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Outline and Learning Objectives

Outline
I. Quantitative variability in repeat dose toxicity studies
II. Using experimental variability to derive uncertainty in the context of QSAR models
III. Limitations on predictivity of QSAR models owing to underlying data

Key Learning
The quality of data underpinning a predictive model is an important determinant of the 
robustness/quality of the model
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I. Quantitative variability in repeat dose toxicity studies

Pham, L.L., et al., Variability in in vivo studies: Defining the upper limit of performance for predictions of systemic 
effect levels. Computational Toxicology, 2020. 
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Acceptability of NAMs for risk assessment?

• In US, Section 4(h) in the Lautenberg amendment to TSCA:
• “…Administrator shall reduce and replace, to the extent practicable and scientifically justified…the use of 

vertebrate animals in the testing of chemical substances or mixtures…”

• New approach methods (NAMs) need to provide “information of equivalent or better scientific quality and 
relevance…” than the traditional animal models

• “Directive to Prioritize Efforts to Reduce Animal Testing” memorandum signed by Administrator Andrew 
Wheeler on September 10, 2019

• “1.  Validation to ensure that NAMs are equivalent to or better than the animal tests replaced.”

How do we define expectations of in silico, in chemico, and in vitro models for predicting repeat-dose 
toxicity?

• In silico, in chemico, and in vitro models cannot predict in vivo systemic effect values with greater 
accuracy than those animal models reproduce themselves.

Slide courtesy: Dr. Katie Paul-Friedman
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Variability in traditional animal toxicity tests

“Truth” (traditional toxicology)

Negative Positive

Predicted 
(NAM)

Negative True negative False negative

Positive False positive True positive

Qualitative: We need to know if a specific 
effect is always observed or not.

Quantitative: variance is a measure of how far values are spread from 
the average. 

We need to know what the “spread” or variability of traditional effect 
levels (e.g., lowest effect levels, LELs, or lowest observable adverse 
effect levels, LOAELs) might be to know the range of acceptable or 
“good” values from a NAM.

Slide courtesy: Dr. Katie Paul-Friedman
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Understanding this quantitative variability

What is the range of possible systemic  
effect values (mg/kg/day) in replicate 
studies?

What is the maximal accuracy of a 
model that attempts to predict a 
systemic effect values for an unknown 
chemical?
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• Residual root mean square error 
(RMSE) is an estimate of variance in 
the same units as the systemic effect 
values.

• The RMSE can also be used to define 
a minimum prediction interval, or 
estimate range, for a model.

• The mean square error (MSE) is used 
to approximate the unexplained 
variance (not explained by study 
descriptors). 

• This unexplained variance limits the 
R-squared on a new model.

Slide courtesy: Dr. Katie Paul-Friedman
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Using ToxRefDB to evaluate quantitative variability

Number of studies by study type and species in ToxRefDB v2.0. The study designs include chronic (CHR),
sub-chronic (SUB), developmental (DEV), subacute (SAC), multigeneration reproductive (MGR), developmental
neurotoxicity (DNT), reproductive (REP), neurotoxicity (NEU), acute (ACU), and other (OTH) for numerous species, but
mostly for rat, mouse, rabbit, and dog.

Figure from Watford S, Pham LL, Wignall J, Shin R, Martin MT, Paul Friedman K. 
2019. “ToxRefDB version 2.0: Improved utility for predictive and retrospective 
toxicology analyses.” Reproductive Toxicology; 89: 145-158. 
https://doi.org/10.1016/j.reprotox.2019.07.012

ToxRefDB v2.0 contains relevant study data to 
evaluate variability in traditional data for >1000 
chemicals and >5000 studies.

Slide courtesy: Dr. Katie Paul-Friedman
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28 Models to Approximate Total Variance, Unexplained Variance, and 
Spread of the Residuals from the Statistical Models

Statistical models for LELs and LOAELs for the full dataset Statistical models for LELs and LOAELs for datasets subset by study type

Slide courtesy: Dr. Katie Paul-Friedman

• Total variance in systemic toxicity effect values (from ToxRefDB) likely approaches 0.75-1  (units of (log10-mg/kg/day)2)
• MSE (unexplained variance) is 0.2 – 0.4 (units of (log10-mg/kg/day)2)
• RMSE is 0.45-0.60 log10-mg/kg/day
• RMSE is used to define a 95% minimum prediction interval (i.e., based on the standard deviation or spread of the 

residuals)
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Percent Variance Explained

• The % explained variance (amount explained by study 
descriptors) likely approaches 55-73%.

• This means that the R2 on some new, predictive model 
would approach 0.55 to 0.73 as an upper bound on 
accuracy.

Slide courtesy: Dr. Katie Paul-Friedman 9



Primary Conclusions and Outlook

• Variability in in vivo toxicity studies limits predictive accuracy of NAMs. 
• Maximal R-squared for a NAM-based predictive model of systemic effect levels may be 

55 to 73%; i.e., as much as 1/3 of the variance in these data may not be explainable 
using study descriptors.

• The estimate of variance (RMSE) in curated LELs and/or LOAELs approaches a 0.5 log10-
mg/kg/day. 

• Estimated minimum prediction intervals for systemic effect levels may be 
approximately ± 1 log10-mg/kg/day – this is without variance contributed by some 
NAM itself!

Slide courtesy: Dr. Katie Paul-Friedman
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II. Using Experimental Variability to Derive Uncertainty in 
the Context of QSAR Models

Pradeep, P. et al. Structure-based QSAR Models to Predict Repeat Dose Toxicity Points of Departure. 
Submitted.
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Repeat Dose Toxicity Points of Departure

Toxicity in repeat dose studies includes a range of adverse effects on 
one or more systems in adult animals, such as changes in body 
weight, or gross and/or histopathological changes in organs

Toxicity can be measured in terms of different levels of effects 
based on a dose-response assessment:
• The dose at which effects were first observed, lowest effect level 

(LEL), lowest observed effect level (LOEL)  and low observed 
adverse effect level (LOAEL), and 

• The doses at which no effects were observed, i.e. the no effect 
level (NEL), no observed effect level (NOEL)  or no observed 
adverse effect level (NOAEL).

Point-of-departure (POD) is the point on the dose-response curve 
that marks the beginning of a low-dose extrapolation

Image source: 
http://www.chemsafetypro.com/Topics/CRA/What_is_Point_of_Departure_(POD
)_in_Toxicology_and_How_to_Use_It_to_Calculate_Reference_Dose_RfD.html
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Repeat Dose Toxicity Data

Study Type Species
Total number of effect 

level values

Number of unique 
chemicals with curated 

structure and descriptors

Chronic (CHR)

Rat 7172 1129

Mouse 4029 720

Rat, Mouse 11201 1236

Subchronic (SUB)

Rat 36017 3199

Mouse 5030 723

Rabbit 1516 415

Rat, Mouse, Rabbit 42563 3306

Reproductive (REP)

Rat 5446 841

Mouse 505 87

Rat, Mouse 5951 889

Developmental (DEV)

Rat 6021 930

Mouse 704 116

Rabbit 3220 491

Rat, Mouse, Rabbit 9945 1004

Subacute (SAC) Rat 946 160

ALL (CHR, SUB, REP, DEV, SAC) All (Rat, Mouse, Rabbit) 71020 3632

US EPA’s ToxValDB, a compilation of 
information on ~4000 unique chemicals 
from a variety of public data sources 
including:
• ToxRefDB
• IRIS
• PPRTV (ORNL)
• ECHA
• COSMOS
• CalEPA
• EPA
• ..and more.

Effect level types: 
• LEL, LEC
• LOEL, LOEC
• LOAEL, LOAEC
• NEL
• NOEL, NOEC
• NOAEL, NOAEC 
• BMD, BMC, BMC10

• BMDL, BMDL-01, 
BMDL-05, BMDL-
10, BMDL-1SD, 
BMCL, 'BMCL-5', 
'BMCL-10', 'BMCL-
1SD’
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Underlying Data Variability

Experimental Variability
• Data from different labs (sources) 

running the “same” experiment may 
get different answers 

• Sources of variability: biological (e.g., 
test species, environmental 
conditions) and/or technical (e.g., 
measurement errors, different 
experimental protocols) 

Distribution of the range of effect level 
values per chemical as obtained from the 
ToxValDB database for each study type 
combination. 
• The distribution of effect level values 

can range from 0-4 log10mg/kg-day for 
all dataset combinations

• Average range about 1 log10mg/kg-day 
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Underlying Data Variability

Distribution of the standard deviation (σ) 
of the effect level values for each 
chemical per study type and species 
combination
• The mean standard deviation (µσ) gives 

an estimate of the experimental 
variability in the underlying data which 
limits the predictive ability of any 
model developed on this data

• µσ is used as an estimate of theoretical 
lower bound on RMSE values for the 
QSAR models developed using these 
data. 

For example, expected RMSE ≥ the mean 
standard deviation of effect level = 0.53 
log10-mg/kg/day (for the highlighted ALL 
combination.)
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Data Variability -> Model Uncertainty

Point-estimate with 
confidence interval models

• A POD distribution was constructed for each chemical (µ = Median experimental POD 
value from all studies, σ = 0.5 log10-units)

• 100 bootstrap models were built with random sampling of POD values for each 
chemical from the pre-generated POD distribution.

• Predicted PODQSAR = mean of 100 bootstrap predictions
• Confidence interval of PODQSAR = ±2 standard deviation of 100 bootstrap predictions

Model Uncertainty
A model gives a result (a POD), but this is an estimate of the “true” POD. The true POD is unknown. Uncertainty in the 
evaluation data will lead to uncertainty in the model and our estimate of its quality. Incorporation of variability in 
computational model development, and subsequent quantification of data-driven uncertainty in model predictivity, are 
critically needed to improve the reliability and acceptance of computational models for screening level risk assessment.

Point-estimate with confidence interval models
QSAR predictions as a confidence interval may be useful in understanding not only model performance but also in 
performing preliminary safety assessments, where rapid identification of a range of doses for a putative POD would enable 
rapid estimation of hazard to exposure ratios to identify chemicals for which additional information would be informative
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Quantifying Model Uncertainty

Schematic outlining the bootstrapping process for development of point-estimate confidence interval models using 
Bisphenol A as an example chemical, and using POD data from all study types and species

1. A POD (log10-transformed) distribution is constructed where the mean (µ) of the distribution is set equal to the median 
POD value (= 1.57) and the standard deviation (σ) is set equal to 0.5 (based on typical lab-to-lab variability). 

2. For each (of n = 100) bootstrapped models the POD value for Bisphenol A is randomly drawn from the pre-constructed 
POD distribution. 

3. Each cross-validated bootstrapped model predicts a POD value resulting in n POD predictions. The final point-estimate POD 
value is the mean of n predictions and the confidence interval is derived as the one standard deviation of n predictions.

Bootstrap Model 1
Bootstrap Model 2
Bootstrap Model 3

..

..

..

..
Bootstrap Model n

Prediction 1 
Prediction 2 
Prediction 3

..

..

..

..
Prediction n

1.57
2.30
1.60
2.30
1.60
2.18
1.70
2.18
2.70

1.70
0.70
2.70
0.70
1.40
0.70
2.88
0.70
0.95

0.22
0.57
1.65
1.57
1.65
0.65
1.57
1.30
0.30

POD Distribution
POD1

Sample POD 
from the 

distribution for 
each bootstrap 

model

Point-estimate
+ 

Confidence 
Interval

PODn

Log10(POD) Values

Median Log10(POD) = 1.57  
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Results

Bootstrap performance results for 50 (random) chemicals with the observed and predicted confidence intervals
• The predicted 95% confidence interval (error bar) for each chemical is calculated as two standard deviations of the 

predictions from the models. 
• The observed 95% confidence interval (error bar) is calculated as two standard deviations of the experimental data for 

each chemical. 
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Conclusions and Outlook

Pham, L.L., et al., Variability in in vivo studies: Defining the 
upper limit of performance for predictions of systemic effect 
levels. Computational Toxicology, 2020. 

• Maximal R-squared for a NAM-based predictive model of 
systemic effect levels may be 55 to 73%; i.e., as much as 1/3 
of the variance in these data may not be explainable using 
study descriptors.

• The estimate of variance (RMSE) in curated LELs and/or 
LOAELs approaches a 0.5 log10-mg/kg/day. 

Minimum expected RMSE = The mean standard deviation 
per chemical is 0.53 log10-mg/kg/day
Actual: RMSE = 0.72, R2 = 0.53
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III. Limitations on Predictivity of QSAR Models Owing to 
Underlying Data

Pradeep, P. et al. Integrating data gap filling techniques: A case study predicting TEFs for neurotoxicity 
TEQs to facilitate the hazard assessment of polychlorinated biphenyls. Regulatory Toxicology and 
Pharmacology. 2019.
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Polychlorinated Biphenyls and Neurotoxic equivalency  

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with many adverse outcomes, including 
developmental neurotoxicity
• PCBs share a common scaffold and differ only in the position or degree of chlorination leading to 209 unique congeners
• Human exposure to PCBs happens primarily through inhalation and dietary sources of environmental PCB mixtures
• Risk assessment of PCB mixtures is challenging because very few PCBs (congeners) have been evaluated in vivo

Toxic equivalency factor (TEF) is a way to express the toxicity of dioxins, furans and PCBs in terms of the most toxic form of 
dioxin, 2,3,7,8-TCDD. TEF approach can be used to predict Neurotoxic equivalency (NEQ) values from in vitro neurotoxicity 
data that can be used as an alternative to missing in vivo data for mixture assessments. 

Experimental data
• NEQ value from each tested congener from 8 in vitro data sources for a total of 87 congeners (Simon et al., 2007)

Objective
• Develop a QSAR model to predict NEQ values for the 122 untested PCB congeners
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Neurotoxicity Data

Scatter plot matrix demonstrating the correlation between
• Experimental values from 8 experimental sources,
• NEQ values derived by Simon et al. (Simon et al., 2007), and
• NEQ values derived in our work

The Pearson’s correlation coefficient for each pair of values 
indicates how poorly correlated different experiments in their 
measurement of neurotoxic effects for the PCBs
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Data Variability Analysis

Box plot distributions of the NEQ 
values derived using experimental 
data for each PCB congener 
• The experimental values are 

represented by the boxplot
• The red dots superimposed on 

each box plot corresponds to the 
derived NEQ value for each PCB 
congener

• There is high variance in the NEQ 
values for congeners which have 
data from more than one 
experimental source

• The figure in the inset shows the 
distribution of the range of NEQ 
values (mean range = 0.28)
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QSAR Model Results

kNN Random Forest SVR

QSAR models were developed using 3 different machine learning algorithms - k nearest neighbors (kNN), Random 
Forests and Support vector regression (SVR)
Even though the RMSE values are within the variability of NEQ values in the underlying dataset, the negative values of 
R2 indicate that the QSAR models show no predictivity

Comparison of the derived neurotoxicity equivalent factors (NEQs) with the predicted values using 5-fold cross validation. The black 
solid line denotes perfect correspondence between derived and predicted values. The green dotted lines denote the ±0.1 error 
interval. The legend on top left in each graph shows the RMSE and R2 values from each method. 24



Conclusions and Outlook

The failure to build robust and reliable PCB QSAR models for NEF prediction can be attributed to two major factors:

1. The quality of data and derived NEQ values
• The experimental data from each of the sources do not have high concordance with each other
• The data used to derive the NEQ values are taken from 8 datasets obtained from several experimental sources. 

There are multiple mechanisms through which PCBs can exert their neurotoxic effect, and each individual 
experiment used here measured PCB neurotoxic potential via a different mechanism 

2. Quantity of available experimental data
• There are a limited number of PCBs that were tested in each of the experimental assays. The number of data 

points limits the ability of a machine learning algorithm to learn the structure-activity relationships well.

The derived NEQs and the QSAR predicted NEQs to fill data gaps for PCB risk assessment should be used keeping these 
facts in mind
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Thanks for Listening!
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