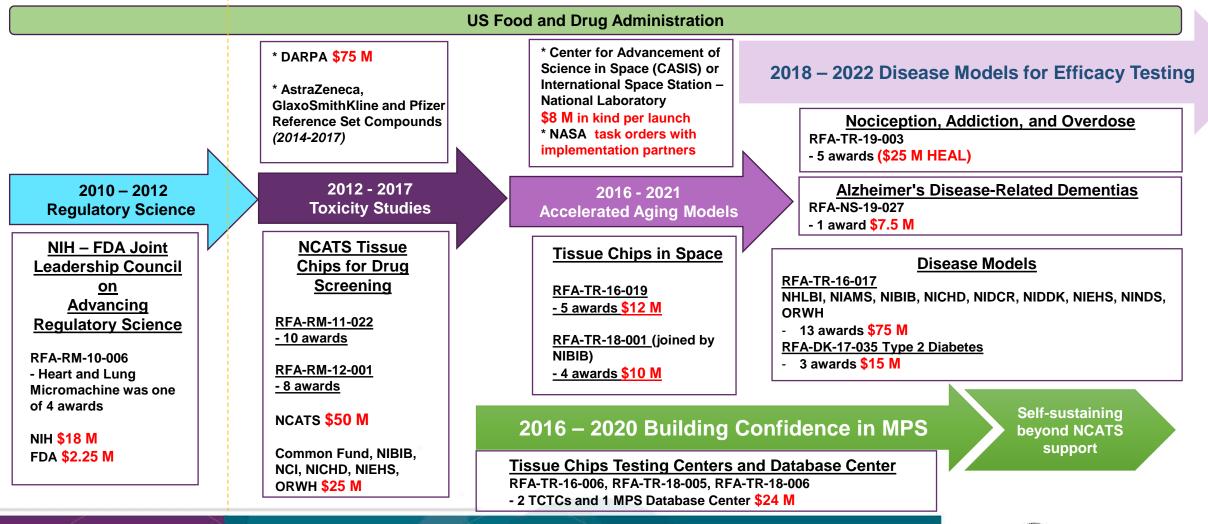
"Fit for Purpose" for Organotypic Models in Environmental Health Protection


Ivan Rusyn, MD, PhD

University Professor, Texas A&M University

	R832720	Carolina Environmental Bioinformatics Center (co-Investigator)	2005-2010	
Decease h funding	R833825	Carolina Center for Computational Toxicology	2008-2012	
Research funding	R835166	Carolina Center for Computational Toxicology: Assays, models and tools for NextGen safety assessments	2012-2016	
from US EPA/ORD:	R835612	Toxicogenetics of tetrachloroethylene metabolism and toxicity	2014-2017	
	R835802	Cardiotoxicity Adverse Outcome Pathway	2015-2021	
	RD840032	Integrating tissue chips, rapid untargeted analytical methods and molecular modeling for toxicokinetic screening	2020-2023	
US EPA/ORD/NCEA Faculty Fellow (ORISE): 2011-2013				
Other <u>government</u> funding sources: NIH (NIEHS, NTP, NCATS, NIAAA, NIGMS, NCI), CalEPA, Environment Agency Abu-Dhabi				
Other private funding sources: Concawe, Foundation for Chemistry Research and Initiatives, ACC, BMS, Sanofi-Aventis				

Tissue Chips Landscape (NCATS perspective)

Establishment of NCATS December 2011 **IQ Consortium MPS Affiliate:** AbbVie, Alnylam, Amgen, Astellas, AstraZeneca, Biogen, Bristol-Myers Squibb, Company, Celgene, Eisai, Eli Lilly, Genentech, GlaxoSmithKline, Janssen Pharmaceuticals, Merck & Co., Merck KGaA, Mitsubishi Tanabe, Novartis, Pfizer, Sanofi, Seattle Genetics, Takeda, Theravance, Vertex

Slide courtesy of Danilo Tagle (NIH/NCATS)

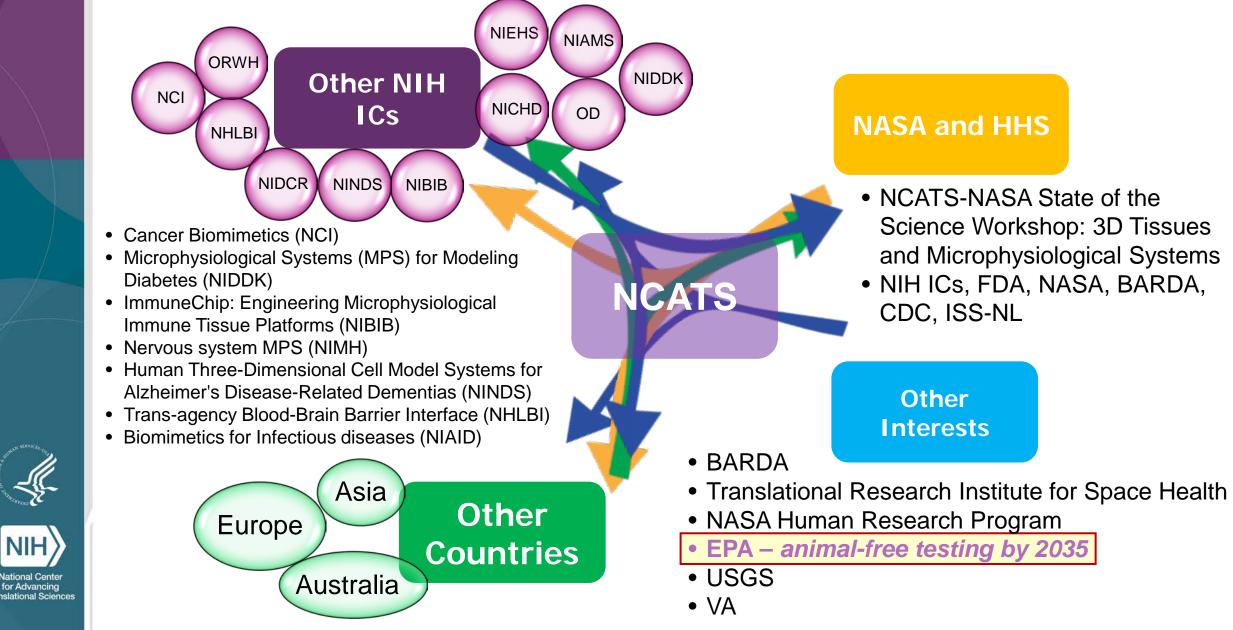
Tissue Chips are *already* in use for internal portfolio decision-making by Pharma

MPS-based organ/tissue model	No. of cases	Area of use (drug development phase)	MPS- supplier	End user	Reference (if available)
Blood vessel, vasculature	5	Target identification, validation and compound selection		Daiichi-Sankyo	Satoh et al., 2016
		Discovery (scarget	Mimetas	Galapagos	-
		Systems toxicology for consumer products	Mimetas	Philip Morris	Poussin et al.,2020
		identification	Mimetas	undisclosed	-
		Target identification and validation	Mimetas	NovoNordisk	-
Bone marrow	4	Preclinical safety	TissUse	AstraZeneca	Sieber et al., 2018
		Preclinical safety	Emulate	AstraZeneca	Chou et al., 2018
		Preclinical safety eac	TissUse	Roche	-
		Preclinical safety	TissUse	Bayer	-
Gut epithelium	4	Preclinical safety	Mimetas	Galapagos	Beaurivage et al., 2019
		Discovery	Mimetas	Roche	-
			Mimetas	Roche	-
		Preclinical safety	Emulate	Roche	-
Lung	3	Discovery (alveolus)	Wyss	undisclosed	Huh et al., 2012
		Drug efficacy (epithelium)	Wyss	Pfizer, Merck USA	Benam et al., 2016b
		Preclin cal sa CINICA	Emulate	Roche	-
Liver	2	Pharmacological and toxicological effects	Emulate	AstraZeneca	Foster et al., 2019
		Preclinical sast sesence of species (rat, dog & human)	Emulate	J&J, AstraZeneca	Jang et al., 2019
Ocular compartment	1	Discovery	Fh IGB / EKUT	Roche	Achberger et al., 2019
Kidney epithelium	1		Mimetas	undisclosed	Vormann et al., 2018
Liver-Pancreas	1	Target validation / identification	TissUse	AstraZeneca	Bauer et al., 2017
Liver-Thyroid	1	Preclinical soft to - a sessment of species-specificity (rat and hum) n)	TissUse	Bayer	Kühnlenz et al., 2019
Skin-Tumor	1	Preclinical safety & efficacy	TissUse	Bayer	Hübner et al., 2019

Marx et al., ALTEX 37(3):364-394, 2020. doi: 10.14573/altex.2001241

US FDA Office of Chief Scientist, Office of Commissioner:

Alternative Methods Working Group https://www.fda.gov/science-research/about-science-research-fda/advancing-alternative-methods-fda


Objectives of FDA's Alternative Methods Working Group

- Discuss FDA-wide new in vitro, in vivo, and in silico methods, including research, training, and communication.
- Interact with U.S. Federal partners and other global stakeholders to facilitate discussion and development of draft performance criteria for such assays.
- Establish a dialogue and develop partnerships with FDA stakeholders to explore regulatory science applications for such technologies.
- Identify the performance criteria of microphysiological systems by engaging with FDA experts and FDA stakeholders through public-private partnerships.

Research projects using "tissue chips" at US FDA (examples):

- CDER: Division of Applied Regulatory Science testing commercial liver, heart, liver-heart platforms
- CBER: Developing/improving test methods for cell-based product characterization (safety and effectiveness)
- CTP: Using organo-mimetic human **lung airway**-on-a-chip to test various tobacco and related products

Growing Partnerships and Investments in MPS beyond NCATS

Slide courtesy of Danilo Tagle (NIH/NCATS)

US EPA "Safer Chemicals Research Grants"

	Organotypic Culture Models for Predictive Toxicology Center (2013) - \$18 million				
R835736	Vanderbilt - Pittsburgh resource for organotypic models for predictive toxicology	University of Pittsburgh Vanderbilt University	2014-2019		
R835737	Human models for analysis of pathways (H-MAPs) center	University of Wisconsin - Madison	2014-2019		
R835738	Predictive toxicology center for organotypic cultures and assessment of AOPs for engineered nanomaterials	University of Washington	2014-2020		
R835802	Cardiotoxicity adverse outcome pathway	Texas A&M University North Carolina State University	2015-2021		

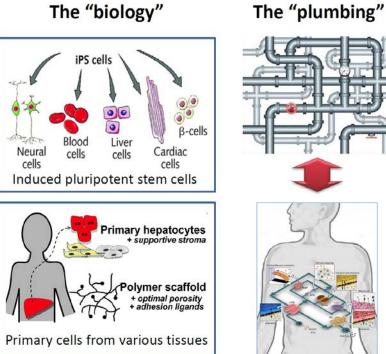
Advancing Actionable Alternatives to Vertebrate Animal Testing for Chemical Safety Assessment (2018) - \$4.25 million

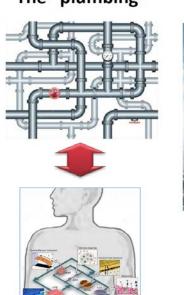
	Instrumenting phenotypic immunological responses to toxicants that threaten human reproduction		2019-2022
R839502	Skeletal teratogenicity of industrial and environmental chemicals predicted with human pluripotent stem cells <i>in vitro</i>	University of California - Riverside	2019-2022
R839503	Reducing the reliance on early-life stage testing with relevance to euryhaline fishes	Oregon State University Louisiana State University	2019-2022
	A Neurovascular Unit on Chip for reducing animals in organophosphate neurotoxicology	Vanderbilt University	2019-2020
R839505	Multiplexed human BrainSphere developmental neurotoxicity test for 6 key events of neural development	The Johns Hopkins University	2019-2022

What is "Fit for Purpose" for Organotypic Models at EPA?

- "Most of the statutes and regulations surveyed include statements such as the necessity of upholding scientific standards and using "the best available science," which may include NAMs" – Animal tests used by the EPA are NOT always required!
- "The authority for EPA's research programs arising from these statutes is broadly written and does not constrain the Agency from developing or advancing the use of NAMs" Non-animal tests that are "the best available science" CAN be used!
- "The Administrator's directive and similar text in section 4(h)(1) of TSCA note the need for information of "equivalent or better" scientific quality and relevance to animal test-based results" The comparator for NAMs at EPA is ANIMAL data!
- Need to "Develop a scientific confidence framework to evaluate the quality, reliability, and relevance of NAMs" – How do we know it is "best available science"?

Table 2. Initial Selection of On-Going EPA Case Studies for Potential Incorporation into Work Plan


Title	Description
Refining Inhalation Risk Assessment	Refine inhalation risk assessment for point of contact toxicity using
with NAMs	a three-dimensional in vitro test system of human respiratory
	tissues to derive a point of departure, in conjunction with
	computational fluid dynamic modeling.
Integrating In Vitro Assay and	Use of <i>in vitro</i> toxicity and toxicokinetic testing to refine/support
Toxicokinetic Data in Read Across	read across categories for per- and polyfluoroalkyl substances
	(PFAS).
Application of In Vitro Bioactivity	Use of bioactivity from <i>in vitro</i> assays and <i>in vitro</i> toxicokinetics to
for Screening-Level Risk Decisions	prioritize chemical contaminants in biosolids.
Application of NAMs for Chronic	Integration of NAMs to identify chronic toxicity and non-genotoxic
and Carcinogenicity Testing	carcinogenicity modes-of-action and quantitative points-of-
	departure for regulatory decisions



EMERGING SCIENCE FOR ENVIRONMENTAL HEALTH DECISIONS http://nas-sites.org/emergingscience/meetings/bioplatform/

The Potential of the Tissue Chip for **Environmental Health Studies**

JULY 21-22*, 2014 MONDAY ~8:30-5:00, TUESDAY 8:30-NOON NATIONAL ACADEMY OF SCIENCES, ROOM 120 = 2101 CONSTITUTION AVENUE, NW = WASHINGTON, DC

The "nails"

"Tissue Chips will not be used in isolation, just like any other piece of evidence in regulatory decision-making is not being used in isolation to arrive at the ultimate decision"

Moving forward ("convince me!")

- Validation/qualification of the tissue chip systems
- Making tissue chips widely available so that the database is broad and robust
- The research and application of these models has to be transparent even though this area is in a "highly competitive state"
- Tissue chip technologies should be evaluated collectively so that the technology does not fall individually
- Inter-species extrapolation and exploiting of the animal to in vitro to human extrapolations

Texas A&M University Tissue Chip TESTING Center (TEX-VAL)

Tier -1:	Tier 0:	Tier 1:	Tier 2:
Collaborative research and	Tissue chip testing without cells	Reproducibility testing of	Extending the utility of the
technology transfer agreements	 Assembling of tissue chips 	tissue chips	tissue chips
•Execution of all legal agreements	•Testing of the flow and operation	 Replicating published studies 	•Defining the "context of use"
•Sharing of the protocols	 Testing drug binding to devices 	•Evaluation of key findings	 Conducting additional studies
•TAMU staff training with developers	•Development of LC-MS methods	•Detailed protocols and SOPs	•Depositing data into MPS-Db

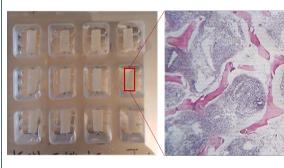
4-8 months period of testing for each tissue chip/microphysiological system (MPS)

Oct. 2016 – Sept. 2019 (TEX-VAL 1.0)

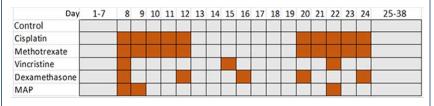
Proximal kidney tubule	Himmelfarb/Kelly (Univ. Washington)
Neurovascular unit (BBB)	Wikswo (Vanderbilt)
Bone +/- tumor	Vunjak-Novakovic (Columbia)
Gut enteroid	Donowitz/Estes (JHU/BCM)
Skin from iPS cells	Christiano (Columbia)
Heart	Healy (UC-Berkeley)
Vasculature +/- tumor	Hughes (UC-Irvine)/George (UC-Davis)
Skeletal muscle	Truskey (Duke)
Liver (multi-cell)	Taylor (University of Pittsburgh)
Liver	Healy (UC-Berkeley)
White fat	Healy (UC-Berkeley)

	• • •
Arteriole-scale vessel	Truskey (Duke)
Salivary gland	Benoit (U-Rochester)
Vascularized kidney	Himmelfarb/Kelly (Univ. Washington)
Atria on a chip	George (UC-Davis)
Bone joint & cartilage	Tuan (University of Pittsburgh)
Small Airway	Huh (University of Pennsylvania)
Vascularized Liver (vLAMPS)	Taylor (University of Pittsburgh)
Vascularized micro-Liver	Hughes (UC-Irvine)

Oct. 2018 – Sept. 2021 (TEX-VAL2.0)


TEX-VAL

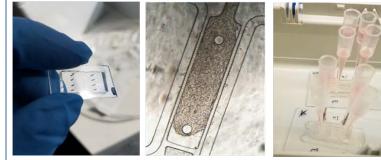
TEX-VAL Tissue Chip Testing: <u>Diversity of experience</u> with MPS

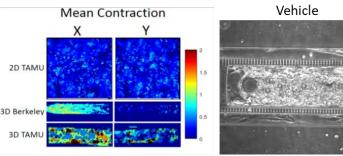

Static cultures

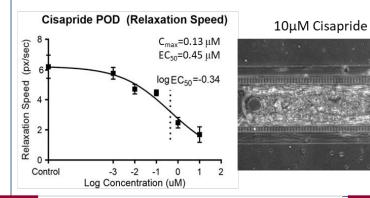
Columbia Univ.: Bone +/- Tumor Model

De-cellularized bovine trabecular bone
Human osteoblasts and Ewing's sarcoma cells

Simulating cancer treatments in vitro (3D and 2D)

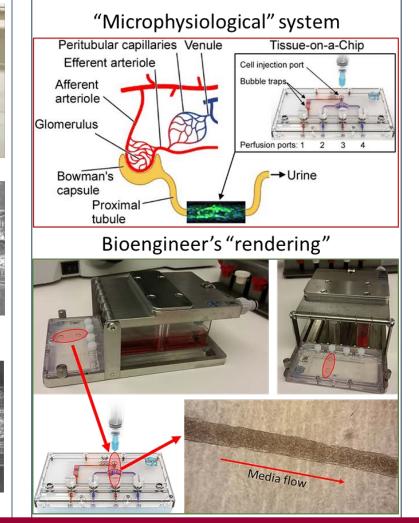



Cancer cell viability after treatment


TEX-VAL

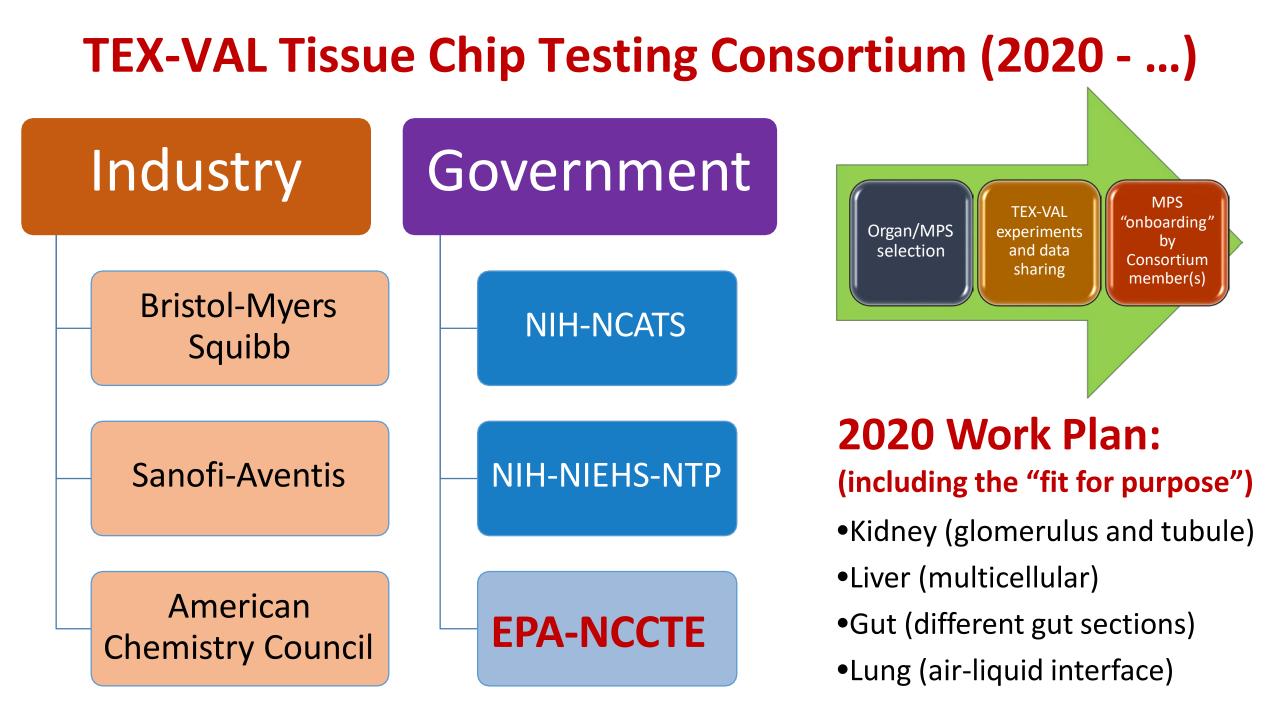
"Gravity Flow" cultures

Univ. Cal.-Berkeley: Cardiac Model



"Forced Flow" cultures

Univ. Wash.: Proximal Tubue


TEX-VAL Status of Depositing Data to U-Pitt MPS Db (Oct. 2020)

https://upddi.pitt.edu/microphysiology-systems-database/

Tissue Chip Model	# Wells/Chips		
	2D	3D	
Proximal Tubule, U-Washington	500	91	
Blood-Brain Barrier, Vanderbilt	-	9	
Bone/Tumor, <i>Columbia</i>	462	234	
Skin <i>, Columbia</i>	-	224	
Cardiac Tissue, UC-Berkeley	1091	141	
Gut Enteroid, Baylor College Med	4,488	1,382	
Vascularized Tumor, UC-Irvine	320	69	
Liver, UC-Berkeley	90	81	
Liver (multi-cell), U-Pitt	220	90	
White Adipose, UC-Berkeley	626	104	
Skeletal Muscle, Duke	-	192	
Atrial Cardiomyocyte (2.0), UC-Davis	178	6	
Kidney (2.0), U-Washington	-	21	
TOTAL	7,975	2,638	

TEX-VAL

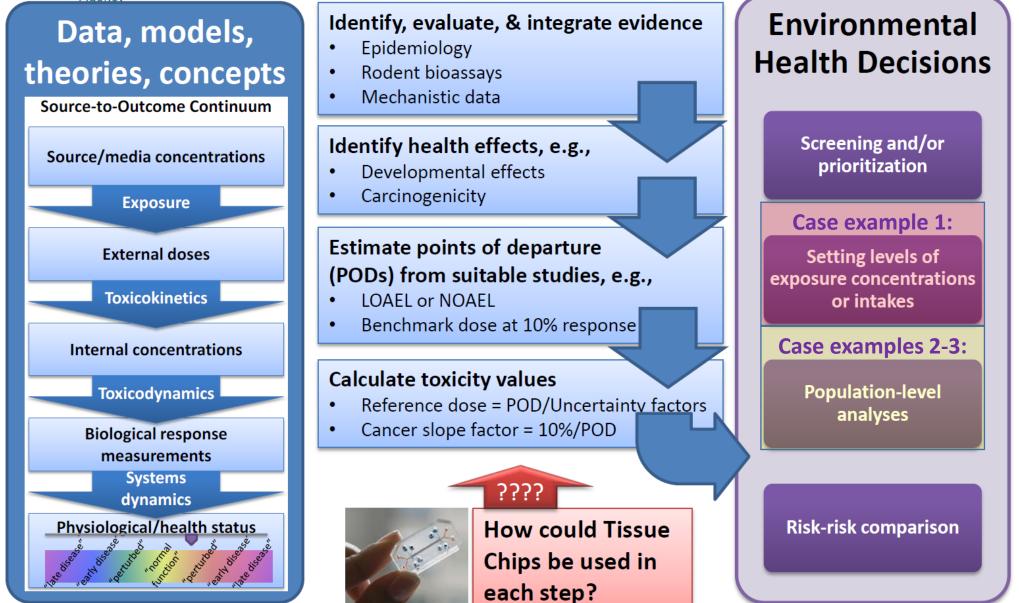
About that... "FIT FOR PURPOSE" again...

"Chemical is NOT a hazard for"	Replace animal test with cell-based test	"Best avail science	
Hypothesis	Purpose	Parameter	Explanation
		Compounds	Commercially available compounds
Model(s) chosen or designed <i>iterative</i> Goal: Basic model	Goal: Further model calibration	Context of use	A clear definition of the relevance of the test method, where relevance describes the relationship of the test method to the effect of interest and whether it is meaningful and useful for a particular purpose (https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-principles-regulatory-acceptance- 3rs-replacement-reduction-refinement-testing-approaches_en.pdf). This includes the endpoints which are to be investigated with reference to the conventional animal or human endpoint, e.g. if the MPS is used to detect DILI, it needs to be specified whether it covers
characterisation/ biological	with reference compounds,		all kinds of liver damage (cholestasis, steatosis, inflammation, fibrosis,) and how these are specified (biomarkers, morphology, histopathology,).
response over time without any test compounds	assessment of chip material and analysis procedures	Historical reference data	Data describing morphological and physiological outcome (e.g., histopathology, clinical chemistry) in MPS for defined reference compounds (positive and negative controls). Concentration ranges tested should be included. Endpoints measured in the MPS might include genomics markers, biomarker changes, etc.
Method: End points chosen relevant to hypothesis	Method: Refinement of end points relating to model purpose	Cell material & quality	Description of cell or tissue source, including potential quality checks (e.g., viability, functional performance tests, metabolic activity)
Decision criteria: Fidelity of model Significance for <i>in vivo</i>	Decision criteria: Technical requirements are met (robustness, reproducibility)	Specification of materials & media	Detailed description of materials with regard to biocompatibility, potential leachables, surface adsorption (drug binding), composition of media (protein content and source, growth factors included in the medium or added, flow rates, etc.)
(histology/functionality)		Exposure	Drug stability data and determination of exposure (total/unbound, ideally also intracellular)
	PERFORMANCE STANDARDS	Exposure modeling	Description of the model that was used to compare exposure in the MPS with the <i>in vivo</i> situation (animal or human)
	"Best available	General documentation	Will Good Laboratory Practice (GLP) need to be met for such studies? A workshop on this topic, perhaps in partnership with the OECD, would be advisable as it will inform any decisions on performance standards. Alternatively, the regulatory agencies could brainstorm on what context of use situation would require these systems to be performed under GLP.
Science"? Marx et al., ALTEX 37(3):364-394, 2020. doi: 10.14573/altex.2001241		Robustness	Intra-assay (repeatability) and inter-laboratory comparative result data. The need for the latter may be decided on a case-by-case basis.

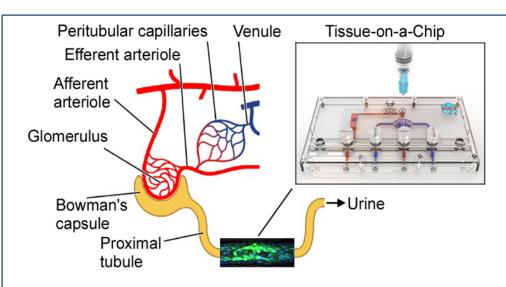
The Potential of the Tissue Chip for Environmental Health Studies

July 21, 2014

Weihsueh Chiu (EPA)

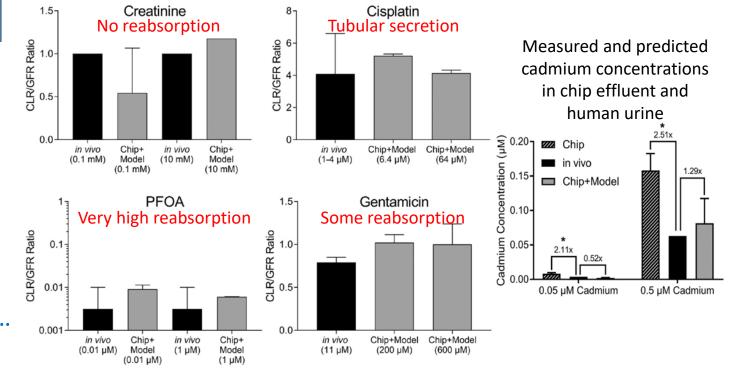

"Questions and Needs in Environmental Health and Risk Assessment Communities"

https://youtu.be/byaodNMCjf8

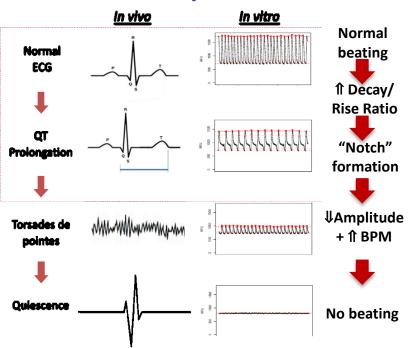


Prototypical Hazard ID and Dose-Response

United States Environmental Protection Assessment

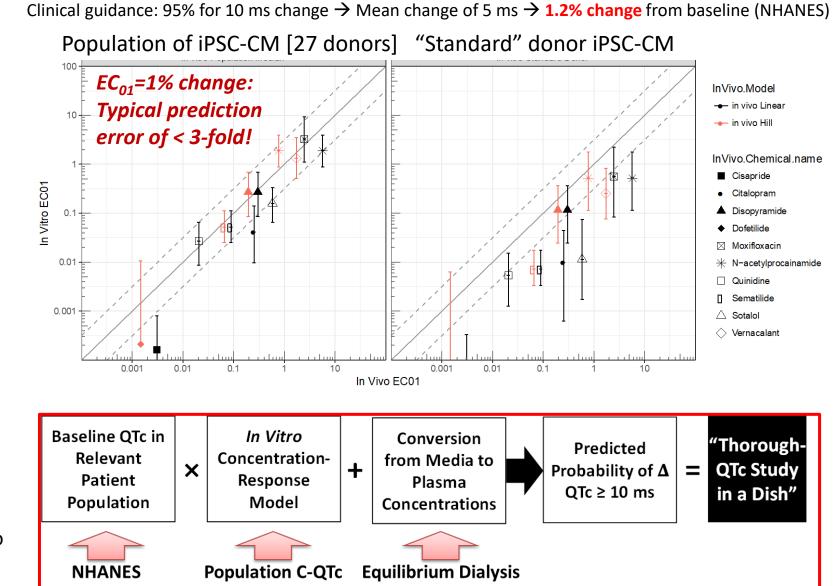

Case #1: Understanding kidney TK using in vitro NAM [reabsorption]

It's a tissue chip! Of only <u>one</u> part of <u>one</u> organ... Plus, there is no vascular channel, only renal reabsorption and no tubular secretion...


What is needed (experimental or from the literature):

- Free fraction of tested compounds in buffer and cell media
- Recovery from proximal tubule devices seeded with RPTECs
- Recovery from blank tissue chips
- Chip-to-human extrapolation model (dimension and flow)
- Knowledge of human kinetics for tested compounds (f_u)

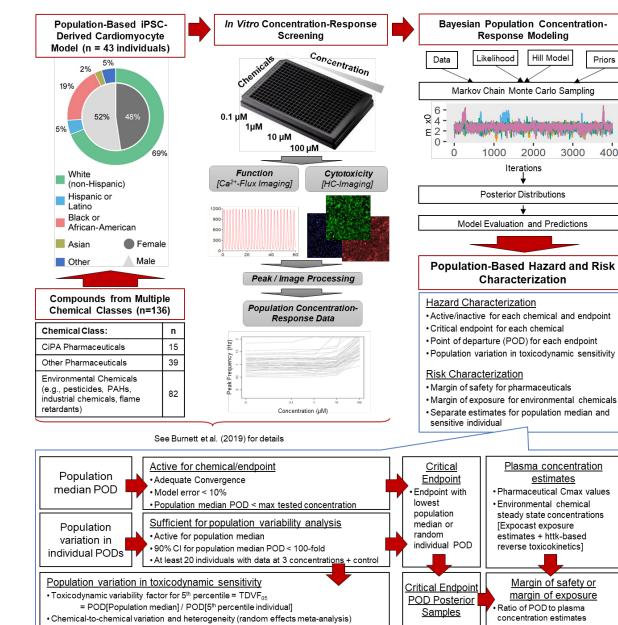
Sakolish et al. Toxicol In Vitro. 63:104752, 2020. doi: 10.1016/j.tiv.2019

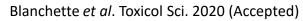

Case #2: Deriving a "safe dose" using NAMs [iPSC-CM, cardiac rhythm]

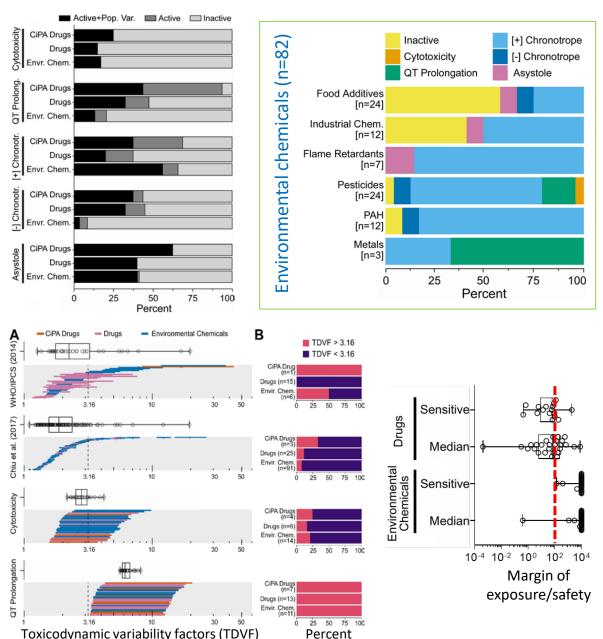
Quantitative Comparison:

Qualitative Comparison:

- *In vivo*: use published PD modeling data for concentration-response relationships for QTc
- *In vitro*: conduct Bayesian population PD modeling (Chiu et al. 2017) of decay-rise ratio
- Compare *in vivo* and *in vitro* concentrationresponse relationships (e.g., median and CIs)




Blanchette et al. Clin Pharmacol Ther. 105(5):1175-1186, 2019. doi: 10.1002/cpt.1259


Case #3: Risk characterization (population variability) [cardiac rhythm]

Priors

4000

US Society of Toxicology urges EPA to be flexible over testing

19 September 2019

Concerns over 2035 deadline for ending mammalian testing

...Some academics also gave a note of caution. "As a toxicologist who is passionate about replacement of animal testing with cell-based models, I welcome this announcement," said Ivan Rusyn, director of the Superfund Research Center at Texas A&M University. "However, a clear plan and milestones for how this vision will be implemented by the agency is needed to ensure that solid foundation exist for replacement of certain animal tests with alternative methods and that human health protection is not diluted by reducing the regulatory requirements on chemical safety," he told Chemical Watch.

- Are we ready to stop using animals for evaluating safety of EPA-regulated chemicals? **NOT immediately**
- When will we be ready to stop using animals for evaluating safety of EPA-regulated chemicals? **NOT soon**
- Is there a promise for organotypic models as NAMs? YES!! but EPA needs to define fit(s) for purpose
- Why not use "human on a chip" to replace animal tests? A combination of PBK modeling and organotypic model-derived hazard, mechanistic, TK and other data is likely to pave the way forward
- How can Administrator's directive to reduce/eliminate animal testing benefit from organotypic models? The Agency shall continue supporting targeted research on the application of these models to EPA's purpose(s) and to develop intramural capacity in the use of these new models

Tissue Chip Testing Experiments:

Courtney SakolishLeoncio VergaraYizhong LiuClifford Stephan

Analytical Chemistry Experiments:

Yu-Syuan Luo Kyle Ferguson Alan Valdiviezo

In Vitro Experiments & Modeling:

Fabian GrimmSarah BurnettZunwei ChenAlex BlanchetteWilliam KlarenNan-Hung Hsieh

Faculty Collaborations:

Weihsueh Chiu Fred Wright Arum Han

Special Thanks to Tissue Chip Developers:

University of Washington: Elijah Weber, Edward Kelly, and Jonathan Himmelfarb **Duke University:** Xu Zhang and George Truskey

University of Pittsburgh: Celeste Reese, Richard DeBiasio, Larry Vernetti and Lans Taylor

Baylor College of Medicine: Xi-Lei Zeng and Mary Estes

Johns Hopkins University: Mark Donowitz

Columbia University: Zongyou Guo, Yanne Doucet, Alan Chramiec, Sue Halligan, Angela Christiano and Gordana Vunjak-Novakovic

UC-Berkeley: Nikhil Deveshwar, Nathaniel Huebsch, Felipe Montiel, Brian Siemons and Kevin Healy

UC-Irvine: Duc Phan, Hugh Bender and Chris Hughes

Vanderbilt University: Jackie Brown and John Wikswo

University of Washington: Tomoki Imaoka, Edward Kelly, and Jonathan Himmelfarb
University of Pittsburgh: Celeste Reese, Richard DeBiasio, Larry Vernetti and Lans Taylor
University of Pittsburgh: Zhong Li, Hang Lin
University of Rochester: Azmeer Sharipol, Lindsay Piraino, Hitoshi Uchida, Yuanhui Song, Catherine Ovitt, Lisa DeLouise and Danielle Benoit

University of Pennsylvania: Andrei Georgescu and Dan Huh

UC-Davis: Bhupinder Shergill, Sergey Yechikov, Steven George

Duke University: Xu Zhang and George Truskey

TEX-VAL

