United States Environmental Protection Agency Office Of Air Quality Planning And Standards Research Triangle Park, NC 27711 EPA-454/R-00-023a April, 2000

Air

Hot Mix Asphalt Plants Kiln Dryer Stack Manual Methods Testing

Asphalt Plant B Cary, North Carolina Volume 1 of 2

FINAL REPORT

EMISSIONS TEST AT AN ASPHALT CONCRETE PRODUCTION PLANT: ASPHALT PLANT "B" - CARY, NORTH CAROLINA

VOLUME I OF II REPORT TEXT APPENDIX A APPENDIX B

EPA Contract No. 68D70069 Work Assignment No. 2-09

Prepared for:

Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SCGA, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

September 1999 p:\i529\finrpt\"B"\mm08119A.wpd

Submitted by

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919) 941-0333
FAX (919) 941-0234

DISCLAIMER

This document was prepared by Pacific Environmental Services, Inc. (PES) under EPA Contract No. 68D70069, Work Assignment No. 2-09. This document has been reviewed following PES' internal quality assurance procedures and has been approved for distribution. The contents of this document do not necessarily reflect the views and policies of the U.S. EPA. Mention of trade names does not constitute endorsement by the EPA or PES.

	•		
			,

TABLE OF CONTENTS

VOLU	JME I	<u>Page</u>
1.0	INTR	ODUCTION 1-1
2.0	SUMI	MARY OF RESULTS
	2.1	OXYGEN AND CARBON DIOXIDE MEASUREMENTS 2-1
	2.2	PCDDs/PCDFs MEASUREMENTS
	2.3	PARTICULATE MATTER AND METALS MEASUREMENTS 2-17 2.3.1 Baghouse Inlet - Asphalt Production with RAP 2-17 2.3.2 Baghouse Outlet- Asphalt Production with RAP 2-25 2.3.3 Baghouse Inlet - Asphalt Production without RAP 2-25 2.3.4 Baghouse Outlet - Asphalt Production without RAP 2-34
	2.4	DETERMINATION OF VISIBLE EMISSIONS 2-34
3.0	PROC	CESS DESCRIPTION
4.0	SAM	PLING LOCATIONS 4-1
	4.1 4.2	BAGHOUSE INLET SAMPLING LOCATION
5.0	SAM	PLING AND ANALYSIS PROCEDURES 5-1
	5.1	LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS
	5.2	DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE
	5.3	DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS
	5.4	DETERMINATION STACK GAS MOISTURE CONTENT 5-2

TABLE OF CONTENTS (Continued)

VOLU	JME I		Page
	5.5	DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS	
		AND POLYCHLORINATED DIBENZOFURANS	
	5.6	DETERMINATION OF PARTICULATE MATTER AND METALS	. 5-4
	5.7	DETERMINATION OF PLUME OPACITY	. 5-8
6.0	QUAL	TY ASSURANCE/QUALITY CONTROL PROCEDURES	
	AND I	ESULTS	. 6-1
	6.1	CALIBRATION OF APPARATUS	. 6-1
		6.1.1 Barometers	
		6.1.2 Temperature Sensors	6-1
		6.1.3 Pitot Tubes	
		6.1.4 Differential Pressure Gauges	6-3
		6.1.5 Dry Gas Meter and Orifice	6-3
	6.2	ON-SITE MEASUREMENTS	6-3
		6.2.1 Measurement Sites	
		6.2.2 Velocity Measurements	6-5
		6.2.3 Flue Gas Sampling	6-5
		6.2.4 Moisture	6-5
		6.2.5 Method 23/Method 29	6-6
	6.3	ANALYSES	
		6.3.1 Method 23 Analyses	6-6
		6.3.2 Method 29 Analyses	6-9
APPI	ENDIX .	PROCESS DATA	
APPI	ENDIX I	RAW FIELD DATA	
		Appendix B.1 Raw Field Data Baghouse Inlet	
		Appendix B.2 Raw Field Data Baghouse Outlet	

TABLE OF CONTENTS (Concluded)

VOLUME II

APPENDIX C ANALYTICAL DATA

Appendix C.1 Analytical Data Method 5 Particulate Matter Appendix C.2 Analytical Data Method 23 PCDDs/PCDFs Appendix C.3 Analytical Data Method 29 Multiple Metals

APPENDIX D COMPUTER SUMMARIES

Appendix D.1 Computer Summaries Baghouse Inlet Method 23 & 29 Appendix D.2 Computer Summaries Baghouse Outlet Method 9, 23 & 29

APPENDIX E QA/QC DATA AND CERTIFICATIONS

APPENDIX F FIELD TESTING PARTICIPANTS

LIST OF TABLES

LUME I	Page
BLE 2.1 EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "B" - CARY, NC	. 2-3
PCDDs/PCDFs EMISSIONS SAMPLING AND EXHAUST GAS PARAMETERS RÖTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. 2-6
PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. , 2-7
PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-8
BLE 2.5 PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. 2-10
BLE 2.6 PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. 2-11

VOLUME I		Page
TABLE 2.7	PCDDs/PCDFs STACK GAS CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. 2-12
TABLE 2.8	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	. 2-14
TABLE 2.9	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	. 2-15
TABLE 2.10	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC	. 2-16
TABLE 2.11	PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	. 2-18
TABLE 2.12	PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	. 2-19

VOLUME I		Page
TABLE 2.13	PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT CONCRETE PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-20
TABLE 2.14	PARTICULATE/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-21
TABLE 2.15	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-22
TABLE 2.16	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-23
TABLE 2.17	PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-26
TABLE 2.18	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	2-27
TABLE 2.19	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC	. 2-28

VOLUME I		Page
TABLE 2.20	PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-30
TABLE 2.21	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-31
TABLE 2.22	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER-BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-32
TABLE 2.23	PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-35
TABLE 2.24	PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-36
TABLE 2.25	METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER-BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B"- CARY, NC	2-37

VOLUME	Page 1
TABLE 3.1	PLANT OPERATING CONDITIONS ASPHALT PLANT "B" - CARY, NC
TABLE 3.2	ASPHALT MIX SPECIFICATIONS ASPHALT PLANT "B" - CARY, NC
TABLE 3.3	FUEL SPECIFICATIONS ASPHALT PLANT "B" - CARY, NC
TABLE 3.4	SPECIFICS OF PLANT OPERATION ASPHALT PLANT "B" - CARY, NC
TABLE 5.1	SAMPLING LOCATIONS, TEST PARAMETERS AND TEST METHODS SUMMARY ASPHALT PLANT "B"-CARY, NC
TABLE 6.1	SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA ASPHALT PLANT "B" - CARY, NC 6-2
TABLE 6.2	SUMMARY OF PITOT TUBE DIMENSIONAL DATA ASPHALT PLANT "B" - CARY, NC
TABLE 6.3	SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA ASPHALT PLANT "B" - CARY, NC
TABLE 6.4	SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA ASPHALT PLANT "B" - CARY, NC 6-7
TABLE 6.5	SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES ASPHALT PLANT "B" - CARY, NC
TABLE 6.6	SUMMARY OF METHOD 29 ANALYSIS QC DATA LAB CONTROL SPIKES ASPHALT PLANT "B" - CARY, NC

VOLUME I	Pa	age
TABLE 6.7	SUMMARY OF METHOD 29 ANALYSIS QC DATA POST DIGESTION MATRIX SPIKES RUN NO. R-M29-O-1 ASPHALT PLANT "B" - CARY, NC	-12
TABLE 6.8	METHOD 29 SERIAL DILUTION ANALYSIS QC DATA RUN NO R-M29-O-1 ASPHALT PLANT "B" - CARY, NC	-13
TABLE 6.9	METHOD 29 DUPLICATE ANALYSIS QC DATA RUN NO. R-M29-O-2 ASPHALT PLANT "B" - CARY, NC	-14
TABLE 6.10	METHOD 29 METHOD BLANK ANALYSIS QC DATA ASPHALT PLANT "B" - CARY, NC	-15
TABLE 6.11	METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA ASPHALT PLANT "B" - CARY, NC	-16
TABLE 6.12	METHOD 29 MERCURY SPIKE ANALYSIS QC DATA ASPHALT PLANT "B" - CARY, NC	-17
TABLE 6.13	METHOD 29 MERCURY FIELD BLANK ANALYSIS QC DATA ASPHALT PLANT "B" - CARY, NC	5-18

LIST OF FIGURES

VOLUME I		Page
Figure 1.1	Key Personnel and Responsibility for Testing - Asphalt Plant "B", Cary, NC	. 1-3
Figure 1.2	Sampling Locations - Asphalt Plant "B", Cary, NC	. 1-4
Figure 4.1	Baghouse Inlet Sampling Location - Asphalt Plant "B", Cary, NC	. 4-2
Figure 4.2	Baghouse Inlet Point Locations - Asphalt Plant "B", Cary, NC	. 4-3
Figure 4.3	Baghouse Outlet Sampling Location - Asphalt Plant "B", Cary, NC	. 4-4
Figure 4.4	Baghouse Outlet Point Locations - Asphalt Plant "B", Cary, NC	. 4-5
Figure 5.1	Method 23 Sample Train Schematic - Asphalt Plant "B" Cary, NC	. 5-3
Figure 5.2	Method 29 Sample Train Schematic - Asphalt Plant "B", Cary, NC	5-5
Figure 5.3	Method 29 Sample Recovery Scheme (Sample Fractions 1-4) Asphalt Plant "B", Cary, NC	. 5-6
Figure 5.4	Method 29 Sample Recovery Scheme (Sample Fraction 5) Asphalt Plant "B", Cary, NC	5-7

1.0 INTRODUCTION

The United States Environmental Protection Agency (USEPA) is investigating the asphalt concrete production source category to identify and quantify emissions of hazardous air pollutants (HAPs) from rotary aggregate dryers used at these facilities. There are two types of rotary drum dryers in use at asphalt concrete production plants: parallel flow, wherein the direction of travel of the drying aggregate is the same as the direction of travel of the burner exhaust gases, and counter flow, wherein the aggregate and exhaust gas flows are opposite to each other. On May 7, 1997, a work assignment was issued by EPA's Office of Air Quality Planning and Standards, Emissions Measurement Center, (OAQPS, EMC) to Pacific Environmental Services, Inc. (PES), of Research Triangle Park, North Carolina. The work assignment specified that emissions testing for HAPs be conducted on one of each type of aggregate dryer. Two candidate facilities were therefore identified and selected by EPA as host facilities for the testing program.

This document describes the test procedures, results, and quality assurance procedures that were employed during the testing of a parallel flow rotary drum aggregate dryer, which was Asphalt Plant "B", Cary, North Carolina facility. The facility was identified as a candidate by EPA due to its location close to EPA facilities in Research Triangle Park, North Carolina, and because it is typical of parallel flow rotary dryers in the asphalt production source category. The results of the emissions testing program conducted at a facility employing a counter flow rotary aggregate dryer are presented in a separate report.

The scope of the work assignment was to plan and conduct an air emissions testing program to quantify emission rates of HAPs from the rotary aggregate drier located at Asphalt Plant "B". The planning and testing phase of the program was conducted under EPA Contract No. 68D20162, Work Assignment No. 4-13. Because the period of performance of the contract expired on September 30, 1997, PES was issued a second work assignment to complete the data reduction, a portion of the analysis, and the preparation of the draft report, which was completed under EPA Contract No. 68D70002, Work Assignment No. 0-005. This final report incorporates comments from EPA and the National Asphalt Pavement Association, and includes a process description and process data collected by EPA's Emission Standards Division (ESD) contractor. The final report was prepared under EPA Contract No. 68D70069, Work Assignment No. 2-09.

The primary objective of the test program was to obtain data on the controlled and uncontrolled emissions of polychlorinated dibenzo-p-dioxins (PCDDs or "dioxins") and polychlorinated dibenzofurans (PCDFs or "furans"), particulate matter (PM), and metallic HAP and non-HAP compounds from rotary drum dryers. A secondary objective of the test program was to observe and record plume opacity. The data will be used by ESD to determine whether HAPs are emitted at levels that would justify regulation under the Maximum Achievable Control Technology (MACT) program.

The test program at Asphalt Plant "B" was completed during the week of August 25, 1997. The basic test methods that were employed were EPA Test Methods 1 (sample point location), 2 (gas velocity and flow), 3B (gas molecular weight and emission correction factors), 4 (gas moisture content), 5 (particulate matter concentration), 9 (plume opacity), 23 (PCDDs/PCDFs concentrations) and 29 (metals concentrations). Particulate matter concentrations were determined by using tared filters in the Method 29 sampling train. PES conducted three sampling runs; the results of the test runs are presented in Section 2.0 of this document. Although the work assignment called for three sampling runs to be conducted during the production of asphalt concrete with reclaimed asphalt pavement or RAP, only two sampling runs with RAP were conducted, at the direction of the EPA Work Assignment Manager. Three test runs with RAP addition were desired, but not possible since the facility did not operate on either the 25th or 26th of August due to lack of product demand. The third test run was conducted while the facility was making asphalt without the addition of RAP to the mix.

PES used three subcontractors to assist in the completion of this testing effort. Deeco, Inc. (DEECO) of Raleigh, North Carolina; Triangle Laboratories, Inc. (TLI) of Durham, North Carolina, and Atlantic Technical Services, Inc. (ATS), of Chapel Hill, North Carolina. DEECO provided source testing support at the inlet sampling location, visual emissions observations of controlled emissions, and sample recovery support. TLI provided analytical services for the quantification of PCDDs/PCDFs, and metals in the collected samples, and ATS provided on-site sampling support as well as support during preparation of the site test plan, draft report and calculation of the emissions testing results.

The test program organization and major lines of communication are presented in Figure 1.1. The PES Project Manager communicated directly with the EPA Work Assignment Manager and coordinated all of the on-site testing activities. The sampling locations at Asphalt Plant "B" are shown in Figure 1.2.

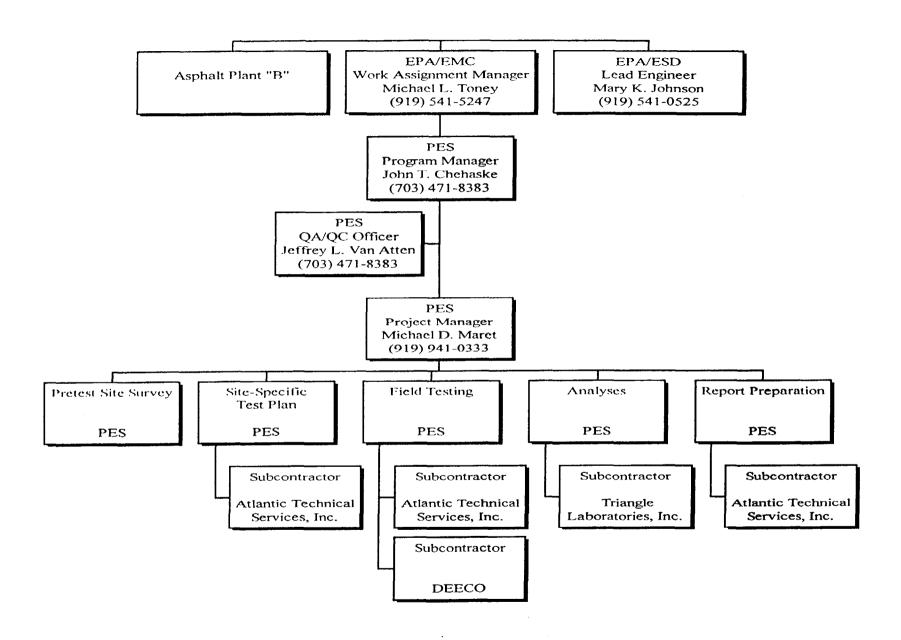


Figure 1.1 Key Personnel and Responsibility for Testing - Asphalt Plant "B", Cary, NC

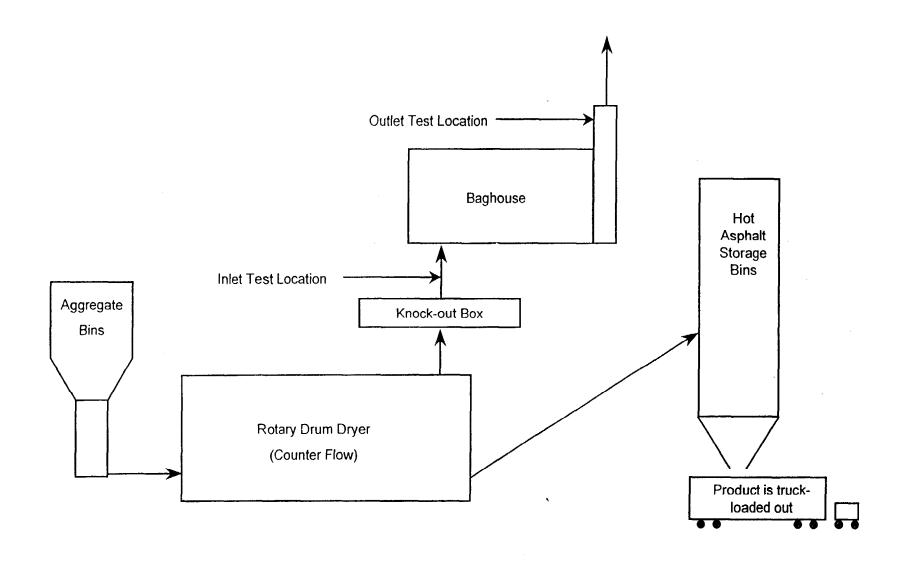


Figure 1.2 Sampling Locations - Asphalt Plant "B", Cary, NC

2.0 SUMMARY OF RESULTS

This section summarizes the results of testing program at Asphalt Plant "B". The following pages present the times and durations of each of the sampling runs that were conducted, the sampling parameters during each run, the effluent gas parameters, and the concentrations and mass emission rates of the target HAPs. Sampling of emissions was conducted on three consecutive days from August 27, 1997 through August 29, 1997, during which time three sampling runs for both PCDDs/PCDFs metals were conducted at each test location. Table 2.1 presents the "Emissions Test Log" which summarizes clock times, target pollutants and down times due to filter and port changes for each of the Method 23 and Method 29 sampling runs attempted. The results of the PCDDs/PCDFs sampling during asphalt production with RAP are presented in Tables 2.2 through 2.7, and the results of the PCDDs/PCDFs sampling conducted during production with virgin aggregate (i.e., without RAP) are presented in Tables 2.8 through 2.13. The results of the particulate matter and metals sampling runs conducted during RAP addition are presented in Tables 2.14 through 2.19, and the results of the PM and metals runs conducted during asphalt production with virgin aggregate are presented in Tables 2.20 through 2.25.

2.1 OXYGEN AND CARBON DIOXIDE MEASUREMENTS

Concurrent with the Method 23 and Method 29 sampling at the baghouse outlet, integrated bag samples of the effluent gas were collected and analyzed using an Orsat® apparatus to determine oxygen and carbon dioxide concentrations for the purpose of calculating stack gas molecular weight. The oxygen and carbon dioxide concentrations presented for the first sampling run are the average of the oxygen and carbon dioxide concentrations measured during runs two and three. The diluent concentrations are presented in this manner since the results of the analyses from the first run were misplaced during the field testing portion of the test program, and were not recovered. The diluent concentrations measured during the second and third runs should be representative of the concentrations during the first run, since the operating conditions were essentially unchanged.

2.2 PCDDs/PCDFs MEASUREMENTS

PCDDs/PCDFs results are presented as 1) actual concentrations and mass emission rates, 2) concentrations adjusted to 7 percent (%) oxygen (O_2) , and 3) concentrations adjusted to 7% O_2 and 2378 TCDD toxic equivalent basis. Adjustment of the congeners to a 2378 TCDD toxic equivalent basis was accomplished using the Toxic Equivalency Factor (TEF) values developed

by the North Atlantic Treaty Organization, Committee on the Challenges of Modern Society, August 1988.

The Method 23 sample fractions consisted of a sample train front-half solvent rinse, a particulate filter, a back-half solvent rinse, and an XAD[©]-2 sorbent resin module. During analysis, each of the sample fractions was extracted, concentrated, combined, and analyzed using a Gas Chromatograph with a Mass Spectrometer detector (GC/MS), according the procedures outlined in Method 23. During analysis, the combined sample extract was separated with a DB-5 capillary column. Where the results of that analysis indicated the presence of 2378 TCDF congeners, the analysis was repeated using a DB-225 capillary column so that the TCDF congeners could be more readily separated and quantified.

The results of the analyses indicated the presence of congeners that were qualified as Estimated Maximum Possible Concentrations, or EMPCs. From time to time during the Method 23 analyses, a peak elutes at the position expected for a particular congener, but the peak fails validation based on the theoretical split of chlorine isotopes. That is to say that the number of Cl³⁵ isotopes and the number of Cl³⁷ isotopes attached to the PCDDs/PCDFs congeners should agree with the Cl³⁵/Cl³⁷ ratio found in nature. For each congener, this ratio must agree within 15%. If the mass ratio of chlorine isotopes does not agree with the natural chlorine isotope ratio, then the peak is flagged as an EMPC.

In the calculation of average and total PCDDs/PCDFs congeners, analytical results below the method detection limit have been assigned a value of zero, and are included in the calculation of sums and averages. Congeners with that have been calculated as EMPC values are designated using braces, {}, and the EMPC values are used to calculate sums and averages. If a sum or average value is reported inside braces, then one (or more) EMPC values were used to calculate this value.

The values presented as "Total PCDDs" are the sum of the "12346789 OCDD" polychlorinated dibenzo-p-dioxin and all of the dioxins labeled "Total"; "Total PCDFs" values are the sum of the "12346789 OCDF" polychlorinated dibenzofuran and all of the furans labeled "Total". "Total PCDDs + Total PCDFs" values are the sum of the "Total PCDDs" and "Total PCDFs" values. Values that have been qualified as being EMPC have been included in the sums. Concentrations and emission rates based on or including EMPC values are denoted by braces ({ }).

TABLE 2.1

EMISSIONS SAMPLING TEST LOG
ASPHALT PLANT "B" - CARY, NC

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
Baghouse Inle	t				
R-M23-I-1*	8/27/97	PCDDs/PCDFs	0940-1227	0948-1014 1025-1030 1040-1049 1100-1107 1120-1131 1140-1146 1200-1206	Filter Change Filter Change Filter Change Filter Change Filter Change Plant Down Filter Change
R-M29-I-1*	8/27/97	PM & Metals	1000-1200	1014-1015 1031-1041 1101-1107 1150-1156	Plant Down Filter Change Filter Change Filter Change
R-M23-I-2*	8/28/97	PCDDs/PCDFs	0908-1428	1108-1328 1355-1405	Filter Change & Port Change Plant Down
R-M29-I-2*	8/28/97	PM & Metals	1019-1427	1129 1355-1407	Filter Change Plant Down Plant Down
R-M23-I-3	8/29/97	PCDDs/PCDFs	0818-1413	1018-1105 1138-1139 1153-1205	Filter Change & Port Change Power loss Plant Down & Filter Change
R-M29-I-3	8/29/97	PM & Metals	0819-1403	1105	Filter & Port Change Stop for M23
Baghouse Ou	ıtlet		1		
R-M23-O-1	8/27/97	PCDDs/PCDFs	0940-1516	0950-1019 1029-1032 1052-1112 1140-1146 1158-1202 1242-1246 1326-1335 1402-1412 1427-1436	Stop for inlet ^b Stop for inlet ^b Port Change Plant Down Port Change Port Change Port Change Port Change Plant Down Port Change

TABLE 2.1 (CONCLUDED)

EMISSIONS SAMPLING TEST LOG ASPHALT PLANT "B"- CARY, NC

Run ID	Date	Target Pollutant	Run Time (24-hr clock)	Down Period(s)	Comment
R-M29-O-1	8/27/97	PM & Metals	0940-1516	0950-1019 1029-1032 1052-1112 1140-1146 1158-1202 1242-1246 1326-1335 1402-1412 1427-1436	Stop for inlet ^b Stop for inlet ^b Port Change Plant Down Port Change Port Change Port Change Port Change Plant Down Port Change
R-M23-O-2	8/28/97	PCDDs/PCDFs	0746-1229	0826-0830 0901-0909 0919-0921 1001-1004 1044-1049 1110-1128 1147-1149	Port Change Plant Down Port Change Port Change Port Change Plant Down Port Change
R-M29-O-2	8/28/97	PM & Metals	0746-1229	0826-0830 0901-0909 0919-0921 1001-1004 1044-1049 1110-1128 1147-1149	Port Change Plant Down Port Change Port Change Port Change Plant Down Port Change
R-M23-O-3	8/29/97	PCDDs/PCDFs	0809-1236	0849-0852 0932-0935 1015-1018 1058-1102 1142-1145 1211-1222	Port Change Port Change Port Change Port Change Port Change Port Change Plant Down

^{*} Test runs were shortened due to high grain loading at the baghouse inlet.

b Sampling was delayed at the outlet so that sampling could be conducted nearly simultaneously with the inlet sampling.

2.2.1 Baghouse Inlet-Asphalt Production with RAP

In order to collect samples at the inlet location the filter holder in the Method 23 sampling train was modified during the test program. These modifications were necessary due to the extremely high grain loading at the baghouse inlet location, which caused the filters in the Method 23 sampling train to plug. The high grain loading resulted in sampling at non-isokinetic conditions during Run R-M23-I-1 since the sampling rate could not be maintained. After the first sampling run, the filter holder was modified by replacing the 3-inch diameter filter with a 4-inch diameter filter. In addition, precleaned Teflon[®] wool was placed into the front-half section of the filter holder to serve as a pre-filter. Even with the filter modifications, stack particulate loading conditions mandated frequent filter changes during the sample runs.

PES conducted two Method 23 sampling runs at the baghouse inlet during asphalt production using RAP. Table 2.2 summarizes the PCDDs/PCDFs emissions sampling and stack gas parameters at the baghouse inlet. The total sampling times for each run were 96 and 170 minutes for run R-M23-I-1 and R-M23-I-2, respectively, instead of the desired 240 minute run time. The test runs were curtailed prematurely due to particulate loading in the gas stream which exceeded the capacity of the Method 23 sampling train. The (2-run) average sample volume was 53.642 dry standard cubic feet (dscf) which is equivalent to 1.519 dry standard cubic meters (dscm). The (2-run) average inlet gas temperature was 307°F and contained 5.2 % CO₂, 13.4% O₂, and 28.8% moisture. The inlet gas volumetric flow rate was 47,515 actual cubic feet per minute (acfm) which is equivalent to 23,004 dry standard cubic feet per minute (dscfm) or 651.4 dry standard cubic meters per minute (dscmm).

Table 2.3 presents the PCDDs/PCDFs stack gas concentrations and emission rates at the baghouse inlet. The (2-run) average concentration of total PCDDs was $\{5.99\}$ nanograms per dry standard cubic meter (ng/dscm), and the (2-run) average concentration of total PCDFs was $\{0.467\}$ ng/dscm. The total PCDDs/PCDFs concentration was $\{6.46\}$ ng/dscm. The (2-run) average emission rate of total PCDDs was $\{234\}$ micrograms per hour (μ g/hr), and the (2-run) average emission rate of total PCDFs was $\{18.3\}$ μ g/hr. The (2-run) average emission rate of total PCDFs was $\{252\}$ μ g/hr.

Table 2.4 presents the PCDDs/PCDFs concentrations adjusted to 7% O_2 . The measured stack gas O_2 concentration was 13.4%. Therefore, the adjusted PCDDs/PCDFs concentrations were greater than the actual concentrations. The (2-run) average adjusted concentration of total PCDDs was 11.2 ng/dscm @ 7% O_2 . The (2-run) average adjusted concentration of total PCDFs was $\{0.868\}$ ng/dscm @ 7% O_2 . The (2-run) average adjusted concentration of total PCDDs/PCDFs was $\{12.1\}$ ng/dscm @ 7% O_2 . Table 2.4 also presents the adjusted concentrations in 2378 TCDD toxic equivalents. The TEF concentration for total PCDDs was 0.011 ng/dscm @ 7% O_2 . Since no PCDF congeners chlorinated at the 2378 positions were detected, the total TEF PCDDs/PCDFs concentration was also 0.011 ng/dscm @ 7% O_2 .

TABLE 2.2 PCDDs/PCDFs EMISSIONS SAMPLING AND EXHAUST GAS PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B"- CARY, NC

Run Number	R-M23-I-1	R-M23-I-2	Average
Date	8/27/97	8/28/97	
Sampling Duration, minutes	96	170	133
Average Sampling Rate, dscfm ^a	0.59	0.30	0.45
Sample Volume:			
dscf ^b	56.399	50.885	53.642
dscm ^c	1.597	1.441	1.519
Average Exhaust Gas Temperature, °F	308	306	307
O ₂ Concentration, % by volume	13.8	13.1	13.4
CO ₂ Concentration, % by volume	5.2	5.2	5.2
Moisture, % by volume	29.9	27.7	28.8
Exhaust Gas Volumetric Flow Rate:			
acfm ^d	48,074	46,957	47,515
dscfm ^a	22,981	23,027	23,004
dscmm ^e	650.7	652.1	651.4
Isokinetic Sampling Ratio, %	115	102.6	108.8

^a Dry standard cubic feet at 68°F and 1 atm. ^b Dry standard cubic feet at 68°F and 1 atm.

^c Dry standard cubic meters at 20°C and 1 atm.
^d Actual cubic feet per minute at inlet gas conditions.

Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.3

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Congener		Concentration scm, as meas	i	Emission Rate ^b μg/hr		
	R-M23-I-1	R-M23-I-2	Average	R-M23-I-1	R-M23-I-2	Average
Dioxins	•			:		
2378 TCDD	ND	ND	0.00	ND	ND	0.00
Total TCDD	ND	ND	0.00	ND	ND	0.00
12378 PeCDD	ND	ND	0.00	ND	ND	0.00
Total PeCDD	ND	ND	0.00	ND	ND	0.00
123478 HxCDD	ND	ND	0.00	ND	ND	0.00
123678 HxCDD	ND	ND	0.00	ND	ND	0.00
123789 HxCDD	ND	ND	0.00	ND	ND	0.00
Total HxCDD	ND	ND	0.00	ND	ND	0.00
1234678 HpCDD	ND	ND	0.00	ND	ND	0.00
Total HpCDD	{0.219}	ND	{0.110}	{8.56}	ND	{4.28}
Octa CDD	6.07	5.69	5.88	237	223	230
Total PCDDs	{6.29}	5.69	{5.99}	{246}	223	{234}
Furans		ļ				•
2378 TCDF	ND	ND	0.00	ND	ND	0.00
Total TCDF	{0.113}	0.118	{0.115}	{4.40}	4.62	{4.51}
12378 PeCDF	ND	ND	0.00	ND	ND	0.00
23478 PeCDF	ND	ND	0.00	ND	ND	0.00
Total PeCDF	0.294	0.229	0.262	11.5	8.96	10.2
123478 HxCDF	ND	ND	0.00	ND	ND	0.00
123678 HxCDF	ND	ND	0.00	ND	ND	0 .00
234678 HxCDF	ND	ND	0.00	ND	ND	0.00
123789 HxCDF	ND	ND	0.00	ND	ND	0.00
Total HxCDF	ND	ND	0.00	ND	ND	0.00
1234678 HpCDF	ND	ND	0.00	ND	ND	0 .00
1234789 HpCDF	ND	ND	0.00	ND	ND	0 .00
Total HpCDF	ND	{0.180}	{0.0902}	ND	{7.06}	{3.53}
Octa CDF	ND	ND	0.00	ND	ND	0.00
Total PCDFs	{0.407}	{0.527}	{0.467}	{15.9}	{20.6}	{18.3}
Total PCDDs + PCDFs	{6.70}	{6.22}	{6.46}	{262}	{243}	{252}

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.4

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Congonou	_	Concentration n, adjusted to		2378- TCDD ^b	1	2378 Toxic Equivalents ng/dscm, adjusted to 7% O ₂		
Congener	R-M23-I-1	R-M23-I-2	Average	Toxic Equiv. Factor	R-M23-I-1	R-M23-I-2	Average	
Dioxins								
2378 TCDD	ND	ND	0.00	1.000	ND	ND	0.00	
Total TCDD	ND	ND	0.00					
12378 PeCDD	ND	ND	0.00	0.500	ND	ND	0.00	
Total PeCDD	ND	ND	0.00					
123478 HxCDD	ND	ND	0.00	0.100	ND	ND	0.00	
123678 HxCDD	ND	ND	0.00	0.100	ND	ND	0.00	
123789 HxCDD	ND	ND	0.00	0.100	ND	ND	0.00	
Total HxCDD	ND	ND	0.00					
1234678 HpCDD	ND	ND	0.00	0.010	ND	ND	0.00	
Total HpCDD	{0.429}	ND	{0.215}					
Octa PCDDs	11.9	10.1	11.0	0.001	0.0119	0.0101	0.011	
Total PCDDs	{12.3}	10.1	{11.2}		0.0119	0.0101	0.011	
Furans								
2378 TCDF	ND	ND	0.00	0.100	ND	ND	0.00	
Total TCDF	{0.221}	0.210	{0.215}					
12378 PeCDF	ND	ND	0.00	0.050	ND	ND	0.00	
23478 PeCDF	ND	ND	0.00	0.500	ND	ND	0.00	
Total PeCDF	0.576	0.408	0.492		1			
123478 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00	
123678 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00	
234678 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00	
123789 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00	
Total HxCDF	ND	ND	0.00					
1234678 H _P CDF	ND	ND	0.00	0.010	ND	ND	0.00	
1234789 HpCDF	ND	ND	0.00	0.010	ND	ND	0.00	
Total HpCDF	ND	{0.322}	{0.161}					
Octa CDF	ND	ND	0.00	0.001	ND	ND	0.00	
Total PCDFs	{0.797}	{0.940}	{0.868}		0.00	0.00	0.00	
Total PCDDs + PCDFs	{13.1}	{11.1}	{12.1}		0.0119	0.0101	0.011	

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

b North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

2.2.2 Baghouse Outlet-Asphalt Production with RAP

PES conducted two Method 23 sampling runs at the baghouse outlet during asphalt production using RAP. Table 2.5 summarizes the PCDDs/PCDFs emissions sampling and stack gas parameters. The total sampling time for each run was 240 minutes. The (2-run) average sample volume was 199.815 dscf or 5.658 dscm. The (2-run) average stack gas temperature was 285°F and contained 4.45 % CO₂, 14.3% O₂, and 30.3% moisture. The average stack gas volumetric flow rate was 49,689 acfm or 24,286 dscfm or 687.7 dscmm.

The isokinetic sampling ratio calculated for sampling run R-M23-O-1 was 115.5%. It is the position of PES that this is an anomalous calculation of the isokinetic sampling ratio, and is most likely due to an in-leakage of the impinger water bath into the water knock-out impinger during the final leak check. Comparison of the Method 23 sampling data with the Method 29 sampling data on the outlet shows that the sampling times were identical and the sample volumes were within 3% of each other (206.781 ft³ for R-M23-O-1 vs. 213.024 ft³ for R-M29-O-1). The condensate collected in the Method 23 train was 451 grams more than that collected in the Method 29 train, however. When the quantity of condensate collected in the Method 29 train is substituted into the Method 23 isokinetic calculation, the isokinetic sampling ratio is 108.6%. No adjustments were made to the calculations for R-M23-O-1.

Table 2.6 presents the PCDDs/PCDFs stack gas concentrations and emission rates. The (2-run) average concentration of total PCDDs was $\{0.269\}$ ng/dscm. The (2-run) average concentration of total PCDFs was $\{0.125\}$ ng/dscm. The (2-run) average concentration of total PCDDs/PCDFs was $\{0.394\}$ ng/dscm. These values corresponded to (2-run) average emission rates of $\{11.3\}$ µg/hr for PCDDs, $\{5.32\}$ µg/hr for PCDFs and $\{16.7\}$ µg/hr, total PCDDs/PCDFs for the two sampling runs. Table 2.7 presents the PCDDs/PCDFs concentrations adjusted to 7% O₂. The measured stack gas O₂ concentration was 14.3%. Therefore, the adjusted PCDDs/PCDFs concentrations were greater than the actual concentrations. The (2-run) average adjusted concentration of total PCDDs was $\{0.532\}$ ng/dscm @ 7% O₂, and the (2-run) average concentration of total PCDFs was $\{0.245\}$ ng/dscm @ 7% O₂. The (2-run) average adjusted concentration of total PCDDs/PCDFs was $\{0.777\}$ ng/dscm @ 7% O₂.

Table 2.7 also presents the adjusted concentrations in 2378 TCDD toxic equivalents. No 2378 PCDD congeners were detected, therefore the concentration of PCDDs adjusted to 2378 toxic equivalents was zero. The (2-run) average concentration of PCDFs adjusted to 2378 toxic equivalents was $\{0.00628\}$ @ 7% O_2 , as was the (2-run) average TEF concentration for total PCDDs/PCDFs.

TABLE 2.5 PCDDs/PCDFs EMISSIONS SAMPLING AND STACK GAS PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE OUTLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M23-O-1	R-M23-O-2	Average
Date	8/27/97	8/28/97	
Sampling Duration, minutes	240	240	240
Average Sampling Rate, dscfm ^a	0.86	0.80	0.83
Sample Volume:			
dscf ^b	206.781	192.849	199.815
dscm ^c	5.855	5.461	5.658
Stack Gas Temperature, °F	283	287	285
O ₂ Concentration, % by volume	15.0	13.6	14.3
CO ₂ Concentration, % by volume	4.0	4.9	4.45
Moisture, % by volume	32.2	28.3	30.3
Exhaust Gas Volumetric Flow Rate:			
acfm ^d	49,075	50,303	49,689
dscfm ^a	23,450	25,122	24,286
dscmm ^e	664.0	711.4	687.7
Isokinetic Sampling Ratio, %	115.5	100.5	108.0

^a Dry standard cubic feet per minute at 68°F and 1 atm ^b Dry standard cubic feet at 68°F and 1 atm

[°] Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^{*} Dry standard cubic meters per minute at 20°C and 1 atm

TABLE 2.6

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.7

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Congonor		Concentration* adjusted to 7 pe	ercent O ₂	2378- TCDDb ng/dscm, adjusted to 7 percent			
Congener	R-M23-O-1	R-M23-O-2	Average	Equiv. Factor	R-M23-O-1	R-M23-O-2	Average
Dioxins							
2378 TCDD	ND	ND	0.00	1.000	ND	ND	0.00
Total TCDD	ND	ND	0.00		- \ _	.,_	0.00
12378 PeCDD	ND	ND	0.00	0.500	ND	ND	0.00
Total PeCDD	{0.213}	{0.349}	{0.281}				
123478 HxCDD	`ND´	ND	0.00	0.100	ND	ND	0.00
123678 HxCDD	ND	ND	0.00	0.100	ND	ND	0.00
123789 HxCDD	ND	ND	0.00	0.100	ND	ND	0.00
Total HxCDD	ND	0.153	0.0767				
1234678 HpCDD	ND	ND	0.00	0.010	ND	ND	0.00
Total HpCDD	ND	{0.349}	{0.174}			4	
Octa CDD	ND	ND	0.00	0.001	ND	ND	0.00
Total PCDDs	{0.213}	{0.851}	{0.532}		0.00	0.00	0.00
<u>Furans</u>							
2378 TCDF	ND	ND	0.00	0.100	ND	ND	0.00
Total TCDF	0.0604	ND	0.0302				
12378 PeCDF	ND	{0.0837}	{0.0418}	0.050	ND	{0.00418}	{0.00209}
23478 PeCDF	ND	ND	0.00	0.500	ND	` ND ´	0.00
Total PeCDF	ND	{0.143}	{0.0715}	}			
123478 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00
123678 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00
234678 HxCDF	ND	ND	0.00	0.100	ND	ND	0.00
123789 HxCDF	ND	{0.0837}	{0.0418}	0.100	ND	{0.00837}	{0.00418}
Total HxCDF	ND	{0.160}	{0.0802}			,	_ ` _ _
1234678 HpCDF	ND	ND	0.00	0.010	ND	ND	0.00
1234789 HpCDF	ND	ND	0.00	0.010	ND	ND	0.00
Total HpCDF	ND	{0.126}	{0.0628}			1]
Octa CDF	ND	ND	0.00	0.001	ND	ND	0.00
Total PCDFs	0.0604	{0.429}	{0.245}		0.00	{0.0126}	{0.00628}
Total PCDDs +	{0.274}	{1.28}	{0.777}		0.00	{0.0126}	{0.00628}

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

Estimated Maximum Possible Concentration. EMPC values are counted in totals or averages.

2.2.3 Baghouse Inlet - Asphalt Production without RAP

At the request of the EMC Work Assignment Manager, PES conducted one Method 23 sampling run at the baghouse inlet during asphalt production without the addition of RAP. Table 2.8 summarizes the PCDDs/PCDFs emissions sampling. The total sampling time for the test run was 240 minutes. The sample volume was 80.735 dscf or 2.286 dscm. The stack gas temperature was 290°F and contained 4.0 % CO₂, 15.2% O₂, and 18.6% moisture. The stack gas volumetric flow rate was 48,211 acfm or 27,178 dscfm or 769.6 dscmm.

Table 2.9 presents the PCDDs/PCDFs stack gas concentrations and emission rates. The concentration of total PCDDs was 7.24 ng/dscm, and the concentration of total PCDFs was {0.0394} ng/dcsm. The concentration of total PCDDs/PCDFs was {7.28} ng/dscm. These values corresponded to emission rates of 334 μg/hr for total PCDDs, {1.82} μg/hr for total PCDFs, and {336} μg/hr for total PCDDs/PCDFs. Table 2.10 presents the PCDDs/PCDFs concentrations adjusted to 7% O₂. The measured stack gas O₂ concentration was 15.2%. Therefore, the adjusted PCDDs/PCDFs concentrations were greater than the actual concentrations. The adjusted concentration of total PCDDs was 17.7 ng/dscm @ 7% O₂, and the adjusted concentration of total PCDFs was {0.0960} ng/dscm @ 7% O₂. The adjusted concentration of total PCDDs/PCDFs was {17.8} ng/dscm @ 7% O₂.

Table 2.10 also presents the adjusted concentrations in 2378 TCDD toxic equivalents. The concentration of total PCDDs adjusted to 2378 toxic equivalents was 0.0188 ng/dscm @ 7% O_2 . The concentration of PCDFs adjusted to 2378 toxic equivalents was $\{0.00320\}$ @ 7% O_2 , and TEF concentration for total PCDDs/PCDFs was $\{0.0220\}$ ng/dscm @ 7% O_2 .

TABLE 2.8

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M23-I-3
Date	8/29/97
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.34
Sample Volume:	
dscf ^b	80.735
dscm ^c	2.286
Exhaust Gas Temperature, °F	290
O ₂ Concentration, % by volume	15.2
CO ₂ Concentration, % by volume	4.0
Moisture, % by volume	18.6
Exhaust Gas Volumetric Flow Rate:	
acfm ^d	48,211
dscfm ^a	27,178
dscmm ^e	769.6
Isokinetic Sampling Ratio, %	97.7

^a Dry standard cubic feet per minute at 68°F and 1 atm ^b Dry standard cubic feet at 68°F and 1 atm

^c Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

^e Dry standard cubic meters per minute at 20°C and 1 atm

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES
ROTARY DRUM DRYER - BAGHOUSE INLET
ASPHALT PRODUCTION WITHOUT RAP
ASPHALT PLANT "B" - CARY, NC

Congener	Concentration* ng/dscm, as measured	Emission Rate ^b µg/hr	
	R-M23-I-3	R-M23-I-3	
Dioxins			
2378 TCDD	ND	ND	
Total TCDD	ND	ND .	
12378 PeCDD	ND	ND	
Total PeCDD	ND	ND	
123478 HxCDD	ND	ND	
123678 HxCDD	ND	ND	
123789 HxCDD	ND	ND	
Total HxCDD	0.00875	0.404	
1234678 HpCDD	0.0612	2.83	
Total HpCDD	0.149	6.87	
Octa PCDDs	7.09	327	
Total PCDDs	7.24	334	
<u>Furans</u>		·	
2378 TCDF	ND	ND	
Total TCDF	0.00437	0.202	
12378 PeCDF	ND	ND	
23478 PeCDF	ND	ND	
Total PeCDF	{0.00437}	{0.202}	
123478 HxCDF	0.00875	0.404	
123678 HxCDF	ND	ND	
234678 HxCDF	{0.00262}	{0.121}	
123789 HxCDF	ND	`ND ´	
Total HxCDF	0.0131	0.606	
1234678 HpCDF	0.0175	0.808	
1234789 HpCDF	ND	ND	
Total HpCDF	0.0175	0.808	
Octa CDF	ND	ND	
Total PCDFs	{0.0394}	{1.82}	
Total PCDDs + PCDFs	{7.28}	{336}	

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are not counted in totals or averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals and averages.

TABLE 2.10

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT STACK GAS CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Congener	Concentration ^a ng/dscm, adjusted to 7% O ₂	2378-TCDD ^b Toxic Equiv.	2378 Toxic Equivalents ng/dscm, adjusted to 7% O ₂
	R-M23-I-3	Factor	R-M23-I-3
Dioxins			
2378 TCDD	ND	1.000	ND
Total TCDD	ND		
12378 PeCDD	ND	0.500	ND
Total PeCDD	ND		
123478 HxCDD	ND	0.100	ND
123678 HxCDD	ND	0.100	ND
123789 HxCDD	ND	0.100	ND
Total HxCDD	0.0213		
1234678 HpCDD	0.149	0.010	0.001
Total HpCDD	0.363		
Octa CDD	17.3	0.001	0.0173
Total PCDDs	17.7		0.0188
Furans			
2378 TCDF	ND	0.100	ND
Total TCDF	0.0107		
12378 PeCDF	ND	0.050	ND
23478 PeCDF	ND	0.500	ND
Total PeCDF	{0.0107}		
123478 HxCDF	0.021	0.100	0.00213
123678 HxCDF	ND	0.100	ND
234678 HxCDF	{0.00640}	0.100	{0.000640}
123789 HxCDF	ND	0.100	ND
Total HxCDF	0.0320	}	
1234678 HpCDF	0.0427	0.010	0.000427
1234789 HpCDF	ND	0.010	ND
Total HpCDF	0.0427		
Octa CDF	ND	0.001	ND
Total PCDFs	{0.0960}		{0.00320}
Total PCDDs + PCDFs	{17.8}		{0.0220}

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals or averages.

2.2.4 Baghouse Outlet - Asphalt Production without RAP

PES conducted one Method 23 sampling run at the baghouse outlet during asphalt production without the addition of RAP. Table 2.11 summarizes the PCDDs/PCDFs emissions sampling. The total sampling time for the test run was 240 minutes. The sample volume was 209.298 dscf or 5.927 dscm. The stack gas temperature was 268°F and contained 3.0 % CO₂, 16.3% O₂, and 19.6% moisture. The stack gas volumetric flow rate was 49,832 acfm or 28,612 dscfm or 810.2 dscmm.

Table 2.12 and 2.13 presents the PCDDs/PCDFs stack gas concentrations and emission rates. No PCDDs congeners were detected. The concentration of total PCDFs was $\{0.00337\}$ ng/dscm. The emission rate of total PCDFs was $\{0.164\}$ µg/hr. Table 2.13 presents the PCDDs/PCDFs concentrations adjusted to 7% O₂. The measured stack gas O₂ concentration was 16.3%. Therefore, the adjusted PCDFs concentrations were greater than the actual concentrations. The adjusted concentration of total PCDFs was $\{0.0102\}$ ng/dscm @ 7% O₂.

Table 2.13 also presents the adjusted concentrations in 2378 toxic equivalents. The TEF concentration for total PCDDs/PCDFs was 0.00 ng/dscm @ 7% O₂.

2.3 PARTICULATE MATTER AND METALS MEASUREMENTS

2.3.1 Baghouse Inlet-Asphalt Production with RAP

PES conducted two Method 29 sampling runs at the baghouse inlet during asphalt production using RAP. Table 2.14 summarizes the particulate matter/metals emissions sampling and exhaust gas parameters. The total sampling time was 87 minutes for sampling run R-M29-I-1, and 200 minutes for sampling run R-M29-I-2; sampling durations were shortened due to the high inlet grain loading conditions explained previously. The (2-run) average sample volume was 55.333 dscf or 1.567 dscm. The (2-run) average exhaust gas temperature was 306 °F, and contained 4.9% CO₂, 13.6% O₂, and 27.9% moisture. The (2-run) average exhaust gas volumetric flow rate was 48,440 acfm or 23,776 dscfm or 673 dscm.

Table 2.15 summarizes the exhaust gas particulate matter concentrations and emission rates at the baghouse inlet. The (2-run) average concentration was 55.3 grains per dry standard cubic foot (gr/dscf) or 126.4 grams per dry standard cubic meter (g/dscm). The concentrations are also shown adjusted to $7\% O_2$. The (2-run) average mass emission rate was 11,271 pounds per hour (lb/hr) or 5,113 kilograms per hour (kg/hr).

Table 2.16 summarizes the exhaust gas metals concentrations and emission rates. Most of the target metals were found to be present in both samples. The (2-run) average concentrations ranged from 2,629 micrograms per dry standard cubic meter (μ g/dscm) for phosphorus to 0.115 μ g/dscm for selenium.

TABLE 2.11

PCDDs/PCDFs EMISSIONS SAMPLING AND STACK PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M23-O-3
Date	8/29/97
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.87
Sample Volume:	
dscf b	209.298
dscm ^c	5.927
Exhaust Gas Temperature, °F	268
O ₂ Concentration, % by volume	16.3
CO ₂ Concentration, % by volume	3.0
Moisture, % by volume	19.6
Exhaust Gas Volumetric Flow Rate:	
acfm ^d	49,832
dscfm ^a	28,612
dscmm ^e	810.2
Isokinetic Sampling Ratio, %	99.6

^{*} Dry standard cubic feet per minute at 68°F and 1 atm

b Dry standard cubic feet at 68°F and 1 atm

[°] Dry standard cubic meters at 20°C and 1 atm

^d Actual cubic feet per minute at stack conditions

Dry standard cubic meters per minute at 20°C and 1 atm

TABLE 2.12

PCDDs/PCDFs CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

	Concentration* ng/dscm, as measured	Emission Rate ^b μg/hr
Congener	R-M23-O-3	R-M23-O-3
Dioxins		
2378 TCDD	ND	ND
Total TCDD	ND	ND
12378 PeCDD	ND	ND
Total PeCDD	ND	ND
123478 HxCDD	ND	ND
123678 HxCDD	ND	ND
123789 HxCDD	ND	ND
Total HxCDD	ND	ND
1234678 HpCDD	ND	ND
Total HpCDD	ND	ND
Octa CDD	ND	ND
Total PCDDs	0.00	0.00
Furans		
2378 TCDF	ND	ND
Total TCDF	ND	ND
12378 PeCDF	ND	ND
23478 PeCDF	ND	ND
Total PeCDF	{0.00337}	{0.164}
123478 HxCDF	ND ´	ND
123678 HxCDF	ND	ND
234678 HxCDF	ND	ND
123789 HxCDF	ND	ND
Total HxCDF	ND	ND
1234678 HpCDF	ND	ND
1234789 HpCDF	ND	ND
Total HpCDF	ND	ND
Octa CDF	ND	ND
Total PCDFs	{0.00337}	{0.164}
Total PCDDs + PCDFs	{0.00337}	{0.164}

Nanogram per dry standard cubic meter at 20°C and 1 atm.

b Micrograms per hour.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^{ } Estimated Maximum Possible Concentration. EMPC values are counted in totals or averages.

TABLE 2.13

PCDDs/PCDFs CONCENTRATIONS AND 2378 TOXIC EQUIVALENT CONCENTRATIONS ADJUSTED TO 7 PERCENT OXYGEN ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Congener	Concentration* ng/dscm, adjusted to 7% O ₂	2378-TCDD ^b Toxic Equiv.	2378 Toxic Equivalents ng/dscm, adjusted to 7% O ₂
	R-M23-O-3	Factor	R-M23-O-3
Dioxins			
2378 TCDD	ND	1.000	ND
Total TCDD	ND		
12378 PeCDD	ND	0.500	ND
Total PeCDD	ND	,	
123478 HxCDD	ND	0.100	ND
123678 HxCDD	ND	0.100	ND
123789 HxCDD	ND	0.100	ND
Total HxCDD	ND		
1234678 HpCDD	ND	0.010	ND
Total HpCDD	ND		
Octa CDD	ND	0.001	ND
Total PCDDs	0.00		0.00
,			
Furans	NID	0.100	ND
2378 TCDF	ND ND	0.100	ND ND
Total TCDF		0.050	ND
12378 PeCDF 23478 PeCDF	ND ND	0.030	ND ND
13	{0.0102}	0.500	140
Total PeCDF	(0.0102) ND	0.100	ND
123478 HxCDF 123678 HxCDF	ND ND	0.100	ND
234678 HxCDF	ND ND	0.100	ND
123789 HxCDF	ND ND	0.100	ND
Total HxCDF	ND ND	0.100	
1234678 HpCDF	ND ND	0.010	ND
1234789 HpCDF	ND ND	0.010	ND
Total HpCDF	ND	0.010	
Octa CDF	ND	0.001	ND
Total PCDFs	{0.0102}		0.00
Total PCDDs + PCDFs	{0.0102}		0.00

Nanogram per dry standard cubic meter adjusted to 7 percent oxygen at 20°C and 1 atm.

North Atlantic Treaty Organization, Committee on the Challenges of Modern Society. Pilot study on International Information Exchange on Dioxins and Related Compounds: International Toxicity Equivalency Factor (I-TEF) Methods of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds. Report No. 176, August 1988.

ND Non Detectable - Results are below target analyte detection limits. ND values are counted as zero in totals and averages.

^() Estimated Maximum Possible Concentration. EMPC values are counted in totals or averages.

TABLE 2.14

PARTICULATE MATTER/METALS EMISSIONS SAMPLING AND INLET GAS PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP** ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-1	R-M29-I-2	Average
Date	8/27/97	8/28/97	
Time	1000-1200	1019-1427	
Sampling Duration, minutes	87	200	143.5
Average Sampling Rate, dscfm ^a	0.573	0.304	0.439
Sample Volume:			
dscf ^b	49.883	60.783	55.333
dscm ^c	1.413	1.721	1.567
Exhaust Gas Temperature, °F	304	309	306
O ₂ Concentration, % by volume	14.2	13.1	13.6
CO ₂ Concentration, % by volume	4.6	5.2	4.9
Moisture, % by volume	28.5	27.3	27.9
Exhaust Gas Volumetric Flow Rate:			'
acfm ^d	48,345	48,535	48,440
dscfm ^a	23,687	23,865	23,776
dscmm ^e	671	676	673
Isokinetic Sampling Ratio, %	109.7	100.5	105.1

^a Dry standard cubic feet per minute at 68°F and 1 atm. ^b Dry standard cubic feet at 68°F and 1 atm. ^c Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at inlet gas conditions.

^{*} Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.15

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-1	R-M29-I-2	Average
Date	8/27/97	8/28/97	
Time	1000-1200	1019-1427	
Concentration:			
gr/dscf ^a	42.2	68.3	55.3
gr/dscf @ 7% O ₂ ^b	87.5	121.8	104.6
g/dscm ^c	96.5	156.4	126.4
g/dscm @ 7% O ₂ d	200	279	239
Emission Rate:			
lb/hr ^e	8,561	13,981	11,271
kg/hr ^f	3,883	6,342	5,113

^{*} Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂. ^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

e Pounds per hour.

^fKilograms per hour.

TABLE 2.16

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-1	R-M29-I-2	Average
Date	8/27/97	8/28/97	
Time	1000-1200	1019-1427	
Antimony (Sb)		!	
μg/dscm*	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr²	ND	ND	0.00
Arsenic (As)		·	
μg/dscm ^a	3.56	2.22	2.89
μg/dscm @ 7% O ₂ ^b	7.39	3.96	5.67
g/hr ^c	0.143	0.0900	0.117
Barium (Ba)			
μg/dscm ^a	765	537	651
μg/dscm @ 7% O ₂ ^b	1587	957	1,272
g/hr ^c	30.8	21.8	263
Beryllium (Be)			
μg/dscm ^a	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr	ND	ND	0.00
Cadmium (Cd)			
μg/dscm*	14.3	8.51	11.4
μ g/dscm @ 7% O_2^b	29.7	15.2	22.4
g/hr ^c	0.576	0.345	0.460
Chromium (Cr)			
μg/dscm²	67.8	51.3	59.6
μg/dscm @ 7% O ₂ ^b	141	91.4	116.1
g/hr	2.73	2.08	2.41
Cobalt (Co)			
μg/dscm ^a	44.7	32.0	38.4
μg/dscm @ 7% O ₂ ^b	92.8	57.0	74.9
g/hr ^c	1.8	1.3	1.55
Copper			
μg/dscm*	434	384	409
μg/dscm @ 7% O ₂ b	900	684	792
g/hr ^c	17.5	15.6	16.5

TABLE 2.16 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-1	R-M29-I-2	Average
Lead (Pb)			
μg/dscm ⁴	60.4	48.3	54.3
μg/dscm @ 7% O ₂ ^b	125	86.0	106
g/hr²	2.43	1.96	2.19
Manganese (Mn)			
μg/dscm ^a	1750	1,357	1,553
μ g/dscm @ 7% O_2^b	3630	2,418	3,024
g/hr ^c	70.4	55.0	62.7
Mercury (Hg)			
μg/dscm ^a	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr ^c	ND	ND	0.00
Nickel (Ni)			
μg/dscm ^a	41.7	33.9	37.8
μg/dscm @ 7% O ₂ ^b	86.6	60.5	73.5
g/hr ^c	1.68	1.38	1.53
Phosphorus (P)			
μg/dscm ^a	3,009	2,251	2,629
μg/dscm @ 7% O ₂ ^b	6,242	4,011	5,126
g/hr ^c	121	91.3	106
Silver (Ag)			
μg/dscm*	0.850	0.581	0.715
μg/dscm @ 7% O ₂ ^b	1.76	1.04	1.40
g/hr	0.0342	0.0236	0.0289
Selenium (Se)			0.0209
μg/dscm ^a	ND	0.230	0.115
μ g/dscm @ 7% O_2^b	ND	0.410	0.205
g/hr ^c	ND	0.00933	0.00466
Thallium (Tl)			0.00.00
μg/dscm*	8.64	4.98	6.81
μg/dscm @ 7% O ₂ ^b	17.9	8.88	13.4
g/hr ^c	0.348	0.202	0.275
Zinc (Zn)			
μg/dscm ^a	539	397	468
μ g/dscm @ 7% O_7^b	1118	707	913
g/hr ^c	21.7	16.1	18.9

a
b
Micrograms per dry standard cubic meter @ 20° C and 1 atm.
Micrograms per dry standard cubic meter @ 20° C and 1 atm, adjusted to 7% O₂.
Grams per hour.

2.3.2 Baghouse Outlet-Asphalt Production with RAP

PES conducted two Method 29 sampling runs at the baghouse outlet during production with RAP. Table 2.17 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for each test run was 240 minutes. The (2-run) average sample volume was 197.630 dscf or 5.596 dscm. The (2-run) average stack gas temperature was 291°F and contained 4.5% CO₂, 14.3% O₂, and 27.1% moisture. The average (2-run) stack gas volumetric flow rate was 50,276 acfm or 25,559 dscfm or 724 dscmm. The (2-run) average stack gas opacity was less than 5%.

Table 2.18 summarizes the stack gas particulate matter concentrations and emission rates. The (2-run) average concentration was 0.00832 gr/dscf or 0.0190 g/dscm. The concentrations are also shown adjusted to 7% O₂. The (2-run) average emission rate was 1.82 lb/hr or 0.826 kg/hr.

Table 2.19 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were found to be present in both samples. The (2-run) average concentrations ranged from $0.0524 \mu g/dscm$ for silver to $20.2 \mu g/dscm$ for phosphorus.

2.3.3 Baghouse Inlet - Asphalt Production without RAP

PES conducted one test run at the baghouse inlet during asphalt production without the addition of RAP. Table 2.20 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for the test run was 240 minutes. The sample volume was 81.522 dscf or 2.308 dscm. The stack gas temperature was 289°F and contained 4.0% CO₂, 15.2% O₂, and 18.9% moisture. The stack gas volumetric flow rate was 48,550 acfm or 27,325 dscfm or 774 dscmm.

Table 2.21 summarizes the stack gas particulate matter concentrations and emission rates. The concentration was 76.8 gr/dscf or 175.7 g/dscm. The concentrations are also shown adjusted to 7% O₂. The average emission rate was 17,789 lb/hr or 8,155 kg/hr.

Table 2.22 summarizes the stack gas metals concentrations and emission rates. Most of the target metals were present in the sample. Concentrations ranged from 0.291 μ g/dscm for silver to 2,170 μ g/dscm for phosphorus.

TABLE 2.17 PARTICULATE/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS **ROTARY DRUM DRYER - BAGHOUSE OUTLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-1	R-M29-O-2	Average
Date	8/27/97	8/28/97	
Sampling Duration, minutes	240	240	240
Average Sampling Rate, dscfm ^a	0.888	0.759	0.823
Sample Volume:			
dscf b	213.024	182.236	197.630
dscm ^c	6.032	5.160	5.596
Stack Gas Temperature, °F	289	292	291
O ₂ Concentration, % by volume	15	13.6	14.3
CO ₂ Concentration, % by volume	4.0	4.9	4.5
Moisture, % by volume	26.5	27.7	27.1
Exhaust Gas Volumetric Flow Rate:			
acfm ^d	51,035	49,516	50,276
dscfm ^a	26,285	24,833	25,559
dscmm ^e	744	703	724
Isokinetic Sampling Ratio, %	109.5	99.2	104.3
Stack Gas Opacity:			
Average Opacity, %	<5	<5	<5
Calculated Average, %	0.67	0.21	0.44
Max. Single Reading, %	10	10	10
Max. 6-min. Block Avg., %	0.63	0.68	0.65
Max. 6-min Rolling Avg., %	0.71	0.95	0.83

^a Dry standard cubic feet per minute at 68°F and 1 atm. ^b Dry standard cubic feet at 68°F and 1 atm.

[°] Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^{*} Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.18

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE OUTLET** ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-1	R-M29-O-2	Average
Date	8/27/97	8/28/97	
Time	0940-1516	0746-1229	
Concentration:			
gr/dscf ^a	0.00832	0.00832	0.00832
gr/dscf @ 7% O ₂ ^b	0.0196	0.0158	0.0177
g/dscm ^c	0.0190	0.0190	0.0190
g/dscm @ 7% O ₂ d	0.0448	0.0362	0.0405
Emission Rate:			
lb/hr°	1.87	1.77	1.82
kg/hr ^f	0.850	0.803	0.826

^a Grains per dry standard cubic foot at 68°F and 1 atm.
^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

^{*} Pounds per hour.

Kilograms per hour.

TABLE 2.19

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-1	R-M29-O-2	Average
Date	8/27/97	8/28/97	
Clock Time, 24-hr Clock	0940-1516	0746-1229	
Antimony (Sb)		""	
μg/dscm ^a	0.637	0.693	0.665
μg/dscm @ 7% O ₂ ^b	1.50	1,32	1.41
g/hr ^c	0.0284	0.0292	0.0288
Arsenic (As)		0.02,2	0.02.00
μg/dscm ^a	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr ^c	ND	ND	0.00
Barium (Ba)		1,2	0.00
μg/dscm ^a	9.10	7.92	8.51
μg/dscm @ 7% O ₂ ^b	21.4	15.1	18.3
g/hr ^c	0.406	0.334	0.370
Beryllium (Be)		0.55	0.570
μg/dscm*	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr ^c	ND	ND	0.00
Cadmium (Cd)			5.00
μg/dscm [*]	0.0794	0.0708	0.751
μg/dscm @ 7% O ₂ ^b	0.187	0.135	0.161
g/hr ^c	0.00355	0.00299	0.00327
Chromium (Cr)			0.0052
μg/dscm ^a	2.19	2.14	2.16
μg/dscm @ 7% O ₂ ^b	5.16	4.07	4.61
g/hr ^c	0.0978	0.0901	0.0939
Cobalt (Co)			
μg/dscm ^a	ND	ND	0.00
μg/dscm @ 7% O ₂ ^b	ND	ND	0.00
g/hr ^c	ND	ND	0.00
Copper (Cu)		_	
μg/dscm [*]	1.54	1.38	1.46
μg/dscm @ 7% O ₂ ^b	3.63	2.63	3.13
g/hr ^c	0.0688	0.0584	0.0636
Lead (Pb)	Ĭ		
μg/dscm ^a	1.42	1.03	1.22
μg/dscm @ 7% O ₂ ^b	3.34	1.95	2.64
g/hr ^c	0.0632	0.0433	0.0533

TABLE 2.19 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITH RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-1	R-M29-O-2	Average
Manganese (Mn)			
μg/dscm*	11.6	14.5	13.1
μg/dscm @ 7% O ₂ ^b	27.4	27.6	27.5
g/hr ^c	0.519	0.612	0.565
Mercury (Hg)			1
μg/dscm ^a	ND	ND	0.00
μ g/dscm @ 7% O_2^b	ND	ND	0.00
g/hr²	ND	ND	0.00
Nickel (Ni)			
μg/dscm ^a	1.55	1.26	1.41
μg/dscm @ 7% O ₂ b	3.66	2.40	3.03
g/hr ^c	0.0694	0.0531	0.0612
Phosphorus (P)			0.0012
μg/dscm ^a	18.2	22.2	20.2
μg/dscm @ 7% O ₂ ^b	42.9	42.3	42.6
g/hr ^c	0.814	0.937	0.876
Silver (Ag)			. 0.070
μg/dscm ^a	0.0627	0.0421	0.0524
μg/dscm @ 7% O ₂ b	0.148	0.080	0.114
g/hr ^c	0.00280	0.00177	0.00229
Selenium (Se)			0.000
μg/dscm²	0.934	0.888	0.911
μ g/dscm @ 7% O_2^b	2.20	1.69	1.95
g/hr ^c	0.0417	0.0375	0.0396
Thallium (TI)			0.0000
μg/dscm ^a	ND	ND	0.00
μg/dscm @ 7% O ₂ b	ND	ND	0.00
g/hr ^c	ND	ND	0.00
Zinc (Zn)			
μg/dscm*	7.34	5.01	6.18
μ g/dscm @ 7% O_2^b	17.3	9.54	13.4
g/hr ^c	0.328	0.211	0.270

^{*} Micrograms per dry standard cubic meter @ 20° C and 1 atm.

^b Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

TABLE 2.20

PARTICULATE MATTER/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-3
Date	8/29/97
Sampling Duration, minutes	240
Average Sampling Rate, dscfm ^a	0.340
Sample Volume:	
dscf ^b	81.522
dscm ^c	2.308
Exhaust Gas Temperature, °F	289
O ₂ Concentration, % by volume	15.2
CO ₂ Concentration, % by volume	4.0
Moisture, % by volume	18.9
Exhaust Gas Volumetric Flow Rate:	
acfm ^d	48,550
dscfm ^a	27,325
dscmm ^e	774
Isokinetic Sampling Ratio, %	96.1

^{*} Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

[°] Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^{*} Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.21

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC.

R-M29-I-3
8/29/97 0819-1403 76.8 187.2 175.7 428 17,879 8,155

^a Grains per dry standard cubic foot at $68^{\circ}F$ and 1 atm.
^b Grains per dry standard cubic foot at $68^{\circ}F$ and 1 atm adjusted to 7 percent O_2 .

Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

^{*} Pounds per hour.

f Kilograms per hour.

TABLE 2.22

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE INLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-3	
Date	8/29/97	
Time	0819-1403	
Antimony (Sb)		
μg/dscm ^a	ND	
μ g/dscm @ 7% O_2^b	ND	
g/hr ^c	ND	
Arsenic (As)		
μg/dscm ^a	2.13	
μg/dscm @ 7% O ₂ ^b	5.19	
g/hr²	0.0987	
Barium (Ba)		
μg/dscm ^a	318	
μ g/dscm @ 7% O_2^b	776	
g/hr ^c	14.8	
Beryllium (Be)		
μ g/dscm ^a	ND	
μ g/dscm @ 7% O_2^b	ND	
g/hr²	ND	
Cadmium (Cd)		
μg/dscm ^a	4.25	
μ g/dscm @ 7% O_2^b	10.4	
g/hr ^c	0.197	
Total Chromium (Cr)		
μg/dscm ^a	33.3	
μ g/dscm @ 7% O_2^b	81.2	
g/hr ^c	1.55	
Cobalt (Co)		
μg/dscm ^a	19.7	
μ g/dscm @ 7% O_2^b	48.1	
g/hr ^c	0.915	
Copper (Cu)		
μ g/dscm ^a	263	
μ g/dscm @ 7% O_2^b	641	
g/hr ^c	12.2	
Lead (Pb)		
μ g/dscm ^a	35.8	
μ g/dscm @ 7% O_2^b	87.4	
g/hr ^c	1.66	

TABLE 2.22 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES **ROTARY DRUM DRYER - BAGHOUSE INLET** ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-I-3	
Manganese (Mn)		
μg/dscm ^a	975	
μg/dscm @ 7% O ₂ ^b	2377	
g/hr ^c	45.3	
Mercury (Hg)		
μ g/dscm [*]	ND	
μ g/dscm @ 7% O_2^b	ND	
g/hr ^c	ND	
Nickel (Ni)		
μg/dscm²	21.8	
μ g/dscm @ 7% O_2^b	53.1	
g/hr ^c	1.01	
Phosphorus (P)		
μ g/dscm ^a	2170	
μ g/dscm @ 7% O_2^b	5292	
g/hr ^c	101	
Silver (Ag)		
μ g/dscm ²	0.291	
μ g/dscm @ 7% O_2^b	0.709	
g/hr ^c	0.0135	
Selenium (Se)		
μg/dscm ^a	ND	
μ g/dscm @ 7% O_2^b	ND	
g/hr ^c	ND	
Thallium (Tl)		
μ g/dscm ^a	0.901	
μ g/dscm @ 7% O_2^b	2.20	
g/hr ^c	0.0418	
Zinc (Zn)		
μ g/dscm a	239	
μ g/dscm @ 7% O_2^b	584	
g/hr ^c	11.1	

 $^{^{\}rm a}$ Micrograms per dry standard cubic meter @ 20° C and 1 atm. $^{\rm b}$ Micrograms per dry standard cubic meter @ 20° C and 1 atm, adjusted to 7% $\rm O_2.$ $^{\rm c}$ Grams per hour.

2.3.4 Baghouse Outlet - Asphalt Production without RAP

PES conducted one test run at the baghouse outlet during asphalt production without the addition of RAP. Table 2.23 summarizes the particulate matter/metals emissions sampling and stack gas parameters. The total sampling time for the test run was 240 minutes. The sample volume was 205.914 dscf or 5.831 dscm. The stack gas temperature was $274\,^{\circ}F$ and contained 3.0% CO₂, 16.3% O₂, and 20.8% moisture. The stack gas volumetric flow rate was 50,521 acfm or 28,440 dscfm or 805 dscmm.

Table 2.24 summarizes the stack gas particulate matter concentrations and emission rates. The concentration was 0.0132 gr/dscf or 0.0303 g/dscm. The concentrations are also shown adjusted to 7% O₂. The emission rate was 3.23 lb/hr or 1.46 kg/hr.

Table 2.25 summarizes the stack gas metals concentrations and emission rates. Not all of the target metals were detected in the samples. Detected concentrations ranged from 0.0336 $\mu g/dscm$ for cadmium to 24.9 $\mu g/dscm$ for phosphorus.

2.4 VISIBLE EMISSIONS OBSERVATIONS

Visible Emissions Observations (VEOs) of the stack exhaust were made during the testing by a certified observer. Observations were made simultaneously with the testing, except during the first run when VEOs were suspended during the period from 1207 to 1304 when the location of the sun was directly over the observer. The average opacity during asphalt production with RAP is presented along with the outlet stack gas parameters in Table 2.14. For each run the calculated average opacities were 2.15, 1.21, and 0.702%. Since VEO observations are recorded in 5% increments, the average opacity during these runs is more properly reported as less than 5% opacity. Also presented are the maximum single opacity observed, the maximum 6-minute block average, and the maximum 6-minute rolling average during each test run. During the production of asphalt without RAP, the calculated average opacity of the outlet gas stream was 0.104%; however, this result is more properly reported as an average opacity of < 5 %. The opacity data during production with RAP are presented along with the stack gas parameters in Table 2.17.

TABLE 2.23

PARTICULATE MATTER/METALS EMISSIONS SAMPLING AND STACK GAS PARAMETERS ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-3	
Date	8/29/97	
Sampling Duration, minutes	240	
Average Sampling Rate, dscfm ^a	0.858	
Sample Volume:		
dscf b	205.914	
dscm ^c	5.831	
Exhaust Gas Temperature,.°F	274	
O ₂ Concentration, % by volume	16.3	
CO ₂ Concentration, % by volume	3.0	
Moisture, % by volume	20.8	
Exhaust Gas Volumetric Flow Rate:		
acfm ^d	50,521	
dscfm ^a	28,440	
dscmm ^e	805	
Isokinetic Sampling Ratio, %	97.8	
Stack Gas Opacity:		
Average Opacity, %	< 5	
Calculated Average, %	0.965	
Max. Single Reading, %	10	
Max. 6-min. Block Avg., %	2.29	
Max. 6-min Rolling Avg., %	3.07	

^a Dry standard cubic feet per minute at 68°F and 1 atm.

^b Dry standard cubic feet at 68°F and 1 atm.

^c Dry standard cubic meters at 20°C and 1 atm.

^d Actual cubic feet per minute at stack conditions.

^e Dry standard cubic meters per minute at 20°C and 1 atm.

TABLE 2.24

PARTICULATE MATTER CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-3
Date	8/29/97
Time	0809-1236
Concentration:	
gr/dscf ^a	0.0132
gr/dscf @ 7% O ₂ ^b	0.0400
g/dscm ^c	0.0303
g/dscm @ 7% O ₂ d	0.0915
Emission Rate:	
lb/hr ^e	3.23
kg/h r^f	1.46
-	

^a Grains per dry standard cubic foot at 68°F and 1 atm.

^b Grains per dry standard cubic foot at 68°F and 1 atm adjusted to 7 percent O₂.

^c Grams per dry standard cubic meter at 20°C and 1 atm.

^d Grams per dry standard cubic meter at 20°C and 1 atm adjusted to 7 percent O₂.

e Pounds per hour.

f Kilograms per hour.

TABLE 2.25

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-3	
Date	8/29/97	
Clock Time, 24-hr Clock	0809-1236	
Antimony (Sb)		
μ g/dscm ^a	0.671	
μ g/dscm @ 7% O_2^b	2.03	
g/hr ^c	0.0324	
Arsenic (As)	1 1002	
μg/dscm ^a	ND	
μg/dscm @ 7% O ₂ b	ND	
g/hr ^c	ND	
Barium (Ba)		
μg/dscm ^a	12.0	
μg/dscm @ 7% O ₂ ^b	36.2	
g/hr ^c	0.579	
Beryllium (Be)	0.379	
μg/dscm ^a	ND	
μg/dscm @ 7% O ₂ ^b	ND	
g/hr ^e	ND	
Cadmium (Cd)	· ND	
μg/dscm ^a	0.0336	
μg/dscm @ 7% O ₂ ^b	0.102	
g/hr ^c	0.00162	
Total Chromium (Cr)	0.00162	
μg/dscm³	2.16	
μg/dscm @ 7% O ₂ b	6.53	
g/hr ^c	0.104	
Cobalt (Co)	0.104	
μg/dscm ^a	ND	
μg/dscm @ 7% O ₂ ^b	ND	
g/hr ^e	ND	
Copper (Cu)	TAD .	
μg/dscm ^a	2.57	
μ g/dscm @ 7% O_2^b	7.77	
g/hr ^c	0.124	
Lead (Pb)	0.124	
μg/dscm ^a	1.04	
μ g/dscm @ 7% O_2^b	1.04	
g/hr ^c	3.16 0.0505	
6 ····	0.0303	

TABLE 2.25 (Concluded)

METALS CONCENTRATIONS AND EMISSION RATES ROTARY DRUM DRYER - BAGHOUSE OUTLET ASPHALT PRODUCTION WITHOUT RAP ASPHALT PLANT "B" - CARY, NC

Run Number	R-M29-O-3
Manganese (Mn)	
μg/dscm ^a	19.9
μ g/dscm @ 7% O_2^b	60.3
g/hr ^c	0.964
Mercury (Hg)	ł
μg/dscm ^a	ND
$\mu g/dscm @ 7\% O_2^b$	ND
g/hr ^c	ND
Nickel (Ni)	
μg/dscm ^a	1.39
μ g/dscm @ 7% O_2^b	4.21
g/hr ^c	0.0674
Phosphorus (P)	
μ g/dscm s	24.9
μ g/dscm @ 7% O_2^b	75.2
g/hr ^c	1.20
Silver (Ag)	
μ g/dscm *	ND
μg/dscm @ 7% O ₂ ^b	ND
g/hr ^c	ND
Selenium (Se)	<u>}</u>
μ g/ $ extsf{d}$ scm $ extsf{a}$	0.843
μ g/dscm @ 7% O_2^b	2.55
g/hr ^c	0.407
Thallium (Tl)	
μg/dscm ^a	ND
μ g/dscm @ 7% O_2^b	ND
g/hr ^c	ND
Zinc (Zn)	1
μ g /dscm ^a	5.63
μ g/dscm @ 7% O_2^b	17.0
g/hr ^c	0.272

^{*} Micrograms per dry standard cubic meter @ 20° C and 1 atm.

^b Micrograms per dry standard cubic meter @ 20°C and 1 atm, adjusted to 7% O₂.

^c Grams per hour.

3.0 PROCESS DESCRIPTION

The Asphalt Plant "B" production facility in Cary, North Carolina, has been in operation since 1987. It is a parallel flow, continuous drum mix process. The dryer/mixer is an ASTEC drum (8 ft. by 45 ft.), with a rated capacity of 325 tons per hour. The plant has the capability of producing up to 14 asphalt mix types, with or without the use of RAP.

Asphalt concrete, called "hot mix asphalt" (HMA) by the industry, is a mixture of well-graded, high quality virgin aggregate that is heated and mixed with liquid asphalt cement to produce paving material. The characteristics of the asphalt concrete are determined by the relative amounts and types of aggregate (and RAP) used. In the asphalt reclamation process, old asphalt pavement is removed from the road surface, transported to the plant, then crushed and screened to the appropriate size for further processing.

In the parallel flow continuous drum mix process, virgin aggregate of various sizes is fed to the drum by cold feed controls in proportions dictated by the final mix specifications. Aggregate is delivered by conveyor belt to the dryer section of the drum, entering at the same end as the burner (hence, the descriptor "parallel" flow). The aggregate is heated and dried by the high temperatures in the dryer and then moves into the mixer section where it is coated with liquid asphalt cement, and conditioner (if used). Liquid asphalt cement and conditioner are delivered to the mixer by a variable flow pump that is electronically linked to the aggregate feed weigh scales. The hot aggregate mixture is also combined with RAP (if any) and recycled dust from the control system. The resulting asphalt concrete mixture is discharged from the end of the drum mixer and conveyed to storage silos for delivery to trucks. Refer to Figure 1.2 for a simplified process schematic.

There are six cold storage bins and three hot mix storage silos at the facility. The hot mix storage silo capacities are 200 tons each, for a total of 600 tons. There are two screens for aggregate sizing and two 25,000 gallon heated asphalt cement storage vessels, for a total asphalt cement capacity of 50,000 gallons (125 tons). The plant usually uses natural gas for all its process fuel needs; however, during the source tests No. 2 oil, the back-up fuel, was used in the drum mixer. The amount of energy needed from the fuel for the asphalt production process is 300,000 BTU per ton of asphalt produced. The hot gas contact time, i.e., the time from when the aggregate enters the dryer to when it exits the coater, is approximately 3 to 4 minutes. Surface mixes are closer to 3 minutes and base mixes are closer to 4 minutes.

The facility used an asphalt cement (AC) called AC-20, obtained from Citgo of Wilmington, North Carolina. An anti-strip conditioner, called Ad-Here® (from Arr-Maz®), is sometimes used; anti-strip is required for all North Carolina Department of Transportation jobs.

For particulate matter (PM) control, the facility uses a knockout box as a primary control and a fabric filter as a secondary control. The fabric filter is an ASTEC Pulse-Jet, equipped with 780 14-ounce Nomex bags; it is operated with an air-to-cloth ratio of approximately 5 feet per minute. The process gas exits the drum and proceeds through the knockout box into a fabric filter, where it is exhausted through a stack. As mentioned above, the dust collected by the PM control devices is recycled to process.

EPA source tests were performed at the facility on August 27, 28, and 29, 1997. The source testing took place at the inlet and outlet of the fabric filter. Data were taken at 15-minute intervals during the entire "test period," i.e., the time period when at least one manual and both instrumental tests were running. According to plant personnel, the plant was operating under normal conditions during the tests.

For the three test dates (August 27, 28, and 29, 1997), the average asphalt concrete production rates per test run were 201, 199, and 163 tons per hour (tph), respectively, corresponding to total production of 1,039, 1,241, and 839 tons. During the first two test runs (August 27 and 28), a surface asphalt coating that included RAP was produced; during the third test run (August 29), a surface coating (accounting for 73% of the total asphalt concrete produced) and a binder coating (accounting for 27% of total production) were produced, both without RAP. A high sulfur No. 2 fuel oil was used for fuel in the production process during the tests. No conditioner was used during the tests.

Table 3.1 summarizes the operating conditions observed during the EPA source test periods at Asphalt Plant "B". Tables 3.2 and 3.3 describe the asphalt mixes produced and the fuel used, respectively, during the tests. Table 3.4 describes the specifics of plant operation during the tests. Appendix A shows all the data recorded during the tests, along with the results of statistical analyses.

TABLE 3.1

PLANT OPERATING CONDITIONS ASPHALT PLANT "B" - CARY, NC

	Test Run		
Process Data	R-M23-1 R-M29-1 08/27/97	R-M23-2 R-M29-2 8/28/97	R-M23-3 R-M29-3 08/29/97
Product Type(s) ^a	surface mix, with RAP (BCSC, RI-2)	surface mix, with RAP (BCSC, RI-2)	surface mix, no RAP (BCSC, I-2); and binder (BCBC, Type H)
Asphalt Concrete Production Rate, tph Average ^b Range Total Produced, tons	201 149-212 1,039	199 192-206 1,241	163 130-195 839
Mix Temperature, °F Average ^b Range	301 290-330	299 284-321	303 286-352
Raw Material (Virgin Aggregate) Use Rate, tph Average ^b Range Total Used, tons	153 113-161 788	151 145-154 943	154 122-183 839
RAP Use Rate, tph Average ^b Range Total Used, tons	36 18-40 197	36 30-43 235	none
Asphalt Cement Use Rate, tph Average ^b Range Total Used, tons	12.3 9.1-12.9 54	12.1 11.7-12.6 64	9.2 6.8-12.1 51
Conditioner (lb)	none	none	none

TABLE 3.1 (CONCLUDED)

PLANT OPERATING CONDITIONS ASPHALT PLANT "B" - CARY, NC

	Test Run		
Process Data	R-M23-1 R-M29-1 08/27/97	R-M23-2 R-M29-2 8/28/97	R-M23-3 R-M29-3 08/29/97
Fabric Filter Operationb			
Temperature, °F			
Inlet	344	343	325
Outlet	271	283	269
Pressure Drop, in. H ₂ O			
Average	0.9	0.9	1.2
Range	0.8 - 1.2	0.1 - 1.1	0.5 - 2.0
Fuel			
Use Rate, ^c gph	340	344	266
Total Used, gal	1,906	2,305	1,620

^a BCSC, Type I-2 = bituminous concrete, surface coarse

BCSC, Type RI-2 = bituminous concrete, surface coarse, with RAP

BCBC, Type H = bituminous concrete, binder coarse (type H)

See Table 3.2 for more detail on product specifications.

b As a straight average of the 15-minute interval data shown in Appendix A.

^c Fuel use rate was calculated from the total fuel used during the time interval.

TABLE 3.2

ASPHALT MIX SPECIFICATIONS
ASPHALT PLANT "B" - CARY, NC

Product	Material	Amount
Surface Coating (BCSC, Type 1-2)	78-M regular screenings classified screenings Total asphalt cement	22% aggregate 34% aggregate 44% aggregate 100% aggregate 6.4% mix
Surface Coating, with RAP (BCSC, Type RI-2)	78-M screenings classified screenings RAP Total Asphalt cement total additional from RAP	17% aggregate 23% aggregate 42% aggregate 18% aggregate 100% aggregate 6.4% mix 5.2% mix 0.9% mix
Binder (BCBC, Type H)	78-M #67 regular screenings wet screenings Total asphalt cement	19% aggregate 48% aggregate 23% aggregate 10% aggregate 100% aggregate 4.6% mix

TABLE 3.3

FUEL SPECIFICATIONS ASPHALT PLANT "B" - CARY, NC

Fuel Type	Chara	cteristics	Descriptor(s)
High Sulfur, No. 2 Fuel Oil	flash point sulfur	125°F <500 mg/kg (0.05%)	dyed diesel fuel not for on-road use
	API index	33.2	

TABLE 3.4

SPECIFICS OF PLANT OPERATION ASPHALT PLANT "B" - CARY, NC

	Test Run / Test Date		
Parameter	R-M23-1 R-M29-1 08/27/97	R-M23-2 R-M29-2 8/28/97	R-M23-3 R-M29-3 08/29/97
Test Period	0940-1516	0746-1428	0809-1413
Plant Shut Downs ^a (with approximate duration)	1002 (5 min) 1140 (6 min) 1402 (10 min)	0901 (8 min) 1110 (18 min) 1355 (12 min)	1212 (9 min) 1242 (42 min)
Plant Production Rate Change(s)	nix rate slowed from nominally 200 to 150 tph	none	mix rate increased from nominally 150 to 200 tph 1237-1422: mix rate decreased from nominally 200 to 130 tpy
Product Changes	none	none	0807-0822 and 1022-1422: I-2 produced (642 tons) 0837-1007: binder produced (237) tons)

^a The shutdown at 1242 during Run 3 was put into effect to avoid overfilling of the silos with asphalt concrete mix; all other shutdowns were due to aggregate clogging in the conveyor system.

4.0 SAMPLING LOCATIONS

As stated previously, isokinetic sampling was conducted to determine the controlled and the uncontrolled emissions of the target compounds. Sampling was conducted at the baghouse inlet just after the knockout box, and at the baghouse outlet, downstream of the ID fan. Detailed descriptions of the sampling locations, as well as schematic diagrams, follow.

4.1 BAGHOUSE INLET SAMPLING LOCATION

The baghouse inlet consisted of a round horizontal duct which exits the knockout box and makes a 90° downward bend before it enters the baghouse through the top. The inlet duct diameter was 50 inches. Since there were no sample ports at the inlet location, sample ports were installed according the EPA Method 1 specifications. A schematic diagram of the inlet sampling location is presented in Figure 4.1. Two 4-inch diameter sample ports were installed on the knockout box exit/baghouse inlet duct, 110 inches (2.20 duct diameters) downstream of the knockout box exit. The nearest downstream disturbance was the elbow prior to the baghouse inlet. For this sampling location and geometry, Method 1 specifies a minimum of 24 sample points in the duct cross-section. Accordingly, PES conducted isokinetic traverses using a 24 point sample matrix, consisting of two 12 point sample traverses. The sample ports were offset 90° to each other and were situated 45° to a vertical line bisecting the horizontal portion of the duct. Figure 4.2 presents a schematic diagram of the sample traverse points, as well as their locations inside the duct cross section.

4.2 BAGHOUSE OUTLET SAMPLING LOCATION

The baghouse outlet consisted of a 33-inch x 49 ½-inch square duct on the outlet of the baghouse. The equivalent diameter of the exhaust was 39.6 inches. The sample ports were located 24 inches (0.606 equivalent diameters) upstream of the nearest disturbance, which is the stack outlet, and 237 inches (5.99 equivalent diameters) downstream of the nearest disturbance, which is the outlet of the ID fan. For this sampling location and geometry, Method 1 specifies a minimum of 24 sample points for isokinetic traverses. There are six sample ports installed on the 49 ¾-inch side of the stack, so PES used a 24 point sampling matrix consisting of six four-point traverses. A schematic diagram of the stack outlet is presented in Figure 4.3, and a schematic of the sample traverse points are presented in Figure 4.4.

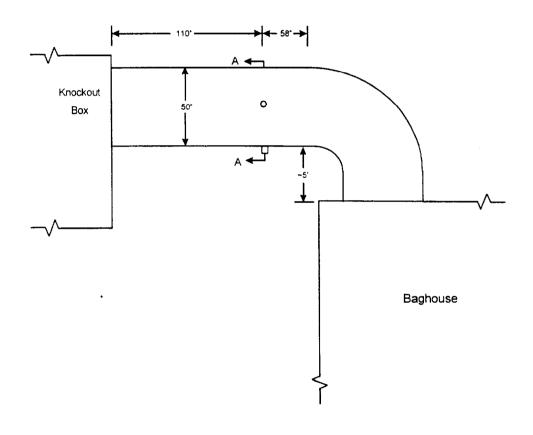
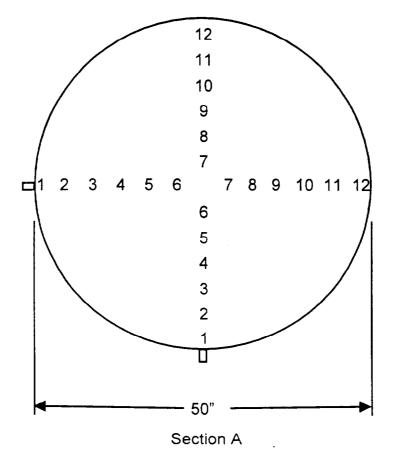



Figure 4.1 Baghouse Inlet Sampling Location - Asphalt Plant "B", Cary, NC

Traverse Distance from inside wall inches 1 1.05 2 3.35 3 5.90 4 8.85 5 12.5 6 17.8 7 32.2 8 37.5 9 41.2 10 44.1 11 46.7 12 49.0	Point inside v Number inche	
2 3.35 3 5.90 4 8.85 5 12.5 6 17.8 7 32.2 8 37.5 9 41.2 10 44.1 11 46.7		
17 400	2 3.35 3 5.90 4 8.85 5 12.5 6 17.8 7 32.2 8 37.5 9 41.2 10 44.1 11 46.7	

Figure 4.2 Baghouse Inlet Point Locations - Asphalt Plant "B", Cary, NC

4-3

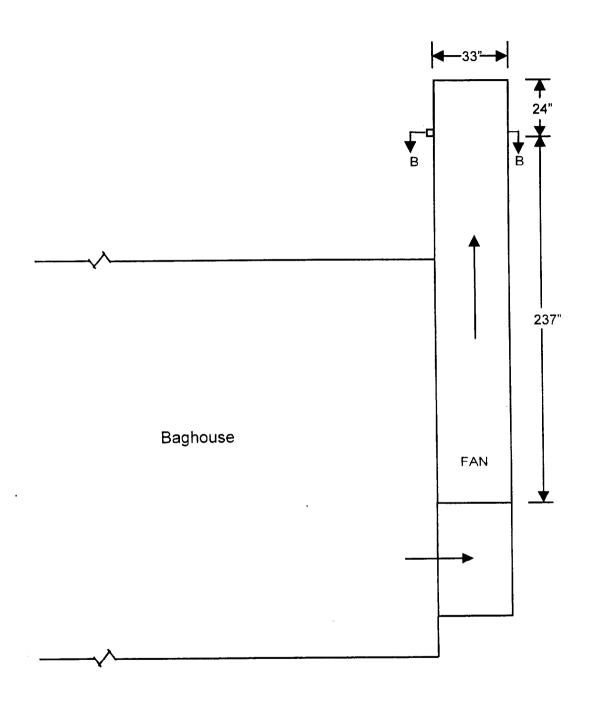
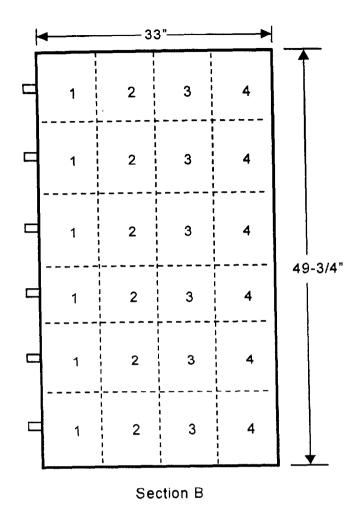



Figure 4.3 Baghouse Outlet Sampling Location - Asphalt Plant "B", Cary, NC

Traverse Point Inside wall Number (inches)

1 4.1
2 12.4
3 20.6
4 28.9

Figure 4.4 Baghouse Outlet Point Locations - Asphalt Plant "B", Cary, NC

5.0 SAMPLING AND ANALYSIS PROCEDURES

Table 5.1 summarizes the sources, test parameters, test methods, number of tests, and planned duration of each event. Sampling of the baghouse inlet and outlet was conducted simultaneously for PCDDs/PCDFs, and PM/Metals. Brief descriptions of each method follow:

5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE/VELOCITY TRAVERSE POINTS

EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to select the measurement sites and to establish velocity and sample traverse point locations. The measurement sites are discussed in Section 4.0.

5.2 DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE

EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)," was used to determine gas volumetric flow rate at the baghouse inlet and outlet. A Type S pitot tube, constructed according to Method 2 criteria and having an assigned coefficient of 0.84, was connected to an inclined-vertical manometer and used to measure velocity pressure. A Type K thermocouple attached directly to the pitot tube was used to measure gas temperature. For each sampling run, the gas velocity was calculated from the average of the square roots of the velocity pressure readings, the average gas temperature, the molecular weight, and the stack static pressure. The volumetric flow rate was calculated as the product of the average gas velocity and the duct cross-sectional area.

5.3 DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS

EPA Method 3B, "Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air," was used to measure carbon dioxide and oxygen content of the stack gases. Gas samples were extracted from each stack using the integrated, multi-point bag sampling technique. The bag contents were analyzed onsite within four hours after sample collection using an Orsat® analyzer to determine % concentrations of carbon dioxide and oxygen. The Orsat® analyzer had 0.2 % subdivisions.

TABLE 5.1

SAMPLING LOCATIONS, TEST PARAMETERS AND TEST METHODS SUMMARY ASPHALT PLANT "B" - CARY, NC

Sampling Location	Parameter	Test Methods	No. of Tests	Net Run Time, Minutes*
Baghouse Inlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals	EPA 1 & 2 EPA 3B EPA 4 EPA 23 EPA 29	3 3 3 3	96, 200, 240 87, 200, 240 96, 200, 240 96, 170, 240 87, 200, 240
Baghouse Outlet	Flow Rate O ₂ /CO ₂ Moisture PCDDs/PCDFs PM/Metals	EPA 1 & 2 EPA 3B EPA 4 EPA 23 EPA 29	3 3 3 3	240, 240, 240 240, 240, 240 240, 240, 240 240, 240, 240 240, 240, 240

^a Net run times presented are for the first, second, and third sampling runs, respectively

5.4 DETERMINATION OF STACK GAS MOISTURE CONTENT

EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to determine gas moisture content. The quantity of condensate collected during each sampling run was determined gravimetrically as the difference of the pre- and post-test impinger weights. The gas moisture volume was then calculated as the ratio of the moisture volume (assuming a conversion factor of 0.0415 g/ft³) to the sum of the moisture volume and the dry gas volume as indicated by the dry gas meter. The Method 4 procedure was conducted simultaneously with each Method 23 and Method 29 sampling run. The moisture gained in the XAD® module in the Method 23 sample train was also determined.

5.5 DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS

EPA Method 23, "Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans From Stationary Sources" was used to determine PCDDs and PCDFs at the baghouse inlet and outlet. A schematic of the Method 23 sampling train is shown in Figure 5.1. Gas samples were extracted from the gas streams isokinetically, and passed through a glass nozzle, heated glass-lined sample probe, a heated glass fiber filter, a coil condenser and a sorbent resin trap containing approximately 40 grams of spiked XAD®-2 sorbent resin. Ice water from the impinger bath was continuously recirculated through water jackets on the coil condenser and the XAD®-2 sorbent resin trap to cool the sample gas and facilitate

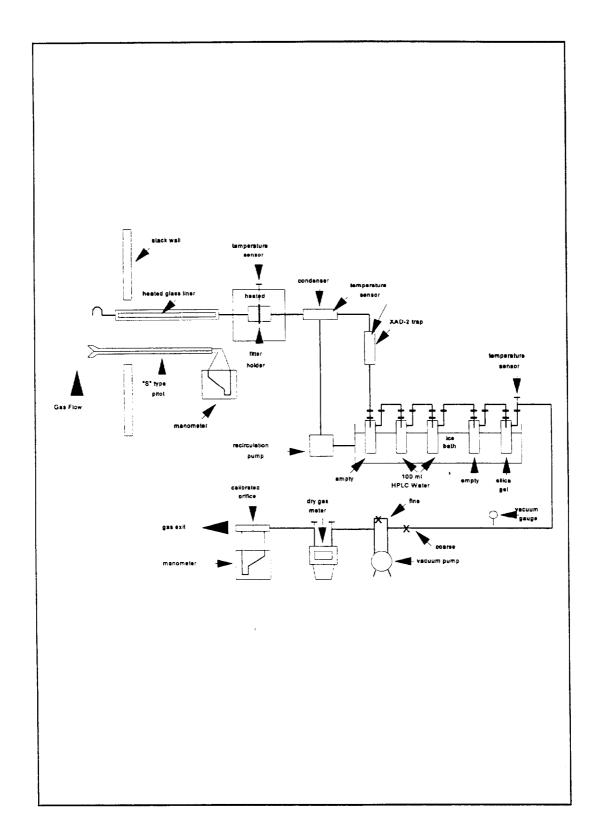


Figure 5.1 Method 23 Sample Train Schematic - Asphalt Plant "B", Cary, NC

absorption of PCDDs and PCDFs onto the XAD®-2 resin. At the conclusion of each sample run, the sample train components (except the sorbent trap) were rinsed the with pesticide-grade acetone and toluene.

Upon receipt by the subcontract laboratory, which was TLI, the samples were concentrated, combined, and analyzed using a gas chromatograph with a mass spectrometer detector (GC/MS). Sample aliquots were initially separated using a DB-5 capillary column; where the results of the analyses using the DB-5 column indicated the presence of 2378 PCDFs, the sample was re-analyzed using a DB-225 capillary column, and the results of the DB-225 analysis used for the subsequent calculations of emission rate and toxic equivalency for the 2378 PCDFs congener.

5.6 DETERMINATION OF PARTICULATE MATTER AND METALS

EPA Method 29, "Determination of Metals Emissions From Stationary Sources," was used to determine filterable particulate matter and metals at the baghouse inlet and baghouse outlet locations. The target metals included: antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), phosphorus (P), silver (Ag), selenium (Se), thallium (Tl), and zinc (Zn). A Method 29 sampling train schematic is presented in Figure 5.2. Gas samples were withdrawn from the gas streams isokinetically and through a glass nozzle, heated glass-lined sample probe, a heated quartz fiber filter, and an impinger train containing reagents for the absorption of metals. The first impinger in the train was empty, the second and third impingers each contained 100 ml of a 5% nitric acid (HNO₃)/10% hydrogen peroxide (H₂O₂) solution, the fourth impinger was empty, the fifth and sixth impingers each contained 100 ml of a 4 % potassium permanganate (KMnO₄)/10% sulfuric acid (H₂SO₄) solution, and the last impinger contained a known quantity of silica gel.

The sample analysis scheme for metals is shown in Figures 5.3 and 5.4. At the conclusion of each sampling run, the front half of the sampling train (i.e., in front of the tared quartz fiber filter) was rinsed with acetone followed by a solution of 0.1 N HNO₃. The first three impingers were quantitatively recovered and rinsed with 100 ml of HNO₃ solution; the impinger contents and the rinses were collected in a pre-cleaned glass sample bottle. The contents of the fourth and fifth impingers were recovered and impingers rinsed with 100 ml of fresh acidified potassium permanganate solution, followed by a rinse with 100 ml of deionized water into a pre-cleaned glass sample bottle. The fourth and fifth impingers were then rinsed with 25 ml of 8 N HCl solution, which was collected in pre-cleaned glass sample jar containing 200 ml of deionized water.

Analyses for the determination of particulate matter concentrations and emission rates were conducted at PES facilities in Research Triangle Park, NC. The acetone probe rinses and the filters were transferred to pre-cleaned, tared beakers, evaporated to dryness, desiccated, and weighed to constant weight. At the conclusion of the particulate matter analysis, the beakers were sealed with Parafilm® and transported to the subcontract laboratory, Triangle Laboratories, Inc., for determination of the target metals content. Each sample run generated two fractions for

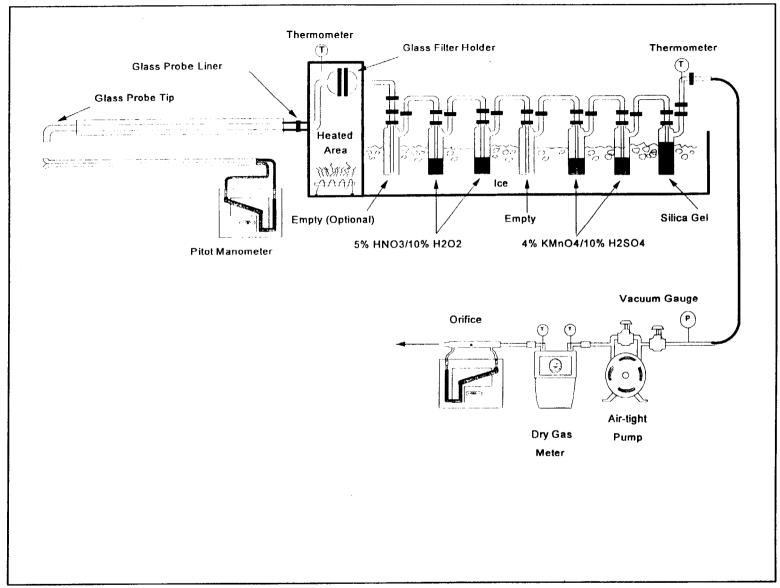


Figure 5.2 Method 29 Sample Train Schematic - Asphalt Plant "B", Cary, NC

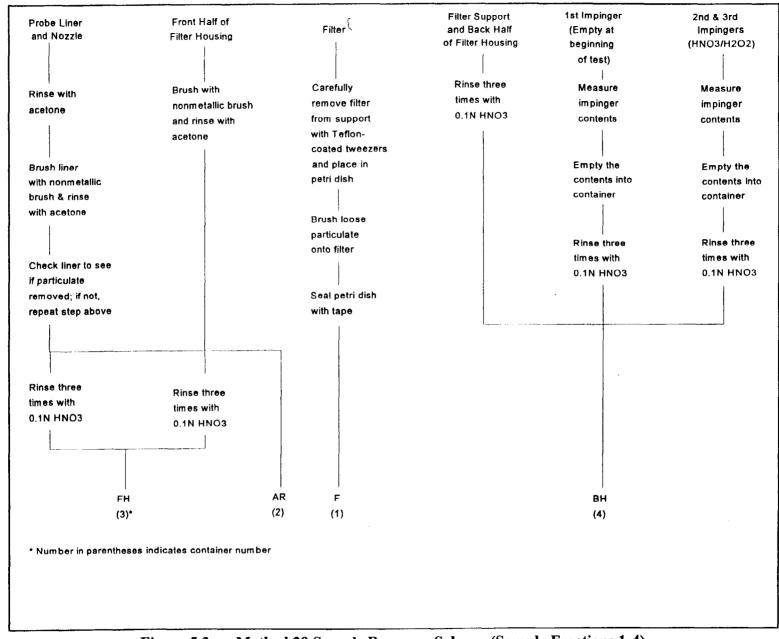


Figure 5.3 Method 29 Sample Recovery Scheme (Sample Fractions 1-4) Asphalt Plant "B", Cary, NC

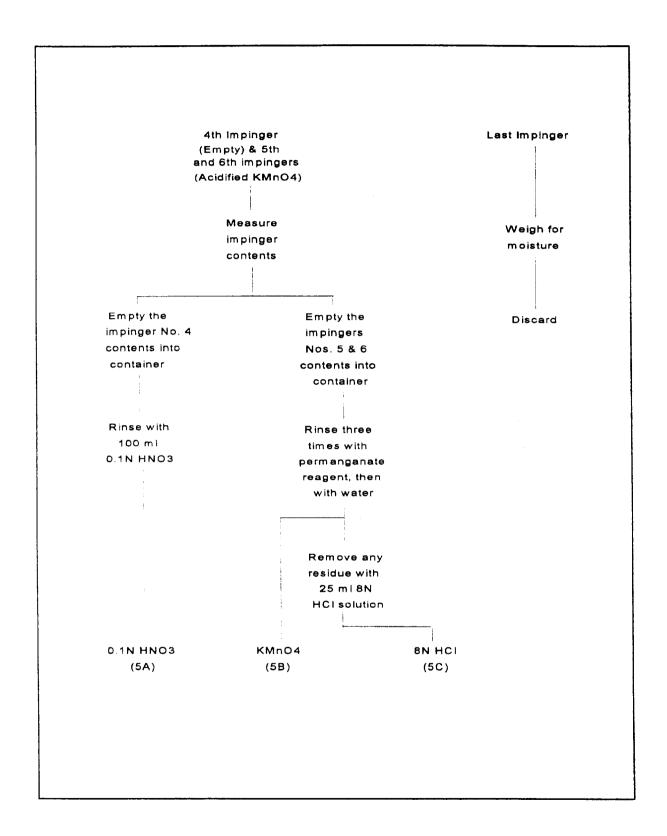


Figure 5.4 Method 29 Sample Recovery Scheme (Sample Fraction 5)
Asphalt Plant "B", Cary, NC

the analysis of all target metals except mercury, and five fractions for analysis of mercury. Except for mercury, analyses of the target metals were conducted using the analytical method which resulted in the lowest detection for each metal; either graphite furnace atomic absorption spectroscopy (GFAAS), or inductively coupled argon plasma (ICP) emission spectroscopy. Analysis for mercury content was determined using cold vapor atomic absorption spectroscopy (CVAAS).

5.7 DETERMINATION OF PLUME OPACITY

EPA Method 9, "Visual Determination of the Opacity of Emissions from Stationary Sources" was used to quantify visible emissions from the baghouse outlet stack. The observer was certified to read plume opacities at a field training session held in Raleigh, North Carolina by Eastern Technical Associates of Raleigh, North Carolina on March 12, 1997 (Certificate No. 257158).

6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

This section describes the specific QA/QC procedures employed by PES during the performance of this source testing program. PES' quality assurance program was based upon the procedures and guidelines contained in the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods," EPA/600/R-94/038c, as well as in the test methods to ensure the collection, analysis, and reporting of reliable source test data.

6.1 CALIBRATION OF APPARATUS

Since no mechanism exists for an independent measurement of emissions from the source, careful preparation, checkout, and calibration of the source testing sampling and analysis equipment is essential to ensure the collection of data of high quality. PES maintains a comprehensive schedule for preventative maintenance, calibration, and preparation of the source testing equipment.

6.1.1 Barometers

PES used aneroid barometers which were calibrated against a station pressure value reported by a nearby National Weather Service Station, and corrected for elevation.

6.1.2 Temperature Sensors

The responses of the Type K thermocouples used in the field testing program were checked using Calibration Procedure 2e as described in the Quality Assurance Handbook. The response of each temperature sensor was recorded when immersed in an ice water bath, at ambient temperature, and in a boiling water bath; each response was checked against an ASTM 3F reference thermometer. Table 6.1 summarizes the results of the thermocouple calibrations and the acceptable levels of variance. Digital temperature readouts were calibrated using a thermocouple simulator having a range of 0-2400°F.

6.1.3 Pitot Tubes

For the measurement of velocity pressure in the gas streams, PES used Type S pitot tubes constructed according to EPA Method 2 specifications. Pitot tubes meeting these geometric specifications are assigned a baseline pitot coefficient (C_p) of 0.84 and need not be subjected to a wind tunnel calibration. PES performs, at a minimum, annual calibration checks of pitots using Calibration Procedure 2 as found in the Quality Assurance Handbook.

TABLE 6.1
SUMMARY OF TEMPERATURE SENSOR CALIBRATION DATA
ASPHALT PLANT "B" - CARY, NC

Temp.		Tempera	iture, °R	Absolute	EPA
Sensor I.D.	Usage	Reference	Sensor	Difference %	Criteria %
5C	Stack Gas	498	498	0	<±1.5
		562	561	0.17	<±1.5
		628	629	0.16	<±1.5
5B	Stack Gas	496	499	0.60	<±1.5
		553	559	1.0	<±1.5
		596	596	0	<±1.5
RT3	Stack Gas	501	501	0	<±1.5
		532	532	0	<±1.5
		670	672	0.30	<±1.5
RT20	Stack Gas	492	493	0.20	<±1.5
		534	532	0.37	<±1.5
		672	671	0.15	<±1.5
RT11	Impinger	496	495	0.20	<±1.5
1	Exit	532	534	0.37	<±1.5
		670	670	0	<±1.5
SH4	Impinger	497	496	0.20	<±1.5
	Exit	532	535	0.56	<±1.5
		670	669	0.15	<±1.5

The results of the dimensional checks for each pitot tube used in this test program are summarized in Table 6.2.

6.1.4 <u>Differential Pressure Gauges</u>

PES uses Dwyer inclined/vertical manometers to measure differential pressures. These include velocity pressure, static pressure, and meter orifice pressure. Manometers are selected with sufficient sensitivity to accurately measure pressures over the entire range of expected values. Manometers are primary standards and require no calibration.

6.1.5 Dry Gas Meter and Orifice

The Method 23 and 29 dry gas meters and orifices were calibrated in accordance with Calibration Procedure 5 in the Quality Assurance Handbook. This procedure involves direct comparison of the dry gas meter to a reference dry test meter. The reference dry test meter is calibrated annually against a wet test meter. Before its initial use in the field, the metering system was calibrated at several flow rates over the normal operating range of the metering system. For the initial calibration to be considered valid, the results of individual meter calibration factors (γ), cannot differ from the average by more than 0.02, and the results of individual meter orifice factors (ΔH_{\oplus}), cannot differ from the average by more that 0.20. After field use, the metering system calibration was checked at the average flow rate and highest vacuum observed during the test period. The results of the post-test meter correction factor check cannot differ by more than 5 % from the average meter correction factor obtained during the initial, or thereafter, the annual calibration. Table 6.3 presents the results of the dry gas meter and orifice calibrations.

6.2 ON-SITE MEASUREMENTS

The on-site QA/QC activities include:

6.2.1 Measurement Sites

Prior to sampling, the stacks were checked dimensionally to determine the suitability of the measurement site locations with respect to the Method 1 criteria. Distances to upstream and downstream disturbances, test port locations and inside stack dimensions were checked to evaluate the uniformity of the stack cross sectional area. The inside stack dimensions, stack wall thickness, and sample port lengths were measured to the nearest 1/16 inch.

TABLE 6.2
SUMMARY OF PITOT TUBE DIMENSIONAL DATA
ASPHALT PLANT "B" - CARY, NC

			Results		
Measurement	Criteria	Pitot Tube Identification			
		5C	5B	RP-20	
α_1	$-10^{\circ} \le \alpha_1 \le 10^{\circ}$	2.5	2	2	
$lpha_2$	-10° ≤ α ₁ ≤ 10°	-2.5	-1	1	
$oldsymbol{eta}_1$	$-5^{\circ} \leq \beta_1 \leq 5^{\circ \circ}$	1	2	0	
eta_2	$-5^{\circ} \leq \beta_1 \leq 5^{\circ}$	-1	0	1	
γ	-	2.5	1	0.5	
θ	-	0	0.5	0	
A	-	1.013	0.990	1.0065	
$Z = A \tan \gamma$	≤ 0.125 in.	0.044	0.017	0.009	
$W = A \tan \theta$	≤ 0.03125 in.	0	0.009	0	
D_{t}	$0.1875" \le D_t \le 0.375"$	0.370	0.383	0.375	
A/2D _t	$1.05 D_t \le P \le 1.50 D_t$	Yes	Yes	Yes	
	Acceptable	Yes	Yes	Yes	
	Assigned Coefficient	0.84	0.84	0.84	

TABLE 6.3
SUMMARY OF DRY GAS METER AND ORIFICE CALIBRATION DATA
ASPHALT PLANT "B" - CARY, NC

Meter	Dr	y Gas Meter	Correction	Meter Orifice Coefficient (△H@)			
Box No.	Pre- test	Post-test	% Diff.	EPA Criteria	Average	Range	EPA Criteria
M5-4	1.021	1.046	2.5	<5%	1.82	1.74-1.87	1.62-2.02
M5-9	1.016	1.016	0.0	<5%	1.78	1.71-1.82	1.59-1.98
MB-11	0.987	1.008	2.1	<5%	1.93	1.73-2.13	1.87-1.97
MB-10	0.965	0.979	1.5	<5%	1.75	1.68-1.82	1.55-1.95

6.2.2 <u>Velocity Measurements</u>

All velocity measurement apparatus were assembled, leveled, zeroed, and leak-checked prior to and at the end of each sampling run. The stack static pressure was determined at a single point within the stack corresponding to the average velocity pressure as obtained during the pretest velocity traverse.

6.2.3 Flue Gas Sampling

Integrated flue gas samples were collected in Tedlar® gas bags from the baghouse exhaust. Prior to their initial use, the bags were leak checked and purged with nitrogen to ensure cleanliness. Prior to and after completion of each sampling run, the stack gas molecular weight sampling system was leak checked. The bag samples were analyzed on-site using an Orsat® analyzer. Prior to use the Orsat® analyzer was assembled and replenished with fresh reagents and leak checked as per the manufacturer's procedures.

6.2.4 Moisture

During sampling, the exit gas temperature of the last impinger in each sampling train was maintained below 68°F to ensure condensation of stack gas water vapor. The moisture gain in the impinger train due to flue gas moisture was determined gravimetrically using a digital top-loading electronic balance with a resolution of 0.1 g. For subsequent calculations of the flue gas moisture volume, the calculated moisture volume due to the impinger weight gain is compared to the stack gas saturation volume at the average stack gas temperatures. If the calculated moisture volume due to impinger weight gain exceeds the saturation volume, the assumption is made that moisture droplets entered the sampling system, and the saturation volume is used to calculate stack gas molecular weight. The lower moisture value obtained using the reference method and saturation method was subsequently used in all Method 23 and Method 29 calculations.

6.2.5 Method 23/Method 29

The QA/QC activities for the for Method 23 and Method 29 sampling trains were similar. Prior to field testing, all glassware used was pre-cleaned according to the guidelines presented in Method 23 and 29. The Method 23 glassware was cleaned based upon procedures presented in Section 3A of "The Manual of Analytical Methods for the Analysis of Pesticides in Human and Environmental Samples." The Method 29 sampling train glassware was prepared by first rinsing with hot tap and then water and then washed in hot soapy water. Next, all glassware was rinsed three times with tap water, followed by three additional rinses with water. Then all glassware was soaked in a 10% (V/V) nitric acid solution for a minimum of four hours, rinsed three times with water, then rinsed a final time with acetone, and allowed to air dry. On all of the Method 23 and Method 29 glassware, openings where contamination could occur was covered with Parafilm® or Teflon® tape until the trains were assembled for sampling.

Table 6.4 summarizes the results of the post-test sample train leak checks for the Method 23 and Method 29 sampling trains, as well as the isokinetic sampling ratios for each of the sampling runs attempts. It should be noted that the Method 23 and Method 29 sampling runs at the baghouse inlet were aborted after approximately 20 minutes of sampling. Although the Method 29 isokinetic sampling ratio was within the required tolerance, the Method 23 ratio was not. This was due to the significant pressure drop across the train from the collected particulate matter and the XAD®-2 sorbent resin trap, which made it impossible to collect a gas sample at the flow rate required by the isokinetic rate equation. All pre- and post-test sample train leaks met the acceptance criteria.

In order to evaluate the effectiveness of the on-site cleanup procedures, field blank samples of the Method 23 and Method 29 sample trains were collected during the field test program. The sample trains were assembled in same manner as the trains prepared for actual sampling runs, and were transported to the baghouse outlet sampling location. The sample trains were each leak-checked and allowed to heat to the normal operating temperature. They were then leak-checked again, and transported to the on-site field laboratory for recovery. The samples generated from the field blank trains were handled and analyzed in the same manner as the other samples generated during actual test runs.

In order to evaluate contamination levels in the sampling reagents, blank samples of all reagents used for both the Method 23 and Method 29 sampling were collected. These sample blanks were submitted for analysis along with the run samples and field blank samples for analysis.

6.3 ANALYSES

6.3.1 Method 23 Analyses

Table 6.5 presents the results of the recovery efficiencies for the internal, surrogate, and alternate standards used in conjunction with Method 23. Internal standards are used during analysis to quantify the ability of the analytical technique to quantify the target PCDDs/PCDFs

TABLE 6.4

SUMMARY OF METHOD 23/ METHOD 29 FIELD SAMPLING QA/QC DATA ASPHALT PLANT "B" - CARY, NC

Date	Site	Run No.	Pre-Test Leak Rate acfm	Post-Test Leak Rate acfm	EPA Criteria	Percent Isokinetic	EPA Criteria
8/27/97	Inlet	R-I-M23-1	0.008	0.007	< 0.02	115.0%	90%-110%
		R-I-M29-1	0.011	0.001	< 0.02	109.7%	90%-110%
	Outlet	R-O-M23-1	0.003	0.002	< 0.02	115.5%	90%-110%
		R-O-M29-1	0.007	0.004	< 0.02	109.5%	90%-110%
8/28/97	Inlet	R-I-M23-2	0.008	0.002	< 0.02	102.6%	90%-110%
		R-I-M29-2	0.003	0.012	< 0.02	100.5%	90%-110%
	Outlet	R-O-M23-2	0.001	0.008	< 0.02	100.5%	90%-110%
		R-O-M29-2	0.011	0.005	< 0.02	99.2%	90%-110%
8/29/97	Inlet	R-I-M23-3	0.006	0.009	< 0.02	97.7%	90%-110%
		R-I-M29-3	0.004	0.012	< 0.02	96.1%	90%-110%
	Outlet	R-O-M23-3	0.004	0.003	< 0.02	99.6%	90%-110%
		R-O-M29-3	0.012	0.009	< 0.02	97.8%	90%-110%

TABLE 6.5

SUMMARY OF METHOD 23 STANDARDS RECOVERY EFFICIENCIES
ASPHALT PLANT "B" - CARY, NC

	1									
	Percent Recovery									
	TLI XAD-2 Blank	M23- RB	R-M23 -O-1	R-M23 -O-2	R-M23 -O-3	R-M23 -O-FB	R-M23 -I-1	R-M23- I-2	R-M23 -I-3	QC Limits
FULL SCREEN ANALYSIS Internal Standards 2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	105 74.6 94.4 101 73.5 83.2 64.0 71.5 73.1	68.5 61.5 67.5 69.2 75.6 69.2 60.9 66.8 60.2	137 145 160 177 124 122 91.2 88.5 60.5	88.1 90.2 82.1 102 81.0 77.6 47.2 53.2 29.8	114 95.4 91.9 100 103 92.2 64.7 63.8 31.6	75.7 71.5 75.4 86.9 81.3 76.5 75.9 87.9 87.6	72.8 73.3 50.6 45.4 65.4 70.9 56.0 59.6 55.8	45.4 50.6 36.1 35.5 56.9 49.5 32.2 30.0 17.5	63.3 58.5 56.9 57.2 64.5 58.0 35.3 29.8 16.0	40-130% 40-130% 40-130% 40-130% 40-130% 40-130% 25-130% 25-130%
Surrogate Standards 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF	94.6 101 87.3 81.6 78.6	105 95.0 89.0 87.7 97.8	79.3 71.8 73.8 64.4 78.7	100 93.1 94.3 85.6 116	101 93.4 85.0 83.2 86.7	95.6 89.4 83.1 72.6 67.8	102 92.1 117 89.9 110	102 87.4 100 90.2 84.3	103 93.4 112 99.8 75.7	70-140% 70-140% 70-140% 70-140% 70-140%
Alternate Standards 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF	69.4 73.3	75.8 79.3	74.3 92.3	58.2 73.7	84.8 94.6	69.7 81.5	80.6 76.4	49.8 53.8	54.2 73.5	40-130% 40-130%
CONFIRMATION ANALYSIS Internal Standards 2,3,7,8-TCDF	67.4	NA_	NA	NA	NA	70.9	NA	NA	53.9	40-130%

NA Confirmation analysis was not necessary on samples where no TCDF were detected in the full screen analysis.

congeners. An internal standard mixture consisting of known amounts of nine congeners was added to each of the analyzed samples during quantification. Recovery efficiencies for OCDD were less than the minimum recovery efficiency of 25% for the samples collected during runs R-M23-I-2 and R-M23-I-3. OCDD internal standard recoveries for these two samples were 17.5 and 16.0 percent, respectively.

Surrogate standards are a mixture of congeners that are spiked onto the sorbent resin during packing of the traps, and provide an indication of the collection efficiency of the resin during the sampling runs. Recoveries of all surrogate standards were within the prescribed limitations for all runs except for the field blank sample for 1,2,3,4,7,8,9 Hepta-chlorinated dibenzo-furan. The recovery efficiency was 67.8 percent, and the minimum required for QA validation was 70 percent. Recoveries of alternate standards and internal standards during confirmation analysis (when required) were all within the QA ranges.

6.3.2 Method 29 Analyses

The results of QA analyses for the Method 29 samples are presented in Tables 6.6 through Tables 6.13. Lab control spikes (Table 6.6) were within the recovery limits for all metals except nickel, with a recovery of 131%, and thallium, with a recovery of 73%. The control limits for lab control spikes are 80 to 120%. The sample results should be considered biased high for Ni and biased low for Tl. A matrix spike (Table 6.7) was conducted on the sample from Run R-M29-O-1. Matrix spikes are conducted to evaluate if the sample matrix contains an unknown compound which interferes with the quantification of one or more of the target metals. Matrix spike recoveries for the front half of the sample were low for cobalt, which may indicate that the results of the front half analyses for cobalt may be biased low. Matrix spike recoveries for the back-half fractions were within the qualification criteria for all metals. Table 6.8 summarizes the Method 29 serial dilution analysis QC data for Run R-M29-O-1. Except for the front half chromium analysis, the relative percent deviation (RPD) was <10% for all the metals. The serial dilution results for Cr demonstrated a RPD outside the QC control criteria of 10.0%, which indicates the presence of an amount of interferents specific to this analyte in the native sample matrix. This sample should be considered biased low for Cr due to matrix interference. Table 6.9 summarizes the Method 29 duplicate analysis OC data for Run R-M29-O-2. With the exception of lead in the front half fraction, the duplicate analysis QC results were within the RPD limit of $\pm 20\%$. Table 6.10 presents the results of the method blank. All analytes found in the method blank were detected at a level equal to or less than the Reporting Detection Limits (RDLs) except for Ni. The Ni results should be considered biased high. Table 6.11 summarizes the Method 29 field and reagent blank analysis QC data. The field blank was collected during the field sampling portion of the test program and is used as an indicator of background contamination in the ambient air at the sampling site. The reagent blanks were analyzed for the target metals and the results were used to correct the sample results.

Table 6.12 presents the results of the Method 29 matrix spikes for mercury. The predigestion spike and the pre-digestion spike duplicate for Hg for several of the samples demonstrated percent recoveries outside the QC criteria, which may indicate significant matrix effects specific to this analyte in the native sample matrix. Table 6.13 presents the results of the

mercury analysis of the field blank sample. The results of the analysis for mercury were below the detection limit for all fractions.

TABLE 6.6

SUMMARY OF METHOD 29 ANALYSIS QC DATA
LAB CONTROL SPIKES
ASPHALT PLANT "B" - CARY, NC

Analyte	Spike Amount (µg)	Recovered Amount (μg)	Recovery (%)
Ag	50	42.95	86
As	50	44.95	90
Ba	50	46.80	94
Be	50	45.78	92
Cd	50	46.59	93
Co	50	46.65	93
Cr	50	47.19	94
Cu	50	47.89	96
Mn	50	47.50	95
Ni	50	65.43	131
P	1000	908.82	91
Pb	50	45.94	92
Sb	50	46.51	93
Se	50	46.39	93
Tl	50	36.40	73
Zn	200	194.41	97

TABLE 6.7

SUMMARY OF METHOD 29 ANALYSIS QC DATA
POST DIGESTION MATRIX SPIKES RUN NO. R-M29-O-1
ASPHALT PLANT "B" - CARY, NC

	Front	Half	Back	Half
Analyte	Recovered Amount (µg/L)	Recovery (%)	Recovered Amount (µg/L)	Recovery (%)
· Ag	42.33	80	42.65	83
As	47.28	95	42.89	86
Ba	575.52	LS	58.97	101
Be	44.63	89	46.31	93
Cd	43.53	87	51.82	95
Со	17.32	35	47.41	95
Cr	172.26	93	52.63	94
Cu	118.97	95	68.63	96
Mn	709.59	LS	63.17	82
Ni	105.88	94	79.71	94
Р	1391.02	89	1419.02	86
Pb	75.53	90	96.36	89
Sb	95.35	114	45.56	91
Se	85.76	78	50.52	83
Tl	20.40	82	21.90	88
Zn	397.21	92	389.40	86
LS Low spike; %	Recovery is not consider	red valid when spike a	mount is less than 20% o	of recovered amount

TABLE 6.8

METHOD 29 SERIAL DILUTION ANALYSIS QC DATA RUN NO. R-M29-O-1
ASPHALT PLANT "B" - CARY, NC

		Front Half			Back Half			
Analyte	Sample (μg)	Serial Dilution (µg)	RPD (%)	Sample (μg)	Serial Dilution (µg)	RPD (%)	RPD Limit (%)	
Ag	0.241	<0.500	<rdl< td=""><td>0.137</td><td><0.527</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	0.137	<0.527	<rdl< td=""><td>10</td></rdl<>	10	
As	<0.500	<2.50	<rdl< td=""><td><0.527</td><td><2.64</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	<0.527	<2.64	<rdl< td=""><td>10</td></rdl<>	10	
Ba	54.0	55.9	3.46	0.901	<1.05	<rdl< td=""><td>10</td></rdl<>	10	
Be	<0.100	<0.500	<rdl< td=""><td><0.105</td><td><0.527</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	<0.105	<0.527	<rdl< td=""><td>10</td></rdl<>	10	
Cd	<0.100	<0.500	<rdl< td=""><td>0.479</td><td><0.527</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	0.479	<0.527	<rdl< td=""><td>10</td></rdl<>	10	
Со	<0.100	<0.500	<rdl< td=""><td><0.105</td><td><0.527</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	<0.105	<0.527	<rdl< td=""><td>10</td></rdl<>	10	
Cr	12.6	16.3	25.6	0.609	<1.05	<rdl< td=""><td>10</td></rdl<>	10	
Cu	7.13	7.10	<rdl< td=""><td>2.16</td><td>1.66</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	2.16	1.66	<rdl< td=""><td>10</td></rdl<>	10	
Mn	67.7	72.1	6.29	2.34	1.95	<rdl< td=""><td>10</td></rdl<>	10	
Ni	5.91	6.66	<rdl< td=""><td>3.46</td><td>2.85</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	3.46	2.85	<rdl< td=""><td>10</td></rdl<>	10	
P	50.6	55.1	<rdl< td=""><td>.59.3</td><td>57.2</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	.59.3	57.2	<rdl< td=""><td>10</td></rdl<>	10	
Pb	3.07	3.80	<rdl< td=""><td>5.47</td><td>5.96</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	5.47	5.96	<rdl< td=""><td>10</td></rdl<>	10	
Sb	3.84	5.76	<rdl< td=""><td><0.422</td><td><2.11</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	<0.422	<2.11	<rdl< td=""><td>10</td></rdl<>	10	
Se	4.67	5.44	<rdl< td=""><td>0.962</td><td><1.58</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	0.962	<1.58	<rdl< td=""><td>10</td></rdl<>	10	
TI	<0.200	<1.00	<rdl< td=""><td><0.211</td><td><1.05</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	<0.211	<1.05	<rdl< td=""><td>10</td></rdl<>	10	
Zn	21.4	23.4	<rdl< td=""><td>22.9</td><td>23.4</td><td><rdl< td=""><td>10</td></rdl<></td></rdl<>	22.9	23.4	<rdl< td=""><td>10</td></rdl<>	10	

^{*} Note: Serial dilution analyte results are not considered valid when the concentration in the analyte is less than 10 times the Reported Detection Limit (RDL) for ICP analysis and 5 times the RDL for GFAA analysis. RPD = Relative percent deviation.

TABLE 6.9

METHOD 29 DUPLICATE ANALYSIS QC ANALYSIS DATA RUN NO. R-M29-O-2
ASPHALT PLANT "B" - CARY, NC

		Front Half		Back Half			
Analyte	Sample (µg)	Duplicate (μg)	RPD (%)	Sample (µg)	Duplicate (µg)	RPD (%)	
Ag	0.215	0.219	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>	
As	<0.500	<0.500	<rdl< td=""><td><0.528</td><td><0.528</td><td><rdl< td=""></rdl<></td></rdl<>	<0.528	<0.528	<rdl< td=""></rdl<>	
Ba	40.2	40.1	0.249	0.748	0.722	<rdl< td=""></rdl<>	
Be	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>	
Cd	0.174	<0.100	<rdl< td=""><td>0.203</td><td>0.18</td><td><rdl< td=""></rdl<></td></rdl<>	0.203	0.18	<rdl< td=""></rdl<>	
Со	<0.100	<0.100	<rdl< td=""><td><0.106</td><td><0.106</td><td><rdl< td=""></rdl<></td></rdl<>	<0.106	<0.106	<rdl< td=""></rdl<>	
Cr	10.5	10.5	0.00	0.594	0.443	<rdl< td=""></rdl<>	
Cu	5.73	5.81	1.39	1.45	1.29	<rdl< td=""></rdl<>	
Mn	63.3	63.0	0.475	11.7	11.6	0.858	
Ni	5.02	5.01	0.199	1.52	1.44	<rdl< td=""></rdl<>	
P	46.4	44.5	4.18	69.7	68.7	1.45	
Pb	2.41	2.14	11.9	3.02	3.02	0.00	
Sb	3.85	3.30	RDL	<0.422	<0.422	<rdl< td=""></rdl<>	
Se	3.75	3.99	6.20	0.683	0.743	<rdl< td=""></rdl<>	
Ti	<0.20	N/A	N/A	<0.211	N/A	N/A	
Zn	18.3	18.1	1.10	7.75	7.57	<rdl< td=""></rdl<>	
Note: Duplicat	te analysis not re	ported for TI, sine	ce TI was analyz	ed by GFAA			

6-14

TABLE 6.10

METHOD 29 METHOD BLANK ANALYSIS QC DATA
ASPHALT PLANT "B" - CARY, NC

Analyte	Reporting Detection Limit (μg/L)	Recovered Amount (μg/L)	Pass or Fail*
Ag	1	-0.31	Pass
As	5	-0.83	Pass
Ва	2	0.08	Pass
Ве	1	-0.01	Pass
Cd	. 1	0.03	Pass
Со	1	-0.32	Pass
Cr	2	0.26	Pass
Cu	2	0.73	Pass
Mn	2	0.39	Pass
Ni	3	10.14	Fail
P	30	-5.19	Pass
Pb	2	0.71	Pass
Sb	4	-0.06	Pass
Se	3	0.50	Pass
Tl	2	-1.30	Pass
Zn	12	2.79	Pass

^{*} Method Blank considered "Pass" when recovered amount is less than the detection limit

TABLE 6.11

METHOD 29 FIELD AND REAGENT BLANK ANALYSIS QC DATA
ASPHALT PLANT "B" - CARY, NC

	Field	Blank	Reagen	t Blank
Analyte	Front Half (µg	Back Half (μg)	Front Half(µg)	Back Half (μg)
Ag	0.155	0.205	0.270	<0.100
As	<0.500	<0.500	<0.500	<0.500
Ba	12.4	<0.200	4.33	0.326
Be	<0.100	<0.100	<0.100	<0.100
Cd	<0.100	<0.100	<0.100	<0.100
Со	<0.100	<0.100	<0.100	<0.100
Cr	10.7	<0.200	9.33	0.222
Cu	4.65	0.256	1.06	1.44
Mn	37.7	0.456	0.911	34.7
Ni	4.88	0.582	4.68	0.606
P	28.9	<3.00	<3.00	55.3
Pb	<0.200	0.393	<0.200	0.265
Sb	4.77	<0.400	4.18	<0.400
Se	4.18	<0.300	4.35	<0.300
Tl	<0.200	<0.200	<0.200	<0.200
Zn	10.1	1.26	2.60	2.03

Note: Method 29 reagents were prepared from the same lots for the testing conducted on the parallel flow drier and the counter flow drier, therefore, only one set of reagent blanks were submitted for analysis. Reprints of the reagent blank analysis results are presented in Appendix C.2. These reagent blanks were submitted along with the samples collected during testing on the counter flow drier.

TABLE 6.12

METHOD 29 MERCURY SPIKE ANALYSIS QC DATA
ASPHALT PLANT "B" - CARY, NC

Sample ID	Spike Amount (µg)	Recovery (%)	Recovery Limits (%)
Lab Control Spikes		•	
LCS1	5	100	80-120
LCS1 Dup	5	98	80-120
LCS 2	5	107	80-120
LCS 2 Dup	5	109	80-120
LCS 3	5	100	80-120
LCS 3 Dup	5	97	80-120
Matrix Spikes	•		
R-M29-O-1	5	50	80-120
R-M29-O-1 Dup	5	51	80-120
R-M29-O-2	5	58	80-120
R-M29-O-2 Dup	5	54	80-120
R-M29-O-FB	5	99	80-120
R-M29-O-FB Dup	5	102	80-120
R-M29-I-1	5	52	80-120
R-M29-I-1 Dup	5	53	80-120
R-M29-I-2	5	163	80-120
R-M29-I-2 Dup	5	159	80-120
R-M29-I-3	5	169	80-120
R-M29-I-3 Dup	5	172	80-120

TABLE 6.13

METHOD 29 MERCURY FIELD BLANK ANALYSIS QC DATA ASPHALT PLANT "B" - CARY, NC

Sample ID	Recovered Amount (µg)
FH	< 0.400
FH - Dup	< 0.400
вн	< 0.300
BH- Dup	< 0.300
HNO3	< 0.300
HNO3 - Dup	< 0.300
KMnO4	<1.60
KmnO4 - Dup	<1.60
нсі	< 0.200
HCl - Dup	< 0.200

APPENDIX A PROCESS DATA

				•
		-		

Appendix A: Process Data
ASPHALT FLANT "B"

Test Run 1

			Asphalt (Concrete	I]		Asp	halt	Calc	ulated
			Produ	ıction	Asphalt	Aggreg	gate Use	RAF	^o Use	Ceme	nt Use	Conditi	oner Use
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0940		RI-2	210	547	297	159	418	39	102	12.9	28	0	0
1000	*	RI-2	209	600	297	159	457	37	112	12.7	31	0	0
1015		RI-2	208	631	309	159	481	37	118	12.6	32	0	0
1030		RI-2	209	684	303	158	521	38	128	12.8	35	0	0
1045		RI-2	210	736	296	159	560	38	138	12.7	38	0	0
1100		RI-2	209	788	310	158	600	39	147	12.6	40	0	0
1115		RI-2	208	840	301	158	640	38	157	12.7	43	0	0
1130	*	RI-2	209	892	301	158	679	39	167	12.7	46	0	0
1145		RI-2	208	928	320	158	707	37	174	12.7	48	0 ·	0
1200		RI-2	211	976	304	159	743	40	183	12.9	50	0	0
1215		RI-2	209	1,028	301	159	782	37	193	12.8	53	0	0
1230	i	RI-2	210	1,080	296	159	822	38	203	12.8	55	0	0
1245		RI-2	211	1,133	292	159	862	39	213	12.9	58	0	0
1300		RI-2	212	1,185	330	160	902	39	223	12.9	61	0	0
1315		RI-2	209	1,238	292	160	942	37	233	12.7	64	0	0
1330		RI-2	207	1,290	305	159	981	36	243	12.5	66	0	0
1345	*	RI-2	211	1,343	293	161	1,022	37	253	12.9	69	0	0
1415		RI-2	206	1,422	290	158	1,081	35	268	12.8	73	0	0
1430		RI-2	211	1,474	297	161	1,120	37	278	12.9	76	0	0 .
1445	*	RI-2	149	1,511	296	113	1,149	18	285	9.2	78	0	0
1500		RI-2	151	1,549	292	114	1,177	28	292	9.2	80	0	0
1516		RJ-2	149	1,586	308	113	1,206	26	299	9.1	82	0	0

Appendix A: Process Data
ASPHALT PLANT "8"

Test Run 1

			Asphalt Concrete							Asphalt		Calculated	
	į		Produ	ction	Asphalt	Aggreg	ate Use	RAP Use		Cement Use		Conditioner Use	
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
Total				1,039			788		197		54		0
Mean			201		301	153		36		12.3		0	
St. Dev			21		9	16		5		1.2		0	
Min			149		290	113		18		9.1		0	
Max			212		330	161		40		12.9		0	

^{*}See Table 4 for a description of these events.

ASPHALT PLANT "B"

Test Run 1

	T	T		Fabric F	ilter	 	
			Inlet	Outlet	Pressure	Fuel	
		Product	Temp.	Temp.	Drop	Use	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	i	Emissions
0940		RI-2	345	270	0.8	77564	none
1000	*	RI-2	340	270	0.8	77656	none
1015		RI-2	365	270	0.8	77719	none
1030		RI-2	350	285	0.9	77815	none
1045		RI-2	340	270	0.9	77911	none
1100		RI-2	350	270	0.9	78003	none
1115		RI-2	350	270	0.9	78113	none
1130	* ,	RI-2	350	280	0.9	78201	none
1145		RI-2	330	235	1.2	78260	none
1200		RI-2	350	275	1.1	78375	none
1215		RI-2	340	280	1.0	78448	none
1230		RI-2	340	270	1.0	78577	none
1245		RI-2	340	270	1.0	78648	none.
1300		RI-2	335	270	1.0	78749	none
1315		RI-2	335	270	1.0	78837	none
1330		RI-2	350	270	0.8	78923	none
1345		RI-2	340	270	0.8	79020	none
1415		RI-2	350	260	0.9	79154	none
1430		RI-2	330	280	1.0	79258	none
1445	*	RI-2	350	270	1.0	79325	none
1500		RI-2	345	275	1.0	79404	none
1516		RI-2	350	285	1.0	79470	none

Test Run 1

		I		Fabric Fi	lter		
			Inlet	Outlet	Pressure	Fuel	
		Product	Temp.	Temp.	Drop	Use	Visible
Time	Event	Туре	(oF)_	(oF)	(in. H2O)	(gal)	Emissions
Total						1,906	
Mean			344	271	0.9		
St. Dev			8	10	0.1		
Min			330	235	0.8		<u> </u>
Max			365	285	1.2		İ

^{*}See Table 4 for a description of these events.

Appendix A: Process Data
ASPHALT PLANT "B"

Test Run 2

			, -	Concrete				1		Ası	ohalt	Calc	ulated
	l			uction	Asphalt	Aggreg	gate Use	RAI	P Use	Ceme	nt Use	Conditi	oner Use
	[Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0746		RI-2	194	86	295	146	66	37	15	11.7	4	0	0
0800		RI-2	193	116	298	145	90	36	21	11.8	6	0	0
0815		RI-2	192	164	294	147	126	34	30	11.7	8	0	0
0830		RI-2	195	212	288	148	163	36	39	11.7	11	0	0
0845		RI-2	197	261	299	149	200	36	48	12.0	13	0	0
0900	*	RI-2	195	310	306	149	237	34	57	12.0	16	0	0
0915		RI-2	198	341	300	150	260	36	63	12.1	17	0	0
0930	'	RI-2	206	390	285	150	298	43	73	12.6	20	0	0
0945		RI-2	200	440	299	151	336	37	82	12.2	22	0	0
1000		RI-2	199	490	299	151	372	36	92	12.1	25	0	0
1015		RI-2	198	540	29 9	151	411	35	101	12.2	27	0	0
1030		RI-2	199	589	302	151	449	36	110	12.1	30	0	0
1045		RI-2	198	639	301	151	487	35	120	12.2	33	0	0
1100	*	RI-2	204	689	297	153	525	39	129	12.3	35	0	0
1130		RI-2	199	755	296	152	575	35	142	12.2	38	0	0
1145		RI-2	203	805	321	153	613	38	152	12.2	41	0	0
1200		RI-2	201	856	307	154	651	35	161	12.2	44	0	0
1215		RI-2	201	906	309	152	689	37	171	12.2	46	0	0
1230		RI-2	203	957	304	154	728	37	180	12.3	49	0	0
1245		RI-2	198	1007	303	153	766	32	190	12.1	51	0	0
1300		RI-2	204	1058	284	154	805	38	200	12.3	54	0	0
1315		RI-2	203	1109	296	154	843	37	209	12.3	56	0	0
1330		RI-2	202	1159	305	153	881	36	219	12.2	59	0	0
1345	*	RI-2	195	1209	302	152	920	30	228	12.0	62	0	0
1415		RI-2	197	1278	293	150	972	35	241	12.0	65	0	0
1428		RI-2	198	1327	302	150	1009	36	250	12.0	68	0	0

Test Run 2

			Asphalt (Asphalt Concrete						Asphalt		Calculated	
			Production		Asphalt	Aggregate Use		RAP Use		Cement Use		Conditioner Use	
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(ТРН)	(tons)	(TPH)	(tons)	(TPH)	(tons)
Total				1,241			943		235		64		0
Mean			199		299	151		36		12.1		0	
St. Dev			4		7	2		2 .		0.2		0	
Min			192		284	145		30		11.7		0	
Max			206		321	154		43		12.6		0	

^{*}See Table 4 for a description of these events.

Appendix A: Process Data
Asphalt Plant "B"

Test Run 2

F ====			<u> </u>				
				Fabric I		_	
1			Inlet	Outlet		Fuel	
T		Product	p.	, -		Use	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(gal)	Emissions
0746		RI-2	345	340	0.9	79777	none
0800		RI-2	340	260	0.8	79861	none
0815		RI-2	340	270	0.9	79947	none
0830	<u> </u>	RI-2	330	255	0.9	80048	none
0845	<u> </u>	RI-2	340	260	0.8	80118	none
0900	*	RI-2	350	270	0.9	80224	none
0915		RI-2	350	280	1.0	80284	none
0930		RI-2	330	285	1.0	80374	none
0945		RI-2	340	285	1.0	80485	none
1000	<u> </u>	RI-2	350	280	1.0	80570	none
1015	 	RI-2	350	290	1.0	80655	попе
1030		RI-2	350	285	1.0	80763	none
1045		RI-2	345	280	1.0	80854	none.
1100	*	RI-2	350	290	1.0	80943	none
1130		RI-2	350	280	1.1	81068	none
1145		RI-2	360	300	1.0	81170	none
1200		RI-2	350	295	1.0	81261	none
1215		RI-2	350	290	1.0	81364	none
1230		RI-2	350	295	1.0	81461	none
1245		RI-2	340	285	1.0	81529	none
1300		RI-2	325	275	1.0	81611	none
1315		RI-2	335	275	0.5	81692	none
1330		RI-2	335	285	0.5	81776	none
1345	*	RI-2	340	290	0.5	81864	none
1415		RI-2	330	280	0.1	81978	none
1428		RI-2	340	275		82082	none

Appendix A: Process Data
Asphalt Plant "B"

Test Run 2

				Fabric Fi			
			Inlet	Outlet	Pressure	Fuel	
		Product	Temp.	Temp.	Drop	Use	Visible
Time	Event	Туре	(oF)	(oF)	(in. H2O)	(gal)	Emissions
Total						2,305	
Mean			343	283	0.9		
St. Dev			8	16	0.2		
Min			325	255	0.1		
Max			360	340	1.1		

^{*}See Table 4 for a description of these events.

ASPHALT PLANT "8"
Test Run 3

	T	1	Annhalt	Cananata		T							
}				Concrete	A 4 - 14						ohalt	i	ulated
İ	1	Dunadana		oction	Asphalt		gate Use	 	Use	+	nt Use		oner Use
Time	Essent	Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
	Event	Туре	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
0809	ļ	I-2	130	28	344	122	28	0	0	8.1	1	0	0
0822	 	I-2	160	66	293	150	66	0	0	9.9	4	0	0
0837		Binder	150	102	310	143	102	0	0	6.8	6	0	0
0852		Binder	153	139	296	146	138	0	0	7.1	8	0	0
0907		Binder	154	175	296	147	175	0	0.	7.0	9	0	0
0922		Binder	154	212	295	147	212	0	0	7.0	11	0	0
0937		Binder	155	249	296	148	249	0	0	7.2	13	0	0
0952		Binder	155	285	300	148	285	0	0	7.2	15	0	0
1007	*	Binder	188	329	297	179	329	0	0	8.7	17	0	0
1022		I-2	185	373	300	177	373	0	0	8.4	19	0	0
1037		I-2	194	419	291	182	419	0	0	12.0	22	0	0
1052		I-2	193	464	300	181	464	0	0	12.0	25	0	0
1107		I-2	195	509	302	183	509	0	0	12.1	28	0	0
1122		I-2	194	555	286	182	555	0	0	12.0	31	0	0
1137		I-2	194	600	288	182	600	0	0	12.0	34	0	0
1152		I-2	193	645	289	181	645	0	0	12.0	37	0	0
1207	*	I-2	194	691	297	182	691	0	0	12.0	40	0	0
1222		I-2	193	709	302	182	709	0	0	11.8	41	0	0
1237	*	I-2	132	749	334	124	749	0	0	8.2	44	0	0
1325		I-2	130	772	352	122	772	0	0	8.0	45	0	0
1337		I-2	130	788	293	122	788	0	0	8.0	46	0	0
1352		I-2	130	818	292	122	818	0	0	8.1	48	0	0
1407		I-2	131	819	307	123	849	0	0	8.1	50	0	0
1413		I-2	130	867	311	123	867	0	0	8.1	52	0	0

ASPHALT PLANT "B"

Test Run 3

			Asphalt Concrete Production Asphalt		Aggreg	Aggregate Use RAP Use			Asphalt Cement Use		Calculated Conditioner Use		
		Product	Rate	Total	Temp.	Rate	Total	Rate	Total	Rate	Total	Rate	Total
Time	Event	Type	(TPH)	(tons)	(oF)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)	(TPH)	(tons)
Total				839			839		0		51		0
Mean			163		303	154		0		9.2		0	
St. Dev			26		17	25		0		2.0		0	
Min			130		286	122		0		6.8		0	
Max			195		352	183		0		12.1		0	

^{*}See Table 4 for a description of these events.

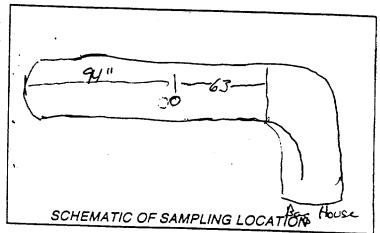
ASPHALT PLANT "B"

Test Run 3

F	T		T	Fabric F	T	T	
	ļ		Inlet	Outlet	Pressure	Fuel	
ļ		Product		Temp.	Drop	Use	Visible
Time	Event	Type	(oF)	(oF)	(in. H2O)	1	Emissions
0809		I-2	365	285	1.0	والمراجع المراجع المراجع	
0822	 	I-2	320	265		83174	none
0837	 				2.0	83250	none
<u> </u>		Binder	335	285	1.0	83317	none
0852		Binder	320	270	1.2	83394	none
0907		Binder	320	270	1.2	83444	none
0922		Binder	320	270	1.1	83508	none
0937		Binder	325	270	1.1	83572	none
0952		Binder	330	270	1.1	83638	none
1007	*	Binder	320	270	1.0	83711	none
1022		I-2	290	270	1.0	83784	none
1037		I-2	310	260	1.2	83872	none
1052		I-2	320	260	1.5	83927	none
1107		I-2	320	270	1.3	84055	none
1122		I-2	310	260	1.2	84171	none
1137		I-2	310	260	1.2	84209	none
1152		I-2	310	260	1.2	84305	none
1207	*	I-2	320	265	1.5	84404	none
1222		I-2	310	250	1.9	84434	none
1237	*	I-2	360	290	1.9	84512	none
1325		I-2	370	270	0.5	84556	none
1337		I-2	320	260	0.5	84600	none
1352		I-2	320	260	0.5	84657	none
1407		I-2	335	280	1.0	84728	none
1413		I-2	335	280	1.0	84794	

APPENDIX B RAW FIELD DATA

Appendix B.1


Raw Field Data

Baghouse Inlet

EPA METHOD 1 TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

PLANT ASPHALT PLANT "B"	Γ
STATE NC	
SAMPLING LOCATION Tolet to back lower	
INSIDE OF FAR WALL TO OUTSIDE	
OF NIPPLE, (DISTANCE A) 573/4	ľ
INSIDE OF NEAR WALL TO OUTSIDE	
OF NIPPLE, (DISTANCE B) 3 1/4	•
NEAREST UPSTREAM DISTURBANCE 941	
DISTURBANCE GOOD OF NOW	
NEAREST DOWNSTREAM DISTURBANCE 63"	١.
DISTURBANCE 900 Roll	
SAMPLER ADD/MH DATE 8-25-97	

					WIF LING LOCATIONS
TRAVERSE POINT NUMBER	FRACTION OF STACK I.D.	STACK I.D.	PRODUCT OF COLUMNS 2 AND 3 (TO NEAREST 1/8-INCH)	DISTANCE B	TRAVERSE DISTANCE FROM OUTSIDE OF NIPPLE (SUM OF COLUMNS 4 & 5)
i	2.1	54.4	1.14	31/1 5.25	
2	6.7		3.63)	6.88 67/8
3	11.8		6.40		9.65 9.78
4	17.7		9.60		12.88 12.7/8
5	75,0		13.56		16.81 163/4
6	35.6		19,31		22.56 22 1/2
7	64.4		34.94		38.19 38 14
8	75,0		40-69		43.94 43 7/8
9	82.3		44.65		47.90 47 1/8
10	88.1		47.85	()	
	93.3		50.62		51.10 51 1/8 53.87 53 7/8
12	97.9		53.11	$\sim M/$	56.36 56 3/8
					06.36 36 78
				·	

GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant: , ASPHALT PLANT "B"	Date: <u>8/</u> 2ζ
Sampling Location: Bughouse Falet	Clock Time: 8:00
Run #: Preliniam	Operators: MH/AD
Barometric Pressure, in. Hg: 2985	Static Pressure, in. H ₂ O: 1/8
Moisture, %: 25 %. Molecular wt., Dry:	Pitot Tube, Cp: <u>0,84</u>
Stack Dimension, in. Diameter or Side 1:	Side 2:
Mot Bulk OE: Dr. Bulk OE:	

Traverse	Velocity	Stack		
Point	Head	Temp.		
Number	In. H ₂ 0			
AI	0.44			
<u> </u>	0.49	122		
3	0.55	140 186		
4	0.57	·186		
5	0.58	219 277		
6	0.60	270 2		
5 6	0 .70 0 0.57	279		
8	Q→20.4°	283		
9	0.77 ~	287		
10	0-8-10.74	289		
11	0.840.70	291		
12	1000 660 0	293		
B 1	0.11	250		
2 3	0.16	37C		
3	0.23	269		
4	0.26	D74		
5	0.43	373		
6	0.48	J 72		
7		266		
٦ 8 1	0.50	263		
1	0.94	261		
10	0.53	200		
11	0.45			
17	9.41			
	√ <u>AP</u> = 0,686	70 = 271.8		

b, ⁰ F:		_	
Md = (0.44 x %	0.52 x (0.52 x (×0 ₂) + (0.28 × %N	(2)
Md = (0.44 x) + (0.32 x) + (0.28 x)
Md =			
Me = Md x (1 -	% H ₂ O 100) + 18 (%H ₂ O 100)	
Me = (x (1 - 100) + 18 ()	
Ms =			
Te =	°F =	^o R (^o F + 460)	
$Ps = Pb + \frac{S.P.}{13.6}$	-=()	+	
Ps =	in. Hg		
<u> </u>			
Vs = 85,49 x Cp	× √ × √	Te (°R) Pe x Me	
Vs = 85.49 x ()×()×√	
Ve =	ft/s		•
As -	â ²		
Qa = Va x Aa x 6	90 s/m		
Qe =	×	x 60	
Qe =	acfm		
Qe _{std} = Qs x 17.	847 x Pe x (1	- %H2O	
Ce _{std} =	x 17.647 x —	x (1	100

0.28 km/ N,22/c

GAS ANALYSIS DATA FORM

PLANTASPHALT PLANT "B"	501M151170
DATE 8-28-97 TEST NO BI-M3-Z	COMMENTS:
SAMPLING TIME (24-hr CLOCK)	
SAMPLING LOCATION BACHOUSE INLET	
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)	
ANALYTICAL METHOD ORSAT	
AMBIENT TEMPERATURE	
OPERATOR T. THOMPSON	

RUN		1		2		3					
GAS ACTUAL READING	NET	NET	NET	NET	ACTUAL READING	NET	ACTUAL READING	NET	AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _d .
CO2	5.2		5.2		5.2	5.2	5.2	44.100			
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	18.3	13.1	18.3	13.1	18.3	13.1	13,1	32 _{.′100}	<u> </u>		
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)						_		28/100			
Y2(NET IS 100 MINUS ACTUAL CO READING)		<i>81.</i> 7		81.7		81.7	81.7	28 _{/180}			

TOTAL

GAS ANALYSIS DATA FORM

PLANT	ASPHALT PLANT "	* "	COMMENTS.
DATE	TEST	NO	COMMENTS:
SAMPLING TIME (24-hr C	CLOCK()		
SAMPLING LOCATION_	Meitage	met,	
SAMPLE TYPE (BAG, IN	TEGRATED, CONTINU		
ANALYTICAL METHOD			
AMBIENT TEMPERATUR			
OPERATOR			

	1		2		3	AVERACE	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) Md.
GAS ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME		
4.0		:				4.0	44/100	
19.2	15.2					15.76	32./100	
			-			80.8	28/100	
							21 _{/100}	
	READING 4,0	READING NET	READING NET READING	READING NET READING NET	READING NET READING NET READING	READING NET READING NET READING NET	READING NET READING NET VOLUME 4.0 19.2 15.2 15.2	ACTUAL READING NET READING NET VOLUME MULTIPLIER 4.0 19.2 15.2 32.100 28/100

TOTAL

FIELD DATA SHEET

80	2.789
76	2.691 2.655 Plant: - ASPURIT PLANT "?"
80	2.670 Sampling Location Inlet to bee house
70	2.6/0 Day November 1 Date 9.33 cm

7.840

2.807 2.767

2.585 Run Number: 1 Date: 8-17-97

2.562 Pretest Leak Rate: 0.008 cfm @ 18 in. Hg.

2.5/9 Pretest Leak Check: Pitot: 6.00 Orsat:

Sample Type: Doxon Operator: AD/M It Pbar: 29.8 Ps: -1.8 O2:

CO2: 6 Probe Length/Type: 5//clc15 Pitot #: 58

Stack Diameter: 57 1/2 As:

Nozzle ID: 6.252 Thermocouple #: 58 Assumed Bws: 15% Filter #:_ Meter Box #:M5- 4 Y: 1.621 ΔH@: 1.8/8 Post-Test Leak Rate: 0.007 cfm @ 25 in. Hg. Post-Test Leak Check: Pitot: ____ Orsat: ___

	Traverse	Sempling	Clock Time	Gas Meter	Velocity	Orifice Presi	sure Differential	Stack	Temp	erature	Impinger	Dry Gas M	leter Temp.	Pump	}
	Point	Time	(24-hour	Reading	Head (∆p)	(AH)	in H2O	Temp.		°F	Temp.	Inlet	Outlet	Vacuum	
	Number	(min)	clock)	(Vm) ft ³	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^o F)	(Tm out ^O F)	(in. Hg)	Aux
	A 12	0	940	722.621											
charac.	F		9:48	727.632	0.60	1.53	1.5	310	230	261	49	91	82	15	50
change of filler	11	16	10.11	728.86	0.43	1.08	1,1	321	729	260	57	88	85	9	46
			10125	733.810 733.930											
filter _	10	26	10:32	734.700	0.56	1.28	1.3	306	234	252	57	95	87	9_	46
4:140			10:019	734.70			1				116	99	91	9	49
Charge Filter	9	30	10.00	741.77	6.37	0.94	0.94	30	233	250	49	9.7	9/	-7	77
Charge	8	40	11:07	7 % .524 747.38	0.32	6.82	0.82	308	235	250	53	101	95	7	53
RIE	- 0	10	(A) (C) (D)	741.70	0.32	0.02	0.02	2/0			-				
	7	50	11:18	752.57	0.37	0.94	0.94	308	235	245	50	106	100	26	49
and			11:31	753.584			ļ			2.2				-	4-1
and the Park CE	6	10		75006	0.54	1.39	1.4	299	236	24/	51	102	96	16	25
Plat BLL			11:46	759.021	7/			6		205	<i>CT</i> .	1-1	96	19	53
عالى	- 5	70	1155		0.36	0.80	0.86	309	232	245	50	101	16	[]	B 2
Change Rike	¥	80	1211	767.059	0.68	1.74	1.3	307	238	253	56	105	97	9	87
5		\sim	163	761.0	<u> </u>		- 1 7 	<u> </u>				1			
	3	90	12:51	779102	0.61	1.58 0P	1.6	299	236	258	49	608	97	12	50
		96.0	727	781.179	- BND	OP.	RUN							\simeq	
	1	100													
		110				·		~ <u></u>							
ļ															
ļ	ß	170										 -			
. }															
L					730			J							
			۵۷m	-	Δp=	ΔH	······	i-	-		T	m			

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant: A₅	PHALT PLAN	Run No	D.:						
Sample Da	ite:		Filter No.(s):		Job No).:			
Sample Lo									
Recovery [
Sample Re	covery Pe	erson:							
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)			
Final wt.	467.3	987.6	731.7	645.7	6043	2816	g		
Initial wt.	425.0	422.	704.7	700.6	599,6	8703	g		
Net wt.	42.3	507.3	27.0	(SA.G)	4.7	Mil	g		
		4803)	Descript	lion 1	5105	7			
Train Syste	em:						<u> </u>		
Probe:									
Filter: Colo)r -		Loading] -			_		
Impinger C	ontents:								
Silica Gel:	@Grams	Used -	Color -	%	Spent -				
Condensat	e Observe	d In Front H	alf:						
		Red	covered Samp	le Fractions			変形に 関連は		
Filter Conta	ainer No.				marke	d/sealed:			
XAD Modul	le Contain	er No.:			marke	d/sealed:			
Probe (FH) & Back Half Rinse (Acetone) Container No.: Liquid level marked/sealed:									
Probe (FH) & Back Half Rinse (Toluene) Container No.: Liquid level marked/sealed:									
Impinger Contents Container No.: Liquid level marked/sealed:									
Impinger Ri	inse (Acet	one/MeCl2)	Container No.:		Liquid				

70 80 90 90 90	+10 70(69;	Plant Sam Run Prete	pling Numi st Le	Loca ber: ak R	ation <u>T</u>	ASPHALT PLA Let to bas ho Data: 8-28: cfm @ 20 in ot: Choop Orsat:	Pbar: - 7.7 CO2: n. Hg. Probe	ole Type: <u>0</u> 29. (() 6 Length/Typ	DATA S	erator: 4	DD/MH #: 5B	Nozzle Assume Meter Bo Post-Te	d Bws:≱ ox #: <u>M⊊</u> st Leak R	Thermo	P5 / couple #: :ΔH@: Orsa	1.8(8 in. Hg.	•••
5 .	37	Travers	Sam	pling	Clock Tim	Gas Meter	Velocity	Orifice Pres	sure Differentia	Stack	Tem	perature	Impinger	Dry Gas	Meter Temp.	Pump]
W	28	Point	ı	me	(24-hour	1	Head (∆p)) in H2O	Temp.		° F	Temp.	inlet	Outlet	Vacuum	- I / I . \a/
	10	TALINO.	 	nin)	clock)	(Vm) ft 5	in H2O	Desired	Actual	(Ts)	Probe	Filter	° F	(Tm in F)	(Tm out ^o F)	(in. Hg)]
90 .	611	A 12	9		9:08	781.744	1//////	//////	4////	7////	1////	<u> </u>	1////	4///	1/////	1///	4 -
	603	3		-	6.0	205 119	0.71	0.47	B.42	309	230	257	63	85	83	1.0	52
10 ·	88	11	1 40	910	9:18	785.49	0.64	6.38	0.38	311	229	255	52	90	84	3.0	1
~ .,		W #	K	20	9!28	789 03	0.55	0.33	0.33	299	231	254	So	93	85	3.5	53
8-12 2	87	U T	4	110	7.48	781.05	0.80	0.35	0.65	1 27 1	1201	1201	10	7.5	100	>~>	87
	:66	9 4	1 de	30	9:38	192.33	0.56	134	0.34	306	230	253	52	94	88	8.0	63
	57		190	b		-]
100 .4		81	4	40	9:48	795.73	6.47	0.28	0.28	312	232	287	S	96	89	5.5	52
30 .00 .00 .00 .00 .00 .00 .00 .00 .00 .	632		90		6.542	7-10 0		ļ <u>.</u>	ļ		 	ļ	 		000		
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u> -	7 11	190	960	9158	798.82	6.38	6.23	0.23	309	233	754	51	46	89	5.5	50
	è	-	49	1/2	10:08	801.66	0.49	0.29	0.29	311	240	252	51	98	90	G-0	50
	۲	X	12	1	אָסי טו	1001.100	0.47	0.29	10.71	1911	1840	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	101	1.0	10	Le-()	
		5 8	IVO	70	10:19	804.75	0.67	0,40	0.40	312	241	288	51	99	92	8.5	80
·		A	ांत्र	,							1	1		 	·- <u>'</u>	<u> </u>	
		15	16	220	0:28	808.36	0.68	6.39	0.39	307	242	25/	52	99	93	11.0	5-1
	-	4	179			<u> </u>					<u> </u>		<u> </u>				_
	Ŀ	3 4		- 1	10:38	811.94	0.64	6.39	0.39	293	240	251	52	100	94	12.0	51
	- <u>-</u>	7	110	1/2	0	615 (4											~/
	H	Z.	\mathcal{T}	100	(0:48	815.69	0.88	0.35	0.35	304	235	249	22	99	94	12.0	5/
	- 1		7/0			010 00	^ <i>T</i> /			717	707	2	~	/00	98		/
Piller	٠H	h	顶	1011	0158	819.08	G.56	0.33	0.33	313 312	232	200	56	$\iota \infty$	18	2.0	51
مسمدن ما	13		7	120 11	103.28	825.646	(0.21)	0.14	0.14		721	240	67	101 .	97		54
lease	۳	- 	K-4 .	~	3:45	825.670	17. AY	\mathcal{O} , \mathcal{I}	0.14	317	231	~ 70	<i>Q-1</i>	101	77	1.0	0 1
2.008 7.009	\vdash	2	13	0	15:38	828.30	Γ ₆ ,0	0.17	0.17	315	229	245	65	108	99	1.0	54
7.00 1					Δ۷π	• • • • • • • • • • • • • • • • • • • •	<u> </u>	ΔH=			 	· · · · · · · · · · · · · · · · · · ·		m-			

Page	2	of	2

•			1 ugo 0t
Plant Name:	ASPHALT PLANT "B"	Test Date:	8-28-57
Run Number:		_ Operator:	MOTMA

Traverse Point	Sampling Time,	/ Clock Time (24-hour	Gas Meter Reading		Velocity Orifice Pres. Differential S lead AP.\ (△II) in. II ₂ O Te		al Stack Probe Temp. • F Temp. / Filter		Impinger		Acter Temp.	Pump]	
Number	(min.)	clock)	(V) ft 3	Head (P,) in. H2O	Desired	Actual	(T)		ь, нист р.• F	Temp.	Inlet (Th _{in})* F	Outlet (E _{out}) °F	Vacuum In. Hg	AUX
9		i							1		<u></u>	S Guiz		<u> </u>
3	140	1 1348	830.72	0.24	OB 0.15	0.15	305	282	1247	45	108	102	2.0	55
У	150	11108	83314	0.2Y	.0.16	0.16	294	233	1251	63	106	104	2.0	56
	<u> </u>								7	A second				
_5	160	19/18	638.53	0-18	0.12	0.17	290	233	1250	47	105	106	20	24
6	170	114128	837.980	ren	90 C	105	J		· /					
7	180	1							<i>,</i>			-		
		1							/					
	190	',						-	,					
9	x20	1							<u>'</u>					
10	240	1 .												
	420	'						- 1						
		1				`			·		·			
77	730	/						/						
	240	',							· — —					
		1						7						
								1						

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant:	As	PHALT PLANT	- " z "		Run No	o.:			
Sample Da	ite: 8/28	5/97	Filter No.(s):		Job No				
Sample Lo	cation:	EHELD	8LK-1	NLET R	UN2		·		
Recovery [Recovery Date: XAD-2 Trap No.(s):								
Sample Re	Sample Recovery Person:								
				View Sulvay					
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)	25 (278.5%)		
Final wt.	852.8	528.9	7057	705.3	604.6	268 5	g		
Initial wt.	467.8	427.8	705.1	704.3	602.8	853.2	g		
Net wt.	3 85.0	13.2	0.6	1.0	1.8	13.3	g		
		515,71	Descript	ion 🦳 🧻	OIPL = 4	14.9.			
Train Syste	em:					J			
Probe:	······								
Filter: Colo	r -		Loading] -					
Impinger C	ontents:								
Silica Gel:	@Grams	Used -	Color -	%	Spent -				
Condensate	e Observe	ed In Front H							
	1824	Rei	covered Samp	le Fractions			W W.		
F116 0 .							* Service Service		
Filter Conta	iner No.				marke	d/sealed:			
XAD Modul	e Contain	er No.:			marke	d/sealed:			
l iquid level									
Probe (FH) & Back Half Rinse (Acetone) Container No.: marked/sealed:									
Probe (FH) & Back Half Rinse (Toluene) Container No.: Liquid level marked/sealed:									
Liquid level									
Impinger Contents Container No.: marked/sealed:									
Immin D'	mpinger Rinse (Acetone/MeCl2) Container No.: Liquid level marked/sealed:								
impinger Ri	nse (Acet	one/MeCl2)	Container No.:		marked	d/sealed:			

K

FIELD DATA SHEET

0	· 666
D	.657 Plant. ASPAULT PLANT "R"
0	. 657 Plant: ASPHILL PLANT "B" . 648 Sampling Location Told to buse house
o iO	. 632 Run Number: 3 Date: 8-29-97
	Pretest Leak Rate: 0.006 cfm @ 15" in. Hg.
15	. 612 Pretest Leak Check: Pitot: 0000 Orsat: 11#

ΔVm=

Sample Type: Dioxio Operator: ADD/M H
Pbar: 29.60 Ps: -1.8

CO2: 15 O2: 6

Probe Length/Type: G//Ges Pitot #: 58

Stack Diameter: 54// As:

Nozzle ID: <u>0.194</u> Thermocouple #: <u>5 B</u>

Assumed Bws: <u>28</u> Filter #:

Meter Box #: <u>Mx-4</u>Y: <u>1.001</u> \(\Delta H@: \(\ldots \) \(\text{81 B} \)

Post-Test Leak Rate: <u>0.009</u> cfm @ <u>28</u>in. Hg.

Post-Test Leak Check: Pitot: <u>0.001</u> Orsat: \(\text{NA} \)

	Traverse	Sampling	Clock Time	Gas Meter	Velocity		ure Differential	Stack		etapnie	Impinger		leter Temp.	Pump	١.
us\	#Point	Time	(24-hour	Reading	Head (∆p)	(ΔH)	in H2O Actual	Temp. (Ts)	Probe	Filter	Temp.	Inlet (Tm in ^O F)	(I'm out ^O F)	(in, Ha)	Aug
56	Number	(min)	clock)	(Vm) ft ³	in H20	//K///	///	1388//	13/1/	/XX//	1/4/6//	/#V//	174/1	110	51
44	B!	0	8:18	838.235	1//5////	///////////////////////////////////////	~~~~	T	249	25 3	58	83	77	1.5	57
33	<u>a</u>	15	8:28	846.57	B.39	0.2Y	0.24	348	238	251	59	85	79	1.5	59
(2	3		8:38	843.33	6.30	 	0.19	305	266	255	64	88	81	1.5	59
!	4		848	845.81	0.25	0.16	0.16	291	243	255	57	89	83	2.0	60
<u>'</u>	_5	40	858	848.69	0.24	0.16	0.16	290	241	223	54	91	85		61
'	6		908	850.54	0.29	0.19	0.32	289	241	255	88	41	88	3.0	61
ŀ	7		918	B53.14			0.41	292	238	254	53	94		4.0	55
-	8		928	856.25 059.92		0.45	115	290	232	258	55	97	90	8.5	56
-	_9		938		0.69	6.44	0.49	292	229	255	59	98	69	6.0	58
-	_0		948				4.	278	230	256	61	98	91	8.0	57
4	_11		958	867.62	0.63			280	232	255		993	92	9.0	58
6"	_ 12	110	1008	9. + 1. J7	0.64	 		280	228	254	67	101	95	14.00	20
6	A 12			815.23 75.538	0.68	0.57	1. (289	231	254	52	100	94	20.0	
1		130	1115	879. 79			0.50	273	229	253	51	99	95	24.0	٠.
ŀ	10	116	1125	883.58	0.58	0.30	6. 247	8.79	230	249	54	99	98	190	152
4	- 1	150	1135	887.47	0.61	0.52	0.52	272	232	250	63	100	98	25.0	
7	- 8	160	153 1205	891-623892028	0.51	0.43	0.43	282	2 34	252	68	99	97	O	
7	7	170	12:31	940 27	0.52	0.43	0.43	302	235	251	58	103	96	4.0	20
11	6	190	12:41	902.03	0.69	0.57	0.57	295	233	251	59	97	16	7.0	237
\	5	200	13:33		0.62	0.52	6.52	280	233	250	67	100	95	/ - U I	
⅓		210	13:43	706.08	12.62	0.52	0.5>	284	229	250	62	109	96	110	28 28
:	3	220	13:53	4111 25		0.55	0.55	283	230	250	63	106	99	14.5	28
/	- { 			OLD VA	0.65	0.58	0.58	304	231	252	66	10)	99	23.0	
-		230		918.48	0.71				~		-				36
1		240	14:12	922.663		END O	FRY	N						\rightarrow	
-															

√∆p=____

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant: ASPHALT PLANT "B" Run No.:										
Sample Da	nte: 8/2,	9/97	Filter No.(s):		Job No	·.:				
Sample Lo	cation:	INLET	RW3							
Recovery [Date:		XAD-2 Trap N	o.(s):						
Sample Recovery Person:										
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)				
Final wt.	488.4	900.Z	657.4	642.3	6017	978 8				
Initial wt.	455.9	428.8	718.4	715.4	600.0	9073	9			
Net wt.	325	471.4	(61.0)	(73.1)	1,7	51.2	g g			
			Descript	ion	393.0.					
Train Syste	Train System:									
Probe:										
Filter: Colo)r -		Loading] -						
Impinger C	ontents:									
Silica Gel:	@Grams	Used -	Color -	%	Spent -					
Condensate	e Observe	d In Front H		,,,	Орсти-					
		THE BEAUTIST OF STREET	covered Samp	le Fractions			भौ द्राहरू			
				io i racciona						
Filter Conta	iner No.				marked	d/sealed:				
luboM dax	e Contain	er No.:			marker	d/sealed:				
Probe (FH)	Probe (EH) & Book Helf Birer (A									
Probe (FH) & Back Half Rinse (Toluene) Container No.: Liquid level marked/sealed:										
Impinger Centents Centein and I										
Impinger Contents Container No.: marked/sealed:										
Impinger Ri	nse (Acete	one/MeCl2)	Container No ·		Liquid					
mpinger Rinse (Acetone/MeCl2) Container No.: marked/sealed:										

PORT B IS BAST

FIELD DATA SHEET

Plant:	ASPHALT PLANT "B"
Sampling Locati	on INLET
Run Number:	1 Date: 08/27/97
Pretest Leak Rat	e: 0.011 cfm @ 15 in. Hg.
Protect Look Che	ock: Pitot: . Orsal: W/A

On all Avenue

Sample Type:	METALS OF	perator: J.E.B.
Pbar: 29.8	Ps:	-1.8"H20
CO2:	02:	
Probe Length/	Гуре: <u>5' Glas</u>	Pitot #: <u>PSC</u>
		A

250	2.B	. N.	7	į
240	. 2. 8 .	•		
260	2.7	~,		
770	2.7			
Nozzle ID: 0,250				
Assumed Bws: Meter Box #:M5~9	Filter #:	SEE RE	CUVE	Ry
Meter Box #:M5~9	Y: ۲: ۲	<u>•</u> ΔH@: [776	2 ′
Post-Test Leak Rat	e: 0,00 L	cfm <u>@23</u>	in. Hg	3 .
Post-Test Leak Che	ck: Pitot:	√_ Orsa	it: <u>\//</u>	<u>4</u>

Tm=

Transco	Sampling	Clock Time	Gas Meter	Velocity	Orifice Press	ure Differential	Stack		erabire	Impinger	<u> </u>	leter Temp.	Pump
Point	Time	(24-hour	Reading	Head (∆p)	1	in H2O	Temp.	°) F	Temp.	Inlet	Outlet	Vacuum
Number	(min)	clock)	(Vm) ft ³	in H2O	Desired	Actual	(Ts)	Probe	Filter	o _F	(Tm in ^O F)	(Tm out ^O F)	(in. Hg)
	0		118.338	77777777									
B1				0,42*	1.1		307	233	262	57	95	95	4
2	10		124.31	0,9 <u>C</u>		1 1	320	246	231	55	97	97	7
3	20		130,27	0.43**		1.1	298	262	246	55	99	97	13
4	30		136,15	0.45	1.2	1.7	303	231	229	61	100	99	19/5
	40		142.18	0.48+	1.1	1.1	299	259	251	59	106	101	11
6	50		148,07	0,44	1,2	1,2	300	761	264	63	107	104	20/4
7	60		154.08	0.47	1.2	1,7	301	264	247	54	109	105	20/4
8_	70		159.66	0.58*	1.5	1,5	299	262	270	58	101	501	19/
<u> </u>	80		166.20	0.67 AB	47	17	306	247	245	62	101	501	4
10	90	·		0.64	<u> </u>	V I							
- 11	100			!							·		
12	110										·		
	120												
			171 000) — <u> </u>		
	VF		171.036			 		<u> </u>				·	
								 			· -		
								······································					
					 								
						 							
								 					
								· · · · · · · · · · · · · · · · · · ·		<u> </u>			
								· · ·		 			
		· i				ll				L1			

Ta-

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHALT PLANT	" <i>B</i> "				Run No.	
Date: 8/2	7 97	Sample Box N	0.:			Job No.	
Sample Loca	ition: INCET					000 110.	
Sample Type	: M29						
Sample Reco	overy Person: 3	MORGAN					
	Description			Volume	ml	Sealed	/Level Marked
Front Half	CHARLES THE PROPERTY OF THE PROPERTY OF		4		202		A CONTROL OF THE PARTY OF THE P
1	Filter No.(s) M97-	0,11,12,14,15		N/A		465	· · · · · · · · · · · · · · · · · · ·
2	Acetone Rinse			156.	وا	yes	lyes
3	Nitric Rinse			264	.0	yes	lyes
Back Half					数据 数字数字		17/200
4	Nitric Rinse - Imp.	1,2,3, + Back 1/2		3594	yes	1 yes	
5A	Nitric Rinse - Impin	ric Rinse - Impinger No. 4				yes	1 400
5B	KMNO4/H2O Rinse	e - Impingers 5 &					
5C	HCI Rinse - Imping	ers 5 & 6					
Moisture Da	ta:						
Impinger	Contents	Initial			We	ght, grai	ms
No.	V	Volume, ml		tial		inal	Net
1	Knackout	Ø	693			53.3	359.7
2	5%/10%	100		2.2	80	7.5	45.3
3	5%/10%	100	.710			7.5	7.5
<u>4</u> 5	Knockout	ø		3,0 7.2		35	115.5
	KMnOy	100	() 73°			3.4	-43.8
6	KMnO4	100 N/A	731			1.6	-69,4
7	S G	D/K	311.	3	819	1.0	7.7
							
1							
Total							422.5 V
O Number 5	D Changed due to 5 impinger contain	> leaking imp	inger				

Tm=___

FIELD DATA SHEET

Plant: ASPHACT PLANT "B"	Sample Type: M 29 Operator: JEB	Nozzle ID: 0.194 Thermocouple #: T5C
Sampling Location INLET	Pbar: 29.6 Ps: -1.8	Assumed Bws: 32 Filter #: SEE RECOVERY
Run Number: 2 Date: 8/28/97	CO2:	Meter Box #: <u>M5-9</u> Y: <u>1.016</u> ΔH@: <u>1.7-76</u>
Pretest Leak Rate: 0.003 cfm @ 26 in. Hg.	Probe Length/Type: 5 GLASS Pitot #: PSC	Post-Test Leak Rate: 0,012 cfm @ 16 in. Hg.
Pretest Leak Check: Pitot: V Orsat: N/A	Stack Diameter: As:	Post-Test Leak Check: Pitol: V Orsat: N/A

OING

ſ	Transca	Sampling	Clock Time	Gas Meter	Velocity	Orifice Pressu	re Differential	Stack	Tempe		Impinger	Dry Gas M		rump
I	Point	Time	(24-hour	Reading	Head (∆p)	(∆H) i	n H2O	Temp.	0	F	Temp.	Inlet	Outlet	Vacuum
		(min)	clock)	(Vm) ft S	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in oF)	(Tm out ^o F)	(in. Hg)
ŀ	Number	0			77777777	777777	7/////							
ŀ	B]		1019	171:670	0,32	0.18	0.18	306	261	257	67	95	95	1
	2	10	1679	174,26		0.22	0.22	309	260	254	61	97	95	3
L	3	20	1039	177,02	0.38	0.24	0.74	304	260	259	61	100	97	4
Į	У	30	1049	179.98	0.42	0.243	0.20%		262	260	62	102	99	4
	2	40	1054	182.85	241-648		0.71	308	2.57	257	64	103	100	6
P	6	50	1101	185.72	0,41	0.24	0.24	312	560 737	760	53	104	101	7
	7	60	1109	188.60	0,41	0.24	0.57	316	761	259	51	105	103	11
	8	70	1119	192.19	0.63	0.37			258	233	64	v03_	103	2
$\mathcal{P}\left[ight.$	9	80	1129/	/176,364	0.76 93	2434		3/2	767	242	62	108	103	3
D	10	90		20062	0.78.98		0.41	314	246	247	66	104	103	4
l	11	180		764.37	0.70	6.41	0.40	334	246	244	67	105	103	5
	12	110		708,13	0.66	0.40	D. 40	293	230	242	60	201	103	
3)	A	150	1300	211.810	0.64	0.40	0.33	203	233	242	52	105	103	5
		130	1310	216.21	0.52	0.33		312	234	243	52	105	103	8
		140	1320	219.67	52.0	0125	0,25	3/2	233	243	53	103	102	8
		150	1330	222.58	0.40	0.78	0.26	312	234	245	5	104	102	9
		160	1340	225,46	0.41	0.26	0.19	<i>30</i> 6	235	245	53	103	LOZ	8_
[ـــٰ,		170	1350	228,17		0.23	0.23	303	23 4	243	55	105	رمح	9
Y.		180	lan	231.08	0.37	450.32	0.32	CRAN	234	242	57	10G	105	9
ļ		40		234.32					230	243	53	104	104	13
		200		237.676	0.53	0.33	و،33	299	230	<u> </u>	32	104	101	
		210,												
		iro				·								
		230												
		240										-		
ı														
ı											l		l	

ΔH=____

Te-_

<u>√∆p</u>=_

∆Vm=

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHALT PLANT	"8"				Run No.	: 2
Date: 8/2	8/97	Sample Box N	0.:			Job No.:	
Sample Loca	ition: INLET						
Sample Type	e: M29						
Sample Reco	overy Person: 3	MORGAN				•	
Container	Description			Volum	ne, ml	Sealed	/Level Marked
Front Half		Walter Assistance				. 4.4	THE RESERVE
1	Filter No.(s)						A CONTRACTOR OF THE PARTY OF TH
2	Acetone Rinse						
3	Nitric Rinse						
Back Half							
4	Nitric Rinse - Imp.	1,2,3, + Back 1/	2 Filter				
5A	Nitric Rinse - Impin					•	
5B	KMNO4/H2O Rinse - Impingers 5 & 6						
5C	HCI Rinse - Imping	ers 5 & 6					
Moisture Da	ta						
Impinger	Contents	Initial			Wei	ght, grai	ms
No.		Volume, ml	ln	itial	F	inal	Net
	EMPTY	ϕ	697	7.0	114	0.5	443.5
2	5% 10%	100	'731	٠8	75	52.6	70.8
3	5% 10%	100	674	5	67	6.1	1.6
4	EMPTY	Ø	623	.7	624	1.4	0.7
5	KMhOy	100	715	,0	710	4.7	1.7
Le .	KMnOy SG	100	732		73	4.8	١.٩
7	SG	NA	86	3.9	87	8.7	14.8
Total							AGC - /
Comments:		<u> </u>			<u> </u>		485.0 /

FIELD DATA SHEET 15% 420 K = 0.88

UMBERED NOTES ON BACK

DORT A

ASPHALT PLANT "B" Sampling Location INLET Run Number: 5 Date: 08/29/97

Pretest Leak Rate: 0.004 cfm @ 26 in. Hg. Pretest Leak Check: Pitot: VOrsat: MA

Sample Type: n 29 Operator: JEB Ps: -1.8 Pbar: 29,6 02: CO2:

Probe Length/Type: 5'GLASS Pitot #: P56 Stack Diameter:

Nozzle ID: 0,196 Thermocouple #: T54 Assumed Bws: 28 Filter #: SBE & GCOVERY Meter Box #: <u>MS-9</u> Y: 1.016 ΔH@: 1.776 Post-Test Leak Rate: 0,012 cfm @ 25 in. Hg.

Post-Test Leak Check: Pitot: V Orsat: VA

roint mber 1 2 3 4	Time (min) 0 10 70 30	(24-hour clock)	Reading (Vm) ft ³ 238.194 242.62 246.65	Head (Δp) in H20 /////// Ο :90	Desired	n H2O Actual	Temp. (Ts)	Probe	F Filter	Temp.	Inlet (Tm in ^O F)	Outlet (Tm out ^O F)	(in. Hg)
2 3	0 10 20 30		238.194 242.62			Actual	(1s) /////	Probe	Filter	J	(imair)	(IIII OUL 1)	141.1.19/
2	10 20 30	0819	242.62	090	//////	///////		,,,,,,	//////	/////	//////	777777	7777
3	70 30			0.90	1	/ / / / / / / / / / / / / / / / / / / 		(////	/////	////	/////	7////	7///
3	30				0.60	0.60	283	235	239	48	79	78	2
	30			0.73	0.49	0,49	337	257	240	43	86	81	3
5			250.49	0.73	0.49	0,49	302	258	240	45	91	85	4
	40		254.19	0.56	0.38	0.38	293		241	47	94	89	5
6	50		257.56	0.54	0.36	0.36	292	248	243	49	95		5
													6
				<u>_0,55</u>	0.57								7
					0.115								9
					1					T			10
					4							· —	10
			279,55	0,45									11
		11:08			1					1			1
					0.13 76							1	2
					0.21								2
											107	99	3
									239	22	107	100	4
		17.37					278	232	242	55	201	1.00	5
		1000			1		306	252	243	55	101	101	5
						0.55	200	230	245	58	98		6
						0.70		246	244	51	100	989	11
							283		243	52	101	99	15
						1 - 1		i -	238	22	100	w	12
					7	I		229		60	100 .	100	ZŲ
	7 9 9 10 11 7 1 2 3 4 5 6 7 8 9 0 1 1 2	7 1:00 9 1:10 9 1:20 10 1:30 11 1:50 1 2:00 2 2:00 2 2:00 3 2:20 4 2:30 5 2:50 7 3:00 9 3:20 9 3:20	7 1:00 9 1:10 9 1:20 10 1:30 11 1:40 12 1:50 1 2:00 11:05 2 2:10 3 2:20 4 2:30 5 2:40 6 2:50 7 3:00 1232 8 3:10 9 3:20 10 3:30 11 3:40 12 3:50	7 1:00	7 1:00	7 1:00	7 1:00	7 1:00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>√∆p</u>= ∆Vm=

ΔH=

Ts-

Tm-

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHALT PLANT "B"		Run No.:	3					
Date: 8/2	9/97	Sample Box No). :		Job No.:				
Sample Loca	tion: INCET								
Sample Type	: M29								
Sample Reco	overy Person: 1,	THOMPSON							
1	Description	·-··-		Volume, ml Sealed/Level Marke					
Front Half			STATE OF THE STATE	制作的					
1	Filter No.(s)								
2	Acetone Rinse								
3	Nitric Rinse								
Back Half									
4	Nitric Rinse - Imp. 1	1,2,3, + Back 1/2	2 Filter						
5A	Nitric Rinse - Impin				·				
5B	KMN04/H20 Rinse	KMNO4/H2O Rinse - Impingers 5 & 6							
5C	HCI Rinse - Imping	ers 5 & 6							
Moisture Da	Moisture Data →								
Impinger	Contents	Initial			Weight, gran	ms			
No.		Volume, ml	ln	itial	Final	Net			
1	EMPTY	0	69	9.7	1059.0	359.3			
2	5%/10%	100	73	8.1	75-7.4	(9.3			
3	5%/10%	100	67	9.9	682.0	21 _			
4	EMPTY	0	62	7.0	630.6	3.6			
5	KMnOy	100	7/0	ک, ک	716.3	(0.2)			
6	KMn O4	100		4.1	734.6	0.5			
7	EMPTY KMnOy KMnO4 SIL.GEL		876	3.7	898.0	19.3			
				· 					
Total						403.9			
Comments:						,			
			<u> </u>						

Appendix B.2

Raw Field Data

Baghouse Outlet

·			
	,		

TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

Plant: ASPHALT PLANT "B"	
Date: 8-26-97	
Sampling Location: BAG you se Oca	
Inside of Far Wall to Outside of Nipple: 33"	
Inside of Near Wall to Outside of Nipple (Nipple Length): 2" Stack I.D.: 33×49	
Distance Downstream from Flow Disturbance (Distance B):	
$2u''$ inches / Stack I.D. = $\frac{72}{}$ dd	ibleaux did
Distance Upstream from Flow Disturbance (Distance A):	
136 inches / Stack I.D. = 41 dd Calculated By: M(N)	3.45 faur Schematic of Sampling Location

Point Number of Length (inches) Columns 2 & 3 (To nearest 1/8") Length (inches) 1 4 1/8 4 1/8 2" 2 8 1/4 12 2/8 1 3 8 1/4 20 5/8 1 4 8 1/4 26 1/8 1	Location (Sum of Col. 4 & 5)
1 41/8 41/8 z" 2 81/4 123/8 3 81/4 205/8	
2 8 /4 12 2/8 3 8 /4 20 5/8	
3 8 1/4 205/8	
0 1 00 10	- , , —
4 8/4 287/8	JQ 5/8
	30 7/8

GAS VELOCITY AND VOLUMETRIC FLOW RATE

Plant:	ASPHALT 1	LANT "B"	Date: 8-76-97
Sampling Lo	cation: <u>STA</u>	146	Clock Time: 0830
Run #:	Elocity		Operators: MAD
Barometric F	Pressure, in.	Hg:	Static Pressure, in. H ₂ O: r wt., Dry: Pitot Tube, Cp:
Moisture, %;	26 16	Molecula	r wt., Dry: Pitot Tube, Cp:_ <u> </u>
Stack Dimer	nsion, in. Dia	meter or Sid	e 1: <u>35</u> Side 2: <u>47</u>
Wet Bulb, OF	:	Dry	Bulb, °F:
			$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + (0.28 \times \%N_2)$
Traverse Point	Velocity Head	Stack Temp.	mu - (0.44 x 2002) + (0.52 x 202) + (0.26 x 202)
Number	in. H ₂ O	°F	$Md = (0.44 \times) + (0.32 \times) + (0.28 \times)$
Λ <i>I</i>			Md =
7			% H,O % H,O
3			$Ma = Md \times (1 - \frac{\% H_2O}{100}) + 18 \left(\frac{\% H_2O}{100}\right)$
4			$Ma = () \times (1 - \frac{100}{100}) + 18(\frac{100}{100})$
RI	2.3	275	
2	2.3	275	Ma =
3	Z. j	279	Ts °F °R (°F + 460)
4	1.7	281	Ps = Pb + S.P. = () +
1	1.2	279	
7	1. 4	283	Ps = in. Hg
3	1.5	283	<u>Ā</u> -
Ч	1.5	285	
D = I	-66	780	Vs = 85.49 x Cp x √ Ts (°R) Ps x Me
3	.76	281	
3	. 형/	280	Va = 85.49 x () x () x √
4	.9	281	Vs = 11/s
E i	.51	279	
2	.41	279	As - 12
3	.40	779	Qs = Vs x As x 60 s/m
4 F 1	.34	277	
	-35	273	Can = x x x 80
3	. 34	777.	Ca = acfm
3	36	272	$Q_{a_{std}} = Q_{a} \times 17.647 \times \frac{P_{a}}{T_{a}} \times (1 - \frac{\% H_{2}O}{100})$
<u> </u>	_32	272	std GEX17.09/X Ts X(1 - 100
		- 000	Qe x 17.847 x x (1)
	15- 949	To = 278	Qa _{std} = x 17.847 x

GAS ANALYSIS DATA FORM

PLANT	ASPHALT	PLANT "B	м		COMMENTS:
DATE 8-28	-97	TEST NO	8-28-9	7 135-1	M3-2,
SAMPLING TIME (24-hr C	LOCK)				
SAMPLING LOCATION_	BAGA	YOUSE	STACK		
SAMPLE TYPE (BAG, IN	TEGRATED.	CONTINUOUS)	INTEGA	ATED_	
ANALYTICAL METHOD		547			
AMBIENT TEMPERATUR	E	0			
OPERATOR 7	T. TitoMF	50N			

RUN	ACTUAL READING	NET	ACTUAL READING	2 NET	ACTUAL READING	3 NET	AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _d .
CO ₂	4.9	4.9	4.9	4.9	4.9	4.9	4.9	44/100	·
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	18.5	13.6	18.5	13.6	18.5	13.6	13.6	32 _{.′100}	·
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)								²⁸ /100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)		81.5		31.5		81.5	81.5 %	28 ₁₂₀₀	

TOTAL

GAS ANALYSIS DATA FORM

PLANT ASPHALT PLANT "B"	
DATE 5/29/97 TEST NO	COMMENTS:
SAMPLING TIME (24-br CLOCK)	
SAMPLING LOCATION DRO HORE () Must	
SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS)	
ANALYTICAL METHOD	
AMBIENT TEMPERATURE	
OPERATOR	

RUN		1		2		3	T	<u> </u>	
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _d .
CO2	3.0						3,0	44./100	
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	19.3	16.3					3 4 Me	32./100	
CO(NET IS ACTUAL CO READING MINUS ACTUAL D ₂ READING)								28/100	
2 (NET IS 100 MINUS ACTUAL CO READING)					·		80.7	28 /100	

TOTAL

1-obstruction of opacity readu

SIGNATURE TITLE

I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS

DATE

Visible Emission Observation Form SOURCE NAME OBSERVATION DATE Baghouse START TIME EXIT STOP TIME 8-27-97 10:22 11:22 ADDRESS SEC (West Raleigh Plant) ASPHALT PLANT "B" MIN 15 0 30 MIN 30 15 45 New Chapel 0 1 0 0 31 0 5 0 0 2 32 O 0 0 O 3 33 0 PHONE 0 SOURCE ID NUMBER 4 34 () PROCESS EQUIPMENT OPERATING MODE aggregate dryer 5 7 35 CONTROL EQUIPMENT OPERATING MODE 6 O 0 36 7 DESCRIBE EMISSION POINT START mectangular white stack 8 STOP SAME 0 38 HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER
START 35 STOP SAME START 15 F STOP SAME 9 39 START 15 ft STOP SAME 10 DISTANCE FROM OBSERVER START 400 FT STOP SAMÉ 40 DIRECTION FROM OBSERVER 0 STARTNAW STOP SAME 0 0 11 5 Ò 41 6 DESCRIBE EMISSIONS 12 0 0 42 0 START CONING STOP upnard SAME 13 EMISSION COLÓR 0 O PLUME TYPE: CONTINUOUS & START GREY STOP SAME 14 FUGITIVE | INTERMITTENT | 44 WATER DROPLETS PRESENT. IF WATER DROPLET PLUME: 15 45 NO D YESQY ATTACHED DETACHED & POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED 16 46 START \$ 3-4 ft above exit STOP \bigcirc 17 47 0 DESCRIBE BACKGROUND 0 18 0 48 0 START frees (softwoods) STOP SAME 19 0 \mathcal{D} BACKGROUND COLOR START ZILM STOP SAMÉ 49 SKY CONDITIONS 0 START CLEAR STOP SAME 0 20 0 50 WIND SPEED WIND DIRECTION 51 START 1-3-1 STOP 0-2-P START NE STOP NE O 22 5 AMBIENT TEMP 52 WET BULB TEMP. RH.percent START 76 _STOP 78 23 50 30m 53 \bigcirc Ò Thighway 54 24 O 54 0 Source Layout Sketch Draw North Arrow 25 55 0 26 56 27 O 0 57 28 0 59 Sun- Wind _ 30 60 \Diamond Plume and NUMBER OF READINGS ABOVE AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 O % WERE 6 RANGE OF OPACITY READINGS MINIMUM MAXIMUM 5 OBSERVER'S NAME (PRINT) David G Goshaw COMMENTS OBSERVER'S SIGNATURE

ORGANIZATIÓN

CERTIFIED BY

VERIFIED BY

1)EEW

ETA

DATE 3-14-97

8-27-97

DATE

DATE

Inc

New Chape Hill Rd			. V	isible Emission (B										
ADDRESS PART TRANT B. WEST Raleigh Plant MINI 0 15 30 45 MINI 0 15	Baahous	xe Ex	it		8-	8-27-97 11:25											
New Chape Hill Rd	ODRESS SPHALT PLANT "B"	West	Ral	eigh Plant)	\	0	15	30	45	1 \ 1	0	15	30	45			
THE RECEIPT OF SAME START DEPARTMENT OF SAME START SERVICE OF SAME START SERVICE OF SAME START DEPARTMENT OF SAME START SERVICE OF SAME START DEPARTMENT OF SAME START SERVICE OF SAME START DEPARTMENT OF SAME START SERVICE OF SAME SERVICE OF SAME START SERVICE OF SAME START SERVICE OF SAME SERVICE OF SAME SERVICE OF SAME SERVICE	New Ch	apel	Hill	Rd	1	0	0		0	31	0	0	0				
SOURCE ID NUMBER 4 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ITV —	STATE		I		Q			0		/	/					
PROCESS GOUMMENT ### STOP SAME START S			E ID NUN			<u>-)</u>		0						0			
OBSERVER STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME START 35 START 35 STOP SAME STA	ROCESS EQUIPMENT		OPERA	TING MODE		$\frac{\mathcal{O}}{\mathcal{O}}$	$\frac{1}{C}$	0				0		_			
DESCRIBE EMISSION/POINT START WITCHONG AND STORY STORY START ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER START ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER START ABOVE STORY STORY DISTANCE BROM OBSERVER START AND STORY DISTANCE BROM OBSERVER START AND STORY DISTANCE BROM OBSERVER START AND STORY PUME TYPE CONTINUOUS OF THE START AND STORY START AND STORY START AND STORY START AND STORY START AND STORY START AND STORY START AND STORY START AND STORY START AND STORY START AND START AND S	aggregate dryer	-	OPERA	TING MODE	<u></u>	9)	0				6		0			
DESCRIBE EMISSION FONT START """ RECOMMENTS B	69540051	69540056							<u> </u>	<u> </u>)	X	<u> </u>				
Fight above Grown level Height relative to observer 9	SESCRIBE EMISSION POINT			<u> </u>							1						
START 35 STOP SAME DIRECTION FROM DESERVER 10 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0				38				5			
DISTANCE REMONDO SERVER DIRECTION FROM OBSERVER 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIV	E TOOBSERVER	9				0	39		0		0			
DESCRIBE EMISSIONS START VOLVASIONS START COMMENTS START STOP SAME START NON STOP SAME START COMMING START STOP SAME PULME TYPE CONTINUOUS OF 13 5 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					10	0	0	0	0	40	0	0	0	0			
DESCRIBE EMISSIONS START COMING START COMING START COMING START COMING START COMING START COMING START STOP START COMING START STOP START STOP START STOP START STOP START STOP MATER DROPLETS PRESENT: If WATER DROPLET PLUME NOW YESD ATTACHED DETACHED DETAC	START STOP SAME	1		,	11	0	2	ව		41	0		0	0			
START COMMENTS START STOP SAME START STOP SAME PLUME TYPE CONTINUOUS TO 13 5 0 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DESCRIBE EMISSIONS				12	0	0	0	0	42	/	/	0	0			
EMISSION COLOR FLUME TYPE: CONTINUOUS OF START COLOR WATER DROPLETS PRESENT: NOW YESD ATTACHED DETACHED				13	+	_	+		43	0	0		0				
WATER DROPLETS PRESENT: IF WATER DROPLET PLUME NO \$7 YESD ATTACHED DETACHED OF THE PLUME AT WHICH OPACITY WAS DETERMINED START 3-6 NOW CXIT STOP SAME TSTART 3-6 NOW CXIT STOP SAME DESCRIBE BACKGROUND START 4-6-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		1				1			_	-				+			
NO 67 YESO						\mathbb{X}		14	+	-		X	8	 			
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED START 3 - 6 ADOL (XIT STOP SAME DESCRIBE BACKGROUND START CHECKLY STOP SAME BACKGROUND COLOR START CHECKLY STOP SAME BACKGROUND COLOR START CHECKLY STOP SAME START CHECKLY STOP SAME START CHECKLY STOP SAME START OF SAME START WIND DIRECTION START OF SAME START WIND DIRECTION START OF SAME START WIND DIRECTION START OF SAME START WE STOP SAME START WE STOP SAME START OF SAME AVERAGE OPACITY FOR HIGHER OF READINGS AB HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF READINGS AB HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME HIGHEST PERIOD O. 12 AVERAGE OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGHER OF SAME OF OPACITY FOR HIGH		Ŧ			15	<u>U</u>	10	10	10	45	10	10	U	Q			
START 3 - 6 ADDIE 2xx STOP SAME 17			16	0	O	0	/	46		10	D	0					
DESCRIBE BACKGROUND START Free-/sky STOP SAME BACKGROUND COLOR START GREAT STOP SAME BACKGROUND COLOR START GREAT STOP SAME START DE STOP SAME STA			17	0	0	0	0	47	0	0	0						
START FreeStyley BACKGROUND COLOR START QUANT/ MUSTOP SAME 22 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u> </u>	18		ΤĂ	+		48	ļ	5	1	10					
BACKGROUND COLOR START GROWN STOP SAME START GROWN STOP SAME START GROWN STOP SAME START GROWN STOP SAME START OR STOP SAME STOP SAME START OR STOP SAME START OR STOP SAME STOP SAME STOP SAME START OR STOP SAME ST		STOP	SAM	E	-	+ —	+		 				15	0			
START GROWN IN STOP SAME START COOM STOP SAME 20 0 0 0 50 0 50 0 0 0 0 0 0 0 0 0 0 0	BACKGROUND COLOR	SKY CO	וסוזוסאכ	vs	79		10				+>-		\perp	<u> </u>			
WIND SPEED START OF STOP START NE STOP SAME AMBIENT TEMP START 70 STOP 82 PIDE SOURCE Layout Sketch Draw North Arrow	START GREEN/blueSTOP SAME	START			20	0	0	0	10	50		5		0			
START D2 STOP SAME START NE STOP SAME AMBIENT TEMP START 70 STOP 82 WET BULB TEMP. RH. percent 23 0 0 0 53 0 0 0 START 70 STOP 82 Pluming and Start Ne STOP SAME Source Layout Sketch Draw North Arrow 25 0 5 0 0 55 0 0 0 STOP 82 27 0 0 0 57 5 0 0 0 STOP 82 Source Layout Sketch Draw North Arrow 26 0 0 5 50 0 0 STOP 82 Pluming and Observers Position Stack Table Sun Location Arme Observers Position Stack Table Sun Location Arme Observers Position Stack Table Observers Position AVERAGE OPACITY FOR MINIMUM O MAXIMUM 5 OBSERVER'S NAME (PRINT) OBSERVER'S SIGNATURE DATE 8-27-97 ORGANIZATION DEECO INC.	WIND SPEED A-2-P	WIND	DIRECTIO	DΝ	21	0	0	0	0	51	0	0	0	7			
Source Layout Sketch Source Layout Sketch Draw North Arrow 24 0 0 0 53 0 0 0 Source Layout Sketch Draw North Arrow 25 0 5 0 0 55 0 0 27 0 0 0 58 0 0 0 28 0 0 0 58 0 0 0 29 0 0 0 59 0 0 0 AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS AB HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS MINIMUM 0 MAXIMUM 5 OBSERVER'S NAME IPRINTI DAVID G GOSHAW OBSERVER'S SIGNATURE DATE 8-27-97 I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE DATE 3-14-97		_			22			1/	1/	52	0	0	0	0			
Source Layout Sketch Draw North Arrow 24 05 55 05 05 05 05 05 06 27 05 28 00 05 28 00 05 29 00 05 05 00 05 29 00 05 05 05 06 07 06 29 07 08 NUMBER OF READINGS AB HIGHEST PERIOD OBSERVER'S NAME (PRINT) OBSERVER'S NAME (PRINT) OBSERVER'S SIGNATURE DATE 027 08 08 08 08 08 08 08 08 08 0		7	_		23	K		10	10	53	+ -						
Source Layout Sketch Draw North Arrow 25 0 5 0 0 55 0 0 0 26 0 0 5 56 0 0 0 27 0 0 0 57 5 0 0 28 0 0 0 0 58 0 0 0 29 0 0 0 59 0 0 0 AVERAGE OPACITY FOR NUMBER OF READINGS AB HIGHEST PERIOD 0.42 RANGE OF OPACITY FOR OBSERVATIONS COMMENTS OBSERVER'S NAME IPRINTY David G GOSHOW OBSERVER'S SIGNATURE DATE B-27-97 ORGANIZATION DEECO INC.	START TO STOP BL	Colem	<u>. </u>	 		14		10	1			19	17	5			
Sun-y Wind Deservers Position Stack 140° Sun Location American COMMENTS COMMENTS 26 0 0 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Carrier 1 1 1 1 1 1 1	` e	whomee			10		10	10		+- <u>~</u>	1/	12	14			
Sun Wind Deservers Position Stack Table Sun Location Area COMMENTS COMMENTS Description Comments C	Source Layout Sketch	Dra C	w North	Arrow	}	10	5	10	10			1	+	12			
Sun Wind Deservers Position Sinck 140° Sun Location Are COMMENTS Description Observers Position Observers Position AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS ABHIGHEST PERIOD 0.42 OBSERVER'S NAME IPRINTIDATION GOS OF THESE OPACITY OBSERVATIONS OBSERVER'S SIGNATUBE ORGANIZATION DEFCO INC DATE 8-27-97 ORGANIZATION SIGNATURE DATE 3-14-97	Kila	7	0,000	(\mathcal{L})	26	10	0		10	' 			+	10			
Sun Wind Deservers Position Siack 140° Sun Location Ame Print David Goshaw COMMENTS Observers Position AVERAGE OPACITY FOR NUMBER OF READINGS AB HIGHEST PERIOD 0.42 0% WERE FRAME OF OPACITY READINGS MINIMUM O MAXIMUM 5 OBSERVER'S NAME IPRINT DAVID GOSHAW OBSERVER'S SIGNATURE ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE 3-14-97		Emissio	ந்து on Point	_	27				0	57		10	0	0			
Sun Wind Deservers Position Plume and Stack 140° Sun Location Are COMMENTS Observers Position AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS MINIMUM O MAXIMUM 5 OBSERVER'S NAME IPRINTY David G GOSHAW OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION CERTIFIED BY SIGNATURE SIGNATURE OBSERVATIONS CERTIFIED BY ETA DATE 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				-15	28		0		- 			<u> </u>	0	0			
Observers Position AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS MINIMUM 0 MAXIMUM 5 OBSERVER'S NAME (PRINT) OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION THAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE OBSERVER'S SIGNATURE OATE 3-14-97				ask Elve	<u> </u>	-	0	10			<u> </u>		0	0			
Plume and Observers Position Siack 140° Sun Location arms COMMENTS AVERAGE OPACITY FOR HIGHEST PERIOD 0.42 RANGE OF OPACITY READINGS MINIMUM O MAXIMUM 5 OBSERVER'S NAME (PRINTY David G GOSHAW) OBSERVER'S SIGNATURE ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE OBSERVATIONS CERTIFIED BY SIGNATURE AVERAGE OPACITY FOR NUMBER OF READINGS AB HIGHEST PERIOD 0.42 O % WERE O MAXIMUM 5 OBSERVER'S SIGNATURE DATE 8-27-97 ORGANIZATION DEECO INC			_ /	- Kar	30	10		$\perp c$	<u>) 0</u>	1 .		1	<u> </u>	10			
THAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS THAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS THAT I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE THAT I HAVE RECEIVED BY ETA	Plume and =	Observe	ers Posit	ion						NUM	BER O	FREAL	DINGS	ABO			
OBSERVER'S NAME (PRINT) David G GOSHOW COMMENTS OBSERVER'S SIGNATURE ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE MINIMUM O MAXIMUM 5 OBSERVER'S NAME (PRINT) David G GOSHOW OBSERVER'S SIGNATURE DATE 8-27-97 CERTIFIED BY SIGNATURE DATE 3-14-97	Siack	PP						1		70 VV E		· 					
COMMENTS OBSERVER'S SIGNATURE ORGANIZATION ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE DATE 8-27-97 CERTIFIED BY ETA DATE 3-14-97	. Sun Loca	- 1	TIAIVO					0	MA.	XIMUN	5						
ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY SIGNATURE DATE 3-14-97					OBSERVER'S NAME IPRINTI David G Goshaw									<u>J</u>			
ORGANIZATION DEECO INC I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA DATE 3-14-97	COMMENIS				085	ERVER	'S SIG	NATUE	E J		DAT	E B	27-	97			
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA					ORGANIZATION												
		THESE C	PACITY	OBSERVATIONS	CER	TIFIED	BY		<u></u>	<u> </u>	DA	7E 3	- 14 - 9	17-			
		-	VER	FIED F													
		TITLE								TENNIED BY							

SIGNATURE TITLE

Visible Emission Observation Form SOURCE NAME Bughouse Exit START TIME * OBSERVATION DATE STOP TIME 8-27-97 13:29 ADDRESS SEC (West Raleigh Plant) SEC ASPHACTPLANT "B" MIN 0 15 30 45 MIN n 15 30 45 New Chapel Hill 0 \bigcirc 31 1 D $\mathcal O$ 0 0 2 0 STATE ZIP 32 0 Raleigh 0 3 33 0 PHONE SOURCE ID NUMBER 4 34 ථ 0 PROCESS EQUIPMENT OPERATING MODE 5 35 ರಿ aggregate CONTROL EQUIPMENT OPERATING MODE 6 0 36 bag house 7 37 0 DESCRIBE EMISSION POINT START White rectangular stack STOP SAME
HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TOOBSERVER
START 35 STOP SAME
START 15 STOP SAME 8 38 5 0 0 0 9 39 0 10 40 DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER START 400 FT STOP SAME START NOW STOP SAME 0 \odot 0 0 41 DESCRIBE EMISSIONS 12 42 \bigcirc 0 SAMÉ START conins STOP S 0 13 43 0 EMISSION COLOR PLUME TYPE: CONTINUOUS M STARTIGNEY STOP SAME 14 5 44 0 0 FUGITIVE D INTERMITTENT D 0 WATER DROPLETS PRESENT IF WATER DROPLET PLUME: 15 0 0 45 NO BY YES ATTACHED D DETACHED D 16 46 POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED START 3.5 Staboue exit STOP 0 17 47 4 AMÉ DESCRIBE BACKGROUND 18 0 0 48 START trees/sky STOP SAME 19 49 BACKGROUND, COLOR SKY CONDITIONS START GLEWY STOP SAME 20 50 ට START Near STOP GAME WIND SPEED WIND DIRECTION 21 START 1-3 mp L START 1-3 mp L STOP 0-3 M 51 START N STOP NW 0 22 52 \bigcirc 0 AMBIENT TEMP WET BULB TEMP. RH.percent 0 START 82 23 O STOP 88 53 **8** 72 5 24 54 Source Layout Sketch Draw North Arrow 25 55 O 26 0 56 0 27 57 0 0 0 0 5 0 28 58 59 0 30 60 O Sun-> Wind -0 Plume and AVERAGE OPACITY FOR 0.625 O % WERE HIGHEST PERIOD RANGE OF OPACITY READINGS MAXIMUM 10 MINIMUM OBSERVER'S NAME (PRINT) Gosha COMMENTS OBSERVER'S SIGNATURE DATE bstruction/inter -27-97 ORGANIZATION

NUMBER OF READINGS ABOVE during reading I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY DATE 3-14-97 DATE VERIFIED BY DATE SLIGHTLY Quality Assurance Handbook M9-4.2 * SUN MOTORIESTICS OVERHEAD. THERETIES FELT READSNO TO STILL BE ACCURATE.

Visible Emission Observation Form													
OURCE NAME Baghouse	Exit	-			VATIOI 27-9			START 13	:37		STOP TIME 14:31		
DDRESS SPHALT PLANT "B" (We	st Rai	leigh 1	Plant)	SEC	0	15	30	45	NIN	0	15	30	45
New Chapel				1	Q	,0	0	0	31	0		Ø	
	STATE		IP .	2	0	<u>ව</u>	⊘	0	32			/	Ó
	SOURCE	ID NUMB	ER	3	$\frac{0}{2}$	0	0	50	33	0	8	$\frac{\circ}{\circ}$	0
PROCESS EQUIPMENT		OPERATII	NG MODE	5	0	0	0	0	35		0	5	3
gggregate dryer CONTROL EQUIPMENT bas howse		OPERATI	NG MODE	6	0	0	0	0	36		5	5,	0
DESCRIBE EMISSION POINT START PETANGULAR STARTS		SAME		7 8	0	0	0	0	37 38	0	5	6	0
HEIGHT ABOVE GROUND LEVEL	HEIGHTI	RELATIVE	TOOBSERVE	A g	0	0	0	0	39	7	./		
START 35 ^{FT} STOP SAME DISTANCE FROM OBSERVER,	DIRECT	ON FRON	TOP SAME 1 OBSERVER	10	0	C	Ó	0	40	/	0	0	0
START 400 ft STOP 4 PME DESCRIBE EMISSIONS	START		TOP SAME	11	0	0	0	20	41	0	0	9	$\frac{1}{2}$
START CONING .	STOP	SAME		13	1	10	0	0	43	0	0	0	0
EMISSION COLOR START LULY STOP SAME			NTINUOUS ☑ FRMITTENT □		0	O	D	Ö	44	/	0	0	0
WATER DROPLETS PRESENT:	1		ET PLUME: DETACHED []	15	0	ĬÕ	0	10	45	2	0	0	
POINT IN THE PLUME AT WHICH		Y WAS DE	ETERMINED	16	10	10	0	0	46	10	0	0	0
DESCRIBE BACKGROUND		SAME		18		C	0	0	48	0	0	0	0
BACKGROUND COLOR		NOITIONS	; · · ·	19	0	2	0	0	49	1	//	1_	/
STARTOPEN STOP SAME	14/14/0 5	scattered DIRECTYON	STOP broken	20	0	0	0	5	50 51	1/		/	
START 0-3-Ph STOP 1-3-Ph	START	NW.	STOPSAME	22	10	10	15	0	52	1/	17	1	
AMBIENT TEMP. START 86 STOP 89		ILB TEMP		23	0	0	0	0	53			Z	/
Source Layout Sketch	Dra	w North A	Arrow	24				38	54	+-	/	1-	4
obsite Edjour Sketeri	É) معلى (7	26) δ		0	56				
Win IX	∑ ≨missio	n Point	\mathcal{D}	27	10	0	0	0	57		\angle	/	
				28		0	\ \	0	58 59		4	4	otag
Cond word			-	30	6			5 6	60		\forall	1	1
Sun- Wind			OPACI		.04	NUM	ABER C	F REAL		ABOV			
Sun Loca	oo' non Line	>	-RR			OPAC		ADING. M	5 0	МА	XIMUN	15	-
	085	ERVE	r'S NA	ME (PI	TITME)avio		305					
COMMENTS / - indic	OBS	ERVE	P'S SIC	NATU	E L		DA	TE 8-	27-	97			
of ap	acity	readin	15	ORGANIZATION DEECO Inc									
I HAVE RECEIVED A COPY OF SIGNATURE	THESE O	PACITY O	BSERVATION		TIFIEC		ET	A				-14 -	97
TITLE		DATE		VEF	RIFIED	BY		<u></u>		DA	TE		· · · · · ·

Visible Emission Observation Form SOURCE NAME														
SOURCE NAME Baghouse	Exit			OBSERVATION DATE START						RT TIME STOP TIME 15:26				
			Plant)	SEC	0	15	30	45	SEC	o	15	30	45	
New Cha	pel H	/:// .	RJ	1	0	0	0	0	31	/	/	0	0	
CITY Raleigh	STATE	C	ZIP	2	0	0	0	0	32			0	0	
PHONE	SOURCE	ID NUN	1BER	3	2	0	00	30	33	1	0	0	9	
PROCESS EQUIPMENT		OPERA	TING MODE	5			/	0	35	0				
aggregate drye control edupment baghouse	6	0	0	0	0	36	0	5	0	0				
DESCRIBE EMISSION POINT				7	0	0	0		37	0				
START white tangular stack	8	/	0	Ŏ	5	38		0	0	0				
HEIGHT ABOVE GROUND LEVEL START 35 FT STOP Jame	HEIGHT	RELATIV	E TOOBSERVER		0	0	0	0	3 9	0	0	0	p	İ
DISTANCE FROM OBSERVER	DIRECTI	ON FRO	M ORSERVER	10	0	0	0		40	0	0	0	5	
START 40 Oft STOP Save	START	NNW	510P same	11	/	0	0	0	41	0	0	0	0	
DESCRIBE EMISSIONS			<u> </u>	12	0	/	0	0	42	0	0	0	0	
START CONING	STOP	sant		13	0	0	0	0	43	3	5	Ö		ł
STARTANY STOP Same			ONTINUOUS D	14	0		0		44	<u> </u>	0	12		
WATER DROPLETS PRESENT:			PLET PLUME:	15	0	12		12		0	-	19	2	4
NO N YESD	1		DETACHED		+	\mathbb{Q}	Ó	10	45	0	0	0	0	ka
POINT IN THE PLUME AT WHICH	OPACIT	Y WAS I	DETERMINED	16	0	0	0	0	46					623
START 3-6 Ft above exit		same		17	0	0	0	0	47					2
DESCRIBE BACKGROUND				18	0	0	0	0	48		 	<u> </u>	 -	1 -
START free5	STOP .	same	_	— —	1	0	\ \	0	 		├			\$
BACKGROUND COLOR	SKY COL	νριτιαν	S	19	0	10	10	_	49	ļ	ļ			MANUEL
START gill STOP seme	START	roken	STOPSame	20	0	0	0	0	50					7
START 0-3 TOP 0-2 TOP	WIND D	a. 1		21	0	0	0	/	51					3
AMBIENT TEMP	START		STOPSame	22	1	/	0	0	52		 	 		三
START 89 STOP \$90	WETBU	183	P. RH. percent	23	0	0	0	U	53			-		GOHIJW
	1	Hay 54		24	6	0	0	5	54		1	 		PU
Source Layout Sketch		v North	Arrow	25	0	0	12	1	55	├		 		ξ
	5,7	.03 ~~ (7	26	0	5	2	-	56	<u> </u>		┼──	 	┨
	ζ	\vec{a}			+	19	1	+	-	ļ		 		-
区区	Emission	Point		27	0	<u>0</u>	0	10	57	ļ <u>.</u>	ļ]
				28	10	10	10	0	58					}
			•	29	0	O		0	59					
Sun- Wind _		fre	EES DO	30	0	0	0	\bigcirc	60					1
Plume and =	Observer	s Positio	RR	AVER	AGE O	PACIT	Y FQR	10 20	NUM	BER OF	READ	INGS .	ABOVE	1
Stack 140	Stack 140°									0	% WEF	1E 4		
Sucreson		RANG	E OF C		Y REA. VIMUM			AA A U	имим	5				
		OBSE	RVER'S) .		1					
COMMENTS .								<u> </u>	aric	y. G	05h			
1 - undicates in	tepere	nce o	£	UBSE	RVER	۶ <i>IG</i> ۸ 	ATUA	_		DATE	·8-2	7-9	7	
reading		ORGANIZATION DEECO INC												
I HAVE RECEIVED A COPY OF T SIGNATURE	HESE OP.	ACITY C	BSERVATIONS	CERT	FIED B		TA			DAT	€ 3-	14-9	77	
TITLE	TLE DATE						VERIFIED BY DATE						1	
				DATE										j

		Visib	le Emission (Observation Form 2c										
OURCE NAME Baghous	se E	Exit			OBSERVATION DATE START TIMES 10:1						10 10:13			
DDRESS SPHALT PLANT "B" (We	st R	aleigh	Plant)	SEC MIN	0	15	30	45	SEC MIN	o	15	30	45	
New Chape	el Hi	11 Rd		1	0	0	0	0	31	0	/	/	0	
"Raleiah	STATE	NC ZI	ρ	2	0	0 (0	0	32	$\frac{0}{1}$	0	0	10	
HONE	SOURCE	ID NUMBE	R	3	90	00	00	0	33	\bigcirc	0	0) (
ROCESS EQUIPMENT	uer	OPERATIN	G MODE	5	0	0	0	\tilde{O}	35		0	0	0	
aggregate dr	J	OPERATIN	IG MODE	6	0	0	0	5	36	9	0	Q		
DESCRIBE EMISSION POINT	30.8	<u> </u>		7			0	0	37	\cup	\bigcirc	0	0	
START white langular stock	STOP	SAME		8	Ó	0	0	0	38	0		/	/	
HEIGHT ABOVE GROUND LEVEL	9	0	0	O	k)	39	0	10		(2)				
START 35ff STOP Same DISTANCE FROM OBSERVER			OP Same OBSERVER	10	D	0	0	0	40	0	0	0	Õ	
START 400 tstoptame				11		_	0	0	41	0	0	0	0	
DESCRIBE EMISSIONS		0		12		0	0	0	42	\bigcirc	0	0	0	
START coning upward		5ame		13	0	0	0	0	43	0	0	0	0	
EMISSION COLOR			TINUOUS 12	14	0	0		1	44	7	F	0	ブ	
START GREY STOP Same		ER DROPLE		 		+		12		+ ->	1	15	0	
WATER DRÓPLETS PRESENT: NO ☑ YES□	1		T PLUME:	15	0	10	0	+2	45	<u> </u>	10	19	<u> </u>	
POINT IN THE PLUME AT WHICH				16	0	10	5	0	46	0	0	O	0	
START 3-6 above exit	17	0	(0 (Q	47	0	0		0				
DESCRIBE BACKGROUND	18	0	ic	17	10	48	0	0	0	0				
	}	+	+		$+ \stackrel{\smile}{\sim}$	 	+~	+	 	+				
BACKGROUND COLOR	SKY CC	Same ONDITIONS,		19	0	0	0	0	49	$\downarrow \mathcal{O}$	10)	0	0	
START greenstop same	START	Katteres	TOP & clear	20	0		0	\bot	50	0	0	0	0	
WIND SPEED	WIND	DIKECIJON		21	0	6)0	2	51	\bigcirc	0	\bigcirc	\bigcirc	
START 2-5 mph STOP Some				22	5	1	0	T	52	1	ナブ	 	0	
AMBIENT TEMP.	WEIB	ULB TEMP.	RH.percent		13	$H \supset$	-	+	+		1	-	0	
START 82 STOP 85	76		\$376		\rightarrow			12	53	1	14	10	10	
†	Huy 54	(chapel Hil	i ka)	24	0		+	0	54	10	10	/	/	
Source Layout Sketch	Dra	w North Ar	row	25		C	0	0	55	0	0	0	0	
		()	?)	26	/	- /		/	56	0	Ø	0		
	Emissio	n Paint		27	/			10	57	10			0	
	- 11113310	, 0,,,,		28	E	0	0		58	0	0	0	0	
				29	C		0	0	59	0	0	0	0	
Sun- Wind _				30		\mathcal{O}			60		10	0	10	
Plume and =	Observe	ers Position				OPACI ERIOD	TY FOR	33 Z		BER C	F REA.		ABOV	
Stack 14		<u> </u>		OPAC	TY REA	DINGS	;							
SunTaca		OBS	ERVER		INIMUI NE (PR)		XIMUN	,				
COMMENTS							NATUS		Devi	Q (705 TE			
slash indicates inter	eading		<u> </u>		0	-60	4		8-	28-	97			
			•	ORGANIZATION DEECO Inc										
I HAVE RECEIVED A COPY OF SIGNATURE	THESE C	PACITY OB	SERVATIONS		TIFIED	E	TA		<u>.,. –</u>	DA	3- /	4-	97	
TITLE	DATE							VERIFIED BY DATE						

		sible Emission	JUSEIVA	1011 70		ZB							
SOURCE NAME Baghous	e E	xi Y		OBSER		V DATI	-	STAR	T TIME	9:00 STOP TIME			
I ADDRESS	lest R	\ A \	DI1\	SEC					SEC				
	7	11:17	P.1	MIN 1	0	15	30	45	MIN	0	15 O	30	45
New Cha	STATE.	7 ,//	ZIP	2	<u>)</u>	0	0		32	0	0	5	0
PHONE Raleigh	1	<u> </u>	252	3	C		\bigcirc	2	33	0	0		0
	SOURCE	E ID NUM	BEH	4	\(\int\)*	0	5	0	34	0			0
PROCESS EQUIPMENT,		OPERAT	ING MODE	5	0	0	ව	0	35	0	/		
CONTROL BOUIPMENT bagho		OPERAT	ING MODE	6	0	/	/	/	36	0	٥	0	0
DESCRIBE EMISSION POINT		L		7			/	O	37	0	0	0	O
START which rectangular		SAME		. 8	0	0	ð	0	38	0	0	0	0
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE	TOOBSERVER STOP same	9	0	0	0	0	39	0	0	0	0
DISTANCE FROM OBSERVER	DIRECT	ION FROM	M OBSERVER	10	0	0	10	0	40	0	0	0	0
START 400ft STOP SAME	START	NNW	STOP Same	11	0	0	0	0	41	0	0	0	0
DESCRIBE EMISSIONS	·			12	0	0	$\overline{\mathcal{L}}$	0	42	0	0	0	0
EMISSION COLOR	· · · · · · · · · · · · · · · · · · ·		ONTINUOUS &	13	O	0	0	0	43	0	0	D	
STARTGLEY STOP same			ERMITTENT	14	0		0	0	44	0	0	0	0
WATER DROPLETS PRESENT:			LET PLUME:	15	0	5	<	5	45		5	\sim	0
NO V YES	ATTAC	HED D L	DETACHED D	16	0		0	0	46	8	0	0	0
START 3-5 above exit	H OPACII			17		$\stackrel{\bigcirc}{>}$	0	0	47		+ = -	0	<u> </u>
DESCRIBE BACKGROUND	STOP	# Sam	<u> </u>	18	14	0	12	$\frac{0}{0}$		Q	0	1	0
START trees	STOP	same			10	10	$\frac{1}{2}$		48	0	0	0	0
BACKGROUND COLOR	SKY CO	NDITIONS		19		5	Ö	0	49	0	0	0	5
START green STOP same				20	0	0	0	0	50	0	0	0	
START O-2 STOP 2-5	START	DIRECTION	STOP E	21	/	0	5	0	51		0	Q	O
AMBIENT TEMP	WET BL	ILB TEMP		22	0	0	0	0	52	0	0	O	0
START 77 STOP 82	163		74832	23	0	0	0		53	0		/	0
	1 plant car	u		24	0	0	0	0	54	0	0	5	0
Source Layout Sketch	Dra	w North A	Irrow	25	0	0	O	0	55	0	0	0	5
		(<i>[</i> *)	26	0	0	0	0	56		0	0	0
	Amission	n Point		27	0	0	0	5	57	0	Ŏ	Ö	Ō
				28		0	0	ව	58	ව	5	0	0
				29	lacksquare	0	0	0	59	0	0	0	0
Sun-> Wind _		-1 -		30	0	0	/	0	60	0	0	0	0
Plume and =	Observe	S POSKO	_RR	1	AGE O	-		83 %	NUM		READ		
140	Stack 140°							DINGS			% WEF		_
,		OBSE	RVER		VIMUN E (PRI	N71	bive	_	hau				
Slash indicates ope		OBSE	RVER'	SSIGN	AIUB			DAT	-	28-	97		
interference		ORGA	NIZAT	ion 1)EEC	olr	10						
I HAVE RECEIVED A COPY OF SIGNATURE	BSERVATIONS	CERTI	FIED 8	YE	T4			DAI	E 3-1	4-97	<u> </u>		
TITLE		DATE		~	IED BY		<u> </u>			DAT			~
										1			

2 A STOP TIME Visible Emission Observation Form SOURCE NAME Baghouse OBSERVATION DATE START TIME Exit 8:52 8-28-97 7:52 ADDRESS ASPHALT FLANT "B" (West Raleigh Plant) SEC SEC MIN 30 MIN 15 45 15 30 45 0 31 1 2 5 32

PHONE	SOURCE	ID NUMBER	3	\mathcal{O}	0	\circ	\bigcirc	33			O	0
			4	0	0	0	O	34	0	0	0	0
PROCESS EQUIPMENT te dr	yer	OPERATING MODE	5	0	0	0	0	35	5	0	0	0
CONTROL EQUIPMENT baghe	العد	OPERATING MODE	6	0	0		0	36	0	0	0	0
DESCRIBE EMISSION POINT			7	0	0	0	\mathcal{O}	37	0	0	0	\bigcirc
DESCRIBE EMISSION POINT START retangular stack.	STOP	SAME	8	0	0		5	38	0			\overline{A}
HEIGHT ABOVE GROUND LEVEL	HEIGHT	RELATIVE TO OBSERVER	9		0	\sim		39	\sim	A	\Rightarrow	
START 35 # STOP same	START	18 STOP SAME		0		\bigcirc	0		0	\sim	\mathcal{L}	\odot
DISTANCE FROM OBSERVER	DIRECT	TION FROM OBSERVER	10	0	0	0	0	40	\circ		\bigcirc	
START 400 FSTOPSame	START	ON STOP SAME	11	0	0	0	0	41	\bigcirc	O	0	5
DESCRIBE EMISSIONS	12	/	0	0	0	42	0		0	0		
START coning upward	13	0	0	Ŏ	C	43	0	0	0			
EMISSION COLOR	14	ŏ	5	0						10		
	START grey STOP Some FUGITIVE INTERMITTENT INTERMITTENT INTERMITTENT IF WATER DROPLET PLUME:						0	44	0	0	0	0
WATER DROPLETS PRESENT	15	$ \mathcal{O} $	$ \mathcal{O} $	O	0	45	0	0	0	0		
	NO D YES® ATTACHED D DETACHED & POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED						0	46	0	0	0	0
START 2-4 Habove exit			17	0	0	0		47	0		 -	0
DESCRIBE BACKGROUND	S10P Z	TIND SVOUL CT.		\mathbb{H}	10		_		1	0	0	
1	STOR .	SAME	18	<u> </u>	/_	0	0	48	0	<u>2</u>	0	0
BACKGROUND COLOR		ONDITIONS	19	0	$ \bigcirc$		0	49	/	0	0	
START TIMEN STOPSAME	1	clear STOP SAME	20	0	0	0	0	50		0	0	0
WIND SPEED . I		DIRECTION	21	1	Ŏ	ŏ		51	1		1	
START 0-2 mph STOP 1-3mph	START	_	<u> </u>	14	_	~	1	 	12	12	10	19
AMBIENT TEMP		JLB TEMP. RH.percent	22	/_	0	LÖ.	0	52	$ \circ $	10	<u>//</u> .	
START 73 STOP 77	4	267 27	23	0	0	0	0	53	/	0	5	
t Pla	ntrance		24	0	0	0	0	54	2	0	0	0
Source Layout Sketch		w North Arrow	25	Ŏ	0	0	0	55		Ö	<u> </u>	
		\bigcirc	26	0	0	0	0	56	6	0	0	0
		\mathcal{L}	27	0	0	0	٥	57	0	0	0	
1	missio	n Point	28	 	D	0	0	58	2	0	0	
				15	15	10	1	+	<u>8</u>	8	发	0
		•	29	10	16	' 0	1	59	+—	19	$\downarrow \bigcirc$	
Sun-→ Wind →	04		30	/	10	/	0	60	0	10	0	U
Plume and	Ubserve	TIES RR		AGE O		Y FOR	208 %	NUM				ABOVE
Stack 140							DINGS		<u>U</u>	% WEF	<u>(E)</u>	
Suntotal	ion Line	Sun direction	TANO	E UF (NIMUN		0	MAX	амим	5	_
	OBSE	RVER'.	SNAN	IE (PRI	VII)	wid	$\overline{}$	sho				
COMMENIS Slash in dica +	OBSE	RVER'	S SIG	ATUR		~` ~		E 8-		97		
	ORGA	NIZAT	ION	DEF		nc						
I HAVE RECEIVED A COPY OF								7				
SIGNATURE TITLE	VERIFIED BY DATE					<u>'</u>						
	TITLE								J 241	-		1
				·····		anties. A		41		440.4.2		

Visible Emission Observation Form 20													
SOURCE NAME Baghous	o F	-:+		OBSER	VATIOI	V DATI	.	STAR	TIME	STOP TIME			
ADDRESS			Plant)	SEC	-03	7+			SEC		12:	20	}
		 _	rant)	MIN 1	0 0	15 O	30	45	MIN	0	15	30	45
New Chape	STATE	II H	ZIP	2	0)		32	0	0	18	8
CITY Raleigh PHONE		√C		3	0)	\nearrow	\rightarrow	33	0	0	13	0
PHONE	SOURCE	E ID NUN	1BER	4	0	0	<u>.</u>	0	34	5	0	5	5
PROCESS EQUIPMENT aggregate druer		OPERA	TING MODE	5	D	0	0	/	35		0	0	0
aggregate dryer control equipment	· · · · · · · · · · · · · · · · · · ·	OPERA	TING MODE	6	0	0	\bigcirc	0	36	5	0	0	0
DESCRIBE EMISSION POINT	7	0	5	ŏ	Ŏ	37	0	0	0	O			
START White rectangul	HEIGHT	San	FIOOPSERVER	8	0	5	Ŏ	0	38	0	0	<u> </u>	0
START 3 5 STOP same	START	15 **	STOP Same	10	$\frac{\mathcal{O}}{2}$	0	2	O.	39 40	0	8	5	Q
DISTANCE FROM OBSERVER START 400 FSTOP 2000			M OBSERVER STOP 5 ame	11	0	2		0	41	0	0	0	0
DESCRIBE EMISSIONS				12	0	-		0	42		10	0	0
START coming upward.		James Co	ONTINUOUS 🗹	13	5	0	0	0	43	0	0	5	0
START grey STOP Same WATER DROPLETS PRESENT:	FUGITIV	E 🗆 IN	TERMITTENT [14	0	0	5	0	44	0	/	O	0
NO DY YES	ATTAC	HED 🗆	PLET PLUME: DETACHED	15	0	Q	O	0	45	5	0	0	0
POINT IN THE PLUME AT WHICH START 3-6 above stack	OPACIT	Y WAS C	DETERMINED	16	0	0	5	0	46	0	0	2	0
DESCRIBE BACKGROUND	STOP .	sane		18	-	0	0	-	47	0	0	1	5
START frees	STOP	same		19	8	0	0	5	49		0	0	0
BACKGROUND COLOR START green STOP Same		NDITION		20	2	0	0	0	50	1	8	100	0
WIND SPEED START 2.6mph STOP /6mph	WIND D	DIRECTIO	N	21	0	6	0	D	51	5	0	0	0
AMBIENT TEMP. 88		Last ILB TEMI	STOP & E +	22	0	0	0	0	52	Ô	0	0	0
START 85 STOP		2 80	\$30 0	23	0	0	م	0	53	0	0	0	0
Source Layout Sketch	A HUZZY Drai	w North ,	Arraw	24	10	0	0	0	54	0	0	5	Q
	ج من ک	5 (7	25	8	9	$\frac{1}{2}$	0	55	0	0	0	Ò
WAY.	<u>ک</u> ک	<u> </u>		27	0	5		5	56 57	8	0	19	
	∌missio?	Point		28	Ŏ	D	0	0	58	0	1	0	
				29	0	0	0	0	59	0	0	0	0
Sun- Wind _ Plume and =	Observer	e de Portugo	n = RR	30	0	0	0	0	60	0	0	0	0
Stack 140	Observer	(BE	KK	HIGHE	AGE O	PACITY RIOD	FOR O.S	33%	NUM	BER OF	READ WER	INGS . RE 15	ABOVI J
Qun Local				RANG				,	0		IMUM		
		OBSE	RVER'S	NAM	E (PRII	$\mathcal{D}^{(r)}$	avid	Ga	she				
COMMENTS 1 de tes	ncc	OBSE	RVER'S	SIGN	ATURE		7	DAT	ر رو ^ا	····			
of reading	nec.	ORGANIZATION DEECO INC					DATE 8-28-97						
I HAVE RECEIVED A COPY OF T	S CERTIFIED BY ETA					DATE 2 W CO							
SIGNATURE TITLE	- ,,	DATE		VERIFIED BY DATE					14-47	r 			
M. 163	1												

34 Visible Emission Observation Form STOP TIME OBSERVATION DATE START TIME SOURCE NAME 8-29-97 8:13 nouse 9:13)aa ADDRESS MIN MIN 45 ASPHALT PLANT 0 15 15 30 31 5 0 0 5 \bigcirc 0 0 <u>ව</u> 0 2 32 0 ZIP aleia 0 \mathcal{O} 3 33 10 SOURCE ID NUMBER PHONE $\overline{\circ}$ 5 0 4 34 5 0 PROCESS EQUIPMENT OPERATING MODE 0 0 0 0 5 0 35 7 CONTROL EQUIPMENT L 0 0 6 0 O 36 0 \circ OPERATING MODE house baa 0 $\overline{\mathbb{O}}$ 37 10 7 \bigcirc DESCRIBE EMISSION POINT START Whitectongulatack STOP 5 0 8 0 38 0 SAME 0 6 HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TOOBSERVER START 35 TSTOP SAME START 15 TSTOP SAME 10 0 0 39 9 10 0 5 40 ${\it O}$ DIRECTION FROM OBSERVER DISTANCE FROM OBSERVER 0 0 START 400 ft STOP SAME 11 10 41 START NNW STOPSAME 0 42 DESCRIBE EMISSIONS 12 0 0 0 10 STOP SAME START conins 5 0 0 0 0 10 43 13 PLUME TYPE: CONTINUOUS EMISSION COLOR 5 6 O 5 44 5 14 0 FUGITIVE INTERMITTENT ST START GREY STOP SAME 5 0 IF WATER DROPLET PLUME: \bigcirc WATER DROPLETS PRESENT: 15 7 45 0 NO OF YES ATTACHED DETACHED D ${\mathbb C}$ 0 5 \bigcirc 46 16 POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED 47 17 \mathcal{O} START 2-5 Pabove exit STOP SAME O 48 18 DESCRIBE BACKGROUND START Erees STOP SAME 0 49 19 O BACKGROUND COLOR SKY CONDITIONS 0 0 5 20 0 START GREEN STOP SAME START C/egr STOP same C WIND SPEED WIND DIRECTION 21 0 51 START O-1 mph STOP Same START East STOPSame 0 0 22 52 0 WET BULB TEMP. RH.percent AMBIENT TEMP 5 0 76 23 53 \bigcirc START 70 66 STOP Polartrance Draw North Arrow 5 0 54 24 0 55 5 10 \mathbb{C} Source Layout Sketch 5 25 0 0 \$ 1 56 26 5 0 10 27 5 5 0 57 0 0 0 **7**) 28 0 C 59 29 5 0 10 5 5 \mathcal{O} 30 0 10 Sun- Wind -NUMBER OF READINGS ABO AVERAGE OPACITY FOR Plume and HIGHEST PERIOD 5 % WERE Stack RANGE OF OPACITY READINGS MAXIMUM 10 MINIMUM OBSERVER'S NAME IPRINTI David Gosmaw COMMENIS OBSERVER'S SIGNATURE 8-29-93 Pi ORGANIZATION DEECO Inc DATE 3-14-97 I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS CERTIFIED BY ETA SIGNATURE VERIFIED BY DATE DATE TITLE

Visible Emission Observation Form SOURCE NAME, OBSERVATION DATE START TIME Baghouse STOP TIME 8-29-97 9:23 10:23 ADDRESS SEC SEC Plant) MIÑ 0 15 30 45 MIN 15 30 45 0 5 \circ 0 31 1 0 5 0 2 CITY 32 3 5 5 33 0 PHONE SOURCE ID NUMBER 4 34 0 0 PROCESS EQUIPMENT OPERATING MODE 5 35 0 agareaote control equipment 0 dryer 0 6 5 OPERATING MODE 36 0 <u>ba ahouse</u> 7 0 37 0 0 DESCRIBE EMISSION POINT START white chargular stack STOP 8 SAME 0 HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER 9 39 START 35 ST STOP SAME START 15 STOP SAME 40 DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER START400 ft STORSAML START NOW STOP SAME 11 41 DESCRIBE EMISSIONS 12 10 42 START CONLAG STOP Same 13 43 EMISSION COLOR PLUME TYPE: CONTINUOUS START Grey STOP Same 0 0 5 44 FUGITIVE | INTERMITTENT D WATER DROPLETS PRESENT: IF WATER DROPLET PLUME: 15 45 G 0 NO & YES ATTACHED DETACHED D 16 46 POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED START 2-6 Habove exit STOP 2-5 1 17 47 DESCRIBE BACKGROUND 18 48 START Frees STOP Same 19 0 0 49 BACKGROUND COLOR SKY CONDITIONS START GREEN STOP SAME 20 10 STARTCLEAR 50 STOP clean WIND SPEED WIND DIRECTION 0 21 5. 0 51 START 1-3 mph STOP1-4 STOP SK START East 22 52 AMBIENT TEMP WET BULB TEMP. RH,percent START 76 23 STOP 8 69 5 0 53 1 plant trance 24 54 Draw North Arrow Source Layout Sketch 25 55 10 26 56 27 57 28 58 29 59 30 Sun- Wind -Observers Prosition Plume and = NUMBER OF READINGS ABOVE 5 % WERE 6 AVERAGE OPACITY FOR 1.875% HIGHEST PERIOD RANGE OF OPACITY READINGS 10 MINIMUM 🔿 MAXIMUM OBSERVER'S NAME (PRINT) David. Goshaw COMMENTS 8-29-97 ORGANIZATION mc. DEECO CERTIFIED BY ETA I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS DATE 3-14-97 SIGNATURE TITLE DATE VERIFIED BY DATE

	1				\			7 7 5		
SOURCE NAME Baghouse Exit		OBSERVATION DATE 8-29-97				T TIME 7:33		STOP TIME 1/:33		
ADDRESS ASPHALT PLANT "B" (West Releish Plant)	SEC		15	30	45	SEC	0	15	30	45
New Chape/ Hill Rd	1	5	0	0	0	31	0	0	0	3
CITY O 1 \ STATE 42 ZIP	- 2	0	0	0	0	32	0	0	0	
Raleigh IVC	3	O	5	0	0	33	0	0	0	5
PHONE SOURCE ID NUMBER	4	0	0	0	0	34	ව	5	0	0
PROCESS EQUIPMENT OPERATING MODE	5	0	0	0	Ó	35	0	0	6	7
GGGIEGG & Oryer CONTROL EQUIPMENT OPERATING MODE	6	0	0	5	0	36	0	1	ō	S
bag house	7	0	0	5	0	37	0	0	3	7
DESCRIBE EMISSION POINT START White rectangular stack	8	0	0	4	5	38	0	ŏ	$\overline{\mathcal{C}}$	
HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERV		7	0	5	0	39	0	0	2	
START 35 ST STOP Same START 15 FT STOP Sam	2 10	2	5	0		40	5	5	0	
START 400 TO STOP START START STOP SAME	,	2	 			41	0	10	0	0
DESCRIBE EMISSIONS	12	0	5	0	10	-		0	8	1
START - coming STOP game		10	5	1	_	42	12		$ \circ\rangle$	0
EMISSION COLOR PLUME TYPE: CONTINUOUS [1 .	10	Ó	0	0	43	0	5	19	S
START grey STOP same FUGITIVE INTERMITTENT		0	0	18	0	44	0	10	0	10
WATER DROPLETS PRESENT: IF WATER DROPLET PLUME: NO W YESD ATTACHED DETACHED	15	0	0	0	10	45	0	0	10	
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED	16	5	0	10	0	46	0	0	0	5
START 25 thore exitSTOP same	17	0	0	0	1	47	5	0	0	0
DESCRIBE BACKGROUND	18		0	15	0	48		0	0	0
START LIEBS STOP Same	19	7	0	0	0	49	0	0	0	5
BACKGROUND COLOR SKY CONDITIONS START GIELD STOP SAME START CLEAR STOPCKEAR	20	0	10	0	0	50	0	5	0	1
WIND COEFO	21	0	5	0	0	51		0	0	10
START 1- STOP Same START East STOP same		0	0		0	52	5	10	0	1
AMBIENT TEMP 85 WET BULB TEMP. RH.perce	nı	0	0	5	0	53	0	0	0	1
1 dant ale	24	15		0	15	54	0	0	5	12
Source Layout Sketch Draw North Arrow	25	15	1	0	15	55	1	18	18	3
in S	26	18	1	0	0	56	10	15	15	12
5.005	}	19	15		-+	57	10	0	0	7
* Emission Point	27	5	2	10	5		18	$\frac{1}{6}$	18	1
	28	10	10	0	12	58		0		15
	 	1	10	10	12		5	+	10	닍
Sun Wind _ Observers #4 gitton	30	15	10	1 U	10	60 NUM	15	0	1 C	100
Stack Stack		EST PL		Y FOR	875	A NOW	<u></u> L	% WE	RE 4	480
Sun Location Une	RANC	SE OF	_	TY REA	DINGS	5 0	,	XIMUN		·)
Son Location erne	OBSI	RVER		NIMON 1E (PRI	NII	1. ($\overline{}$,		
COMMENTS					L	Javid	-		<u>xw</u>	
COMMENTS indicates line of sight integer once	OBS	RVER	S SIG	NA TUR	Z		DA	8-2	9-9	7
	ORG.	ANIZA	TION	Dee	70	Inc.				
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATION	ONS CERTIFIED BY ETA DATE 3-14-97						 7			
SIGNATURE DATE	VERIFIED BY DATE					-,				
· •										

3_D Visible Emission Observation Form SOURCE NAME OBSERVATION DATE 8-28-97 START TIME STOP TIME 43 ADDRESS SEC SEC MIN 0 15 30 45 MIN 0 15 30 45 0 1 31 (1) 5 2 Ĉ 5 32 10 Maleig 3 0 33 PHONE SOURCE TO NUMBER 4 10 0 PROCESS EQUIPMENT OPERATING MODE 5 0 0 5 35 AGGIEGAK CONTROL EQUIPMENT 6 OPERATING MODE 36 0 DESCRIBE EMISSION POINT Stack START While fangular STOP Ô $\overline{}$ 7 37 (8 0 0 38 Same HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER START 15 ft STOP Same START 16 ft STOP Same 0 9 39 0 10 DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER START 400 H STOP GAND START KNW STOPGAME 40 0 5 11 41 10 DESCRIBE EMISSIONS 12 0 42 5 START coning STOP sane 0 0 ${\mathcal O}$ 43 13 EMISSION COLOR PLUME TYPE: CONTINUOUS 14 START GVEY STOP SO WE FUGITIVE INTERMITTENT & 0 0 44 5 WATER BROPLETS PRESENT: IF WATER DROPLET PLUME: O 15 45 5 NO TO YES ATTACHED D DETACHED D POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED

START 3-6 to bove exit STOP 3 and 10 0 16 0 0 46 5 5 17 47 $^{\prime}$ DESCRIBE BACKGROUND 0 18 48 START trees STOP Same 0 0 19 5 0 49 START STOP STOP SCATTERED BACKGROUND COLOR START GIELD STOP SAME 20 50 0 WIND SPEED 5 WIND DIRECTION 21 51 5TOP game START EGST STOP same START O- 5 22 AMBIENT TEMP START 885 STOP 87 WET BULB TEMP. RH.percent 23 53 24 Source Layout Sketch Diaw North Arrow 25 26 56 27 57 6 28 58 29 59 Sun- Wind -Observers Position Plume and = NUMBER OF READINGS ABOVE AVERAGE OPACITY FOR Ž.9% HIGHEST PERIOD 5 % WERE RANGE OF OPACITY READINGS Sun Location Luga MINIMUM MAXIMUM 10 OBSERVER'S NAME (PRINT) Goshaw COMMENTS OBSERVER'S SIGNATURE DATE 2 8-29-97 ORGANIZATION EECO Inc. I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS DATE 3-14-97 CERTIFIED BY SIGNATURE TITLE

* Kiln stopped. restant @ 12:23

* + Kiln stopped en of manual run

VERIFIED BY

DATE

Quality Assurance Handbook M9.4.2

DATE

FIELD DATA SHEET

Plant:	ASPHALT PLANT "8"
Sampling Location	bishouse stick
Run Number: M23	2-0-/ Date: 8-27-57
Pretest Leak Rate:	<u>0,003</u> cfm @ <u>८</u> in. Hg.
Protect Leak Charl	k: Pitot: / Oreat: /

1029

Sample Type: <u>M23</u> Operator: <u>√√√</u>

Pbar: <u>√√√</u> Ps: <u>−/√√</u>

CO2: O2:

Assumed Bws: 15 Filter #: 11123-C / Meter Box #111612 Y: C 982 ΔH@: 1,95 Post-Test Leak Rate: 0.002 cfm @ 16 in. Hg.

Nozzle ID: <u>0,256</u> Thermocouple #:_____

Carporal 1

Probe Length/Type: μ' slass Pitot #: fR- λo Stack Diameter: $49'' \times 33''$ As:

Post-Test Leak Check: Pitot: V Orsat: V

Tm=

Traverse	Sampling	Clock Time	Gas Meter	Velocity Orifice Pressure Differential Stack		Stack	Temp	erabre	Impinger	Dry Gas Meter Temp.		Pump	
Point	Time	(24-hour	Reading	Head (∆p)	XAD (AH)	n H2O	Temp.	<u> </u>	9 F	Temp.	Inlet	Outlet	Vacuum
Number	(min)		926, (Vm) 113000	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^o F)	(Tm out ^O F)	(in. Hg)
g	0/0	0940	925-6001										
	<u> </u>	0945		7,2	65	5.9	283	249	252	65	92	92	12
A /			933 (60		63	5.9	285	245	253	643	43	43	12
			975120	2.0	65	5,4	289	246	25.5	47	98	45	12
2	15	1024	945,50	210	125	5,4	39C	247	249	44	99	93	12
		1030	951.87 957.60	1,7	64	H16	287	246	249	48	102	100	10
	35	1037	963·52	17	45	4.6	282	247	241	46	105	104	10
	30	1047	968.80	11.3	63	3,5	251	247	254	48	167	102	5
	40	1052	973.98	1, 3	60	3.5	482	247	255	52	109	105	8
B	70	70370						ļ	<u> </u>				
<i>Var</i> -								<u> </u>					
 													
	40/0	1/12	473.98										
	40/0		979.60	1.8	63	419	284	246	250	55	104	107	10
8-1	10		985.64	1.2	63	4.9	287	247	254	42	107	107	12
2	15	1127	992,26	2./	65	517	289	246	249	48	107	109	الح.
	20	1132	998.77	d:1	65	5.7	291	246	242	5/	1/42	HC	15
		1137	1005.2	2.0	63	5.4	270	345	~4X_	53	14/	110	4=
		1148	11:51	20	40	514	240	247	245	53	// 3	11/	15
		//53	17.62	1.5	64	4.9	275	246	354	59_	1/2	111	15
	50	1158	23.59	1.7	63	4,6	284	245	243	28	//3	112	15
	<u> </u>	/a	_				<u>'</u>		ļ <u> </u>				
									<u> </u>	ļ			
									<u> </u>				
} 													
													

	Page 🧷	of	-3

Plant Name:	ASPHACT PLANT "B"	Test Date:x7-47
Run Number:	M23-0-1	Operator: The

.

.

Traverse		/ Clock Time		Velocity	Orifice Pro	s. Differential	Stack	Probe	Impinger	Dry Gas I	Meter Temp.	Pump
Point Number	Time, (min.)	(24-hour clock)	Reading (VL) ft ³	in. H2O	Desired	Actual	Тетр. • F (Т)	Temp. / Filter Temp.* F	Temp.	Inlet	Outlet	Vacuum
	80/0	1/202	1023.58	111.1120	Positon	Actual	1.37	/	ļ	(E _b)°F	(L _{out}) °F	In. Hg
21	5	1/207	28,3	1,0	65	217	286	2461251	Jr. C.	111		\$
	10	1/2/2	32.9	10	63 63	2.7	267	7	53		11/	8
2	15	1/2/7	37.54		63	3.2	249	246 242	27	1//	//.3	4
	20	1/222	42.83	1,2	61	3,2	286	7		111	///	9
3	25	11227	47,87	1— <u> </u>	60	3.2		247 247	56 59	11/	111	9
	30	1/232	53.60		·60	3,2	78.2	247 247	58	///	11/	9
4	35	1/237	57.90		64	3.5	284	247 251	22	1//	1/1	
	120	1/242	1063.61	1,2	65	3.5	28)	247 245	5-2	113 113	110	10
		1	70 03 01	7:->	(0)	3.,	8	1	20	//)	//	70
		1						1				
		7		-				,				
	120/0	1/246	1063.61	0-67		1-8		1				
2) /	5-	11251	66.89	0.67	57	1.8	281	247 253	56.	11/	//1	7
	10.	1	70.91	0,67	54	1.8		248/245	51	16/	111	7
2	15	1 .	19.36	£0	54	2.16	219	2/8/23/	3/	114	113	7
	20	1	79.78	(50	55	2.150		249 1250	52	114	113	7
٠,٤	25	1	8,3,00	.85	55	2.30	283	25/ 252	52	1/5	1/2	8
	3C	1	Et. 48	- 94	.5%	2.54		250 1255	54	115	113	9
4	35	1	91.33	.94				251 1250	.54	1/6	113	9
	160	1	45.95					/				-
		1						,				
		/										
		/						7				

Page	3	of	3	
				_

Plant Name:	ASPHALT PLANT "B"	Test Date: 8:27-97	st Date: 8:27-97
Run Number:	M23-0-1	Operator: The	erator: The

•

...

Traverse	Sampling	/ Clock Time		Velocity	Orifice Pres. Differential		Stack	Probe	Impinger	Dry Gas N	Meter Temp.	Pump
Point Number	Time, (min.)	(24-hour clock)	Reading (VL) ft 3	Head (Pa) in, H2O	MD °F (All)	in. H ₂ O	Temp. • F	Temp./ Filter Temp.* F	Temp.	Inlet (Thin)*F	Oullet (Togut) *F	Vacuum In. Hg
	160/0	1 1335		0.48	53	1.30	286	252 1 250	60	114	1/6	4
EI	7	1	99.30	.48	40	1.30	281	2511253	57	114	115	6
	10	7	162, 34	54	38	1.46	279	049 1255	50	//3	115	7
2	15 '	Ĭ	10559	.6C	38	1.62	28/	25/ 1251	45	116	115	7
	20	1	109.24	.60	3 ઈ	1.62	280	2481253	44	117	115	7
3	35	1 4/2 50	112.93	.63	37	1.7C	280	250 252	1/4	118	117	7
	30	1	116.65	163	5/	1.70	274	25/ 1254	50	118	117	7
4	35	1	120.32	.78	ンひ	2.11	283	2481251	50	115	//6	8
	200	/	124.33	.78	<i>5</i> 3	2.11	285	250 1250	55	115	115	8
		1						,				
								· · · · · · · · · · · · · · · · · · ·				
												-
	200/0	1436	124.33					5/25/	10-7	.,,,,,		
F	5		129.86	.45	1-225/	1.22	275	252 25/	57.	112	//3	<u>م</u> ک
	10		133.18	.45	53	1.22	279	2481250	57	//3	113	6
2	15	<u>'</u>	136.25	.50	53	1.35	284	2501252	57	112.	//3	6
	20,		139.55	150	52	1.3.5	284	25 2 1250	57	1/4	1/2	6
٠ ٦	72	/	142.87	.55	53	1.49	284	250 253	57	_//3	112.	6
	30		146.22	,55	54	1.49	284		5/	113	112	6
4	35,,	<u>/</u>	147.83	.42	54	1.13	283	257 1250	59	113	1/2	6
	240/01		152.829	.42	54	1.13	283	2481249	37	163	1/2_	6
		/										
		-', -										
						.						

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant: A	SPHALT F	CANT "B"			Run No).:			
Sample Da	ite:		Filter No.(s):		Job No). :			
Sample Lo	cation:	OVTLE	T #1						
Recovery [Date:		XAD-2 Trap N	o.(s):			•		
Sample Re	covery Pe	erson:							
			Moisture	Data 🗼 🗆					
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	3 (100 ml H2O) (tipped)	4 (knockout) (untipped)	Silica gel (untipped)			
Final wt.	525.0	7743	937.9	809.6	602.7	8320	g		
Initial wt.	479.8	513.0	696.1	696.8	598.7	777.8	g		
Net wt.	45.2	1625.3	241.8	117.8	4.0	54.2	g		
			Descrip	tion bmc :	2083.32				
Train Syste	em:	·							
Probe:	-								
Filter: Cold	or -		Loadin	g -					
Impinger C	ontents:								
Silica Gel:	@Grams	Used -	Color -	%	Spent -				
Condensat	te Observ	ed In Front H	Half:						
		Re	covered Samp	ole Fractions			VALUE OF		
Filter Cont	ainer No.				marke	ed/sealed:			
LOM DAX	ıle Contaiı	ner No.:			marke	ed/sealed:			
					Liquid	level			
Probe (FH) & Back H	Half Rinse (A	cetone) Conta	iner No.:		d/sealed:			
Probe (FH) & Back I	Half Rinse (T	oluene) Contai	iner No.:	Liquid marke	level ed/sealed:			
Impinger C	mpinger Contents Container No.: Liquid level marked/sealed:								
Impi <u>ag</u> er,F	Rinse (Ace		Container No.	•	Liquid				
979,	5								

FIELD DATA SHEET

Plant:	ASPHALT	PLANT "B"	
Sampling	Location BAC	HOUSE STA	ck
• -	ber:	Date: 8-28	
Pretest La	ak Rate: 0.001	_ cfm @ <i>15.6</i>	ın. Hg.
Drobest I a	ek Check: Pitot:	✓ Orsat:	

Sample Type: <u># 23</u> Operator: <u>T.TmanP301</u>

Pbar: <u>29.60</u> Ps: -0.5

CO2: O2:

Probe Length/Type: <u>4 9lus</u> Pitot #: <u>P220</u>

Stack Diameter: <u>45x 3 x</u> As: <u>10.31 sq.54</u>.

Nozzle ID: 0.25 Thermocouple #: Plzo
Assumed Bws: 322Filter #: m23-0-2
Meter Box #: MB/2 Y: 0.96 AH@: 1.95
Post-Test Leak Rate: 0.00 (cfm @ 19 in. Hg.
Post-Test Leak Check: Pitot: Orsat: 2
K=2.30

Tm=

[=	0	Clock Time	Gas Meter	Velocity	Orifice Pressu	re Differential	Stack		erature	Impinger	·	teter remp.	rump	XAD
J	Sampling			Head (∆p)	(ΔH) i	n H2O	Temp.	٥) F	Temp.	Inlet	Outlet		EXIT
Point	Time	(24-hour	Reading	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^O F)	(Tm out ^O F)		OF.
Number	(min)	clock)	(Vm) ft ³	,,,,,,,,	//4/8/3//	1484	1/20/	180/	1994	1/54/	/11/4//	1345//	125	41
AL	0/0	0746	153.016	2/10///		1	16	249	246	58	7.3	7/	12.5	37
! !	5		157.90		4.83	4.83	201		257	.59	75	72	15	38
2	10		163.70	2.45	5.64	5.64		250	248	4/6	79	74	15	45
	15		169.94	2.45	5.64	5.64	793	2,60	249	8/4	83	76	12	60
.3	20		176.39	1.95	4.49	449	2.85	750	255	7.7	84	77	12	60
	25		182.23	1.95	4.49	4.49	283	250	248	48	86	78	S	57
4	30		188.0/	1.35	3.1/	3.14	280	251	050	1/8	88	81	9	58
	35	214	192.86	1.35	3.11	3,11	277	236	254	46	87	83	11	58
31	40/0	0830	197.68	/. &c	4.14	A. 14	276	250	253	39	91	85	11	58
	3		203.20	1.80	4.14	4.14		219	250	40	92	85	14	57
2	10		208.61	2.20	5.06	5.06	282	249	254	40	95	87	14	58
	15		214.71	2.20	5.06	5.06	284	250	249	100	96	89	13	59
3	20		220.80	2.10	4.83	4.83	287	251	250	765	97	9/	13	59
	27		226.84	2.10	4.83	4.83	289		251	40	**************************************	91	11	38
4	30	3701 0909	232.87	1.75	4.03	4.03	281	250	251	EL.	93	93	11	5-6
	35		238.12	1.75	4.03	2.30	283	254	252	4B.	97	95	7.5	38
CI	890	012/	243.78	1.00	2.30	2.30	284	250	253	44	99	95	7.5	359
	5		248.00	1.00	2.53	2.53	282	249	255	44	100	96	8.0	59
2	10		252.25	1.10	2.53	2.53	283	251	254	46	101	96	8.0	57
	15		252.79	1.10	·	2.88	284	249	253	46	101	97	9.0	59
3	20	·	261.14	1.25	2.88	2.88	287	25/	255	47	103	98	9	60
	25		265.94	1.25	2.88	2.45	285	252	254	47	102	99	01	60
7	30		270.6/	1.50	3.45			253	254	47	103	99	D	60
	35		275.68	1.50	3.45	3.45	286	 	251	48	102.	100	6	40
DI	120/0	1004	180.86	.57	1.31	1.31	288	250	250	48	103	100		48
	3		284.10	.60	1,38	1.38	280	248		40	104	101	7	42
2	10		287.45	19	1.82	1.82	290	252	251	T^{σ}	1707	1,0/	J. /	י ר

Ta-

Page	2	of	2_	

Plant Name: ASPHALT PLANT "R" Test Date: 8-28-97

Run Number: M Ma3-0 -2 Operator: Timohrson

Traverse	Sampling	/ Clock Time		Velocity	4	s. Differential	Stack	Probe	Impinger	Dry Gas I	Meter Temp.	Pump] _a x
Point Number	Time, (min.)	(24-hour clock)	Reading (VL) ft ³	Head (Pa) in. H2O		in. II ₂ O	Temp. • F (ζ)	Temp. / Filter Temp. F	Temp.	Inict (Lin) F	Ouliet (Equi) °F	Vacuum In. Hg	10 TO 10
2	15	1	29127	0.79	1.82	1.82	29/	2521 255	48	105	101	7	١ ١
3	20	1	294.97	.87	1.83	1.83	290	2531251	49	105	102	7	# 4
3	25	1	298.80	. 87	1.83	1.83	28	250 1251	49	106	103	7	1 84
4	30	1	<i>3</i> 02.48	1.20	7.52	2.52	291	249 252	50	107	193	9	40
	35	1	306.86	1.20	2.52	2.52	293	250 1257	50	108	104	9	47
<u> </u>	160/0	1 1049	311.28	.55	1.15	1.15	289	252 / 250	52	106	105	6	149
	5'	1	34.35	. 55	1.16	1.16	188	250 1253	52	107	105	6	20
2	10	1	317.33	.65	1.37	1.37	290	248 1200	52	107	105	7	54
	15	100,00	320.62	.65	1.37	1.37	289	249 1252	82	108	106	7	52
3	20	11/10/1128	323,95	.69	1.45	1.85	28/2	257 1250	55	107	105	7	55
	25	1433	327-33	.69	1.45	1.45	286	245 247	49	106	105	7	54
4	30	1	330.75	•75	1.58	1.58	295	247 244	49	106	106	7	53
	32	1	334.28	.81	1.70	1.70	218	245 242	51	107	10.5	7	55
FU	200/0	1447/149	337.81	-45	0.95	0.95	293	245 245	53.	106	105	6	57
	5	1 11574	340.55	.49	1.03	1.03	293	247 242	52	106	105	6	57
	10	1159	343.41	Jan 253	2+0	1.11	292	247 241	53	107	106	6	59
	19	11204	346.49	0.53	1.6/	1.11	290	248 256	52	108	106	G:	57
3	عَلَىٰ الْحَالِمِ الْح	11209	349.47	0.48	100	1.00	291	245 255	5H	108	104	6	57
ž d	25	1/214	352,33	0153	1.11	1-11	292	246 243	56	108	106	7	57
4	30	1119		0.53	1.11	1.11	292	247 249	56	109	107	7	57
	35	1 6224	358.27	0.50	1.05	1.05	290	248 245	57	109	107	6	59
	290	1/229	361.187										
		/									· · · · · · · · · · · · · · · · · · ·		
		/											

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant:	ASPH	ALT PLANT	- "B"		Run No	•				
Sample Date		8/97	Filter No.(s):		Job No.	•				
	Sample Location: OUTCET RUNZ									
	Recovery Date: XAD-2 Trap No.(s):									
Sample Re	coverv Pe	erson:								
			Moisture	Data						
Impingers	XAD - 2 Trap	1 (knockout)	2 (100 ml H2O) (untipped)	(tipped)	4 (knockout) (untipped)	Silica gel (untipped)				
Final wt.	463.1	844.2	986.4	9/6.0	6488	8489	g			
Initial wt.	428.4	429.2	691.7	682.5	600.8	803.5	g			
Net wt.	34.7	489.6	294, 7	1 233.5	48.0 	45,44	g			
		904.6	Descrip	tion	TOTAL	51561-0				
Train Syste	em:					7 1620	<u>. 49</u>			
Probe:										
Filter: Col	or		Loadin	g -						
Impinger C	Contents:									
Silica Gel:	@Grams	s Used -	Color -	- %	6 Spent -					
		ed In Front	Half:							
			ecovered Sam	ple Fractions						
Filter Conf	tainer No.				marke	ed/sealed:				
XAD Module Container No.: marked/sealed:										
Probe (FH) & Back Half Rinse (Acetone) Container No.: Liquid level marked/sealed:										
	Probe (FH) & Back Half Rinse (Toluene) Container No.: Liquid level marked/sealed:									
	Impinger Contents Container No.: Liquid level marked/sealed:									
			2) Container No	o.:		d level ed/sealed:				

486.9 ADD TO KO

FIELD DATA SHEET

Plant:	ASPHALT PLANT "B"
Sampling	Location Baghouse Stack
Run Num	ber: 123-0-7 Date: 5-29-57
Pretest La	eak Rate: <u>0.004</u> cfm @ <u>18</u> in. Hg.
Protect I	ak Chack: Pitot: / Orsat:

Sample Type: M2	3	Operator:
Pbar: 29.6	_ Ps : _	-/1 3 V
CO2:	_02:_	
Probe Length/Type	e: <u>4</u> 1	1/455 Pitot #: PR-20

Nozzle ID: <u>0.251</u> Thermocouple #: <u>PR 20</u>
Assumed Bws: <u>2.7</u> Filter #: <u>M23 70 - 3</u>
Meter Box #: <u>M8/2</u> Y: <u>0.982</u> ΔH@: <u>1.95</u>
Post-Test Leak Rate: <u>0.003</u> cfm @20 in. Hg.

0 10 5

Stack Diameter: 45"x33" As:

Post-Test Leak Check: Pitot: Orsat:

Traverse	Sampling	Clock Time	Gas Meter	Velocity	Orifice Pressu	re Differential	Stack		erabire	Impinger	Dry Gas M	leter Temp.	Pump
Point	Time	(24-hour	Reading	Head (∆p)	XAD IDANI	in H2O	Temp.) F	Temp.	Inlet	Outlet	Vacuum
Number	(min)	clock)	(Vm) ft 3	in H2O	Bethod	Actual	(aT)	Probe	Filter	°F	(Tm in ^o F)	(I'm out ^O F)	(in. Hg)
	0/0	0809	361.502										
A I	5	0814	367.70	2,3	59	5.1	278	247	248	44	69	69	15
<i>''</i>	10	0819	373.62	2.5	54	5.5	269	243	240	41	73	72	17_
2	15	0824	380.19	2.5	56	5.5	269	248	256	45	75	73	17
-	20	0829	386.00	2.3	52	5.1	265	245	255	49	78	75	15
1	25	0834	381.85	2.0	50	4.4	294	248	243	50	80	76	14
		0839	397.33	1.9	49	4.2	286	247	248	50	84	78	14 11
H		0844	402.14	1.4.	49	3.1	180	249	246	5/	86	79	
	40	0849	406.975	1,4	48	3.1	275	248	243	20	88_	82	11_
					·					ļ			
									ļ				
-									ļ				
									Ļ				< -
	40/0	0852	406-975		\searrow	\searrow	$\geq \leq$	\geq		\sim			
81		0857	412:37	129	48	4.1	27/	248	253	23	85	85	14_
		0902	417.86	1.9	49	412	270	248	243	49	9/	86	14
2		0907	423.98	2.4	51	5,3	27/	247	241	25	95 95	88	15
	20	0912	430.85	2,3	49	5.1	271	246	722	51	13 97	9/	15
3	25	0917	436:15	2.3	729	5/	271	246	249	51			
	30	0922	442,40	2.1	_53	4.6	271	248	923	25	98	92	15
4	35	0927	448.05	2.1	54	4.6	272	246	24/	53	98	93	15-
—		0932	454.00	2.1	53	4.6	273	247	244	5-3	99	94	15
											·		
	<u> </u>												
				يان ا									
				ė 🚯									

Vm= √∆p=

ΔH=_______

Tm-

	a.			
	Page	2	of	3

			·	
Plant Name:	ASPHALT PLANT "B"	Test Date:	8-29-97	
Run Number	m12-0-3	Operator:	(This)	

						XAD			·				
Traver Point		mpling Time,	/ Clock Time (24-hour	Gas Meter Reading	Velocity Head (P ₁)		s. Differentia in. 11 ₂ 0	Stack Temp. • F	Probe Temp. / Filter	Impinger Temp.	Dry Gas N	Meter Temp.	Pump Vacuum
Numb		min.)	clock)	(V) ft 3	in. H ₂ O		Actual	(3)	Temp. F	• F	(E _{in})° F	(Th _{out}) °F	In. Hg
	8	00	10935	45400	$\geq <$					\searrow	$\geq <$		$\geq \leq$
61		5-	10940	458.63	1.1	48	2,4	271	247 252	455	97	95	10
	_	10	10945	463.10	1.1	46	2.4	27/	247 242	53	99	96	10
1		15	10950	467.72	1.3	45	2.9	272	246 255	<i>5</i> 3	100	96	10
		20	10955	47250	113	45	2-9	274	247 252	25	102	98	10
3		15	11000	477,35	1.4	44	3.1	275	247 249	52	103	98	10
<u> </u>		30	11005	482.11	1.3	47	2.9	269	247 254	_53	105	99	10
		3s-	11010	487.10	1-4	48	3.1	269	245 242	54	105	100	1/
	/	20	11015	491.910	1.5	48	3,3	272	245/241	54	105	101	11
													
	- -		<u>/</u>										
	_ _/	20/0	1018	491-910	$\geq \leq$	$\geq \leq$		>					يحج
Z T		5	1023	495.27	0.67	57	1.47	278	249/247	59	103	101	7
		10	1028	498.54	0.63	55	1.40	270	248 244	56.	104	-101	7
<u>د </u>		15	1/033	207.70	0,78	46	1,72	256	247 242	52	104	102	8
		20_	1038	505.78	0.82	47	1.80	260	247 244	23	10.5	102	9
3		25	11043	509.71	0.87	47	1.90	259	247 254	5/	105	102	9
· ·		<u>30</u>	1048	5/3.38	0.87	48	1,80	283	246 252	<u>.52</u>	106	103	9
L		2 2	1053	5/7.55	1.05	48	2.30		247 242	52	106	103	9
	1/4	,0	1058	277.63	1.05	47	2.30	266	247 244	22	106	JOH	9
			; 						 ;				
	- -		; 						 ;				
			, 									[
					I				1			l	

Page	3	of	_3
\sim			

Plant Name:			ASPHANT PLANT "B"	Test Date:	8-29-57
Darm Marin Lane	0.7	0 0		Operator	

ſ	Traverse	Sampling	/ Clock Time				s. Differential	Stack	Probe	Impinger	Dry Gas N	Acter Temp.	Pump
١	Point Number	Time, (min.)	(24-hour clock)	Reading (VL) ft ³	in Ho	Desired	in. II ₂ O	Temp. • F (τ)	Temp. / Filter Temp. F	Temp.	Inlet (Table) F	Outlet (E _{out}) *F	Vacuum In. Hg
	14dinoci	160/0	11102	255.03		XAD		32		><			
낼	E1	5	1/107	525-55	050	59	1.40	265	2481256	57	105	104	7
		10	1112	529.10	0.60	45	1.60	269	246 249	53	105	104	7
	2	15	1117	533.31	0.68	45	1.80	270	247 241	55	105	104	8
		30	11122	537.40	0.65	46	1.80	269	246 242	54	106	104	8
	3	25	1/127	542-23	0.73	46	2.00	264	246 282	22	107	105	9
		30	11132	546.82	0.78	50	2.15	260	247/253	55	108	105	9
	4	35	1/137	551.75	0.90	49	2.40	258	247 248	55	109	106	10
L	<u>`</u>	200	1/142	556.46	0.90	57	2.40	208	उत्तर व्यय	56	110	106	10
L			/	,									
-			/			***							
-			'	2 × 3 %					' ,				
ŀ		200/2	1145	556.46						$\overline{\sim}$		~	$\overline{\mathbf{x}}$
ŀ	= [<u>300/0</u> 5	11150		0.40	50	1.10	261	247/252	57	109	107	7
r		10	11155		0.40	47	1:10	258	248/252	56	109	107	8
r	2	15	11200		0.46	46	1.25	259	245/242	58	110	108	8
r		20	11205		0.46	46			247 249	58	109	108	8
Γ		25	11210	575168	0.50	47	1.35		2461254	59	109	108	8
- [ſ		11224		0.50	47	1.35	263	246 1257	60	109	108	9
	4	35	11231	583.52	0.52	45	1.40		248/243	.58	107	108	9
		140/01/	11236	587.600	0.52	48	1.40	271	247 243	58	108	108	9
_		70	<u>/</u>										
L			1										

. STop @ 1211 - feed problem, restart@ 1222

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant:	Plant: A SPHALT PLANT "B" Run No.:								
Sample Da	Sample Date: 8/29/97 Filter No.(s): Job No.:								
Sample Lo	2	WILET	RUN 3)					
Recovery D			XAD-2 Trap N	o.(s):					
Sample Re		ereon.							
. 1886 P. 1887 P. 1878	ochresione Toda		Moisture	Data					
		1	2	3	4				
Impingers	XAD - 2	(knockout)	(100 ml H2O)			Silica gel			
	Trap	1311	(untipped)	(tipped)	(untipped)	(untipped)			
Final wt.	516,5	4200	758.6	123.7 1 280.6	603,Z	712.2	g		
Initial wt.	203.1	727.0	711.5	577.U	5 77.0	864.6	9		
Net wt.	NO SECULATION OF THE PARTY OF T	735.8) 247.1	40.1	V 4.2	47.6	g		
	12.6	413.3	Descrip	tion 7/3.4 ⁷		1255	7.44		
Train Syste	em:				1,09	87.4gran	<u>~5</u>		
Probe:					·	<u>J</u>			
Filter: Cold	or -		Loadin	g -					
Impinger C	ontents:								
Silica Gel:	@Grams	Used -	Color -	%	Spent -				
		ed In Front I	 Half:			*			
		terre de de la terre de la contraction de la con	Make a factor than the second	ole Fractions					
Filter Cont	ainer No.				marke	ed/sealed:			
XAD Module Container No.: marked/sealed:									
Probe (FH) & Back Half Rinse (Acetone) Container No.: Liquid level marked/sealed:									
Probe (FH) & Back Half Rinse (Toluene) Container No.: Liquid level marked/sealed:									
	Impinger Contents Container No.: Liquid level marked/sealed:								
	Liquid level								
Impinger F	Rinse (Ace	etone/MeCl2) Container No	•	marke	ed/sealed:			

M-29 FIELD DATA SHEET

Plant: ASPHALT PLANT "B"	Sample Type: 61-29 Operator: MAD	Nozzle ID: 252 Thermocouple #:
Sampling Location BAGHOUSE EXITIST	Pbar: <u>28.8</u> Ps: 42	Assumed Bws: 15% Filter #: Meter Box #: ARLO Y: 965 AH@: 1,747
Run Number: Ol Date: 8-27-97	CO2:	Post-Test Leak Rate: cfm @ in. Hg.
Pretest Leak Rate: OO7 cfm @ 11 in. Hg.	Probe Length/Type: 46455 Pitot #:	Post-Test Leak Check: Pitot: Orsat:
Pretest Leak Check: Pitot: V Orsat:	Stack Diameter: 33×49 As:	1 Oats Leaf Draw Chicons I won

		O-1 T-1	Gas Meter	Velocity	Orifice Pressu	re Differential	Stack	Tempe	rature	Impinger	Dry Gas N	leter Temp.	Pump
	Sampling	Clock Time	Reading	Head (∆p)	(ΔH) i		Temp.	0	F	Temp.	Inlet	Outlet	Vacuum
Point	Time	(24-hour clock)	(Vm) ft ³	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^O F)	(Tm out ^O F)	(in. Hg)
Number	(min)		41 719	7777777	777777	///////	7////						
<u>C 11 </u>	0	0940	71: 117	94	T NO	7.27	282	243	248	68	87	90	11
	5	0942	16.85		170	7.39	281	244	249	64	93	90	1
7	10	0950	50.21	99	 	<u> </u>	291	244	749	60	93	90	1
2	15	0934	55.74	14	 	3.3	294	747	251	(2)	99	44	1
	20	1889 *	(01.113	1.4	ļ	3.5	291	248	252	56	102	97	2
3	25	1037	66.31	1.5		3.5	295	247	254	54	103	98	Z
	30	1042	71.83	/,>	 	3.8	289	246	255	54	106	100	S
44	35	1047	77.52	1.6	 		289	247	252	54	107	104	Z
	40	1052	83.003	1.5	 	3.6	791	253	asi	SL	108	104	2
DI	45	1112/1117	86.56	43	 	<u> </u>	292	249	252	58	109	104	2
	50	1122	90.11	.63	 	2.08	291	247	253	59	1777	106	2
2	35	7127	94.44	.86	 			0/1	251	55	112	106	2
	(10	1132	98,59	.94	J	2.03	294	244	252	60	113	107	5
3	45*	1/37	105.44	1.05	 	7.53	294	245	27)	61	113	100	2
	70 "	1148	10812	1.1	 	2.66	295 281	275	255	62	112	107	2
प	75	1153	112.94	1.1	<u> </u>	2.5	284	247	254	62	113	100	2
	80	1158	118,045	1.2	·	1.52	292	246	254	60	113	00	7
EI		207/1207	121.73	.63	 	1 4	212	247	277	60	113	111	3
Z	90	1202	(25.57	.64	 		295	244	251	61	113	111	2
2	95	1217	129.4	.65	 	1.45	295	247	257	Cel	113	111	2
	TW	1222	133.2	72		1,75		248	256	60	111	108	2
3	102	1227	i37.18	.83	-	2.02	292	WB	254	40	110	108	2
<u>_</u>	110	1232	141.53	8 3	1		272			62	ilo	108	1
4	115	1237	145.66	୍ଷଞ		2.14	290	247	251		110	108	7
	120	1242	150.24	.88		2.14	289	24	252	62	100.	1 100 001	<u> </u>
			- Ingles							ļ		 	
										<u></u>	l	<u></u>	<u> </u>
L		1 . A 5 + (A)	18.4	- KIND 57	P PlANT	Jorch,	K P. STAL	MAJIAL					

LOSD STOP PESKAN @ 1032

ARITYOSOP PLANT WAN, KESTANTESTA

Īm=

M-29

21/1

Page 2 of 2

737-764 Va + 76.816

Plant Name:	ASPHALT PLANT "B"	Test Date:	8-27-97		
Dun Number	OI	Operators	NA		

	/CTSC	Sampling			Velocity		s. Differential		Probe	Impinger	Dry Gas N	Acter Temp.	Pump
Po		Time,	/ (24-hour	Reading	Head (P.)		in. II ₂ O	Temp. • F		Temp.	Inlet	Outlet	Vacuum
Nun	nber	(min.)	/ clock)	(VL) ft 3	in H2O	Desired	Actual	(3)	Temp. F	• F	(E _h)*F	(Loui) °F	In. Hig
	<u>-</u> 	120	11246	\$50.241	MUUU	Mulle	MUMM	144444	MILLEMAN	MILLEU	A BULLULAU	Millian .	WM (1110
Ē		125	1 1251	iS3.73	.53	NA	1.29	287	211 1253	64	112	109	Z
		130	1 1258	150.46	.53		1.29	237	28 1253	64	112	109	2
	2	135	1 1301	160.14	.55		1.34	285	247 1254	60	113	109	2
		140	1 1306	163.9	.5		1.21	252	244 / 255	59	113	109	2
	3	145	1 1311	167-37	4		1.4	285	243 1247	57	112	109	7
		150	11316	171.0	41		1.4	225	244 1 248	57	111	109	2
	4	155	11321	174.37	SZ		1.24	284	249 1247	FB	112	110	2
		140	1 1324	177.772	.63		1.29	285	244 1 246	59	112	110	2
A_{-}		115	11335/1340	184.32	2.1		SI	290	245 1243	59	113	111	2
		110	1 1345	191.14	2.1		Sil	775	246 1242	61	114	112	3
	2	175	1 1350	198.23	7.3		S.C	287	246 1244	60	115	113	U
		190	1 1355	205,75	2.4		5.8		246 1 247	61	111	113	4
	3	125	# 1400	211.17	1.5		3.65		245 1 248	42.	119	114	3.5
		190	1 1415	2(7.03	1.6		3.9	290	245/250	62	121	115	3.5
	4	195	1/420	<i>38</i> 2.59	1.3		3.17		346 1057	1.3	HL	214	3.5
		W	1 1425	227.507	1.8		7.92	~~/	0261 748	<i>L</i> 3	116	114	3.5
13	. /	205#	15/149	224.04	2.0		4.81	<i>V</i>	24/257	63	112	112	3,5
		210	11446	2-10-52	2.0		4.87	132	245 1250	60	112	112	3.5
	2	212	11451	242,24	1,2			790	24 1251	59	114	112	٠٠
	احٍنـ	220	1 1456	254-04	2.1		5.1		241254	40	114,	112	4
	3	dat	1 1501	260.75	1.1		5.1		244 1257	60	ill	112	4
		230	1 1506		2.1		5.1	P	245 1254	(6)	114	112	9
	4	235	1 1511	279, 44	1.7		4.1		245 / 253	60	114	[1]	4
	•	240	, 1510	278.983	1.6		3.9	293	245 251	ČI –	114	111	4

136/ 1441

MULTI-METALS SAMPLE RECOVERY DATA

Plant: /	ASPHALT PLANT "1	8 ''			Run No	:	
Date: 8 27 97 Sample Box No.: Job No.:							
Sample Locat	tion: OUTLET						
Sample Type	: M29						
Sample Reco	very Person: ろん	MORGAN			•		
Container	Description			Volume,	ml Seale	d/Level Marked	
Front Half	THE RESERVE OF THE PERSON OF T						
1	Filter No.(s) . M97	.013		N/A	YES	> /N/A	
2	Acetone Rinse						
3	Nitric Rinse		7. A.P. 1801).				
Back Half						经来企业的	
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter	950 ×Z	-		
5A	Nitric Rinse - Impin	ger No. 4					
5B	KMNO4/H2O Rinse	e - Impingers 5 8	<u> </u>				
5C	HCI Rinse - Imping	ers 5 & 6		30 100 100 100 100 100 100 100 100 100 1			
Moisture Da	ta»-						
Impinger	Contents	Initial			Weight, gr	ams	
No.		Volume, mi	<u>Ir</u>	nitial	Final	Net	
	KNOCKOUT	Ø	72	8.3	1161.9	(685.1)+ 433.6	
2	5% 10%	100	73	23	932.7	200.4	
3	5% 10%	100	}	5.8	946.9	211.1	
4	KNOCKOUT	Ø	1	8.7	633.5	64.8	
5	KMnOy	100		37.1	634.9	-2,2	
6	KMn04	100	(A) 37:	31.3	729.5	-1.8	
7	SG SG	Alv	3	4.5	927.0	41.0	
			┼				
			-				
						1220	
Total Comments:	1) Added more Si	C (4.56. 5.1	1			1632.0 a	
Comments.	U Magua More 50	A DEPOSE IVA					

0. NO 39-6

FIELD DATA SHEET

Plant: ASPHACT PLANT "R"	Sample Type: M.Z9 Operator: 1MAD	Nozzle ID: .252 Thermocouple #:
Sampling Location BARIAGUE EXIT (STACK) Pbar: <u>99.1</u> Ps:4	Assumed Bws: 25 Filter #:
Run Number: 07 Date: 8-28-97	CO2:O2:	Meter Box #: <u>Μδίο</u> Υ: <u>.9</u> ΔΗ@: <u>l 7 Υ</u>
Pretest Leak Rate: Oll cfm @ 10 in, Hg.	Probe Length/Type: 4 Glass Pitot #:	Post-Test Leak Rate: <u>005</u> cfm @7_ in. Hg.
Pretest Leak Check: Pitot: V Orsat: V	Stack Diameter: 33 x 49 As:	Post-Test Leak Check: Pitot: Orsat:

Traverse	Sempling	Clock Time	Gas Meter	Velocity	Orifice Pres	sure Differential	Stack		erature	Impinger	Dry Gas N	leter Temp.	Pump
Point	Time	(24-hour	Reading	Head (∆p)	(ΔH	in H2O	Temp.	(°F	Temp.	Inlet	Outlet	Vacuum
Number	(min)	clock)	(Vm) it ⁵	in H2O	Desired	Actual	(Ts)	Probe	Filter	o _F	(Tm in ^o F)	(Tm out ^O F)	(in. Hg)
0	0	0746	79.83										
<u> </u>	5	0751	84.0	1.1	NA	2.1	278	241	239	51	72	70	.5
	10	0756	8794	1.0	1	1.9	281	245	243	51	74	71	1.5
Z	15	0801	93.0	1.5		2.9	288	246	Z47	47	78	76	, 5
	70	0806	97 15	1.4		2.7	284	249	244	40	79	77	,5
3	25	0811	102.34	1.4		2-7	791	247	1245	54	८५	76	.5
	30	0816	107.03	1.4	3	2-7	291	247	243	54	85	77	'2
4	35	0821	111.96	1.5		2.9	790	246	245	56	86	78	1_1_
	40	0824	116.629	1.5		2.9	788	245	244	57	86	78	1
5 1	45	0830/0833	19.84	.57		1.12	783	243	ZYFI	28	80	BZ	1
	50	0846	122.82	.54		1.00	279	244	252	61	87	82	1
2	55	0845	124.31	18		1,53	289	247	251	49	89	87	
	60	0850	130.11	82		1.61	287	246	252	48	ष्ठप	83	<u> </u>
3	65	0855	133.7	30		1.27	290	247	1252	49	93	84	1
	701		137.25	.80		1.57	291	244	253	53	25	છદ	<u>'</u>
4	75	0903	140,94	.97		1.90	295	244	257	43	94	87	1
F 4	80	0918	145.026	1.0		1.96	795	243	257	44	9.4	87 70	 _
= 1	85	1970 AR	148.24	.55		1.16	798	241	250	52	94	89	1
	90	0931	15152	.44		1.25	288	239	247	53	94		
Z	95	0936	154.78	59	<u> </u>	1.16	289	239	245	47	97	91	
	100	0941	158.16	.42		121	289	738	243	52	99	92	1
3	105	0946	14162	8ي.		1.33	291	237	244	53	100	93	1
	110	0951	11,5,06	,71		1.39	293	239	246	22	100	94	<u> </u>
U	115	0956	16862	.শণ		1.5	291	730	243	56	101	9.4	9
	iw	1001	172.23	.8		1.57	290	237	244	58	101.	95	
				,									
			,		1 1								

ΔH=

Ta=

Tm=____

Page	` 7	of	2
$\boldsymbol{\mathcal{O}}$			

Plant Name:	" ASPHALT PLANT "B"	Test Date:	8-28-97
Run Number:	02	Operator:	MAD

Tra	verse	Sampling	/ Clock Time		Velocity		s. Differential		Probe	Impinger	Dry Gas N	leter Temp.	Pump
Pe	oint	Time,	/ (24-hour	Reading	Head (P.)	(AH)	in II ₂ O	Temp. • F		Temp.	Inlet	Oullet	Vacuum
Nu	mber	(min.)	clock)	(VL) ft3	in. 1120	Desired	Actual	(3)	Temp. F	• F	(E _b)°F	(L _{out}) °F	In. llg
		120	1/0/04	172.23	11/11	MMU (YUUUUU	WIMMU	Mulling	<u>umuu</u>	MUMMA	MOUNTAIN	
F	l	125	11009	174.94	.4	HA	.78	293	246 1243	59	100	95	1
		130	11014	177.72	.42		.83	293	2451242	62	101	94	1
	2	105	1 1019	180,8	1.54 9	ŧ	1.06	294	243 1 240	49	103	93	l
		140	11024	183.4	.51		8.0	2.95	242 1 239	5/	104	93	1
	3	145	11029	186.1	47		.82	295	BHY 1244	50	105	96	l
		150	1 1034	188.95	.47		.82	297	244 1248	50	106	tes	1
	4	155	1 1039	191.87	-8.		94	295	247 1247	80	106	101	1
		160	11044	194.75	40		9	295	251 / 247	51	jul	107	1
A	1	145	1049/2054	200.74	2.1		3.9	294	254 1243	56	107	103	3
		100	1 1059	206.46	2.2		41	294	252 / 244	59	109	105	3
	1	175	1 1/04	2124	2-1		3.7	245	257 1249	59	113	101	>
		180	1 1/09	210.37	2.1		3.9	295	251 1 249	59	114	106	3
	3	105	1 1134	223 67	1.4		2.6	282	252 / 247	41.	115	167	3
		190			2.5		2.6	28/	253 1 244	59	115	107	3
	4	195	11142	232,83	1.2		2.2	298	251 1 249	58	109	104	3
		w	11147	237.178	1.>		22	298	251 1 247	25	111	104	3
5_	<u>. </u>	205	11149/1154	242.38	1.7		3.2	298	251 246	54	110	.[0]	3
		210	1 1155	247.12	1.4		2.6	299	252 / 247	58	111	(0)	<u> </u>
	2	215	1 1204	252.44	7.9		3.6	300	251 1244	54	113	107	3
		<i>92</i> 0	1 1209		2.0		3.7		052 / 247	53	1(4	108	3
		<u> 225</u>	/V	264.18	2.1				251 1248	40	114	109	5
		<u>a30</u>	1 1219	270.1	2.1	_//_			052 246	61	114	109	3
		245	11224	274,051	1.5	/	5		251 1247	6/	1/7	116	3
	7	340	1229	280.159	1-4		3.0	399 G	252 248	64	(17	110	3

1110 5700 Plant Davn 1129 Resona

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	A SPHALT PLANT "B	? <i>"</i>			Run No.	: 2
Date: 8/2:	8/97	Sample Box No). <u>:</u>		Job No.:	
Sample Loca	tion: OUTLET	-				
Sample Type	: M29			•		
Sample Reco	overy Person: 5.	MORGAN				
Container	Description			Volume, m	Sealed	/Level Marked
Front Half						
1	Filter No.(s) Mo	17-019				
2	Acetone Rinse					
3	Nitric Rinse	The whole of some way of the State and the services was the state of the services and the services are the services and the services and the services are the services and the services are the services and the services are the services and the services are the services and the services are the services and the services are the services are the services and the services are the s	Zarone de l'Astonio de			
Back Half						
4	Nitric Rinse - Imp. 1	,2,3, + Back 1/2	2 Filter			
5A	Nitric Rinse - Imping	ger No. 4	<u>-</u>	·		
5B	KMNO4/H2O Rinse	- Impingers 5 8	<u> 6</u>			
5C	HCI Rinse - Impinge	ers 5 & 6	N. Carlos de Labora			
Moisture Da	ta					
Impinger	Contents	Initial		W	eight, gra	ms
No.	- 02-1	Volume, ml		itial	Final	- YGO Net
1	EMPTY	Ø ·				907.4) 375.5 ± 1080.9
2	5% 10%	100			981.6	215.0
3	5% 10%	160	76		712.6	147.5
4	EMPTY KMnOy KMnOy SG	Ø	57		576.9	5.8
5	KMNEY	160	63		540.9	2.0
6	KMINDY	160	73		31.5	1.2
7	59	N/A	77	2.0	024.2	32.2
					·	·
Total		ì				1484.69
Comments:			L	L		1 10 14 0
					· -	
L						

FIELD DATA SHEET

	Sample Type: M-29 Operator: MAD	Nozzle ID: , 252 Thermocouple #:
Plant: ASPHALT PLANT "B"	phor 79 (Ps: - 42	Assumed Bws; 25 Filter #:
Sampling Location BAGHOUSE But STACK	CO2: 02:	Meter Box #: ΜΟΟΥ: 405 ΔΗ@:
Run Number: 03 Date: 6.2(-11	Ditat #:	Post-Test Leak Rate: 007 _ cfm @ 6 _ in. Hg.
Pretest Leak nam	Stack Diameter: 33 × 49 As:	Post-Test Leak Check: Pitol: Orsat:
Pretest Leak Check: Pitot: V Orsat:V		nnerature impinger Dry Gas Meter Temp. Pump

			Gas Meter		Office Lieganie Suprame		Stack Temperat			impinger Temp.	Inlet	oter Temp. Outlet	Vacuum
	1	Clock Time	Reading	Head (∆p)	(Δ	H) in H2O	Temp.		Filter	o _E		(Tm out ^O F)	(in. Hg)
Point lumber	Time (min)	(24-hour clock)	(Vm) tt ³	in H2O	Desired	Actual	(Ts)	Probe	77777	7777	11111		
(S) IIVO		0809	81.713		[[]][]		205	257	248	48	75	72	1
	5	0814	86.44	1.3	VA	2.7	285	350	249	47	78	74	1
	10	0819	90.96	1.2	_ _	7.4	282	259	249	47	77	73	1
Z	12	0824	95.86	1.3	╌╁╼╌╁╾	3.2	271	258	250	47	79	74	1 1
	20	0819	101.18	1.0		3.2	300	259	251	\$3	80 84	75	1
3	25	0834	106.25	1.6		3.2	300	258	249	57	87	78	1
	30	0839	111.47	1.7	11	3.4	291	247	249 250	60	89	81	
_4	<u> 35</u> 40	0849	122.218	1:7		3.4	286	251	251	61	90	84	1
		285/085	125.85	.78	_ _ _	(,5)	280	252	251	61	91	86)
	50	002	129.52	.00		1.8	276	251	250	67	93	86	1
Z	SS	0907	133.44	44	_{-}	1.93	275	254	247	SU	94	<u>e7</u>	
	60	0912	137.55	.97		1.79	275	251	247	52	95	90	 -
3	رر	0917	141.64	1.0		1,99	215	254	244	51	90	91	+
	70	6922	145.75	1.0		2.19	भार	258	247	53 54	99	92	
4	75	0927	150.33	1.0		1.99	277	254	245 247	28	99	43	17
		0935/0940		.(0		1.19	278	253 251	249	61	100	94	1
	90	0995	160.37	.58	1-1-	1.15	278	251	248	40	101	95	1_1_
2	95	0950	163.92	7	_	1.39	218	248	248	60	102	94	1
	100	0955	167.37	17		1.45	219	247	249	60	103	97	+-
3	105	080	170.94	73		1.47	280	244	251	59	104	98	+ +
	116	1002	174.53			1.67	276	247	324	60	105	100	+;-
4	115	1010	182.034	84	+++	1.69	274	248	522	UZ	106	. 101	+
	120	1015	مريرها		11			ļ		-		-	+
	ļ				V			1	<u></u>		<u>.l</u>		
	<u> </u>		m=	√∆p=		j=	Ye-				Tm		

Page	2	of	2	
_				

Plant Name:	ASPHALT PLANT "B"	Test Date:	8-29-97

Run Number: 03 Operator: MAD

Po		Sampling Time,	/ Clock Tim (24-hour	Gas Meter Reading	Velocity		es. Differential in. 11 ₂ 0	Stack Temp. • F	Probe Temp. / Filter	Impinger		Meter Temp.	Pump
Nun	nber	(min.)	clock)	(V4) #12	in H2O		Actual	(3)	Temp. F	Temp.	Inlet	Outlet	Vacuu
		120	1 1018	182.034	Mulley	4/11/11/4/11			Marie Hills	Allantin	(In in) F	(Tagut) °F	In. H
ŕ	1	125	1 1023	184.91	45	HA	.89			Milling		Julium .	MUMU
·		130	1 1028	187.91		1712		283	247/24	62	104	101	
	2	135	1 1033	190.74	.5		.99	283	257 1 245	62	105	102	1
		140			177		.93	275	250 1 24c	59	106	103	1
	3		1 1038	193.82	.49		.97	261	2491247	58	107	104	7
	٥	145	1 1043	194.85	.49		.97	WI	248 1247	57	108	104	
		150	11048	199.8	49		.97	263	251 1247	57	108	104	
	4	188	1 1053	263.01	.54		1.07	745	253 1244	54	108	105	
,		160	1 1058	106,396	.54		132	218	253 1245	34	108	102	1
<u>Q</u>	1	108	1/102/1107	2/3.33	2.2		540	268	254/246	57	107		
		178	1 11/2	220.35	2.3		545	268	257124	55		100	3.2
	2	145	1 1117	227.35	23		5.45		257/241		109	105	3.5
		180	1/1/22	234.65	2.3		2.72		257 1 257	54	112	104	3.5
	3	185	1 //Z)	240.81	1.9		4.61			22	114	100	3.5
		1989	1 1/32	247.24	1.9				7 1	59.	217	107	3.5
	ul	195	1 1137	252,92	1:1		4.67		255 1 254	4/	118	109	35
		200	11142		1.7		2,7		253 1254	58	119	no	3.0
	, -	Zos		257.473			2.95		252 1 254	58	19	110	3.0
<u> </u>	-4-				20		4.9		257 256	60	614	112	3.6
	7	210	1 1255	270.43	1.9		4.47		252 / 254	60	1/8	1/2	3.0
		216			2.2		5.4	767 3	252/254	58	119	113	30
		120	1 1205		2,1		5.4	24	252 / 253		119	113	35
(7.25	1210	290.78	2.0		4.9	245	252 / 754		179	117	
		230	11276	294,45	2.0	//	4.9		2521 255	67	119		28
		135		303.24	14.	7	3.9			64	119	113	3,5
1	•	240	1935	309 . Ols	1.6		-			č4 - 	119	117	3.5 3.5

MULTI-METALS SAMPLE RECOVERY DATA

Plant:	ASPHALT PLANT	"B"		Run No.: 3								
Date: 8/29	i 97	Sample Box No	•	Job No.:								
Sample Loca	tion: OUTLET											
Sample Type	: M29											
Sample Reco	overy Person: 5.	MORGAN										
Container	Description		Volur	me, ml Sealed/l	Level Marked							
Front Half												
1	Filter No.(s)											
2	Acetone Rinse											
3	3 Nitric Rinse											
Back Half	cHalf											
4												
5A	Nitric Rinse - Impir	ger No. 4										
5B	KMNO4/H2O Rins	e - Impingers 5 &	3.6									
5C	HCI Rinse - Imping	jers 5 & 6										
Moisture Data												
inoloculo Be	Weight grams											
Impinger	Contents	Initial										
,	Contents	Volume, ml	Initial	Final	Net							
Impinger	Contents	Volume, ml	731.6	Final 1617.3	Net 885.7							
Impinger No.	Contents EMPTY 5% 10%	Volume, ml	731.6 720.0	Final 1617.3 902.6	Net 885.7 182.6							
Impinger No.	Contents EMPTY 5% 10% 5% 10%	Volume, ml	731.6 720.0 756.8	Final 1617.3 902.6 791.5	Net 885.7 182.6 -111.6 ^{34.7}							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY	Volume, ml Ø I I Ø	731.6 720.0 756.8 573.0	Final 1617.3 902.6 791.5 581.2	Net 885.7 182.6 -111.6 ^{34.7} 8.2							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnOy	Volume, ml Ø IOO IOO IOO	731.6 720.0 756.8 573.0 640.3	Final 1617.3 902.6 791.5 581.2 639.6	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnOy	Volume, ml Ø IOO IOO IOO	731.6 720.0 756.8 573.0 640.3	Final 1617.3 902.6 791.5 581.2 639.6	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8 992.0	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2 37.8							
Impinger No. 1 2 3 4 5 6 7	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2							
Impinger No.	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4 SG	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8 992.0	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2 37.8							
Impinger No. 1 2 3 4 5 4 7	Contents EMPTY 5% 10% 5% 10% EMPTY KMnO4 KMnO4 SG	Volume, ml Ø IOO IOO IOO IOO	731.6 720.0 756.8 573.0 640.3 734.0	Final 1617.3 902.6 791.5 581.2 639.6 732.8 992.0	Net 885.7 182.6 -111.6 ^{34.7} 8.2 -0.7 -1.2 37.8							

FIELD DATA SHEET

FIRD BLANK ASPHALT PLANT "B" Nozzle ID: .257 Thermocouple #: \\D Sample Type: M-23 Operator: LUDD Plant: Ps: NW Sampling Location BAGHOUSE But Pbar: <u>29.6</u> Assumed Bws: KW Filter #: Date: 8-28-97 Run Number: F/6 02: Meter Box #: ____ Y: ___ ΔH@: CO2: Probe Length/Type: 4 Glass Pitot #: N/A Post-Test Leak Rate: 60 + cfm @ 10 in. Hg. Pretest Leak Rate: Oly cfm @ 10 in. Hg. Post-Test Leak Check: Pitot: Morsat: N10 Stack Diameter: WP As: NMO Pretest Leak Check: Pitot: No Orsat: NA

Traverse	Sampling	Clock Time	Gas Meter	Velocity	Orifice Press	ure Differential	Stack		erature	Impinger	Dry Gas A	leter Temp.	Pump
Point	Time	(24-hour	Reading	Head (∆p)	(AH)	in H2O	Temp.		°F	Temp.	Inlet	Outlet	Vacuum
Number	(min)	clock)	(Vm) ft 3	in H2O	Desired	Actual	(Ts)	Probe	Filter	°F	(Tm in ^O F)	(Tm out ^O F)	(in. Hg)
			61.544										7///
			61.639	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	T	T	Τ΄					
			61.60		 	 	 	 	 	1		 	
			1.1 /29			 	<u> </u>	 	 	 			
		- 	61.639	OIL 6	2 10"11	h		 					
			61.104	.011	10 1	0		1		 		· · · · · · · · · · · · · · · · · · ·	
					 	*			 	 			
			(-1)		I	1		 	 	1			
			61.704	.004	छ । ज्या	1		İ					
			61.14			0							
					 								
					<u> </u>			ļ					
	}												
										 			
								 					
							<u> </u>			 			
					 					 			
∤										 			
										ii			
													
						-A-12	· ····						
						, *				 			
										 			
			· · · · · ·										
	·												
	T					ł	. 1			Ī	}		

Ti-

Tm=

METHOD 23 CDD/CDF SAMPLE RECOVERY DATA

Plant:	ASPA	HALT , PLANT	r "B"		Run No.	••						
Sample Da	te: 8/2	8/97	Filter No.(s):		Job No.	•						
Sample Loc	cation:	FIELD B	LK (Men	uton 23)								
Recovery D	ate:		XAD-2 Trap N	o.(s):								
Sample Re	covery Pe	rson: BH	R	·								
			Moisture	Data								
Impingers	Impingers XAD - 2 (knockout) (100 ml H2O) (100 ml H2O) (knockout) Silica gel (untipped) (untipped) (untipped)											
Final wt.	460.0	509.6	706.6	710.5	600.0	908.6	g					
Initial wt.	459.3	509.7	706.6	710.7	599.9	908. D	g					
Net wt.		<u></u>					g					
			Descrip	tion								
Train Syste	em:					·						
Probe:												
Filter: Col	or -		Loadin	g -								
Impinger C	contents:					·						
Silica Gel:		Used -	Color -	. %	Spent -							
		ed In Front I	 Half:									
		the contract of the second	covered Sam	ple Fractions								
Filter Cont	ainer No.					ed/sealed:						
XAD Modu	ule Contai	ner No.:				ed/sealed:						
Probe (FH	l) & Back l	Half Rinse (/	Acetone) Conta	iner No.:	marke	d level ed/sealed:						
Probe (FF	l) & Back l	Half Rinse (Toluene) Conta	iner No.:		d level ed/sealed:						
Impinger (Contents (Container No	o.:			d level ed/sealed:						
			2) Container No).:		d level ed/sealed:						

(=1.021

Mag- (62

		Page of
Plant Name:	ASPHALT PLANT "B"	Test Date:
Run Number:		Operator:

Traverse Point	Sampling Time,	Clock Time (24-hour	Gas Meter Reading	Velocity Head (4P _s)	Orifice Pr	res. Differential) in. 11 ₂ 0	Stack Temp. • F	Probe	Impinger	7		Pump
Number	(min.)	clock)	(VL) N 3	in. H ₂ O			(Т)	Temp. / Filter Temp.* F	Temp.	Inlet (E _b)*F	Outlet (E _{out}) °F	Vacuun In. Hg
1//	1000		708.184	0.4				- 1		85	83	3
	100 100		711.80	0.42			20	231 1254	58	68	83	177
		1	715,44	0.52			252	241 1252	57	90	86	17
		1	7/8.62				231	243 1254	60	40	78	9.3
	SIM	.hutes	721.837				230	1		90	86	α,
		1						7				
		1					· · · · · · · · · · · · · · · · · · ·					
		1	13,653		<u> </u>			7			~	
		1				 					566	
		7			. /	H						
		7		1	¥4 /~	1						
		,				4		7				
		, 					—— <u>-</u> -					
		,						; -			··	
		<i>i</i>				<u> </u>		 ;				
		,										
		,						; -				
		,						; -				
		,						;				
		,						; -				
	/			 -			 -	; -				
								 ;				
		-										
	7	-										

MULTI-METALS SAMPLE RECOVERY DATA

Plant: 📉	ASPHALT PLANT "	Run No.:	Run No.: FB							
Date: 8/27	197	Job No.:								
Sample Location: N/A										
Sample Type: M29										
Sample Recovery Person: 5 Mergan										
Container	Description		Volume,	ml Sealed/L	evel Marked					
Front Half		West Cartes	Tables & Table							
1	Filter No.(s) M97.017									
2	Acetone Rinse									
3	Nitric Rinse									
Back Half										
4	Nitric Rinse - Imp. 1,2,3, + Back 1/2 Filter									
5A	Nitric Rinse - Impinger No. 4									
5B	KMNO4/H2O Rinse - Impingers 5 & 6									
5C	HCI Rinse - Impingers 5 & 6									
Moisture Data										
Impinger	Contents	Initial	Weight, grams							
No.		Volume, ml	Initial	Final	Net					
1	EMPTY	Ø	724.4	724.6	Ø					
2	5% 10%	100	727.2	727.2	\$					
3	5% 10%	(90)	753.1	753.2	8.1					
4	EMPTY	Ø	622.1	422.1	ø					
5	KW~04	100	688.0 684.4 736.6	688.2	0.2					
6	KMVOA	180	135-8	737.1	0.5					
7	5G	NA	867.7	868.2	0.5					
					1.3					
Total		<u> </u>			117					
Comments										

		•	