NPDES PERMIT NO. NM0029505 RESPONSE TO COMMENTS

RECEIVED ON THE SUBJECT DRAFT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PERMIT IN ACCORDANCE WITH REGULATIONS LISTED AT 40 CFR 124.17

- APPLICANT: Westmoreland San Juan Mining LLC La Plata Mine P.O. Box 561 Waterflow, NM 87421
- ISSUING OFFICE: U.S. Environmental Protection Agency Region 6 1201 Elm Street, Suite 500 Dallas, Texas 75270
- PREPARED BY: Quang Nguyen Environmental Engineer Permitting and Water Quality Branch Water Division VOICE: 214-665-7238 FAX: 214-665-2191 EMAIL:Nguyen.Quang@epa.gov

PERMIT ACTION: Final permit decision and response to comments received on the proposed NPDES permit publicly noticed on February 29, 2020.

DATE PREPARED: May 01, 2020

Unless otherwise stated, citations to 40 CFR refer to promulgated regulations listed at Title 40, Code of Federal Regulations, revised as of September 28, 2015.

DOCUMENT ABBREVIATIONS

In the document that follows, various abbreviations are used. They are as follows:

4Q3	Lowest four-day average flow rate expected to occur once every three years
BAT	Best available technology economically achievable
BCT	Best conventional pollutant control technology
BPT	Best practicable control technology currently available
BMP	Best management plan
BOD	Biochemical oxygen demand (five-day unless noted otherwise)
BPJ	Best professional judgment
CBOD	Carbonaceous biochemical oxygen demand (five-day unless noted otherwise)
CD	Critical dilution
CFR	Code of Federal Regulations
Cfs	Cubic feet per second
COD	Chemical oxygen demand
COE	United States Corp of Engineers
CWA	Clean Water Act
DMR	Discharge monitoring report
ELG	Effluent limitations guidelines
EPA	
	United States Environmental Protection Agency
ESA FCB	Endangered Species Act
	Fecal coliform bacteria
F&WS	United States Fish and Wildlife Service
mg/L	Milligrams per liter
µg/L	Micrograms per liter
MGD	million gallons per day
NMAC	New Mexico Administrative Code
NMED	New Mexico Environment Department
NMIP	New Mexico NPDES Permit Implementation Procedures
NMWQS	New Mexico State Standards for Interstate and Intrastate Surface Waters
NPDES	National Pollutant Discharge Elimination System
MQL	Minimum quantification level
O&G	Oil and grease
PCB	Polychlorinated Biphenyl
POTW	Public owned treatment works
RP	Reasonable potential
SIC	Standard industrial classification
s.u.	Standard units (for parameter pH)
SWQB	Surface Water Quality Bureau
TDS	Total dissolved solids
TMDL	Total maximum daily load
TRC	Total residual chlorine
TSS	Total suspended solids
UAA	Use attainability analysis
USGS	United States Geological Service
WLA	Wasteload allocation
WET	Whole effluent toxicity
WQCC	New Mexico Water Quality Control Commission
WQMP	Water Quality Management Plan
WWTP	Wastewater treatment plant
	A second press press

In this document, references to State WQS and/or rules shall collectively mean either or both the State of New Mexico and/or the Pueblo of Taos.

SUBSTANTIAL CHANGES FROM DRAFT PERMIT

- 1. Applied Alternate Effluent Limit to Total Mercury and Total Recoverable Selenium limits for Outfall 28.
- 2. Revised the compliance schedule to reflect activities of the background conditions study.
- 3. Put the net Total Aluminum incremental increased limits for Outfalls 15, 16 and 28 on hold pending results of background conditions study.

STATE CERTIFICATION

In a letter from Ms. Shelly Lemon, Bureau Chief, SWQB, to Mr. Ken McQueen, Regional Administrator dated July 16, 2020, the NMED provided a revision to the certification provided on May 15, 2020 and certified that the discharge will comply with the applicable provisions of Section 208(e), 301, 301, 303, 306 and 307 of the Clean Water Act and with appropriate requirements of State law.

The NMED stated that in order to meet the requirements of State law, including water quality standards and appropriate basin plan as may be amended by the water quality management plan, each of the conditions cited in the draft permit and the State certification shall not be made less stringent.

The State also stated that it reserves the right to amend or revoke this certification if such action is necessary to ensure compliance with the State's water quality standards and water quality management plan.

Conditions of Certification:

1. None

Comments that are not Conditions of Certification

Comment No. 1:

On April 12, 2019, EPA approved the official name change of the permittee from San Juan Coal Company to Westmoreland San Juan Mining LLC. Because the draft permit still lists the permittee as San Juan Coal Company, the updated permittee name should be reflected in the final permit

Response No. 1: Final permit has been revised to reflect permittee's name change.

Comment No. 2:

Monitoring requirements for pH and dissolved hardness for Outfalls 015, 016 and 028 should be included in order to evaluate compliance with state water quality standards.

Response No. 2: EPA agrees with NMED. EPA added the pH and dissolved hardness report requirements for Outfalls 015, 016 and 028 in the final permit.

Comment No. 3:

NMED agrees that the less stringent AEL for discharges over the 100-year 24-hour event size will still be protective of water quality if the BMPs are maintained to operate as designed.

Please clarify footnote number five to describe that the AEL replaces the standard limit with BMP inspection and maintenance.

Please add language describing that the permittee is required to report discharges that resulted from rainfall events over 2.60 inches, (100-year, 24-hour storm event) and inspect and repair BMPs. If discharges occur, they must immediately take all reasonable steps to address BMP conditions, including cleaning up any contaminated surfaces so the material will not discharge in subsequent storm events. When the BMP requires a new or replacement control or significant repair, install the new or modified control and make it operational, or complete the repair, by no later than seven (7) calendar days from the time of discovery. If it is infeasible to complete the installation or repair within seven (7) calendar days, you must document and report to EPA and NMED why it is infeasible to complete the installation or repair within the 7-day timeframe and document your schedule for installing the stormwater control(s) and making it operational as soon as feasible after the 7-day timeframe.

Response No. 3: EPA agrees with NMED recommendations. For clarification, EPA revised Part I.A.2 limit table and footnotes. EPA also added a section (Alternate Effluent Limit) in the Part II of the final permit prescribing requirements when the AEL is applied.

OTHER COMMENTS RECEIVED ON DRAFT PERMIT

A letter from Mr. Daniel Mumm of Westmoreland San Juan Mining LLC to Ms. Evelyn Rosborough (EPA) on April 17, 2020.

RESPONSE TO COMMENTS

Comment No. 1:

Please change the company name and address as approved by EPA Region 6 on April 12, 2019.

Westmoreland San Juan Mining LLC La Plata Mine P.O. Box 561 Waterflow, NM 87421

Response No. 1: EPA updated company name and address in the final permit as requested.

Comment No. 2:

Draft Permit Part I Section A.2.

LPM is fully reclaimed in accordance with the performance standards set forth in the New Mexico Administrative Code 19.8.20 and the criteria in the LPM SMCRA permit (Permit No. 16-01). LPM is an inactive, unstaffed, and fully reclaimed mine site as defined in 40 CFR § 434.11. No industrial activities take place at LPM and none are proposed. Currently, only revegetation and reclamation monitoring occur at LPM.

According to the requirements outlined in 40 CFR § 434.82 and incorporated into the current NPDES Permit by your office, sampling is not required for discharges from reclamation areas if a Sediment Control Plan is in place. A Plan was developed and was submitted to the LPM Surface Mining Control and Reclamation Act (SMCRA) permitting authority, the New Mexico Mineral & Mining Division (MMD), the United States Environmental Protection Agency (EPA) and New Mexico Environment Department (NMED) on March 21, 2014. WSJM has complied with the requirements of its Sediment Control Plan for LPM and continues to review and update the Plan as necessary. WSJM will be applying for a renewal of the La Plata Mine SMCRA permit this fall, so the language in the Sediment Control Plan will be reviewed and updated again, if necessary.

Under Part I Section A.2, aluminum discharge limitations are proposed for Outfalls 15, 16, and 28, along with a schedule of compliance outlined in Section B. Topsoil and topdressing in northwest New Mexico contain naturally high levels of aluminum and iron. Geomorphic reclamation reduces the amount of stormwater runoff by promoting infiltration, but the reclamation is still designed to discharge when enough precipitation is received. This design is implemented to mimic the pre-mine hydrologic balance, for which similar levels of aluminum would be expected.

WSJM collects samples from the two native arroyos that run through the LPM (Cinder and McDermott arroyos) to verify that the reclamation is not adding significant amounts of constituents to these streams. As the information in the tables below shows, the stormwater that enters the mine tends to be high in total suspended solids (TSS), leading to high levels of aluminum and iron. When comparing these numbers to the samples that were collected from the outfalls, it's evident that Outfalls 15, 16, and 28 generally do not add significant amounts of aluminum and iron to the overall flow. Upset storm conditions do occur at La Plata, which have resulted in a higher sediment load in a sample and increased levels of aluminum and iron. These samples have triggered the requirement for a discharge limitation, but do not reflect the average amount discharged from the outfall. Additionally, NMED's Surface Water Quality Bureau has requested that future samples be filtered prior to analysis for aluminum in accordance with their guidance, which would further decrease the total aluminum. The sample analysis in the tables below show the results from non-filtered samples.

In regards to the schedule of compliance that is proposed for Outfalls 15, 16, and 28, WSJM believes that the water quality data presented below adequately shows that a study on needed stabilization techniques is not needed. Utilizing equipment to install BMPs and make any minor repairs to the landform would be more detrimental than beneficial to the reclamation and water quality discharged from the site. WSJM is proposing that the schedule of compliance be focused on sample collection and analysis to collect the appropriate background information needed to decide on whether effluent limitations should be required. WSJM would collect samples from the listed outfalls, as well as other outfall discharges and native streams at LPM. Both filtered and non-filtered samples would be submitted to the lab for analysis for this report

Precipitation events resulting in a discharge are infrequent at LPM, so WSJM is suggesting that the schedule of compliance be completed annually. This would provide a more robust representation of the discharged water quality from LPM. This report would be submitted to the EPA and NMED a year after the permit approval date, providing a synopsis of any results along with all of the lab data from the collected samples. If the results show acceptable levels of aluminum, considering the proposed effluent limitations and the natural background conditions, then the effluent limitation could be removed. If the results show aluminum levels that are still concerning for the EPA and NMED, the then effluent limitations can be retained in the permit.

			Tota	nl Aluminum (mg/L)				
Date	Downstream Cinder	Upstream Cinder	Date	Upstream McDermott	Downstream McDermott	Date	Outfall 15	Outfall 16	Outfall 28
8/1/2006	3,760	4,230	8/1/2006	461	803	10/1/2014	345		
8/22/2006	103	111	10/6/2006	302	172	10/22/2014	407	451	
9/15/2006	170	189	10/10/2006	337	307	10/22/2014		105	
10/6/2006	94.1	155	8/8/2007	5,190	2,490	10/22/2014		190	
10/10/2006	17.7	7.85	9/24/2007	108	209	7/30/2014			199
10/10/2006	186	165	1/28/2008	9.5	15.1	9/25/2014			505
5/24/2007	894	1,250	2/13/2008	51.1	39.6	10/6/2015		18.3	
8/6/2007	2,280	2,780	2/15/2008	23.9	42.8	12/13/2016			20.8
1/28/2008	47.3	110	2/25/2008	31.7	34.8	1/23/2018		1,140	
2/13/2008	39.1	66.2	7/28/2008	982	1,560	1/23/2018		1,440	
2/15/2008	54.4	63.9	3/24/2010	131	147	7/17/2018			196
8/18/2012	1,040	2,030	8/27/2013	2,730	4,040	7/17/2018			1,200
8/27/2013	822	1,040	9/18/2013	783	872	10/12/2018	296	96.8	107
9/25/2014	2,440	2,340	3/4/2015	187	196	Average	349.3	491.6	371.3
6/16/2015	2,080	1,900	6/16/2015	3,260	3,360				
3/28/2019	569	218	7/8/2015	1,280	1,210				
12/13/2019	484	1,500	1/10/2017	225	1,760				
Average	887.1	1,068.0	3/28/2019	910	800				
			3/31/2019	36.8	60.5				
			Average	896.8	953.6				
									ļ

			1	Total Iron (mg	/L)				
Date	Downstream Cinder	Upstream Cinder	Date	Upstream McDermott	Downstream McDermott	Date	Outfall 15	Outfal 116	Outfall 28
8/1/2006	5,670	6,500	8/1/2006	357	615	10/1/2014	260		
8/22/2006	103	116	10/6/2006	281	177	10/22/2014	286	411	
9/15/2006	219	338	10/10/2006	271	308	10/22/2014		77.6	
10/6/2006	75.9	123	8/8/2007	7,030	2,880	10/22/2014		142	
10/10/2006	214	195	9/24/2007	71.5	124	7/30/2014			216
10/10/2006	1,620	2,450	1/28/2008	8.44	14.6	9/25/2014			418
5/24/2007	1,540	2,410	2/13/2008	34.3	30	10/6/2015		11.5	
8/6/2007	1,860	5,760	2/15/2008	19.7	40.8	12/13/2016			19.2
1/28/2008	65.6	168	2/25/2008	23.5	26.9	1/23/2018		968	
2/13/2008	45.9	78.9	7/28/2008	1470	1220	1/23/2018		1,280	
2/15/2008	71.1	88.9	3/24/2010	102	113	7/17/2018			275
8/18/2012	1,300	3390	8/19/2011	1130	NS	7/17/2018			1,520
8/27/2013	896	1,630	8/27/2013	2,840	4,800	10/12/2018	281	82	118
9/25/2014	3,310	3,280	9/18/2013	812	742	Average	275.7	424.6	427.7
6/16/2015	2,530	2,520	3/4/2015	152	159				
3/28/2019	855	324	6/16/2015	2,980	2,960				
12/13/2019	736	2,250	7/8/2015	1,070	1,050				
Average	1,241.9	1,860.1	1/10/2017	191	2,300				
			3/28/2019	802	759				
			3/31/2019	31.8	54.6				
			Average	983.9	967.0				

				TSS (mg/L)				
Date	Downstream Cinder	Upstream Cinder	Date	Upstream McDermott	Downstream McDermott	Date	Outfall 15	Outfal 116	Outfall 28
8/1/2006	554,000	625,000	7/10/2006	308,000	102,000	10/1/2014	24,300		
8/22/2006	127,000	113,000	8/8/2007	4,910	4,840	10/22/2014	16,800	23,100	
9/15/2006	163,000	180,000	7/28/2008	602,000	161,000	10/22/2014		4,160	
10/10/2006	440	18,100	8/27/2013	122,000	53,900	10/22/2014		18,400	
10/10/2006	160,000	160,000	9/18/2013	11,700	15,000	7/30/2014			21,200
5/24/2007	94,500	87,900	3/4/2015	44,00	5,460	9/25/2014			27,200
5/24/2007	102,000	116,000	6/16/2015	244,000	231,000	10/6/2015		64	
8/6/2007	102,000	252,000	7/8/2015	47,200	46,100	12/13/2016			1,090
8/18/2012	67,000	189,000	1/10/2017	11,900	23,200	1/23/2018		34,500	
8/27/2013	29,700	57,100	3/28/2019	72,400	107,000	1/23/2018		34,200	
9/25/2014	411,000	410,000	3/31/2019	4,380	4,420	7/17/2018			10,400
6/16/2015	353,000	125,000	Average	130,262.7	68,538.2	7/17/2018			41,100
3/28/2019	115,000	98,700				10/12/2018	22,000	8,400	10,500
12/13/2019	165,000	99,300				Average	21,033	17,546	18,582
Average	174,545.7	180,792.9							

Response No. 2:

EPA concurs with permittee on the fully reclaimed and unstaffed nature of LPM, current permit conditions, historical water quality results, and soil suitability standards. However, the sediment control plan required by 40 CFR § 434.82 is a technology-based requirement and does not restrict permit conditions related to water quality-based effluent limits. During large rainfall

events, contributions from upstream areas, as indicated, could cause a higher sediment load in a sample resulting in increased levels of aluminum and iron. There is a lack of discharge water quality information at Outfalls 15, 16, and 28 during the normal conditions and storm events. EPA concurs with the permittee doing a study of the background, soil conditions, and actual discharges before and after storm events for listed outfalls and native streams. This will facilitate EPA to determine the compliance status of the mentioned outfalls as more data become available.

EPA added a footnote to the final permit indicating the proposed water-quality based Total Aluminum limits for Outfalls 15, 16, and 28 are net incremental increased limits which the facility shall comply. In addition, EPA put these limits on hold for 1.5 years from the effective date of the final permit. This allows WSLM time to conduct the study. EPA revised the compliance schedule to reflect the study activities, instead of requiring a study of stabilization techniques resulting installing BMPs (i.e., impoundment installations, hydrology alteration, etc.) that could potentially reset the reclamation timetable. This consists of the requirement to submit a study/work plan which prescribes the elements of data collection and analysis to EPA and NMED within 6 months from the effective date of the final permit for review and approval. EPA, also, requires WSJM to submit a report to the EPA and NMED a year after the study/work plan approval date, providing a synopsis of any results along with all of the lab data from the collected samples. If the study warrants that there is no reasonable potential to cause or contribute to WQS exceedances for Total Aluminum, WSJM may request a permit modification.

Comment No. 3:

Draft Permit Part I Section A.3.

Mercury and Selenium discharge limitations for Outfall 28 were added as part of the previous permit renewal. A three year schedule of compliance was developed, which WSJM followed to ensure future compliance with the limitations established in the permit. The table below shows the results that were collected during the permit term. The only samples that exceeded the discharge limitations were from an upset storm event. A letter was sent to the EPA Region 6 on July 31, 2018, describing the event as an upset condition Outfall 28 Samples Collected During the Permit Term

Outfall 28 Samples Collected	During the Pe	rmit Term
Sample collection Date	Mercury	Selenium
11/19/2015	0.00025	ND
3/8/2016	0.0000281	ND
8/31/2016	0.000289	ND
12/13/2016	0.000041	ND
9/16/2017	0.0006	0.003
7/17/2018***	0.00080	ND
7/17/2018***	0.0023	0.029
10/12/2018	0.00033	0.002
12/13/2019	0.00026	0.002
12/13/2019	0.00015	0.002

*NS means parameter was not analyzed as part of sample

*ND means level was below detectable limit

*** Samples collected after upset storm event

On October 3, 2018, WSJM sent a letter and laboratory analysis to the EPA. This letter and analysis acted as the final written report to show that WSJM was in compliance with the permit conditions. WSJM did not receive a response from the EPA, so sampling continued and no other samples exceeded the discharge limitations outside of upset storm conditions. The information presented adequately shows that compliance has been met. WSJM is requesting that the sampling requirement for selenium and mercury be removed from this permit.

Response No. 3: The EPA reviewed and agrees with the permittee the data collected on July 17, 2018 (as described in the July 31, 2018 letter to EPA) is not representative of the area normal conditions. EPA has re-evaluated the data without Total Mercury and Total Recoverable Selenium data collected on July 17, 2018 for reasonable potential (RP) to cause or contribute to WQS exceedances. The results of the RP reevaluation analysis indicate no RPs exist for both of those pollutants (see Appendix 1). The permittee's NPDES permit application shows Total Recoverable Selenium, and Total Mercury pollutants are still present in the discharges, and there is a reasonable potential to cause or contribute to receiving stream WQS exceedance during the upset storm events. To protect the WQS of the receiving stream, EPA cannot grant the request of removing the sampling requirement for these pollutants in the final permit. However, EPA modified the limit tables and footnotes in Part I.A.2 of the final permit to account for upset storm conditions, consistent with 40 CFR 434. EPA included the Alternate Effluent Limit, which is the minimum rainfall event necessary for alternate effluent limitations to apply. EPA used the target minimum rainfall of 2.60 inches, which is obtained from the NOAA's National Weather Service precipitation frequency of 100-year, 24-hour storm event estimates for the area. For instance, the proposed Total Mercury and Total Recoverable Selenium limits will not apply to any discharge or increase in discharge volume caused by a precipitation event within any 24-hour period

having rainfall more than 2.60 inches. However, BMP inspection and maintenance which replace the standard limit will be required during those conditions. Please see Part II.B of the final permit for detail.

Appendix 1

				C						ASED EFFL		ATIONS				
NMAC 20.6.4.	NMWOS a	s of January	14 2011							on April 30, 201						
		sorbanuary	14, 2011	Ex			s of July 10			JII April 30, 201	2)					
Calculations Spe	cirications.			EX	.cei	Neviseu a:	S OI JUIY IU	, 2012								
Droporod Du:	QuangNguyer					29-Apr-20	3:36 PM									
Prepared By:	Quanginguyei					29-Api-20										
STEP 1:	REFERENCE I	IPLEMENTATIO	N PROCEDUE	RES	AP	PENDIX	Δ									
		Y AND RECEIV				of FACT										
		OF DATA INPU														
	LIST SOURCE		1													
IMPLEMENTATIO		,														
)														
The State of New	Movico Stand	arde for Interet	ate and Intras	stato Surface	Waters are	implemented	in this spread	shoot								
by using procedu								311001								
by dailing procedu			1 IUCEUUIES			UNITED IN INC.	IVICAILU									
FACILTY							DATA INPUT									
							5, (1, (1))									
Permittee							La Plata Mine	-Outfall #28								
NPDES Permit No							NM0029505									
Outfall No.(s)																
Plant Effluent Flo	w (MGD)						0.37		For industria	al and federal fa	acility, use the l	niahest monthly	average flow			
Plant Effluent Flo	. ,						0.5735			24 months. For		• •				
RECEIVING STRE	AM						DATA INPUT									
Receiving Stream	n Name						Unnamed Inte	ermittent Stre	am							
Basin Name							San Juan Ba	sin								
Waterbody Segn	nent Code No.						- 98									
ls a publicly ow n		rvoir (enter "1"	if it's a lake, '	'0" if not)			0									
Are acute aquati					r "1" for 2005	Standards)	1									
Are chronic aqua	atic life criteria (onsidered (1=	yes, 0=no)				0									
Are domestic wa	ater supply crite	ria considered	(1= yes, 0=n	o)			0									
Are irrigation wa	ter supply crite	ria considered	(1= yes, 0=no	o)			0									
Livestock wateri	ing and wildlife	habitat criteria a	applied to all :	streams												
USGS Flow Stati	on						USGS									
WQ Monitoring S	tation No.						SJR									
Receiving Strean	n TSS (mg/l)						771		For intermitte	nt stream, ente	r effluent TSS					
Receiving Stream	n Hardness (mç	/I as CaCOs)		RA	ANGE: 0 - 400		20		For intermitte	ent stream, ente	r effluent Hard	ness (If no dat	a, 20 mg/l is use	ed)		
Receiving Strean	n Critical Low F	ow (4Q3) (cfs					0		Enter "0" for	intermittent stre	am and lake.					
Receiving Stream	n Harmonic Mea	n Flow (cfs)					0.01		Enter harmo	nic mean or mo	dified harmonic	mean flow dat	a or 0.001 if no	data is avail	able	
Avg. Receiving V	Vater Temperat	ure (C)														
pH (Avg), Receiv	ing Stream															
Fraction of strea	m allow ed for r	nixing (F)					1		Enter 1, if st	eam morpholog	y data is not a	vailable or for i	ntermittent strea	ams.		
Fraction of Critica	al Low Flow						0									

STEP 2:	INPUT AMBIE	NT AND EFFLUEN	IT DATA													
		IN-STREAM WAS		NTRATION	VS											
data input						entration as mic	ro-gram per	liter (ua/l or pol	h)							
					pecified for the		- <u>3</u>		-1							
							ut the DL is c	reater than MC) innut "1/2	DL" for calculat	tion					
						on level" (DL) a					IUII.					
						I, input either the				s inputtou.						
			ii a 1633 ii 16	an ividel v c	inde is reported		reported va		aiculation.							
			The follow i	na formuk	ar is used to ca	culate the Instru	aam Wasta (Concentration (I	C4)							
						lementing NPDE			ouj							
							S FEITINS IIT	New WEXICO								
			Where:	1 Ga) + (G	le*2.13*Ce)] / (F	· Qa + Qe)										
					Concentration											
					Concentration	utities (e.e. ID		- here here and here h		Section March	- 10					
							ocedures fo	i impiernenting	INFUES PEIM	its in New Mexic	,u)					
					entration in efflu											
						upstream of dis	unarge									
			Qe = Plant e													
			Qa = Critica	al low flow	i of stream at d	lischarge point e	expressed as	s the 4Q3 or ha	armonic mear	n flow for human	n health criteri	a				
The follow ing for						ria are in dissol	/ed form									
See the current '		r Implementing NF	PDES Permit	ts in New												
Kp = Kpo * (TSS*						artition coefficie										
C/Ct = 1/ (1 + Kp	,								•	n (or in effluent f	for intermittent	stream)				
Total Metal Criter	ia (Ct) = Cr / (C	C/Ct)			C/Ct = Fraction	n of metal disso	ved; and Cr	= Dissolved cri	teria value							
					on Coefficient					Lake Linear Pa						
Total Metals	Total Value		Кро	alpha (a)	Кр	C/Ot	Dissolved V	alue in Stream		Кро	alpha (a)	Кр	C/Ct	Dissolved V	alue in Lake	
Arsenic			480000	-0.73	3747 067714	0.257136224	0			480000	-0.73	3747.067714	0 257136224	0		
Chromium III			3360000	-0.93		0.157456089	0			2170000	-0.27	360541.3261		0		
Copper			1040000	-0.74		0.145838594	0			2850000	-0.9	7186.144069		0		
Lead			2800000	-0.8		0.086340665	0			2040000	-0.53	60185.42714		0		
Nickel			490000	-0.57		0.104784734	0			2210000	-0.76	14132.88895		0		
Silver			2390000	-1.03		0.338079873	0			2390000	-1.03	2539.404539				
Zinc			1250000	-0.7		0.098194376	0			3340000	-0.68	36353.77289		0		
							v			50.0000	0.00	23000				
The follow ing for	rmular is used t	o calculate hardr	ness depen	dent crite	ria					Dissolved						
(Please refer to S	State Water Qu	ality Standards f	or details)							WQC (ug/l)						
Aluminum (T)			Acute			e(1.3695[ln(ha	rdness)]+1.8	3308)		377.4565069		If Stream pH <	6.5, enter 750	in cell 0113		
			Chronic			e(1.3695[ln(ha	rdness)]+0.9	9161)		151.2229667		If Stream pH <	6.5, enter 87 ir	n cell P113		
Cadmium (D)			Acute			e(0.8968[ln(hardness)]-3.5699)*CF1				0.418091688		CF1 = 1.13667	'2 - 0.041838*lr	n(hardness)		
			Chronic			e(0.7647[ln(ha	rdness)]-4.2	180)*CF2		0.142116028		CF2 = 1.10167	2 - 0.041838*lr	n(hardness)		

						1										
										Dissolved						
										WQC (ug/l)						
Chromium III (D)			Acute			0.316 e(0.819	[In(hardness)]	+3.7256)		152.4888787						
			Chronic			0.860 e(0.81	[In(hardness)]	+0.6848)		19.8356702						
Copper (D)			Acute			0.960 e(0.942	22[In(hardness)]-1.700)		2.949857764						
			Chronic			0.960 e(0.854	15[In(hardness)]-1.702)		2.263769249						
Lead (D)			Acute			e(1.273[ln(ha	rdness)]-1.46)	*CF3		10.79154489		CF3 = 1.46203	3 - 0.145712*ln(l	hardness)		
			Chronic			e(1.273[ln(ha	rdness)]-4.705	5)*CF4		0.420531012		CF4 = 1.46203	3 - 0.145712*ln(l	hardness)		
Manganese (D)			Acute			e(0.3331[ln(h	ardness)]+6.46	676)		1746.691001						
			Chronic			e(0.3331[ln(h	ardness)]+5.8	743)		965.048559						
Nickel (D)			Acute			0.998 e(0.84	6[In(hardness)]	+2.255)		119.9874916						
			Chronic			0.997 e(0.84	6[In(hardness)]	+0.0584)		13.32690594						
Silver (D)			Acute			0.85 e(1.72[lr	(hardness)]-6	.59)		0.201924903						
Zinc (D)			Acute			0.978 e(0.909	94[In(hardness)]+0.9095)		37.02425804						
			Chronic			0.986 e(0.909	947[In(hardnes	s)]+0.6235)		28.04834719						
						Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
POLLUTANTS				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
				Conc.	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Radioactivity, Nut	rients, and	I Chlorine														
Aluminum, total		7429-90-5	2.5		371300	790869	790869	790869	777315.118	1E+100	5000	1E+100	377.4565069	151.22297	1E+100	N/A
Barium, dissolved		7440-39-3	100			0	0	0	0	2000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Boron, dissolved		7440-42-8	100			0	0	0	0	1E+100	750	5000	1E+100	1E+100	1E+100	N∕A
Cobalt, dissolved		7440-48-4	50			0	0	0	0	1E+100	50	1000	1E+100	1E+100	1E+100	N/A
Uranium, dissolved		7440-61-1	0.1			#VALUE!	#VALUE!	#VALUE!	#VALUE!	30	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Vanadium, dissolve	d	7440-62-2	50			0	0	0	0	1E+100	100	100	1E+100	1E+100	1E+100	N/A
Ra-226 and Ra-228	l (pCi/l)					#VALUE!	#VALUE!	#VALUE!	#VALUE!	5	1E+100	30	1E+100	1E+100	1E+100	N/A
Strontium (pCi/l)						0	0	0	0	8	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Tritium (pCi/l)						0	0	0	0	20000	1E+100	20000	1E+100	1E+100	1E+100	N/A
Gross Alpha (pCi/l)						0	0	0	0	15	1E+100	15	1E+100	1E+100	1E+100	N/A
Asbestos (fibers/l)						0	0	0	0	7000000	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Total Residual Chlo	rine	7782-50-5	33			0	0	0	0	1E+100	1E+100	11	19	11	1E+100	N/A
Nitrate as N (mg/l)						0	0	0	0	10	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Nitrite + Nitrate (mg	(1)					#VALUE!	#VALUE!	#VALUE!	#VALUE!	1E+100	1E+100	132	1E+100	1E+100	1E+100	N/A
METALS AND CY	NIDE															
Antimony, dissolve	d (P)	7440-36-0	60			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	640	N/A
Arsenic, dissolved	(P)	7440-38-2	0.5			#VALUE!	#VALUE!	#VALUE!	#VALUE!	10	100	200	340	150	9	N/A
Beryllium, dissolved	ł	7440-41-7	0.5			0	0	0	0	4	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
Cadmium, dissolved	ł	7440-43-9	1			0	0	0	0	5	10	50	0.418091688	0.142116	1E+100	N/A
Chromium (III), disso	olved	16065-83-1	10			0	0	0	0	1E+100	1E+100	1E+100	152.4888787	19.83567	1E+100	N/A
Chromium (VI), diss	olved	18540-29-9	10			0	0	0	0	1E+100	1E+100	1E+100	16	11	1E+100	N/A
Chromium, dissolve	d	7440-47-3				#VALUE!	#VALUE!	#VALUE!	#VALUE!	100	100	1000	1E+100	1E+100	1E+100	N/A
Copper, dissolved		7440-50-8	0.5			0	0	0	0	1300	200	500	2.949857764	2.2637692	1E+100	N/A
Lead, dissolved		7439-92-1	0.5			#VALUE!	#VALUE!	#VALUE!	#VALUE!	15	5000	100	10.79154489	0.420531	1E+100	N/A
Manganese, dissolv	/ed	7439-96-5				#VALUE!	#VALUE!	#VALUE!	#VALUE!	1E+100	1E+100	1E+100	1746.691001		1E+100	N/A

					Instream	n Waste Conce	entration		Livestock&	Acute	Chronic	Human	Need		
			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS			Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
Mercury, dissolved	7439-97-6	0.005			0	0	0	0	1E+100	1E+100	1E+100	1.4	0.77	1E+100	N/A
Mercury, total	7439-97-6	0.005		0.2435	0.518655	0.518655	0.518655	0.50976631	2	1E+100	0.77	1E+100	1E+100	1E+100	N/A
Molybdenum, dissolved	7439-98-7				0	0	0	0	1E+100	1000	1E+100	1E+100	1E+100	1E+100	N/A
Molybdenum, total recoverable	7439-98-7				0	0	0	0	1E+100	1E+100	1E+100	7920	1895	1E+100	N/A
Nickel, dissolved (P)	7440-02-0	0.5			0	0	0	0	700	1E+100	1E+100	119.9874916	13.326906	4600	N/A
Selenium, dissolved (P)	7782-49-2	5			0	0	0	0	50	130	50	1E+100	1E+100	4200	N/A
Selenium, dis (SO4 >500 mg/l)		5			0	0	0	0	50	250	50	1E+100	1E+100	4200	N/A
Selenium, total recoverable	7782-49-2	5		2.25	4.7925	4.7925	4.7925	4.71036632	1E+100	1E+100	5	20	5	1E+100	N/A
Silver, dissolved	7440-22-4	0.5			0	0	0	0	1E+100	1E+100	1E+100	0.201924903	1E+100	1E+100	N/A
Thalllium, dissolved (P)	7440-28-0	0.5			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	0.47	N/A
Zinc, dissolved	7440-66-6	20			0	0	0	0	10500	2000	25000	37.02425804	28.048347	26000	N/A
Cyanide, total recoverable	57-12-5	10			0	0	0	0	200	1E+100	5.2	22	5.2	140	N/A
Dioxin	1764-01-6	0.00001			0	0	0	0	3.00E-05	1E+100	1E+100	1E+100	1E+100	5.1E-08	N/A
VOLATILE COM POUNDS															
Acrolein	107-02-8	50			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	9	N/A
Acrylonitrile	107-13-0	20			0	0	0	0	0.65	1E+100	1E+100	1E+100	1E+100	2.5	N/A
Benzene	71-43-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	510	N/A
Bromoform	75-25-2	10			0	0	0	0	44	1E+100	1E+100	1E+100	1E+100	1400	N/A
Carbon Tetrachloride	56-23-5	2			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	16	N/A
Chlorobenzene	108-90-7	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	1600	N/A
Clorodibromomethane	124-48-1	10			0	0	0	0	4.2	1E+100	1E+100	1E+100	1E+100	130	N/A
Chloroform	67-66-3	50			0	0	0	0	57	1E+100	1E+100	1E+100	1E+100	4700	N/A
Dichlorobromomethane	75-27-4	10			0	0	0	0	5.6	1E+100	1E+100	1E+100	1E+100	170	N/A
1,2-Dichloroethane	107-06-2	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	370	N/A
1,1-Dichloroethylene	75-35-4	10			0	0	0	0	7	1E+100	1E+100	1E+100	1E+100	7100	N/A
1,2-Dichloropropane	78-87-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	150	N/A
1,3-Dichloropropylene	542-75-6	10			0	0	0	0	3.5	1E+100	1E+100	1E+100	1E+100	210	N/A
Ethylbenzene	100-41-4	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	2100	N/A
Methyl Bromide	74-83-9	50			0	0	0	0	49	1E+100	1E+100	1E+100	1E+100	1500	N/A
Methylene Chloride	75-09-2	20			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	5900	N/A
1,1,2,2-Tetrachloroethane	79-34-5	10			0	0	0	0	1.8	1E+100	1E+100	1E+100	1E+100	40	N/A
Tetrachloroethylene	127-18-4	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	33	N/A
Tolune	108-88-3	10			0	0	0	0	1000	1E+100	1E+100	1E+100	1E+100	15000	N/A
1,2-trans-Dichloroethylene	156-60-5	10			0	0	0	0	100	1E+100	1E+100	1E+100	1E+100	10000	N/A
1,1,1-Trichloroethane	71-55-6				0	0	0	0	200	1E+100	1E+100	1E+100	1E+100	1E+100	N/A
1,1,2-Trichloroethane	79-00-5	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	160	N/A
Trichloroethylene	79-01-6	10			0	0	0	0	5	1E+100	1E+100	1E+100	1E+100	300	N/A
Vinyl Chloride	75-01-4	10			0	0	0	0	2	1E+100	1E+100	1E+100	1E+100	24	N/A
ACID COM POUNDS															
2-Chlorophenol	95-57-8	10			0	0	0	0	175	1E+100	1E+100	1E+100	1E+100	150	N/A
2,4-Dichlorophenol	120-83-2	10			0	0	0	0	105	1E+100	1E+100	1E+100	1E+100	290	N/A
2,4-Dimethylphenol	105-67-9	10			0	0	0	0	700	1E+100	1E+100	1E+100	1E+100	850	N/A
4,6-Dinitro-o-Cresol	534-52-1	50			0	0	0	0	14	1E+100	1E+100	1E+100	1E+100	280	N/A

					Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
			Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS			Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
	CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)	Cd (ug/l)	Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
2,4-Dinitrophenol	51-28-5	50			0	0	0	0	70	1E+100	1E+100	1E+100	1E+100	5300	N/A
Pentachlorophenol	87-86-5	50			0	0	0	0	1	1E+100	1E+100	19	15	30	N/A
Phenol	108-95-2	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	860000	N/A
2,4,6-Trichlorophenol	88-06-2	10			0	0	0	0	32	1E+100	1E+100	1E+100	1E+100	24	N/A
BASE/NEUTRAL															
Acenaphthene	83-32-9	10			0	0	0	0	2100	1E+100	1E+100	1E+100	1E+100	990	N/A
Anthracene	120-12-7	10			0	0	0	0	10500	1E+100	1E+100	1E+100	1E+100	40000	N/A
Benzidine	92-87-5	50			0	0	0	0	0.0015	1E+100	1E+100	1E+100	1E+100	0.002	N/A
Benzo(a)anthracene	56-55-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(a)pyrene	50-32-8	5			0	0	0	0	0.2	1E+100	1E+100	1E+100	1E+100	0.18	N/A
3,4-Benzofluoranthene	205-99-2	10			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Benzo(k)fluoranthene	207-08-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Bis(2-chloroethyl)Ether	111-44-4	10			0	0	0	0	0.3	1E+100	1E+100	1E+100	1E+100	5.3	N/A
Bis(2-chloroisopropyl)Ether	108-60-1	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	65000	N/A
Bis(2-ethylhexyl)Phthalate	117-81-7	10			0	0	0	0	6	1E+100	1E+100	1E+100	1E+100	22	N/A
Butyl Benzyl Phthalate	85-68-7	10			0	0	0	0	7000	1E+100	1E+100	1E+100	1E+100	1900	N/A
2-Chloronapthalene	91-58-7	10			0	0	0	0	2800	1E+100	1E+100	1E+100	1E+100	1600	N/A
Chrysene	218-01-9	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
Dibenzo(a,h)anthracene	53-70-3	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
1,2-Dichlorobenzene	95-50-1	10			0	0	0	0	600	1E+100	1E+100	1E+100	1E+100	1300	N/A
1.3-Dichlorobenzene	541-73-1	10			0	0	0	0	469	1E+100	1E+100	1E+100	1E+100	960	N/A
1,4-Dichlorobenzene	106-46-7	10			0	0	0	0	75	1E+100	1E+100	1E+100	1E+100	190	N/A
3,3'-Dichlorobenzidine	91-94-1	5			0	0	0	0	0.78	1E+100	1E+100	1E+100	1E+100	0.28	N/A
Diethyl Phthalate	84-66-2	10			0	0	0	0	28000	1E+100	1E+100	1E+100	1E+100	44000	N/A
Dimethyl Phthalate	131-11-3	10			0	0	0	0	350000	1E+100	1E+100	1E+100	1E+100	1100000	N/A
Di-n-Butyl Phthalate	84-74-2	10			0	0	0	0	3500	1E+100	1E+100	1E+100	1E+100	4500	N/A
2,4-Dinitrotoluene	121-14-2	10			0	0	0	0	1.1	1E+100	1E+100	1E+100	1E+100	34	N/A
1,2-Diphenylhydrazine	122-66-7	20			0	0	0	0	0.44	1E+100	1E+100	1E+100	1E+100	2	N/A
Fluoranthene	206-44-0	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	140	N/A
Fluorene	86-73-7	10			0	0	0	0	1400	1E+100	1E+100	1E+100	1E+100	5300	N/A
Hexachlorobenzene	118-74-1	5			0	0	0	0	1	1E+100	1E+100	1E+100	1E+100	0.0029	N/A
Hexachlorobutadiene	87-68-3	10			0	0	0	0	4.5	1E+100	1E+100	1E+100	1E+100	180	N/A
Hexachlorocyclopentadiene	77-47-4	10			0	0	0	0	50	1E+100	1E+100	1E+100	1E+100	1100	N/A
Hexachloroethane	67-72-1	20			0	0	0	0	25	1E+100	1E+100	1E+100	1E+100	33	N/A
ndeno(1,2,3-cd)Pyrene	193-39-5	5			0	0	0	0	0.048	1E+100	1E+100	1E+100	1E+100	0.18	N/A
sophorone	78-59-1	10			0	0	0	0	368	1E+100	1E+100	1E+100	1E+100	9600	NA
litrobenzene	98-95-3	10			0	0	0	0	18	1E+100	1E+100	1E+100	1E+100	690	N/A
-Nitrosodimethylamine	62-75-9	50			0	0	0	0	0.0069	1E+100	1E+100	1E+100	1E+100	30	N/A
-Nitrosodi-n-Propylamine	621-64-7	20			0	0	0	0	0.005	1E+100	1E+100	1E+100	1E+100	5.1	N/A
n-Nitrosodiphenylamine	86-30-6	20			0	0	0	0	71	1E+100	1E+100	1E+100	1E+100	60	N/A
Vonylphenol	84852-15-3	20			0	0	0	0	1E+100	1E+100	1E+100	28	6.6	1E+100	N/A
	129-00-0	10			0	0	0	0	1050	1E+100	1E+100	28 1E+100	1E+100	4000	N/A
Pyrene 1,2,4-Trichlorobenzene	129-00-0	10			0	0	0	0	70	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	1E+100 1E+100	4000 70	N/A

						Instrea	m Waste Conce	entration				Livestock&	Acute	Chronic	Human	Need
				Ambient	Effluent	Acute	Domestic	Chronic	Human	Domestic	Irrigation	Wildlife	Aquatic	Aquatic	Health	TMDL
POLLUTANTS				Conc	Conc.	Aquatic	Supply	Aquatic	Health	Criteria	Criteria	Criteria	Criteria	Criteria	Criteria	
		CAS No.	MQL	Ca (ug/l)	Ce (ug/l)	2.13*Ce	Cd,dom (ug/l)		Cd,hh (ug/l)	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
PESTICIDES AND	PCBS												- 5			
Aldrin		309-00-2	0.01			0	0	0	0	0.021	1E+100	1E+100	3	1E+100	0.0005	N/A
Alpha-BHC		319-84-6	0.05			0	0	0	0	0.056	1E+100	1E+100	1E+100	1E+100	0.049	N/A
Beta-BHC		319-85-7	0.05			0	0	0	0	0.091	1E+100	1E+100	1E+100	1E+100	0.17	N/A
Gamma-BHC		58-89-9	0.05			0	0	0	0	0.2	1E+100	1E+100	0.95	1E+100	1.8	N/A
Chlordane		57-74-9	0.2			0	0	0	0	2	1E+100	1E+100	2.4	0.0043	0.0081	N/A
4,4'-DDT and der	ivatives	50-29-3	0.02			0	0	0	0	1	1E+100	0.001	1.1	0.001	0.0022	N/A
Dieldrin		60-57-1	0.02			0	0	0	0	0.022	1E+100	1E+100	0.24	0.056	0.00054	N/A
Diazinon		333-41-5	0.02			0	0	0	0	1E+100	1E+100	1E+100	0.17	0.17	1E+100	N/A
Alpha-Endosulfar	1	959-98-8	0.01			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Beta-Endosulfan		33213-65-9	0.02			0	0	0	0	62	1E+100	1E+100	0.22	0.056	89	N/A
Endosulfan sulfat	e	1031-7-8	0.02			0	0	0	0	62	1E+100	1E+100	1E+100	1E+100	89	NA
Endrin		72-20-8	0.02			0	0	0	0	2	1E+100	1E+100	0.086	0.036	0.06	N/A
Endrin Aldehyde		7421-93-4	0.02			0	0	0	0	10.5	1E+100	1E+100	1E+100	1E+100	0.3	NA
Heptachlor		76-44-8	0.01			0	0	0	0	0.4	1E+100	1E+100	0.52	0.0038	0.00079	N/A
Heptachlor Epoixo	he	1024-57-3	0.01			0	0	0	0	0.2	1E+100	1E+100	0.52	0.0038	0.00039	N/A
PCBs		1336-36-3	0.2			0	0	0	0	0.5	1E+100	0.014	2	0.014	0.00064	N/A
Toxaphene		8001-35-2	0.3			0	0	0	0	3	1E+100	1E+100	0.73	0.0002	0.0028	N/A
STEP 3:																
SIEF J.		TIAL INSTREAM					1	4								
	AND ESTABLI	SH EFFLUENT L	IMITATIONS	FOR ALL	APPLICABLE F	ARAMETERS										
No limits are estal			•													
No limits are estal								teria.								
The most applicat	•															
Water quality crite						• •										
If background cor			quality crite	eria, w ater	quality criteria	apply. And "N	leed TMDL" sho	own to the n	ext column of A	\vg. Mass						
Monthly avg conc	centration = dail	ly max. / 1.5.														
APPLICABLE WA	TER QUALITY-	BASED LIMITS														
	The follow ing	formular is used	d to calculat	e the allow	able daily max	imum effluent	cincentration		See the curre	ent "Procedure	s for Implemen	iting NPDES Perr	nits in New Me	xico"		
	Daily Max. Cor	nc. = Cs + (Cs -	Ca)(F*Qa/C	Qe)		Monthly Avg	. Conc. = Daily !	Max. Conc. /	1.5							
Where:	Cs = Applicab	le water quality	standard													
	Ca = Ambient	stream concent	ration													
	F = Fraction	of stream allow	ed for mixin	ng (1.0 is a	ssigned to don	nestic water s	upply and huma	an health use	es)							
	Qe = Plant effl	luent flow														
	Qa = Criteria I	ow flow (4Q3)	or Harmonic	c Mean flow	v for Human H	ealth Criteria										

					Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS	CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
			Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Radioactivity, Nutrients, and	Chlorine as	Total	Linko	Linito	Linto	Linko	Linko	Linko	ug,	ugn	ug.	ug.	ib/ day	ib/ duy
Aluminum, Total	7429-90-5	01105	N/A	N/A	N/A	377.456507	NA	N/A	377 4565069	251.6376713	377 4565069	251.63767	1.16475529	0.776503526
Barium, Total	7440-39-3	01007	NA	NA	N/A	NA	N/A	NA	NA	NA	NA	NA	NA	NA
Boron, Total	7440-42-8	01022	N/A	NA	N/A	NA	NA	NA	N/A	N/A	NA	N/A	N/A	NA
Cobalt, Total	7440-48-4	01037	NA	NA	NA	NA	N/A	NA	NA	N/A	NA	NA	N/A	NA
Uranium, Total	7440-61-1	22706	NA	NA	#VALUE!	#VALUE!	NA	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Vanadium, Total	7440-62-2	01087	NA	NA	WA NA	WA NA	NA	WA	N/A	N/A	WA NA	N/A	N/A	WA NA
Ra-226 and Ra-228 (pCi/l)	7440-02-2	11503	NA	NA	#VALUE	#VALUE!	NA	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Strontium (pCi/l)		13501	NA	NA	WA NA	WA NA	NA	WA	N/A	N/A	WA NA	N/A	N/A	WA NA
		04124	NA	NA	NA	NA	NA	NA	NA	N/A	NA	NA	N/A	NA
Tritium (pCi/l)		80029	N/A	N/A	N/A N/A	NA	NA		N/A N/A		N/A N/A	N/A N/A	N/A	N/A N/A
Gross Alpha (pCi/l)		00029		N/A	N/A N/A	N/A	NA	N/A	N/A N/A	N/A	N/A	N/A N/A	N/A	N/A N/A
Asbestos (fibers/l)	7700 50 5	50000	N/A					N/A		N/A				
Total Residual Chlorine	7782-50-5	50060	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A
Nitrate as N (mg/l)		00620	N/A N/A	N/A	N/A #VALUE!	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrite + Nitrate (mg/l)		00630	N/A	N/A	#VALUE!	#VALUE!	NA	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
METALS AND CYANIDE, as 1														
Antimony, Total (P)	7440-36-0	01097	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Arsenic, Total (P)	7440-38-2	1002	N/A	N/A	#VALUE!	#VALUE!	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Beryllium, Total	7440-41-7	01012	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cadmium, Total	7440-43-9	01027	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (III), dissolved	16065-83-1	01033	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium (VI), dissolved	18540-29-9	01034	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium, Total	7440-47-3	01034	N/A	N/A	#VALUE!	#VALUE!	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Copper, Total	7440-50-8	01042	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead, Total	7439-92-1	01051	N/A	N/A	#VALUE!	#VALUE!	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Manganese, dissovled	7439-96-5	01056	N/A	N/A	#VALUE!	#VALUE!	N/A	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!	#VALUE!
Mercury, Total	7439-97-6	71900	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Mercury, Total	7439-97-6	71900	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Molybdenum, dissolved	7439-98-7	1060	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
Molybdenum, total recoverable	7439-98-7	01062	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nickel, Total (P)	7440-02-0	01067	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total (P)	7782-49-2	01147	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total (SO4 >500 mg/)	01147	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium, Total recoverable	7782-49-2	01147	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A	N/A	N/A	NA
Silver, Total	7440-22-4	01077	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Thalllium, Total (P)	7440-28-0	01059	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
Zinc, Total	7440-66-6	1092	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyanide, total recoverable	57-12-5	00720	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
DIOXIN														0
2,3,7,8-TCDD	1764-01-6	34675	N/A	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
VOLATILE COMPOUNDS														
Acrolein	107-02-8	34210	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acrylonitrile	107-13-0	34215	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Benzene	71-43-2	34030	N/A	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
Bromoform	75-25-2	32104	N/A	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	N/A	N/A	NA
Carbon Tetrachloride	56-23-5	32102	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

					Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Monthly
POLLUTANTS	CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
			Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
Chlorobenzene	108-90-7	34301	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Clorodibromomethane	124-48-1	32105	NA	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A
Chloroform	67-66-3	32106	N/A	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A
Dichlorobromomethane	75-27-4	32101	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloroethane	107-06-2	34531	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethylene	75-35-4	34501	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Dichloropropane	78-87-5	34541	NA	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A
1,3-Dichloropropylene	542-75-6	34561	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ethylbenzene	100-41-4	34371	NA	N/A	N/A	N/A	N/A	N∕A	N/A	N/A	N/A	N/A	N/A	N/A
Methyl Bromide	74-83-9	34413	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Methylene Chloride	75-09-2	34423	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	79-34-5	34516	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tetrachloroethylene	127-18-4	34475	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Tolune	108-88-3	34010	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-trans-Dichloroethylene	156-60-5	34546	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,1-Trichloroethane	71-55-6		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1,2-Trichloroethane	79-00-5	34511	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trichloroethylene	79-01-6	39180	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vinyl Chloride	75-01-4	39175	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ACID COM POUNDS														
2-Chlorophenol	95-57-8	34586	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlorophenol	120-83-2	34601	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
2,4-Dimethylphenol	105-67-9	34606	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,6-Dinitro-o-Cresol	534-52-1	34657	NA	N/A	N/A	NA	N/A							
2,4-Dinitrophenol	51-28-5	34616	NA	N/A	N/A	NA	N/A							
Pentachlorophenol	87-86-5	39032	N/A	N/A	N/A N/A	NA	N/A							
Phenol 2,4,6-Trichlorophenol	108-95-2 88-06-2	34694 34621	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
BASE/NEUTRAL	00-00-2	34021	INA	INA	INA	INA	INA	INA	INA	INA	INA	INFA	INA	INA
Acenaphthene	83-32-9	34205	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Anthracene	120-12-7	34203	NA	N/A	N/A N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Benzidine	92-87-5	39120	NA	NA	NA	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Benzo(a)anthracene	56-55-3	34526	NA	NA	NA	NA	N/A	N/A	NA	NA	NA	N/A	N/A	NA
Benzo(a)pyrene	50-32-8	34320	NA	NA	N/A N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A
3,4-Benzofluoranthene	205-99-2	34230	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA	NA
Benzo(k)fluoranthene	207-08-9	34242	NA	NA	NA	NA	N/A	NA	NA	NA	NA	N/A	NA	NA
Bis(2-chloroethyl)Ether	111-44-4	34273	NA	NA	N/A	NA	N/A	NA	NA	NA	NA	N/A	NA	NA
Bis(2-chloroisopropyl)Ether	108-60-1	34283	NA	NA	N/A	NA	N/A	NA	NA	N/A	NA	N/A	NA	NA
Bis(2-ethylhexyl)Phthalate	117-81-7	39100	NA	NA	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	NA	N/A
Butyl Benzyl Phthalate	85-68-7	34292	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
2-Chloronapthalene	91-58-7	34581	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Chrysene	218-01-9	34320	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
Dibenzo(a,h)anthracene	53-70-3	34556	NA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
1,2-Dichlorobenzene	95-50-1	34536	NA	NA	NA	NA	N/A	NA	NA	N/A	NA	N/A	NA	NA

						Livestock	Acute	Chronic	Human	Daily	Monthly	Daily Max	Mon. Avg	Daily	Daily
POLLUTANTS		CAS No.	STORET	Domestic	Irrigation	or Wildlife	Aquatic	Aquatic	Health	Max Conc	Avg Conc	Total	Total	Max Load	Avg Load
				Limits	Limits	Limits	Limits	Limits	Limits	ug/l	ug/l	ug/l	ug/l	lb/day	lb/day
1,3-Dichlorobenze	ene	541-73-1	34566	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	NA	NA	NA	NA
1,4-Dichlorobenzene		106-46-7	34571	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
3.3'-Dichlorobenzio		91-94-1	34631	NA	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Diethyl Phthalate		84-66-2	34336	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Dimethyl Phthalate		131-11-3	34341	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Di-n-Butyl Phthalat		84-74-2	39110	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
2,4-Dinitrotoluene		121-14-2	34611	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2-Diphenylhydra	azine	122-66-7	34346	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fluoranthene		206-44-0	34376	N/A	N/A	N/A	NA	N/A	N/A	NA	N/A	NA	N/A	N/A	NA
Fluorene		86-73-7	34381	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hexachlorobenzer	ne	118-74-1	39700	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
Hexachlorobutadie		87-68-3	34391	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
Hexachlorocyclop		77-47-4	34386	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
Hexachloroethane		67-72-1	34396	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	NA	NA	N/A	NA
Indeno(1,2,3-cd)P		193-39-5	34403	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Isophorone		78-59-1	34408	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nitrobenzene		98-95-3	34447	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n-Nitrosodimethyla	amine	62-75-9	34438	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n-Nitrosodi-n-Prop	ylamine	621-64-7	34428	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n-Nitrosodiphenyla		86-30-6	34433	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nonylphenol		84852-15-3		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pyrene		129-00-0	34469	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,2,4-Trichlorober	nzene	120-82-1	34551	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A
PESTICIDES AND	PCBS														
Aldrin		309-00-2	39330	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
Alpha-BHC		319-84-6	39337	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
Beta-BHC		319-85-7	39338	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
Gamma-BHC		58-89-9	39340	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A
Chlordane		57-74-9	39350	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4,4'-DDT and deriv	vatives	50-29-3	39300	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dieldrin		60-57-1	39380	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Diazinon		333-41-5	39570	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Alpha-Endosulfan		959-98-8	34361	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beta-Endosulfan		33213-65-9	34356	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Endosulfan sulfate)	1031-7-8	34351	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N∕A	N/A	NA
Endrin		72-20-8	39390	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	NA
Endrin Aldehyde		7421-93-4	34366	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Heptachlor		76-44-8	39410	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
Heptachlor Epoixd	e	1024-57-3	39420	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A
PCBs		1336-36-3	39516	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Toxaphene		8001-35-2	39400	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	N/A