United States Environmental Protection Agency Office Of Air Quality Planning And Standards Research Triangle Park, NC 27711 EPA-454/R-00-021a April, 2000

Air

🗢 EPA

Hot Mix Asphalt Plants Kiln Dryer Stack Manual Methods Testing

Asphalt Plant A Clayton, North Carolina Volume 1 of 2

FINAL REPORT

EMISSIONS TEST AT AN ASPHALT CONCRETE PRODUCTION PLANT: ASPHALT PLANT "A" - CLAYTON, NORTH CAROLINA

VOLUME I OF II REPORT TEXT APPENDICES A & B

EPA Contract No. 68D70069 Work Assignment No. 2-09

Prepared for:

Mr. Michael L. Toney (MD-19) Work Assignment Manager SCGA, EMC, OAQPS U.S. Environmental Protection Agency Research Triangle Park, NC 27711

> September 1999 P:\1529\FINRPT\PLANT A

> > Submitted by

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300 Post Office Box 12077 Research Triangle Park, NC 27709-2077 (919) 941-0333 FAX (919) 941-0234

TABLE OF CONTENTS

VOLU	ME I	Pag	<u>e</u>
1.0	INTRO	DDUCTION 1-	-1
2.0	SUMN	1ARY OF RESULTS	-1
	2.1 2.2	OXYGEN AND CARBON DIOXIDE MEASUREMENTS2PCDDs/PCDFs MEASUREMENTS22.2.1Baghouse Inlet - Asphalt Production with RAP22.2.2Baghouse Outlet- Asphalt Production with RAP22.2.3Baghouse Outlet - Asphalt Production without RAP2	-1 -1 -4 -8 -8
	2.3	PARTICULATE MATTER AND METALS MEASUREMENTS2-72.3.1Baghouse Inlet - Asphalt Production with RAP2-72.3.2Baghouse Outlet- Asphalt Production with RAP2-72.3.3Baghouse Outlet - Asphalt Production without RAP2-7	13 13 20 20
	2.4	DETERMINATION OF VISIBLE EMISSIONS 2-3	29
3.0	PROC	ESS DESCRIPTION 3	-1
, 4.0	SAMF	PLING LOCATIONS 4	-1
	4.1 4.2	BAGHOUSE INLET SAMPLING LOCATION4BAGHOUSE OUTLET SAMPLING LOCATION4	-1 -1
5.0	SAMI	PLING AND ANALYSIS PROCEDURES	5-1
	5.1	LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS	5-1
	5.2	DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE	5-1
	5.3	DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS	5-1
	5.4	DETERMINATION OF STACK GAS MOISTURE CONTENT	5-2
	5.5	DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS	
		AND POLYCHLORINATED DIBENZOFURANS	5-2
	5.6	DETERMINATION OF PARTICULATE MATTER AND METALS	5-4 5-5
	5.7	DETERMINATION OF PLUME OPACITY	5-5

and an it was

a sea attaine th**a**r a thair

TABLE OF CONTENTS (Concluded)

VOLU	ME I						Pa	ige
6.0	QUAL AND R	QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS						
	6.1	CALIE 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	BRATION OF APPARATUS 6-1 Barometers 6-1 Temperature Sensors 6-1 Pitot Tubes 6-1 Differential Pressure Gauges 6-3 Dry Gas Meter and Orifice 6-3			5-1 5-1 5-1 5-1 5-3 5-3		
	6.2	ON-SI 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	TE MEA Measure Velocity Flue Ga Moistur Method	ASUREMENTS ement Sites y Measurements is Sampling e 23/Method 29	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5-3 5-3 5-5 5-5 5-5 5-5
	6.3	ANAL	YSES	••••••••••••••••			e	5-8
APPEN	NDIX A		PROCE	SS DATA				
APPEN	NDIX B		RAW F	IELD DATA				
		Appen Appen	dix B.1 dix B.2	Raw Field Data Raw Field Data	Bagho Bagho	ouse Inlet ouse Outlet		
VOLU	ME II							
APPEN	NDIX C		ANALY	YTICAL DATA				
	<i>*</i> .	Appen Appen Appen	dix C.1 dix C.2 dix C.3	Analytical Data Analytical Data Analytical Data	Metho Metho Metho	od 5 Particulate N od 23 PCDDs/PC od 29 Multiple M	Matter CDFs Ietals	
APPEN	VDIX D		COMPU	UTER SUMMAR	IES			
		Appen Appen	dix D.1 dix D.2	Computer Summ Computer Summ	naries naries	Baghouse Inlet Baghouse Outlet	Method 23 & 29 t Method 9, 23 & 29	
APPE	NDIX E		QA/QC	DATA AND CE	RTIFI	CATIONS		
APPEN	NDIX F		FIELD	TESTING PART	ICIPA	NTS		

LIST OF TABLES

VOLUME I	Page
TABLE 2.1	EMISSIONS SAMPLING TEST LOG
	ASPHALT PLANT "A" - CLAYTON, NC 2-2
TABLE 2.2	PCDDs/PCDFs EMISSIONS SAMPLING AND INLET GAS PARAMETERS
	ROTARY DRUM DRYER - BAGHOUSE INLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC 2-5
TABLE 2.3	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
	ROTARY DRUM DRYER - BAGHOUSE INLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC 2-6
TABLE 2.4	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT
	CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN
	ROTARY DRUM DRYER - BAGHOUSE INLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC 2-7
TABLE 2.5	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS
	PARAMETERS
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALI PLANI "A" - CLATION, NC
TABLE 2.6	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC

LIST OF TABLES (Continued)

VOLUME I		Page
TABLE 2.7	PCDDs/PCDFs STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	2-11
TABLE 2.8	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	2-12
TABLE 2.9	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	2-14
TABLE 2.10	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC	2-15
TABLE 2.11	PARTICULATE/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	2-16
TABLE 2.12	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC	2-17

LIST OF TABLES (Continued)

ļ

VOLUME I	Page
TABLE 2.13	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.14	PARTICULATE/METALS EMISSIONS SAMPLING AND
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC 2-21
TABLE 2.15	PARTICULATE MATTER CONCENTRATIONS AND
	EMISSION RATES
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITH KAP
	ASPHALT PLANT "A" - CLAYTON, NC
TABLE 2.16	METALS CONCENTRATIONS AND EMISSION RATES
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITH RAP
	ASPHALT PLANT "A" - CLAYTON, NC 2-23
TABLE 2.17	PARTICULATE/METALS EMISSIONS SAMPLING AND
	STACK GAS PARAMETERS
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITHOUT KAP
	ASPHALI PLANT "A" - CLATTON, NC
TABLE 2.18	PARTICULATE MATTER CONCENTRATIONS AND
	EMISSION RATES
	ROTARY DRUM DRYER - BAGHOUSE OUTLET
	$\frac{2}{2}$
	ASFRALI FLANT A - CLATTON, NC
TABLE 2.19	METALS CONCENTRATIONS AND EMISSION RATES
	ROTARY DRUM DRYER-BAGHOUSE OUTLET
	ASPHALT PRODUCTION WITHOUT KAP
	ASPHAL1 PLAN1 "A" - CLAY ION, NC

- -----

LIST OF TABLES (Continued)

VOLUME I	Page
TABLE 3.1	PLANT OPERATING CONDITIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.2	ASPHALT MIX SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.3	FUEL SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC
TABLE 3.4	SPECIFICS OF PLANT OPERATION ASPHALT PLANT "A" - CLAYTON, NC
TABLE 5.1	SAMPLING LOCATIONS, TEST PARAMETERS, AND TEST METHODS SUMMARY ASPHALT PLANT "A"-CLAYTON, NC
TABLE 6.1	SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.2	SUMMARY OF PITOT TUBE DIMENSIONAL DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.3	SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.4	SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.5	SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.6	SUMMARY OF METHOD 29 ANALYSIS QC DATA LAB CONTROL SPIKES ASPHALT PLANT "A" - CLAYTON, NC

LIST OF TABLES (Concluded)

VOLUME I	Page
TABLE 6.7	SUMMARY OF METHOD 29 ANALYSIS QC DATA POST DIGESTION MATRIX SPIKES RUN NO. S-M29-0-1 ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.8	METHOD 29 DUPLICATE ANALYSIS QC DATA RUN NO. S-M29-0-2 ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.9	METHOD 29 SERIAL DILUTION ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.10	METHOD 29 METHOD BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.11	METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.12	METHOD 29 MERCURY SPIKE ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC
TABLE 6.13	METHOD 29 MERCURY BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

LIST OF FIGURES

VOLUME I	Pag	e
Figure 1.1	Key Personnel and Responsibility for Testing - Asphalt Plant "A", Clayton, NC 1-	.3
Figure 1.2	Sampling Locations - Asphalt Plant "A", Clayton, NC 1-	4
Figure 4.1	Baghouse Inlet Sampling Location - Asphalt Plant "A", Clayton, NC 4-	3
Figure 4.2	Baghouse Inlet Point Locations - Asphalt Plant "A", Clayton, NC 4-	.4
Figure 4.3	Baghouse Outlet Sampling Location - Asphalt Plant "A", Clayton, NC 4-	.5
Figure 4.4	Baghouse Outlet Point Locations - Asphalt Plant "A", Clayton, NC 4-	.6
Figure 5.1	Method 23 Sample Train Schematic - Asphalt Plant "A" Clayton, NC 5-	.3
Figure 5.2	Method 29 Sample Train Schematic - Asphalt Plant "A", Clayton, NC 5-	.6
Figure 5.3	Method 29 Sample Recovery Scheme (Sample Fractions 1-4) Asphalt Plant "A", Clayton, NC	.7
Figure 5-4	Method 29 Sample Recovery Scheme (Sample Fraction 5) Asphalt Plant "A", Clayton, NC	-8

1.0 INTRODUCTION

The United States Environmental Protection Agency (USEPA) is investigating the asphalt concrete production source category to identify and quantify emissions of hazardous air pollutants (HAPs) from rotary aggregate dryers used at these facilities. There are two types of rotary drum dryers in use at asphalt concrete production plants; parallel flow, wherein the direction of travel of the drying aggregate is the same as the direction of travel of the burner exhaust gases, and counter flow, wherein the aggregate and exhaust gas flows are opposite to each other. On May 7, 1997, a work assignment was issued by EPA's Office of Air Quality Planning and Standards, Emissions Measurement Center, (OAQPS, EMC) to Pacific Environmental Services, Inc. (PES), of Research Triangle Park, North Carolina. The work assignment specified that emissions testing for HAPs be conducted on one of each type of aggregate dryer. Two candidate facilities were therefore identified and selected as host facilities for the testing program.

This document describes the test procedures, results, and quality assurance procedures that were employed during the testing of a counter flow rotary drum aggregate dryer, which was located at Asphalt Plant "A" in Clayton, North Carolina. The facility was identified as a candidate by EPA due to its location close to EPA facilities in Research Triangle Park, North Carolina, and because it is typical of counter flow rotary dryers in the asphalt production source category. The results of the emissions testing program conducted at a facility employing a parallel flow rotary aggregate dryer are presented in a separate report.

The scope of the work assignment was to plan and conduct an air emissions testing program to quantify emission rates of HAPs from the rotary aggregate drier located at Asphalt Plant "A". The planning and testing phase of the program was conducted under EPA Contract No. 68D20162, Work Assignment No. 4-13. Because the period of performance of the contract expired on September 30, 1997, PES was issued a second work assignment to complete the data reduction, a portion of the analysis, and the preparation of the draft report, which was completed under EPA Contract No. 68D70002, Work Assignment No. 0-005. This final report incorporates comments from EPA and the National Asphalt Pavement Association, and includes a process description and process data collected by EPA's Emission Standards Division (ESD) contractor. The final report was prepared under EPA Contract No. 68D70069, Work Assignment No. 2-09.

The primary objective of the test program was to obtain data on the controlled and uncontrolled emissions of polychlorinated dibenzo-*p*-dioxins (PCDDs or "dioxins") and polychlorinated dibenzofurans (PCDFs or "furans"), particulate matter (PM), and metallic HAP and non-HAP compounds from rotary drum dryers. A secondary objective of the test program was to observe and record plume opacity. The data will be used by ESD to determine whether HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program.

The test program at Asphalt Plant "A" was completed during the week of August 18, 1997. The basic test methods that were employed were EPA Test Methods 1 (sample point location), 2 (gas velocity), 3 (gas molecular weight), 4 (gas moisture volume content), 5 (particulate matter concentration), 9 (plume opacity), 23 (dioxin and furan concentration) and 29 (metals concentrations). PM concentrations were determined by using tared filters in the Method 29 sampling train. The work assignment issued by EMC called for testing to be conducted during the production of asphalt with Reclaimed Asphalt Pavement, or RAP. At the request of EPA, an additional sampling run was conducted while the makeup material consisted solely of virgin aggregate. The results of all four of the test runs are presented in Section 2.0 of this report. The work assignment also specified testing to quantify both controlled and uncontrolled emissions. However, during the initial stages of testing of the uncontrolled dryer exhaust, sampling had to be discontinued due to extremely high grain loading conditions which far exceeded the sampling capacity of the Method 23 and Method 29 sampling trains. After telephone consultations with personnel from ESD and EMC, testing activities of the uncontrolled emissions were deleted from the scope of work.

PES used three subcontractors to assist in the completion of this testing effort. Deeco, Inc. (DEECO) of Raleigh, North Carolina; Triangle Laboratories, Inc. (TLI) of Durham, North Carolina, and Atlantic Technical Services, Inc. (ATS) of Chapel Hill, North Carolina. DEECO provided source testing support at the inlet locations (prior to cancellation of these testing activities), visual emissions observations of controlled emissions, and sample recovery support. TLI provided analytical services for the quantification of PCDDs/PCDFs and metals in the collected samples, and ATS provided on-site sampling support as well as support during preparation of the site test plan, draft report and calculation of the emissions test results.

The test program organization and major lines of communication are presented in Figure 1.1. The PES Project Manager communicated directly with the EPA Work Assignment Manager (WAM) and coordinated all of the on-site testing activities. The sampling locations at Asphalt Plant "A" are shown in Figure 1.2.

1-3

2.0 SUMMARY OF RESULTS

This section summarizes the results of the testing program at the Asphalt Plant "A". The following pages present the times and durations of each of the sampling runs that were conducted, the sampling parameters during each run, the effluent gas parameters, and the concentrations and mass emission rates of the target HAPs. Sampling of emissions was conducted on three consecutive days from August 19, 1997 through August 21, 1997, during which time four sampling runs for both dioxins and furans (PCDDs/PCDFs) and metals were conducted. Table 2.1 presents the "Emissions Test Log" which summarizes clock times, target pollutants, and downtime due to filter and port changes for each of the Method 23 and Method 29 sampling runs attempted. The results of the PCDDs/PCDFs sampling during asphalt production with RAP are presented in Tables 2.2 through 2.7, and the results of the PCDDs/PCDFs sampling conducted during production with virgin aggregate are presented in Tables 2.8 through 2.10. The results of the particulate matter (PM) and metals sampling runs conducted during RAP addition are presented in Tables 2.11 through 2.16, and the results of the PM and metals runs conducted during asphalt production with virgin aggregate are presented in Tables 2.17 through 2.19.

2.1 OXYGEN AND CARBON DIOXIDE MEASUREMENTS

Concurrent with the Method 23 and Method 29 sampling at the baghouse outlet, bag samples of the effluent gas were collected and analyzed using an Orsat[®] apparatus to determine oxygen (O_2) and carbon dioxide (CO_2) concentrations for the purpose of calculating stack gas molecular weight. The O_2 and CO_2 concentrations presented for the first sampling run are the average of the O_2 and CO_2 concentrations measured during runs two and three. The diluent concentrations are presented in this manner because the results of the analyses from the first run were misplaced during the field testing portion of the test program and were not recovered. The diluent concentrations measured during the second and third runs should be representative of the concentrations during the first run, because the operating conditions were essentially unchanged.

2.2 PCDDs/PCDFs MEASUREMENTS

PCDDs/PCDFs results are presented as 1) actual concentrations and mass emission rates, 2) concentrations adjusted to 7 % O_2 , and 3) concentrations adjusted to 7 % O_2 and 2378 tetrachlorinated dibenzo-*p*-dioxin (TCDD) toxic equivalent basis. Adjustment of the congeners to a 2378 toxic equivalent basis was accomplished using the Toxic Equivalency Factor (TEF) values developed by the NATO Committee on the Challenges of Modern Society, August 1988.

EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "A" - CLAYTON, NC

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
Baghouse Inl	et				
S-M23-I-1*	8/19/97	PCDDs/PCDFs	0915-1010	0930-1005	Probe & filter plug
S-M29-I-1*	8/19/97	PM & Metals	0915-1010	0930-1005	Probe & filter plug
Baghouse Ou	ıtlet				
S-M23-O-1	8/19/97	PCDDs/PCDFs	0915-1456	0930-1104	Inlet sampling issues
S-M29-O-1	8/19/97	PM & Metals	0915-1454	0930-1104	Inlet sampling issues
S-M23-O-2	8/20/97	PCDDs/PCDFs	0822-1240	0902-0904 0946-0952 1031-1042 1114-1119 1201-1206	Port change Port change Port change Port change Port change
S-M29-O-2	8/20/97	PM & Metals	0822-1240	0904-0909 0946-0951 1031-1036 1114-1119 1200-1205	Port change Port change Port change Port change Port change
S-M23-O-3	8/20/97	PCDDs/PCDFs	1405-1730	1447-1452 1527-1529 1604-1613 1648-1655	Port change Port change Port change Port change
				Run stopped du	e to lightning
S-M29-O-3	8/20/97	PM & Metals	1405-1735	1447-1452 1529-1534 1613-1618 1655-1700	Port change Port change Port change Port change
				Run stopped du	e to lightning

TABLE 2.1 (Concluded)

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
S-M23-O-4	8/21/97	PCDDs/PCDFs	0741-1148	0821-0823 0903-0905 0945-0948 1028-1030 1110-1113	Port change Port change Port change Port change Port change
S-M29-O-4	8/21/97	PM & Metals	0741-1153	0823-0828 0905-0910 0948-0953 1030-1035 1113-1118	Port change Port change Port change Port change Port change

EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "A" - CLAYTON, NC

* Test runs were aborted due to high grain loading conditions at the baghouse inlet sampling location. Subsequent test runs canceled.

The Method 23 sample fractions consisted of a sample train front-half solvent rinse, a particulate filter, a back-half solvent rinse, and an XAD[®]-2 sorbent resin module. During analysis, each of the sample fractions was extracted, concentrated, combined, and analyzed using a Gas Chromatograph with a Mass Spectrometer detector (GC/MS), according the procedures outlined in Method 23. During analysis, the combined sample extract was separated with a DB-5 capillary column. Where the results of that analysis indicated the presence of 2378 TCDF congeners, the analysis was repeated using a DB-225 capillary column so that the TCDF congeners could be more readily separated and quantified.

The results of the analyses indicated the presence of several congeners that were qualified as Estimated Maximum Possible Concentrations, or EMPCs. From time to time during the Method 23 analyses, a peak elutes at the position expected for a particular congener, but the peak fails validation based on the theoretical split of chlorine isotopes. That is to say that the number of Cl³⁵ isotopes and the number of Cl³⁷ isotopes attached to the PCDDs/PCDFs congeners should agree with the Cl³⁵/Cl³⁷ ratio found in nature. For each congener, this ratio must agree within 15%. If the mass ratio of chlorine isotopes does not agree with the natural chlorine isotope ratio, then the peak is flagged as an EMPC.

The values presented as "Total PCDDs" are the sum of the "12346789 OCDD" polychlorinated dibenzo-p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" values are the sum of the "12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled

"Total". "Total PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and "Total PCDFs" values. Values that have been qualified as being EMPC have been included in the sums. Concentrations and emission rates based on or including EMPC values are denoted by braces ({ }).

2.2.1 Baghouse Inlet - Asphalt Production with RAP

Table 2.2 summarizes the PCDDs/PCDFs emissions sampling and stack gas parameters at the baghouse inlet. For reasons stated previously, only one sampling run was conducted at this location. Sampling was aborted approximately 10 minutes into the sample run when the isokinetic sampling rate could not be maintained due to blockage of the sampling nozzle and the probe liner with particulate matter. Sampling was halted at both the inlet and the outlet locations, the sample train was disassembled, and large amounts of particulate matter were removed from the sample nozzle, glass liner, and front half of the filter housing into a precleaned glass sample jar. The sample train was then reassembled, leak checked, and the attempt was made to continue sampling. After approximately 10 more minutes of sampling, the sample train plugged again, and the decision was made by the EPA WAM to cancel testing of the uncontrolled dryer emissions.

Although the test cannot be considered to be valid due to the low sample volume of 10.94 dry standard cubic feet (dscf), which is equivalent to 0.310 dry standard cubic meters (dscm), PES, at the direction of EPA, recovered the sample fractions and submitted them for analysis by the subcontracting laboratory. The inlet gas temperature was 230° F and contained 5.3% by volume CO₂, 13.1% by volume O₂, and 26.5% by volume moisture. The inlet gas volumetric flow rate was 30,119 actual cubic feet per minute (acfm) which is equivalent to 16,819 dry standard cubic feet per minute (dscfm) or 476.3 dry standard cubic meters per minute (dscmm).

Table 2.3 presents the PCDDs/PCDFs concentrations of the baghouse inlet gas stream. The concentration of total PCDDs was 151 nanograms per dry standard cubic meter (ng/dscm), and the concentration of total PCDFs was 2.9 ng/dscm. The concentration of total PCDDs/PCDFs was 154 ng/dscm. The total PCDDs mass emission rate was 4,305 micrograms per hour (μ g/hr) and the total PCDFs mass emission rate was 83.9 μ g/hr. The mass emission rate of total PCDDs/PCDFs was 4,389 μ g/hr.

The PCDDs/PCDFs 2378 toxic equivalent concentrations at the baghouse inlet are presented in Table 2.4. Each PCDDs/PCDFs congener has been corrected to a reference O_2 concentration of 7%, and then multiplied by the appropriate NATO 2378 TCDD toxic equivalent factor. Because the measured oxygen concentration was 13.1% by volume, the corrected concentrations are greater than the actual concentrations. The concentration of total PCDDs was 268 ng/dscm, corrected to 7% O_2 and the concentration of total PCDFs was 5.23 ng/dscm corrected to 7% O_2 , therefore the total PCDDs/PCDFs concentration was 274 ng/dscm, corrected to 7% O_2 and the total concentration of PCDFs was 0.143 ng/dscm corrected to 7% O_2 and 2378-TCDD equivalents. The concentration of total PCDDs/PCDFs corrected to 7% O_2 and 2378-TCDD equivalents. The concentration of total PCDDs/PCDFs corrected to 7% O_2 and 2378-TCDD equivalents. The concentration of total PCDDs/PCDFs corrected to 7% O_2 and 2378-TCDD equivalents.

PCDDs/PCDFs EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-I-1
Date	8/19/97
Time	0915-1010
Total Sampling Duration, minutes	20
Average Sampling Rate, dscfm ^a	0.55
Sample Volume:	
dscf⁵	10.94
dscm ^c	0.310
Inlet Gas Temperature,°F	230
O ₂ Concentration, % by volume	13.1
CO ₂ Concentration, % by volume	5.3
Moisture, % by volume	26.5
Inlet Gas Volumetric Flow Rate:	
acfm ^d	30,119
dscfmª	16,819
dscmm ^c Isokinetic Sampling Ratio, %	476.3
	77.0

 $^{\rm s}$ Dry standard cubic feet per minute at 68 $^{\circ}{\rm F}$ and 1 atm

^b Dry standard cubic feet at 68°F and 1 atm

° Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute

* Dry standard cubic meters per minute at 20°C and 1 atm

. ...

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ⁴ ng/dscm, as measured	EMISSION RATE⁵ µg/hr
	S-M23-I-1	S-M23-I-1
Dioxins		
2378 TCDD	{0.0129}	{0.369}
Total TCDD	0.161	4.61
12378 PeCDD	0.0161	0.461
Total PeCDD	0.226	6.46
123478 HxCDD	0.0646	1.84
123678 HxCDD	0.129	3.69
123789 HxCDD	0.161	4.61
Total HxCDD	1.45	41.5
1234678 HpCDD	2.32	66.4
Total HpCDD	5.16	148
Octa CDD	144	4,105
Total CDD	151	4,305
Furans		
2378 TCDF	{0.0646}	{1.84}
Total TCDF	0.452	12.9
12378 PeCDF	0.0258	0.738
23478 PeCDF	0.0646	1.84
Total PeCDF	0.387	11.1
123478 HxCDF	0.194	5.53
123678 HxCDF	0.0646	1.84
234678 HxCDF	{0.0646}	{1.84}
123789 HxCDF	0.0226	0.646
Total HxCDF	0.613	17.5
1234678 HpCDF	0.387	11.1
1234789 HpCDF	0.129	3.69
Total HpCDF	0.968	27.7
Octa CDF	0.516	14.8
Total CDF	2.94	83.9
Total PCDDs + PCDFs	154	4,389

Nanogram per dry standard cubic meter at 20°C and 1 atm.

^b Micrograms per hour.

{} Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ⁴ ng/dscm, adjusted to 7% O ₂	2378-TCDD ^b Toxic	2378 TOXIC EQUIVALENTS ng/dscm, adjusted to 7% O ₂
	S-M23-I-1 Equivalent Factor		S-M23-I-1
<u>Dioxins</u>			
2378 TCDD	{0.0230}	1.00	{0.0230}
Total TCDD	0.288		- , ,
12378 PeCDD	0.0288	0.500	0.0144
Total PeCDD	0.403		
123478 HxCDD	0.115	0.100	0.0115
123678 HxCDD	0.230	0.100	0.0230
123789 HxCDD	0.288	0.100	0.0288
Total HxCDD	2.59		
1234678 HpCDD	4.14	0.010	0.0414
Total HpCDD	9.20		
Octa CDD	256	0.001	0.256
Total PCDD	268		{0.398}
<u>Furans</u>			
2378 TCDF	{0.115}	0.100	{0.0115}
Total TCDF	0.805		
12378 PeCDF	0.0460	0.050	0.00230
23478 PeCDF	0.115	0.500	0.0575
Total PeCDF	0.690		
123478 HxCDF	0.345	0.100	0.0345
123678 HxCDF	0.115	0.100	0.0115
234678 HxCDF	{0.115}	0.100	{0.0115}
123789 HxCDF	0.0403	0.100	0.00403
Total HxCDF	1.09		
1234678 HpCDF	0.690	0.010	0.00690
1234789 HpCDF	0.230	0.010	0.00230
Total HpCDF	1.73		
Octa CDF	0.920	0.001	0.000920
Total CDF	5.23		{0.143}
Total PCDDs + PCDFs	274		{0.541}

Nanogram per dry standard cubic meter adjusted to 7% oxygen at 20°C and 1 atm.

^b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

() Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

 O_2 and 2378-TCDD equivalents at the baghouse inlet gas stream was 0.541 ng/dscm. The reader is reminded that assumptions made on the basis of the results of testing at inlet location should be made with care, due to the low sample volume and because only one sampling run was conducted at the inlet location instead of the three normally preferred.

2.2.2 Baghouse Outlet - Asphalt Production with RAP

PES conducted three Method 23 sampling runs at the baghouse outlet during the production of asphalt concrete with RAP. Table 2.5 summarizes the PCDDs/PCDFs sampling and exhaust gas parameters. Each sampling run was 240 minutes in duration, with the exception of the third test run which was 200 minutes. The third test run was stopped early at the direction of the EPA WAM due to storms and lightning in the vicinity of the test location. The (3-run) average sample volume was 153.390 dscf or 4.344 dscm. The (3-run) average stack gas temperature was 206°F and contained 5.3 % CO₂ by volume, 13.1 % O₂ by volume, and 21.6% moisture by volume. The (3-run) average stack gas volumetric flow rate was 36,596 acfm or 22,533 dscfm or 638.1 dscmm.

Table 2.6 presents the PCDDs/PCDFs concentrations and emission rates at the baghouse exhaust. The (3-run) average concentration of total PCDDs was 0.127 ng/dscm, and the (3-run) average concentration of total PCDF in the stack gas was 0.0796 ng/dscm. The (3-run) average concentration of total PCDDs/PCDFs was 0.207 ng/dscm. These values corresponded to average emission rates of 4.69 μ g/hr for total PCDDs, 3.04 μ g/hr for total PCDFs, and 7.72 μ g/hr for total PCDDs/PCDFs compounds.

Table 2.7 presents the PCDDs/PCDFs concentrations adjusted to a reference diluent concentration of 7% O_2 . Since the oxygen concentration of the effluent gas was greater than 7% for every sampling run, the adjusted PCDDs/PCDFs values are greater than the actual values. The (3-run) average adjusted concentration of total PCDDs was 0.227 ng/dscm @ 7% O_2 , the (3-run) average adjusted concentration of total PCDFs was 0.142 ng/dscm @ 7% O_2 , and the (3-run) average adjusted concentration of total PCDDs/PCDFs was 0.369 ng/dscm @ 7% O_2 . Also presented in Table 2.7 are the PCDDs and PCDFs concentrations at 7% O_2 , adjusted to a toxicity equivalent to that of 2378 TCDD. The (3-run) average concentration of PCDDs was 0.000240 ng/dscm when presented on a 2378-TCDD toxic equivalent basis, the (3-run) average concentration of total PCDDs/PCDFs compounds was 0.00830 ng/dscm, corrected to a 2378-TCDD toxic equivalent basis, at a reference diluent concentration of 7% O_2 .

2.2.3 Baghouse Outlet - Asphalt Production without RAP

At the request of EPA, PES conducted one test run at the baghouse outlet during the production of asphalt concrete without the addition of RAP. Table 2.8 summarizes the PCDDs/PCDFs emissions sampling. The total sampling time for the test run was 240 minutes. The sample volume was 165.621 dscf or 4.690 dscm. The stack gas temperature was 180 °F and contained $3.2 \% CO_2$, $10.8 \% O_2$, and 18.9 % moisture. The stack gas volumetric flow rate was 37,027 acfm or 24,580 dscfm or 696.0 dscmm.

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE OUTLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1456	0822-1240	1405-1730	
Sampling Duration, minutes	240	240	200	227
Average Sampling Rate, dscfm ^a	0.524	0.774	0.743	0.680
Sample Volume:				1
dscf ^b	125.786	185.768	148.617	153.390
dscm ^c	3.562	5.260	4.208	4.344
Stack Gas Temperature, °F	185	223	209	206
O_2 Concentration, % by volume	13.1	13.1	13.1	13.1
CO ₂ Concentration, % by volume	5.3	5.5	5.1	5.3
Moisture, % by volume	18.4	24.1	22.4	21.6
Stack Gas Volumetric Flow Rate:	1			
acfm ^d	30,291	41,402	38,097	36,596
dscfm ^a	20,210	24,166	23,222	22,533
dscmm ^e	572.3	684.3	657.6	638.1
Isokinetic Sampling Ratio, %	94.6	106.8	106.7	102.7

* Dry standard cubic feet per minute at 68°F and 1 atm ^b Dry standard cubic feet at 68°F and 1 atm

° Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^e Dry standard cubic meters per minute at 20°C and 1 atm

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Nanogram per dry standard cubic meter at 20°C and 1 atm.

^b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

PCDDs/PCDFs STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

CONCENTRATION ^a ng/dscm, adjusted to 7 percent O ₂	CONCENTRATION ⁴ ng/dscm, adjusted to 7 percent O ₂			nt O ₂	D TEF ⁵	nş	2378 TOXIC EC g/dscm, adjusted	QUIVALENTS d to 7 percent	S O ₂
	S-M23-O-1	S-M23-O-2	S-M23-O-3	Average					
Dioxins	ND	ND	(0.00127)	10 0004231	1.0	ND	ND	(0.00127)	(0.000423)
Total TCDD 12378 PeCDD Total PeCDD 123478 HxCDD 123678 HxCDD 123789 HxCDD Total HxCDD 1234678 HpCDD Total HpCDD	ND 0.00350 ND {0.0200} ND 0.00500 0.0100 0.0600 0.0300 0.0300 0.0500	ND 0.00678 ND 0.0102 ND {0.00678} ND 0.0271 {0.0136} 0.0136	{0.00127} 0.00423 0.00212 0.0127 0.00339 0.00847 {0.00423} 0.0635 0.0254 0.0254	{0.00423} 0.00484 0.00706 {0.0143} 0.00113 0.00675 {0.00475} 0.0502 {0.0230} 0.0230}	0.50 0.10 0.10 0.10 0.10	ND ND 0.000500 0.00100 0.000300	ND ND {0.000678} ND {0.000136}	{0.00127} 0.00106 0.000339 0.000847 {0.000423} 0.000254	{0.000423} 0.000353 0.000113 {0.000675} {0.000475} {0.000230}
Octa CDD Total CDD <u>Furans</u>	0.265	0.0644 0.122	0.0254 0.0297 0.0550 0.128 0.161 {0.227}	0.001	0.000265 0.00207	0.0000644 {0.0000877}	0.0000550 {0.00425}	0.000128 {0.000240}	
2378 TCDF Total TCDF 12378 PeCDF 23478 PeCDF Total PeCDF	{0.00400} 0.0150 {0.00300} {0.00500}	ND 0.0136 ND ND	0.00847 0.0127 0.00296 0.00423	{0.00416} 0.0138 {0.00199} {0.00308}	0.10 0.05 0.50	{0.000400} {0.000150} {0.00250}	ND ND ND	0.000847 0.000148 0.00212	{0.000416} 0.0000994 {0.00154}
123478 HxCDF 123678 HxCDF 234678 HxCDF 123789 HxCDF 123789 HxCDF Total HxCDF	0.0230 0.0200 0.00500 0.0100 ND 0.0600	ND 0.0136 0.00339 0.00678 ND 0.0373	0.0234 0.0254 0.00847 0.00847 ND 0.0720	0.0188 0.0197 0.00562 0.00842 0.00 0.0564	0.10 0.10 0.10 0.10	0.00200 0.000500 0.00100 ND	0.00136 0.000339 0.000678 ND	0.00254 0.000847 0.000847 ND	0.00197 0.000562 0.000842 0.00
1234678 HpCDF 1234789 HpCDF Total HpCDF Octa CDF Total CDF	{0.0350} 0.0200 0.0200 0.0200 0.0200 0.140	0.0237 0.00678 0.0407 0.0203 0.112	0.0381 {0.0127} 0.0381 0.0254 0.174	{0.0323} {0.0132} 0.0329 0.0219 0.142	0.01 0.01 0.001	{0.000350} 0.000200 0.0000200 {0.00012}	0.000237 0.0000678 0.0000203 0.00270	0.000381 {0.000127} 0.0000254 0.00788	{0.000323} {0.000132} 0.0000219 {0.00590}
Total CDD + CDF	{0.539}	0.234	0.335	{0.369}		{0.00919}	{0.00357}	{0.0121}	{0.0083 0}

* Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

{} Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M23-O-4
Date	8/21/97
Time	0741-1148
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.690
Sample Volume:	
dscf ^b	165.621
dscm ^c	4.690
Stack Gas Temperature, °F	180
O_2 Concentration, % by volume	10.8
CO ₂ Concentration, % by volume	3.2
Moisture, % by volume	18.9
Stack Gas Volumetric Flow Rate:	
acfm ^d	37,027
dscfmª	24,580
dscmm ^e	696.0
Isokinetic Sampling Ratio %	93.7

^a Dry standard cubic feet per minute at 68°F and 1 atm

^b Dry standard cubic feet at 68°F and 1 atm

° Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^e Dry standard cubic meters per minute at 20°C and 1 atm

Table 2.9 presents the PCDDs/PCDFs stack gas concentrations and emission rates. The concentration of total PCDDs was 0.0527 ng/dscm, and the concentration of PCDFs was 0.0576 ng/dscm. The concentration of total PCDDs/PCDFs was 0.110 ng/dscm. These values corresponded to emission rates of 2.20 µg/hr for PCDDs, 2.40 µg/hr for PCDFs and a total emission rate of 4.60 µg/hr for all PCDDs/PCDFs. Table 2.10 presents the PCDDs/PCDFs concentrations adjusted to 7% O_2 . The measured stack gas O_2 concentration was 10.8 %. Therefore, the adjusted PCDDs/PCDFs concentrations were greater than the actual concentrations. The adjusted concentration of total PCDDs was 0.725 ng/dscm @ 7 % O_2 , and 0.0792 ng/dscm @ 7 % O_2 . Table 2.10 also presents the adjusted concentrations in 2378 toxic equivalents. The TEF concentration for total PCDDs/PCDFs was 0.004 µg/dscm.

2.3 PARTICULATE MATTER AND METALS MEASUREMENTS

2.3.1 Baghouse Inlet - Asphalt Production with RAP

As stated previously, only one sampling test run was attempted at the baghouse inlet. Table 2.11 summarizes the particulate matter/metals emissions sampling and gas parameters at the baghouse inlet. The total sampling time was 20 minutes. The sample volume was 10.491 dscf or 0.297 dscm. The exhaust gas temperature was 230 °F and contained 5.3% CO₂, 13.1% O₂, and 26.1% moisture. The exhaust gas volumetric flow rate was 23,773 acfm or 13,353 dscfm or 378 dscmm. Although the test was not valid due to a low sample volume, the sample was recovered, extracted, and analyzed at the instruction of the EPA WAM to determine particulate matter and metals catch weights.

Table 2.12 summarizes the exhaust gas particulate matter concentrations and emission rates at the baghouse inlet. The concentration was 63.7 grains per dry standard cubic foot (gr/dscf) or 146 grams per dry standard cubic meter (g/dscm). The concentrations are also shown adjusted to 7% O_2 . The average mass emission rate was 7,296 pounds per hour (lb/hr) or 3,310 kilograms per hour (kg/hr).

Table 2.13 summarizes the exhaust gas metals concentrations and emission rates. Most of the target metals were found to be present in the sample. Concentrations ranged from 11,944 micrograms per dry standard cubic meter (μ g/dscm) for phosphorus to 3.26 μ g/dscm for selenium.

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ^a ng/dscm, as measured	EMISSION RATE⁵ µg/hr	
	S-M23-O-4	S-M23-O-4	
Dioxins			
2378 TCDD	ND	ND	
Total TCDD	{0.00149}	{0.0623}	
12378 PeCDD	ND	ND	
Total PeCDD	0.00213	0.0890	
123478 HxCDD	ND	ND	
123678 HxCDD	0.00213	0.0809	
123789 HxCDD	ND	ND	
Total HxCDD	0.0149	0.623	
1234678 HpCDD	{0.00853}	{0.356}	
Total HpCDD	(0.0149)	{0.623}	
Octa CDD	0.0192	0.801	
Total PCDD	{0.0527}	{2.20}	
_			
Furans	ND	NTD	
2378 TCDF		ND 0.267	
Total TCDF	0.00640	0.207	
12378 PeCDF	ND (0.00212)		
23478 PeCDF	{0.00213}	{0.0890}	
Total PecDr	0.00213	0.0890	
123478 HxCDF	0.00640	0.267	
123678 HxCDF	0.00213	0.0890	
234678 HxCDF	0.00426	0.178	
123789 HxCDF	ND	ND	
Total HxCDF	0.0192	0.801	
1234678 HpCDF	0.0107	0.445	
1234789 HpCDF	0.00426	0.178	
Total HpCDF	0.0192	0.801	
Octa CDF	0.0107	0.445	
Total PCDF	0.0576	2.40	
Total PCDDs+ PCDFs	{0.110}	{4.60}	

* Nanogram per dry standard cubic meter at 20°C and 1 atm.

^b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{} Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

CONGENER	CONCENTRATION ^a ng/dscm, adjusted to 7 % O ₂	2378-TCDD ^b Toxic Equiv.	2378 TOXIC EQUIVALENTS ng/dscm, adjusted to 7 % O ₂		
	S-M23-O-4	Factor	S-M23-O-4		
Dioxins					
2378 TCDD	ND	1.000	ND		
Total TCDD	{0.00205}	0.500	ND		
Total PeCDD	0.00293	0.500	RD		
123478 HxCDD	ND	0.100	ND		
123678 HxCDD	0.00293	0.100	0.000293		
123789 HxCDD	ND	0.100	ND		
Total HXCDD	0.0205	0.010	/0.0001173		
Total HnCDD	{0.0117}	0.010	10.0001177		
Octa CDD	0.0264	0.001	0.0000264		
Total CDD	{0.725}		{0.000437}		
Furans					
2378 TCDF	ND	0.100	ND		
Total TCDF	0.00880				
12378 PeCDF	ND	0.050	ND		
23478 PeCDF	{0.00293}	0.500	{0.00147}		
Total PeCDF	0.00293	0.000	0.000000		
123478 HxCDF	0.00880	0.100	0.000880		
1230/8 HXCDF	0.00293	0.100	0.000293		
123789 HxCDF	ND	0.100	ND		
Total HxCDF	0.0264				
1234678 HpCDF	0.0147	0.010	0.000147		
1234789 HpCDF	0.00587	0.010	0.0000587		
Total HpCDF	0.0264	0.001	0.00001.15		
Total CDF	0.014/	0.001	{0.000147		
Total PCDDs + PCDFs	{0.152}		{0.000389}		

* Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

^b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

{ }Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

PARTICULATE/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Date	8/19/97
Time	0915-1010
Sampling Duration, minutes	20
Average Sampling Rate, dscfm ^a	0.525
Sample Volume:	
dscf ^b	10.491
dscm ^c	0.297
Inlet Gas Temperature, °F	230
O_2 Concentration, % by volume	13.1
CO_2 Concentration, % by volume	5.3
Moisture, % by volume	26.1
Exhaust Gas Volumetric Flow Rate:	
acfm ^d	23,773
dscfmª	13,353
dscmm ^e	378
Isokinetic Sampling Ratio, %	93.6

^a Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

° Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at inlet gas conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Date	8/19/97
Time	0915-1010
Particulate Matter Concentration:	
gr/dscf ^a	63.7
$gr/dscf(a)$ 7% O_2^b	114
g/dscm ^c	146
$g/dscm (a) 7\% O_2^d$	260
Particulate Matter Emission Rate:	
lb/hr •	7,296
kg/hr '	3,310

^a Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O_2 .

⁶ Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O_2 .

^e Pounds per hour.

^fKilograms per hour.

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP** ASPHALT PLANT "A" - CLAYTON, NC

S-M29-I-1
8/19/97
0915-1010
ND
ND
ND
51.2
91.2
1.16
2,063
3,677
46.8
ND
ND
ND
22.5
40.1
0.511

91.7
163
2.08
00.0
89.2
159
2.02
417
743
9.46

 Micrograms per dry standard cubic meter @ 20°C and 1 atm.
 Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂. ^c Grams per hour.

ND - Not detected.

TABLE 2.13 (Concluded)

ł

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-I-1
Lead (Pb)	
ug/dscm ^a	170
$\mu g/dscm @ 7\% O_b$	302
g/hr ^c	3.85
Manganese (Mn)	
ug/dscm ^a	3,946
$\mu g/dscm @ 7\% O_{2}^{b}$	7.032
g/hr ^c	89.5
Mercury (Hg)	
µg/dscm ^a	ND
$\mu g/dscm @ 7\% O_{2}^{b}$	ND
g/hr ^c	ND
Nickel (Ni)	
μg/dscm ^a	39.8
$\mu g/dscm @ 7\% O_{2}^{b}$	70.9
g/hr ^c	0,903
Phosphorus (P)	
μg/dscm ^a	11,934
$\mu g/dscm @ 7\% O_2^b$	21,267
g/hr ^c	271
Silver (Ag)	
μg/dscm [*]	ND
$\mu g/dscm @ 7\% O_2^b$	ND
g/hr ^c	ND
Selenium (Se)	
µg/dscmª	3.26
μg/dscm @ 7% O ₂ ^b	5.81
g/hr ^c	0.0740
Thallium (Tl)	
μg/dscm [*]	9.76
μg/dscm @ 7% O2 ^b	17.4
g/hr ^c	0.221
Zinc (Zn)	
µg/dscm*	1,752
$\mu g/dscm @ 7\% O_2^b$	3,123
g/hr ⁴	39.8

Micrograms per dry standard cubic meter @ 20°C and 1 atm.
 Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

Grams per hour.

ND - Not detected.

2.3.2 Baghouse Outlet - Asphalt Production with RAP

Table 2.14 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for each test run was 240 minutes, except the third test run which was 200 minutes. The average sample volume was 166.137 dscf or 4.704 dscm. The average stack gas temperature was 203°F and contained 5.3% CO_2 , 13.1% O_2 , and 20.2% moisture. The average stack gas volumetric flow rate was 37,437 acfm or 23,661 dscfm or 670 dscmm.

Table 2.15 summarizes the stack gas particulate matter concentrations and emission rates. The average concentration was 0.0176 gr/dscf or 0.0402 g/dscm. The concentrations are also shown adjusted to 7% O_2 . The average emission rate was 3.43 lb/hr or 1.56 kg/hr.

Table 2.16 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were found to be present in all three samples. Average concentrations ranged from 0.0231 μ g/dscm for antimony to 45.5 μ g/dscm for phosphorus. Beryllium was not detected during any of the sampling runs, cobalt was only detected during the first run, and silver and thallium were only detected during two of the sampling runs. There were two instances where the target metal was detected, but was present at a concentration less than the concentration detected in the reagent blank samples. In these two cases (antimony during the third run and silver during the second run) a value of 0.00 has been reported.

2.3.3 Baghouse Outlet - Asphalt Production without RAP

PES conducted one test run at the baghouse outlet during asphalt production without RAP. Table 2.17 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for the test run was 240 minutes. The sample volume was 168.390 dscf or 4.768 dscm. The stack gas temperature was 180° F and contained $3.2 \% CO_2$, $10.8 \% O_2$, and 18.7 % moisture. The stack gas volumetric flow rate was 36,415 acfm or 24,240 dscfm or 686 dscmm.

Table 2.18 summarizes the stack gas particulate matter concentrations and emission rates. The concentration was 0.00122 gr/dscf or 0.00279 g/dscm. The concentrations are also shown adjusted to $7\% O_2$. The average PM emission rate was 0.253 lb/hr or 0.115 kg/hr.

Table 2.19 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were present in the sample. Concentrations ranged from 0.0436 μ g/dscm for silver to 15.2 μ g/dscm for phosphorus. In general, the emissions of metals during production without RAP was less that emissions during production with RAP. In the cases of antimony, silver, and selenium, the quantities detected in the sample were less than the quantities detected in the reagent blanks. For these three targets, values of 0.00 have been reported.

PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Sampling Duration, minute	240	240	200	227
Average Sampling Rate, dscfm ^a	0.644	0.830	0.723	0.732
Sample Volume:				
dscf ^b	154.579	199.270	144.561	166.137
dscm ^c	4.377	5.643	4.094	4.704
Stack Gas Temperature, °F	179	222	207	203
O_2 Concentration, % by volume	13.1	13.1	13.1	13.1
CO_2 Concentration, % by volume	5.3	5.5	5.1	5.3
Moisture, % by volume	17.4	19.0	24.2	20.2
Volumetric Flow Rate:				
acfm ^d	32,964	42,043	37,305	37,437
dscfm ^a	22,478	26,229	22,276	23,661
dscmm ^e	637	743	631	670
Isokinetic Sampling Ratio, %	95.6	103.9	106.5	102.0
Stack Gas Opacity:				
Average Opacity, %	< 5	< 5	< 5	< 5
Calculated Average, %	2.15	1.21	0.702	1.35
Max. Single Reading, %	15	20	15	-
Max. 6-min. Block Avg., %	6.25	2.62	1.67	-
Max. 6-min Rolling Avg., %	6.46	2.75	2.17	-

* Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

^c Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.
PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Particulate Matter Concentration:				
gr/dscf ^a	0.0449	0.00482	0.00292	0.0176
$\operatorname{gr/dscf} \widehat{a} 7\% \operatorname{O}_2^{\mathfrak{b}}$	0.0800	0.00858	0.00521	0.0313
g/dscm ^c	0.103	0.0110	0.00669	0.0402
$g/dscm @ 7\% O_2^d$	0.183	0.0196	0.0119	0.0716
Particulate Matter Emission Rate:				
lb/hr ^e	8.65	1.08	0.558	3.43
kg/hr ^r	3.93	0.491	0.253	1.56

* Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

• Pounds per hour.

^f Kilograms per hour.

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE OUTLET** ASPHALT PRODUCTION WITH RAP **ASPHALT PLANT "A" - CLAYTON, NC**

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Date	8/19/97	8/20/97	8/20/97	
Time	0915-1454	0822-1240	1405-1735	
Antimony (Sb)				
ug/dscm ^a	0.0640	0.00532	0.00	0.0231
$\mu g/dscm @ 7\% O_{2}^{b}$	0.114	0.00947	0.00	0.0412
g/hr ^c	0.00244	0.000237	0.00	0.000893
Arsenic (As)				
µg/dscm [*]	0.608	0.133	0.188	0.310
$\mu g/dscm (a) 7\% O_{3}^{b}$	1.08	0.238	0.334	0.552
g/hr ^c	0.0232	0.00594	0.00712	0.0121
Barium (Ba)				
µg/dscm [*]	49.9	8.37	4.39	20.9
$\mu g/dscm (\widehat{a}) 7\% O_2^b$	8 9.0	14.9	7.82	37.2
g/hr ^c	1.91	0.373	0.166	0.815
Beryllium (Be)				
µg/dscm [*]	ND	ND	ND	ND
$\mu g/dscm (a) 7\% O_2^{b}$	ND	ND	ND	ND
g/hr ^c	ND	ND	ND	ND
Cadmium (Cd)				
µg/dscm ^в	0.199	0.395	0.440	0.345
$\mu g/dscm (a) 7\% O_2^{b}$	0.355	0.704	0.784	0.614
g/hr ^c	0.00759	0.0176	0.0166	0.0139
Chromium (Cr)				
µg/dscm [*]	1.47	0.161	0.125	0.584
$\mu g/dscm @ 7\% O_2^b$	2.61	0.287	0.222	1.04
g/hr ^c	0.0560	0.00719	0.00472	0.0226
Cobalt (Co)				
µg/dscm*	0.416	ND	ND	0.139
μ g/dscm @ 7% O ₂ ^b	0.741	ND	ND	0.247
g/hr ^c	0.0159	ND	ND	0.00529
Copper (Cu)				
µg/dscm [*]	4.05	0.77	1.68	2.16
$\mu g/dscm @ 7\% O_2^b$	7.21	1.37	2.99	3.86
g/hr ^c	0.155	0.0342	0.0635	0.0841
Lead (Pb)			1	
μg/dscm [*]	6.07	1.41	26.6	11.4
$\mu g/dscm @ 7\% O_2^b$	10.8	2.51	47.4	20.2
g/hr ⁴	0.232	0.0628	1.01	0.434

^a Micrograms per dry standard cubic meter @ 20° C and 1 atm.
^b Micrograms per dry standard cubic meter @ 20° C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

ND - Not Detected.

TABLE 2.16 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "A" - CLAYTON, NC**

Run Number	S-M29-O-1	S-M29-O-2	S-M29-O-3	Average
Manganese (Mn)				
ug/dscm [*]	47.1	5.88	3.46	18.8
$\mu g/dscm @ 7\% O_{2}^{b}$	83.9	10.5	6.17	33.5
g/hr ^c	1.80	0.262	0.131	0.731
Mercury (Hg)				01751
µg/dscm [*]	0.500	0.431	3.78	1.57
$\mu g/dscm @ 7\% O_3^b$	0.892	0.767	6.74	2.80
g/hr ^c	0.0191	0.0192	0.143	0.0605
Nickel (Ni)			011.12	010002
ug/dscm ^a	0.868	0.298	0.784	0.650
$\mu g/dscm @ 7\% O_{3}^{b}$	1.55	0.53	1.40	1.16
g/hr ^c	0.0332	0.0133	0.0297	0.0254
Phosphorus (P)				
µg/dscm ^a	90.9	20.4	25.3	45.5
$\mu g/dscm (a) 7\% O_2^{b}$	162	36.3	45.1	81.2
g/hr ^c	3.47	0.909	0.959	1.78
Silver (Ag)				
µg/dscm ^a	ND	0.00	0.151	0.0505
$\mu g/dscm @ 7\% O_2^b$	ND	0.00	0.270	0.0900
g/hr	ND	0.00	0.00573	0.00191
Selenium (Se)				
µg/dscm [*]	0.139	0.0603	2.32	0.840
$\mu g/dscm @ 7\% O_2^b$	0.248	0.107	4.13	1.50
g/hr ^c	0.00532	0.00269	0.0877	0.0319
Thallium (Tl)				
µg/dscm [*]	ND	0.0372	0.0562	0.0311
$\mu g/dscm @ 7\% O_{3}^{b}$	ND	0.0663	0.100	0.0555
g/hr ⁴	ND	0.00166	0.00213	0.00126
Zinc (Zn)				-
μg/dscm [*]	32.3	10.4	9.22	17.3
μg/dscm @ 7% O ₂ ^b	57.5	18.6	16.4	30.8
g/hr ^c	1.23	0.464	0.349	0.682

Micrograms per dry standard cubic meter @ 20°C and 1 atm.
Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

ND - Not detected

PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Date	8/21/97
Time	0741-1153
Compling Dynation minutes	240
Sampling Duration, initiates	0 702
Average Sampling Rate, dscim	0.702
Sample Volume:	
dscf	168.390
dscm ^c	4.768
Stack Gas Temperature, °F	180
O ₂ Concentration, % by volume	10.8
CO. Concentration. % by volume	3.2
Moisture. % by volume	18.7
Stack Gas Volumetric Flow Rate:	
acfm ^d	36,415
dscfm ^a	24,240
dscmm ^e	686
Isokinetic Sampling Ratio, %	95.0
Stack Gas Opacity:	
Average Opacity, %	< 5
Calculated Average, %	0.104
Max. Single Reading, %	5
Max. 6-min. Block Avg., %	0.42
Max. 6-min Rolling Avg., %	0.42

[•] Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

° Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Date	8/21/97
Time	0741-1153
Particulate Matter Concentration:	
gr/dscf ^a	0.00122
$gr/dscf$ @ 7% O_2^{b}	0.00168
g/dscm ^c	0.00279
$g/dscm @ 7\% O_2^d$	0.00384
Particulate Matter Emission Rate:	
lb/hr ^e	0.253
kg/hr ^r	0.115

^a Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O_2 .

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O_2 .

Pounds per hour.

'Kilograms per hour.

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER BAGHOUSE OUTLET** ASPHALT PRODUCTION WITHOUT RAP **ASPHALT PLANT "A" - CLAYTON, NC**

Run Number	S-M29-O-4
Date	8/21/97
Time	0741-1153
Antimony (Sb)	
$\mu g/dscm^{a}$	0.00
$\mu g/dscm @ 7\% O_2^b$	0.00
g/hr ^c	0.00
Arsenic (As)	
$\mu g/dscm^{a}$	ND
$\mu g/dscm @ 7\% O_2^b$	ND
g/hr ^c	ND
Barium (Ba)	
μ g/dscm ^a	2.06
μ g/dscm @ 7% O ₂ ^b	2.84
g/hr ^c	0.0849
Beryllium (Be)	
μ g/dscm ^a	ND
μ g/dscm @ 7% O ₂ ^b	ND
g/hr ²	ND
Cadmium (Cd)	
$\mu g/dscm^{a}$	ND
μ g/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Chromium (Cr)	
$\mu g/dscm^*$	0.00881
$\mu g/dscm @ 7\% O_2^{\circ}$	0.0121
g/hr	0.000363
Cobalt (Co)	
$\mu g/dscm^*$	ND
$\mu g/dscm (a) / \% O_2^{\circ}$	
g/nr Compar (Cu)	ND
	0.277
$\mu g/dscm$	0.277
$\mu g uscm (\mu) / 70 O_2^{-1}$	0.0114
g/II ⁻	0.0114
Lead (FD)	0.271
$\mu g/dscm @ 7% \Omega^{b}$	0.571
a/br^{2}	0.0152
Б ^{/ 111}	0.0100

Micrograms per dry standard cubic meter @ 20°C and 1 atm.
Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.
Grams per hour.

TABLE 2.19 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP** ASPHALT PLANT "A" - CLAYTON, NC

Run Number	S-M29-O-4
Manganese (Mn)	
$\mu g/dscm^{a}$	14.8
$\mu g/dscm @ 7\% O_{3}^{b}$	20.4
g/hr ^c	0.611
Mercury (Hg)	
μ g/dscm ^a	0.438
$\mu g/dscm @ 7\% O_{2}^{b}$	0.603
g/hr ^c	0.0181
Nickel (Ni)	
μ g/dscm ^a	0.0778
μ g/dscm @ 7% O ₂ ^b	0.107
g/hr ^c	0.00320
Phosphorus (P)	
μ g/dscm ^a	15.2
$\mu g/dscm @ 7\% O_2^b$	20.9
g/hr ^c	0.624
Silver (Ag)	
µg/dscmª	0.00
μ g/dscm @ 7% O ₂ ^b	0.00
g/hr ^c	0.00
Selenium (Se)	
μ g/dscm [*]	0.00
μ g/dscm @ 7% O ₂ ^b	0.00
g/hr ^c	0.00
Thallium (Tl)	
μ g/dscm [*]	ND
μ g/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Zinc (Zn)	
µg/dscm*	4.80
μ g/dscm @ 7% O ₂ ^b	6.61
g/hr ^c	0.198

Micrograms per dry standard cubic meter @ 20° C and 1 atm.
Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

2.4 DETERMINATION OF VISIBLE EMISSIONS

Visible Emissions Observations (VEOs) of the stack exhaust were made during the testing by a certified observer. Observations were made simultaneously with the testing, except during the first run when VEOs were suspended during the period from 1207 to 1304 when the location of the sun was directly over the observer. The average opacity during asphalt production with RAP is presented along with the outlet stack gas parameters in Table 2.14. For each run the calculated average opacities were 2.15, 1.21, and 0.702%. Since VEO observations are recorded in 5% increments, the average opacity during these runs is more properly reported as less than 5% opacity. Also presented are the maximum single opacity observed, the maximum 6-minute block average, and the maximum 6-minute rolling average during each test run. During the production of asphalt without RAP, the the calculated average opacity of the outlet gas stream was 0.104%; however, this result is more properly reported as an average opacity of < 5 %. The opacity data during production with RAP are presented along with the stack gas parameters in Table 2.17.

. .

3.0 PROCESS DESCRIPTION

The Asphalt Plant "A" concrete production facility in Clayton, North Carolina, has been in operation since 1989. It is a counter flow, continuous drum mix process. The dryer/mixer is an ASTEC double-barrel drum, a variation of the drum mixer, with a rated capacity of 400 tons per hour (tph). The plant has the capability of producing up to 15 asphalt mix types, with or without the use of RAP.

Asphalt concrete, called "hot mix asphalt" (HMA) by the industry, is a mixture of wellgraded, high quality aggregate that is heated and mixed with liquid asphalt cement to produce paving material. The characteristics of the asphalt concrete are determined by the relative amounts and types of aggregate (and RAP) used. In the asphalt reclamation process, old asphalt pavement is removed from the road surface, transported to the plant, and crushed and screened to the appropriate size for further processing.

In the counter flow continuous double-barrel drum mix process, virgin aggregate of various sizes is fed to the drum by cold feed controls in proportions dictated by the final mix specifications. Aggregate is delivered by conveyor belt to the inner drum, entering at the opposite end of the burner (hence, the descriptor "counter" flow). The aggregate moves toward the burner within the inner drum and is dried. The hot aggregate falls to the outer drum through holes at the burner end of the inner drum. As the hot aggregate moves along the outer drum, liquid asphalt cement and conditioner are delivered to the drum mixer by a variable flow pump that is electronically linked to the aggregate feed weigh scales. Recycled dust from the control system and RAP (if used) are also added into the outer drum. The resulting asphalt concrete mixture is discharged from the outer drum and conveyed to storage silos for delivery to trucks.

There are five cold storage bins and three hot mix storage silos at Asphalt Plant "A". The hot mix storage silo capacity is 200 tons each, for a total of 600 tons. There are three screens for aggregate sizing and one 52,000 gallon (130 ton) heated asphalt cement storage vessel. The plant uses virgin and recycled No. 2 fuel oil, supplied by Noble Oil Services, Inc., for all its process fuel needs. A fuel assay report is presented in Appendix A. Virgin fuel oil is used during extremely cold weather and/or if there is a fuel-related problem with the burner. Therefore, virgin fuel is usually only used during the winter months (January/February). The amount of energy needed from the fuel for the asphalt production process is 225,600 BTU per ton of asphalt produced. The hot gas contact time with the aggregate is approximately one minute, and the process time from the beginning of the drum to the coater is approximately six minutes.

Asphalt Plant "A" uses an asphalt cement (AC) called AC-20, obtained from Citgo of Wilmington, North Carolina. An anti-strip conditioner, called Perma-Tac (from Arr-Maz), is sometimes used; antistrip is required for all North Carolina Department of Transportation jobs. For PM control, the Asphalt Plant "A" facility uses a fabric filter. The fabric filter is an ASTEC Pulse-Jet, equipped with 1,024 14-ounce Nomex bags and is operated with an air-to-cloth ratio of 5.54:1 feet per minute. The process exits the drum and coater and proceeds into the fabric filter, where it is exhausted through a stack. As mentioned above, the dust collected by the PM control devices is recycled to the process.

Data were taken at 15-minute intervals during the entire "test period" (i.e., the time period when at least one manual and both instrumental tests were running). According to plant personnel, the plant was operating under normal conditions during the tests.

The average asphalt concrete production rates during the four test runs were 171, 276, 240, and 185 tph, respectively, corresponding to total production of 735, 1,187, 840, and 778 tons. During the first three test runs (August 19 and August 20), a surface asphalt coating that included RAP was produced. During the fourth test run (August 21), a surface coating (accounting for 75 % of the total asphalt concrete produced) and a binder coating (accounting for 25 % of total production) were produced, both without RAP. Recycled No. 2 fuel oil was used for fuel in the production process during the tests. Conditioner was used during the four test runs at a rate of 0.25 % of the asphalt cement used, for a total of 186, 302, 220, and 200 pounds, respectively, during the four test runs.

Table 3.1 summarizes the operating conditions observed during the EPA source test periods at Asphalt Plant "A". Tables 3.2 and 3.3 describe the asphalt mixes produced and the fuel used, respectively, during the tests. Table 3.4 describes the specifics of plant operation during the tests. Appendix A shows all the data recorded during the tests, along with the results of statistical analyses.

TABLE 3.1

PLANT OPERATING CONDITIONS ASPHALT PLANT "A" - CLAYTON, NC

	Test Run			
Process Data	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153
Product Type(s) [*]	surface mix, with RAP (BCSC, Type RDS)	surface mix, with RAP (BCSC, Type RDS)	surface mix, with RAP (BCSC, Type RDS)	surface mix, no RAP (BCSC, Type HDS); and binder (BCBC, Type H)
Asphalt Concrete Production Rate, tph Average ^b Range Total Produced, tons	171 146-254 735	276 223-302 1,187	240 152-254 840	185 150-204 778
Mix Temperature, °F Average ^b Range	305 295-315	312 303-346	310 299-322	308 271-351
Raw Material (Virgin Aggregate) Use Rate, tph Average ^b Range Total Used, tons	145 126-213 622	236 191-255 1,013	205 138-215 718	176 142-194 740
RAP Use rate, tph Average ^b Range Total Used, tons	18 13-27 76	28 21-32 119	24 17-27 85	none
Asphalt Cement Use rate, tph Average ^b Range Total Used, tons	8.7 7.5-12.6 37	14.0 11.4-15.5 60	12.3 7.8-13.0 43	9.2 7.8-10.6 39
Conditioner (lb) ^c	186	302	216	200

TABLE 3.1 (Concluded)

PLANT OPERATING CONDITIONS ASPHALT PLANT "A" - CLAYTON, NC

		Tes	t Run	
Process Data	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153
Fabric Filter Operation ^b				
Temperature, °F Inlet Outlet	193 170	255 214	232 195	201 175
Pressure Drop inches water Average ^b Range	1.8 1.5-2.9	3.3 2.1-4.0	2.5 1.8-2.9	1.9 1.8-2.0
Fuel Use Rate, ^d gal/hr Total Used, gal	214 920	410 1,762	334 1,168	280 1,117

^a BCSC, Type HDS = bituminous concrete, surface coarse, type high density surface
 BCSC, Type RDS = bituminous concrete, surface coarse, type high density surface with RAP
 BCBC, Type H = bituminous concrete, binder coarse (type H)

(See Table 3.2 for more detail on product specifications)

^b As a straight average of the 15-minute interval data shown in Appendix A.

^c The amount of conditioner used was calculated as 0.25 percent of the asphalt cement.

^d Fuel use rate was calculated from the total fuel used during the time interval.

TABLE 3.2

ASPHALT MIX SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC

Product	Material	Amount
Surface Coating (BCSC, Type HDS)	78-M screenings sand asphalt cement conditioner	50% aggregate 30% aggregate 20% aggregate 5.2% mix 0.25% cement
Surface Coating, with RAP (BCSC, Type RDS)	78-M dry screenings natural sand RAP Asphalt cement total additional from RAP conditioner	43% aggregate 27% aggregate 20% aggregate 10% aggregate 5.1% mix 4.6% mix 0.5% mix 0.25% cement
Binder (BCBC, Type H)	78-M #67 screenings sand asphalt cement conditioner	 16% aggregate 46% aggregate 20% aggregate 18% aggregate 4.5% mix 0.25% cement

TABLE 3.3

FUEL SPECIFICATIONS ASPHALT PLANT "A" - CLAYTON, NC

Fuel Type	Char	acteristics	Descriptor(s)
OIL	flash point lead sulfur	150°F 28 mg/kg 3590 mg/kg (0.36%)	recycled no. 2 diesel fuel

TABLE 3.4

SPECIFICS OF PLANT OPERATION ASPHALT PLANT "A" - CLAYTON, NC

		Test	Run	
Parameter	S-M23-O-1 S-M29-O-1 8/19/97 0915-1456	S-M23-O-2 S-M29-O-2 8/20/97 0822-1240	S-M23-O-3 S-M29-O-3 8/20/97 1405-1735	S-M23-O-4 S-M29-O-4 8/21/97 0741-1153
Plant Shut Downs ^a (with approximate duration)	none	0930 (14 min)	none	none
Plant Production Rate Change(s)	1115-1145: mix rate slowed from nominally 250 to 200 tph 1200-1500: mix rate slowed from nominally 200 to 150 tph	0945-1245: mix rate increased from nominally 225 to 300 tpy	1715-1745: mix rate decreased from nominally 250 to 150 tph	1030-1200: mix rate increased from nominally 180 to 200 tph
Produce Changes	none	попе	none	0730-0815, 0900-0915, 1015-1115: HDS produced (600 tons) 0830-0900, 0915-1000, 1155-1200: binder produced 195 tons)

* Shutdown occurred because the RAP feed went down.

4.0 SAMPLING LOCATIONS

Isokinetic sampling runs were attempted at both the baghouse inlet and outlet sampling locations, but sampling was canceled at the baghouse inlet at the direction of the EPA WAM. Detailed descriptions of the sampling locations and traverse point layouts follow.

4.1 BAGHOUSE INLET SAMPLING LOCATION

The baghouse inlet location consisted of a 48-1/2-inch diameter round duct which connected the outlet of the drier to the baghouse. A schematic diagram of the inlet sampling location is presented in Figure 4.1. The duct exited the drier vertically, made a 90° bend for the run over to the baghouse, and made a second 90° bend prior to running down into the baghouse. In order to enable for the extraction of gas samples at the baghouse inlet, plant personnel installed two four-inch sample ports 25 inches upstream of the entrance to the baghouse. The nearest upstream disturbance to the sample port was a downward turning elbow, which was located 28 inches (0.58 diameters) from the sample ports. The nearest disturbance downstream of the sample ports was the entrance into the baghouse, which was located 25 inches (0.52 diameters) from the sample ports. Based upon the criteria outlined in Method 1, this sample location was not suitable for isokinetic source sampling. However, after consultation with EPA EMC and EPA ESD personnel, the location was selected because an alternate location with better stack geometry did not exist.

To conduct isokinetic sampling at this location, PES selected the maximum number of sample points for particulate traverses as specified in Method 1, which was 24. The 24-point sampling matrix (which is presented in Figure 4.2) consisted of two twelve-point sample traverses on diameters offset 90° to each other. Prior to the initiation of isokinetic sampling activities at this location, a cyclonic flow check using a Type-S pitot tube was conducted. The results of the cyclonic flow check indicated an average rotation angle from null (α) of 7.2°. Since this angle was less than 20° as specified in Method 1, the sampling location was considered acceptable for isokinetic sampling without modification to the duct or the sampling method.

4.2 BAGHOUSE OUTLET SAMPLING LOCATION

The baghouse outlet sampling location consisted of a square stack attached to the opposite end of the baghouse from the inlet duct. The stack was 49-3/4 inches deep by 33 inches wide, and the equivalent duct diameter was 39.7 inches. Six sample ports were located in the

49-3/4 inch wall. The nearest downstream disturbance from the sample ports was the stack exit, which was located 24 inches (0.60 equivalent duct diameters) from the sample ports. The nearest upstream disturbance to the sample ports was the baghouse ID fan, which was located 88 inches (2.2 equivalent duct diameters) from the sample ports. For this sample location, the minimum number of sample points specified by Method 1 was 24. Accordingly, PES used a 24-point sampling matrix consisting of six four-point sample traverses. Figure 4.3 presents a schematic diagram of the baghouse outlet sampling location. Figure 4.4 presents the baghouse outlet sample traverse point locations.

Figure 4.2 Baghouse Inlet Point Locations - Asphalt Plant "A", Clayton, NC

Figure 4.4 Baghouse Outlet Point Locations - Asphalt Plant "A", Clayton, NC

5.0 SAMPLING AND ANALYSIS PROCEDURES

Table 5.1 summarizes the sampling locations, test parameters, test methods, number of tests, and net run time of each test event. Brief descriptions of each method follow:

5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS

EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to select the measurement site at the baghouse outlet, and as a guideline for the selection of the measurement site at the baghouse inlet. The cyclonic flow check procedure outlined in Method 1 was used to evaluate the suitability of the inlet location for isokinetic sampling. The sample traverse locations at both the inlet and the outlet sampling locations were determined using Method 1 procedures. The measurement sites are discussed in Section 4.0.

5.2 DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE

EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)," was used to determine gas volumetric flow rate at the baghouse inlet and outlet. A Type S pitot tube, constructed according to Method 2 criteria and having an assigned coefficient of 0.84, was connected to an inclined-vertical manometer and used to measure velocity pressure. A Type K thermocouple attached directly to the pitot tube was used to measure gas temperature. For each sampling run, the gas velocity was calculated from the average of the square roots of the velocity pressure readings, the average gas temperature, the molecular weight, and the stack static pressure. The volumetric flow rate was calculated as the product of the average gas velocity and the duct cross-sectional area.

5.3 DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS

EPA Method 3B, "Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air," was used to measure CO_2 and O_2 content of the stack gases. Gas samples were extracted from the baghouse outlet using the integrated, single-point bag sampling technique. The bag contents were analyzed onsite within four hours after sample collection using an Orsat[®] analyzer to determine concentrations of CO_2 and O_2 . The Orsat[®] analyzer used for gas analysis had 0.2 % subdivisions.

TABLE 5.1

SAMPLING LOCATIONS, TEST PARAMETERS, AND TEST METHODS SUMMARY ASPHALT PLANT "A" - CLAYTON, NC

Sampling Location	Parameter	Test Methods	No. of Tests	Net Run Time, Minutes	
Baghouse Inlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals	EPA 1 & 2 EPA 3 EPA 4 EPA 23 EPA 29	1 1 1 1 1	20 20 20 20 20 20	
Baghouse Outlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals	EPA 1 & 2 EPA 3 EPA 4 EPA 23 EPA 29	3 3 3 3 3	240 240 240 240 240 240	

5.4 DETERMINATION OF STACK GAS MOISTURE CONTENT

EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to determine gas moisture content. The quantity of condensate collected during each sampling run was determined gravimetrically as the difference of the pre- and post-test impinger weights. The gas moisture volume was then calculated as the ratio of the moisture volume (assuming a conversion factor of 0.0415 grams per cubic foot) to the sum of the moisture volume and the dry gas volume as indicated by the dry gas meter. The Method 4 procedure was conducted simultaneously with each Method 23 and Method 29 sampling run.

5.5 DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS

EPA Method 23, "Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans From Stationary Sources" was used to determine PCDDs and PCDFs at the baghouse inlet and outlet. A schematic of the Method 23 sampling train is shown in Figure 5.1. Gas samples were extracted from the gas streams isokinetically, and passed through a glass nozzle, heated glass-lined sample probe, a heated glass fiber filter, a coil

Figure 5.1 Method 23 Sample Train Schematic - Asphalt Plant "A", Clayton NC

condenser, and a sorbent resin trap containing approximately 40 grams of spiked XAD*-2 sorbent resin. Ice water from the impinger bath was continuously recirculated through water jackets on the coil condenser and the XAD*-2 sorbent resin trap to cool the sample gas and facilitate absorption of PCDDs and PCDFs onto the XAD*-2 resin. At the conclusion of each sample run, the sample train components (except the sorbent trap) were rinsed the with pesticide-grade acetone, methylene chloride, and toluene.

Upon receipt by the subcontract laboratory, TLI, the samples were concentrated combined, and analyzed using a GC/MS. Sample aliquots were initially separated using a DB-5 capillary column. In cases where the results of the analyses using the DB-5 column indicated the presence of 2378 PCDFs; the sample was re-analyzed using a DB-225 capillary column, and the results of the DB-225 analysis were used for the subsequent calculations of emission rate and toxic equivalency for the 2378 PCDFs congener.

5.6 DETERMINATION OF PARTICULATE MATTER AND METALS

EPA Method 29, "Determination of Metals Emissions From Stationary Sources," was used to determine filterable PM and metals at the baghouse inlet and baghouse outlet locations. The target metals included: Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mn), Mercury (Hg), Nickel (Ni), Phosphorus (P), Silver (Ag), Selenium (Se), Thallium (Tl), and Zinc (Zn). A Method 29 sampling train schematic is presented in Figure 5.2.

Gas samples were withdrawn from the gas streams isokinetically and through a glass nozzle, heated glass-lined sample probe, a heated quartz fiber filter, and an impinger train containing reagents for the absorption of metals. The first impinger in the train was empty, the second and third impingers each contained 100 milliliters (ml) of a 5 % nitric acid (HNO₃)/10 % hydrogen peroxide (H₂O₂) solution, the fourth impinger was empty, the fifth and sixth impingers each contained 100 ml of a 4 % potassium permanganate (KMnO₄)/10 % sulfuric acid (H₂SO₄) solution, and the last impinger contained a known quantity of silica gel.

The sample recovery scheme for metals is shown in Figures 5.3 and 5.4. At the conclusion of each sampling run, the front half of the sampling train (i.e., in front of the tared quartz fiber filter) was rinsed with acetone followed by a solution of 0.1 N HNO₃. The first three impingers were quantitatively recovered and rinsed with 100 ml of HNO₃ solution; the impinger contents and the rinses were collected in a pre-cleaned glass sample bottle. The contents of the fourth and fifth impingers were recovered and impingers rinsed with 100 ml of fresh acidified potassium permanganate solution, followed by a rinse with 100 ml of deionized water into a pre-cleaned glass sample bottle. The fourth and fifth impingers were then rinsed with 25 ml of 8 N HCL solution, which was collected in pre-cleaned glass sample jar containing 200 ml of deionized water.

Analyses for the determination of PM concentrations and emission rates were conducted at PES' facilities in Research Triangle Park, NC. The acetone and nitric acid probe rinses and the filters were transferred to pre-cleaned, tared beakers, evaporated to dryness, desiccated, and weighed to constant weight. At the conclusion of the PM analysis, the beakers were sealed with ParafilmTM and transported to the subcontract laboratory, TLI, for determination of the target metals content. Each sample run generated two fractions for the analysis of all target metals except mercury, and five fractions for analysis of mercury. Analysis for the target metals was conducted according to the sample analysis scheme presented in Figures 5.3 and 5.4. Except for mercury, analyses of the target metals were conducted using the analytical method which resulted in the lowest detection for each metal; either graphite furnace atomic absorption spectroscopy (GFAAS), or inductively coupled argon plasma (ICP) emission spectroscopy (CVAAS).

5.7 DETERMINATION OF PLUME OPACITY

EPA Method 9, "Visual Determination of the Opacity of Emissions from Stationary Sources" was used to quantify visible emissions from the baghouse outlet stack. DEECO, PES' subcontractor, provided a certified VEO. The observer was certified to read plume opacities at a field training session held in Raleigh, North Carolina by Eastern Technical Associates of Raleigh, North Carolina on March 12, 1997 (Certificate No. 257158).

Figure 5.2 Method 29 Sample Train Schematic - Asphalt Plant "A", Clayton NC

Figure 5.3 Method 29 Sample Recovery Scheme (Sample Fractions 1-4) Asphalt Plant "A", Clayton NC

5-7

Figure 5.4 Method 29 Sample Recovery Scheme (Sample Fraction 5) Asphalt Plant "A", Clayton NC

6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

This section describes the specific QA/QC procedures employed by PES during the performance of this source testing program. PES' quality assurance program was based upon the procedures and guidelines contained in the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods," EPA/600/R-94/038c, as well as in the test methods to ensure the collection, analysis, and reporting of reliable source test data.

6.1 CALIBRATION OF APPARATUS

Since no mechanism exists for an independent measurement of emissions from the source, careful preparation, checkout, and calibration of the source testing sampling and analysis equipment is essential to ensure the collection of data of high quality. PES maintains a comprehensive schedule for preventative maintenance, calibration, and preparation of the source testing equipment.

6.1.1 Barometers

PES used aneroid barometers which were calibrated against a station pressure value reported by a nearby National Weather Service Station, and corrected for elevation.

6.1.2 <u>Temperature Sensors</u>

The responses of the Type K thermocouples used in the field testing program were checked using Calibration Procedure 2e as described in the Quality Assurance Handbook. The response of each temperature sensor was recorded when immersed in an ice water bath, at ambient temperature, and in a boiling water bath; each response was checked against an ASTM 3F reference thermometer. Table 6.1 summarizes the results of the thermocouple checks and the acceptable levels of variance. Digital temperature readouts were checked for calibration using a thermocouple simulator having a range of 0-2400 $^{\circ}$ F.

6.1.3 Pitot Tubes

For the measurement of velocity pressure in the gas streams, PES used Type S pitot tubes constructed according to EPA Method 2 specifications. Pitot tubes meeting these geometric specifications are assigned a baseline pitot coefficient (C_p) of 0.84 and need not be

TABLE 6.1

Temp.		Tempera	nture, °R	Absolute	EPA	
Sensor I.D.	Usage	Reference Sensor		Difference %	Criteria %	
5C	Stack Gas	498 562 628	498 561 629	0 0.17 0.16	<±1.5 <±1.5 <±1.5	
5B	Stack Gas	496 553 596	499 559 596	0.60 1.0 0	$< \pm 1.5$ $< \pm 1.5$ $< \pm 1.5$	
RT3	Stack Gas	501 532 670	501 532 672	0 0 0.30	$< \pm 1.5$ $< \pm 1.5$ $< \pm 1.5$	
RT20	Stack Gas	492 534 672	493 532 671	0.20 0.37 0.15	$< \pm 1.5 < \pm 1.5 < \pm 1.5$	
RT11	Impinger Exit	496 532 670	495 534 670	0.20 0.37 0	$< \pm 1.5 < \pm 1.5 < \pm 1.5 < \pm 1.5$	
SH4	Impinger Exit	497 532 670	496 535 669	0.20 0.56 0.15	$< \pm 1.5 < \pm 1.5 < \pm 1.5$	

SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC

subjected to a wind tunnel calibration. PES performs, at a minimum, annual calibration checks of pitots using Calibration Procedure 2 as found in the Quality Assurance Handbook. The results of the dimensional checks for each pitot tube used in this test program are summarized in Table 6.2.

6.1.4 Differential Pressure Gauges

PES uses Dwyer inclined/vertical manometers to measure differential pressures. These include velocity pressure, static pressure, and meter orifice pressure. Manometers are selected with sufficient sensitivity to accurately measure pressures over the entire range of expected values. Manometers are primary standards and require no calibration.

6.1.5 Dry Gas Meter and Orifice

The Method 23 and 29 dry gas meters and orifices were calibrated in accordance with Calibration Procedure 5 in the Quality Assurance Handbook. This procedure involves direct comparison of the dry gas meter to a reference dry test meter. The reference dry test meter is calibrated annually against a wet test meter. Before its initial use in the field, the metering system was calibrated at several flow rates over the normal operating range of the metering system. For the initial calibration to be considered valid, the results of individual meter calibration factors (γ), cannot differ from the average by more than 0.02, and the results of individual meter orifice factors ($\Delta H_{@}$), cannot differ from the average by more that 0.20. After field use, the metering system calibration was checked at the average flow rate and highest vacuum observed during the test period. The results of the post-test meter correction factor obtained during the initial, or thereafter, the annual calibration. Table 6.3 presents the results of the dry gas meter and orifice calibrations. All dry gas meters and orifices used in this test program met the method calibration requirements.

6.2 ON-SITE MEASUREMENTS

The on-site QA/QC activities include:

6.2.1 Measurement Sites

Prior to sampling, the stack was checked dimensionally to determine the suitability of the measurement site locations with respect to the Method 1 criteria. Distances to upstream and downstream disturbances, test port locations, and inside stack dimensions were checked to evaluate the uniformity of the stack cross sectional area. The inside stack dimensions, stack wall thickness, and sample port lengths were measured to the nearest 0.1 inch.

TABLE 6.2

		RESULTS					
Measure- ment	Criteria	Pitot Tube Identification					
ment		5C	5B	RP-20			
α1	$-10^{\circ} \le a_1 \le 10^{\circ}$	2.5	2	2			
α_2	-10° ≤ a ₁ ≤ 10°	-2.5	-1	1			
β	-5° ≤ a ₁ ≤ 5°°	1	2	0			
β_2	$-5^{\circ} \le a_1 \le 5^{\circ}$	-1	0	1			
γ	-	2.5	1	0.5			
θ	-	0	0.5	0			
А	-	1.013	0.990	1.0065			
$Z = A \tan \gamma$	≤ 0.125 in.	0.044	0.017	0.009			
$W = A \tan \theta$	≤ 0.03125 in.	0	0.009	0			
D	0.1875" ≤ D _t ≤ 0.375"	0.370	0.383	0.375			
A/2D _t	$\begin{array}{c c} A/2D_t & 1.05 \ D_t \le P \le & 0\\ & 1.50 \ D_t \end{array}$		0.402≤0.5≤0.575	0.394≤0.503≤0.563			
	Acceptable	Yes	Yes	Yes			
Assig	Assigned Coefficient		0.84	0.84			

SUMMARY OF PITOT TUBE DIMENSIONAL DATA ASPHALT PLANT "A" - CLAYTON, NC

6.2.2 Velocity Measurements

All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked prior to and at the end of each sampling run. The stack static pressure was determined at a single point within the stack corresponding to the average velocity pressure as obtained during the pretest velocity traverse.

TABLE 6.3

Meter Box No.	Dry Gas Meter Correction Factor (γ)				Meter Orifice Coefficient (ΔH_{o})			
	Pre- test	Post-test	% Diff.	EPA Criteria	Average	Range	EPA Criteria	
M5-4	1.021	1.046	2.5	< 5%	1.818	1.740 - 1.869	1.618 - 2.018	
M5-9	1.016	1.016	0.0	<5%	1.776	1.708 - 1.823	1.576 - 1.976	
MB-11	0. 98 7	1.008	2.1	<5%	1.93	1.873 - 1.970	1.730 - 2.130	
MB-10	0.965	0.979	1.45	<5%	1.747	1.683 - 1.820	1.547 - 1.947	

SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA ASPHALT PLANT "A" - CLAYTON, NC

6.2.3 Flue Gas Sampling

Integrated flue gas samples were collected in Tedlar[®] gas bags from the baghouse exhaust. Prior to their initial use, the bags were leak checked and purged with nitrogen to ensure cleanliness. Prior to and after completion of each sampling run, the stack gas molecular weight sampling system was leak checked. The bag samples were analyzed on-site using an Orsat[®] analyzer. Prior to use the Orsat[®] analyzer was assembled and replenished with fresh reagents and leak checked as per the manufacturer's procedures.

6.2.4 Moisture

During sampling, the exit gas temperature of the last impinger in each sampling train was maintained below 68°F to ensure condensation of stack gas water vapor. The moisture gain in the impinger train due to flue gas moisture was determined gravimetrically using a digital top-loading electronic balance with a resolution of 0.1 g. For subsequent calculations of the flue gas moisture volume, the calculated moisture volume due to the impinger weight gain was compared to the stack gas saturation volume at the average stack gas temperature. If the calculated moisture volume due to impinger weight gain exceeds the saturation volume, the assumption is made that moisture droplets entered to sampling system, and the saturation volume is used to

calculate stack gas molecular weight. The lower moisture value obtained using the reference method and saturation method was subsequently used in all Method 23 and Method 29 calculations.

6.2.5 <u>Method 23/Method 29</u>

The QA/QC activities for the for Method 23 and Method 29 sampling trains were similar. Prior to field testing, all glassware used was pre-cleaned according to the guidelines presented in Methods 23 and 29. The Method 23 glassware was cleaned based upon procedures presented in Section 3A of "The Manual of Analytical Methods for the Analysis of Pesticides in Human and Environmental Samples." The Method 29 sampling train glassware was prepared by first rinsing with hot tap and then water and then washed in hot soapy water. Next, all glassware was rinsed three times with tap water, followed by three additional rinses with water. Then all glassware was soaked in a 10 percent (V/V) nitric acid solution for a minimum of 4 hours, rinsed three times with water, then rinsed a final time with acetone, and allowed to air dry. On all of the Method 23 and Method 29 glassware, openings where contamination could occur were covered with Parafilm[™] or Teflon[®] tape until the trains were assembled for sampling.

Table 6.4 summarizes the results of the post-test sample train leak checks for the Method 23 and Method 29 sampling trains, as well as the isokinetic sampling ratios for each of the sampling runs attempted. It should be noted that the Method 23 and Method 29 sampling runs at the baghouse inlet were aborted after approximately 20 minutes of sampling. Although the Method 29 isokinetic sampling ratio was within the required tolerance, the Method 23 ratio was not. This was due to the significant pressure drop across the train from the collected particulate matter and the XAD[®]-2 sorbent resin trap, which made it impossible to collect a gas at the flow rate required by the isokinetic rate equation. All pre- and post-test sample train leak checks met the acceptance criteria.

In order to evaluate the effectiveness of the on-site cleanup procedures, field blank samples of the Method 23 and Method 29 sample trains were collected during the field test program. The sample trains were assembled in same manner as the trains prepared for actual sampling runs and were transported to the baghouse outlet sampling location. The sample trains were each leak-checked and allowed to heat to the normal operating temperature. They were then leak-checked again and transported to the on-site field laboratory for recovery. The samples generated from the field blank trains were handled and analyzed in the same manner as the other samples generated during actual test runs.

In order to evaluate contamination levels in the sampling reagents, blank samples of all reagents used for both the Method 23 and Method 29 sampling were collected. These sample blanks were submitted for analysis along with the run samples and field blank samples for analysis.

TABLE 6.4

SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA ASPHALT PLANT "A" - CLAYTON, NC

Date	Site	Run No.	Post-Test Leak Rate (cfm)	EPA Criteria	Percent Isokinetic	EPA Criteria
8/19/97	Baghouse Inlet	S-M23-I-1*	0.003	<0.02 cfm	77.0	90-110%
		S-M29-I-1*	0.007	<0.02 cfm	93.6	90-110%
	Baghouse Outlet	S-M23-O-1	0.002	<0.02 cfm	94.6	90-110%
		S-M29-O-1	0.004	<0.02 cfm	95.6	90-110%
8/20/97	Baghouse Outlet	S-M23-O-2	0.002	<0.02 cfm	106.8	90-110%
		S-M29-O-2	0.005	<0.02 cfm	103.9	90-110%
		S-M23-O-3	0.009	<0.02 cfm	106.7	90-110%
		S-M29-O-3	0.009	<0.02 cfm	106.5	90-110%
8/21/97	Baghouse Outlet	S-M23-O-4	0.001	<0.02 cfm	93.7	90-110%
		S-M29-O-4	0.008	<0.02 cfm	95.0	90-110%

* Run aborted due to high grain loading at baghouse inlet location.
6.3 ANALYSES

Table 6.5 presents the results of the recoveries of the internal standards in the PCDDs/PCDFs samples. The recoveries for run S-M23-O-4 are elevated because an insufficient amount of recovery standard was added to the sample. Due to the nature of the error, the measured amounts of PCDDs/PCDFs congeners in the sample are not biased. Analysis of method, field, and reagent blanks showed background levels of the congeners less that the target detection limits for each congener.

The results of QA/QC analyses for Method 29 are presented in Tables 6.6 through 6.13. Table 6.6 presents the results of the TLI Lab Control Spike. All lab control spike recoveries were within 10 percent of the spiked amount. The post digestion matrix spike (Table 6.7) indicated recoveries outside of the QC criteria (75%-125%) for Ag, Be, P, Pb, and Se on the front-half spikes, and As, and Mn, on the back-half spikes. The results of the spikes indicate matrix effects specific to these analytes in the native sample matrix. The results of the duplicate analysis performed are presented in Table 6.8. A duplicate analysis is not reported for Tl since graphite furnace atomic absorption (GFAA) was used after analysis by inductively coupled plasma emission spectroscopy (ICP) indicated high negative values. The GFAA apparatus takes two separate aliquots sample of the and averages the result. The ICP takes a continuous aliquot, performs three analyses, and averages the result. Since the analysis for most of the target metals was less than 10 times the reporting detection limit (RDL), the duplicate analysis should not be considered a valid qualifier for those analytes. These cases are noted as "<RDL". For duplicate analyses which are reported the QC criteria is $\pm 20\%$.

Table 6.9 presents the results of the serial dilution analyses. Serial dilution analyses are not considered valid when the analyte concentration is less that 10 times RDL for ICP analyses, and 5 times RDL for GFAA analyses. The quality control relative percent deviation (RPD) for serial dilutions is $\pm 10\%$. For results that exceed the QA limits matrix interferences are suspected. All analytes in the method blank (MB) shown in Table 6.10 were detected at levels less than or equal to the reporting detection limit (RDL), with the exception of lead (Pb). TLI used RDLs of 1-10 times the instrument detection limit (IDL) for reporting purposes. IDLs for metallic analytes range from 0.2 - 8 ppb. Lead was detected in the method blank at concentrations of 2.82 micrograms per liter (μ g/L), which is slightly greater than the RDL of 2 µg/L for Pb. Lead results for run S-M29-O-2 are likely due to laboratory contamination. Lead results for runs S-M29-I-1 and S-M29-O-1 should be considered estimated, and Pb results for run S-M29-O-3 should be considered valid. Table 6.11 presents the results of the field blank and reagent blank analysis. Reagent blanks were collected to quantify the presence of contamination in the reagents used for the sampling program. A field blank train was assembled transported to the sampling location, leak checked, returned to the field lab and recovered. The field blank provides a check on the recovery efficiency from the sample trains. The results of the field and reagent blank analyses indicate that bias of the results due to cross contamination between field glassware trains and contamination of the reagents used for sampling is negligible.

Table 6.12 presents results mercury spike analyses. Lab control spikes performed for mercury indicate recoveries within the QC criteria of \pm 20 %. Pre-digestion matrix spikes for mercury indicate recoveries in excess of the QC limits, which indicate an interference for

SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES ASPHALT PLANT "A" - CLAYTON, NC

		Percent Recovery								
	TLI Blank	S-M23- I-1	S-M23- 0-1	S-M23- 0-2	S-M23- O-3	S-M23- 0-4	S-M23- O-FB	S-M23- O-RB	QC LIMITS	
FULL SCREEN ANALYSIS Internal Standards 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-PeCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8- HpCDF 1,2,3,4,6,7,8- HpCDD OCDD	92.5 80.9 92.4 100 92.8 83.6 72.2 85.0 67.5	98.5 89.0 95.5 103 102 93.6 71.1 78.3 60.5	69.4 63.2 67.1 68.2 68.8 65.4 42.3 50.4 36.0	62.4 55.6 57.6 60.5 65.7 58.8 41.3 44.9 27.5	184 163 161 170 187 173 105 109 65.1	120 98.7 107 112 113 103 88.5 90.1 68.8	49.5 34.3 44.9 54.8 34.7 40.1 32.7 38.2 36.9	88.5 76.4 89.1 99.3 74.0 78.2 56.7 61.3 60.9	40-130% 40-130% 40-130% 40-130% 40-130% 40-130% 25-130% 25-130%	
Surrogate Standards 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9- HpCDF	105 87.7 93.9 89.6 107	97.6 93.2 94.6 88.0 83.6	96.1 86.1 87.3 81.0 88.7	98.8 85.1 92.1 91.9 84.9	98.4 88.6 98.2 87.9 91.3	106 93.4 97.6 85.9 98.7	123 112 91.1 82.4 85.4	107 102 90.2 91.6 89.0	70-140% 70-140% 70-140% 70-140% 70-140%	
Alternate Standards 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	97.3 84.8	91.3 99.0	58.1 61.4	54.3 62.0	120 173	117 107	32.2 34.1	66.8 76.9	40-130% 40-130%	
CONFIRMATION ANALYSIS Internal Standards 2,3,7,8-TCDF	72.7	73.7	59.8	52.4	148	104		67.7	40-130%	

* Confirmation analysis was not necessary on S-M23-0-FB because no TCDF were detected in the full screen analysis.

SUMMARY OF METHOD 29 ANALYSIS QC DATA LAB CONTROL SPIKES ASPHALT PLANT "A" - CLAYTON, NC

Analyte	Spike Amount (µg)	Recovered Amount (µg)	Recovery (%)
Ag	50	45.11	90
As	50	45.25	90
Ba	50	49.05	98
Be	50	47.58	95
Cd	50	48.64	97
Co	50	49.24	98
Cr	50	48.24	96
Cu	50	49.07	98
Mn	50	48.63	97
Ni	50	47.19	94
Р	1000	981.55	98
РЬ	50	46.89	94
Sb	50	48.51	97
Se	50	47.66	95
TI	50	45.00	90
Zn	200	199.45	100

6-10

.

SUMMARY OF METHOD 29 ANALYSIS QC DATA POST DIGESTION MATRIX SPIKES RUN NO. S-M29-O-1 ASPHALT PLANT "A" - CLAYTON, NC

]	Front Half		Back Half		
Analyte	Recovered Amount (µg/L)	Recovery (%)	Recovered Amount (µg/L)	Recovery (%)		
Ag	37.13	74	41.57	83		
As	66.21	79	36.64	73		
Ва	2207.64	LS	60.46	80		
Be	31.50	63	45.63	91		
Cd	44.31	84	52.79	94		
Со	60.73	85	46.23	92		
Cr	187.14	80	55.26	88		
Cu	216.04	86	69.47	95		
Mn	2026.71	LS	68.47	47		
Ni	112.31	79	61.16	90		
Р	4053.51	74	1409.02	79		
РЪ	231.32	68	108.50	89		
Sb	83.39	78	47.69	95		
Se	80.62	74	46.09	82		
Tl	N/A	N/A	20.6	82		
Zn	1289.01	LS	456.69	88		

N/A - QC analysis not reported since method of standard additions (MSA) was performed.

-		Front Half	Back Half			
Analyte	Sample (µg)	Duplicate (µg)	RPD (%)	Sample (µg)	Duplicate (µg)	RPD (%)
Ag	0.173	0.188	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
As	0.592	0.913	<rdl< td=""><td><0.532</td><td><0.532</td><td><rdl< td=""></rdl<></td></rdl<>	<0.532	<0.532	<rdl< td=""></rdl<>
Ba	51.1	50.8	0.589	0.914	0.915	<rdl< td=""></rdl<>
Be	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
Cd	2.13	2.11	0.943	<0.106	0.108	<rdl< td=""></rdl<>
Со	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>
Cr	9.97	10.1	1.30	0.435	0.427	<rdl< td=""></rdl<>
Cu	4.43	4.37	1.36	2.03	1.94	<rdl< td=""></rdl<>
Mn	33.4	33.4	0.00	1.70	1.70	<rdl< td=""></rdl<>
Ni	6.09	6.15	0.98	0.846	0.853	<rdl< td=""></rdl<>
Р	60.4	59.5	1.50	58.3	57.7	1.03
Pb	5.78	5.60	3.16	2.52	2.53	0.396
Sb	4.15	4.26	2.62	<0.426	<0.426	<rdl< td=""></rdl<>
Se	3.96	4.06	2.49	0.336	<0.319	<rdl< td=""></rdl<>
Tl	0.210	N/A	N/A	<0.213	N/A	N/A
Zn	46.7	46.7	0.00	15.6	15.7	0.639
Note:	Duplicate analyzed b	analysis not ro y GFAA	eported for ele	ements analy:	zed by GFAA.	Tl was

METHOD 29 DUPLICATE ANALYSIS QC DATA RUN NO. S-M29-O-2 ASPHALT PLANT "A" - CLAYTON, NC

L

Serial Dilution, Run No. S-M29-O-1									
Analyte	Sample µg	Serial Dilution μ g	RPD *						
Ag	<0.100	<0.500	<rdl< td=""></rdl<>						
As	2.66	<2.50	<rdl< td=""></rdl<>						
Ba	221	242	9.07%						
Be	<0.100	<0.500	<rdl< td=""></rdl<>						
Cd	0.218	<0.500	<rdl< td=""></rdl<>						
Co	1.82	1.95	<rdl< td=""></rdl<>						
Cr	14.7	18.2	21.3%						
Cu	17.3	18.1	4.52%						
Mn	203	226	10.7%						
Ni	7.26	8.72	<rdl< td=""></rdl<>						
Р	332	385	14.8%						
Pb	19.7	23.0	15.5%						
Sb	4.46	4.91	<rdl< td=""></rdl<>						
Se	4.39	5.40	<rdl< td=""></rdl<>						
Tl	<0.200	N/A	N/A						
Zn	114	130	13.1%						
* < 10 RDL	/ 5 RDL - Serial di	lution analyte results ar	e not is less than 10						

METHOD 29 SERIAL DILUTION ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

* < 10 RDL / 5 RDL - Serial dilution analyte results are not considered valid when the concentration in the analyte is less than 10 times the Reported Detection Limit (RDL) for ICP analysis and 5 times the RDL for GFAA analysis. RPD = Relative percent deviation.

Analyte	Reporting Detection Limit (µg/L)	Recovered Amount (µg/L)	Pass or Fail *
Ag	1	0.13	Pass
As	5	2.09	Pass
Ba	2	0.20	Pass
Be	1	0.01	Pass
Cd	1	0.44	Pass
Со	1	0.19	Pass
Cr	2	1.08	Pass
Cu	2	0.22	Pass
Mn	2	0.19	Pass
Ni	3	1.00	Pass
Р	30	0.70	Pass
Pb	2	2.82	Fail
Sb	4	1.10	Pass
Se	3	1.14	Pass
Tl	2	0.10	Pass
Zn	12	7.27	Pass

METHOD 29 METHOD BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

* Method Blank considered "Pass" when recovered amount is less than the reporting detection limit (RDL).

The RDL is used instead of the instrument detection limit (IDL). IDL ranges from 0.2 0-8 ppb for many analytes. TLI used RDL values of 1-10 times IDL for reporting purposes.

METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

	Field	Blank	Reagent Blank			
Analyte	Front Half (µg)	Back Half (µg)	(Front Half) µg	Back Half (µg)		
Ag	0.107	<0.100	0.270	<0.100		
As	0.627	<0.500	<0.500	<0.500		
Ba	4.66	0.237	4.33	0.326		
Be	<0.100	<0.100	<0.100	<0.100		
Cd	<0.100	0.130	<0.100	<0.100		
Со	<0.100	<0.100	<0.100	<0.100		
Cr	9.5	0.376	9.33	0.222		
Cu	1.05	0.624	1.06	1.44		
Mn	1.09	7.17	0.911	34.7		
Ni	4.82	<0.300	4.68	0.606		
Р	<3.00	12.1	<3.00	55.3		
РЪ	<0.200	6.59	<0.200	0.265		
Sb	4.91	<0.400	4.18	<0.400		
Se	4.27	0.421	4.35	<0.300		
Tl	<0.200	<0.200	<0.200	<0.200		
Zn	3.02	2.96	2.60	2.03		

METHOD 29 MERCURY SPIKE ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

Sample ID	Spike Amt µg	Recovery	Recovery Limits						
Lab Control Spike	s								
LCS 1	5	106%	80-120%						
LCS 1 Dup	5	100%	80-120%						
LCS 2	5	100%	80-120%						
LCS 2 Dup	5	95%	80-120%						
Matrix Spikes (Pre-Digestion)									
O-M29-1	5	170%	80-120%						
O-M29-1 Dup	5	170%	80-120%						
O-M29-3	5	168%	80-120%						
O-M29-3 Dup	5	160%	80-120%						
O-M29-4	5	155%	80-120%						
O-M29-4 Dup	5	152%	80-120%						
1-M29-1	5	88%	80-120%						
I-M29-1 Dup	5	103%	80-120%						

mercury due to a matrix effect present in the native sample. Results for mercury should be considered biased low. Method blanks, field blanks, and reagent blanks for mercury indicated that the sample results for mercury were not biased due to mercury contamination in the reagents, of due to cross contamination in the sampling apparatus. Mercury blank results are presented in Table 6.13.

METHOD 29 MERCURY BLANK ANALYSIS QC DATA ASPHALT PLANT "A" - CLAYTON, NC

Sample ID	Detection Limit μg/L	Recovered Amount µg/L							
Method Blank									
MB-1	0.02	0.008							
MB-1 Dup	0.02	0.016							
MB-2	0.02	0.003							
MB-2 Dup	0.02	0.003							
Field Blank and Reagent Blank									
FH	<0.400	<0.400							
FH - Dup	<0.400	<0.400							
вн	<0.60	<1.20							
BH- Dup	<0.60	<1.20							
HNO3	<0.224	<0.400							
HNO3 - Dup	<0.224	<0.400							
KMnO4	<0.62	<1.16							
KMnO4 - Dup	<0.62	<1.16							
HCL		<0.376							
HCL - Dup		<0.376							

APPENDIX A

.

.

PROCESS DATA

Appendix A: Process Data

ASPHALT PLANT "A" Test Run 1 Test Date: August 19, 1997 Total Test Time: 4.3 hrs

1			Asphalt (Concrete						Asp	halt	Calcu	lated
			Produ	ction	Asphalt	Aggreg	ate Use	RAP	Use	Cement Use		Conditioner Use	
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0015	*	RDS	250		315	213		26		12.5		0.03	
1100		RDS	254		304	211		27		12.6		0.03	
1115	*	RDS	202		295	171		22		10.2		0.03	
1130		RDS	202		311	170		21		10.0		0.03	
1145		RDS	200		304	168		21		10.0		0.03	
1200	*	RDS	150		299	127		15		7.8		0.02	
1215		RDS	152		306	126		16		7.5		0.02	
1230		RDS	149		306	127		16		7.7		0.02	
1236		RDS	150		300	127		15		7.7		0.02	
1300		RDS	152		300	128		16		7.6		0.02	
1315		RDS	150		300	127		16		7.8		0.02	
1330		RDS	150		310	128		15		7.6		0.02	
1345		RDS	149		301	127		15		7.7		0.02	
1/15		RDS	147		313	127		13		7.6		0.02	
1415		RDS	146		307	127		15		7.5		0.02	
1430		RDS	150		305	128		15		7.7		0.02	
1445		RDS	151		304	129		15		7.7		0.02	
Total##				735			622		76		37		0.093
Mean			171	<u> </u>	305	145		18		8.7		0.02	
St Dev			35		5	29		4		1.7		0.004	
Min			146		295	126		13		7.5		0.02	
Max			254		315	213		27		12.6		0.03	

.

.

*See Table 4 for a description of these events. **Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

Appendix A: Process Data

ASPHALT PLANT "A"

Test Run 1 Test Date: August 19, 1997 Total Test Time: 4.3 hrs

	I			Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0915	*	RDS	245	200	2.9	5	80	none
1100		RDS	240	200	2.5	5	1693	none
1115	*	RDS	220	195	2.5	5	1817	none
1130		RDS	205	185	2.0	5	1855	none
1145		RDS	205	180	2.0	3	1911	none
1200	*	RDS	180	170	1.8	3	1994	none
1215		RDS	175	160	1.5	3	2036	none
1230		RDS	185	160	1.5	3	2092	none
1245		RDS	180	160	1.8	3	2136	none
1300		RDS	180	160	1.5	3	2192	none
1315		RDS	185	160	1.5	3	2234	none
1330		RDS	185	160	1.5	3	2274	none
1345		RDS	182	160	1.7	3	2336	none
1415		RDS	180	160	1.5	3	2388	none
1430		RDS	180	160	1.5	3	2441	none
1445		RDS	180	160	1.5	3	2489	none
1456		RDS	170	160	1.5	3	2533	none
Total**							920	
Mean			193	170	1.8	3.5		
St. Dev			22	15	0.4	0.9		
Min			170	160	1.5	3.0		
Max			245	200	2.9	5.3		

* See Table 4 for a description of these events.

Appendix A: Process Data ASPHALT PLANT "A" Test Run 2 Test Date: August 20, 1997 a.m. Total Test Time: 4.3 hrs

[Asphalt C	Concrete						Asphalt		Calculated	
			Produ	ction	Asphalt	Aggreg	ate Use	RAP	Use	Ceme	nt Use	Conditio	oner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0822		RDS	225		306	192		21		11.5		0.03	
0845		RDS	226		304	191		24		11.5		0.03	
0900		RDS	223		316	192		22		11.5		0.03	
0915		RDS	225		306	191		23		11.4		0.03	
0930	*	RDS	223		346	214		24		11.5		0.03	
0945	*	RDS	249		308	213		25		12.7		0.03	
0100		RDS	298		312	254		30		15.3		0.04	
1015		RDS	299		314	254		30		15.5		0.04	
1030		RDS	301		308	255		30		15.3		0.04	
1045		RDS	300		314	254		31		15.2		0.04	
1100		RDS	300		303	255		26		15		0.04	
1115		RDS	301		314	253		32		15		0.04	
1130		RDS	302		309	255		31		15		0.04	
1145		RDS	300		311	255		31		15.4		0.04	
1200		RDS	300		317	254		30		15.3		0.04	
1215		RDS	300		307	252		31		15		0.04	
1215		RDS	298		313	255		29		15	· · · · · · · · · · · · · · · · · · ·	0.04	
1240		RDŚ	299		310	253		30		15		0.04	
Total##				1.187		[1,013	ſ	119		60		0.151
Mean			276		312	236		28		14.0		0.04	
St Dev			34		9	27		4		1.7		0.00	
Min			223		303	191		21		11.4		0.03	
Max			302		346	255		32		15.5		0.04	

* See Table 4 for a description of these events.

.

Appendix A: Process Data

ASPMALT PLANT "A"

Test Run 2 Test Date: August 20, 1997 a.m. Total Test Time: 4.3 hrs

				Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Type	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0822		RDS	230	185	2.1	5	324	none
0845		RDS	230	192	2.6	5	427	none
0900		RDS	230	190	2.8	5	512	none
0915		RDS	235	197	2.8	5	592	none
0930	*	RDS	195	200 [.]	2.1	3	704	none
0945	*	RDS	260	205	2.8	7	760	none
0100		RDS	270	215	3.2	7	869	none
1015		RDS	270	225	3.1	7	984	none
1030		RDS	270	230	3.8	7	1118	none
1045		RDS	271	228	3.6	7	1200	none
1100		RDS	269	225	3.5	7	1335	none
1115		RDS	262	220	3.8	7	1440	none
1130		RDS	270	225	4.0	7	1539	nonç
1145		RDS	270	225	3.8	8	1663	none
1200		RDS	270	230	3.5	7	1757	none
1215		RDS	265	225	3.9	7	1881	none
1230		RDS	268	220	3.8	7	1993	none
1240		RDS	260	220	3.8	6	2086	none
Total**							1,762	
Mean			255	214	3.3	6.3		
St. Dev			21	15	0.6	1.2		
Min			195	185	2.1	3.0		
Max			271	230	4.0	8.0		

.

*See Table 4 for a description of these events. **Because running total data were not available, the run totals were calculated from the average of the TPH data multiplied by the total run time.

Appendix A: Process Data ASPHALT PLANT "A" Test Run 3 Test Date: August 20, 1997 p.m. Total Test Time: 3.5 hrs

[I		Asnhalt (`oncrete						Asp	halt	Calcu	lated
			Produ	ction	Asphalt	Aggreg	ate Use	RAP	Use	Cemei	nt Use	Conditio	oner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
1405		RUS	250		309	214		25		12.6		0.03	
1405		RDS	251		303	211		27		13.0		0.03	
1413		RDS	251		312	212		27		13.0		0.03	
1430		RDS	252		311	212		26		13.0		0.03	
1500		RDS	245		305	212		25		12.8		0.03	
1515		RDS	245		320	212		22		12.5		0.03	
1520		RDS	254		310	215		26		12.8		0.03	
1545		RDS	250		307	213		25		12.9		0.03	
1600		RDS	249		307	211		24		13.0		0.03	L
1615		RDS	247		322	215		23		12.7		0.03	
1620		RDS	252		312	214		25		12.6		0.03	
1645		RDS	250		316	213		24		12.8		0.03	L
1700		RDS	249	 	315	213	· · · ·	25		12.8		0.03	
1715	+	RDS	205		307	172		24		10.5		0.03	
1725	<u> </u>	RDS	152		299	138		17		7.8	L	0.02	
Total##				840		[718		85		43		0.108
Mean		<u> </u>	240		310	205	[24		12.3		0.03	
St Day		<u> </u>	26	<u> </u>	6	21		2		1.3		0.003	ļ
JAi-			152		299	138		17		7.8		0.02	· · · ·
N/or			254		322	215		27		13.0		0.03	L

* See Table 4 for a description of these events.

Appendix A: Process Data

ASPHALT FLANT "A" Test Run 3 Test Date: August 20, 1997 p.m. Total Test Time: 3.5 hrs

				Fabric Fi	lter			
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
1405		RDS	240	200	2.8	6	2560	none
1415		RDS	238	200	2.9	5	2630	none
1430		RDS	232	200	2.5	5	2731	none
1445		RDS	235	195	2.5	5	2823	none
1500		RDS	230	195	2.5	5	2873	none
1515		RDS	240	195	2.8	6	2992	none
1530		RDS	235	195	2.5	6	3071	none
1545		RDS	240	195	2.5	5	3162	none
1600		RDS	245	200	2.5	6	3248	none
1615		RDS	235	200	2.5	5	3333	none
1630		RDS	240	200	2.5	6	3415	none
1645		RDS	240	200	2.5	6	3488	none
1700		RDS	240	200	2.5	6	3602	none
1715	*	RDS	210	190	2.0	5	3656	none
1735		RDS	180	165	1.8	3	3728	none
Total**							1,168	
Mean			232	195	2.5	5.3		
St. Dev			16	9	0.3	0.8		
Min			180	165	1.8	3.0		
Max			245	200	2.9	6.0		

* See Table 4 for a description of these events.

Appendix A: Process Data ASPHALT FLANT "A" Test Run 4 Test Date: August 21, 1997 Total Test Time: 4.2 hrs

F=====			Asphalt (Concrete						Asp	halt	Calcu	lated
			Produ	ction	Asphalt	Aggreg	ate Use	RAP	Use	Ceme	nt Use	Conditio	ner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0741	Lvent	HDS	150	and a second	315	142	7	0		7.8		0.02	
0745		HDS	179		306	169		0		9.2		0.02	
0745		HDS	177		302	169		0		9.2		0.02	
0815	<u></u>	HDS	177		335	168		0		9.3		0.02	
0830		Binder	178		300	171		0		8.1		0.02	
0845		Binder	179		300	171		0		8.2		0.02	
0000		HDS	184		351	174		0		9.0		0.02	
0900		Binder	179		283	167		0		9.1		0.02	
0915		Binder	181		297	172		0		8.5		0.02	
0930		Binder	178		319	172		0		8.0		0.02	
1000		Binder	177		320	171		0		7.8		0.02	
1015		HDS	176		350	167		0		9.3		0.02	
1015	*	HDS	200		271	191		0		10.4	_	0.03	
1030			200		303	190		0		10.6		0.03	
1045			200		282	189		0		10.4		0.03	
1100			200		310	190		0		10.5		0.03	
			200		289	191		0		10.3		0.03	
1130			200	<u> </u>	318	189		0		10.6		0.03	
1143		Dinder/ HDS	200		297	194		0		8.9		0.02	
1133	l	Dilucit IDS	<u> </u>	778			740		0	Ī	39		0.10
lotai			185	· · · · ·	308	176		0		9.2		0.02	
Mean			13		21	13		0		1.0		0.00	
St. Dev			150		271	142		0		7.8		0.02	
Min			204	<u> </u>	351	194		0		10.6		0.03	

* See Table 4 for a description of these events.

Appendix A: Process Data ASPHALT PLANT "A" Test Run 4 Test Date: August 21, 1997 Total Test Time: 4.2 hrs

				Fabric Fi	lter	[
			Inlet	Outlet	Pressure	Fuel	Use	
		Product	Temp.	Temp.	Drop	Rate	Total	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(GPM)	(gal)	Emissions
0741		HDS	195	168	2.0	5	146	none
0745	····	HDS	203	178	2.0	4	216	none
0800		HDS	203	177	2.0	4	288	none
0815		HDS	205	178	2.0	4	363	none
0830		Binder	195	170	2.0	4	440	none
0845		Binder	200	170	2.0	3	474	none
0900		HDS	210	180	2.0	4	560	none
0915		Binder	200	180	1.8	3	626	none
0930		Binder	195	170	2.0	4	669	none
0945		Binder	195	175	1.9	4	743	none
1000		Binder	190	168	1.9	4	812	none
1015		HDS	192	170	1.8	4	871	none
1030		HDS	205	170	1.9	5	932	none
1045	*	HDS	210	180	2.0	5	1004	none
1100		HDS	205	175	1.9	5	1063	none
1115		HDS	200	180	1.8	4	1133	none
1130		HDS	205	175	1.9	4	1208	none
1145		HDS	210	180	2.0	5	1285	none
1153		Binder/ HDS	210	180	1.9	4	1323	none
Total**							1,177	
Mean			201	175	1.9	4.2		
St. Dev			6	5	0.1	0.6		
Min			190	168	1.8	3.0		
Max			210	180	2.0	5.0		

* See Table 4 for a description of these events.

SPECIALIZED ASSAYS ENVIRONMENTAL 2960 Foster Creighton Drive Nashville, Tennessee 37204

** Original report and a copy of the chain of custody will follow by mail.

NOBLE 011, CO. 7680 ATTN: LARRY PRICE 5617 CLYDE RHYNE DRIVE SANFORD, NC 27330

Sample ID: 861-625 OIL

Project:

Project Name:

Sampler:

State Certification: 387

Lab Number: 97-A065425

ANALYTICAL REPORT

Date Collected: 7/25/97

Time Collected:

Date Received: 8/ 7/97

Time Received: 9:00

Sample Type: Oil

Aridyu	Recult	Unite 	Repart Limit		Dil Pactor	Date	Time	Amlyoc	Msched	Exce:
MEITLE Aronic Cahaun Ortmum Leas Nicoal	20 20 20 20 20 20	ng Ag ng Ag ng Ag ng Ag ng Ag	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0	1 1 1 1	8 A1 &7 8 A1 &7 8 A1 &7 8 A1 &7 8 A1 &7 9 A1 &7	14:29 14:29 14:29 14:29 14:29 14:29	R. Street K. Street R. Street R. Street	6010A 6010A 6010A 6010A 6010A	2146 2146 2146 2146
CONTRA CHENCETRY INFINE	DD9+								enter	21.46
Chicking in Oil Ann Flach Point, Clussed Cup Bullur	464. 0.57 FLASED AT : 3590	mg/kg t 150F mg/kg	10.0 100.	10.0 0.01 5.00	1 1 20	6 / 2 /97 8 / 9 /97 8 / 4 /97 8 / 4 /97	15:50 14:17 9:22 12:37	K.Witte A Hattleon D. Houer G. Ban	937C D632 1010 ASTROB08	2669 2430 3465 8920

NO = Not determed at the report limit.

Plash print Agritability reported to the nearest 10 day F.

Report Approved By:

Report Date: 8/14/97

.

.

Theodore J. Duello, Ph.D., Q.A. Officer Michael H. Dunn, H.S., Technical Director Danny B. Hale, M.S., Laboratory Director

MATERIAL SAFETY DATA SHEET Manufacturer ARR-MAZ PRODUCTS, L.P. 621 Snively Avenue Winter Haves, FI 33880 Emergency Phone Number 941-293-7884 PRODUCT INFORMATION Trade Name: AD-here LOF 65-00 Chemical Family: Amines Composition: Modified Fatty Amidoamine HMIS RATING: Health Hezard 2 Moderate Planmability Hazard 1 Slight Reactivity Hazard 0 Minimal D.O.T. Shipping Classification: Not regulated PHYSICAL DATA Boiling Point (°F): > 500°F Solubility in Water. Slight Vapor Pressure (mmHg at 25°C): <1 Vapor Density (Air = 1): >1 Appearance: Dark brown liquid Odor: Mild Specific Gravity (at 77 °F): 86.0 - 96.0 FIRE EXPLOSION Flash Point PM Closed Cun °F: >300 °F Extinguishing Media: CO2, form, or dry chemical Special Fire Fighting Procedures: Wear NIOSH/MSHA approved self-contained breathing equipment and protective clothing.

Rev. Date: 11/26/96

Z-9061

APPENDIX B

ļ

RAW FIELD DATA

Appendix B.1

.

Raw Field Data

Baghouse Inlet

•

Fes

1

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS *

Plant:	ASPHALT PLANT "A"	
Date: 8/18/97		
Sampling Location:	aghouse Inter	
Inside of Far Wall to Outs	side of Nipple:52	
Inside of Near Wall to Ou	utside of Nipple (Nipple Length):	
Stack I.D.:	48."	
Distance Downstream fro	om Flow Disturbance (Distance B):	
	2.2 inches / Stack I.D. = <u>0.450</u> dd *	
Distance Upstream from	Flow Disturbance (Distance A):	
3	<u>3¹/2</u> inches / Stack I.D. = <u>0.698</u> dd	
Calculated By:	799 AB	Sa

Schematic of Sampling Location

Traverse	Fraction	Length	Product of	Nipple	Traverse Point
Point	of	(inches)	Columns 2 & 3	Length	Location
Number	Length	(,	(To nearest 1/8")	(inches)	(Sum of Col. 4 & 5)
l	0.021	48	1.2000	4	9 5
2	0.067	7	3 1/4		714
3	0.118		5 5/8		9 5/8
4	0.177		81/2		12 1/2
5	0.250		12		16
6	0.356		17%		21 1/8
7	5.644		30 1/8		347/0
8	0.750		36		40
9	0.923		39%		43 ¹ / ₂
10	0882		423/8		463/8
11	0.933		44 3/4		4834
12	0.979	-	47	J	51

+ DOES NOT MEET METHOD 1

GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant: PES/EPA Arphat Plant # "	A" Date: 8/18/97
Sampling Location: BayLouise Inlet	Clock Time; 13:00
Run #:PRELIMINARY	Operators: <u>AB</u> /AD
Barometric Pressure, in. Hg: 29,90	Static Pressure, in. H ₂ O: <u>-2.5</u>
Moisture, %: 25 Molecular wt., Dry:	Pitot Tube, Cp: <u>_⊘₋չ√</u>
Stack Dimension, in. Diameter or Side 1:	4x Side 2: 48
Wet Bulb, ^o F: Dry Bulb, ^o F:	

lyclonie	Traverse Point Number	Velocity Head In. H ₂ O	Stack Temp. ⁰ F
0	AI	0.36	194
	ん	0.25	195
_0	3	0.26	193
4	4	0.23	195
0	5	0.26	194
0	6	0.34	193
	7	0.50	194
0	8	0.39	196
12	g	0.36	194
4	10	0.34	195
10		0.22	193
	12	0.25	195
_15	<u> </u>	0.26	194
0	2	0.12	193
12	3	0.10	194
_10	4	0.30	196
- 8	5	0.24	194
12	6.	0.30	195
10		0.38	193
_ 5	8	0.33	195
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	0.30	194
9	16	0.23	193
18		0.12	194
13	12	0.09	196
l			
= 7.2 0		DP = 0.512	To = 194.3

 $Md = (0.44 \times ) + (0.32 \times ) + (0.28 \times )$ Md =  $M_{B} = Md \times (1 - \frac{\% H_{2}O}{100}) + 18 (\frac{\% H_{2}O}{100})$  $Ms = ( ) \times (1 - \frac{100}{100}) + 18(\frac{100}{100})$ Ms =  $T_{s} = {}^{o}F = {}^{o}R ({}^{o}F + 480)$  $Pe = Pb + \frac{S.P.}{13.6} = ( ) + \frac{13.6}{13.6}$ Ps = in. Hg  $V_{8} = 85.49 \times Cp \times \sqrt{\frac{Ts (^{O} F)}{Ps \times Ms}}$ Vs = 85.49 x ( ) x ( ) x _____ Vs = ft/s #² As =  $Gs = Va \times As \times 60 a/m$ x x 60 Qa == **Ce =** actm  $Ce_{std} = Cs \times 17.647 \times \frac{Ps}{Ts} \times (1 - \frac{\% H_2O}{100})$ 

 $Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + (0.28 \times \%N_2)$ 

dactm

Qa_{std}=

			Ave is	190						N-	0. 7 .	5	
			11 100	.512									1
		NTAL SERVIC	ES, INC.		FIE	LD DAT	A	$\begin{array}{c} CO_1 \\ O_2 \\ CO_2 \end{array}$			Co V _L : Sili	ndensers ca gel	
rlant 👎	ASPHALT	PLANT '	'A''		_			N.				3/1 <u>2</u> ()	]
Date	- 19- 9	7					<b>`</b>	Probe	constitues	ul Type ,	6 6 la	55	
Sampling Loc	ation Ia	let to	bas house	-		•		Pitot 1	uhe I.D.	No	ecosc		
Sample Type	<u> </u>	C & Yora 3-T 1	<u>as</u>	-   48	3"		EB	Nozzle	1.D	312			
Run Numbei	ADD	<u>, , , , , , , , , , , , , , , , , , , </u>		_		•		Assun	cd Moist	urc, %	U		
Operator	Pressure (P	1 29.9	0			· : /		Meter	Box Num	ber $\frac{1}{1018}$	2 - 1		
Static Pressu	re (R )	-2.5				1'T		Melei	6 11(() Gamma	1.02	1		
Filter Numb	cr(s)					Ą		Refer	:nco p _	.512			
Pretest Leak	$Ratc = \Omega \mathcal{L}$	20.3 cfm @	9 <u> </u>	11g		JU (-		Post T	cst Leak	Rate = 2	2.00 <b>7</b> c	m@_ <u></u>	in. 11g
Pretest Pitol	Leak Check	<u></u>	<u> </u>		Sc	hemalic of		Post 1	cst Pitot	Leak Checl	k		
Protest Orsa	t Leak Check	K	K) 5 Minu	les	Traver	sc Point La	yout	Post 1	est Orsal	Leak Chec	:k		
Read and Ko	of ) i	la cvcly . <u></u>			Temp. Sen	sor ID No.	[]					<u> </u>	Tump
	formality of	- Clark Three	Gas Meler	Velocity	Orifice Pre	a. Dillerential	Slack	Trant	he Filler	Temp.	Dry Gas M	eter Temp. T Outlet	Vacuum
Point	Thec,	(24-bour	Reading	Headd To)	(AII)	b. 1120 T Actual	( <b>L</b> )	Тетр	• F	• F	(En) F	(Eml F	In. lig
Number	(min.) /	clock)							<u>UUUU</u>			VIII IIII IIII	VIIII
		1 2105	696 812	0 33	1.7	1.8	231	231	283	67	89	84	12
┠ <u>_</u> ╃′┨		1 4.17	699 12	0.25	1.34	1.3	232	235	251	63	69	96	22
├ <del>─────</del>	10	19:25	701.93	0.42	2.20	2.3	229	724	226	18	90	91	18
7		19:30101	5704.831	0.42	2.26	2.3	116	232	0.00	60			
7	2.4	1	1 ~~1 0 70									the second se	1
		11010	101.120	<b></b>		1							
		1	707.120										
y	30		101.120										
	30		101-120										
у - У - З	20 20 40												
	20 20 40 50												
	20 20 40 50												
	20 20 40 50 60												
	20 20 40 50 60												
4 5 6 7 8	20 20 40 50 60 70												
7 8 9	20 20 40 50 60 70 70												
y 5 6 7 8 9	20 20 40 50 60 70 70 70												
y 5 6 7 8 9 10	20 20 40 50 20 20 20 20 20 20 20 20 20 20 20 20 20												
4 5 6 7 8 9 10	20 20 20 20 20 20 20 20 20 20 20 20 20 2												
4 5 6 7 8 9 10 11	20 20 40 50 60 70 70 70 70 70 10												

.

.

Plant: A:	SPHALT PL	ANT "A"	• · · · · · · · · · · · · · · · · · · ·		Run No	:# PBR	?/
Sample Da	ate: 8/19	197	Filter No.(s):		Job No.	:5413,00	3
Sample Lo	cation: I	NLET			<u> </u>		
Recovery I	Date: 8/	19/97	XAD-2 Trap N	o.(s): 5-こ	3-I-	1	
Sample Re	ecovery Pe	erson:	The second s				
			Moisture	Data 🗧			
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	. 3 (100 ml H2O) (tip <u>p</u> ed)	4 (knockout) (untipped)	Silica gel (untipped)	
Final wt.	433.5	4.74.	699.8	103.9	594.4	888.7	g
Initial wt.	408.7	922.3	699.Z	703.6	593.3	883.3	g
Net wt.	24.8	51.0	0.6	0.3	1.10-1	5.8.4	g
			Descrip	tion	STAL =	78.0 5	84
Train Syst	em:						
Probe:							
Filter: Col	or -	<u> </u>	Loading	g			
	Contents:	_					
Impinger C							
Silica Gel:	@Grams	Used -	Color -	~ %	Spent -		
Silica Gel: Condensa	@Grams	Used - ed In Front H	<u> </u>	~ %	Spent -		-
Silica Gel: Condensa	@Grams te Observe	Used - ed In Front H Re	Color - lalf: covered Samp	% Sile Fractions	Spent -		
Silica Gel: Condensa	@Grams te Observe tainer No.	Used - ed In Front H Re	Color - lalf: covered Samp	% Die Fractions	Spent -	d/sealed:	
Silica Gel: Condensa Filter Cont	@Grams te Observo tainer No. ule Contair	Used - ed In Front H Re	Color - lalf: covered Samp	% Die Fractions	Spent - marke	d/sealed: -	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH	@Grams te Observe tainer No. ule Contair	Used - ed In Front H Re ner No.: Half Rinse (A	Color - lalf: covered Samp	ole Fractions	Spent - marke marke Liquid marke	d/sealed: d/sealed: level d/sealed:	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH	@Grams te Observe tainer No. ule Contair I) & Back H	Used - ed In Front H Re her No.: Half Rinse (A	Color - lalf: covered Samp cetone) Contai	ner No.:	Spent - marke marke Liquid marke Liquid marke	d/sealed:	
Impinger C Silica Gel: Condensa Filter Cont XAD Modu Probe (FH Probe (FH Impinger (	@Grams te Observe tainer No. ule Contair d) & Back H d) & Back H Contents C	Used - ed In Front H Re her No.: Half Rinse (A Half Rinse (T container No	Color - lalf: covered Samp cetone) Contai coluene) Contai	ole Fractions	Spent - marke marke Liquid marke Liquid marke Liquid marke	d/sealed: d/sealed: level d/sealed: level d/sealed: level d/sealed:	

1.11.100-0. K74-5-10-19/17B [CO1 ___] Condensers FIELD DATA lo, ___ V, : Silica gel _____ A PACIFIC ENVIRONMENTAL SERVICES, INC. co ___ Total IL O N. Mant ASPHALT PLANT "A" Vy" 8-19-97 Probe Length and Type _____ Glass Date _____ Sampling Location _ I clot to Bag house Pitot Tube I.D. No. _____5.2 Sample Type _____ PNI- Metcls Run Number _______ 5.29 - I - 1 Assumed Moisture, % ______ Operator ATB Meter Box Number _______ #9 Barometric Pressure (8) _____9.96 Meters 11@___________ Static Pressure (P. ) _____2.5 Meter Gamma 1.016 Filler Number(s) MGT - 001 - (MOm) References p _____ Protest Leak Rate = .005 cfm @ _10" in 11g )D" in IIg Post Test Leak Rate = ______ cfm @ ____ Pretest Pitot Leak Check Post Test Pitot Leak Check Schematic of Pretest Orsat Leak Check // Post Test Orsat Leak Check Read and Record all Data Every _____ Minutes **Traverse Point Layout** Page of Temp. Sensor ID No. Tump Fiche Lupinger Dry Gas Meter Temp. Ordice Pres. Differential Slack Gas Melet Velocity Clock Time Traverse Sampling / Vacuulin Temp. • [· Temp. / Filter Temp. Outlet (Tela) P Reading (41) in. 1120 Head4 (s) Point Time. (24-bour In. Hg • F (Boul F Temp.[•] F (Vin) n J In. H2O Desired Actual (ђ) clock) Number (min.) (((X))) D 1.start 105.740 KK ( 3 BAJ 88 1233/260 5 91 230 1.20 ,23 SC. 6019:16 105.740 1012 93 8351255 98 50 32 233 1.09 01.1 1051 108,10 fiter chare d 23 96 <u>\$</u>9 2341 260 49 228 1.20 111.20 1.24 P 101 9:30 .85 11 232 / 257 97 6 97 .18 0.90 227 113.35 2.90 6 KI 10:05 101201 1MD 116.52 *i*O 80051 Ø 5301 Ą 100351 ø 8 13,401 60451 1 65501 7 120651 <u>b</u>2 02601 6 1060 101 701 20151 2801 4 TD851 82 901 00951 R 100 19 2 105 Del . 1 1 110

		/			R	un No.: <i>S</i>	29-I-1			
riant: <u>Asp</u>	19 97 C	•	100 No: \$413-003							
Date: 3-1		ample box no.	•							
Sample Loca	ion: <u>Ince</u>	nate 15				<u> </u>				
Sample Type	Particulate //	AL HL	1 Ro	R	La Cor	Id				
Sample Reco	overy Person: 1		ume mil Sealed/i evel Marked							
Container		Description [Volume, m] Sealed								
-ront Half	Filtor No (c) MA1-	nni 🛥		<u> </u>		C.				
1 	Acetone Rinse									
<u> </u>	Nitric Rinse									
Back Half										
4	Nitric Rinse - Imp. 1,	2,3, + Back 1/2	Filter	(						
 5A	Nitric Rinse - Impinger No. 4									
5B	KMNO4/H2O Rinse - Impingers 5 & 6									
5C	HCI Rinse - Impingers 5 & 6									
Moisture D	<b>ata</b>		9 ST							
Impinger	Contents	Initial				Weight, grams				
No.		Volume, ml	Initial		F	Final	Net			
1	Empty	ter m	72	.3.1	773.		50.0			
2	5% HNS /10% H202	100	10	9.1	7.	23.1	(8.4			
3	5% HINUS/10% H2O2	100		$\frac{50.3}{7}$	72	34.9	4.6			
	Empty	6.		24 6		<u>sc. (</u>	<u> </u>			
5	Kmalou / H2Soy	100	4	<u>1.0</u> 47.7	<u>لاما</u> ۲۲		6.6			
6		100	170	786.8		91.0	4.2			
l	Silica Gel	100	+ <u>'</u>		†		<u> </u>			
		+		<u></u>	1		<u></u>			
					1					
-					+		200			

Appendix B.2

Raw Field Data

Baghouse Outlet

#### GAS ANALYSIS DATA FORM



RUN GAS		1 NET	ACTUAL READING	2 NET	ACTUAL READING	3 NET	AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _d .
	ACTUAL READING								
CO ₂	5.4	5.4	5.5	5.5			5.45	44./100	
O2(NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	18.4	13.0	18.7	13,Z			13,10-	32 _{.100}	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O _Z READING)								28/100	· · ·
N2(NET IS 100 MINUS ACTUAL CO READING)								28 _{/100}	
·				L. <u></u> L				TOTAL	
#### GAS ANALYSIS DATA FORM

PLANT	ASPHALT PLA	HUT "A"	COMMEN	ITS:
DATE 8-20.17	TEST NO	M29-0-3		
SAMPLING TIME (24-hr CLOCK)				
SAMPLING LOCATIONO	rut			
SAMPLE TYPE (BAG, INTEGRATE	D, CONTINUOUS	)		
ANALYTICAL METHOD	RSAT ®			
ANBIENT TEMPERATURE	68°F		•	
OPERATOR TA-				. •

RUN		1		2		3	AVERAGE		NOLECHLAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS)
COZ	5.0	5.0	5.2	5.2			5.1	44./100	
O2(NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	18.Z	,3.Z	18.2	13.0			13,1	32 _{.′100}	
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								²⁸ /100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)								28 , ₁₀₀	
								TOTAL	# ************************************

#### GAS ANALYSIS DATA PORM



RUN	1	I		2		3	AVERAGE		MOLECULAR WEIGHT OF
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME	MULTIPLIER	STACK GAS (DRY BASIS) M _d .
COZ	3.2	3.2.						44./100	
O2(NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	14.0707	l 10.8 ^v	/					32 <u>./100</u>	· ·
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								²⁸ /100	
N2(NET IS 100 MINUS ACTUAL CO READING)								28 , ₁₀₀	

TOTAL

RUN NO. A

SOURCE NAME	- (			OBSER	VATIO	N DAT	F	STAR			STOP T	IME		
Daghous	ec	Jutiet		SEC	11-			7.	SEC		<u> </u>			
ADDRESS ASPHALT PL	ANT "	A''		MIN	0	15	30	45	MIN	0	15	30	45	- 1 mi
1010 Rd	(Clev	eland	Rd)	1	5	O	5	0	31	0	$\underline{\circ}$	5 1		
CITY	STATE	NC ZH	ρ	2	0	0	$\left  0 \right $	5	32	0	OK	21	9	
PHONE	SOURC	E ID NUMBE	R	3	0	O	5	5	33	5	0		5-	
				4	0	0	0	5	34	$\mathcal{O}$	2 1			
PROCESS EQUIPMENT		OPERATIN	G MODE	5	5	0	5	0	35	5	0	$\underline{O}$	0	
CONTROL EQUIPMENT		OPERATIN	IG MODE	6	0	0	5	p	36	0	0		0	
Daghouse DESCRIPTE EMISSION POINT		norm		7	0	5	0	5	37	$\mathcal{O}$	5	0	$\mathcal{O}$	
SIARI WINNED STACK	STOP	Some		8	5	10	0	5	38	0	D	D	$\mathcal{O}$	
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE T	OOBSERVER	9	0	15	O	5	39	0	5	0	0	
START 29 ft STOP Sine	START	<u>0 57</u>	OPSONE	10	5	5	5	Ø	40	O	0	0	0	
DISTANCE FROM OBSERVER	DIREC	WFSta	OP Schver	11	10	6	5	0	41	0	$\circ$	0	5	
DESCRIBE EMISSIONS	Jan	18	1	12	$\overline{a}$	0	0	0	42	0	6	0	$\mathcal{O}$	
START SHALL CK.T	- after exit STOP ameliancunschie						0	5	43	$\widehat{O}$	0	0	O	
EMISSION COLORTTUN	COLORT THE PLUME TYPE: CONTINUOUS						5	15	44	5	0	U	9	
STARTDOLL, STOP	P FUGITIVE INTERMITTENT L PRESENT. IF WATER DROPLET PLUME:					F	10	1	45	0	0	0	$\overline{\mathbf{O}}$	
NOT YEST	PRESENT. IF WATER DROPLET PLUME: ATTACHED D DETACHED D					15	10-	15-	46	17	$\overline{\mathbf{O}}$	5	0	
POINT IN THE PLUME AT WHIC	HARACI	TY WAS DE	TERMINED		10	10	+ <del>&gt;</del>	10	47	13	ŏ	$\overline{\leq}$	ð	
START   dia above exit	STOP	- sand	,		10	$\downarrow O$	10	15	47	15	0	A	$\vec{O}$	
DESCRIBE BACKGROUND				18	0	15	$\odot$	10		P		<u> </u>	0	
START TREES	STOP	ONDITIONS		- 19	0		$\underline{0}$		49	10	$\mathcal{O}$	0		
START - COLON STOP	STAR	iscatereds	TOPgane	20	$\underline{0}$	0	5	0	50	$\downarrow \mathcal{O}$	$\bigcirc$	$\left  \mathcal{O} \right $	0	
WIND SPEED	WIND	DIRECTION		21	5	0	0	5	51	0	O	O	р_	4
START 2-4 STOP	STAR		TOP gane	22	ĨC	25	O	0	52	0	5	0	D	
AMBIENT TEMP.	WETE	10LB TEMP. 67	59	23	0	D	5	0	53	5	Э	0	0	
START 74 STOLEO				24	0	10	50	)0	54	0	0	0	0	4
Source Layout Sketch	Dr	aw North A	rrow	25	E	50	) (	10	55	0	0	0	0	
:105		(-		26	Z	50	ĪÒ	D	56	5	$\mathcal{O}$	0	5	
8	<u>/</u>		9	27		15	C	0	57	5	0	0	0	
	X missi	on Point -		28			510	50	58	0	0	0	0	]
-	3 24 27			29			<	50	59	5	10	)0	0	7
			R+	20			n Ž		60	$\overline{0}$	10	n	0	1
Sun & Wind	Obser	vers Position	42	AVE	RAGE	OPAC			NUN	NBER C	OF REAL	DINGS	ABOV	Ε
Plume and - Stack		-on 10	HIG	HEST	PERIO	2	3.54	6	5_	% WE	RE	3	4	
	140° pile							EADINO	55	мА	XIMUN	15		1
J-40	J-40							RINTI	Da	rid	Gos	sha	.w	]
COMMENTS	COMMENTS - indicate fusitive emission							IRE		DA	^{TE} 8-	19.9	7	]
- maical	OR	GANIZ	ATION	Dee	£00	Inc								
I HAVE RECEIVED A COPY O	FTHESE	OPACITY O	BSERVATION	IS CEI	RTIFIEL	D BY	ΕT	9		0,	ATE	3/97	÷	_
TITLE		DATE		VE	RIFIED	BY		-			ATE			-

RUN NO. <u>\</u>

SOURCE NAME R. I.	. F.	·+		·	OBSER	VATIO	N DAT	5	STAR	TTIME		STOP	TIME	
ADDRESS	<u> K                                   </u>	( ]								N SEA		12	07	r
ASPHALT	PLANT '	' <u>A''</u>	<del></del>	- <u>-</u>	MIN	0	15	30	45	MIN	о	15	30	45
1010 Rd	CC	leve,	land	Rd)	1	5	0	0	/	31	0	0	0	/
CITY	STATE	10	ZIP		2		/	0	0_	32	0	0	5	0
PHONE	SOURCE	ID NUN	ABER		3	0	0	0	$\overline{O}$	3.3	0	0	0	/
PROCESS EQUIPMENT	L	OPERA	TING MO	DE	5	5	3 5	202	0	35	ر ک	0	0	0
CONTROL EQUIPMENT	r	OPERA	TING MO	DE	6	0	0	) 0	$\overline{}$	36	5	0	0	0
DESCRIBE EMISSION POINT	ouse 1	no	mal		7	5	0.	Q.	0	37	0	5	0	0
STARTYCILOW stack	STOP	same	,		8	Ö	0	0	0	38	0	0	0	Ð
HEIGHT ABOVE GROUND LEVEL START 2955 STOP	HEIGHTR	ielativ D	E TOOBS STOP	ERVER 0	9.	0	0.	Ð	0	39	0	S	0	0
DISTANCE FROM OBSERVER	DIRECTI	ON FRO	M OBSE	RVER	10	0	0	0	0	40	0	0	0	0
START 45 () STOP Some	START V	NESI	STOP >	me	11	/	D	5		41	10	0	5	0
START con'na condensa	STOP 50	me	··· =		12	0	2	2	2	42	2			
EMISSION COLOR CARLY	PLUME T	TYPE: C	ONTINUO TERMITTE		14	0	2	$\frac{0}{5}$		44	$\overline{\mathbf{o}}$	0	$\left  \begin{array}{c} 0 \\ 0 \end{array} \right $	2
WATER DROPLETS PRESENT:	IF WATE	R DROP	PLETPLU	ME:	15	0		$\overline{0}$	0	45	5	5	$\overline{0}$	0
NO D YESS	ATTACH	IED D	DETACH		16	0	ଚ	0	5	46	0	0	5	0
START 23th above est	STOP Se	ne.			17	0	0	5'	0	47	0	0	0	O
DESCRIBE BACKGROUND	<u> </u>	0			18	D	0	0	0	48	ପ	0	0	0
BACKGROUND COLOR	STOP S	DITION	S		19	6	0	0	1	49	0	5	0	0
START free Stop same	STARI	a He rec	<u>Istorsa</u>	<u></u>	20	0	0	0	-	50	0	0	0	5
START Z STOP Some	START A	IW	N STOP 5'	cne	21	0	8	0	5	51	0	5	0	0
AMBIENT TEMP.	WET BUL	B TEMI	P. RH.p	ercent Ø	23	10	0	0	5	53	$\frac{O}{\epsilon}$	0	0	0
START 20 STOP CC		2		0	24	5		0	5	54	ð	5	$\frac{O}{O}$	0
Source Layout Sketch	Draw	North	Arrow		25	Ó	0	0	0	55	0	0	0	0
APE		(	<b>&gt;)</b> ·		26	0	0	U	5	56	0	5	0	0
ý k	mission	Point	Ŭ		27	0	0		1	57	0	0	0	0
Ŭ			. 0	)+	28	$\rho$	0	0	0	58	0	S	0	5
7			۴ د	12 ->	30	8	5	0	B	60		0	0	2
Sun & Wind _ Plume and =	Observers	Positio	n	-	AVER	AGE O	PACITY	FOR		NUME	DER OF	READ	NNGS .	ABOVE
Stack 14	0.1		•		HIGHE	ST PE	RIOD	<u> .</u>	673	1	5	% WEF	RE 1	
J-40 Subscore	tion Line				OPSE		MIN		0		MAX	<u>. .</u>	10	
					0832				<u>""D</u>	ay' d	<u>i</u> C	osh	<u>a.u</u>	
CUMMENTS - Fusitive	e obstr	vetio	<u>n</u>		OBSE	RVERS	S SIGN		2	5	DAT	f 8	- 19	-97
	migstr	)			ORGA	NIZAŤÍ	ion 1	SE.	ECO	In	L			
I HAVE RECEIVED A COPY OF SIGNATURE	THESE OP	ACITY C	BSERVA	TIONS	CERTI	FIED B	Y Ē	TP	)		DAT	٤ 3	/97	  •
TITLE		DATE		- <u>-</u>	VERIF	ED BY					DAT	£		
					1					4. J				

RUN NO.

SOURCE NAME Baghous	RCE NAME Baghouse Exit RESS ASPHALT PLANT "A" 1010 Rd (Cleveland STATE NC 21P NE SOURCE ID NUMBER CESS EQUIPMENT, OPERATING BACHOUSE OPERATING BACHOUSE OPERATING CRIBE EMISSION POINT RTALTANULA WILLOSE OPERATING CRIBE EMISSION POINT RTALTANULA WILLOSE OPERATING CRIBE EMISSION POINT RTALTANULA WILLOSE OPERATING CRIBE EMISSION POINT RTALCTONULATE FROM OBSERVER CRIBE EMISSIONS CRIBE EMISSIONS CRI						VDATE 97		STAR 13:	TTIME OY	*	STOP	TIME	4
ADDRESS					SEC	<u> </u>	<u> </u>			SEC			İ T	
ASPHALT PLA	HNT "A"				MIN	0	15	30	45	MIN	0	15	30	45
101.0 Rd	((1	evel	and	Rd	1	5	0	0	5	31	5	0	5	5
CITY	STATE	NIC	ZIP		2	5	0	5	0	32	10	5	0	0
	SOURCE				3	10	5	0	0	33			0	5
	300/102	10 1101			4	0	0	5	/	34	/	0	0	/
PROCESS EQUIPMENT	10-	OPERA	TING MC	DDE	5	0	5	0	5	35	0	5	5	Ð
CONTROL EQUIPMENT		OPERA	TING MC	DDE	6	0	5	ට	0	36	10	5	5	5
BACHOUSE		NO	RMAL	-	7	5	0	0.	0	37	5	5	0	5.
START	STOR -				8	0	0	5		38	0	5	5	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT F	RELATIV	E TOOBS	SERVER	9	0		0	1/	39	0	5	Ó	5
START 29 ft STOPSand	START	29 #	STOP 5	me.	10			5	$\frac{1}{2}$	40	5	1	- -	
DISTANCE FROM OBSERVER	DIRECTI	ON FRC	OM OBSE	RVER		-	2			41		6	12	6
START JU STOP Same	START	NE	STOP 5	ane		/	0	13	0	47	2	10	1-	
START CONING	STOP <b>S</b> O	ame			12	5	5_	05		42	12	10	15	12
EMISSION COLOR	PLUME	TYPE: C	ONTINUC	วบร ฮ	13	0	$\downarrow 0$	O	15	43		5	0	5
STARIGIES STOP Same	FUGITIV	ED IN	TERMITT	ENTO	14	1			0	44	5_	0	5_	0
WATER DROPLETS PRESENT:	IF WATE	RDRO	PLET PLL	IME:	15	0	/	5	$\mathcal{D}$	45	5	0	5	0
NO D YESO		16	/	5	0	0	46	0	5	5	5			
CTART 3 Freham Px. +	STOP	5a m(	2.		17	5	0	0	5	47	0	0	5	D
DESCRIBE BACKGROUND	3707	<u>JUCC.</u>			18	0	0	Z	0	48	0	5	D	5
START trees	STOP	Sam	2		19	D	5	13	17	49	0	5	5	E
BACKGROUND COLOR	SKY CO	NDITION	vs		20	1.5	12	12	+	50	6	5	10	12
START CALLA STOP Same	STARIS	MARCTIC	STOP -	scure		10	5	$\sim$	$\frac{1}{r}$	51	12	1	E	5
START 2-3 STOP TOPEN	START	NV	STOP 5	jame.	21	v	10	0	15_		-2	1/	12	
AMBIENT TEMP.	WET BU	LB TEM	IP. RH.	percent	- 22	0	12	4	1		10	13	10	<u>4</u> 5
START 88 STOP SO	6	<u> </u>	3	14	23		15	5	0	53	15	0	5	0
				~	24	0	<u>_5</u>	5_	0	54	15	10	$\downarrow$	+ <i>O</i> _
Source Layout Skeich	Drav	w North	ATTOW	<u>_</u>	25	0	<u> 0</u>	5	5	55	5	0	$ \underline{0} $	10
¢.		(	$\langle \cdot \rangle$	$\langle \! \rangle$	26	10	5	5	0	56	0	5	$\left  \mathcal{O} \right $	5
	Emission	Point	$\bigcirc$		27	5	0	0	0	57	5		5	
	0-				28	5	5	5	1	58		0	0	5
	ALC P		·		29	D	5	0	0	59	5	5	10	5
	04				30	0	0	5	0	60	0	5	5	5
Sun & Wind Plume and =		AVER	AGE	PACIT	YFOR	3.15	NUM	BER O	FREAT	DINGS	ABOVE			
Stack	•	HIGH	EST PE	RIOD	-31	54%	<u></u>	5	% WE	RE -	7			
Sun Loca		RANC	SE OF	UPACI. MI	IY REA NIMUN	A C	, )	MA	хімил	1 10	2			
	· · ·						S NAN	IE (PRI	INTI	)av.C	G	Joch	nw	)
COMMENTS , + 1	.1	OBSI	RVER	s sigi	VATUR		~~~	DA	TE SA.	19-1	97			
/ - unlerfer	itve	ORG	ANIZAT	TION	<u> </u>	$\sim$	Inc							
I HAVE RECEIVED & COPY OF	IHESE OF	PACITY	OBSERV	ATIONS	CERT	IFIED I	9Y _		Δ		DA	TE :		
SIGNATURE		Loter			VEDI		<del>ب</del>	2 1 /	· \		100		197	·
· · · · · · · · · · · · · · · · · · ·		+ DATE			I VERI		,				: 04	•		

RUN NO. D

SOURCE NAME Baghou:	URCE NAME Baghouse Exit DRESS ASPHALT PLANT "A" 1010 Rd (Cleveland Y STATE NC ZIP ONE SOURCE ID NUMBER DOESS EQUIPMENT aggregate dryer NTROL EQUIPMENT Baghous STOP SCRIBE EMISSION DEVEL INTER DROP GOLOR ART aggregate STOP Some SCRIBE EMISSIONS ART CONTAG STOP Some START AVE STOP Some IF WATER DROPLETS PRESENT IF WATER DROPLETS PRESENT IF WATER DROPLET PLUME ATTACHED D DETACHNO NO YEST SCRIBE BACKGROUND ART AGGON STOP Some START ALE ALE ALE AND ALE					E	star 14	TTIME		STOP 15	TIME	
ADDRESS ASPHALT	PLANT	"A"	SEC	о	15	30	45	SEC MIN	о	15	30	45
1010 Rd	(c	eveland Rd	1	φ	5	0	5	31	$\backslash$	5	0	5
CITY	STATE	N/C ZIP	2	5	0	0	5	32	5	5	5	5
PHONE	SOURCE		3	0	5	0	10	33	5	/	Q	5
			4	0	5	0	0	34	0	5	5	0
PROCESS EQUIPMENT	-	OPERATING MODE	5	5	5	0	0	35		5	10	5
CONTROL EQUIPMENT		OPERATING MODE	6	ð	O		0	36	Ø	5	5	5
DESCRIBE EMISSION POINT	50	Normal	7		0	5-	5	37	/			
START rectangular yellow	trop-	same	8	/	5	0	Õ	38	5	5	5	5
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE TOOBSERVER	9.	/	5	0	5	39	5	0	5	5
START 21" STOP Some	START	ION FROM ORSERVER	10	5.	0	5	5	40	0	5	0	0
START 300 FT STOP serve	START	NE STOP Sard	11	0	0	/	/	41	0	0	5	5
DESCRIBE EMISSIONS	<u> </u>	· · ·	12	5	5	0	5	42	0	0	Ó	4
START coning	STOP -	ane	13	5	5	5	5	43	5	ă	0	あ
EMISSION COLOR	PLUME	TYPE: CONTINUOUS OF	14	5			7	44	0	5	5	5
WATER DROPLETS PRESENT:	ATER DROPLETS PRESENT: IF WATER DROPLET PLUM						P/	45	7	5	5	2
NOD YEST	NO D YEST ATTACHED D DETACHED						5-	46	5	5	3	2
POINT IN THE PLUME AT WHICH	INT IN THE PLUME AT WHICH OPACITY WAS DETERMINE							40	$\frac{0}{2}$	2		3
START O ADOVE CALL	STOP	same	1.0	/	2	<u>p</u>	7	47		12	2	$\frac{O}{c}$
START Trees	STOP	same	10	5	0	5	1-	40	2	2_		2
BACKGROUND COLOR	SKY CO	NDITIONS	19		/_	15	12	49	2	5.	5	$\mathbf{P}($
STARTOREEN STOP some	START	caterension sume	20	ΠŎ	0	<u>s</u>	0	50	5	5	5	L
STARTH29 STOP	START	NW STOP Some	21	<u> </u>	5	5	15	51	10	10	10	10
AMBIENT TEMP.	WET BU	LB TEMP. RH.percent	22	5	5	5	5	52	5			$\leq$
START 80 STOP	6	8 34	23	5	5	1	5	53	5	5	5	10
			24	5	5			54	5	10	10	5
Source Layout Skeich	Drav	W North Arrow	25			0	5	55	5	5	5	5
		$( \sim ) $	26	0	5	D	5	56	5	0	5	5
1	Emission	Point	27	10	5	0	5	-57	5	5	5	5
K Kt Y	Qu		28	5	$\overline{O}$	5	0	58			5	5
-1~	OS VS		29	5	5	0	0	59	5	5	5	$\overline{\langle}$
Sun & Wind			. 30	5	5	0	0	60	0	5	0	<
Plume and =	Observer	s Position	AVERA	AGE O	PACIT	FOR	6.467	NUME	BER OF	READ	INGS	ABOVE
Stack 14	tanks	HIGHE	ST PE	RIOD			L	5 .	% WER	<u>E 1</u>	/	
Sun Local		12110		MIN	IMUM	0.003	0	MAX	імим	10		
Plan		OBSE	RVER'S	S NAM	E (PRII	VII D	buid	Ge	ssh	an		
COMMENTS , by the	COMMENTS by the interland					ATUR	Z	/	DATE	8-1	9-9	Z
	0		ORGA	NIZATI	ION	<u>مع</u> ے ای اور		1	1	<u> </u>	/	
I HAVE RECEIVED A COPY OF	THESE OF	PACITY OBSERVATIONS	CERTI	FIED B	۱ ۲۶۲	<u> </u>			DAT	5 3/	97	
E EASE E			1.000			• •				-1		

	• .												
- I - I		,								,	า		
		v	isible Emission (	Observat	ion Foi	m					LA		
SOURCE NAME Baghouse	Exit			OBSERV 8-	/ATIO/ 20-	DATE		STAR	т тіме <b>2</b> 4		stop <b>q</b>	11ME	
ADDRESS ASPHALT PLANT "A	,''			SEC MIN	о	15	30	45	SEC	0	15	30	45
1010 Rd	(Cles	<i>iclar</i>	d Rd)	1	0	0	0	0	31	_	5	0	0
CITY	STATE	٧C	ZIP	2	0	0	0	5	32		0		0
PHONE	SOURCE	ID NUN	ABER	3	00	0	5	0	33	0	0	5	8
PROCESS EQUIPMENT	L	OPERA	TING MODE	5	5	5	0	0	35	5	0	0	0
control EQUIPMENT,		OPERA	TING MODE	6	0	0	0	0	36	0	0	0	5
bagho	use	10	rmal	7	0	0	0	0	37	0	0	5	0
START ONLOW SECTODONIA	stack STOP	500	e.	8	0	0	0	0	38	5	—	0	5
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIN	E TOOBSERVER	9	0	0	0	0	39	0	-	-	0
START 29 T STOP Same	START		STOP SAME	10	5	0	0	0	40	0	0	0	0
START 475 STOP Same	START	NW	STOP Same	11	0	5	0	0	41	0	5	5	0
DESCRIBE EMISSIONS	TIBE EMISSIONS contine londer 510 some							0	42	0	0	0	0
EMISSION COLOR	PLUME	ONTINUOUS	- 13	0	0	5	0	43	0	0	0	Q	
START light gap TOP same	ITERMITTENT	14	5	0		0	44	$\overline{o}$	0	10	5		
WATER DROPLETS PRESENT:	IF WAT	ER DRO	DETACHED	15	-		0	0	45	0	10	12	13-1
POINT IN THE PLUME AT WHIC	HOPACIT	Y WAS	DETERMINED	16	0	D S	0	0	46	10			0
START 3 Habove exit	STOP 5	ame		17	0	0	5	Q	47	$\left  \begin{array}{c} 0 \\ 0 \end{array} \right $	<u> </u>	<b>10</b>	2
DESCRIBE BACKGROUND				18	0	0	0		48	$  \bigcirc$		-	
START LIES	STOP E	NDITIO	NS	19	0	0	0	0	49			$\frac{1}{0}$	0
START Green STOP Same	START	broke	NSTOP OWICES	20	0	0	10	0	50		10	10	2
WIND SPEED	WIND D	DIRECTI		21	0	0	0	5	51	5		10	0
AMBIENT TEMP	WET BU	JLB TEN	AP. RH.percen	22 1	D	0	0	0	52	10	0	17	
START 74 STOP 79		66	65	23	5	$\frac{1}{C}$	0	10	53		0	븡	0
1 plantentrance	0	Marth	A	24	$\frac{\nu}{2}$	0	10		55		0	10	0
Source Layout Skelch	Dra	w wortr	Anow	25				> 5	55				0
			$\mathcal{O}$	20	+	$+ \frac{c}{c}$			57	12	13	10	
0	Emissio	n Point		2/			13	10	58	10	10	15	5
l e C				20	$+ \stackrel{\smile}{=}$	:1=			59	10	0	5	6
<b>1</b>			·	30	_		10	5	60	0	to	10	10
Sun & Wind > Plume and =	Observe	ers Posi	lion-m	AVE	RAGE	OPACI	TY FOF	2110	NUN	IBER O	FREA	DINGS	ABOVE
Siack	409'	recycled	HIGH	HEST P	ERIOD	<u>/.</u>	76 /	<u>61</u>		% WE	<u>RE</u>	1	
0 Sun Loc	Sun Locandin Line hill							<u>M</u>	Õ	MA	XIMUN	1 10	)
				OBS	ERVER	'S NA	ME (PF	^{מאזי} ז	Davin	<u>d.</u> G	ost	<u>1an</u>	1
COMMENTS to the	1	·L "a	ffs" aver	QAS		S SIC	NATU	RE	t	DA	^{TE} 8	-20	-97
En minutes for	~/e	·J K	1	ORC	ANIZA	TION	DET	;(0	Inc				
I HAVE RECEIVED A COPY OF	THESE C	PACITY	OBSERVATION	S CER	TIFIED	⁸ Y	TA			DA	TE	3-	97
TITLE		DAT	E	VER	IFIED	BY				DA	TE		

· 1

Institu Accurance Handbook M9-4-2

	I										•		
		Vi.	sible Emission	Observa	tion Fo	rm					20		
SOURCE NAME Baghous	e Es	it_		OBSER B	VATIO	N DATI - 97	F -	STAR <b>9:</b>	t time 30		510P	тіме ): З	$\mathcal{O}$
ADDRESS / ASPHALT PLANT "	A."		<u> </u>	SEC	о	15	30	45	SEC	0	15	30	45
1010 R	d C	Clevel	and Rd)	1	0	0	0	0	31	_	0	0	01
CITY	STATE	NC	ZIP	2	0	0	5	0	32	0	5	$\overline{\mathcal{O}}$	0
PHONE	SOURC	E ID NUM	BER	4	0	0	00	0	34	00	$\mathcal{O}$	05	0
PROCESS EQUIPMENT	• 1	OPERAT	TING MODE	5	Õ	5	0	10	35	0	0	0	O
CONTROL EQUIPMENT	236	OPERAT	TING MODE	6	0	0	0	5	36	0	0	10	
DESCRIBE EMISSION POINT		1		7	<u>o</u>	O	0	0	37	0	5	0	0
START rectangular stack	STOP	same		8	0	0	0	<u>o</u>	38	15	0	0	0
START 29 5 STOP	START	+3ft	STOP	9	Ő	0	0	0	39	0	0	0	0
DISTANCE FROM OBSERVER	DIREC	TION FROM	M OBSERVER	10	5	0	0	0	40	$\mathcal{O}$	0	0	0
START 475" STOP Same	START	NW	STOP Same	11	0	-			41	0	0	0	0
START CONS	STOP .		12	-	0	Q	Q	42	0	0	0	0	
EMISSION COLOR	PLUME	TYPE: CO		13	0		0	9	43	0	10	0	10
START light grostop	FUGITI	ERMITTENT	14		0	0	9	44	0	10		10	
WATER DROPLETS PRESENT:	ATTA	DET PLUME:	15		$\left  \mathbf{O} \right $	5	0	45	5	10	0	5	
POINT IN THE PLUME AT WHICH	HOPACI	TY WAS D	DETERMINED	- 16	0	0	0	0	46	0	$\mathcal{D}$	0	D
START 2-3t above ait	STOP	same		17	5	-	0	Ø	47	10	0	0	5
DESCRIBE BACKGROUND				18	0	0	0	Ø	48	0	0	0	0
START CICES	STOP	Jame	ç .	- 19	0	5	0/	10	49	0		5	10
START green STOP Same	START	overcast	STOPsand	20	0	0	Ø	0	50	0	10	0	5
WIND SPEED	WIND	DIRECTIO	N	21	0	10	0	-	51	0	5	0	0
START 1-5 STOP Some	START	North	STOP Some	_ 22	0	0	0	0	52	0	0	5	0
START 79 STOP 83	6	<b>9</b>	- RH,percent 60	23	0	0	0	Ō	53	0	0	0	5
Application	ie	-		24	D	0	0	5	54	5	0	Ō	0
Source Layout Sketch	Dra	w North A	Arrow	25	-	0	0	0	55	O	0	0	0
		(		26	0	0	0	0	56	0	D	0	5
. 15%	5	n Baint		27	0	O	0	0	57	Õ	0	10	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Emissio	n Point		28	0	0	0	0	58	15	O	0	Ō
		-	.	29	0	0	0	0	59	5		5	0
Sund Wind				30	0	0	0	5	60	0	10	D	0
Plume and =	Observe	ers Positio	n	AVER	AGE O	PACIT	YFOR		NUM	BEROF	READ	NGS	ABOVE
Slack 14	Slack 140°										<u>% WEF</u>	RE /	Ч
Sun Loca	lion					MI	VIMUN	1	0	MAX	амим	15	5
I-40	•			OBSE	RVER	S NAM	IE (PRI	$^{\prime\prime\prime}$ L)avio	G	sha	ur)	
COMMENTS	. (OBSE	BVER	s sign	HATUR	e/		DAT	E		a+-
- indicates abstructi	00 01	read;	<u>ng operity</u>	ORG	NIZAT	ION		<u>~_</u>	<u></u>	L	<u> </u>	<u></u>	
LAVE RECEIVED & COPY OF	ON SUSI	PACITY O	NGITWE)	CERT		- YF	JEE	0	me	TOAT	F -		
SIGNATURE						E	TĄ				- 3	- 4	+
		DATE		VERII	FIED B	Y				DAT	E		
NOTE: intermittent opa	c. +4	"ouffs"	for ala	error d			<u> </u>						

•

 $\left(\begin{array}{c} \end{array} \right)$

		V	isible Emission (Observat	ion Foi	m					20	
SOURCE NAME Baghou	se E	ixit		OBSER	ATION	DATE	7	STARI	:35		STOP	TIME
ADDRESS	PLANT	"A"		SEC	0	15	30	45	SEC	ο	15	30
1010 Rd	((leve la	nd Corp. Pd)	1	0	5	-	0	31	15	0	0
CITY	STATE	NC	ZIP	2	-	0	0	10	32	0	10	0
PHONE	SOURC	E ID NUN	IBER	3	0	_			33	0		<u>0</u>
PROCESS EQUIPMENT		OPERA	TING MODE	4	-	0		15	34 35	0	E E	$\frac{0}{2}$
aggregate dryer		OPERA		6	0	_	<u>)</u>	00	36	0	2	$\overline{\bigcirc}$
baghou baghou	ise	10	rma/	7	0	0	0	15	37	ŏ	0	0
START rectangular vellas	stack STOP	same	,	8	0		0		38	0	0	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIV	E TOOBSERVER	9	0	0	0	0	39	10	0	0
DISTANCE FROM OBSERVER	DIREC	TION FRO	OM OBSERVER	10	0	0	15	0	40	0	0	5
START 475 TSTOP Same	START	NW	STOP Same	11	0	5	0	$\frac{v}{2}$	41	0	0	
START coning	STOP	same		12	0	0	00	D N	42	$\frac{0}{-}$	0	5
EMISSION COLOR	PLUME	ETYPE: C	ONTINUOUS 🗹 TERMITTENT 🗹	14	0	0	5	0	44	0	0	15
WATER DROPLETS PRESENT:	IF WA	TER DROI	PLET PLUME:	15	-	0	Ō	0	45	-		0
NO SY YES	H OPACI	CHED D	DETACHED	16	0	8	5	\odot	45	0	0	
START 4 Habove exit	STOP	same	<u> </u>	17	0	0	0	0	47	0	Ø	
DESCRIBE BACKGROUND	STOP	5000	1	18	0	<u>0</u>	-	D	48	0	0	10
BACKGROUND COLOR	SKY CI	ONDITION		- 19	-	$\frac{0}{0}$	5	0	49	0	0	10
START Green STOP Some	VIND		STOP 50 mg	20	0	0	0		51		10	F
START 2-6 PSTOP JOINC	STARI	North	STOPBAME	22	D			0	52	0	O	0
AMBIENT TEMP. START 83 STOP SME		ULB TEM • O	IP. RH.percent 52	23	0	0	0	0	53	0	0	0
7 plumt march	/			24	0	0	5	0	54	0	D	C
Source Layoui Skeich	Dr	aw North	Arrow	25		0	0	0	55	0	0	
	-	(\bigcirc	26	10	10	-	5	56		13	
	Emissi	on Point		28	5		0	tin	58	tõ	0	$\overline{\mathcal{E}}$
J V				29	10	D	10	0	59	0	Ō	
Sun & Wind ->				30	0	10	0	0	60	0	10	C
Plume and = Slack	Observ	ers Posili	recyled	AVER HIGH	AGE C EST PE	PACIT RIOD	Y FOR 3.	+57	NUM	IBER O	F REAL	NNG RE
Sun Lor	40°		asphalt pile	RANC	GE OF	OPACI	TY REA	DINGS	\sim	MA	XIMUN	1 2
=.10	4		·	OBSI	RVER	SNAN	IE (PR	G ^{(1 w}	avir	1. (anst	au
COMMENTS	·	* , -		OBS	RVER	S SIGI	y y	E L		DA	IE P	70
intermittent opacity	ports	bor	- I second	ORG	ANIZA	ION	<u> </u>		1	I	<u>o</u> -	
ACCOUNT TO DO-15	THESE	OPACITY	OBSERVATION	S CERT	IFIED	<u></u>	/ <u>EE(</u> T.A.	0	inc	DA		2
SIGNATURE				1		E	115			1	\	<u> </u>

		• .												
		ı										~	_	
			V	isible Emission	Observal	tion Fo	rm						2	D
•	SOURCE NAME Rolling	E.	·+		OBSER	VATIO	N DATE		STAR	T TIME		STOP	TIME	,
L.	ADDRESS		<u> </u>		SEC	20-				SEC				
	ASPHALT	PLANT	<u>"A"</u>		MIN	0	15	30	45	MIN	0	15	30	45
	1010 Ko	/ (Cleve	land Rd		0	0		0	31	0	0		-
	CITY	STATE	٧c	ZIP	2	0	_		0	32	-	0	1 9/5	5
-	PHONE	SOURC	E ID NUN	18ER	3	0	0	0	<u> </u>	33	\mathcal{O}	0	0	0
-	DROCESS EOLIIRAAENIT		OPERA	TING MODE	4	0		0		34	\overline{O}	\mathbf{O}	0	<u>S</u>
	<u>agaregate drye</u>	-	Urena		5	0	0	0	<u>O</u>	35	0	0	5	0
	CONTROL EQUIPMENT bag	nouse	OPERA	TING MODE	6	10	$\frac{0}{2}$	0	\overline{O}	36			8	2
t	DESCRIBE EMISSION POINT	<u></u>	.I			5	0	0	0	37	2	1 <u>0</u>	N N	S-
-	START START	STOP	Same	2		0	0			30		0		\rightarrow
	START 29 STOP SAM	2 START	- 3H	STOP Same	9	0		0		39	15	10	12	3
	DISTANCE FROM OBSERVER	DIREC	TION FRC	M OBSERVER		0		$\frac{O}{2}$		40	$\overline{\mathbf{S}}$		<u>I</u>	
ŀ	START 477 STOP SAM	START	NW	STOPSane	11	0	$\left \begin{array}{c} 0 \end{array} \right $	<u>0</u>		41	$\overline{\mathbf{O}}$	0	101	
	START (miny	STOP	sane	<u> </u>	12	12	10	0	0	42	5		P	5
	EMISSION COLOR	PLUME	TYPE: C			10		0		43	0	10	2	
	START ILL STOP	FUGITI	VE D IN	TERMITTENT M	15	5	10		0	45	0	0	0	
	NO & YESD	ATTA		DETACHED	15		he	0		45	0	0	5	0
<u> </u>	POINT IN THE PLUME AT WH	CH OPACI	TY WAS	DETERMINÊD	17		2	5	5	47	E		10	$\mathbf{\tilde{\mathbf{d}}}$
	STARTY above exit	STOP	same	·	18		13	13	0	48	5			6
	START - CARS	STOP	Sam	e	10	10	10	0	10	40		$\downarrow O$	10	5
	BACKGROUND COLOR	SKY CO	ONDITION	^{/S} 1 1	- 79		10		2	49	0	5	문	
	START green STOP Sam	e START	DIRECTIC	STOPbraken	20	$+ \frac{1}{2}$		5		51	0	10	F	0
	START 5-10 STOP 5-1	START	NW	STOP NW	22	$\dot{1}$	5	0		57	0	$\frac{1}{2}$	10	
	AMBIENT TEMP	WET B	ULB TEM	P. RH.percen	22		0	0	15	57	0	12	10	6
	START OG STOP O-	<u> </u>	.1	1 22	24	10	10		15	54	E	10		
	Source Layout Sketch	h Dre	w North	Arrow	25	10	10	0		55	12	5	10	
			. (\frown	26	10	ð	1 D		56	10	50	5	
	102	-		\bigcirc	27	tř	5	To	0	57	$\overline{\epsilon}$	00	1	2
	8	Trissio	in Point		28	10	0	$ \simeq$	õ	58	0	0	6	N
					29	10	0	0	0	59	0	0	Ð	0
	Sun & Wind				30	1-	15	0	-	60	O	-	1-	0
	Plume and =	Observe	ers Posili	on-on	AVEF	AGE	PACIT	Y FOR	92%	NUM	BER O	FREAL	SINGS	ABOVE
	Siack	400		aspectt	RAN	EST PL	OPACI	TY REA	DINGS	<u> </u>	. <u>.</u>	% WE	RE	
	Sun Lo	cation Dine		recyclid			Mi	NIMUN	1	0	MA	XIMUN	15	
				MM	OBSI	RVER	S NAN	1E (PRI	~'D	avic	<u>}</u> 6	osh	iaw	·
	comments intermitiat and it.	1 de	1	f 4 200	a OBS	RVER	s sigi	VATUR	5/	~	DA	re 8-2	20-9	17-1
(for a long of		<u> 223 6</u>		ORG	ANIZA	TION			<u>~</u> -				
	I HAVE RECEIVED A COPY C	F THESE C	PACITY	OBSERVATIONS	CER	IFIED	BY _		U I	TC.	DA	TEO	16 0	<u> </u>
	SIGNATURE TITLE		DATE		VED		E	IA				-3- TF	10-4	+
							• 					· •		

	• .												
· ·			licible Emissia-	Oheania	vion Fr	· ~					ک		
		V	ISIDIE EMISSION	OPCEP	VATIO			STAD	TINAE	1	STOP	TIAAE	1
Baghouse	Exin	F		B32A	.20-	.97	-	<i>j</i> 4	05		3,07	5:05	
ADDRESS A. PHALT PL	ANT "	A''		SEC	0	15	30	45	SEC	о	15	30	45
1010 Rd	(0)	ever	and Rd	1	δ	0	0	0	31	0	0	0	ð
CITY	STATE	10	ZIP	2	0	0		5	32	0	0	O	0
PHONE	SOURCE		I	3	0	\bigcirc	0	0	33	0	0	0	0
				4	5	0	0	0	34	0	5	0	0
PROCESS EQUIPMENT		OPERA	TING MODE	5	0	\mathcal{O}	0	0	35	10	0	D	0
CONTROL EQUIPMENT back	15.0	OPERA	TING MODE	6	0	5	0	0	36	0	0	0	0
DESCRIBE EMISSION POINT		~~~~~	rmg/	7	-	0	\mathbf{O}	0	37		0	0	-
START rectangular yellow ?!	STOP	Sam	و	8	0	6	5	Ø	38	15	Ð	Ø	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIV	E TOOBSERVER	9	Q	0	5	-	39	Ô	Ø	0	0
START 29th STOP Some	START	29 1	STOP some	10	D	5	0	D	40	0	6	0	0
START 300 H STOP Same	START	NE	STOP Same	11	0	10	-	0	41	0	0		Ð
DESCRIBE EMISSIONS		12	0	0	0	10	42	0	0	R	0		
START coning	STOP	sam	2	13	0	0	0	0	43	Ō	0	5	
EMISSION COLOR	PLUME	14	$\overline{0}$	D	15	0	44	0	0	10	0		
WATER DROPLETS PRESENT:	IF WAT	ER DRO	PLET PLUME:	15	10	0	0	10	45	0	5	0	0
NO & YES	ATTAC	HED 🗆	DETACHED	16	To	10	0	-	46		0	0	0
POINT IN THE PLUME AT WHICH	HOPACIT	Y WAS	DETERMINED	17	10			$\overline{1}$	47	$\frac{0}{0}$	0	$\overline{\mathbf{b}}$	0
START 3" above ex. 7	STOP	Sam	e	10	+			0	48	1×	5	10	5
SIARI trees	STOP	Sam	Ne.			10	10					10	6
BACKGROUND COLOR	SKY CO	NDITIO	vş		12	0	H		43	5	5	10	
START green STOP some	START	Solerca	"STOP Same	20	5				50		10	10	
WIND SPEED	SIARI	ALW	STOP Same	21		-	0	10	51	0	19	10	-
AMBIENT TEMP	WET BL	LB TEN	1P. RH.percent	22	10	0	5	0	52	0		10	0
START 93 STOP 93	7	4	42	23	O	0	0	0	53	5	10	10	
				24	0	0	\underline{P}	5	54		12	\bigcup	12
Source Layout Sketch	Dra	w North	Arrows	25	6	5	0	10	55	0			10
			\bigcirc \land	26	0	10	0	0	56	-	0	10	0
KRT Q	Emission	n Point		27	0	0	5	0	57	0	0	$\frac{10}{10}$	0
42	~ ~	5:105		28	0	0	10	10	58	5	10	10	0
	0	1		29	0	10	0	10	59		0	10	O
Sun & Wind -	0			30	0	C	0	0	60		5	0	
Plume and =	- Coserve	Tos.	etroleum	AVE HIGH	RAGE (IEST PL	DPACII ERIOD	Y FOR	2.29%	3 NUM	5 sen 0	~ KEAL <u>%</u> WE	Dirvus RE เว	ABUVE
14	<u>°</u>	فلح	tanks	RAN	GE OF	OPACI	TY REA	DINGS	ī		Y (A.A.) A.		
J pk	int ent	ranc/		OBS	ERVER	'S NAN	AE (PR	<u>, </u>	David	Go	shau	<u>ر ب</u> م	
COMMENTS				OBS	ERVER	șs sic	NATU	5/	1	DA	TE Ø		<u> </u>
				ORG	ANIZA	TION	The	ECC.) lu	 c	<u> </u>	<u></u>	7_ F
I HAVE RECEIVED A COPY OF	THESE O	PACITY	OBSERVATION	CER	TIFIED	BY p	-10	, , , , , , , , , , , , , , , , , , , ,		DA	7E =	102	
SIGNATURE TITLE		DATE		VER	FIED B	E IY	173			DA	τ <u>ε</u>	177	
								۱					

2.5% 2.1 2.

									•				
	I										\sim		
		ν	isible Emission (Observal	ion Fo	rm					<u>′</u> ′ <u>′</u> ′	3	
OURCE NAME BAGHO	USE EX	11		OBSER	VATION	N DAT	E 7	STAR	т тіме : 10		STOP : 16:	time 1D	
DDRESS HERHALT P	Aut "A"			SEC	0	15	30	45	SEC	0	15	30	45
IDIO Rd	(Clark	lan	d Rall	1	0	5	0	0	31	0	0	0	2
	STATE	NC	ZIP	2	10	-	0	5	32	0	0	0	0
PHONE	SOURC		NBER	3	0	0	0	10	33	0	-	05	읭
PROCESS EQUIPMENT ,		OPERA	TING MODE	5	0	0	5	0	35	0	0	5	0
000 A 99 1299 12 Vryel	·	OPERA	TING MODE	6	0	0	0	$\overline{\mathcal{O}}$	36	-	5	5	0
bigi	have	n	ormal	7	0	0		0	37	0	0	0	0
DESCRIBE EMISSION POINT	A STOP	same		8	D	5	0		38	0	0	0	0
HEIGHT ABOVE GROUND LE	VEL HEIGHT	RELATI	E TOOBSERVE	9 9	0	0	0		39	D	0	0	0
START 29 STOP 30	NO START	29	STOP Some	10	-	0	D	0	40	5	0	0	\bigcirc
DISTANCE FROM OBSERVER	a START	NE	STOP Some	11	0	0	10	0	41	D	0	0	0
DESCRIBE EMISSIONS				12	5	0	0	0	42	D	0	Ð	10
START coning	STOP	ime		- 13				5	43	0	0	D	0
EMISSION COLOR	PLUME	: TYPE: (VE 🗅 🛛 II	CONTINUOUS 🗆 NTERMITTENT 🕑	- 14	0	10	0		44			-	
WATER DROPLETS PRESEN	T. IF WAT	TER DRC	PLET PLUME:	15	5	C	O		45	-		0	\odot
NO DYESO	ATTA	CHED 🗆	DETACHED	16	0	$\uparrow c$	0	0	46	0	0	D	5
POINT IN THE PLUME AT W	HICH OPACI	TY WAS	DETERMINED	17	D	0	0	0	47	D	0	-	0
START J ADONE EX	Y STOP	Jam	<u> </u>	18	5	1-1	1-	0	48	-		0	10
START Crees	STOP	Jan	e	19			- 15	tă	49	$\left \right\rangle$	0	10	\overline{O}
BACKGROUND COLOR	SKY CO	ONDITIO	NS broken	20	10	10		D	50		10	0	$\overline{0}$
START green STOP Sar	NE STARI	DIRECTI	ON	21	+5	15	10	10	51	10	12	10	1n
START 2-8 PSTOP \$3	START	NN	STOP Sam	1 72	5	15		10	52	0	10	1ŏ	$\overline{0}$
AMBIENT TEMP	WET B	ULB TEI	MP. RH,percen	1 23	10	10		0	53	0	0	n	0
START 15 STOP	7 7 7	ч 		24	10			10	54	5	$\frac{1}{5}$	10	
Source Layout Skc	tch Dr	aw Norti	h Arrow	25	+-		10	5	55	+	$\frac{1}{0}$	10	5
			\bigcirc	26	6	10		10	56	-	D	10	0
	~		\bigcirc	27	+ 2			•	• 57	C	$\overline{\mathcal{O}}$	to	$\frac{1}{0}$
	Finissi	on Point	٩	28	15	5		0	58	5	$\overline{\mathbf{O}}$	10	5
.e.		·\05	•	29	10	5 8	$\sum \mathcal{E}$. 59	10	10	10	0
	05	, , , , , , , , , , , , , , , , , , ,	moleum	30	10		- 0	25	60	$\frac{1}{5}$	10		
Sun & Wind -> Plume and =>	Observ	ers Posi	lion	AVE	RAGE	OPACI	TY FOR	7	NUN	ABER O	FREAD	DINGS	ABOVI
Slack		<		HIGI	HEST	PERIOL		46	70	_5_	% WE	<u>RE</u>	0
Sun	Lodation Lin		•	RAN	GE OF	UPAC N	IN RE	M	<u> </u>	МА	XIMUN	<u>1 </u>	5
				OBS	ERVE	r'S NA	ME (PF	RINT) -	Davie	<u>d G</u>	TOS	hau	ა
COMMENIS	····			OBS	ERVE	a'ş sic	SNATU	*	Ĺ	DA	1E 8-2	0-9	7-
				ORC	SANIZA	TION	DE	ECCO	In				
I HAVE RECEIVED A COPY	OF THESE	OPACITY	OBSERVATION	S CER	TIFIED	BYE	TA			DA	TE	3/97	1
TITLE	<u> </u>	DAT	Ē	VER	IFIED	BY				DA	TE		
L											·····		

 $\left(\begin{array}{c} \end{array} \right)$

	•.												
•		v	lisible Emission (Observa	tion Fo	r m					2	Sc	
SOURCE NAME Bo-house	Exi	ł		OBSER 8 , 20	VATIO	NDAT	F	STAR 16	t time 15		STOP 17	TIME 20	
ADDRESS	4''	_		SEC MIN	о	15	30	45	SEC MIN	о	15	30	45
1010 RJ	(Ckv	e hn	d RJ)	1	0	0	0		31	0	0	0	0
CITY	STATE	/C	ZIP	2	0	-	0	0	32	0	0	40	0
PHONE	SOURCE	ID NUI	MBER	4	0	2	$\frac{0}{2}$	$\frac{0}{1}$	33 34	00	0	00	0
PROCESS EQUIPMENT	I	OPERA	TING MODE	5	0	0		0	35	0	D	Õ	
CONTROL EQUIPMENT		OPERA	TING MODE	6	Ð		5	0	36	5	0	0	01
DESCRIBE EMISSION POINT	<u>e</u>	1	ormg/	7	0	0	0	0	37	0	Ø		
START rectangular slock	STOP	bame	VE TO ORSERVER	8	5	0	0		38	21	0	0	0
START 29 Ft STOP	START	294	STOP Same		10	F	0	0	39 40	2	0	0	10
DISTANCE FROM OBSERVER	DIRECT	ION FRO	OM OBSERVER	11	0	\overline{b}	D	0	41	10			0
DESCRIBE EMISSIONS	1	<u> </u>	n	12	5	0-	0	5	42		\mathcal{O}	0	$\overline{\mathcal{O}}$
EMISSION COLOR	PLUME	TYPE: (CONTINUOUS	13	0	0	0	0	43	0	0	9	0
START ight reySTOP	FUGITIN			14	D	-		-	44	0	-	ľ=	0
NO VESCI	ATTAC	ER DRU HED 🗅	DETACHED	15	0		0	10	45	0	0	0	0
POINT IN THE PLUME AT WHIC	H OPACII	Y WAS	DETERMINED	17	0	0	0		47	0	0	-	10
DESCRIBE BACKGROUND	370F	Jane	<u> </u>	18	Ø	0	-		48	5	-	0	0
START EIGS	STOP	Sane	<u> </u>	- 19	-	5	0	0	49	0	0	0	
START GILEN STOP Same	START	broke	nSTOP Same	20	0	0	0	0	50	0	-		0
WIND SPEED START 3-5 "P" STOP 1-3"	START		ON STOP Same	21	10	0	10	0	51	0	0	5	0
AMBIENT TEMP	WET BU	JLB TEN	AP. RH,percent	23	$\frac{10}{10}$	10	10	0	53	0	0	10	0
START IT STOP UT			- TA	24	10		D	D	54	D	0	0	0
Source Layout Sketch	Dra	w North	Arrow	25	0	5	5	O	55	0	0	0	\bigcirc
				26	$ \mathcal{O} $	$ \mathcal{O} $	0) 56	0	5	0	0
5	missio	n Point	~	27	-		C C	18	58	10	12		0
	ନ୍ଦ	s.las		29		0	0	5	59	1-	Ó	10	Ō
Sun- Wind -				30	0	0	C	, —	60	C	5	0	O
Plume and =	Observe	Positi	itrole un	A VEI HIGH	RAGE (IEST P	OPACII ERIOD	Y FOR	1.46	NUM	BER O	F REAL % WE	DINGS RE É	ABOVE
Sundoc	10°		tants	RAN	GE OF	OPACI	TY REA	DINGS	5	ма	хімил	1 10	7
4 6/	intranc	v		OBS	ERVER	'S NAN	AE (PR	INTI I	David	G	tos)	nau)
COMMENTS				OBS		'S SIG	NATUR	E	/	DA	1E 8 -	- 20	-97
				ORG	ANIZA	TION	Dr		Inc				
I HAVE RECEIVED A COPY OF	THESE C	PACITY	OBSERVATION	S CER	TIFIED	BY F	TA			DA	^{7E} 3		7
SIGNATURE TITLE	·	DAT	£	VER	IFIED E	IY IY				DA	TE	<u> </u>	
	· · · · · · · · · · · · · · · · · · ·				····			·					

.

1 _____

•• · .

.

		Visi	ble Emission (Observal	ion Fo	rm						30	
SOURCE NAME BOOMOUSE	E.	·+		OBSER	VATIO	V DAT	à	STAR	TTIME		STOP	TIME	,
ADDRESS		<u> </u>		SEC			1		SEC				
ASPHALT PLANT "A				MIN	0	15	30	45	MIN	0	15	30	45
1010 Rd	()	<u>kvela</u>	nd Kd	2	0	-	5	$\frac{0}{5}$	32				
CITY	STATE /	VC.	117	3	0	6	0	0	33				
PHONE	SOURCE	ID NUMB	ER	4	0	00	0	$\frac{0}{2}$	34				
PROCESS EQUIPMENT	L	OPERATI	NG MODE	5	0	$\overline{\mathcal{O}}$	0	0	35				
CONTROL EQUIPMENT.		OPERATI	NG MODE	6	0	0	O	5	36				
abaghouse		norn	19/	7	D	Ō	0	0	37				
START Yellow nectangulary	STOP S	c.me.		8	0	0	0	D	38				
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE	TOOBSERVER	9	0	D	D	0	39				
START 29 th STOP Same	START	29 + s	TOP Same	10	0	5	D	$\overline{\mathbf{O}}$	40				
START 300 STOP STOP	START	NE S	TOP mml.	11	D	0	0	Ó	41	••••	·	<u> </u>	
DESCRIBE EMISSIONS	101111	/02_0		12	0	0	0	0	42				
START coning	STOP	same		13	0	10	0	Ď	43			<u> </u>	
EMISSION COLOR	FUGITIN	TYPE: CO/ E 🗔 INTE	RMITTENT D	14	5	0	ð	0	44				
WATER DROPLETS PRESENT:	IF WATI	ER DROPL	ET PLUME:	15	0	0	0	0	45		†	<u> </u>	
NO BY YESD	ATTAC	HED D D	ETACHED	16	0	0	0	ð	46			+	
FOINT IN THE PLOME AT WHICH	STOP	Y WAS DE	TERMINED	17	0	$\overline{\mathbf{O}}$	0		47		1	1	
DESCRIBE BACKGROUND	3107	Same		18	0	0	6	5	48		<u> </u>		
START trees	STOP 6	ame		19	5	0	D	15	49		<u>†</u> -	+	
BACKGROUND COLOR	SKY CO	NDITIONS		20	\vdash		¥-	$ \mathcal{O} $	50			+	
WIND SPEED IN COM	WINDE	RECTION	STUP SAME	21	+	+			51			+	<u> </u>
START 1-3 STOP	START	East s	STOP SWIFT	22	+		1		52		+	+	<u> </u>
AMBIENT TEMP	WET BU	ILB TEMP.	RH.percent	23				+	53			+	<u> </u>
START M STOPET	1 1		1) -	24					54			+	+
Source Layout Sketch	Dra	w North A	rrow	25	+	+		+	55			+	<u> </u>
		C		26	1			1	56		1	1	
				27	+	+	+		57		1	1	<u>†</u>
	Emission	Point		28			-	1	58		1	+	
				29	1				59			1	1
Sund Wind				30	-	+	1	1	60		1	+	+
Plume and =	Observe	rs Position		AVER	AGE	PACIT	Y FOR		NUM	BERO	FREAL	DINGS	ABOVE
Siack 14	0°	\geq		RANC	GE OF	OPACI	TY REA	DINGS	;		70 VVC	12	
Sun Loca	tion Line			ORSI	RVFR	MI	NIMUN	A NTI	<u> </u>	MA.	XIMUN	<u>'</u>	
								a y	and	905	shav	<u> </u>	
thundercos	t ski	es c	reated	OBS	AVOR 2	s sici		L	/	DAI	§-20	2-97	⊢
reductio	n ir	1 lis	ht.	ORG.	ANIZA		DE	.80	Inc				
I HAVE RECEIVED A COPY OF	THESE O	PACITY OF	SERVATIONS	CERT	IFIED	^{BY} F	TA			DA	TE 3/	;7	
TITLE		DATE		VERI	FIED B	Y	///			DA	TE		
		1		1						I			

ı

	•								•				
		V	'isible Emission (Observal	tion Fo	rm					9	4 4	
SOURCE NAME Bachou	se E	x	-	OBSER	VATIOI	V DATE	E	STAR	T TIME		STOP	TIME	
ADDRESS ADDRESS ASPIJALT PLANT "A"		<u>~~</u>		SEC	0	15	30	45	SEC	0	15	30	45
1010 Rd (C.	leven	dF	ud)	1	0	0	0	0	31	Ò	0	Õ	0
CITY	STATE 1	VC	ZIP	2	0	0	0	0	32	0	Θ	0	0
PHONE	SOURCE	ID NUN	1. 1BER	3 4	0	0	0 0	$\frac{0}{0}$	33 34	$\frac{0}{5}$	0	$\frac{0}{0}$	$\frac{1}{2}$
PROCESS EQUIPMENT	y-	OPERA	TING MODE	5	0	0	5	0	35	D	0	ŏ	0
CONTROL EQUIPMENT	ise	OPERA	TING MODE	6	0	0	0	0	36	0	0	5) O
DESCRIBE EMISSION POINT	RTOP	<am< td=""><td>2</td><td>8</td><td>00</td><td>00</td><td>00</td><td>\mathcal{O}</td><td>37 38</td><td>$\frac{0}{0}$</td><td>0</td><td>00</td><td>5</td></am<>	2	8	00	00	00	\mathcal{O}	37 38	$\frac{0}{0}$	0	00	5
HEIGHT ABOVE GROUND LEVEL	HEIGHTR	ELATIV	E TO OBSERVER	9	ŏ	0	0	0	39	00	0	0	ð
DISTANCE FROM OBSERVER	START - DIRECTI	ON FRC	STOP same	10	0	1	0	D	40	0	0	0	0
START 475" STOP some DESCRIBE EMISSIONS	START	NW	STOP same	11	0	0	0	$\overline{0}$	41	00	0	0	0
START coning, condensations.	STOP		- coning	13	0	0	D	0	43	0	0	0	0
START grey STOP same	FUGITIVE		TERMITTENT	14	0	0	0	0	44	0	Q	0	0
NO D YESTS	IF WATE ATTACH	R DROI HED 🗅	DETACHED	15	0	0	0	0	45	0	$\bigcup_{\overline{\mathbf{b}}}$	0	0
POINT IN THE PLUME AT WHICH	OPACITY	WAS I	DETERMINED	17	0	0	0	0	47	0	0	0	0
DESCRIBE BACKGROUND		<u> </u>	a a a a a a a a a a a a a a a a a a a	18	0	Ō	0	0	48	0	5	0	0
BACKGROUND COLOR	STOP SKY COM	VDITION	<u>v</u>	19	0	0	0	5	49	0	0	0	0
START green STOP Same WIND SPEED	START -	RECTIC	STOPL Lew	20	0	0	0	0	50	0	0	0	0
START 0-2 "STOP 0-2"	START A	NE	STOP Game	22	0	0	0	0	52	Ō	0	0	0
START 71 STOP 75	6	6	77	23	0	0	0	0	53	0	0	0	0
Source Layout Sketch	Draw	v North	Arrow	24		0	0		54	0	0	0	0
		· (\mathbf{A}	26	0	Õ	0	0	56	0	0	0	0
je (j	Emission	Point	\sim	27	6	0	D	0	57	0	0	0	0
Γ [®] O				28	0	0	0	0	58	7	0	0	00
Sunt Wind	- 1	_		30	0	0	0	ð	60	0	0	0	0
Plume and = Stack	Observer	s Positii	recycled	AVER HIGH	AGE O EST PE	PACITI RIOD	r FOR	42%	NUM	BER OF	F READ <u>% WEP</u>	NNGS RE 5	ABOVE
Sun Local	ion Live-	.>	«>phai+ "h://"	RANG	E OF C	PACIT MI	Y REA	DINGS 1	0	<u>MA)</u>	кімим	5	
14				OBSE	RVER	S NAM	E (PRI)	~"D	avio	G	osha	w	
COMMENTS			•	OBSE	RVER	S SIGN	TUR	h		DAT	E 8-21	-97	
				ORGA	NIZAT	ION J) EÉ	0	Inc				
I HAVE RECEIVED A COPY OF SIGNATURE	THESE OP	ACITY	OBSERVATIONS	CERT	FIED B	É	ETA			DA		3/9	17
. TITLE		DATE		VERI	IED BY	·				DAI	ΓE		

	• •												
		v	isible Emission (Observal	tion Fo	rm					4.	a	
SOURCE NAME				OBSER	VATIO	N DAT	E	STAR	T TIME		STOP	<u>J</u> TIME	
Daghoi	ise E	:XIT		5	3-21-	97		8	:48		_9.	48	
ADDRESS			•	MIN	ο	15	30	45	MIN	0	15	30	45
ioio ed	(cless	Nana	H Pal	1	0	0	0	0	31	5	0	0	0
	STATE		ZIP	2	Ô	Õ	5	0	32	5	0	0	0
		vc_	[3	0	$\left(\right)$	0	0	33	0	0	0	0
PHONE	SOURCE	ID NUN	ABER	4	0	\mathbf{O}	TA	D	34	0	0	0	0
PROCESS EQUIPMENT		OPERA	TING MODE	5	Ô	\circ	0	0	35	0	0	0	$\overline{\mathbf{O}}$
CONTROL EQUIPMENT		OPERA	TING MODE	6	$\overline{0}$	5	$\overline{\mathcal{O}}$	0	36	2	0	0	0
baghouse				7	0	Õ	0	0	37	0	0	D	$\overline{0}$
START petangular stak	STOP	sant	٩	8	0	5	0	0	38	0	0	0	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIV	E TOOBSERVER	9	0	õ	0	0	39	0	0	0	0
START 29 TT STOP Same	START -	3+1	STOPSame	10		0	ŏ	10	40	0	$\tilde{\overline{\Omega}}$	5	$\overline{\mathbf{O}}$
START 475 STOP Sume	START	NW	STOP Same	11	0	0	0	0	41	ŏ	0	Ō	0
DESCRIBE EMISSIONS	<u></u>		nl.	12	0	0	0	B	42	0	0	D	$\overline{\mathbb{O}}$
START conung	STOP	540		13	0	0	0	0	43	Ð	0	0	0
STARTARLY STOPSAME	FUGITIV			14	0	0	0	0	44	0	0	D	Ō
WATER DROPLETS PRESENT:	IF WATE	R DRO	PLET PLUME:	15	0	0	0	0	45	0	0	0	0
NO S YESD	ATTAC	HED D	DETACHED	16	0	0	0	0	46	0		\Box	0
START 2 - 5 tabove exit	STOP		nC	17	0	0	0	0	47	0	0	0	5
DESCRIBE BACKGROUND			_	18	0	0	0	0	48	0	C	0	Ò
START frees/blue sky	STOP	391	me	19	0	0	0	0	49	0	0	0	0
START MEEN BLESTOP SAME	START	clear	STOP SAME	20	0	0	Ō	0	50	0	0	0	0
WIND SPEED	WIND D	IRECTIC	DN C II	21	0	0	0	Ø	51	0	0	0	0
START O-L'PC STOP 0-3	START	V Las	TSTOP Jouth	22	0	0	0	0	52	0	0	0	5
START 75 STOP 78	WEI BU	56	P. HH.percent	23	0	5	0	0	53	D	0	0	0
T lout strate				24	0	0	0	5	54	0	0	0	0
Source Layout Sketch	Drav	w North	Arrow	25	0	0	0	0	55	0	0	0	0
		(26	0	0	0	0	56	0	0	0	0
2.10	Emission	Point	U	27	10	0	0	0	57	0	0	0	Ø
₹ ₽				28	0	$ \mathcal{D} $	D	0	58	O	\odot	Ø	Ø
				29	0	0	0	0	59	0	0	0	0
Sun & Wind _	.			30	0	0	ð	$ \mathcal{O} $	60	0	0	0	O
Plume and =	Observer	s Positi	on . m	AVER	AGE O	PACIT	Y FOR	2%	NUM		REAL)INGS	ABOVE
14		\geq	asphalt	RANG	E OF C	DPACI	Y REA	DINGS	<u> </u>		10 11 1	<u>" </u>	
Sun Loca	iion f Line		` k, 11 `	OBSE	RVER	MII S NAM	VIMUN IE (PRI	<u>ہ ،</u> س،		MAX		<u> </u>	
COMMENTS		<u> </u>	·····	OBSE	RVER	s sign	ATUR		Z	DAT	<u>۳ دن</u>	-21-(7 -
			<u>.</u>	ORGA	ANIZAT	IONI)EFC	0	Inc	_ <u>_</u>			
I HAVE RECEIVED A COPY OF	THESE OF	PACITY	OBSERVATIONS	CERT	FIEDE		TA	- /		DA	TE s		
SIGNATURE TITLE		DATE		VERIA	IED B					D47	<u></u>	/ 4 1	
											-		

ur 1 L

Quality Assurance Handbook MO. A 2

	•										
,											
	Visible Emissio	n Observa	tion Fo	rm				_	- 40	5	
DURCE NAME Baghou	e Exit	OBSER	VATION 8-21	NDATE -97	S	9:5	TIME		stop til 10:5	ме 5 3	
DORESS ASPHALT PLANT "A"		SEC	0	15	30	45 M	SEC	0	15	30 4	15
1010 Ra (C)	vertand Rd)	1	0	0	0	0	31 (0	0	っと	2
ITY	STATE ZIP	2	0	0	0	5	32	0	<u>S</u> C	$\sum_{i=1}^{i}$	2
HONE	SOURCE ID NUMBER	3 4	0	00	0	0	33 34	0			5
ROCESS EQUIPMENT	OPERATING MODE	5	0	C	0	\overline{o}	35	D	D):	5
ONTROL EQUIPMENT	OPERATING MODE	6	0	0	0	o	36	0	00	$\frac{2}{2}$	2
DESCRIBE EMISSION POINT		- 7	0	0	0	$O \downarrow$	37	\underline{o}	O	ŠК	2
START Yellow tande stack	STOP SAME	8	0	0	0	0	38	<u>0</u>	O	$\frac{1}{2}$	21
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TOOBSER	VER 9	D	\mathcal{O}	0	Ó	39	O	$\left O \right $	0	\bigcirc
START 29th STOP same	START-34 STOP Same	10	O	0	0	0	40	0	0	010	0
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVE		0		Ē	D	41	0		5	2
START 475 T STOP SAME	START NW STOP Sam			10	2	2	47		0	27	5
DESCRIBE EMISSIONS	STOP Laml	12	10	O	101	\underline{O}	42		1010		=
START Caning	LALLAS TYPE CONTINUOUS	13	0	0	0	0	43	O	0	O	0
EMISSION COLON		14	0	0	0	0	44	0	0	$O \mid$	\mathcal{O}
WATER DROPLETS PRESENT:	IF WATER DROPLET PLUME	15	0	10	Ω	0	45	0	0	DI	\bigcirc
NOR VEST			+	+9		2				$\overline{\mathbf{n}}^{\dagger}$	No 1
POINT IN THE PLUME AT WHIC	H OPACITY WAS DETERMINED	16	0	Q	\mathcal{O}	\mathcal{O}	46	O	10	$\leq \downarrow$	\leq
star 2.5 ft about exit	ETOR CONF	17	0	0	0	Ο	47	0	0	0	O
START 2-5 CONCERT	STUP SAME	18	10		0	0	48	0	5	0	0
START CASAL	STOP CONT				E			5	10	~	1
START 75KY	STOP SAME	19		\mathcal{O}	\cup	0	49	\mathcal{O}	0	0	2
STADIGHUN COLOR	STARTO ROS STORGAM	£ 20	0	0	0	0	50	0	6	0	0
WIND SPEED	WIND DIRECTION	21	10		0	0	51	6	0	\mathcal{O}^{\dagger}	0
START 1-7 mp STOP JAME	START South STOP SOU	$H \vdash $	10				E2	10	10		Ď
AMBIENT TEMP	WET BULB TEMP. RH,pero	cent 22	$\downarrow c$	$\frac{10}{10}$	0	ĮФ_	52	18	12		~
START 78 STOP 82	67 50	5 23	\mathbb{C}	$) \bigcirc$	O	\mathbf{O}	53	U	O	0	$\underline{\circ}$
Tahm - na	/	24) 0	D	N	54	10	O	5	Ð
Source Lavour Skotch	Draw North Arrow	25	$\exists \check{c}$	ŇŎ	15	5	55	tð	0	D	5
			+	έĽ.		K		ĬŇ		The state of the s	≍
	$\langle \mathcal{L} \rangle$	26	<u> </u>	20		\vdash	50	19	191	\mathbf{v}	<u> </u>
siles ,		2	<u></u> C	DC	\mathcal{O}	0	57	$ \mathcal{O} $	U O	0	0
1 G V	F LINSSION FUNN	28	B C)	0	D	58	0	$ \mathcal{O} $	0	0
υ		2) C	20	0	59	C	\tilde{O}	\mathcal{O}	0
		30		20	0	0	60	O	0	0	Θ
Sun & Wind a Plume and =	Observers Position - on recycl	ed AV	ERAGE	OPACI	TY FOR	12 %	NUN	ABER (OF READ	INGS A	BOVE
Siack	aspha	H RA	NGE OF	FOPAC	TTY REA	DINGS	;			F	
Z-40 Sun Loc	ation Line pole		CEDVE	N.	INIMUN	1 NTI	0	M	AXIMUM	3	
			JERVE		ans term	\mathbb{T})avi	9 (Tosh	aw	
COMMENTS		OB	SERVE	B'S SIC	SNATHR	5	/	DA	ATE 8-	z!-9	+
<u> </u>		OR	GANIZ	ATION	DEE	<u> </u>	Inc	<u>د</u>			
I HAVE RECEIVED A COPY OF	THESE OPACITY OBSERVATI	ONS CE	RTIFIEL	DBY	ETA			0	ATE 3/0	17	
TITLE	DATE	VE	RIFIED	BY	h_			0,	ATE		
	<u> </u>										

میں۔ مر

Quality Assurance Handbook M9-4.2

	,	Visible Emission	Observa	tion Fo	rm					4	ס	
SOURCE NAME Brahow	SE Fri-	+	OBSER	VATIO	N DAT	5	STAR	T TIME		STOP	TIME	9
ADDRESS ACTUALT D	An- 1'n"	•	SEC	0-2			10	SEC	1	·		
IDID 01	(Clevelan	d Rd)	MIN	0	15 0	30	45	MIN 31	0	15	30	45
CITY	STATE	ZIP	2	6	0	0	$\overline{0}$	32	0	\mathbf{O}	D	0
PHONE	NC SOURCE ID NU	MBER	3	0	0	0	D	33	0	Ð	D	Õ
PROCESS FOUNDMENT	OPER	ATING MODE	4	0	0	5	0	34	0	D	\bigcirc	\mathcal{O}
aggregate drye	<u> </u>		5	0	0	0	0	35	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	$\overline{\mathbf{O}}$	0	0
baghou baghou	50 OPERA	ATING MUDE	7	00	0	0	0	30	0	X	0	0
START Yellow Start	570P 38	né	8	0	0	0	0	38	0	5	0	00
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATI	VE TOOBSERVER	9	0	0	0	õ	39	0	0	0	0
DISTANCE FROM OBSERVER	DIRECTION FRI	STOP SAMÉ OM OBSERVER	10	0	Ð	0	0	40	0	0	0	0
START 475 STOP SAME	START NW	STOPSAME	11	0	0	Q	0	41	0	0	0	0
START coning	STOP SAME		12	0	D	0	$\underline{\mathcal{O}}$	42	0	5	0	0
EMISSION COLOR START GREV STOPSO	PLUME TYPE: C	CONTINUOUS	14	$\left \begin{array}{c} \mathcal{O} \end{array} \right $	0	00	5	43	0	0	$\overline{\mathbf{O}}$	0
WATER DROPLETS PRESENT:	IF WATER DRO	PLET PLUME:	15	0	0	0	$\overline{\mathbf{D}}$	45		0	0	0
NO SO YES	ATTACHED D	DETACHED	16	0	0	Õ	ð	46	0	0	0	0
START 2.5 ft above exit.	STOP same		17	0	0	0	0	47	\mathcal{O}	0	0	Õ
START trees/sky	STOP SAME		18	0	0	0	0	48	0	0	0	0
BACKGROUND COLOR	SKY CONDITION	vs	- 19	$\frac{1}{0}$	0	10	0	49	0	0	0	0
WIND SPEED	WIND DIRECTIC	STOP DAME	20		0	3	$\frac{1}{2}$	50	0	0	0	0
START L- 4 P STOP SAME	START South	STOP SAME	22	0	Ď	0	8	52	0	0	0	0
START \$2 STOP 85	68	48	23	0	Ø	0	\bigcirc	53	0	σ	Ð	0
Source Layour Short	Draw North	A	24	0	0	0	Ò	54	5	0	0	0
	1		25	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	00	0	55	0	0	\bigcirc	0
Trillos V	Emission Roint	\sim	27	0	0	00	\bigcirc	57	0	0	00	0
E D			28	0	Ō	Õ	0	58	0	0	0	0
			29	Q	0	0	0	59	د)	C	O	0
Sun- Wind _ Plunie and =	Observers Positio	on	30 AVERA			FOR	0	60 NUME		D READ		
Siack			HIGHE	ST PER	RIOD	0.1	21%		0	% WER	E 5	
2.40 Son Locali	on Line		0000	. or o	MIN	IMUM	0		MAX	IMUM	5	
COMMENTS			UBSER	IVER S	NAM		<u>"D</u>	lavi c) G	osh	aul	
	· · · · · · · · · · · · · · · · · · ·		OBSE		SIGN				DATE	8-	21-	97
			ORGA	NIZA TH	<u></u>	EECC	<u>> 1</u>	nc			_	
I HAVE RECEIVED A COPY OF TH SIGNATURE	HESE OPACITY (DBSERVATIONS	CERTIF	IED B	ĒT	-A			DAT	5 3/	97	
T.T. C												-

-

1 4.4

Page 2 of 25

Plant Name:	ASDUALT PLANT "A"	Test Date:	8-19-97
Run Number:	0-1. S-M23-0-1	Operator:	(This)

	Compline	(Clock Time	Gas Meler	Velocity	Orifice Pres	. Differential	Stack	Probe	Impinger	Dry Gas M	leter Temp.	Pump	YAD
Paint	Time	(24-hour	Reading	i lead 6P.)	(AII)	in. 11 ₂ 0	Temp. • F	Temp. / Filter	Temp.	InJet	Uullet		-
Number	(min.)	clock)	(VL)A3	in. H2O	Desired	Actual	(Ţ)	Temp." F	• F	<u>(The)'F</u>	(hout) -t	<u>B</u>	1 .
1 - 11	2.5	1 12.11	31.5.21	1.09	0.16	0.18	17()	144 255	65	121		2	65
0-4	35	1 1)11/10	36.500	0,09	0.16	DUS	11.9	2501255	65-	121	ILE	2	(a)
	4010	11217	× 140.500	1.20	2.00)	2.00	169	246 256	66	121	118	5	65
		1 1 2 62	374.1.1	1.00	200	7.00	163	2471254	66	121	118	<u>ل</u> م	6.5
	10	11200	177110	120	.4	.4	167	743 1 255	66	121	118	5	65
d	-75		219 110	. 2	• 4.		169	242 1254	66	(22	115	5	65
	20	1 . 1	2 40 114	10.50			169	2+3 1252	66	123_	117	5	66.
	<u>~</u>	- 1311-	281.421	. 05		1	171	240 1 253	66	121	119	5_	67
	25	1 1524	181724	.00	.16	116	172	741 1252	67	121	117	B	67
	10	1 1 2 2 1 2	884-12	1 V V	ML	. ((174	h11 25L	67	121	1/9	2	67
F J	4010	1 1 1 1	38771	.05	16	16	181	247 1 257	67	(22	119	3	67
	-2	1:240	390,944		+1	<u>\</u>	169	245125K	65	122	119	3	66
		11360	292295	100	, 1	. 1	180	2471253	66	122	117	3	66
<u> </u>	10	11155	361972	10%	161	.16	180	207 1253	60	122	1.9	3	66
$\overline{1}$	15	11460	395301	115	13	.3	192	295 254	68	してく	119	2	67
	20	1 1405	396,992	.15	. 3	13	182	2441254	64	123	119	2	68
4	35	1 14+0	398.420	110	12	12	187.	47 1255	67	122	119	1_1_	67
	HOLD	11445 1014	400, 191)	.15	. 5	.3	182	204 252	68_	120	lig	2	157
FI	5-	11021	407-589	135	, 7	17	198	292 1253	64	120	119	14	6
	\overline{D}	1 1126	405.09r	125	$\overline{)}$, 7	198	243 1255	68	122	120	2	168
2	15	1431	407.08	121	,42	192	181	794 1256	64	122	120	2	1 62
	20	1 1436	A-09,030	181	142	142	187	245 1 253	64	127	120	2	1 V
3	25	1 1441	N11.712	141	147	.82	142	24 1257	64	121	120	3	10/
	30	1 1446	414514	.41	122	, 52	197	1247 1253	61	127	120	3	104

•

Page	3	of	3)
------	---	----	---	---

Plant Name:	ASPHALT PLANT "A"	Test Date:	8-19.97
Run Number:	0.1 5-123-0-1	Operator:	Ca

Point	Time, (24-hour	Gas Meter Reading	Velocity	Orifice Pro	s. Differentia in. 11.0	Stack	Probe Temp / Filter	Impinger	Dry Gas N	Meter Tomp.	Рипір
Number	(min.) clock)	(V.) A 3	in_Fl2O	Desired	Actual	(5)	Temp. [•] F	∎emp. ■ F	Inici (Tere)* F		Vacuum In He
- 4	35 1451	417438	140	18	18	127	245 / 253	68	122		3
	10 1456	420.002	140	19	59	165	245/257	68	120	120	2
	/						1				
	1						1				
	/	138.502	0.690		1.289	184	/		112	117	
	/					<u> </u>	1			115	
	/									2	
	1			·							
	1										
	/	-1	,								
	1	70	20	1804		ł					
	1			10-1		———- 					
	/	IMd-	29.6				/				
	/	Ms .	> 77.1								
	1	Ns	2	44.17							
	1			1117							
	1										
	1	9,		- 01	,						
	1		┝────┣╸								
	1										
	1						/				
	1						/				
							/				
							/				

Plant:	ASPHALT	FLANT "A"			Run No	#1	•	
Sample Da	ite: 8/19	1/97	Filter No.(s): ⁻		Job No.	:5413-	00	
Sample Lo	cation: (DUTLET	RUNI					
Recoverv [Date: 8/	19/97	XAD-2 Trap N	o.(s): 0-N	123-1-	·XAD		
Sample Re	coverv Pe	erson: Rt	HR					
			Moisture	Data Salara				
		1	2	3	4			
Impingers	XAD - 2 Trap	(knockout)	(100 ml H2O) (untipped)	(100 ml H2O) (tipped)	(knockout) (untipped)	Silica gel (untipped)		
Final wt.	533.	1029.0	696.5	680.7	615.6	901.8	g	
Initial wt.	491.6	506.0	696.4	680.5	611.7	868.7	g	
<u>Net wt.</u>	41.5	573.0	<u> </u>	0.2	39	57.9	g	
			Descrip	tion 10	m - (a	01.QV		
Train Syste	em:							
Probe: -								
Filter: Cold	or		Loadin	g	<u> </u>			
Impinger C	Contents:							
Silica Gel:	@Grams	Used	Color -	%	Spent -			
Condensa	te Observe	ed In Front H	lalf:			State Control State	-	
		Re	covered Samp	ole Fractions			4	
Filter Cont	ainer No.				marke	d/sealed:		
XAD Modu	ule Contair	ner No.: —			marke	d/sealed:		
		Liquid	level					
Probe (FH) & Back F	marke	d/sealed:					
Probe (FH) & Back H	marke	d/sealed:					
		Liquid	level					
· · · · · · · /	Impinger Contents Container No.: marked/sealed:							
Impinger C					1			

COND.

. 263.4

N- # 8 3.0

.

	ENVIRONMENTAL SERVI	CES, INC.		FIE	LD DAT	A	$\begin{bmatrix} CO_1 \\ O_2 \\ CO \end{bmatrix} = \begin{bmatrix} CO_1 \\ CO \end{bmatrix}$		Coe V _{1.} : Sili	ndensers		
Plant Date Date Sampling L Sample Typ Run Numb Operator Barometric Static Press Filter Numb	$\begin{array}{c c} HSPHALT & PLANT \\ \hline $	"A" <u>M23-0-2</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u>					Probe Length a Pitot Tube I.D. Nozzle I.D. Assumed Mois Meter Box Nur Meter Gamma Reference D	nd Type No <u>9=199</u> ture, % _1 nber 1.95 0.98 N/A	4'11+55 - O:251 7 511		· · · · · · · · · · · · · · · · · · ·	
Pretest Pito	at Leak Check	y <u>_1¥</u> in.	" ⁶ L		<u></u>		Post Test Leak	Rate = _	002 cl	m@10	in. 11g	•
Pretest Ors	at Leak Check			Sci	hematic of		Post Test Pitot	Leak Check	k6	<u> </u>		,
Read and R	Lecord all Data Every	<u> </u>	tcs	Traver	sc Point La	yout	Fost Test Orsa	Leak Chec	: K /	· · · · · · · · · · · · · · · · · · ·	1	•
Traverse	Sampling / Clock Time	Geo Meler Beading	Velocity	Condice Prod	sor ID No. Differential	Slack Temp. * F	Prohe Temp, / Filter	Lupinger Temp.	Dry Gas Mc	ter Temp.	Fump Vacuum	
Foint Number	(tuin.) (24-hout (tuin.)	(VL) n J	in. 1/20	Desked	Actual	(5)	Temp. [•] F	• F	_(Fig)*F	(Poul F	la. 11g	1
	0/0 1872	420.315	MANNA MARKAN AND AND AND AND AND AND AND AND AND A				<u>TUUINIIIII</u>	VIIIIII.		Millin	711/11/	
71	5 1827	4 25.081		2.3	3,3	198	250/251	70		20		5/0
	10 1932	430,012	<u> </u>	- 2.5	3.3	193	249 1 253	58	83	<u> </u>		56
2	15 1837	433.164	.50			196	2501 254	38		<u> </u>		2
	20 1942	436372	.50	1.5	15		246/200		92		3	Si
3	25 1847	4 24 087	16				249 / 262	61	97	86	3	JC
	30 1557	441392	126		19	100	746/262	62	94	87	3	.5-4
	10/2/14/200	4031300	165	1.0	19	202	249/202	61	àe	87	3	57
	7010 1915/94	45131	128		<u> </u>	201	24-7 262	62	96	89	3	5%
r	7/1 / 907	ASS.112		<u></u>	1.1	202	244 1261	62	99	42	3	Ϋ́,
	15 1919	+ 51,520	. 7 7	. 66	166	204	267 1 260	62	ľ01	96	2	4
	202 1914	459.964	127	.66	166	205	251 1261	62	101	aL	2	54
1 3	25 1429	462 360	125	.)5	,15	208	252 1261	62	102	44	2	58
	20 1934	4-15,340	125	. 75	175	210	255 1259	62	(62	91	2	58
4	35 1939	463.921	156	1.6	1,6	213	212 / 261	62	102	95	3	57
	80 1944	472.591	156	1.6	1.6	210	260 200	67	102	<u> </u>	3	53
	1						1			. <u>.</u>		ł
	11										 	ł
			Reale	ļ	1.444	102.1	<u>/</u>		75.0		 	[
	//				I	 		 				[
	ļ	ļ		 		 			<u>.</u>			
	·	 			·						·]	
I .	1 /	1	I	1	1	1	, ,	1		l I	1	1

Page <u>a</u> of <u>3</u>

Plant Name:	ASPHALT PLANT "A"	Test Date:
Run Number:	m23-2 S-M23-0-2	Operator: The GMG

Traverse	Sampling	/ Clock Time	Gas Meter	Velocity	Orifice Pre	s. Differential	Stack	Probe	Impinger	Dry Gas N	leter Temp.	Pump	
Point	Time,	(24-hour	Reading	licad (P,)		In. 11 ₂ 0	Temp. • F	Temp. / Filler	lemp. ● E	Inict (T.,)• F.			
Number	(min.)		<u>(\6) n 3</u>	In. 1120	Desired	Actual	<u> </u>						Lee U
P •	8010	<u> </u>	Mirsal	-10	1.6	1.2	211	55-101	62	104	<u> </u>		/
<u></u>	5	1957	476002	.40	1,2	1.2	212	753 761	63	lot_	<u> </u>	2	57
R	10	1957	479012	,30	٥٣.	.90	217	250 1254	62	105	(00	2	19
2	15	11002	481.670	.30	. a ر)	90	220	248 / 260	62	107	101	2	C.
8	20	1007	484,691	.76	2.2	2.2	229	294 1261	62	107	101	2	159
3	25	1012	488.677	.76	2.2	7.2	233	241 261	62	110	103	5	49
	30	1017	492947	,18	2.3	2.3	236	247 / 203	67	(1)	101	6	60
Ч	35	1.1022	497.126	.77	2.3	2.3	236	244 / 262	62	113	105	6	60
	120	11027	501194	.79	23	25	736	2001262	62	114	107	6	Go
		1						/					
	120/0	1 103]	508.382	2,8	84	8.4	235	244 1 20	64	11	106	61	66
41	5	1 1042	515710	2.8	8,4	8.4	276	348 1 262	64	1/3	107	10	GA
	10	1 1047	520562	2,5	7.5	7,5	232	749 1 262	64	113	10 Y	10	60
2	15	1 1054	526.512	2.5	7.5	7.5	25X	30 1263	64	107	107	10	6,1
	20	1 1759	522.220	2.0	6.0	6.0	727	2441265	61	107	106	10	60
3_	25	1.1104	5 38.897	2.0	6.0	6.0	221	244 / 261	65	101	106	10	61
	30	1 1109	547.251	,27	. 84-	. 24	200	250 1265	65	109	106	τ	61
4	35	/ 1114	545072	124	.84	.84	779	360 1	65	109	100	5	L')
	160	1						1					· ·
		1		1.009		3.507	279.6	1		119.3	103.6		
		1					- -	1					
		1						1					
		1						7					
		1						1					
					The second se								1

Page <u>3</u> of <u>3</u>

Test Date: \$ - \$0 - 97

Plant Name:

ASPHALT PLANT "A" Run Number: $\frac{mas}{2}$ S-mas-O-2 Operator: \overline{ma}

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Traverse	Sampling / Clock Tie	ne Gas Meter	Velocity	Orifice Pro	s. Differential	Stack	Probe	Impinger	Dry Gas N	Acter Temp.	Pump	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Point	Time, / (24-hour	Reading	licad (P.)	(III)	in. 11 ₂ 0	Temp. • F	Temp. / Filter	Temp.		Outlet	Vacuum In IIe	
$\begin{array}{c c c c c c } 1 & 114 & 546 03^{-} & & & & & & & & & & & & & & & & & & &$	Number	(min.) clock)	(L)A3	in. 1120	Desired	Actual	<u>(</u> <u>(</u> <u>(</u>))	Icmp." I		(ling) * P			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BI	160/01 111	+ 545.03"			<u> </u>							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BIL	5 1 11	9 531,623	2,8	8.4	\$4	233	251 263	65	109	105	10	61
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	10 / 112	4 557,420	2.8	814	84	234	207 1 254	66		105	10	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	15 1 112	9 563523	1.5	4.5	9.5	239	255 260	66	110	104	10	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 1113	+ 569.001	1.5	95	4-5	226	260 1 261	66	109	103	10	¢/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	25 / 1130	574.220	1.1	3.3	3.3	237	254/262	65	111	106	10	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	30 / 1140	579,910	1.1	3.3	3.3	237	254 1 262	65	110	10F	10	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	35 / 1149	583712	165	1.9	1.9	237	255 1260	66	110	105	196	0/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20080 1 1154	587.701	. 45	1.9	19	239	37122	66	111	106	6	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		X4 1 PA	4 Ch	UNSE	1341+	- I CHEE	D FILE	T imp.			•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		CEA	KCh	0000	14112	/					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · ·	2010 112:0	587834	.48	2.1	2.9	240	267 1267	66	107	101	7	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e i	5 1006	342 571	.89	2.6	26	237	260 1254	66	111	109	1	6/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10 10.10	596.942	1.70	2.1	21	238	260/251	67	112	108	7	6 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	15- 11215	601.220	170	2.1	Z.]	237	2521259	65	112	105	7	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 11230	605.43 %	.60	1.8	1.8	239	2551260	65	113	105	$\overline{)}$	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	25 1128	6-9.262	.55	1.6	116	237	2501261	65	113	105	5	6 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20 / 120	613,110	151	45	1.5	224	247 261	65	113	106	5	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	μ	25 /1236	616,210	5	1.5	1.0	232	294/258	15	112.	106	5	61
200.00 C.931 7.715 777.7 105 98.9	(242/2/12200	620 223	<u>†</u>				1					
1.109 3.35 236.4 / 110.8 105.1 / 100.004 0.931 7.795 777.7 105 98.9		A I		1	<u> </u>			1					
200.00 0.931 7.715 777.7 105 98.9 200.00 0.931 7.715 777.7		· · · · · · · · · · · · · · · · · · ·		1.169		3.35	736.4	/ / /	1	116.8	105.1		1
200.00 0.931 7.715 777.7 105 98.9 200.00 0.931 7.715 777.7		1			<u> </u>						<u> </u>	<u> </u>	
200.006 0.931 7.795 777.7 105 98.9	<u> </u>	/		1				1	1				
200.00 0.451 7.415 727.4 105 48.4		- <u> </u>	and.	- 62.	ŧ		I	∔ - \	1	·	066	.ĮĮ	
Oal war I			900.000	0.77		7.45	777.	1		105	48,4		
			, U	, .						\square	ol c	1 1.	17

Plant:			ASPHALT PLANT		Run No	#2		
Sample Da	te: 8/2	0/97	Filter No.(s):		Job No.	Job No.:		
	cation: C	DUTLET						
			YAD 2 Tran N	0 (6):	<u> </u>			
Recovery				0.(3).				
Sample Re	covery Pe	rson:	Moisture	Data				
<u></u>	al succession and super-	1 1	2	3	4	an a		
Impingers	XAD - 2 Trap	(knockout)	(100 ml H2O) (untipped)	(100 ml H2O) (tipped)	(knockout) (untipped)	Silica gel (untipped)		
Final wt.	484.9	SEE BELOW	207.3	701.4	609.7	926.2		
Initial wt.	453.3	488.6	691.6	703,5	602.8	863.4		
Net wt.	31.6	938.2	215.7	<u> </u>	6.7	62.8		
Probe:					·······			
Probe: Filter: Col	or -		Loadin	ıg -				
Probe: Filter: Col Impinger (or - Contents:		Loadin	ig -				
Probe: Filter: Col Impinger (Silica Gel:	or - Contents: @Grams	Used -	Loadin Color -	ng%	o Spent -			
Probe: Filter: Col Impinger (Silica Gel: Condensa	or - Contents: @Grams ite Observ	Used - ed In Front I	Loadin Color - Half:	ng%	o Spent -			
Probe: Filter: Col Impinger (Silica Gel: Condensa	or - Contents: @Grams ite Observ	Used - ed In Front I Re	Loadin Color - Half: acovered Sam	ng - - % ple Fractions	o Spent -			
Probe: Filter: Col Impinger (Silica Gel: Condensa Filter Con	or - Contents: @Grams ite Observ	Used - ed in Front I Re	Loadin Color - Half: acovered Sam	ng - - % ple Fractions	o Spent -	ed/sealed:		
Probe: Filter: Col Impinger (Silica Gel: Condensa Filter Con	or - Contents: @Grams ite Observ tainer No. ule Contai	Used - ed In Front I Re ner No.:	Loadin Color - Half: acovered Sam	ng - - % ple Fractions	o Spent - marke marke	ed/sealed:		
Probe: Filter: Col Impinger (Silica Gel: Condensa Filter Con XAD Mod	or - Contents: @Grams ite Observ tainer No. ule Contai	used - ed In Front I Re ner No.: Half Rinse (/	Loadin Color - Half: ecovered Sam	ng - - % ple Fractions	5 Spent - marke Marke Liquid marke	ed/sealed: ed/sealed: ed/sealed: l level ed/sealed:		
Probe: Filter: Col Impinger (Silica Gel: Condensa Filter Con XAD Mod Probe (FH	or - Contents: @Grams ite Observ tainer No. ule Contai i) & Back	used - ed In Front I Re ner No.: Half Rinse (A	Loadin Color - Half: ecovered Sam Acetone) Conta	ng - % ple Fractions ainer No.:	o Spent - marke Liquid marke Liquid marke	ed/sealed: ed/sealed: l level ed/sealed: l level ed/sealed: l level ed/sealed:		
Probe: Filter: Col Impinger (Silica Gel: Condensa Filter Con XAD Mod Probe (FH Probe (FH	or - Contents: @Grams te Observ tainer No. ule Contai 1) & Back	Used - ed In Front I Re ner No.: Half Rinse (Half Rinse (Container No	Loadin Color - Half: ecovered Sam Acetone) Conta Toluene) Conta	ng - % ple Fractions ainer No.:	o Spent - marke Liquid marke Liquid marke Liquid marke	ed/sealed: ed/sealed: level ed/sealed: level ed/sealed: level ed/sealed: level ed/sealed:		

(a) A second s

FIELD DATA SHEET

Plant: ASPHALL	PLANT "A"
Sampling Location	BAGHOUSE OUTLA
Run Number:	2 Date: 8-20-92
Pretest Leak Rate:	<u>1003</u> cfm @ <u>15</u> in. Hg.
Pretest Leak Checl	c Pitot: V Orsat: V

Sampl	e Type:	maß	_Opera	tor: GCAL	!
Pbar:	29.8	Ps:	- O.	25	
002:		02:			
Probe	Length/	ر [ype:	31155	_ Pitot #:	
Stack	Diameter	r:	A	5:	

Nozzle ID: , 25)	Thermocouple #:
Assumed Bws: 17_	Filter #:
Meter Box #: 11	Y: <u>.987</u> AH@: 1.950
Post-Test Leak Rate:	cfm @ in. Hg.
Post-Test Leak Chec	k: Pitot: Orsat:

I GIC J					Orifice Pressure	Differential	Stack	Tempe	rature	Impinger	Dry Gas N	eter Temp.	Pump
averse	Sampling	Clock Time	Gas Meter		(AH) in 1	H2O	Temp.	0	F	Temp.	iniet 0	Outlet	Vacuum
Point	Time	(24-hour	Reading (Vm) # 3	in H2O	Desired	Actual	(1s)	Probe	Filter 777777	°F	(Tm In°F) 7777777	(Im out F)	77777
umber	(min)	clock)	(1) 572	77777777	111111	777777				<u> </u>	[[[[[////
	0	1405	620,313	31	93	9.3	209	248	260	69_	100	105	10
	_ کر	1916	626917	21	9 2	9.3	247	261	260	69	105	104	10
	10	1415	633.480			6.2	208	249	261	67	108	100	10
2	15	1420	639,792	-2-1	13	6.3	210	247	253	69	110	106	10
	20	1425	646.627	<u> </u>	20	2.8	205	241	255	69	112	106	10
ر ا	35	1430	651, 752	.94	- 5.7	2.5	203	243	255	69	114	101	0
	20	16.5	65 P. 611	192		1.7	204	249	255	69	1/4	107	40
4-	35	1490	660.342	.40	10	1.2	203	251	2-5c	69	10	104	1.0
	40	11.95	663,889	140	103	6.2	209	255	257	69	115	10	↓
1	45	199 1432	500.019	21	63	63	209	252	257	69	111	108	111
	50	+57	676,720		A.7	1.7	209	247	255	68	113	104	10-
2	55	1502	682.999		4.7	42	206	750	752	64	115	104	10-
	60_	1507	689 110	- 1.4	22	2.3	207	247	251	69	116	103	5
3	65	1312	692,199	. 15	21	2.5	208	249	252	68	117	108	5
	20	1217	697.538	113	1.9	1.8	207	746	250	68	114	107	
4-	175	1532	101502		1.0	1.8	20%	717	25	68	115	101	13
	80	1527	105.31		3.3	3.3	211	296	25%	68	110	100	6
1	25	1529	110301		22	3.3	210	256	949	69	117	108	+6
	90	1334	115,500			110	209	294	280	68	112	10/1	15
2	95	529	719.410	1.56	16	1.6	210	251	251	64	110	106	3
	100	1544	323.192	1.56	2220	.96	213	255	259	64	111	109	3
ડ	105	1599	130.187	1 22		ab	215	252	249	63	110	106	
	410	1550	729.058			11	1012	229	250	64	111	106	5
4	115	1559	751.31	100			1110	250	255	68	112	167	>
	170	1604	735550	196		1.2							
				+					1				
						i		<u></u>			¥		
		۸.	Vm=	$\sqrt{\Delta p} =$	ΔH=		Ts=				· I II) =		

Page 2 of _____

Plant Name:	ASPHALT PLANIT "A"	Test Date:	8-20.97
Run Number:	-0	Operator:	G GAY

Traverse	Sampling / Clock Tin	Gas Meter	Velocity	Orifice Pro	s. Differential	Stack	Probe	Impinger	Dry Gas M	Acter Temp.	Pump	1
Point Number	(min.) (24-nour clock)	(VL) A 3	licad (P _s)	(AII) Desired	In. H ₂ O	Temp. * F	Temp. / Filler	Temp.	Inici			
\mathbb{D}^{1}	125 / 1613	7.9.430	.(.9	20	7.0	215	247/252	68	110	<u> </u>	4	64
	130 / 1618	743,267	.65	1.9	1.9	713	244 / 264	67	111	10-7	4	66
17	135 / 1622	795 812	, 22	,66	.66	213	2(1 1 251	67	11	104	Ź	67
	140 / 1621	748.213	.21	166	.60	213	255 1252	67	1/1	109	2	67
3	1+5 / 1623	751,482	.43	12	1.3	216	294 1253	67	110	108	2	68
	150 / 1622	754.172	201	1.3	1.3	214	252 1 750	68		107	2	68
4	155 1 1643	758642	152	15	15	211	253 1202	68	110	107	Z	68
	160 1648	761711	52	1.5	1.5	214	750 1255	29	111	108	て	62
EI	165 / 1655	164,512	. 30	.90	.90	211	251/253	67		107	2	67
	170 / 1900	76-215	130	.90	.90	212	250 1 251	68	112	109	て	67
2	175 / 1705	769,742	,25	.75	<u>کړ .</u>	212	251 1 252	68	112	109	2	62
	186 / 1716	772.299	. 23	169	,69	205	252 4250	61	112	109	2	62
3	185 / 1715	777-999	25	10	1.0	197	758 1 756	64	112	109	2	67
	190 / 1720	777,912	- 35	_لنم	40	193	2521256	67	110	1 <i>08</i>	Ζ	61
4	195 / 1725	780.262	120	,60	160	183	250 1253	67	109	105	2	61
₩	200 / 1720	782.690	.20	.60	.60	178	25/ 255	67	108	107	2	('a
F_L	705 1						2501740	67	110	108	2	61
	2101						,					
2	215 1						1					
	226 /						1					
3	1 265						1					
	230/						1					
4	2311						/					
	/	<u> </u>					1					
) 157 Imp.	Lenny	.009	e 74	"y				······································			

Plant:	ASPHALT	PLANIT "A"			Run No	:#3
Sample Da	to: 8/2	0/97	Filter No (s):		Joh No	•
Sample De	$\frac{10}{2}$	arter	T	<u></u>		•
Sample Lo	ocation: (<u>IVILE</u>	<u> </u>			
Recovery	Date: 8/	20/97	XAD-2 Trap N	o.(s):		
Sample Re	ecoverv Pe	erson: BH	'R			
			Moisture	Data		
<u> </u>		1	2	3	4	
Impingers	XAD - 2	(knockout)	(100 ml H2O)	(100 ml H2O)	(knockout)	Silica gel
Final wt	507 1	11459	799 S	684.4	(.19.9	932.4
Initial wt.	766.2	422.6	694.4	687.5	612.0	889.4
Net wt.	35.9	773.3	105.4	(3.1)	7.9	43.0
			Descrip	tion	- ton	ne e 912.
Train Syst	em:					
Probe:	•					
Filter: Col	or -		Loadin	g -		
Impinger (Contents:				·····	<u></u>
Silica Gel:	@Grams	Used -	Color -	%	Spent -	
	te Observ	ed In Front I	Half:			
Condensa		Re	covered Samp	ole Fractions		
Condensa						
Condensa Filter Con	tainer No.				marke	d/sealed:
Condensa Filter Con	tainer No.	ner No :			marke	d/sealed:
Condensa Filter Con XAD Mod	tainer No. ule Contai	ner No.:			marke marke Liquid	d/sealed: d/sealed: level
Condensa Filter Con XAD Mod Probe (FH	tainer No. ule Contai I) & Back	ner No.: Half Rinse (/	Acetone) Conta	iner No.:	marke marke Liquid marke	d/sealed: d/sealed: level d/sealed:
Condensa Filter Con XAD Mod Probe (FH	tainer No. ule Contai I) & Back	ner No.: Half Rinse (/ Half Rinse ()	Acetone) Conta	iner No.:	marke marke Liquid marke Liquid marke	d/sealed: d/sealed: level d/sealed: level ievel ed/sealed:
Condensa Filter Con XAD Mod Probe (FH Probe (FH	tainer No. ule Contai I) & Back I I) & Back I	ner No.: Half Rinse (/ Half Rinse ()	Acetone) Conta Foluene) Conta	iner No.: iner No.:	marke marke Liquid marke Liquid marke Liquid	d/sealed: d/sealed: level ed/sealed: level ed/sealed: level
Condensa Filter Con XAD Mod Probe (FH Probe (FH Impinger	tainer No. ule Contai I) & Back I I) & Back I Contents (ner No.: Half Rinse (/ Half Rinse (Container No	Acetone) Conta Foluene) Conta	iner No.: iner No.:	marke marke Liquid marke Liquid marke Liquid marke	d/sealed: d/sealed: level ed/sealed: level ed/sealed: level ed/sealed:

			METHOD 5 T	ESTING	FIELD D	DATA SH	EET		PAGE 1 of	3		
PLANI As <u>pha</u>	AND CITY LT PLANT	"A"	DATE 8-21.97	SAMPLI Bre Hov	NGLOCATI	ON T	SAMPLE m2g	14PE	644N 5-1123- C	NUMBEAL 2 - 4-		1
olafiki vikoli		AMBIENT PRIEGS	oratic Press	AMBIENT TEMP	ifilten Numberio	STACK SID	Elion Chi	IPROBELL ANDUINE	INI <u>o</u> nal Nionaele	NO221	e Damenter	·
GGAN		(11, 1-11) 74,7	(In Hg) 25	(dág: F) て こ		<u>(in)</u>	.84	3' 61	5	,251	, ² 5/	•
urumed Meisture	ngow Hoxind	()CM ()()()	CAL	STACK	STACK PITON	official contraction	eltjacik.	ilizal Mezikioi	(२)-) न(०)रेनाचरान	েকেন্দ্র তেরানে নির্মান	४ ३.एनरहात्र	
171	mo j l	1.950	•987				1002	**************************************			3.4	ļ
ite rav . Zolivar		olletok TIME	اۋاۋاۋا ئەلتەرمەللەلەر	endlett Varlete <u>tetetet</u> Uzletatetetetetetetetetetetetetetetetetete	ন্দ্র (গ্রান্দ্র) জারালিচ্যু স	StrActic 1600	eesolsta seesta	। मालिस्टर्भन्न १९४१ म्हर सम्होन्द्र	(이미) (이미) [이미시(이너ન) [이미시(이너ન)	Cicityi Isilojyar Isilojyar	SAMELE Halalo	
(NØ)	(<u>MIN)</u> 0	1 4 1	Val(el)(a) 772.720	(In HPO) 3.	8.9	(degle) 187	((10)) 256	(iligiti) 255	(iley 5) _6 f		((le), =}ij) (0	63
<u>a</u>	<u> </u>	<u> </u>	781.24 795.330	3,1 2.5	<u>8.5</u> 7,2	181	25 %	256	61	85 79	10	64- 64
 	70	90 1 206	909,245 913,2		3.2	182	257 257	254	64 64	41 89 43 85 95 85	-10 -6 -6	64 64
4-	38 35 40	911 916 921	818.04 921,542 824,755	. 49 . 46	<u>13</u>	19	25Y 253	251 255 251	β\$ β5	98 87 101 90	3	64
	45 50	372/	2 21 212	2.5	7,4 7,4	181	260 255	25	62	103 92 101 42		64 64
بو ۱	55 66	874 822	343510 349667	1.6 1.6 AV: 9013	4 · 4 •#	176 174	754 .	755 755	62	105 a2 107 90	9	63
	TAME:		VENUME	della A	HEILITE	neigip)				ne tie		

.

٩

 $= \left(\left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{-1} \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{-1} \right)^{-1} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{-1} = \left(\begin{array}{c} 1 \end{array}\right)^{-1} = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)^{-1} = \left(\begin{array}{c} 1 \end{array}\right)$

د. از د	() }		EMISSI	ON TEST	'IN(-			Pade -	') UI	<u> </u>	X	0
		hin clay	DATE	SAMP	LINGLOC	ÁTION	SAMPLE	TYPE	RÜN	INUMBER	<u></u>		Л
		AUT BAY	8-21.9	BAG HOUS	دو ومترا	1 0-4	m. 22	L	-	0 - 4		AMPLE	
ASP	HALT PA	ANT A	IGASMETER	VELOCIN	н	STACK	Phone	OVEN	MPINGEN TEMP		AUXI TEMP:		
		UME (24-hr)	LIEADING Vin (II3)	116AD (hi: 1120)	0 1 1 CE (ii: 20)			<u>(())</u>	<u>(())</u>	(15)	<u>(((((((((((((((((((((((((((((((((((((</u>	(In: 11y)	6.2
<u>NO:</u>	<u> </u>	843	85.618	,66	1,9	176	252	- 55	<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	107 98_			
	20	864	857,580	766	1.9	175	254	252	63	10799		<u> </u>	63
	20	053	861,110	156	1.6	176	255	253	64	110 101		_3	6 1= 2.9
<u> </u>	<u> </u>	~ 58	864,675	, 56	1.6	176	247	25 2	65	110 102		3	6 g. +
	<u> </u>		969999	1.5	4-48	183	752	255	65	112 10			64
·	0>	40)	975232	1.5	3.8	179	253	<u> 2'54</u>	65	113 105		7_	C A
	<u> </u>	0.10	979.23	,78	2.0	177	747	251	65	115 106	<u></u>	4	64 CT
	-15	420	89320	.78	2.0	174	750	251	65	115 (ay		4	
	100	0.1	885.352	.20	ی,	176	25-	257	64	116 1 10		2	65
	105	<u> </u>	887.498	,26	. 5	176	253	255	63	15 111		2	
	110	425	890.4.42	142	1.1	179	250	254	63	115111		2	64
	115	455	393, (7)	142	1.1	18/	251	255	64	115 112		2	. 64-
	120		897 047	193	2.1	178	75-	756	65	116 112		1-24	65
	125	949	an1 720	.83	2.1	176	252	ويرو	65	116 113		4	65
	130	959	401.72	50	1.3	174	255	236	65	16(13		3	65
2	135	hero	003.078	50	1,3	123	25 6	255	64	117 13		3	65
	140	1003	900.101	.18	.4	172	745	257	64	111 111		2	64
<u> </u>	195	13 64		19	. 4	177	753	ે ડડ	64	119 112		2	64
	150	1213	912,010		1:29	177	256	254	64	113 110		2	64
<u>+</u>	153	1018	915 140		129	176	252	352	6)	111 10.	ļ	2	_ 6T
	166	1027	UGM	AVG SOH	INAVG				1	DGM I			
Pago j Totals	TIME		VOLUME					I Chacked Dy	•] Dale	ú	
Talana ni	· · · · · · · · · · · · · · · · · · ·						ວິດເບ		·	,			-

•

METHOD 5 TESTING FIELD DATA SHEET

(**)** (

PAGE 3 of 3

	PLANT	AND OITY		DATE	SAMPL	NGLOCAT	(ON)	STAMPLE	ander.	setels:			
	Азрна	LT PLANT '	` A "	8-21.47	PRi Ho	ver overe	× 0-9	m-2	8		04 J.MR	3-0-4	J
L									e	čar na sa			3
		ub (Reize).			delta P					্যা হোল			
177	SI			DIGIMI	VELOCITY	્રદાસાસ	STACK	S S S S S S S S S S	- 1979-98 1	sittle it (class			
(8.8) (8.8)	SY	3817.[#S		READING	E AB	ାର୍ଶାମାମାମାନ	NEW						
NC			(84233))	Vm (cu) (ti)	(10.1920)	(Idenzo)							1/-
E	<u> </u>	165	הלטו	920.295	<u></u>	1.9	114	264	261	6/	11/102	<u>_</u>	
L		170	1035	924 496	<u> </u>	2.9	178	252 215	210	64	115 108		00
	2	172	1040	923.486	158	1:5	481	755	15	64	119 108	<u>a</u>	كط
		180	1045	931,992	, 38	1.9	194	152	755	64	115 707	<u> </u>	
	3	185	1040	934.084	18	146	148	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~ ~ ~ ~	64	112 109	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
L		190	1055	935,998	18	. 44	180	7.5.5	250	05	115 10	2	2
		195	11.00	9391464	12	201	18-	254	266	65		2	65
		200	1105	940.140	125	10	107	221	24	65	109 (0)	3	165
F		200	1115	944.62	10	1.0	187	255	250	6.5	109 107	3	65
		110	1118	9	. 10		105	256	244	64	10 107	2	64
	<u> </u>	230	1/25	9 50 67 2	166	164	101.	201	7 52	60.	111 102	2	6a
		170	11 2 2	952.799	166	168	180	-3	257	63	10 106	2	61
		222	1132	455210	100	13C	146	745	25/1	63	109 106	2	Ca_
		220		431.521		. 90	105	262	25	63	110 106	2	64
		2.22	11 4 5	960.197	21	140	105	251	295	LA	110100	7	Ca
		240	1147	701.01		····	- 100				1.00		
													1
			<u> </u>			<u> </u>							1
ļ													1
					<u> </u>								1
													1
													1
L					AVE STELL		AVE				2.8297		-
		ระสาร เป็นสาร			2.4212 N.		TEMP.						
		L	L			L		,			_ \	10!	
											1001		

Plant: /	ASPHALT PL	ANT "A"			Run No	:#4	
Sample Da	te: 8/2	\$797	Filter No.(s):		Job No		
Sample I o	cation: (UTIFT	-				
Sample LU		21/97					
Recovery I	Date: 8/2		XAD-2 Trap N	0.(S):			·
Sample Re	covery Pe	erson: BH	<u>IK</u>	an an air an	and the second and the second	The second s	2 200
			Moisture	Data			
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)	
Final wt.	496.3	1249.1	697.6	686.1	610,6	944.2	g
Initial wt.	465.0	506.7	700.0	689.5	603.5	900.1	g
Net wt.	31.3	74z.4	(2,4)	(3.4)	<u>ا، ج</u>	44.1	g
			Descrip	tion	nc 819.1		
Train Syst	em:						
Probe:		<u>. </u>		· · · · · · · · · · · · · · · · · · ·		·	
Filter: Col	or -		Loadin	g -			
Impinger C	Contents:						
Silica Gel:	@Grams	Used -	Color -	%	Spent -		
Condensa	te Observo	ed In Front I	Half:				
		Re	covered Sam	ole Fractions			
Filter Cont	ainer No.				marke	d/sealed:	
	ule Contair	ner No ·			marke	d/sealed [.]	
	I) & Back I	Half Rinse (A	Acetone) Conta	iner No.:	Liquid	level d/sealed:	
Probe (FH			Foluene) Conta	iner No.:	Liquid marke	level d/sealed:	
Probe (FH	I) & Back I	Half Rinse (1				Invest	
Probe (FH Probe (FH	I) & Back I Contents C	Half Rinse (1 Container No			Liquid	d/sealed:	

100.6

	ENVIRONMENTAL SERVI	ICES, INC.		FIE	ELD DAT	`A				Co V _L : Sil	ndensers ica gel	
Plant Date Sampling Li Sample Typ Run Numb Operator Barometric Static Press Filter Num Pretest Lea	$\frac{ASPHALT}{B-PA-T} \xrightarrow{PLANT} \\ \frac{B-PA-T}{PL} \\ \frac{D}{DC} \\ \frac{D}{DC$	<i>A''</i> 		Fier B	n Inte.		Probe Pitot Nozzi Assun Mete Mete Refer	Length Tube I.D. c I.D med Moi r Box Nu r Box Nu r Gamma r Gamma	and Type	4/ GLAS <u>N4</u> <u>040</u> <u>N0</u> <u>M01</u> <u>114</u> <u>3445</u>	(a) 1 (0)	
Protest Pito Protest Orse Read and R Page	of Leak CheckA at Leak CheckA Record all Data Every / Of	Minu	ites	So Travci Temp Sen	thematic of rsc Point La	yout	Post 1 Post 1	Fest Pito Fest Ors:	t Leak Chec t Leak Chec t Leak Chec	k (k		
Traverse Point	Sampling / Clock Time Time, (24-bour	Gas Meler Reading	Velocity Head4 Pa)	Orifice Pro (41)	a. Differential In. 1120	Slack Terup. • F	Fie Temp. /	ohe Filter g	Lupinger Temp.	Dry Gas Me Inici	clet Temp.	Fump Vacuum In IIe
Number	(min.) / clock)	(Vb) n 3	in. 1120	Desired	Actual		1000					innin
	NO INT	11.35		///////////////////////////////////////		<i>VIIIIIII</i>						
		41.401	NA.		1001	il.						
		41504	Lielm	ch .		$\frac{17}{11}$, ,				
		41.571	Lern	- 22-25		78-		, ,				
								·				
								1				
								·				
								1				
								1				
								1				
								, ,				
								1				
	;		[,				
	;;								1	h		
	·	<u> </u>		{				1				
	;	<u> </u>	<u>}</u>	<u> </u>	1	 			1			
[]		{		 		 		/		1		<u> </u>
		 		1		 		1		1		
		<u> </u>		 	10 m	 		· /	1	<u> </u>		
						 		,	-	1		
a 1		-	-	-	-	-			-	-	-	-

Plant:	ASPHALT F	LANIT "A"			Run No	:: FB	
Sample Da	ite: 8/20	9/97	Filter No.(s):		Job No.	.:	
Sample Lo	cation: /	FIELD	BLANK				
Recovery [Date:		XAD-2 Trap N	o.(s): 0-M	23 - FB	-XAD	
Sample Re	coverv Pe	erson:				,	
			Moisture	Data			
		1	2	3	4		
Impingers	XAD - 2 Trap	(knockout)	(100 ml H2O) (untipped)	(100 ml H2O) (tipped)	(knockout) (untipped)	Silica gel (untipped)	
Final wt.	316.8	480.5	698.4	708.1	594,3	868.9	ç
Initial wt.	316.5	480.6	676.2	708.1	594.0	808.7	<u></u>
<u>Net wt.</u>	l Al Dece States A						
			Descrip	lion			
Train Syste	em:	<u>.</u>	<u> </u>	<u></u>	<u> </u>		
Probe:					<u></u>	·····	·
Filter: Col	or	·····	Loadin	g -		,	
Impinger	Contents:				·		
Impinger		Lleod -	Color -	%	Spent -		
Silica Gel:	@Grams	0360 -					
Silica Gel: Condensa	@Grams te Observe	ed In Front I	lalf:		 (1) 使したい時になったが 		
Silica Gel: Condensa	@Grams te Observe	ed In Front I	Half: covered Samp	ole Fractions			
Silica Gel: Condensa Filter Cont	@Grams te Observe ainer No.	ed In Front H	lalf: covered Samp	ole Fractions	marke	d/sealed:	
Silica Gel: Condensa Filter Cont	@Grams te Observo ainer No. ule Contair	ed In Front H Re	lalf: covered Samp	ole Fractions	marke marke	d/sealed: d/sealed:	
Silica Gel: Condensa Filter Cont XAD Modu	@Grams te Observe ainer No. ule Contair	ed In Front H Re	Half:	ole Fractions	marke marke Liquid	d/sealed: d/sealed: level	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH	@Grams te Observe ainer No. ule Contair) & Back H	ed In Front F Re her No.: Half Rinse (A	Half: covered Samp Acetone) Contai	ole Fractions	marke marke Liquid marke	d/sealed: d/sealed: level d/sealed: level	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH	@Grams te Observe ainer No. ule Contair) & Back H	ed In Front F Re her No.: Half Rinse (A	Half: covered Samp Acetone) Contai	iner No.:	marke marke Liquid marke Liquid marke	d/sealed: d/sealed: level d/sealed: level level d/sealed:	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH Probe (FH	@Grams te Observe ainer No. ule Contair) & Back H	ed In Front H Re her No.: Half Rinse (A Half Rinse (1	Half: covered Samp Acetone) Contai	ner No.:	marke marke Liquid marke Liquid marke Liquid	d/sealed: d/sealed: level d/sealed: level d/sealed: d/sealed: level	
Silica Gel: Condensa Filter Cont XAD Modu Probe (FH Probe (FH	@Grams te Observe ainer No. ule Contair) & Back H) & Back H Contents C	ed In Front H Rener No.: Half Rinse (A Half Rinse (T Container No	Half: covered Samp Acetone) Contai Foluene) Contai	iner No.:	marke marke Liquid marke Liquid marke Liquid marke	d/sealed: d/sealed: level d/sealed: level d/sealed: level d/sealed: level	

A PACIF		AENTAL SERVIC	CES, INC.	·		. 4975	>			V _L : Sili	alltO	
İ'lant	ASPHAL	T PLANT "	'H''		N J.	A	7			ļ	2	
Date	8-17-	STACK			/. 3	914	/	Probe Length a	nd Type	4' GIA	55	
Sampling	Location	1-29			f_k			Pitot Tube I.D.	No			
Sampie 1	vpc^	<u>v 6 1</u>		-1	ABC	DEF	J	Nozele J.D. B	and t	.251		
Anamian Anamian	10CT	A D			000	000		Assumed Moist	ure, %	25		
Operator		1 799				- 1/		Meter Box Nun	nber	<u>MB10</u>		
Static Pre	crissic (mire (R.)	25			NIPPIC	3/2	V	MelerA 11@_		74		
Filter Nu	mber(s)			_			S	Meter Gamma	<u></u>	.965	·····	
Pretest L	cak Raic =	ale cim a	€ 15 in.	lle				References p_		-01		
Pretest Pi	tot Leak Che	de LEAN	e che Gron	d				Post Test Leak	Rate = .	$\overline{\mathcal{D}}$ + $\overline{\mathcal{L}}$ d	ím@	
Pretest O	rsat Leak Ch	eck			Sc	hematic of		Post Test Pitot	Leak Check	k		
Read and	Record all D	ata Every	5 Minu	ites	Travci	sc Point La	yout	Post Test Orsa	Leak Chee	:k _/		
Page	of	\leq \sim			Temp. Sen	sor ID No.						
Traverse	Sampling	/ Clock Time	Gas Meles	Velocity	Orilice Pre	. Differential	Slack	Frohe Tomo / Eilter	Unpinger	Dry Gas Me	ter Temp.	
Point	Time,	(24-hour	Reading	(liend 4 Ps)	(41)	n. 1120 1 Actual	(T.)	Temp. • F	• F	(Teta)°F	(Post E	
Number			71.44	iniiniini				111111111111	1111111			2
		1 (1926	07 44	2/4	NA	4.4	209	2251240	45	92	89	
	- <u></u>	1 0925	88.1	13		4.1	208	2351235	イイ	92		
	15	1 01304	92.97	,90		2.8	210	2351236	44	92	91	_
	20	#10039*	97.271	.91		2.2	210	2421232	46	99	91	Ŀ
	5 25	1. 1104	100.42	.40		1.19	212	233/234	62	103	105	┢─
	30	1 1109	103.51	.45		1.12	212	2341235	60	<u> </u>	103	
L	35	1 1119	106.97	.54		1.3	215	2321250	<u>8</u>	10/	107	
	40	1 1129	110.042	65	 	1.6	216	2361255	-24-	110	101	┢─
Ð	45.	*//2014	116.07	f.fe_	 ⊢	2.1	204	241257	~	-113	101	┢
	50	11132	121.14	1.4	┨───┼───	2 7	200	211125	- 27	104	107	╋
	<u> - 55</u>	1171	14.7	1-2-	┨──┼──	2.2	180	2411754	51	104	107	1-
	60	1 117	120.0		 	19	189	2401756	58	103	102	Γ
	70	1122	133 15	72	 	-54	191	241 1 252	59	LOJ	104	
	1 75	1 1157	136.15	39		97	191	2461294	40	102	ເທ	
	1 go	1 12 02	158.900	.35		.87	192	2451256	(U)	102	[0]	
F	85	1120/1811	1415	.5		.15	172	246 254	6	<u>,00</u>	98	
	90	1 1216	144.38	. 74		.85	177	2411255	4	103	<u> </u>	
	2 95	1 1221	146.75	.1		.25	170	246 1 259	57	105	102	- -
	1/4)	1 (226)	148.13	.14		.35		24 1 257	<u>st</u>	106	<u>(0)</u>	-ŀ
			. 40 61	115		. 37	107	JAY 1 259	<u> </u>	· 103	102	┢
	3 105	/ 123	IMDI	- January Manager								_
	3 105	1 1231	152.14	<u> </u>	ļ	.5	18	247 24		103		
Page <u>z</u> of <u>z</u>

Plant Name:

ASPHALT PLANIT "A"

Test Date: 8-19-97

Run Number:

0)

Operator: ______

Traverse	Sampling	/ Clock Time	Gas Mcter	Velocity	Orifice Pre	s. Differential	Stack	Probe	Impinger	Dry Gas Meter Temp.		Pump
Point Number	Time,	(24-hour	Reading	licad (P.)		In. 11 ₂ 0	Temp. • F	Temp. / Filter	Temp.	Inict		
Z J				In. 1120	Desired	Actual	<u> </u>	1000. r		(h) ⁻ P	(hout) 'F	10. 11g
	120	1046	156.000		VID_		110	236-231	64	102	102	2
	125	1248/1253	159.4	.55		1.3	166	Z54 Z4B	64	48	98	2
	130	1 1258	162.92	.53		1.3	167	256 246	64	102	101	2
	135	1 1303	164.97	. 19		.47	167	253 1248	65	104	100	2
	140	1 1308	166.96	.16		.4	166	250 1249	61	104	101	2
3	145	1 1313	169.35	.25		.62	166	248 1248	62	103	103	2
	150	1 1318	18.15	.27		.67	167	5121513	63	104	103	2
4	155	1 1323	175.04	42		1.05	167	247/24/	64	105	(0)	2
	160	1 (328	178.297	.45		1.12	167	2481244	64	107	104	2
A 1	165	133433	0185.94	.30		7.5	167	247/245	58	113	105	4
	170	1 134	193.22	24		60	168	2461 247	57	113	107	4
2	175	1 1346	197.55	85		2.1	167	2471249	Sø	115	106	4
	180	1 1251	201.82	.86		22	167	2481 254	59	116	105	4
3	185	1 1356	204.57	.26		105	166	241253	58	114	107	3
	190	1 1401	207.07	.23		.57	165	2531251	57	112	109	3
Ч	195	1.1406	209.37	.23		.57	165	2541254	58	96	49	3
	200	1 1411	211.697	.z3		.57	155	257 1052	59	99	98	3
BI	205	11414/1419	218.2	2.1		5.7	164	257, 1256	61	107	107	3
	210	1 1424	224.57	1.9		4.7	168	254 1258	63	110	108	3
2	215	1 1429	229.56	1.2		3.0	167	255 1256	67	115	109	3
	9 20	1 1434	234,22	1.0		2.5	166	254 1258	62	114	109	3
3	225	1 1439	a 37.27	.42		1.05	767	248 1259	64	115	110	3
	230	1 1444	0790.5Z	.46		1.15	148	247 1259	65	713	110	3
<u> </u>	805	1 1449	Z43.63	49	V	1.22	14	249 1254	45	110	109	ž –
	aqu	1454	046.974	.49		1.22	100	248 246	45	108	106	3

Leak et . 004 @ 7mg

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHA	PLOAT "A"				Run No.:	\$79-0-1	
Date: 8-19	-97	Sample Box No				Job No.:	5413.003	
Sample Locat	tion: Outlat							
Sample Type	· Paticulate /	Mate S						
Sample Reco	very Person: 7	Abouth	1Ba	and F	21	field		
Container	Description	y merry		Volum	e. ml	Sealed/	Level Marked	
Front Half								
1	Filter No.(s) M97 -	003			-	-		
2	Acetone Rinse			_		-	_	
3	Nitric Rinse					-	_	
Back Half							調整に	
4	Nitric Rinse - Imp. 1.	2,3, + Back 1/2	2 Filter		~		•	
5A	Nitric Rinse - Imping	er No. 4			۱ 	-	<u> </u>	
5B	KMNO4/H2O Rinse	- Impingers 5 &	3.6		,	-		
5C	HCI Rinse - Impinge	rs 5 & 6			200-200 (19-20 (1)	_		
Moisture Da	ta							
Impinger	Contents	Initial			We	ight, gran	ns	
No.		Volume, ml	lr 	nitial		Final	Net	
	Empty		72	Z.6	12	59.7	-551.7	537
<u> </u>	5% HN03/ 16% H202	100	69	7.4	8	02.6	105.6	
3	5% 4N03/10% H20L	100	73	21	7	52.7	20.6	
4	Empty		52	$\frac{4.1}{1.2}$	$ \frac{5}{7}$	18.2	4.1	4
5	KM NO 1/H2Say	160	68	<u>7,3</u>	9	$\delta \mathcal{I}$	1.0	4
	KMNON / H.Say	100	70	9,1 7/19		01.2	0.5	4 1
7	Silign Cecl	200		17.1	18	91.9	66.5	$\{$
				<u></u>				$\frac{1}{2}$
				<u></u>				
Total							485.1.	691
Comments:		I	<u> </u>] [[
		· · · ·						4
	······································	·····						l l

ALLES C	C ENVIRON	MENTAL SERVI	C ES, IN C.		FIE	ELD DAT	'A	$\begin{bmatrix} C\Theta_2 \\ O_2 \\ O_2 \end{bmatrix}$		Ci V _L : Sil	нисияетя		
l'lant	ASPROT	PLANT	"A"		·····			7 N, _ _		Ta	на ЦО		
Date	8-20	-97			\square		Λ	L					
Sampling	Location _	STACK				/		Probe Length a	nd Type	<u>4' Gu</u>	155		
Sample T	/pc	M29			f			Pitot Tube I.D.	No				
Run Num	ber	DZ .			ABCI) き F		Nozzie I.D					
Operator		MAD			10000	1000	/	Assumed Moisture, %					
Barometri	c Pressure (R) 79.	8					Meter Box Nuc	nbct	MBIO			
Static Pres	sure (P,)	25			1			Meter All@	. 1	.74			
Filter Nu	nber(s)							Meter Gamma		45			
Pretest La	ak Raic =	006 cfm @	0 15 in	. Ile				References p	يا3ما	,			
Pretest Pi	ot Leak Che	ck CK G	00d					Post Test Leak	Rate =	007	ſm@	in. 11g	
Pretest Or	sat Leak Ch	cck			Sc	hematic of		Post Test Pitot	Leak Chec	K CK Gu	cal .		
Read and	Record all [Data Every	5 Min	utes	Trave	se Point La	vout	Post Test Orsa	Leak Che				
Page	1 of 7				Tomn Son	sor ID No		I	r		T	1	
Traverse	Campiles.	/ Check Time	Gas Melet	Velocity	Orifice Pro	a. Differential	Slack	Piche	Impinger	Dry Gas M	ter Temp	Tump	
Point	Thee,	(24-bout	Reading	Head 4 Pa)	(41)	b . 11 ₂ O	Temp. • F	Temp. / Filter	Temp.	Inkt	Uniter	Vacuum	
Number	(min.)	clock)	<u>(Vb) R 3</u>	<u>h. 1120</u>	Desired	Actual	1.5	Temp." F	• F	_(En)*F	F	lo. llg	
	0	10822	49.199						<u> vittilli</u> .			<i>711111</i>	
<u> A </u>	5	10827	67.9.	3.2	<u>ra</u>	8.8	190	238 / 247	42	80	78	4	
	10	10832	66.95	3.3		9.1	190	237 246	43	8)	78	4	
2	15	10837	73.15	2.4		6.6	194	240 247	48	86	<u>٩٢</u>	4	
	20	10842	80.2	2.3		<u> </u>	193	241 / 248	48	87	79	4	
))	25	1 0847	84.88	1.0		2.7	199	241 248	<u> </u>	90	8[2	
	10	10852	89.72	.96		2.6	198	244 248	5	- 42	- 83	2	
<u> </u>	55	0051	93.25	<u></u>		1.15	191	243 248	<u>_54</u>	73	84	2	
	40	0802	96.791	. 57			189	2421 247	50	94	<u> </u>		
<u>B</u> 1	45	10904/0901	104.15	<u>ð</u> .3		ري ا	200	244 244	21	43	81	2	
	50	1 6914	111.46	2.3		Q.37	200	246 1 244	56	43	8/		
7	55	1 0719	1 18.76	<i>d.0</i>		5.49	210	841 241	51	93	07		
·	60	1 0709	123.3	1.5		9.11	210	24/ 240	_55	- 12			
		0927	130.83	1.2	┠──┼───	2.14	215	246 242	83	45		<u></u>	
	10	1 0939	126.1	1.	┨──┼───	-1.4	2/4	346 245	00	101		<u> _</u> - <u>}</u> _	
J	1 15	0939	140.41		┨╼╍┥───	1.96	812	243 244	54	102		<u> </u>	
L	00	10944	144.631	$\frac{1}{1}$	┨──┼──	0.0	214		<u> </u>	102		- <u>-</u>	
C	<u> </u>		149.55	1.0			2/2	244 246	21-	100			
	- 10	0156	171.48	1:1-		2.0	áll		-5/	100	- 75-		
ļ'	4 45	00	15 1.41	-22-				043 044	21	1.01		3	
ļ	100	1004	160,41		┨───┼───	,76	207	044 JAC	2-	101	76	<u> -</u>	
}	105		104.05	1-12-	I	173	24	144 246	36	.100	76	13	
]			101.24	 	₩	4.06	001	03 743	-10-	103		3	
L		1 1001	113.28	<u> _le1_</u>	!		10/05	1244 1047	1 21	103	41	الك	
	120	1026	[0רידי]	.79		0.06	922	0111 046	22	105	77	Э.	

•

at."

,⁰⁴

10%

Page 2 of 2

Plant Name:

ASPHALT PLANT "A"

Test Date: _____8-20-97

Run Number:

02

Operator: M/m

Traverse	Sampling	/ Clock Time	Gas Meter	Velocity Orifice Pres. Differential		Stack	Probe	Impinger	Dry Gas N	Pump		
Point	Time,	(24-hour	Reading	licad (P)	(۱۱۵)	in. 11 ₂ 0	Temp. • F	Temp. / Filter	Temp.	Inlet	Outlet	Vacuum
Number	(min.)	<u> </u>	<u>(V) n 3</u>	in_H2O	Desired	Actual	(Ţ)	Temp." F	• F	(<u> </u>	(L _{out}) •F	In. IIg
D 1	125	1031/1036	182.47	1.0	HA	2.6	233	241 1246	58	98	98	3
	130	1 1041	187.41	1.1		2.8	233	at 1 ave	59	Kro	91	3
2	135	1 1046	(91.4	5		1.4	035	243 1244	55	105	99	3
	140	1 1051	194.76	.55		1.4	235	241 1244	56	105	93	3
3	145	1 1056	198.18	.53		1.38	236	2421244	57	102	97	3
	150	1 1101	201.55	.47		1.23	238	241 1244	56	101	93	3
4	155	1 1106	205.6	.69		1.8	236	240 1244	57	100	97	3
	160	/ 11/1	209.657	.7		1.8	233	239 1245	57	ID	96	3
E	165	1111/1119	214.45	1.0		2.6	232	240 1246	56	99	96	3
	170	1 1124	219.39	1.1		2.6	232	240 246	55	108	96	3
Z	175	<u>רגיו ו</u>	223.26	,55		1.4	237	241 1247	57	101	97	3
	180	1 1134	236.67	.55		1.4	236	212/047	58	103	98	3
2	(85	1139	229.96	.42		1.1	236	241 1244	59	102	98	3
	190	1144	252.96	.78		1.0	236	241 124	(gi)	102	97	3
4	195	1 1/49	235.9	.24		.89	236	241 1 246	60	/00	96	5
	000	1 1154	239.289	.59		1.54	226	239 1247	58	99	96	3
1 1	005	1007/205	242.46	. 38		(.0	236	242 1247	60	97	97	3
	010	1 1210	245.16	.34		.89	236	243 1 244	60	98	97 :	3
	211	1/215	248.05	.32		-84	236	244 1 zeft	60	99	97	2
	-00	1220	250.01	.24		.61	236	244 1246	51	101	98	7
3	825	1 1225	254.64	.46		1.74	236	242 1247	5B	103	98	2
	270	1230	258 64	.69		1.82	235	241 1240	58	103	99	2
4	0.35	11235	262.4	(da		1.74	832	str 1	60	107	99	Ð
	240	11240	266.098	.65	Y	ורין	233	2431	61	105	99	2
			214.899	0.887		2,574	112))	98,205	93.2	
						, ,	(A82	-15T - 108	.4	535	7	

MULTI-METALS SAMPLE RECOVERY DATA

							200 0 0				
Plant: HSP	Plant: $H = P H A LT P LANUT A^{H}$ Run No.: $S29 - 0 - 2$ Plant: $Q = 20$, $Q = -2$ Sample Box No.: $U = -2$ Lab No.: $S29 - 0 - 2$										
Date: 8-2	0-97	Sample Box No).:		,	Job No.:	5413.003				
Sample Loca	tion: Outlet										
Sample Type	: Particulate	/ Metals		•							
Sample Reco	overy Person: Trey	Abernathy /	Bar	y Ra	y fic 1	<u>d</u>					
Container	Description /			/ Volum	e, ml	Sealed	Level Marked				
Front Half	N. S. S.										
- 1	Filter No.(s) M97-	•									
2	Acetone Rinse				-						
3	Nitric Rinse				-						
Back Half											
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter								
5A	Nitric Rinse - Imping	er No. 4			`						
5B KMNO4/H2O Rinse - Impingers 5 & 6											
5C	HCI Rinse - Impinge	ers 5 & 6			-						
Moisture Da	ta										
	Contents	Initial			Wei	ght, grar	ns				
No.		Volume, ml	In	itial	F	inal	Net				
1	Empty	-	72	3.6	140	8.5	684.9				
2	HN03/ 4202	100	69	8.4	81	4.6	176.2				
3	HN03/ H2 02	100	73	2.0	80	8.1	76.1				
4	Empty	~	52	5.5	53	3.7	8.Z				
	KINNOY / H2 SOM	100	680	<i>.</i>	3	690.8	4.4				
6	KMN04 / H2504	100	70	9.1	11	1.7	2.6				
7	Silica Gel	200	93	\$8.7	8.	79.4	40.7				
					 						
Total		<u> </u>			[443.11				
Comments.											

44. 74.

FIELD DATA SHEET

Plant:	ASPHALT	PEANT "A"
Sampling	Location 51	ACK
Run Num	ber: <u>03</u>	Date: 8-20-97
Pretest L	eak Rate: <u>OII</u>	cfm @ <u> </u> in. Hg.
Pretest L	Bak Check: Pit	ot: کد_ Orsat:

Sample Type:	MZ9	Operator:	MAD
Pbar: 29.8	Ps:	25	
CO2:	02:		
Probe Length/	Гуре: Ч′	GLASS Pit	ot #:
Stack Diamete	:33'hx	4_ As:	

Nozzle ID: 253	Thermocouple #:
Assumed Bws: .\8	Filter #:
Meter Box #:MB10	Y: 965 AH@: 1.74
Post-Test Leak Rate	a: <u>005</u> cfm @ <u>9</u> in. Hg.
Post-Test Leak Che	ck: Pitot: Orsat:

Trans	Remeires	Clock Time	Ges Mater	Velocity	Orifice Press	ure Differential	Stack	Tempe	rature	Impinger	Dry Gas M	eter Temp.	Pump
Dalat	Time	124 hour	Beading	Head (Ap)	(AH)	in H2O	Temp.	0	F	Temp.	Inlet	Outlet	Vacuum
Point	(1170) ((24-noui	(Vm) #3	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^o F)	(Tm out F)	(in. Hg)
NUMOR	(mmp		72 784	1111111	IIIII		ΠΠ	ΠΠ					
5	0	1405	78 54		T NA	2.6	210	235	245	64	102	101	2
101	5	1410	Q 3 (-)		1	29	209	237	246	63	103	102	2
	10	1415	01.07	<u> </u>			and	256	24	45	106	102	2
$\frac{2}{2}$	15	1420		27		97	712	250	244	47	106	103	2
- -	20	1425	01.95	7.1	++	16	208	152	240	47	106	103	2
2	25	1420	95.13			.79	209	253	242	48	106	103	3
<u> </u>	32	1423	99.97	<u></u>	+	1.32	208	254	241	49	105	102	2
	73		107 185	47	1	1.24	207	255	240	52	104	102	2
le .	15		102,100			2.9	207	254	251	54	104	105	2
<u> </u>		1457	112.11	[]		29	207	253	250	55	104	105	2
	50	19707	114.95	7	++-	.52	208	254	251	56	106	103	2
	57	1507	114.71	.19		.5	wg.	253	252	56	108	103	2
2	60	1512	119.05	22		.58	206	253	250	58	105	103	12
<u> </u>		1517	121 37	2.7.	1	.58	205	253	249	58	104	102	2
	75	1577	12465	45		1.18	205	254	247	55	104	100	L
	20	1527	127.923	.49		1.29	206	253	247	55	104	100	2
FI	85	529/1834	132.61	1.0		2.6	702	252	249	121	103	102	4
[90	1539	137.45	1.1		2.9	209	251	249	56	105	101	6
2	95	154	141.31	.52		1:37	208	250	245	57	105	101	2
	IUD	1549	144.01	.5		1.32	206	250	249	57	107	101	2
- 3	IDK	1554	147.75	15		1.18	208	2(7)	248	56	106	101	2_
<u>-</u>	100	1559	151.08	.46		1.21	210	250	248	(6	100	101	
- U	115	1604	15515	21		1.87	ZII	250	Z48.	57	106	101	6
	12/12	11009	159,188	74		1.9	212	248	247	ଟଞ	106	101	2
					1 17	1						L	ļ
	·				1-1/								<u> </u>
I				 جيم -		. <u>1</u>	<u></u>				To-		
ΔVm=VΔp=ΔH=Ts=													

•

Ň

101

Page ____ of ____

Plant Name:

ASPHALT PLANT "A"

Test Date: _8-20-97

Run Number: _____

Operator: <u>kkap</u>

Trav	erse	Sampling	/ Clock Time	Gas Meter	Velocity	Orifice Pres. Dilferential		tial Stack Probe In Temp. * F. Temp. / Filter		iller Temp.		Dry Gas Meter Temp.	
Po Nur	int nber	(min.)	clock)	(VL) ft ³	Ilcad (P ₁) in. H ₂ O	Desired	Actual	(ζ)	Temp. / Filler	F	Inict (The)* F	Outlet (Temt) •F	In. IIg
A	1	125	11613/1618	167.69	3.7	NA	8.4	212	2461248	58	100	102	5
		130	1 1623	176.14	3.2		84	212	2471 248	58	196	102	5
	2	135	1 1628	181.08	4.0		2.44	211	2471249	র্ণ	111	(0)	,3
		140	1 (633	186.07	1.1		2.9	210	24 250	60	108	103	3
	3	145	1 1638	189.17	.321		1.03	12	2451 251	61	108	197	3
		150	1 1643	192,28	.50		1.0	シッチ	2451251	(44)	10		3
	4	122	1 4648	19129	.29		.76	211	2411250	62	107	101	3
5		160.	1 1653	197.627	.29		. K	208	244/249	61	105	10]	3
<u>5</u>		165	11650/100	204.39	2.0		5.2.	209	244 247	63		99	3
		170	1 1-105	211.17	2.1		5.5	21	2+51 -+8	64	101	የሪ	*
	2	175	11/10	215.67	<u>-78</u>	- 1	2.06		2. R. 249	65	106	<u> </u> ବିବ	3
	_	180	1 1715	220.11	γ		2.07	211	2421252	62	107	_ 79	3
	Ľ'	185	1 1720	223.42	.56		1.47	240	249 251	60	109	10]	3
		19	1 1725	227.08	.28		1.53	199	247 252	ТS	107	·••1	3
	_4	5	1 1730	230.4	<u> </u>		1.65	182	246/251	54	107	102	3
		2/5	<u></u>	233.615	<u>.4</u>		1.05	182	2451 252	54	109	102	3
<u> </u>		205	<u>'</u> _/_						<u> </u>				
		210	<u>/</u>				LEah	ch. v)J @19"Hb				
	-	215	<u>/</u>				i i		<u> </u>				
		220	/ .					,	/				
	- <u>-</u>	7.25	/	120 0-				· Ka	/				
		650	·/	154.631	0,823		2.064	207.15	1		105.78	CO1.78	¢
	4	235	<u>'</u>					6.	1			37	
		240	/						1			3.4	

6]= 1065

Plant: Asr	HALT PLANT "A"				Run No.:	529-0-3	
Date: 8-	20-97	Sample Box No.	<u> </u>	-	Job No.:	S413.003	
Sample Loca	tion: Outlet						
Sample Type	: Particulate 1	metals		•			
Sample Reco	overy Person: Trev	Abernathy /	' Bo	· · · V	Rayfield		
Container	Description			Volume	e, ml Sealed/	Level Marked	
Front Half							
1	Filter No.(s) M97	- 004				•	
2	Acetone Rinse			<u> </u>			
3	Nitric Rinse	Service and the superior of the service of the serv	A. V. 235- V.	-			
Back Half							
4	Nitric Rinse - Imp. 1	Filter					
5A	Nitric Rinse - Imping	ger No. 4					
5B	KMNO4/H2O Rinse	e - Impingers 5 8	6				
<u>5C</u>	HCI Rinse - Imping	ers 5 & 6	1.24.20 (BR)	an an an an an an an an an an an an an a			
Moisture Da	ita						
Impinger	Contents	Initial			Weight, grar	ns	
<u>No.</u>		Volume, ml		itial	Final	Net	
(Empty	10074	<i>י</i> ע קר	7.1	1982.2	757.5	
<u> </u>	HNO3/HZOZ	100	/ 0	7.1 n 3	716.2	19.4 19.6	
	HINKE HOL	100	60	3.7	110.2	34	
<u>ر</u> ح	KMARDY / 4 SQ.	100	74/	<u></u> 9.z	750.1	0.9	
4	Km. 0., 14-504	100	641	:3	642.2	0.9	
7	Silica Gel	200	79	70.7	825.1	34A	
Total					、 、	078.81	

A CONTRACTOR OF A CONTRACTOR OF

METHOD 5 TESTING FIELD DATA SHEET

PAGE 1 of 3

PLANT	ANT AND OTHY		DATE	SAMPLI	NG LOCATIO	JN	SAMPLE	YPE	AUNU	UUMBEA	
ASPHALT	PLANT "A	11	8-21-97	5740	14		M-29	•	04		
*			· .								J
PEHATOR		AMBIENT	GTATIC	Amelienia	FILTER	STACKS	PUIC PAR	PROBLE	NETRIA	NOZZA	\$
12.20		PREGS	PRESS	TEMP	NUMBERIS	- ID -	Cb	ANDUNE	al invice	REMEMBER	DIAMETER
2.4		(lh.Hg)	(in: Hg)	(deg: F)		(in)					
MAD		29.7	25	72°		33.5 X	. 84	4 Gia	55		.253
						49.75					
SUMED	BOM	UGM	DGIM	STRACK	STACK		LEAK	lical	(1))	(NO2)	C DA CROZ
JISTURG	BOXND	li (d)	OAL	THEFIM	isintoni	OBISAI	olpiacik	ાલો માંદ્રાઓ (<	<u>ল(জ)রনাল</u> র্বন	60 (14 d \$ 61	
(%)			FACTOR (Y)	NÖ.	NO	KO.	(INITIAL)	(RINAD)	Q/3	ζ_R	
17	MB 10	1:74	965				p10@11"	0.0080			A CONTRACTOR OF A CONTRACT
			<u></u>				0	10 "	•		رر
	ELAPSED			-dalbi P				UPI MEREN	्वा। तम	(e)c)y)	GAMPLE
HAV	ii est	clock	ାର୍ଥ୍ୟ	VELOCITY	Utili nes	Stratelle	PROFE	OVEN	No estate	Bloby .	USIAN
OINT	IIIM E	TIMIE	FIEADING	HEAD	OFIFICIES		THE ME			्यात्राम	19.10
NO	(MIN)	(244)4(5)	Vm (cu. it)	(In: H2O)	-{(in, th)20}}		(slejej (53)	- (61:6) (5)	((()))	(eleje jest	(int shaft
	Ú	0741	34.320	77/7/77	7/////	1//////	11111	11/11/11	1/1/ 11/	11/1/1/	(//////////////////////////////////////
	5	0746	38.94	1.0	2.5	185	247	249	65	79/77	1.5
	10	0754	43.52	.96	Z.4	186	250	248	65	82/79	7_
7	15	0756	47.16	.44	1.16	183	252	249	55	91/80	2
	20	0801	50.38	,39	1.02	183	251	250	53	93/80	2
3	25	0806	53.00	. 29	.76	180	249	921	53	93/82	2
· · <u> </u>	30	0811	55.53	25	. 66	190	248	252	53	94/84	2
Ч	35	0816	58.82	44	1.16	180	249	250	54	94/86	2
	40	0821	62.12	.44	1.16	186	249	920	57	95/07	l
1	45	823 0878	67.3	1.2	3.16	120	249	251	59	97/90	7
	50	0833	72.85	1.3	3.4	120	247	252	61	98/91	2
2	55	0838	7598.	.44	1.16	1.76	2:49.	253	61	49 92	7.
۱	60	0813	79,17	.39	1.02	175	251	252	56	102 193	2
	UOIAL		Metel	AVESCIET	a vie	AVE				₩≓	
	TEIME		VOLUME	della P	Uplate	UEIM P				ielMes.	
]									
	A contract of the second	-					-			Residence in the local data and	

METHOD 5 TESTING FIELD DATA SHEET

PAGE 2 of 3

1	PL	N. NE	ANDIOITY		DATE	SAMPL	NELLOXOAN		SAMPLE	NIPE:	210181	MCM area	
	Asp	HAL	T PLANIT	"A"	8-21-97	STA	ICK		M	29	0	4	
					· .						e an an an an an an an an an an an an an	e a ortemagni - in ik	
			26,77,322),			deite Sam					્યાલ્યું સ		
	137.87		(JR58)	01/2018	MSOCIAL STREET	VEROCENT	egi gi gi gi se j				Entre (CDA)		
	a di na		- Sel Clar	NIVE:	CABING	HEAD	<u>রোমারার্য়</u>	. HELL	CHARLY S		inc.		Sola Sel Sola Sela Sela Sela Sela Sela Sela Sela Se
	<u>R(3</u>)			((220413))	Vm (cu. fl)	(OSHEO)							
	E	3	65	<u>OBUB</u>	81.48	.71	. 57	119	257	241	30	100 / 19	<u> </u>
0			70	0853	83.71	.19	.50	115	750	246	50	101 1 19	<u></u>
		7	75	0858	86.12	.24	⊂ م).	(1)	250	2110	50	100/13	$\frac{\partial}{\partial x}$
	6		80	0903	88.428	. 21	. 5 3	175	250	240	- 21-		<u> </u>
	F	1	85	09020910	<u> </u>	1.4	3.4	186	257	Ne	57	101 190	<u></u>
			90	0915	99.22	1.4	3.4	101	254	20	53	10717	<u> </u>
		2	45	0920	102.21	<u> </u>	<u> </u>	- 1-1-1	36	AUR	50	108/44	<u></u>
¢,			100	0925	105.02	10	20	171	202	748	54	108 1107	2
		-31	105	0930	101.15	10	. 14	112	255	- ive	55	1081104	ż
			110	0435	101.40	.10		· · · · ·	251	249	50	INP LONG	2
		믜	112	0940	112.74	.00	1.5	116	200	251	55	108 1104	2
		_	120	0145	110.0.6	.51	1.5		252	20	56		2
	Α	1	125	STYB 10153	12, 0	0.0	1.5		254	250	58	10 1106	- -
		_	130	0956	101.00	<u> </u>	<u> </u>	175	253	251	58	131107	J
	ļ	2	135	1005	31.3	1.4	3'A	172	253	252	59	1141 108	24
		_	140	1000	146.99	1.2	12	177	7.43	7.57	49	INTING	2
		2	145	1019	(43.7.	50	1.5	(1)	247	1.51	1-47	112/108	$\overline{\nu}$
			150	1015	144.45		<u> </u>	173	741	153	50	112 108	1
		4	155	10723	151.00	. 6		174	2.45	753	52	117. 1 109	$\frac{L}{L}$
1			- 160	1040	129.900		- 47					1101100	
	ļ												
	·							·					
	L					Aures	SV-SV-S	S		•	J		
					Yel style			399512				CRANE	
		ľ						A CONTRACTOR OF THE OWNER OF THE					

Å

) '

METHOD 5 TESTING FIELD DATA SHEET

PAGE 3 of 3

	PLANT	AND OITY		OATE	SAMPL	NC ROMAN	ION	SAMPLE	TYPE	RUN		
	F-PH	AIT PLANT	- "A"	8-21-97	67	ACK		M	29	ס ו	4	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
		ELAPSED.			della P				(a)) (a);	୍ୟା ପ୍ରା	(CLCL)	SAME S
		12.51	CI SCK	DGM	171316)6337/	હોલ્મલાન	S. S. M. O.	() () () () () () () () () () () () () (	(0)053		S SKOLOU	12.22
1260	25.	181012	I IME	READING	HEAD	CORIFICE:	UEME .	1 CEMP	에 가려진 (P)	្រំ ខេដ្ឋ(ទ្រ	1272.512	Sec. 3
			(24-HH)	VM (CU. II.)	(HOL HEO)			2119				
D_		165	1030/1073	161.54	$\frac{z_1}{10}$	7.5	17.	25	248	46	11100	
		1 10	1010	100.71	2.0	47	192	251	241	<u>40</u>	11/1/106	-5
	<u>L</u>	115	1045	10.0	20	$\frac{\gamma \cdot \gamma}{4}$	100	253	240	51	11/106	2
		185	1055	18107	0.71	<u> </u>	100	120	201	51		
		105	11000	Licaigo. 15	0.59		150	2311	2002	56	TTTTOP	~
	ч	195	1105	142.11	0.40	A.91.	101	12/1	201-	50	14/108	
	I	7.50		19/01.37	OISTO	1,2	187	23/2	150	$\overline{\mathbf{x}}$	1+10+	
C	1	205	1113/1118	100.88	400	2114	185	2.36	15-1	60	HOL INS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		210	1123	2057.91	120	2.9	183	218	251	12	109/105	2
	2	215	1128	205.80	Q:35	0.84	184	240	252	52	112/105	1
		220	1133	211.45	0,40	0.46	183	238	252	54	110/105	1
	3	225	1138	213:78	0.17	0141	183	237	250	53	108/104	1
		270	//43	215.78	817	DIYI	186	241	252	55	106/103	1
		275	1148	218122	0.24	0.62	187	243	251	55	105/103	(
		240	1153	220.541	0.26	0.62	187	247-	252	56	105/10.3	1
					<i>1</i> 0							
				······								
<u>`</u>							Section 8 States					
		89,48,41 		CONTRACTOR OF THE								
				VULUIVILL			REMI					
										•		

4

	MULTI-META	LS SAMPLE R	ECOV	ERY D	ATA	
Plant:	ASPHALT 7	PERMIT "A"			Run No.:5	29-0-4
Date:	S	•	<u> </u>	Job No.: S	5413.003	
Sample Locat	ion: Ostut					
Sample Type:	Particulate	/ metals		•		
Sample Reco	very Person: Tr-	y Abernathy	<u>1B</u>	sony !	Ray fre K	<u></u>
Container	Description		<u> </u>	/dume	, ml Sealed/I	evel Marked
Front Half						
1	Filter No.(s) M9	1-005				
2	Acetone Rinse					` <u> </u>
3	Nitric Rinse	The second second second second second second second second second second second second second second second s	100000			
Back Half						
4	Nitric Rinse - Imp. 1,	2,3, + Back 1/2	Filter			
5A	Nitric Rinse - Imping	er No. 4		~		
5B	KMNO4/H2O Rinse	- Impingers 5 8	<u>k 6</u>	<u> </u>		
5C	HCI Rinse - Impinge	rs 5 & 6				A CONTRACTOR OF CONTRACTOR
Moisture Da						
Impinger	Contents	Initial	1-1	4-1	Weight, gran	ns
No.		Volume, mi			1799 5	127 0
	Empty 5% Hum 1 Halla		19-	$\frac{2.3}{10}$	7001	92 (
2	11100 / 11 Or	160	72	2.8	7458	15.0
	HANO3 HZ		52	20	5247	1.7
Σ	KMO OH /H, SOH	100	48	3.6	685.1	1.5
	KMOOH /H-SOH	100	70	7.8	710.3	2.5
7	Silica Gel	200	89.	7.4	927.5	30.1
					TOTAL	821.4
			<b>_</b>			
Total						
Comments:	<u></u>					



## METHOD 5 TESTING FIELD DATA SHEET

PAGE 1 of

PLANT	AND CITY		DATE	SAMPLI	NG LOCATI	0N 🖉 🗌	SAMPLE	(YPE	AUN I	NUMBER	
ASPHAL	T PLANT "	A"	8-21-97	STA	u		M_1	-1 ·	E.	11 21	mh
OPENATOR		AMBIENT	STATIC	AMBIENT	HLIER	STACK	PITOT	PROBE L	INGTH	NOZZI	E
		PREGS	PRESS	TEMP	NUMBERIS	UD.	Cp	AND LINE	ri type	NUMBER	DIAMETER
		(in. Hg)	(in, Hd)	(deg. F)		lin 1					
Mari	)	ai <i>n</i>	NIA ·		AI/I	A.W		4'60	<b>~</b> >>	ΝIA	253
					<u>L</u>				<u> </u>		.657
ASSUMED	<b>DOM</b>	DGM	DGM	STAOK	STACK		LEAK		81/2	(19)	KEADTOE
MOISTURE	BOX No.	60	CAL	HHERM	PITOT	OHGAT	CHECK	CHIECK	CONTENT	steller der	
(%)			FACTOR (Y)	NO	NO	•NO	(INITIAL)	(EINAL)	a/	(A)	
<u> </u>	MBIU	1.74	.965	LIA	NA	· ~10	<u> </u>	10"4			
	L								,		J
	ELAPSED			dalm P	Internet			FILTER	SIL CEL	DGM	SAMPLE
TRAV.	TEST	olock	DISIM	VELOCITY	adella H	STACK	PEOBE	OVEN	MRINGER		TRAIN
POINT	TIME	iiiMis	HEADINE	HEAD	ORIFICE	TEMP	TEMA	TEMP	TEMP	alt len	VAC
NO	(MIN)	(24-1-10)	Ym (cu. ft.)	(In: H2O)	(in H2O)	(ded.E)	(dea 51	(den El	(626.5)	(degrades)	(inceas)
		200700000000000000	33 944		1.5.11.11.11.11.11.11.11.11.11.11.11.11.			2000 <b>- 1000 - 1000 - 1000</b>		<u> </u>	
			30 141	DOG	6) 8	"T					
		•	14,221	017	0 10	112					
			Q ²			-10 >>					
							·				
								- <u></u>			
		·			- <u></u>						
						· · ·					
		· · · · ·									
							· .		<u> </u>		
			·		<u>,</u>						
L	TOTAL			AVEQUEST	AV -			I	L		J
	TIME		ValuIMe		alalla 1	TEMP	1				
				2011-74-701400-84	STREET COLUMN						
	L	J		l		L	J				

## MULTI-METALS SAMPLE RECOVERY DATA

ant: As	PHALT PLANT "A"				Run No.:	Field Blank	
ate: 8-2	21-97 5	ample Box No.:			Job No.: .	5413.003	
ample Locat	ion:						
ample Type	Particulate	/Metals		•			
Sample Recovery Person: Trey Abarnathy / Barry Rayfield							
Container Description Volum					ml Sealed/Level Marked		
Front Half							
1	Filter No.(s) M9-	7-006					
2	Acetone Rinse				<u> </u>		
3	Nitric Rinse			and the American Maria			
Back Half							
4	Nitric Rinse - Imp. 1,	2,3, + Back 1/2	Filter		-		
5A	Nitric Rinse - Imping	er No. 4			-		
5B	KMNO4/H2O Rinse	· · ·					
5C	HCI Rinse - Impinge	rs 5 & 6	Super Viela	The second second			
Moisture Da	ata						
	Contents	Initial			Weight, grams		
No.		Volume, ml		nitial	Final		
(	Empty		12	0.5	70/12		
2	HN03/ H202	100	10	7. <u>5</u> , a	770 4	+	
3	+1N63 / H, 02	100	72	<u>8.1</u> c 5	128.8		
4	Empty		7 2	<u>5, 5</u> 5 4	735.4		
<u> </u>	KMA04 /424	100	155.1		652.1		
7	KMA04/HZ04	2.00	7	10.4	790.0		
<i> </i>	Silicen (sel				<u>                                      </u>		
			1				
Total							
Comments	1						

с. Г

·

Pl	TECHNICAL REPORT DAT ease read instructions on the reverse before of	CA completing				
1. REPORT NO. EPA-454/ 00-071 1		3. RECIPIENT'S ACCESSION NO.				
4. TITLE AND SUBTITLE Final Report - Volume I of II, Emissions Te	st at an Asphalt Concrete Production Plant.	5. REPORT DATE ACT 2000				
Asphalt Plant "A" - Clayton, North Carolina	1	6. PERFORMING ORGANIZATION CODE				
<ol> <li>AUTHOR(S) Michael D. Maret Franklin Meadows</li> </ol>		8. PERFORMING ORGANIZATION REPORT NO.				
9. PERFORMING ORGANIZATION NAME Pacific Environmental Services. Inc.	AND ADDRESS	10. PROGRAM ELEMENT NO.				
Post Office Box 12077 Research Triangle Park, North Carolina 27	709-2077	11. CONTRACT/GRANT NO. 68-D-70069				
12. SPONSORING AGENCY NAME AND A U.S. Environmental Protection Agency	ADDRESS	13. TYPE OF REPORT AND PERIOD COVERED Final				
Office of Air Quality Planning and Standa Emissions, Monitoring and Analysis Divis Research Triangle Park. North Carolina 27	rds ion 711	14. SPONSORING AGENCY CODE EPA/200/04				
15. SUPPLEMENTARY NOTES						
16. ABSTRACT						
and counter flow, wherein the aggregate and of selected by EPA as the host facility at which the for control of air emissions. The primary objective of the testing proge (PCDDs or "dioxins") and polychlorinated di Testing of uncontrolled emissions was delete the sampling capacity of the Method 23 and I baghouse. The data will be used by the EPA regulation under the Maximum Achievable C	exhaust gas flows are opposite to each other. Plat to obtain data on air emissions from a counter flow ram was to obtain data on controlled and uncontr benzofurans (PCDFs or "furans"), particulate ma d from the scope of work because the high particu- dethod 29 sampling trains. A secondary objective 's Emission Standards Division 1, determine whe fontrol Technology (MACT) program	w continuous drum mix process that utilized a baghouse offed emissions of polychlorinated dibenzo- <i>p</i> -dioxins atter (PM), and metallic HAP and non-HAP compounds, alate grain loading at the inlet to the baghouse exceeded re was to observe and record plume opacity form the ther HAPs are emitted at levels that would justify				
During the testing program another EPA prepared Section 3.0, Process Description, of	contractor monitored and recorded process and e this report.	mission control system operating parameters, and				
This volume (Volume I) is comprised of	166 pages and consists of the report text, and Ap	pendices: A (Process Data) and B (Raw Field Data).				
17.	KEY WORDS AND DOCUMENT AN					
a DESCRIPTIONS	b. IDENTIFIERS OPEN ENDED TERMS	s c. COASTI Field/Group				
Baghouse Dioxins Furans Emission Measurements Hazardous Air Pollutants Metals Particulate Matter Volatile Organic Hazardous Air Pollutants						
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (Trus Report) Unclassified	21. NO. OF PAGES 870				
Unlimited	20. SECURITY CLASS (True page) Unclassified	22. PRICE				

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

F:\U.FMeadows\TRD.Frm\WP 6.1