

In Vitro Disposition of Tox21 Chemicals: Initial Results and Next Steps

NTP: David Crizer, Nisha Sipes, Suramya Waidyanantha, Stephen Ferguson EPA: Josh Harrill, Greg Honda, Barbara Wetmore, Ann Richard, Antony Williams, John Wambaugh, Rusty Thomas, Mike DeVito, Katie Paul-Friedman

October 20, 2020

- What if the nominal concentration in an assay fails to represent the cellular concentration?
- IVIVE prediction accuracy may be affected.

Blood::tissue partitioning ≈ cells::medium partitioning

To date, *in vitro* partitioning has been empirically evaluated for very few chemicals and very few model systems; thus, it is unknown for how many chemicals and to what degree differential chemical partitioning affects the accuracy of IVIVE predictions made across the Tox21 chemical library.

- Understanding the *in vitro* distribution of chemicals is essential to the future utility of NAMs such as *in vitro* assays in a regulatory context
- This work fits into the EPA NAMs workplan under Objective 3 by helping to "Establish Scientific Confidence in NAMs and Demonstrate Application to Regulatory Decisions"

Establish scientific confidence and demonstrate application

- Armitage et al. (2014) suggest that *in vitro* partitioning relates strongly to LogK_{ow} and concentration of serum in the medium
- Sorption to plastic played a smaller role in determining the cellular concentration

Article

Diagram of in vitro compartments

Environmental Science & Technology

Figure 1. Conceptual representation of an in vitro test system. DMSO: dimethyl sulfoxide, an example of a cosolvent. OM: organic matter.

The physicochemical properties of a given chemical can be used to predict the difference between 'nominal' concentration of a chemical in the medium and 'true' medium and cellular concentrations.

Unknown unknowns?

In vitro chemical partitioning between media and cells (in metabolically-incompetent cells) is dependent on:

- amount of serum in the media;
- the relative binding of the chemical to serum binding proteins;
- LogK_{ow} of the chemical;
- chemical binding to plastic.

- Approximately 200 chemicals
- 92.5% ToxCast chemicals.
- 44.5% low fraction unbound, 27% moderate, 28.5% high.
- 50% neutral, 30% anionic, and 17% cationic at pH 7.4.
- 60% of the compounds were inactive in Attagene ER, 4.5% were potent at < 0.1 μ M, 17.5% were potent at less than 10 μ M.
- 20.5% have an existing NTP method.
- 3.5% have radiolabeled compound available somewhere at EPA.
- For these chemicals, the Armitage et al. (2014) model predicts that the cellular concentration will be 100-fold lower than media concentration for 10.5%, will be 3.2-fold lower than media concentration for 14.5%, within 3.2-fold of media concentration for 18%, greater than 3.2-fold the media concentration for 36%, and greater than 100-fold the media concentration for 18%.

- Sample generation and sample handling workflow
- Are we getting the information that we want?
- Efficient data collection and analysis

10 Chemical Pilot

Pilot 1.0 Study Design

Table 1. Sample Calculations		
Design Parameter:	Multiplier	Comments
Cell Type(s)	1	MCF7
Number of Plates	9	See Plate Matrix
Technical Replicates	4	See Plate Map
Chemicals	10	See Chemical List
Concentrations	1	10 µM
Time Points	3	1, 6, 24 hours
Media Types	2	Either 1% and 10% FBS

Table 2. Plate Matrix				
Test Plate	Test Plate Barcode	Plating Condition	Exposure Duration (hr)	Measured Compartment
А	TC00284721	Medium - cells	1	Medium
		Medium - cells	1	Plastic
В	TC00284722	Medium + cells	1	Medium
		Medium + cells	1	Plastic + Cells
С	TC00284723	Medium + cells	1	Whole Well Crash
D TC00	TC00204724	Medium - cells	6	Medium
	1000284724	Medium - cells	6	Plastic
E TC00284725	TC00204725	Medium + cells	6	Medium
	Medium + cells	6	Plastic + Cells	
F	TC00284726	Medium + cells	6	Whole Well Crash
G T	TC00204727	Medium - cells	24	Medium
	100284727	Medium - cells	24	Plastic
н	TC00284728	Medium + cells	24	Medium
		Medium + cells	24	Plastic + Cells
I	TC00284729	Medium + cells	24	Whole Well Crash

BioTek MultiFlo FX Peristaltic Dispenser LabCyte Echo 550 Acoustic Dispenser

Integra ViaFlo 384 Guided Pipetting System Gyger Certus Flex Solenoid MIcrodispenser

Test Plate

PlateOne 384 Deep Well Polystyrene

Corning 3985BC Polystyrene

Add ACN Whole Well Crash

Cells + Media + Chemical

• LC (Thermo Vanquish)

- LC method is a 7 minute run on a C18 column
- Mobile Phase A: Water with 0.1% formic acid
- Mobile Phase B: Acetonitrile with 0.1% formic acid
- 10% B to 100% B over 5 minutes
- 100% B for 1 minute
- 100% B to 10% B for 1 minute
- MS (Thermo Q Exactive Plus)
 - Targeted Single Ion Monitoring Mode

- Calculating Concentrations in Media and Whole Well Samples
 - Final Conc. = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor
- Calculating Amounts
 - Final Amount = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor x Volume in Well
- Calculating Concentrations in Cells
 - Final Conc. = (Amount in Plastic + Cells Amount in Plastic) / (Molecular Weight * Volume of Cells)
 - Volume of Cells = 10,000 cells * 2.0 pL/cell = 20 nL

 All samples are incubated individually and then analytically measured both as individual samples (1 chemical) and as cassette samples (5 chemicals) – Goal is to decrease LCMS analysis time

Single Chemical Incubations

Individual Sample Analysis

All samples are analyzed individually be LCMS Cassette Sample Analysis

A-E

Samples from 5 different chemicals are analyzed via LCMS in a single injection Concentration in Cells *vs.* Media at 24 hours – Cassette Analysis

Compound	384-well Difference (ng)
Rosiglitazone	2.3
Rifampicin	9.4
Omeprazole	1.0
Acetaminophen	
N-Phenyl-1,4-	
benzenediamine	-0.5
Carbendazim	
Thiacloprid	2.7
Triphenyl phosphate	13.8
Flusilazole	8.8
Atrazine	1.4

Small differences between "Plastic + Cells" and "Plastic" fractions to determine amount of chemical in cells versus bound to plastic creates a challenge from an analytical measurement perspective

- Cassette analysis for analytical measurements produced similar results to individual analysis
 - major reduction in run time
 - 282 days *v*s 56 days
- A challenge is the small differences in the amount of chemical observed in the cells versus the amount bound to plastic

- Move from 384 well format to 96 well format
- Greater number of cells in each well per surface area
- Added wash step to remove residual chemical not actually in cells or bound to plastic
- Single media composition with 10% FBS (no longer looking at 1% FBS media)

• LCMS drift issues with first pilot 2.0 analytical measurements

• Reanalyzed samples from Pilot 2.0 incubations

 Used a data normalization method to account for LCMS instrument changes over runtime

 Inject a standard every 10 injections that is used to normalize signal intensity across a run

- Calculating Concentrations in Media and Whole Well Samples
 - Final Conc. = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor
- Calculating Amounts
 - Final Amount = Raw Conc. x Post-Incubation Dilution Factor x Analytical Dilution Factor x Volume in Well
- Calculating Concentrations in Cells
 - Final Conc. = (Amount in Plastic + Cells Amount in Plastic) / (Molecular Weight * Volume of Cells)

- Volume of Cells = 5.11×10^4 cells * 2.0 pL/cell = 102.2 nL

Media vs. Whole Well Concentration at 24 Hours

24 hr Cassette

SA walls: 107 mm²

24 hr Cassette – 96 well plate format comparison

In vitro disposition model (Armitage et al. 2014) reasonable prediction of experimental results whether well bottom is included or not

Mass Balances – 96 Well Plate Format

Whole Well Crash -

measured total mass balance in experiment with cells

1.6 nmol theoretical maximum

Error bars ± 2 SD (4 possible repeated measures – measurements from separate wells)

Mass balances are poor. Cassette method shows generation of mass.

Observations

• Initial results suggest that nominal concentration \neq cellular concentration

 Most cell concentrations are near zero for 96 well format unless we assume the bottom surface area is unavailable to plastic binding

 Armitage model (LogK_{ow} based) reasonable estimate of experimental cell concentration measurement

• Mass balances aren't great

- 20 chemicals
 - 10 chemicals used in previous pilots
 - 10 new chemicals to further cover chemical space

• 3 concentrations – 5, 10, and 20 μ M

1,3-Diphenylguanidine Sulfentrazone Flutamide Gemfibrozil Pirimiphos-methyl Genistein Oxytetracycline dihydrate Fluroxypyr Dinoseb Butylparaben

Additional 10 Chemicals

• Analytical methods completed for all 20 compounds

Incubation completed in February

• LCMS analysis end of 2020/beginning of 2021

• NTP

- Steve Ferguson
- Nisha Sipes
- Suramya Waidyanatha

• EPA

- Katie Paul-Friedman
- Mike DeVito
- Josh Harrill
- Greg Honda
- John Wambaugh
- Rusty Thomas
- Barbara Wetmore
- Ann Richard
- Antony Williams

