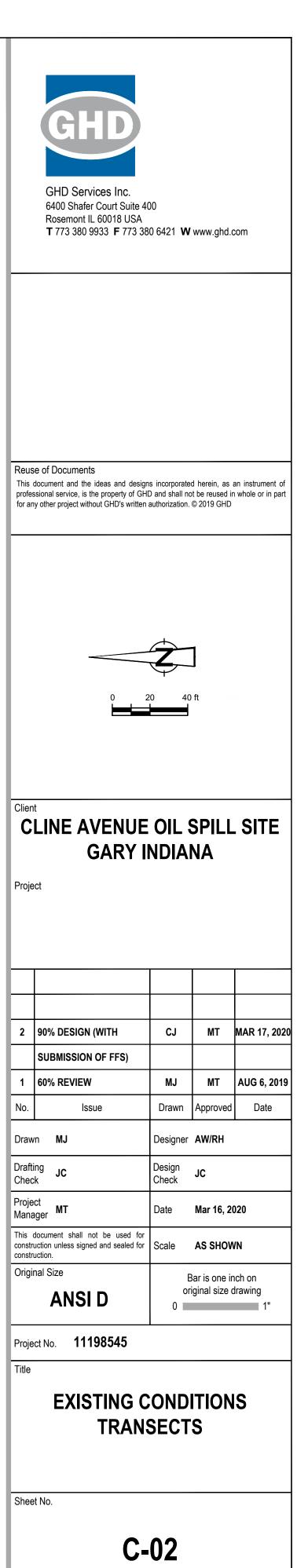

GHD Services Inc.

6400 Shafer Court Suite 400 Rosemont IL 60018 USA

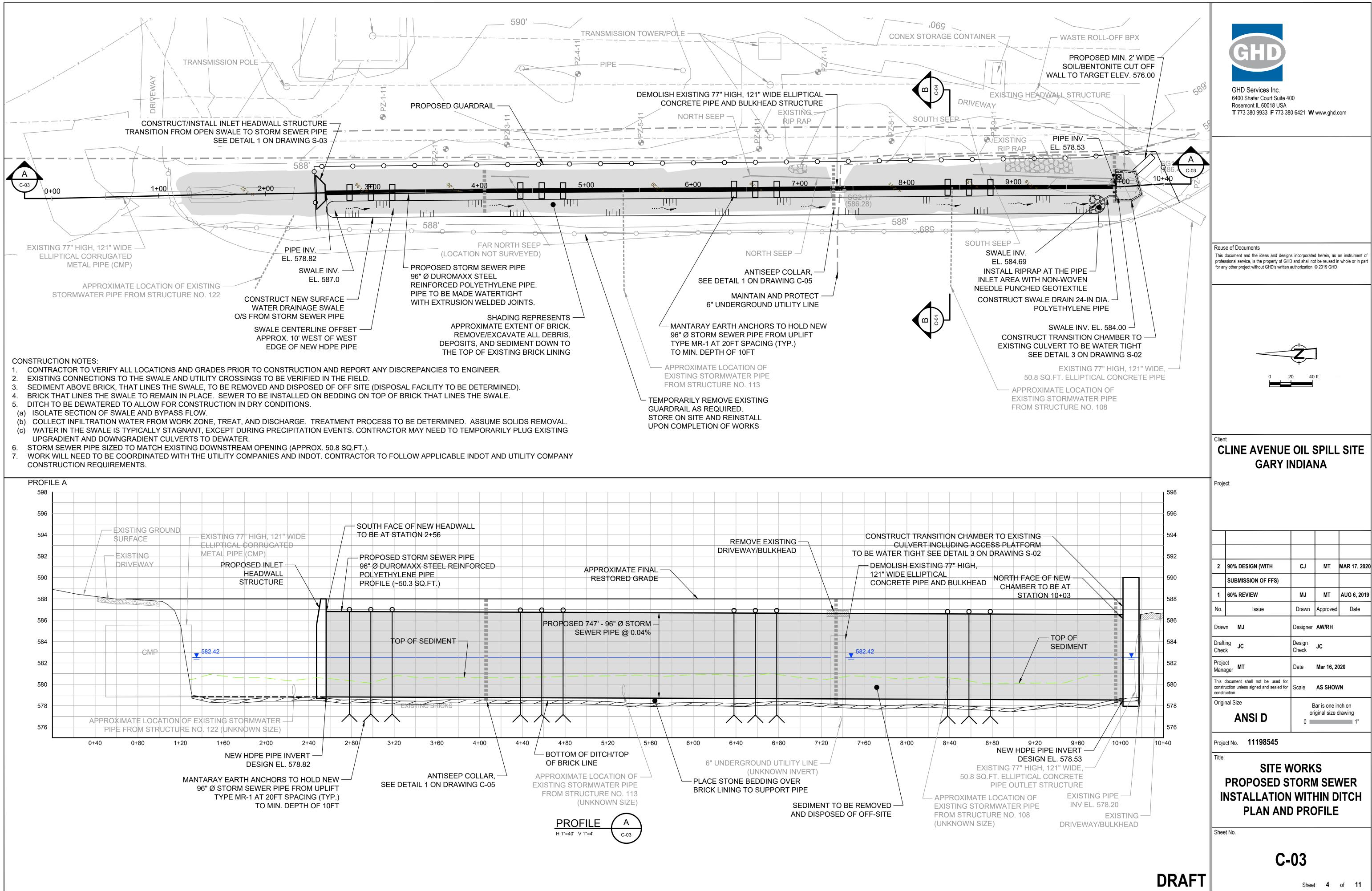
T 773 380 9933 F 773 380 6421 W www.ghd.com

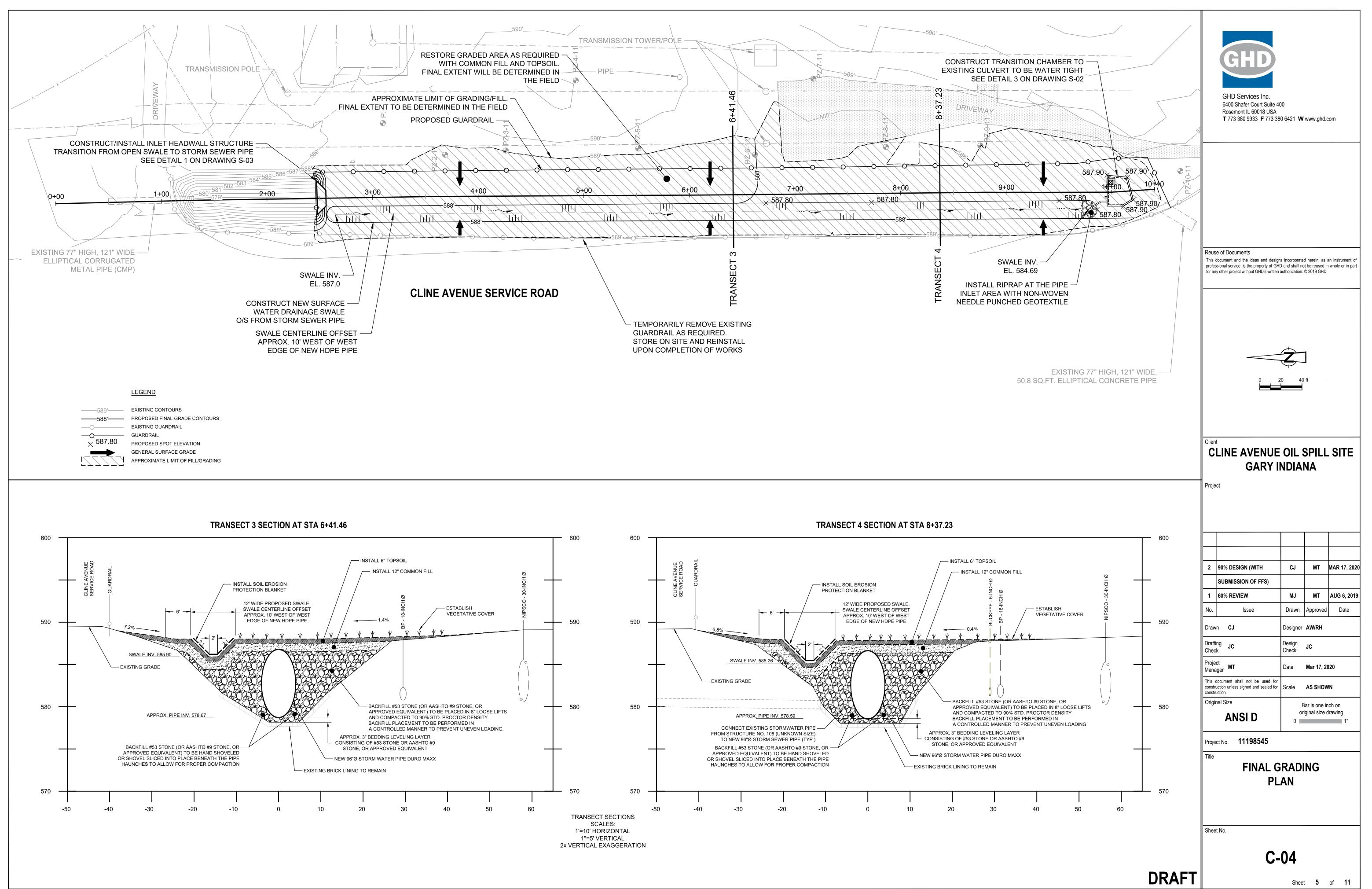


DRAFT

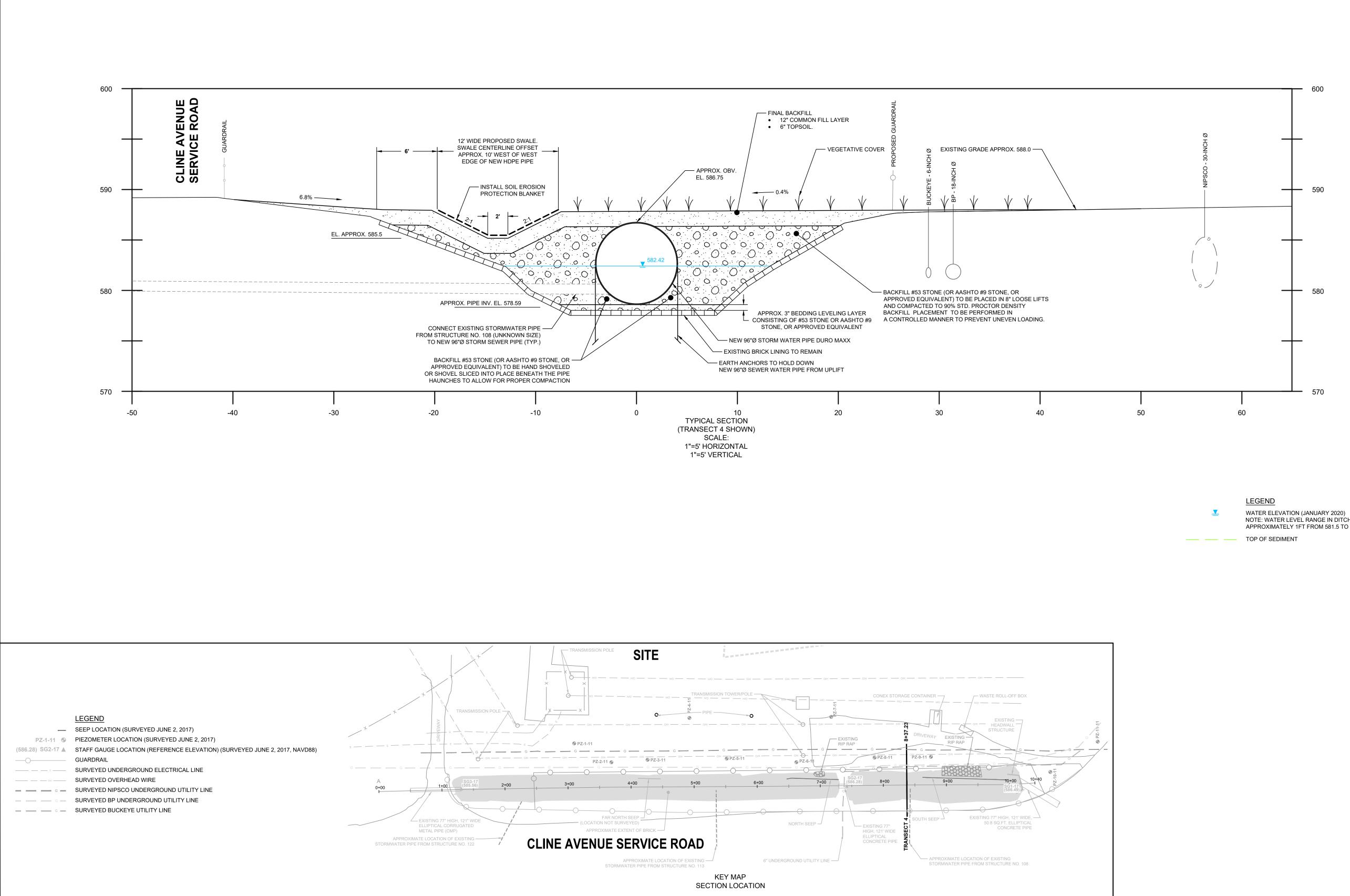

Sheet No.

Sheet 2 of 11


C-01



Plot Date: 17 March 2020 - 12:17 AM



DRAFT

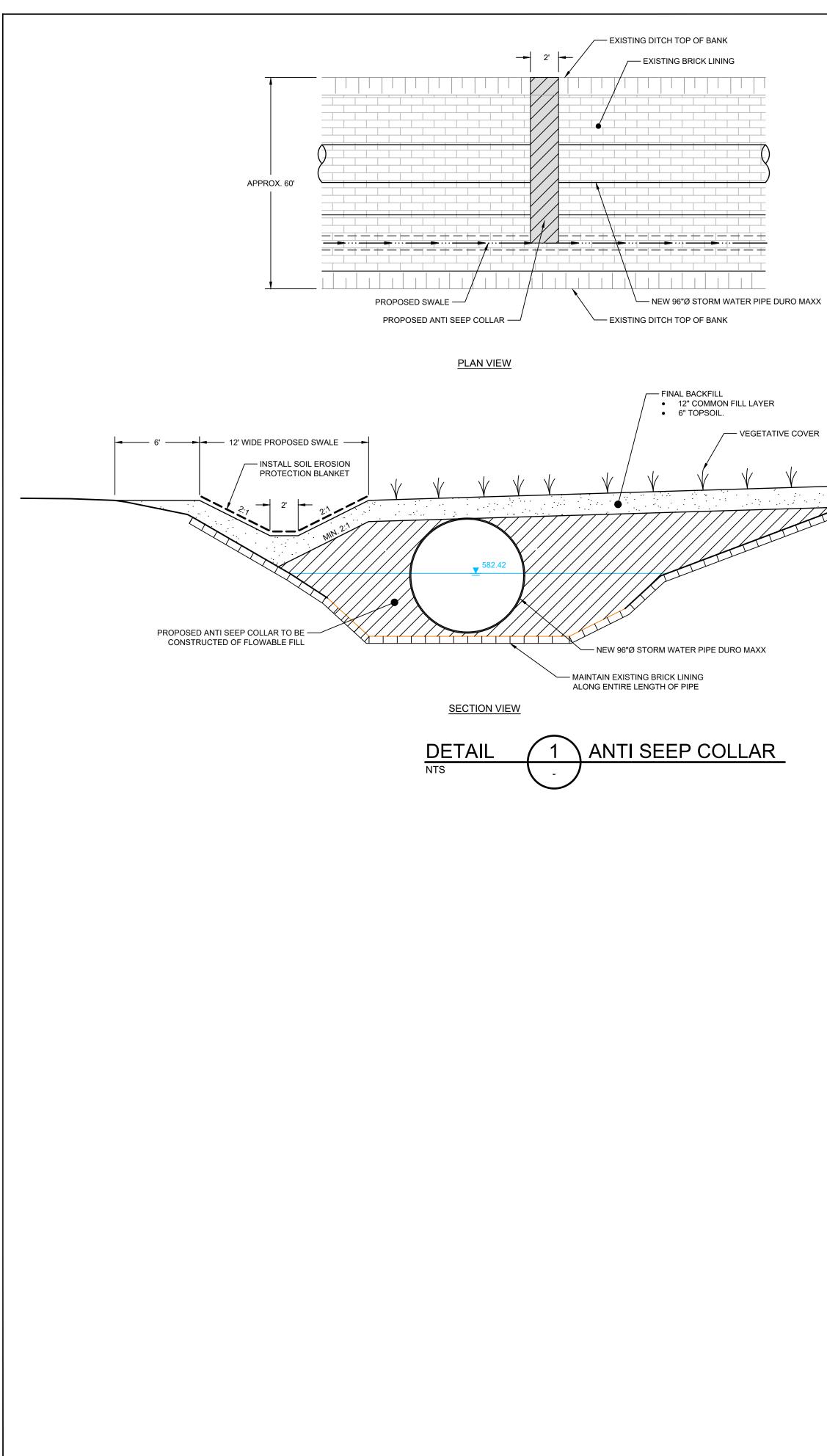
Plot Date: 17 March 2020 - 12:17 AM

Plot Date: 17 March 2020 - 12:17 AM

GHD Services Inc. 6400 Shafer Court Suite 400 Rosemont IL 60018 USA T 773 380 9933 F 773 380 6421 W www.ghd.com

WATER ELEVATION (JANUARY 2020) NOTE: WATER LEVEL RANGE IN DITCH FLUCTUATES APPROXIMATELY 1FT FROM 581.5 TO 582.5.

Title


PROPOSED STORM SEWER INSTALLATION WITHIN DITCH CROSS SECTION

Sheet No.

C-05

Sheet 6 of 11

DRAFT

GHD Services Inc. 6400 Shafer Court Suite 400 Rosemont IL 60018 USA T 773 380 9933 F 773 380 6421 W www.ghd.com

Reuse of Documents

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2019 GHD

Client CLINE AVENUE OIL SPILL SITE **GARY INDIANA**

Project

2	90% DESIGN (WITH	CJ	MT	MAR 17, 2020
	SUBMISSION OF FFS)			
1	60% REVIEW	MJ	МТ	AUG 6, 2019
No.	lssue	Drawn	Approved	Date
Draw	n MJ	Designer	AW/RH	
Drafti Chec	·	Design Check	JC	
Proje Mana		Date	Mar 17, 20)20
This document shall not be used for construction unless signed and sealed for construction.		Scale	le AS SHOWN	
Original Size ANSI D		Bar is one inch on original size drawing 0 1"		

Project No. **11198545**

Title

PROPOSED STORM SEWER INSTALLATION WITHIN DITCH DETAILS

C-06

Sheet No.

DRAFT

Sheet 7 of 11

GENERAL

- 1. ALL WORK SHALL COMPLY WITH LATEST REVISION AND/OR VERSION OF ALL CODES AND REFERENCE STANDARDS, THE WORKPLACE HEALTH AND SAFETY BOARD AND BEST TRADE PRACTICES. WORK SHALL COMPLY WITH FEDERAL AND STATE REGULATIONS AND WITH APPLICABLE ACI SPECIFICATIONS.
- 2. STRUCTURAL DESIGN COMPLIES WITH THE MINIMUM REQUIREMENTS OF ASCE 7 AND ACI 318.
- 3. LOCATE ALL BURIED AND ABOVE SERVICES PRIOR TO EXCAVATION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TEMPORARY BRACING, SHORING AND DEWATERING NECESSARY TO UNDERTAKE THE WORK.
- 4. READ THESE DRAWINGS IN CONJUNCTION WITH ALL RELATED DRAWINGS AND CONTRACT DOCUMENTS.
- 5. THE CONTRACTOR SHALL CHECK AND VERIFY ALL CONDITIONS AND MEASUREMENTS AT THE SITE AND REPORT TO THE ENGINEER ANY DISCREPANCIES OR UNSATISFACTORY CONDITIONS WHICH MAY ADVERSELY AFFECT THE PROPER COMPLETION OF THE JOB BEFORE PROCEEDING WITH THE WORK
- 6. DO NOT SCALE DRAWINGS.
- 7. DESIGN LIVE LOADS FOR EACH PORTION OF THE STRUCTURE ARE AS INDICATED ON THE DRAWINGS. DO NOT EXCEED THESE LOADS DURING CONSTRUCTION
- 8. DESIGN LOADS INDICATED ARE UNFACTORED UNLESS NOTED OTHERWISE.
- 9. REFERENCE ELEVATIONS SHOWN CORRESPOND TO ACTUAL GEODETIC ELEVATIONS IN FEET
- 10. ALL DIMENSIONS ON DRAWINGS ARE IN INCHES UNLESS NOTED OTHERWISE.
- 11. APPROVED SHALL MEAN APPROVED IN WRITING BY THE ENGINEER OF RECORD.
- 12. DELIVER, HANDLE AND STORE MATERIALS TO AVOID DAMAGE IN ANY MANNER. 13. MAINTAIN A SET OF DRAWINGS ON SITE & UPDATE WEEKLY WITH CONSTRUCTION RECORD INFORMATION.
- FOUNDATION AND BACKFILL
- 1. PREPARE FOUNDATION SUBGRADE IN ACCORDANCE WITH THE GEOTECHNICAL REPORT PREPARED BY GHD DATED FEBRUARY 25, 2020 (REF NO. 11198545).
- 2. FOOTINGS SHALL BE CONSTRUCTED ON NATIVE SAND OR NON-FROST SUSCEPTIBLE GRANULAR FILL (INDOT NO. 53) COMPACTED ACCORDING TO GEOTECHNICAL RECOMMENDATION.
- 3. BACKFILL SHALL BE FREE DRAINING GRANULAR MATERIAL AS RECOMMENDED IN THE GEOTECHNICAL REPORT. BACKFILL TO BE PLACED IN MAXIMUM 8" LOOSE LIFTS AND COMPACTED TO A MINIMUM OF 98% SPMDD.
- 4. A QUALIFIED GEOTECHNICAL ENGINEER SHALL FIELD VERIFY THAT THE NATIVE MATERIAL PROVIDES THE MINIMUM ALLOWABLE BEARING CAPACITY OF 4,000 PSF AND THE FILL HAS BEEN COMPACTED TO THE SATISFACTORY LEVEL.
- 5. PROTECT BEARING SURFACES FROM FREEZING BEFORE AND AFTER FOOTINGS ARE POURED

DESIGN LOADS:

- 1. BACKFILL PROPERTIES: UNIT WEIGHT = 120 lb/ft3
- = 0.31 = 0.47 = 3.25
- 2. LIVE LOAD ON CHAMBER COVER = 100 PSF
- 3. SNOW LOAD = 25 PSF

STRUCTURAL AND MISC. STEEL AND ANCHOR NOTES:

- 1. STRUCTURAL STEEL SHAPES SHALL CONFORM TO ASTM A992 GRADE 50.
- 2. STEEL GRATING TO CONFORM TO ASTM A 1011/A 1011M COMMERCIAL STEEL (TYPE 2).
- 3. ALL STEEL COMPONENTS, U.N.O., SHALL BE HOT DIP GALVANIZED AFTER FABRICATION, IN ACCORDANCE TO ASTM A123/A123M.
- 4. ANCHOR RODS SHALL BE STAINLESS STEEL HAS RODS, MEETING THE REQUIREMENTS OF ASTM F593 (CONDITION CW). ANCHOR RODS SHALL BE BONDED USING HILTI HY-200 ADHESIVE SYSTEM, OR APPROVED EQUIVALENT
- 5. FASTENERS SHALL BE MINIMUM 3/4 INCH DIAMETER GALVANIZED BOLTS CONFORMING TO ASTM A325 SPECIFICATIONS UNLESS NOTED OTHERWISE. GALVANIZING SHALL BE IN ACCORDANCE TO ASTM A153/A153M.

CAST-IN-PLACE CONCRETE NOTES:

- 1. CONCRETE DESIGN IN ACCORDANCE WITH ACI 318. WHERE CONCRETE MATERIALS AND/OR CONSTRUCTION DETAILS ARE NOT SPECIFIED, FOLLOW THE LATEST APPLICABLE ACI SPECIFICATIONS AND STANDARDS.
- 2. MINIMUM CONCRETE COMPRESSIVE STRENGTH SHALL BE 4,000 PSI (F3 EXPOSURE) AT 28 DAYS.
- 3. REINFORCING STEEL SHALL BE NEW DEFORMED BARS CONFORMING TO ASTM A615, GRADE 60 SPECIFICATIONS. ALL REINFORCING MATERIAL IS TO BE FREE OF DIRT, LOOSE RUST, SCALE, OIL, PAINT OR OTHER COATINGS.
- 4. BARS AND SPLICES AND EMBEDMENT LENGTHS ARE TO BE IN ACCORDANCE WITH ACI 318.
- 5. REINFORCING IS TO BE DETAILED IN ACCORDANCE WITH ACI SP 66 ACI DETAILING MANUAL
- 6. ALL REINFORCING BARS SHALL BE SUPPORTED IN THE FORMS AND SPACED WITH STANDARD ACCESSORIES.
- 7. CONCRETE FORMS SHALL HAVE SUFFICIENT STRENGTH AND RIGIDITY TO WITHSTAND THE NECESSARY PRESSURE, TAMPING AND VIBRATION WITHOUT DEFLECTION FROM THE PRESCRIBED LINES. THEY SHALL BE MORTAR-TIGHT AND CONSTRUCTED SO THAT THEY CAN BE REMOVED WITHOUT HAMMERING OR PRYING AGAINST THE CONCRETE. THE INSIDE OF THE FORMS SHALL BE OILED WITH NON-STAINING MINERAL OIL OR THOROUGHLY WETTED BEFORE CONCRETE IS PLACED.
- 8. METAL TIES OR ANCHORAGES SHALL BE FULL DIMENSION. NOMINAL SIZE WALL TIES ARE NOT PERMITTED. WALL TIE ENDS MUST BE BROKEN OFF AND PATCHED WITH AN APPROVED MATERIAL. PATCHING IS REQUIRED ON BOTH THE INSIDE AND OUTSIDE OF CONCRETE STRUCTURES
- 9. ALL CONCRETE FOR WALLS SHALL BE CONSOLIDATED WITH INTERNAL TYPE MECHANICAL VIBRATORS. CONCRETE SHALL BE PLACED IN HORIZONTAL LIFTS NOT GREATER THAN 20 INCHES. CONCRETE SHALL NOT HAVE A VERTICAL DROP GREATER THAN 5 FEET.
- 10. CONCRETE SHALL NOT BE PLACED WHEN THE DAILY MINIMUM ATMOSPHERIC TEMPERATURE IS LESS THAN 40 DEGREE F UNLESS FACILITIES ARE PROVIDED TO ENSURE ADEQUATE PROTECTION OF THE CONCRETE. THE CONCRETE SHALL BE PROTECTED FROM FREEZING FOR A MINIMUM OF 7 DAYS OR THE CONCRETE SHALL BE KEPT AT A TEMPERATURE AT OR ABOVE 55 DEGREE F FOR A MINIMUM OF 3 DAYS.
- 11. UNLESS NOTED OTHERWISE ON DRAWINGS, THE MIN. CLEAR DISTANCE BETWEEN REINFORCING STEEL AND SURFACE OF CONCRETE SHALL BE AS FOLLOWS: WALLS : 2" TO EXT. FACE FOOTINGS : 3" TO BOTTOM FACE CAST AGAINST EARTH, 2" TO TOP FACE.
- 12. CONCRETE PROTECTION IN ALL CASES SHALL BE AT LEAST 1.5 TIMES THE BAR DIAMETER.
- 13. NO CUTTING OR DRILLING IN HARDENED CONCRETE IS PERMITTED WITHOUT WRITTEN AUTHORIZATION FROM THE ENGINEER.
- 14. PROVIDE 3/4" CHAMFER EDGE ON ALL EXPOSED CONCRETE CORNERS.
- 15. DO NOT PLACE UNBALANCED BACKFILL LOADS ON WALLS UNTIL THE CONCRETE HAS ACHIEVED THE 28-DAY DESIGN STRENGTH.
- 16. ALL REINFORCING STEEL TO BE INSPECTED BY THE ENGINEER BEFORE POURING CONCRETE.
- 17. DO NOT DRIVE CONSTRUCTION VEHICLES WITHIN 10'-0" FROM THE FACE OF THE WALLS (ON FILL SIDE), USE LIGHT COMPACTION EQUIPMENT ADJACENT TO THE WALL.
- 18. CONTRACTOR SHALL SUBMIT A COPY OF ALL SHOP DRAWINGS PRIOR TO STARTING ANY WORK.
- 19. CLEAN (WATER JETTING OR ANY OTHER APPROVED METHOD) AND APPLY APPROVED BONDING AGENT ON EXISTING CONCRETE WALL AND SLAB SURFACES PRIOR TO POURING NEW CONCRETE AGAINST EXISTING CONCRETE.
- 20. ROUGHEN EXISTING SLAB SURFACES PRIOR TO POURING NEW CONCRETE TOPPING.
- 21. SEAL ENTIRE CONCRETE STRUCTURE INTERIOR WITH APPROVED EPOXY / POLYUREA WATER PROOFING COATING.

STEEL DECK

EXISTING STRUCTURE

- CONFLICTS.

- PROCEDURES.

CONCRETE WALL PIPE PENETRATION

RECOMMENDATION.

ABBREVIATIONS

C/W

EW

FX

EXT

FIN

MAX

MIN

O/C

RAD

T&B

THK

T.O.

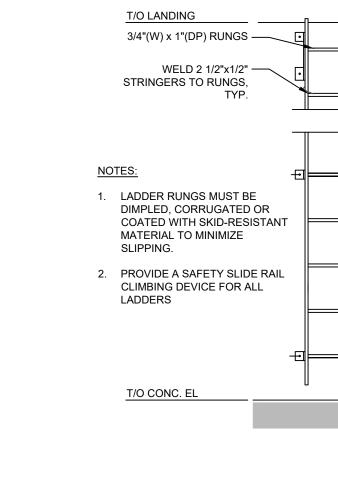
TYP

U/S

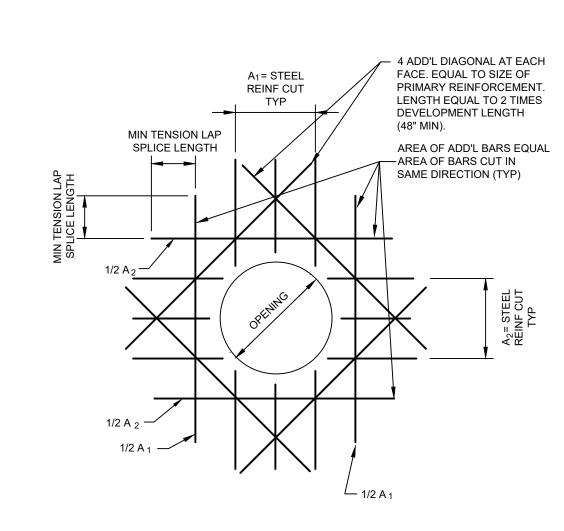
ADD'L ADDITIONAL CONC. CONCRETE COMPLETE WITH DOWN EACH FACE EQUAL EACH WAY FXISTING EXTERIOR **INSIDE DIAMETER** GALVANIZED INVERT FINISHED MAXIMUM MINIMUM ON CENTRE OUTSIDE DIAMETER PLATE PROPOSED RADIUS REINF REINFORCEMENT REQ'D REQUIRED STEEL TOP AND BOTTOM THICK TOP OF TYPICAL U.N.O. UNLESS NOTED OTHERWISE UNDER SIDE WITH

1. DECK STEEL SHALL CONFORM TO ASTM A653/A6M3M WITH MINIMUM YIELD STRENGTH OF 33 ksi (230 MPa). PROFILE FOR COMPOSITE DECKING SHALL BE CANAM P-2432 WITH METALLIC COATING ZF075 OR APPROVED EQUIVALENT.

2. DESIGN, FABRICATE AND INSTALL STEEL DECK TO AISI S100 AND STEEL DECK INSTITUTE (SDI) UNLESS NOTED OTHERWISE ON DRAWINGS.


3. INSTALL DECKING CONTINUOUS OVER MINIMUM THREE SPANS UNLESS NOTED OTHERWISE ON DRAWINGS.

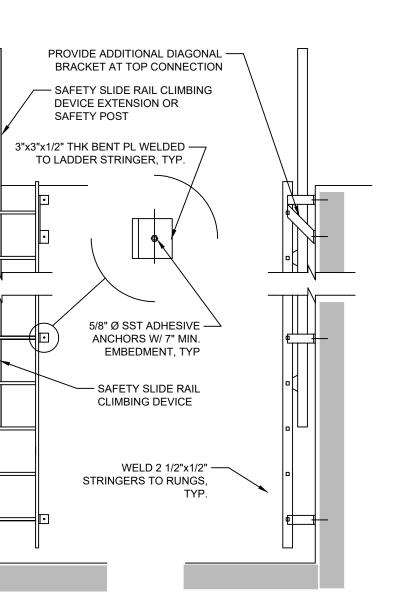
4. FASTEN DECK TO SUPPORTING STEEL AT EVERY FLUTES WITH POWER DRIVEN PIN, SELF DRILLING SCREWS OR WELDS IN ACCORDANCE WITH DRAWINGS. FASTEN SIDE LAPS WITH #12-14 SELF DRILLING SCREWS @ 12" O.C. UNLESS NOTED OTHERWISE ON DRAWINGS. USE GALVANIZED FASTENERS FOR EXTERIOR AREAS.


1. ELEVATIONS AND DIMENSIONS FOR EXISTING STRUCTURES SHOWN ON THESE DRAWINGS ARE BASED ON AVAILABLE INFORMATION, AFTER EXCAVATION BUT BEFORE FORMING AND PLACING OF REINFORCEMENT, THE CONTRACTOR SHALL ENSURE THAT ALL ELEVATIONS AND DIMENSIONS SHOWN ON THE DRAWINGS RELATED TO THE EXISTING STRUCTURE ARE ACCURATE AND NOTIFY THE ENGINEER IMMEDIATELY OF ANY DISCREPANCIES OR

2. THE CONTRACTOR SHALL PROTECT EXISTING FACILITIES, STRUCTURES AND UTILITY LINES FROM ALL DAMAGE. 3. INVESTIGATE THE EXISTING STRUCTURE TO DETERMINE ACTUAL FIELD CONDITIONS AND TAKE FIELD DIMENSIONS. 4. MAKE GOOD ALL EXISTING WORK DISTURBED BY EXCAVATION, SHORING OPERATIONS AND OTHER CONSTRUCTION


1. REFER TO PIPE MANUFACTURER FOR PIPE END CONNECTION TO CONCRETE WALLS. CONNECTIONS MUST BE WATERTIGHT. FILL GAPS WITH NON-SHRINKING GROUT C/W 2 BEADS OF ¹/₄" THICK CONTINUOUS, ANNULAR, FIELD APPLIED, HYDROPHYLIC CAULK (LEAKMASTER LV-1 OR APPROVED EQUAL) PER PIPE MANUFACTURER'S

FIXED LADDER



CONCRETE OPENING REINFORCEMENT

DOUBLE MAT CORNER AND INTERSECTION REINFORCEMENT

CONCRETE WALL REINFORCEMENT

NOTES:

- 1. TYPICAL FOR ALL OPENINGS IN WALLS AND SLABS UNLESS INDICATED OTHERWISE ON PLANS.
- 2. FOR PIPE SLEEVE REQUIREMENTS AND DETAILS SEE MECHANICAL DRAWING. DO NOT WELD REINFORCEMENT TO PIPE SLEEVES AND INSERTS.
- 3. FOR SMALL DIAMETER PIPE OPENINGS WHICH DO NOT REQUIRE CUTTING OF THE REINFORCEMENT AND ARE >3"Ø SUPPLY 4 DIAGONAL BARS AS SHOWN IN DETAIL (SEE ALSO NOTE 5 FOR BAR LOCATIONS)
- 4. AREA OF ADDITIONAL BARS PER EACH SIDE OF OPENING EQUALS 1/2 AREA OF BARS CUT IN SAME DIRECTION.
- 5. ADDITIONAL BARS TO BE PLACED: a) AT CENTERLINE OF WALLS OR SLABS WHERE ONE LAYER OF REINFORCEMENT IS PROVIDED. b) AT EACH FACE OF WALLS OR SLABS WHERE TWO LAYERS OF REINFORCEMENT ARE REQUIRED.
- 6. INCREASE SIZE OF ADDITIONAL BARS AS NEEDED TO FIT WITHIN A DISTANCE OF 2X WALL/SLAB THICKNESS FROM OPENING. PROVIDE 2" MIN CLEAR DISTANCE BETWEEN BARS

1. TYPICAL HORIZONTAL WALL CORNER AND INTERSECTION REINFORCEMENT LAYOUT IS SHOWN TO AVOID CONGESTION AND PERMIT PROPER PLACEMENT. FOR SIZE AND SPACING SEE PLANS.

WHERE THE CORNER OR INTERSECTION REINFORCEMENT SIZE AND SPACING IS NOT SHOWN. NOTED OR TABULATED ON THE DRAWINGS THE SIZE AND SPACING SHALL BE THE SAME AS THE WALL HORIZONTAL REINFORCEMENT SHOWN ON THE WALL SECTIONS OR AS NOTED FOR THE REINFORCEMENT BETWEEN THE CORNERS OR INTERSECTION

FOR WALLS WHERE D IS LESS THAN THE HEIGHT OF THE WALL, UNLESS OTHERWISE SHOWN ON THE DRAWINGS, THE LENGTH INDICATED AS "NOTE 3" SHALL BE D/4, EXCEPT THAT IN NO CASE SHALL IT BE LESS THAN 2 FEET.

FOR CASES WHERE D ≥ THE HEIGHT OF THE WALL, CORNER AND INTERSECTION WALLS MAY USE CONTINUOUS STANDARD HOOKED BARS OR THE SPLICE BAR METHOD WITHOUT THE NEED TO SHIFT THE LAP AS NOTED IN 3. ABOVE, UNLESS OTHERWISE SHOWN ON THE DRAWINGS.

5. D = LENGTH OF WALL PARALLEL TO THE BAR LENGTH IN QUESTION.

6. EXCEPT WHERE OTHERWISE SHOWN ON THE DRAWINGS, THE LENGTH INDICATED AS "NOTE 6" SHALL BE EQUAL TO ONE TENSION LAP SPLICE LENGTH AS REQUIRED BY THE GENERAL STRUCTURAL NOTES. USE THE LAP SPLICE LENGTH AS REQUIRED FOR THE SMALLER OF THE TWO REINFORCEMENT BARS BEING SPLICED.

7. UNLESS OTHERWISE NOTED, "B" AND "C" BARS ARE THE SAME SIZE AND SPACING AND, "F" AND "G" BARS ARE THE SAME SIZE AND SPACING.

GHD Services Inc. 6400 Shafer Court Suite 400 Rosemont IL 60018 USA T 773 380 9933 F 773 380 6421 W www.ghd.com

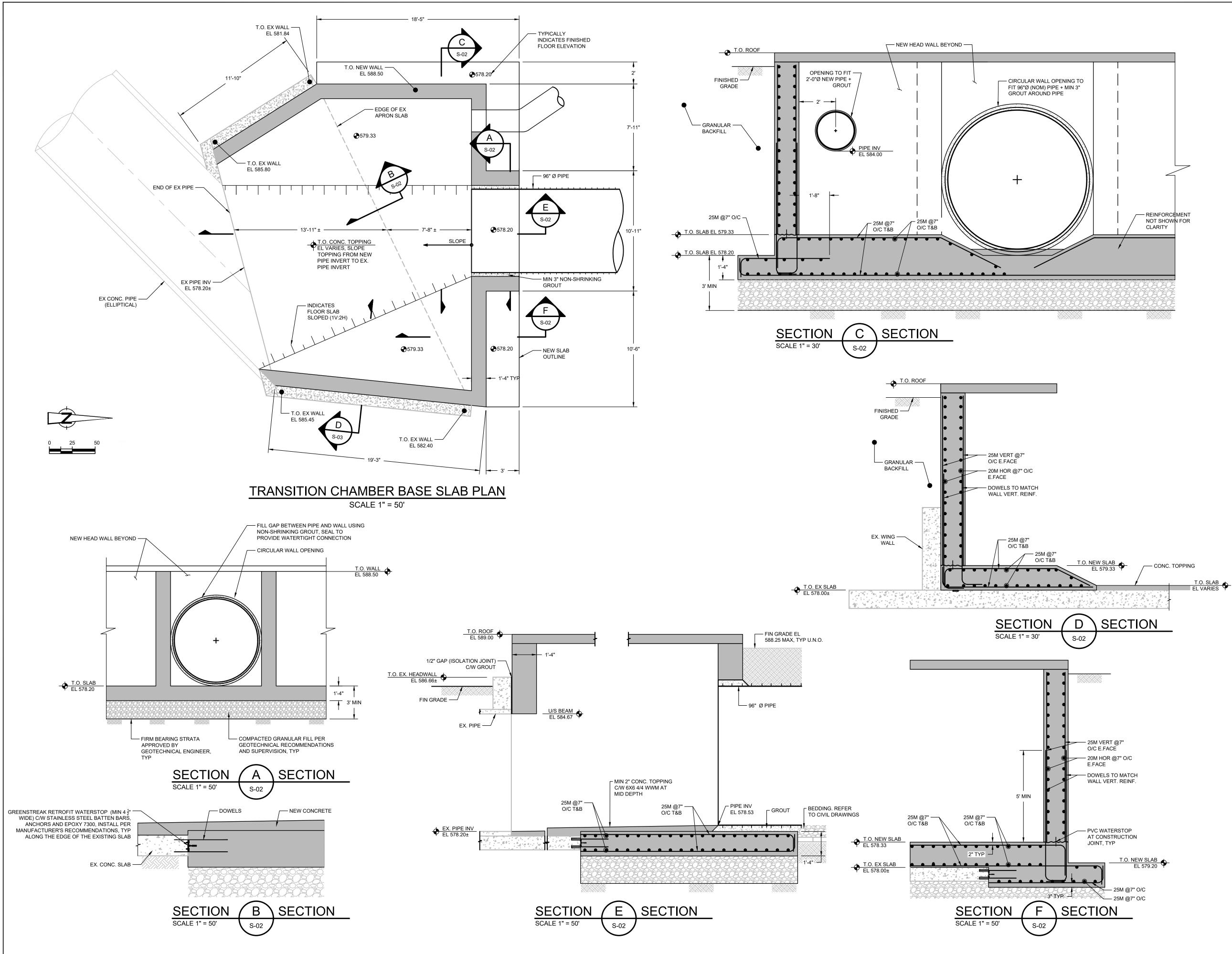
Reuse of Documents

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2020 GHD

CLINE AVENUE OIL SPILL SITE GARY INDIANA

Projec

<u> </u>				
1	90% DESIGN (WITH	AL	МТ	MAR 17, 2020
	SUBMISSION OF FFS)			
No.	lssue	Drawn	Approved	Date
Draw	m A. LeGAULT	Designer	M. MIR	
Drafti Chec		Design Check	-	
Proje Mana		Date	Mar 16, 20)20
	document shall not be used for uction unless signed and sealed for uction.	Scale	AS SHOW	/N
Origi	ANSI D	_	ar is one ir iginal size c	


Project No. **11198545**

STRUCTURAL NOTES

Sheet No.

DRAFT

Plot Date: 17 March 2020 - 9:49 AM

Plotted By: Bruce Pletz

CAD File: N:\CA\Waterloo\Projects\662\11198545\Digital_Design\Figures\RPT001\11198545(RPT001)ST-WA002.DWG

DRAFT

Sheet No.

PROPOSED STORM SEWER INSTALLATION WITHIN DITCH DETAILS (SHEET 1 OF 3)

S-02

Title

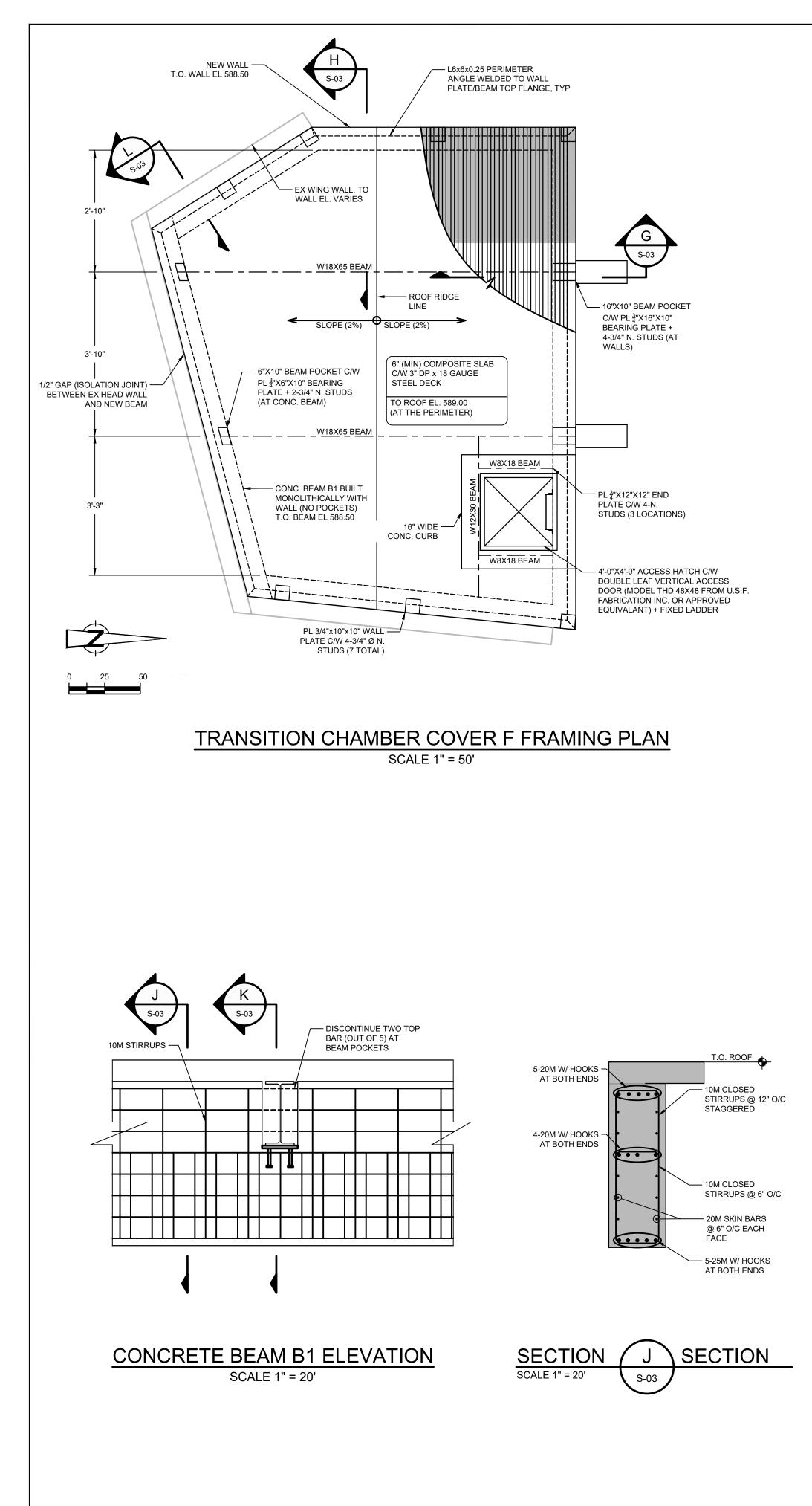
Project No. **11198545**

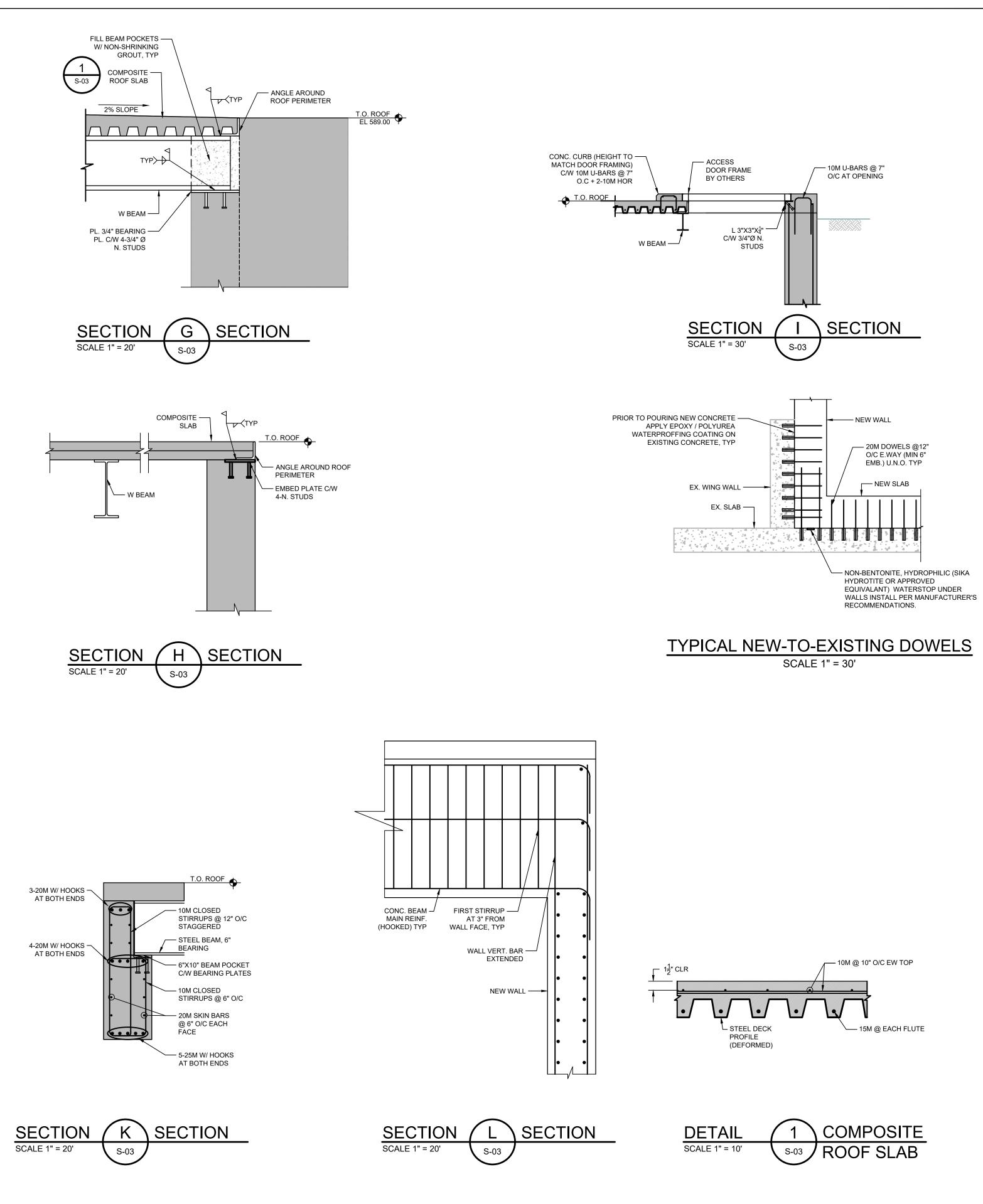
Project

1	90% DESIGN (WITH	AL	MT	MAR 17, 2020
	SUBMISSION OF FFS)			
No.	lssue	Drawn	Approved	Date
Drawn A. LeGAULT		Designer	M. MIR	
Drafti Chec		Design Check JC		
Proje Mana		Date	Mar 16, 20)20
This document shall not be used for construction unless signed and sealed for construction.		Scale AS SHOWN		
Original Size		Bar is one inch on original size drawing 0 1"		

Client **CLINE AVENUE OIL SPILL SITE GARY INDIANA**

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2020 GHD




GHD Services Inc. 6400 Shafer Court Suite 400

Reuse of Documents

Rosemont IL 60018 USA

T 773 380 9933 F 773 380 6421 W www.ghd.com

DRAFT

Sheet No.

INSTALLATION WITHIN DITCH DETAILS (SHEET 2 OF 3)

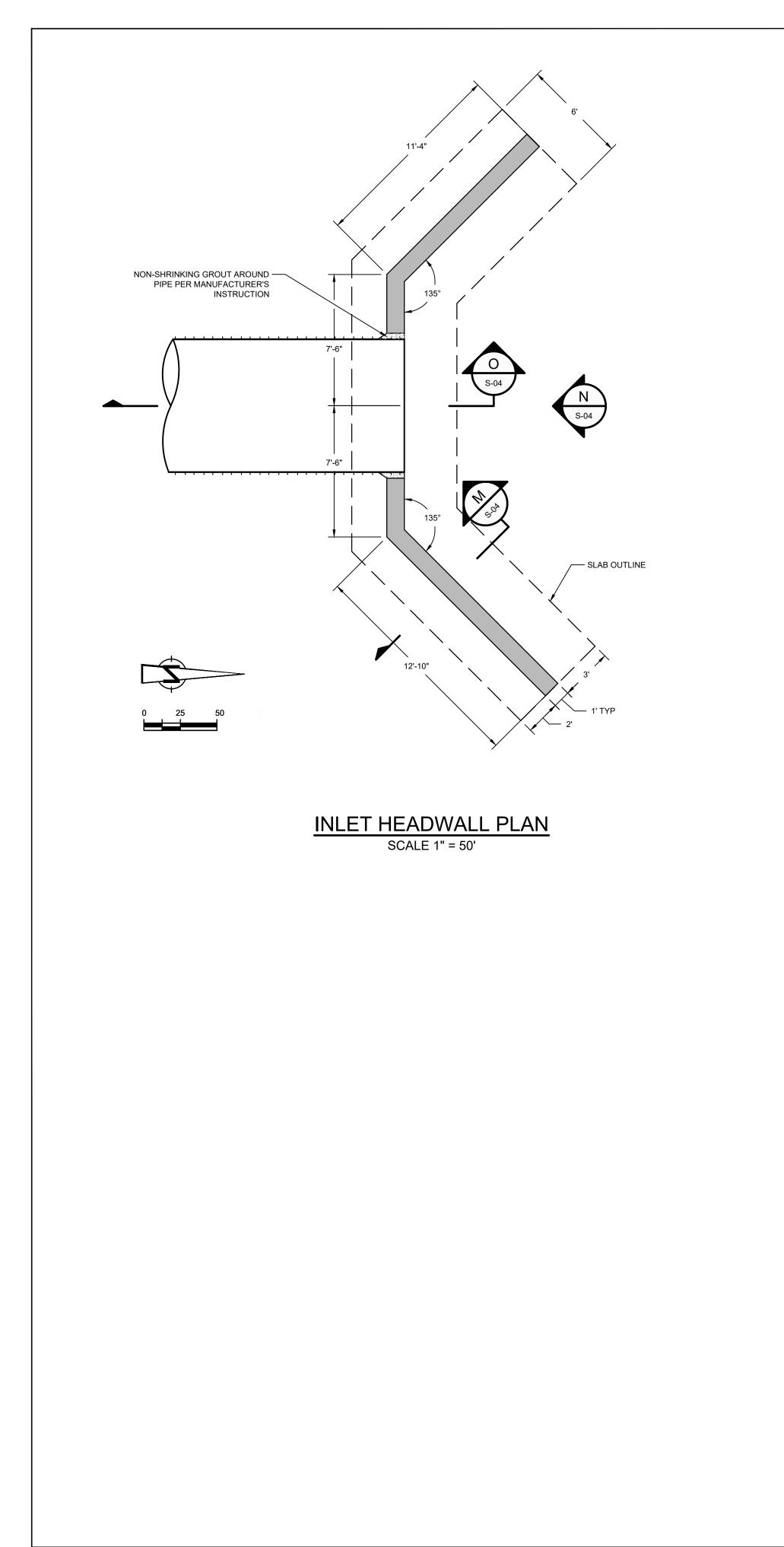
S-03

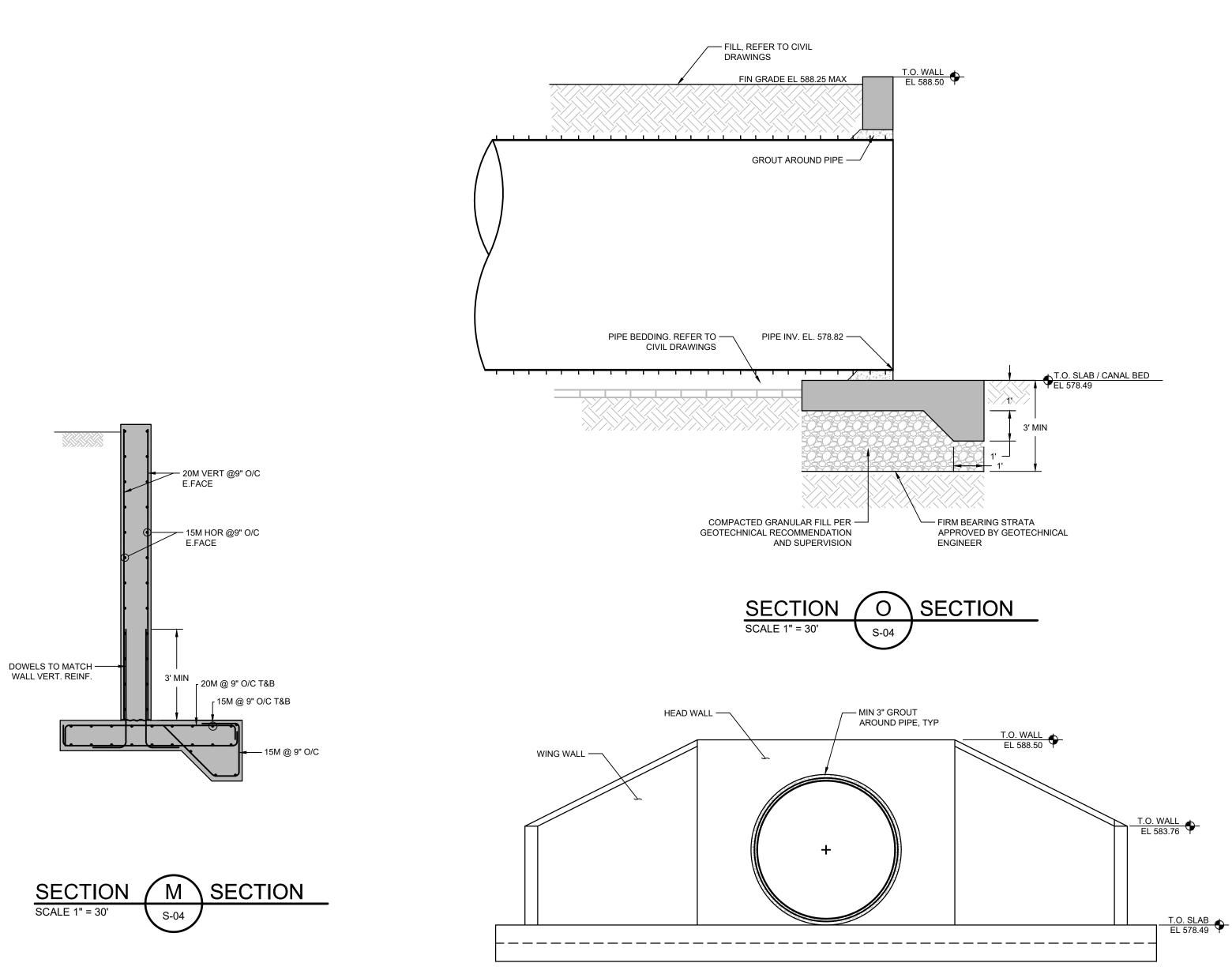
construction unless signed and sealed for construction.	Scale AS SHOWN				
Driginal Size ANSI D	Bar is one inch on original size drawing 0 1"				
Project No. 11198545					

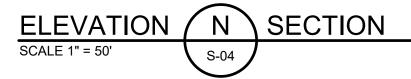
90% DESIGN (WITH AL MT MAR 17, 2020 SUBMISSION OF FFS) Drawn Approved Date Issue Designer M. MIR Drawn A. LeGAULT Drafting Check JC Design Check JC Project Manager **MT** Date Mar 16, 2020 This document shall not be used for

Project

GARY INDIANA


CLINE AVENUE OIL SPILL SITE


GHD Services Inc. 6400 Shafer Court Suite 400 Rosemont IL 60018 USA T 773 380 9933 F 773 380 6421 W www.ghd.com


Reuse of Documents

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2020 GHD

GHD Services Inc. 6400 Shafer Court Suite 400 Rosemont IL 60018 USA T 773 380 9933 F 773 380 6421 W www.ghd.com

Reuse of Documents

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2020 GHD

Client CLINE AVENUE OIL SPILL SITE

Project 90% DESIGN (WITH AL MT MAR 17, 2020 SUBMISSION OF FFS) Drawn Approved Date Issue No Designer M. MIR Drawn A. LeGAULT Drafting Check JC Design Check **JC** Project Manager **MT** Date Mar 16, 2020 This document shall not be used for construction unless signed and sealed for Scale AS SHOWN construction. Original Size Bar is one inch on original size drawing

ANSI D

Project No. **11198545**

Title

Sheet No.

GARY INDIANA

S-04

PROPOSED STORM SEWER

INSTALLATION WITHIN DITCH

DETAILS (SHEET 3 OF 3)

DRAFT

Sheet 11 of 11

0 1"

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

John-Eric Pardys John-Eric Pardys@ghd.com 519.340.4316

www.ghd.com