United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 EPA - 454/R-00-024 May 2000

Air

*金***EPA**

Hot Mix Asphalt Plants Truck Loading and Silo Filling Instrumental Methods Testing

Asphalt Plant C Los Angeles, California

Hot Mix Asphalt Plants Truck Loading and Silo Filling Instrumental Methods Testing Asphalt Plant C Los Angeles, California

Final Report

For U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division Emission Measurement Center (MD-19) 4930 Old Page Road Research Triangle Park, North Carolina 27709

> Mr. Michael L. Toney, Work Assignment Manager

> > EPA Contract No. 68-D-98-027 Work Assignment No. 3-02 MRI Project No. 4952-02

> > > May, 2000

DISCLAIMER

The information in this document has been funded wholly or in part by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA) under contract 68-D-98-027 to Midwest Research Institute. It has been subjected to EPA's review, and it has been approved for publication as an EPA document. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use.

Preface

This report was prepared by Midwest Research Institute (MRI) for the U.S. Environmental Protection Agency (EPA) under EMC Contract No. 68-D-98-027, Work Assignment Number 3-02. A draft of this report was prepared previously under WA 2-04. Mr. Michael Toney is the EPA Work Assignment Manager. The MRI Work Assignment Leader is Mr. Scott Klamm and Mr. John Hosenfeld is the Program Manager of MRI's contract with EMC.

This report presents the results from an emissions test using FTIR spectroscopy and FID at a hot mix asphalt plant.

MIDWEST RESEARCH INSTITUTE

Scott Klamm Work Assignment Leader

Approved:

skyfla

John Hosenfeld Program Manager

Paul Constant Acting Director Applied Engineering

May, 2000

MRI-AED\R4951-04-08.wpd

Glossary

- ASTM-American Society for Testing and Materials
- CEMS—Continuous Emissions Monitoring System
- CO—Carbon Monoxide
- CTS—Calibration Transfer Standard
- EMAD—Emissions Measurement and Analysis Division
- EMC-Emissions Measurement Center
- ESP—Electrostatic Precipitator
- FID—Flame Ionization Detector
- FTIR—Fourier Transform Infrared Spectroscopy
- HAP—Hazardous Air Pollutant
- MRI-Midwest Research Institute
- NO-Nitric Oxide
- NO₂—Nitrogen Dioxide
- N₂O—Nitrous Oxide
- NO_x—Nitrogen Oxides (generally comprised of the chemical species NO, NO₂ and N₂O)
- PES—Pacific Environmental Services
- PTE—Permanent Total Enclosure
- RAP—Recycled Asphalt
- RTFOT-Rolling Thin Film Oven Test
- SED-Silo Emissions Duct
- SF₆—Sulfur Hexafluoride
- SMTG—Source Measurement Technology Group
- SO₂—Sulfur Dioxide
- TED—Tunnel Emissions Duct
- THC—Total Hydrocarbons
- VOST-Volatile Organic Sampling Train

MRI-AED\R4951-04-08.wpd

Contents

Preface . Figures Tables Executive S	iii ix ix Summary
Section 1.	Introduction1-11.1 Background1-11.2 Project Summary1-11.3 Project Personnel1-3
Section 2.	Process Description and Test Locations2-12.1 Process Description2-12.2 Test Locations2-3
Section 3.	Test Results3-13.1 Objectives and Test Matrix3-13.2 Field Test Changes and Problems3-73.3 Summary of Test Results3-73.4 Line Calibration Checks3-21
Section 4. Sampling a	and Analytical Methods4-14.1 Sampling System Description4-14.2 Sampling Procedures4-44.3 FTIR Analytical Procedures4-44.4 Total Hydrocarbon Sampling Procedures4-9
Section 5.	QA/QC Summary 5-1 5.1 Sampling and Test Conditions 5-1 5.2 FTIR Spectra 5-2 5.3 Method 25A 5-3
Section 6.	References
Appendic Appen Appen Appen Appen Appen Appen Appen	es ndix A—Process Data ndix B—Process Stack Testing Raw Data Sheets ndix C—Direct (Extractive) FTIR Results ndix D—Sample Concentration FTIR Results ndix E—THC Data ndix F—SF ₆ Capture and Loadout Summaries ndix G—SF ₆ Gas Release Data

Appendix H—Loadout Raw Data Appendix I—Sample Concentration Procedure and Raw Data Sheets Appendix J—Equipment Calibration Data

Figures

Figure 2-1.	Process Flow Schematic	-2
Figure 2-2.	Load-Out Station, Top View 2	-4
Figure 2-3.	Load-Out Station, Side View	-5
Figure 2-4.	Hot Mix Drying Exhaust System 2	-6
Figure 3-1.	Capture System with Tracer Gas Placement 3	-6
Figure 3-2.	Process Stack Concentration (7/21/98) 3-	12
Figure 3-3.	Process Stack Concentrations (7/22/98) 3-	12
Figure 3-4.	THC Concentrations During Intermittent Loadout Testing 3-	18
Figure 4-1.	Extractive Sampling System	-2

Tables

Table 1-1. Project Personnel	1-3
Table 3-1. Summary of Sampling and Analysis Parameters	3-2
Table 3-2. Summary of Test Run Times	3-8
Table 3-3. Source Gas Composition and Flow Summary	3-9
Table 3-4. Dryer Stack Emissions Summary	3-11
Table 3-5. SED Emissions Summary	3-13
Table 3-6. TED Emissions Summary	3-14
Table 3-7. THC Emissions Summary	3-16
Table 3-8. Intermittant Loadout Summary and Statisical Analysis	3-17
Table 3-9. SF ₆ Capture Efficiency Calculations	3-20
Table 3-10. Calibration Standard Line Check Results	3-21
Table 4-1. Program Input for FTIR Analysis (Loadout and Silo Samples	4-6
Table 4-2. Program Input for FTIR Analysis (Process Stack and Tenax Samples)	4-7
Table 4-3. Program Input for Analysis of CTS Spectra	4-9
Table 4-4. Path Length Determinations From the Analysis of	
Hot (397 K) CTS Spectra	4-9

MRI-AED\R4951-04-08.wpd

Overview

Test results are summarized in Table ES-1, and show both average concentrations and emission factors for the Plant C test program. Three types of samples were collected as part of this test program. Production emissions were collected from the process dryer stack (two test runs), silo filling emissions were measured at the Silo Emissions Duct (SED, three test runs, collected simultaneous with the loadout testing), and loadout emissions testing was conducted at the tunnel exhaust duct (TED, three test runs). A fourth, background, emissions test was also performed at the TED location to measure emissions due to truck traffic alone. Note that no emission factor can be calculated for the background test, since no truck loading was underway at the time.

The data in Table ES-1 are broken into two primary categories. First, all concentrations and emission factors are reported on an "as measured" basis. These values are derived directly from the instrument readings, flow measurements, and truck loading data collected while on-site. Second, tracer gas testing at the TED location allowed a determination of capture efficiency to be made. The average capture efficiency for all three runs was 61% (determined by the 90% lower confidence limit approach), and was 45% for the background run. Table ES-1 includes the capture efficiency corrected TED concentrations and emission factors.

With the exception of Total Hydrocarbon (THC, by Method 25A) data, all concentrations reported in the table were determined by direct (extractive) Fourier Transform Infrared Spectroscopy (FTIR, by Method 320). Many additional compounds, particularly SO_2 and NO_x , were analyzed for, but were not detected, and are therefore not included in the main summary table. A Tenax sample concentration technique (with FTIR analysis) was also used for this test program, but did not reveal the presence of any additional analytes. The Tenax sample concentration results, although qualitative, thus suggest that the extractive FTIR detection limits reported in Appendix C may be high by a factor of as much as 30-40.

	As measured						Capture Efficiency Corrected⁵			
	Dryer sta	ck production	SED	production	TED	production	TED background	TED p	production	TED background
	ppm	lb/ton	ppm	lb/ton	ppm	lb/ton	ppm	ppm	lb/ton	ppm
Propane	2.05	7.14 x 10 ^{! 4}	ND	ļ	ND	ļ	ND	ND	ļ	ND
Methane	55.4	8.00 x 10 ^{! 3}	6.43	2.44 x 10 ^{! 5}	3.20	1.64 x 10 ^{! 4}	3.00	5.29	2.66 x 10 ^{! 4}	6.67
CO	62.6	1.44 x 10 ^{! 2}	80.0	4.33 x 10 ^{! 4}	5.73	5.20 x 10 ^{! 4}	3.50	9.54	8.44 x 10 ^{! 4}	7.78
Hydrocarbon Mixture A ¹	ND	ļ	104	1.83 x 10 ^{! 3}	0.0100	3.75 x 10 ^{!6}	ND	0.0154	5.74 x 10 ^{!6}	ND
Hydrocarbon Mixture B ¹	ND	ļ	202	4.20 x 10! 3	3.03	8.36 x 10 ^{!4}	ND	5.02	1.36 x 10 ^{! 3}	ND
Ethylene	ND	ļ	8.24	3.95 x 10 ^{! 5}	0.0833	6.35 x 10 ^{!6}	ND	0.144	1.07 x 10 ^{! 5}	ND
Formaldehyde	ND	ļ	7.33	5.24 x 10 ^{! 5}	0.00800	5.20 x 10 ^{! 7}	ND	0.148	9.57 x 10 ^{!7}	ND
Isooctane	ND	ļ	5.63	1.48 x 10 ^{! 4}	ND	!	ND	ND	ļ	ND
THC ²	19.0	7.34 x 10 ^{! 3}	5.26	5.29 x 10 ^{! 3}	7.50	1.14 x 10 ^{! 3}	1.20/0.830 ³ /1.60 ⁴	12.4	1.85 x 10 ^{! 3}	2.67/1.84 ³ /3.56 ⁴

Table OV-1. Summary of Results—Average Concentrations and Emission Factors

ND = Not detected.

¹ Together, "hydrocarbon mixture A" and hydrocarbon mixture B" represent the best least-squares spectral fit for a nonaromatic hydrocarbon mixture. Mixture A was quantitated using reference spectra for toluene, and Mixture B was quantitated using reference spectra for hexane.

² Method 25A, determined as ppm propane.
 ³ Value taken from first half of background test (Run 4).
 ⁴ Value taken from second half of background test (Run 4).

⁵ Using 90% lower confidence limit capture efficiencies for each run (Run 1 = 64%, Run 2 = 65%, Run 3 = 54%, Run = 45%).

Section 1. Introduction

1.1 Background

The United States Environmental Protection Agency (EPA) is investigating hot mix asphalt plants to identify and quantify particulate matter and organic hazardous air pollutants (HAPs) emitted from asphalt cement load-out operations. EPA issued a work assignment to Midwest Research Institute (MRI) to conduct an air emissions test program to collect data in support of the investigation. The testing program was conducted through EPA Contract No. 68-W6-0048, Work Assignment No. 2-08, and results are presented in this report.

The test facility (referred to as "Plant C") was selected as the host facility for this project, primarily because load-out emissions are controlled by a silo exhaust system and a load-out tunnel. The plant has a production capacity of 650 tons per hour (TPH).

The primary objective of the project was to characterize air emissions of organic HAPs from asphalt cement load-out operations and operation of the hot mix dryer. Testing was performed to characterize emissions from the storage silos, the load-out tunnel, and the hot mix dryer. Section 1.2, below, summarizes the specific measurements collected during the various tests.

In addition to MRI's testing, manual samples were collected simultaneously by Pacific Environmental Services, Inc. (PES) in order to address all needs of the work request. Work performed by PES was under a separate work assignment and discussion of this additional testing is outside the scope of this report.

1.2 Project Summary

The site selected for performing the emissions tests performs all truck loading operations inside a tunnel approximately 183 ft in length with open doorways at both ends. During loading, emissions are captured by activating a double-slotted capture hood located at each individual silo. Thus, the tunnel, ventilation system, and capture hoods work together to form a near-total enclosure for determination of mass emissions for the loading operations.

The selected test site, however, did not meet all of the criteria for a permanent total enclosure (PTE) as defined by EPA Method 204, "Criteria for Verification of a Permanent or Temporary Total Enclosure," *Federal Register*, Vol. 62, No. 115, June 16, 1997. Specifically, the chosen test site did not meet all the criteria for building geometry, or average face velocity across the two doorways. A building which does not meet criteria for PTE is required to

undergo capture efficiency testing in order to demonstrate effectiveness of the air handling system. Preliminary capture efficiency tests were conducted at the site during the week of May 11-15, 1998, and capture efficiency tests were also performed in conjunction with the tests described in this report.

Three ventilation system tests and a capture efficiency test on the load-out system (alone) were performed to determine emissions at the facility. The three ventilation systems are referred to as the load-out system, the silo storage system, and the hot mix dryer system. Two or three test runs were performed to test each ventilation system, as summarized below:

- The Load-out system was tested for HAPs, CO, SO₂, and NO_x, using extractive Fourier Transform Infrared Spectroscopy (FTIR) (EPA Method 320) and FTIR with sample concentration; and for total hydrocarbons (THC) using a flame ionization detector (FID) (Method 25A). Three test runs were performed during normal load-out operations. A fourth test run was also performed with trucks traversing the load-out area while no loading was occurring in order to determine background emissions contributed by diesel truck exhaust.
- The Silo storage system was tested for HAPs, CO, SO₂, and NO_x, using extractive FTIR (EPA Method 320) and FTIR with sample concentration; and for total hydrocarbons (THC) using a flame ionization detector (FID) (Method 25A). This storage system was tested intermittently with the load-out system whenever silo loading operations occurred, and was not included in the background test.
- The Hot mix dryer system was tested for HAPs, CO, SO₂, and NO_x, using extractive FTIR (EPA Method 320) and FTIR with sample concentration; and for total hydrocarbons (THC) using a flame ionization detector (FID) (Method 25A). Two test runs were performed.
- Capture efficiency tests of the load-out system were also performed simultaneously with the load-out system and silo storage system tests. Tracer gas was released from a manifold in the load-out bay, was collected by the ventilation system, and air concentrations were measured, allowing capture efficiency to be calculated.

The load-out and silo storage ventilation systems combine into one common duct which passes through an electrostatic precipitator and is exhausted to air. Testing for the load-out system was performed at a port located between Silos 1 and 2, which is upstream of the combined common duct. Similarly, the silo storage testing was performed from an extension at the top of Silo 2, which is also located upstream of the combined common duct.

1.3 Project Personnel

This EPA project is administered by the Emission Measurement Center (EMC). The test request was initiated by the Emission Factor and Inventory Group (EFIG) of the Emission Standards Division (ESD), both from the Office of Air Quality Planning and Standards (OAQPS). Key project personnel are listed below in Table 1-1.

		=
Organization	Name and title	Phone number
U.S. EPA EMC	Michael Toney, Work	(919) 541-5247
	Assignment Manager	(919) 541-1039 (fax)
		(202) 702 7022
Asphalt Plant C	Richard Burnett, Manager	(909) 736-7600
	Corporate Operations	
Asphalt Plant C	Pat McClure, Plant Operator	(949) 786-1290
		、 <i>,</i>
Midwest Research Institute	Scott Klamm, Work	(816) 753-7600, ext. 1228
425 Volker Boulevard	Assignment Leader	(816) 531-0315 (fax)
Kansas City, MO 64110		
Midwest Research Institute	John Hosenfeld Program	(816) 753-7600 ext 1336
425 Volker Boulevard	Manager	(816) 531-0315 (fax)
Kansas City MO 64110	Manager	(010) 001 0010 (lax)

Table 1-1. Project Personnel

2.1 Process Description

This plant was selected for the emissions testing due to its high production rate and enclosure/ventilation of the storage silos and load-out bay.

The Plant C facility has a rated production capacity of 650 tons per hour (tph). Daily production varies from approximately 2,000 tons per day (tpd) to 6,000 tpd depending on demand. The plant produces five different categories of asphalt cement, 3/8 in, 1/2 in, 3/4 in, fines, and recycled asphalt (RAP). These categories indicate the average size and type of aggregate in the mix. In RAP, small amounts of recycled asphalt are added to the mix. The plant also adds small amounts of rubber to some products as a crack inhibitor.

The plant uses two different kinds of liquid asphalt, AR-4000 and AR-8000. AR-4000 is a softer asphalt with a higher volatile content and is used approximately 90% of the time. The percent by weight of liquid asphalt in the mix varies from 4.8% to 6.0% depending on the size of the aggregate (the smaller the aggregate, the higher the liquid asphalt content).

A schematic of the process is provided in Figure 2-1.

2.1.1 Aggregate Processing Operations

In this continuous process, cold aggregate is introduced to the rotary drum dryer. The dryer dries the cold aggregate and then mixes the heated and dried aggregate with the liquid asphalt cement. As the drum rotates, the aggregates move toward the other end of the drum. Asphalt cement and recycled asphalt pavement (RAP) are typically introduced either midway down the drum or at the end of the drum in a lower temperature zone. A ventilation system exhausts the gases and condensed particulate from the rotary drum dryer through a baghouse and exhaust stack.

2.1.2 Load-Out Operations

Five 200-ton heated silos sit on top of a load-out tunnel. The silos serve as a holding station between production and the loading of the asphalt cement into transport trucks. The asphalt cement in storage can have a temperature up to 160EC (320EF). The load-out tunnel is approximately 183 ft long. During a full load-out schedule, trucks enter the tunnel approximately every 3 min. Single bed trucks hold approximately 21 tons of asphalt cement. Dual bed trucks (i.e., a truck and trailer) hold approximately 25 tons. The temperature of the asphalt cement as it drops from the silo into the truck is approximately 300EF.

MRI-AED\R4951-04-08.wpd

The truck is positioned under the silo containing the desired aggregate where it is loaded into the truck bed. During loading, emissions are captured by activating a double-slotted capture hood located at each silo. With the truck positioned under the silo, one free-standing slot will be at the forward edge and one at the aft edge of the truck bed. No more than one silo can operate at a given time and only the capture hood associated with that silo is activated to capture the emissions. It typically takes 15 to 30 seconds to load a truck. However, the activated capture hood continues operating until the next truck enters and another silo/capture hood is activated. One capture hood is always active, even when no loading is occurring. Constant flow is maintained by the fan setting, thus, a constant airflow is always exhausted from the load-out tunnel to the emission abatement system.

2.2 Test Locations

Figures 2-2 and 2-3 show the load-out and silo storage combined ventilation system from the top and side, respectively. Finished product from the aggregate process is conveyed into the five heated silos located above the truck load-out bay. A header captures emissions from the storage silos and where it is ducted to the load-out bay emission abatement system.

2.2.1 Outlet Duct, Storage Silo No. 2 Vent System

Sampling Location No. 1 was positioned at the outlet duct of storage silo No. 2 prior to connection to the common silo storage ventilation system. Since no isokinetic sampling was performed by MRI at this location, sample collection was taken at a single point.

2.2.2 Outlet of the Load-Out Bay Ventilation System

Sampling Location No. 2 was positioned between Silos 1 and 2 along the common header to the Smog Hog. This was a 36-in diameter round duct with a horizontal gas flow. Since no isokinetic sampling was performed by MRI at this location, sample collection was taken at a single point. This location is upstream of Silo 1, so no emissions data from Silo 1 load-out were gathered during this test program.

2.2.3 Hot Mix Drying Exhaust System

Figure 2-4 shows the hot mix process drying exhaust system. This was a 54 in x 36 in rectangle duct with six 5-in ports. Since no isokinetic sampling was performed by MRI at this location, sample collection was taken at a single point, but the entire duct was traversed by MRI in order to collect the appropriate measurements of gas temperature, flow rate, moisture, CO_2 , and O_2 .

MRI-AED\R4951-04-08.wpd

2-4

2-6

Section 3. Test Results

Three ventilation systems were tested to determine emissions at the facility: load-out, silo storage, and hot mix dryer. Two test runs were performed on the hot mix dryer, while three test runs were performed at the load-out and silo storage systems. A fourth, background, test run at the load-out system was also performed to characterize emissions from the truck exhausts. Testing at these systems is discussed below.

3.1 Objectives and Test Matrix

Objectives for the testing program were as follows:

- Perform three tests of the silo storage system for HAPs, CO, SO₂, and NO_x using extractive FTIR (EPA Method 320) and FTIR with sample concentration; and for THC using Method 25A.
- Perform three tests of the load-out system for HAPs, CO, SO_2 , and NO_x using extractive FTIR (Method 320) and FTIR with sample concentration; and for THC using Method 25A. Also perform a fourth, background test to determine emissions contributed by the truck diesel exhaust alone.
- Determine capture efficiency of the load-out system simultaneously with the load-out emissions testing.
- Perform three tests of the hot mix dryer system (process stack) for HAPs, CO, SO₂, and NO_x using extractive FTIR (EPA Method 320) and FTIR with sample concentration; and for THC using Method 25A.

An additional, minor objective of the test program was to characterize emissions from intermittent loading (4 x 5.5-ton drops) relative to normal loading (1 x 22-ton drops) by THC (Method 25A).

Due to process problems, only two tests of the hot mix dryer system (process stack) were performed. For the load-out testing, three test runs and a background run were performed. Three tests of the silo storage system were also completed, as well as the intermittent loading test. Table 3-1 summarizes the matrix completed by the field activities, and Sections 3.1.1 to 3.1.3 briefly describe the test activities.

Three different types of measurements were performed with the FTIR system. First, an extractive sampling system was used to transport sample gas from the sampling location

MRI-AED\R4951-04-08.wpd

Table 3-1 (Continued)

No. of test runs	Test Condition	Sample	Sampling port location	Sample frequency for each run	Sampling method	Analytical parameters	Analytical method
3	Load-Out	Load-out duct emissions	No. 2	4-hr continuous extractive sampling	Extractive FTIR Method 320	CO, SO ₂ , NO _x , HAPs	FTIR Spectral analysis
				4-hr composite per run	Adsorbent trap	HAPs	Desorption/FTIR spectral analysis
				Continuous during 4-hr run	Method 25A	THC	FID
		Load-out duct capture efficiency	No. 2	4-hr continuous extractive sampling	Extractive FTIR Method 320	SF ₆	FTIR spectral analysis
		Storage silo duct	No. 1	Intermittent sampling, coincident with silo loading operations	Extractive FTIR Method 320	CO, SO ₂ , NO _x , HAPs	FTIR Spectral analysis
				Estimated 2-hr composite per run	Adsorbent trap	HAPs	Desorption/FTIR spectral analysis
				Continuous during run	Method 25A	THC	FID
		Incremental load- out emissions, 4x5.5-ton vs 1x22-ton	No. 2	Continuous, as time and plant conditions allow	Method 25A	THC	FID
1	Background (No load-out	Load-out duct emissions	No. 2	4-hr continuous extractive sampling	Extractive FTIR Method 320	CO, SO ₂ , NO _x , HAPs	FTIR Spectral analysis
	operations)			4-hr composite per run	Adsorbent trap	HAPs	Desorption/FTIR spectral analysis
				Continuous during 4-hr run	Method 25A	THC	FID
		Load-out duct capture efficiency	No. 2	4-hr continuous extractive sampling	Extractive FTIR Method 320	SF ₆	FTIR spectral analysis
2	Hot Mix Process Operations	Hot mix drying stack	No. 3	3-hr continuous extractive sampling	Extractive FTIR Method 320	CO, SO ₂ , NO _X , HAPs	FTIR Spectral analysis

Table 3-1. Summary of Sampling and Analysis Parameters

Table 3-1 (Continued)

No. of test runs	Test Condition	Sample	Sampling port location	Sample frequency for each run	Sampling method	Analytical parameters	Analytical method
				3-hr composite per run	Adsorbent trap	HAPs	Desorption/FTIR spectral analysis
				Continuous during 3-hr run	Method 25A	THC	FID
				Once per run	Methods 1 and 2	Velocity Temperature	Pitot tube Thermocouple
				3-hr composite	Method 3	O ₂ , CO ₂	Orsat
				3-hr composite	Method 4	Stack H ₂ O	Gravimetric

directly to the FTIR gas cell where the spectra were recorded. This is referred to as "extractive" or "direct" sampling. Second, in the "sample concentration" procedure, a manual sampling train was used to collect a measured volume of gas onto a tube packed with Tenax sorbent. Contents of the tube were then heated and desorbed into the gas cell where the spectrum was recorded. Third, in the capture efficiency study, a metered volume of sulfur hexafluoride (SF₆) gas was released into the loadout tunnel while extractive measurements were being conducted. The SF₆ measured by the FTIR system was assumed to be equivalent to the SF₆ taken up by the loadout tunnel ducts. These procedures are all described more fully in Section 4.

3.1.1 Hot Mix Dryer (Process Stack) Testing

The hot mix dryer system was tested for HAPs, CO, SO_2 , NO_x , and other compounds for which there are reference spectra using extractive FTIR and sample concentration with FTIR analysis. In addition to FTIR spectroscopy, monitoring for THC using FID per Method 25A was performed. Two 3-hr runs of testing during normal process operations were performed.

During the dryer testing, MRI monitored the process and baghouse operating conditions. Parameters were logged manually or obtained from plant logs, where applicable. Manual readings were logged every 15 min. Some of the parameters monitored were:

- Feed rate of aggregates
- Feed rate of liquid asphalt
- Liquid asphalt temperature
- Mix temperature
- Natural gas usage rates
- Baghouse pressure drop

Several operational problems were encountered during the dryer stack testing which contributed to process instability and generation of inconsistent emissions data. First, high moisture was present in the aggregate feeds due to heavy rainfall in the region (post El Niño conditions). Also contributing to high moisture were large amounts of soil/humus material in the RAP, which was considered to be of poor quality. This additional moisture created difficult production conditions in which the stack emissions varied significantly towards the end of each run. Time plots presented later in this report (Section 3.3.1) clearly show these trends.

Appendix A contains summaries of the process operating data collected during the testing. Appendix B contains raw data from the manual methods operated during the process stack testing.

3.1.2 Tunnel Emissions Duct (TED) Testing

Emissions from the load-out system were tested simultaneously with the silo emissions duct (SED) using extractive FTIR, sample concentration with FTIR analysis, and THC analysis. Each test period was approximately 4 to 5 hours in length, and also corresponded to time periods of manual sample collection by PES.

Concurrent with FTIR testing of the load-out emissions discussed above, capture efficiency testing at this location was also performed. Simultaneous with sampling at this location, tracer gas (SF₆) was released at whichever silo was currently active (Nos. 2 through 5). Thus, four separate gas release manifolds were placed within the load-out tunnel, one along the wall near each of the silos (Nos. 2 through 5). As the capture hood for any one of the silos was activated, an MRI operator also activated tracer gas flow to that particular release manifold. Tracer gas was released at a constant rate (measured by a mass flowmeter). Each manifold dispersed tracer gas evenly from six nozzles spaced along its length (Figure 3-1). For each set of six nozzles, two nozzles were directed generally upwards at 45E, two were directed generally downward at 45E, and two were directed horizontally. Sample spectra were collected by extractive FTIR, where concentrations were determined and converted to mass emissions over time. These were compared to the measured tracer gas emission rate, allowing duct capture efficiency to be calculated. Results are presented later in Section 3.3.3.

A stable, nonflammable gas (sulfur hexafluoride, or SF_6) was used as the tracer gas. Approximately 4 lpm of 2% sulfur hexafluoride was released, resulting in an air concentration of around 0.10 to 0.20 ppm, a concentration level easily detected (approximately 0.05-0.10 absorbance units) by extractive FTIR with an approximately 10-m pathlength.

THC monitoring was also conducted to perform a comparison test of emissions generated from incremental loading versus total loading. The facility normally operates using total loading, with a 22-ton loadout being dropped all at one time. Using incremental loading, a 22-ton loadout was instead dropped as four 5.5-ton loads, one after the other. Response of the THC served as a measure of total emissions. This test was performed separately from other load-out testing and provided rough information on expected emission levels for an upcoming test at a batch mix facility (Plant D). Intermittent loadout test results are reported later in Section 3.3.2.

3.1.3 Silo Emissions Duct (SED) Testing

Testing at the silo location was performed concurrently with the load-out system testing during periods in which loading of silo No. 2 occurred. Thus, the silo storage testing was divided into several periods of 15 to 160 min each throughout a 4-hr load-out emissions test run. Three test runs were performed at a rate of one run per day.

Figure 3-1. Capture System with Tracer Gas Placement

3.2 Field Test Changes and Problems

- 1. Due to process problems on July 20, a test run of the process stack (hot mix dryer) could not be performed. Two tests of the process stack were performed, one each on July 21 and July 22.
- 2. Due to process problems on July 21, the test of the process stack (hot mix dryer) was shortened from the planned 4-hr to 3-hr. The second test of the hot mix dryer (July 22) was thus also reduced to a 3-hr test to provide consistency between the two data sets.
- 3. Failure of the load-out damper on Silo No. 2 on July 23 created conditions which prevented the collection of representative samples. Testing for that day was aborted and facility maintenance was performed. No analysis of the partially collected samples was performed.
- 4. High moisture created sampling difficulties during Run 3 at the SED for the extractive FTIR. As a precautionary measure, the FTIR sample collection was changed from continuous to grab sampling during the indicated time periods. Thus, the reported data is from three grab samples collected over a 20-minute time period, and is therefore less informative about the overall process than data from Runs 1 and 2.

3.3 Summary of Test Results

Table 3-2 summarizes the run times for each of the test methods. Table 3-3 summarizes the measured air flow rates and gas composition data for the test program.

As a general note, the extractive FTIR method provides the most direct analyte measurements and proved to be the most useful technique for identification and quantitation of analytes. Because the sample is untreated, the gas was composed primarily of moisture and CO_2 , both of which are spectral interferences. These interferences limited the measurements of many compounds to the low-ppm concentration range. No additional target analytes were detected in the sample concentration spectra, which indicates that the quantitation limits were actually lower. The Method 25A results were consistent with the direct FTIR results. Complete extractive FTIR results tables are presented in Appendix C, sample concentration FTIR results are presented in Appendix D, and THC data are presented in Appendix E. Orientation limits for ND (not-detected) compounds are contained in Appendix C.

MRI-AED\R4951-04-08.wpd

	Dryer stack Run 1	Dryer stack Run 2	Loadout/silo emissions ducts Run 1	Loadout/silo emissions ducts Run 2	Loadout/silo emissions ducts Run 3	Loadout/silo emissions ducts (background) Run 4
Date	7/21/98	7/22/98	7/24/98	7/25/98	7/27/98	7/26/98
Inclusive run time	0930-1421	0902-1246	0720-1258	0710-1126	0705-1200	0923-1347
THC times	1120-1209 1218-1238 1249-1302 1305-1318 1320-1332 1338-1420	0935-1056 1104-1237	0720-0805 (SED) 0814-0917 (TED) 0936-1030 (SED) 1036-1257 (TED)	0710-1118 (TED) 0845-0925 (SED)	0710-1200 (TED) 0720-0737 (SED) 0750-0930 (SED) 1010-1200 (SED)	0925-1125 1148-1345
FTIR times	1137-1232 1240-1420	0937-1110 1129-1235	0725-0805 (SED) 0805-0915 (TED) 0921-0935 (TED) 0935-1030 (SED) 1057-1258 (TED)	0711-0844 (TED) 0844-0927 (SED) 0927-1112 (TED)	0705-0933 (TED) 0955-1040 (TED) 1051-1112 (SED) ¹ 1115-1200 (TED)	0923-1126 1150-1347
Tenax sampling times	1121-1421	0935-1236	0720-1257 (TED) 0720-0801 (SED) 0858-0913 (SED) 0921-1030 (SED)	0710-1126 (TED) ² 0715-0808 (SED) 0844-0958 (SED)	0710-1152 (TED) ² 0710-0951 (SED)	0925-1125 (TED) 1145-1345 (TED)
Velocity traverse	0930-0950	0902-0916 1229-1246	NA	NA	NA	NA
Moisture train	1122-1420	0936-1234	NA	NA	NA	NA

 Table 3-2.
 Summary of Test Run Times

¹ Batch or grab sampling
 ² Duplicate sample also collected
 NA = Not applicable

			I		<i>.</i>				
	Dryer stack Run 1	Dryer stack Run 2	Loadout/silo emissions ducts Run 1	Loadout/silo emissions ducts Run 2	Loadout/silo emissions ducts Run 3	Loadout/silo emissions ducts (background) Run 4			
Date	7/21/98	7/22/98	7/24/98	7/25/98	7/27/98	7/26/98			
		L	Dryer Stac	:k					
Oxygen, %	9.2	4.0	_	_	_	_			
Carbon dioxide, %	6.0	12.2	-	-	-	-			
Moisture content, %	25.4	31.9	-	-	-	_			
Volumetric flow rate, dscfm wscfm	18,758 25,145	19,441 ¹ 28,548 ¹	- -	- -	- -				
Tunnel Emissions Duct (TED)									
Oxygen, %	_	_	20.9	20.9	20.9	20.9			
Carbon dioxide, %	_	_	0.0	0.0	0.0	0.0			
Moisture content, ² %	_	-	3.6	3.0	2.7	3.4			
Volumetric flow rate, ² dscfm wscfm acfm	- - -	- - -	10,227 10,609 11,261	9,933 10,240 10,922	9,743 10,013 10,832	10,665 11,040 11,886			
	Silo Emission Duct (SED)								
Oxygen, %	_	_	20.9	20.9	20.9	_			
Carbon dioxide, %	_	_	0.0	0.0	0.0	_			
Moisture content, ³ %	-	_	12.8	22.5	59.4	-			
Volumetric flow rate, ³ dscfm wscfm			503 577	445 574	230 56				

Table 5-5. Durie Gas Composition and Flow Dummar	Table 3-3.	Source (Gas Con	position	and F	low S	Summar
--	------------	----------	---------	----------	-------	-------	--------

¹ Average of two velocity traverses at beginning and end of test.

² Average of two trains (PES data for Method 315 and Method 0010).

³ Data from single train operating during time period of FTIR sampling (PES data from Method 0010, trains S-MM5-1, S-MM5-2, and S-MM5-3, respectively).

3.3.1 Gaseous HAP Emission Results

Process Stack Results

Table 3-4 summarizes the gaseous HAPs identified by extractive FTIR in the process dryer stack emissions. Figures 3-2 and 3-3 show time plots of the data, and indicate most of emissions occurred later in the test run, when process stability became difficult to maintain.

SED Results

Table 3-5 summarizes the gaseous HAPs identified by extractive FTIR in the SED during the loadout testing. Time plots of the individual species are presented in Appendix C, and the FTIR results were consistent with the THC analyzer results.

TED Results

Table 3-6 summarizes the gaseous HAPs identified by extractive FTIR in the TED during the loadout testing. As with the SED HAP data, above, time plots of the individual species are presented in Appendix C, and the FTIR results were consistent with the THC analyzer results.

Note that the SED emissions, both the measured concentrations and the volumetric flowrates, were much more variable than the TED emissions.

Sample Concentration Results

The results from the sample concentration spectra were consistent with the load-out quantitation limits calculated from the direct-FTIR spectra (Appendix C). The sample concentration results indicate that the actual quantitation limits were lower than those reported in Appendix C, because none of the analytes was detected in the sample concentration spectra.

Preliminary measurements performed by PES during the site visit indicated that toluene, meta- and para-xylenes might be present at concentrations between 60 and 75 ppb (as measured by VOST). The preliminary results provided the justification for performing sample concentration FTIR during the main field test. The sample concentration flow rates and total collection volumes were calculated to provide the sensitivity to measure the target analytes at those concentrations (i.e., concentration factor of approximately 50).

The sample concentration spectra were qualitatively similar to the direct-FTIR spectra and toluene and the xylenes were not detected. The minimum sample concentration quantitation limits were estimated to be about 50 ppb. Analysis of these spectra was complicated by the presence of the non-aromatic hydrocarbon mixture that was measured in the direct FTIR samples. This

hydrocarbon mixture was particularly high in the sample concentration spectra of the silo emissions.

The non-aromatic hydrocarbon mixture in the TED sample concentration spectra was measured as "hydrocarbon mixture B" (quantitated using hexane reference spectra) and the results were compared to the direct-FTIR measurements. After correcting for the sample concentration factor, the average measured mixture B concentration was 1.9 ppm in the front-trap samples. This compares to an average mixture B concentration of 3 ppm measured in the direct-FTIR samples. One would expect the sample concentration result to be lower because some sample won't be recovered from the adsorbent material.

Compound emissions	Run 1	Run 2
Date	7/21/98	7/22/98
Flowrate (wscfm)	25,145	28,548
	4.4	ND
Propane (ppm, average)	4.1 ND/75.4	
Propane (ppm, min/max)	ND/75.1	!/!
Emission rate (g/hr)	320	-
Emission rate (lb/hr)	0.71	-
Methane (ppm, average)	42.5	68.3
Methane (ppm, min/max)	ND/268	ND/268
Emission rate (g/hr)	1207	2202
Emission rate (lb/hr)	2.66	4.85
CO (ppm, average)	103	22.1
CO (ppm, min/max)	ND/355	ND/318
Emission rate (g/hr)	5118	1247
Emission rate (lb/hr)	11.3	2.75
SO ₂ (ppm)	ND	ND
Emission rate (g/hr)	ļ	!
Emission rate (lb/hr)	!	!
NO. (includes NO. NO., and N.O. ppm)	ND	ND
Emission rate (q/hr)	1	1
Emission rate (lb/hr)	!	!

Table 3-4. Dryer Stack Emissions Summary

wscfm = wet standard cubic feet per minute

ND = Not detected above practical quantitation limit

Figure 3-2. Process Stack Concentration (7/21/98)

Figure 3-3. Process Stack Concentrations (7/22/98)

Compound emissions	Run 1	Run 2	Run 3ª
Date	7/24/98	7/25/98	7/27/98
Flowrate (dscfm)	577	574	567
Production rate (tons/hr) ^b	398	278	550
Asphalt temp. at loadout (EF) ^c	321	316	291
RTFOT Results (%) ^d	-0.362	-0.322	-0.284
Methane (ppm, average)	17	2.3	ND
Methane (ppm, min/max)	ND/37	ND/17	! /!
Emission rate (g/hr)	11.1	1.5	-
Emission rate (lb/hr)	0.024	0.0033	-
Emission factor (lb/ton)	6.1 x 10 ^{−5}	1.2 x 10 ^{−6}	-
CO (ppm, average)	82	16	142
CO (ppm, min/max)	61/108	ND/105	ND/426
Emission rate (g/hr)	93	18	159
Emission rate (lb/hr)	0.21	0.040	0.35
Emission factor (lb/ton)	5.2 x 10 ⁻⁴	1.4 x 10 ⁻⁴	6.4 x 10 ⁻⁴
Hydrocarbon Mixture A ^e (ppm, average)	130	7.5	174
Hydrocarbon Mixture A ^e (ppm, min/max)	54/236	ND/98	ND/522
Emission rate (g/hr)	488	28	641
Emission rate (lb/hr)	1.07	0.062	1.41
Emission factor (lb/ton)	2.7 x 10 ⁻³	2.2 x 10 ⁻⁴	2.6 x 10 ^{−3}
Hydrocarbon Mixture Be (ppm, average)	221	215	170
Hydrocarbon Mixture B ^e (ppm, min/max)	104/371	3.2/337	126/233
Emission rate (g/hr)	776	751	586
Emission rate (lb/hr)	1.71	1.65	1.29
Emission factor (lb/ton)	4.3 x 10 ^{−3}	5.9 x 10 ⁻³	2.3 x10 ⁻³
Ethylene (ppm, average)	3.5	0.23	21
Ethylene (ppm, min/max)	1.4/4.7	ND/3.3	ND/63
Emission rate (g/hr)	4.0	0.26	23.5
Emission rate (lb/hr)	0.0088	0.00057	0.052
Emission factor (lb/ton)	2.2 x 10 ^{−5}	2.1 x 10 ^{−6}	9.4 x 10 ^{−5}
Formaldehyde (ppm, average)	19	3.0	ND
Formaldehyde (ppm, min/max)	ND/38	ND/32	! /!
Emission rate (g/hr)	23	3.6	-
Emission rate (lb/hr)	0.051	0.0080	-
Emission rate (lb/ton)	1.3 x 10 ⁻⁴	2.9 x 10 ^{−5}	-
Isooctane (ppm, average)	16	0.89	ND
Isooctane (ppm, min/max)	9.8/30	ND/7.9	! /!
Emission rate (g/hr)	74	4.1	-
Emission rate (lb/hr)	0.16	0.0091	-
Emission factor (lb/ton)	4.1 x 10 ⁻⁴	3.3 x 10 ⁻⁵	

 Table 3-5.
 SED Emissions Summary

^aDue to sampling difficulties, grab or "batch" sampling procedure used. Emissions data is considered qualitative due to reduced sampling frequency. ^bDetermined during time periods in which SED emissions monitoring by FTIR occurred.

^cAverage value obtained from PES.

^dAverage value obtained from PES as per ASTM method D2872-88. ^eTogether, "hydrocarbon mixture A" and "hydrocarbon mixture B" represent the best least-squares spectral fit for a nonaromatic hydrocarbon mixture. Mixture A was quantitated using reference spectra for toluene, and Mixture B was quantitated using reference spectra for hexane.

ND = Not detected above practical quantitation limit.

Compound emissions	Run 1	Run 2	Run 3	Run 4
Date	7/24/98	7/25/98	7/27/98	7/26/98
Flowrate (dscfm)	10,609	10,240	10,013	11,040
Loadout rate (tons/hr) ^a	478	391	723	-
Asphalt temp. at loadout (EF) ^b	321	316	291	-
RTFOT Results (%) ^c	! 0.362	-0.322	-0.284	-
Methane (ppm, average)	3.2	3.1	3.3	3.0
Methane (ppm, min/max)	2.8/3.5	2.6/3.4	2.8/4.2	2.7/3.2
Emission rate (g/hr)	38.3	35.8	37.3	37.4
Emission rate (lb/hr)	0.084	0.079	0.082	0.082
Emission factor (lb/ton)	1.8 x 10 ⁻⁴	2.0 x 10 ⁻⁴	1.1 x 10 ⁻⁴	-
CO (ppm, average)	2.3	8.2	6.7	3.5
CO (ppm, min/max)	ND/14	ND/17	ND/18	ND/7.6
Emission rate (g/hr)	48	166	133	76
Emission rate (lb/hr)	0.11	0.365	0.29	0.17
Emission factor (lb/ton)	2.2 x 10 ⁻⁴	9.3 x 10 ⁻⁴	4.0 x 10 ⁻⁴	-
Hydrocarbon Mixture A ^d (ppm, average)	ND	0.030	ND	ND
Hydrocarbon Mixture A ^d (ppm, min/max)	! /!	ND/3.2	! /!	! /!
Emission rate (g/hr)	-	2.0	_	-
Emission rate (lb/hr)	-	0.0044	-	-
Emission factor (lb/ton)	-	1.1 x 10 ^{−5}	-	-
Hydrocarbon Mixture B ^d (ppm, average)	3.2	2.8	3.1	ND
Hydrocarbon Mixture B ^d (ppm, min/max)	0.9/6.5	0.7/6.2	ND/6.4	! /!
Emission rate (g/hr)	207	174	189	-
Emission rate (lb/hr)	0.45	0.38	0.42	-
Emission factor (lb/ton)	9.5 x 10 ⁻⁴	9.8 x 10 ⁻⁴	5.8 x 10 ⁻⁴	_
Ethylene (ppm, average)	0.11	ND	0.14	ND
Ethylene (ppm, min/max)	ND/0.7	! /!	ND/0.8	! /!
Emission rate (g/hr)	2.3	-	2.8	-
Emission rate (lb/hr)	0.0051	-	0.0061	-
Emission factor (lb/ton)	1.1 x 10 ^{–5}	_	8.4 x 10 ⁻⁶	_
Formaldehyde (ppm, average)	ND	ND	0.024	ND
Formaldehyde (ppm, min/max)	! /!	! /!	ND/1.6	! /!
Emission rate (g/hr)	-	-	0.51	-
Emission rate (lb/hr)	-	-	0.0011	-
Emission factor (lb/ton)	_	-	1.5 x 10 ^{−6}	-

 Table 3-6.
 TED Emissions Summary

^a Determined during time periods in which TED emissions monitoring by FTIR occurred.

^b Average value obtained from PES.

^c Average value obtained from PES as per ASTM method D2872-88.

^d Together, "hydrocarbon mixture A" and "hydrocarbon mixture B" represent the best least-squares spectral fit for a nonaromatic hydrocarbon mixture. Mixture A was quantitated using reference spectra for toluene, and Mixture B was quantitated using reference spectra for hexane.

ND = Not detected above practical quantitation limit.
Tenax samples from the process stack SED were concentrated at a factor of approximately 30-40, and could not quantitatively measure the non-aromatic hydrocarbon fraction, since the relatively high concentrations encountered saturated the sorbent material. It was evident from other regions of these spectra that additional analytes were not present, and quantitation limits for these compounds are presented in Appendix C.

Toluene- d_8 was spiked into some of the Tenax samples as a surrogate to evaluate the sample percent recovery. The toluene- d_8 was not detected in the spiked samples. Spectral bands of toluene- d_8 are shifted to lower frequencies with respect to the toluene spectrum. While this provides a potential advantage in discriminating between the spiked and unspiked components, the lower frequency regions were more difficult to analyze for the deuterated species. This was primarily because the spiked samples still contained significant amounts of CO_2 and moisture, which interfered with the toluene- d_8 analysis. For this technique to become more quantitative, further development of deuterated species spiking procedures and/or more effective procedures for removal of moisture and CO_2 , either spectrally or from the traps themselves, should be undertaken.

3.3.2 Total Hydrocarbon Emission Results

Table 3-7 summarizes the THC data for the test program. For the loadout (TED) testing, average THC emissions were fairly consistent at 7.1 to 7.7 ppm. The emission rate due to loadout operations was thus calculated to be 0.52 to 0.54 lb/hr. Baseline (Run 4) emissions were clearly present, but were much lower than the loadout emissions, and averaged 0.8 ppm (0.057 lb/hr) for the first half of the run, and 1.6 ppm (0.11 lb/hr) for the second half of the run.

Emissions at the SED were much more variable than those observed at the TED, due to greater variation in both the measured THC concentrations and the gas flowrates. Average THC concentrations ranged from 531 to 590 ppm for the test series, amounting to roughly 1.8 to 2.3 lb/hr. Note that the SED location, silo loading operations only occur during a fraction of the work day.

In addition to the TED and SED testing, two tests were performed on the process dryer stack. Average THC emissions were approximately 19 ppm for both of these tests, amounting to about 3.3 to 3.7 lb/hr.

In addition to the process dryer stack, TED and SED testing, a comparison of "intermittent loadout" emissions was performed. This test was performed to provide rough information on expected emission levels for an upcoming test at a batch mix facility (Plant D). Using only the THC analyzer for measuring emissions, a series of asphalt loadout drops were performed under controlled conditions. In Case 1, a typical 22-ton loadout was performed as four 5.5-ton drops, spaced at approximately 30-sec intervals. For Case 2, the 22-ton drop was performed all at once. Six drops of each type were performed.

	Dryer Stack							
	Run 1	Run 2	Run 1	Run 2	Run 3	Run 4 (1st half)	Run 4 (2nd half)	
Concentration (ppm as propane)								
Minimum	5.1	2.8	_ !	-	_		—	
Maximum	63.5	84.4	_ '	-	_	_		
Average	19.2	18.7	_	-	_	_	_	
Emission rate (lb/hr)	3.3	3.7	_	-	_	_	—	
Production rate (tons/hr)	494	457	ļ				ĺ	
Emission factor (lb/ton)	6.7 x 10⁻³	8.0 x 10 ⁻³	ļ					
		Funnel Emis	sions Duct (TED)				
Concentration (ppm as propane)								
Minimum	-	_	0.0	0.0	1.7	0.6	1.2	
Maximum	_	-	26.0	33.0	17.1	1.1	1.8	
Average	-	-	7.1	7.7	7.7	0.83	1.6	
Emission rate (lb/hr)	-	_	0.52	0.54	0.53	0.057	0.11	
Loadout rate (tons/hr) ^b	-	-	453	400	573	_	—	
Emission Factor (lb/ton)			1.1 x 10 ⁻³	1.3 x 10 ⁻³	9.2 x 10 ⁻⁴			
	Silo	Emission D	uct (SED)					
Concentration (ppm as propane)								
Minimum	_	_	56.1	28.9	34.9	_	—	
Maximum	_	_	790	656	1000ª		-	
Average	_	_	531	456	590	_	-	
Emission rate (lb/hr)	_	_	2.1	1.8	2.3	_	-	
Production rate (tons/hr) ^c	-	-	398	278	550	_	-	
Emission factor (lb/ton)			5.3 x 10 ⁻³	6.4 x 10 ⁻³	4.2 x 10 ⁻³			
		Asphalt Con	ditions		·			
Asphalt temp at loadout (EF) ^d	-	_	321	316	291	-	-	
RTFOT Results (%) ^e	_	-	! 0.362	! 0.322	! 0.284	_	-	

 Table 3-7.
 THC Emissions Summary

^a Maximum reading of instrument.

^b Determined during time periods in which TED emissions monitoring by THC occurred. ^c Determined during time periods in which SED emissions monitoring by THC occurred.

^d Average value obtained from PES.
 ^e Average value obtained from PES as per ASTM method D2872-88.

Figure 3-4 shows THC emissions results from Case 1 and Case 2 loadout methods. The THC integration time was set to 10-sec intervals to provide better resolution, and areas under each peak were integrated as shown in the figure.

The two data sets are summarized in Table 3-8, and were examined to determine if there was a significant difference between the means of each set. A Student's t-test was performed as shown in the table.

The difference in means is 361 ppm-sec, or 32.3%. These two means were compared using the Student two-sample t-test. First, the equality of variances in the two groups was tested via an F-test. The calculated F-value was 1.93 with (5,5) degrees of freedom. This value is not statistically significantly different from one (p-value of 0.49). Thus, the two variances can be assumed to be equal at the 95% confidence level.

The t-value was then calculated as 1.59 with 10 degrees of freedom (6+6-2). The significance level associated with this t-value is 0.14. Therefore, although there is a 361 ppm-sec difference in the mean values for Case 1 and Case 2, 361 ppm-sec is not statistically different from zero at the 95% confidence level.

Tuble 5 6. Interinitiant Loudout Summary and Statistical Analysis							
	Case 1	Case 2					
	(4 x 5.5 ton)	(1 x 22 ton)					
Observations (ppm-sec)	1,564	1,243					
	2,304	917					
	1,243	1,729					
	1,524	935					
	1,189	936					
	<u>1,040</u>	<u>934</u>					
Average (Mean)	1,477	1,116					
Differences in Averages (ppm-sec)	3	361					
Standard Deviation	452	326					
Variance	204,304	106,276					
Number of Observations	6	6					

Table 3-8. Intermittant Loadout Summary and Statisical Analysis

Minute-by-minute summaries and time plots of the THC data are contained in Appendix E. All THC data were calculated on a ppm as propane basis.

It should be noted that while 30-sec intervals between drops were used for this equipment, the intervals between drops at the Plant D test were approximately 60-sec. The Case 1 data resulting from drops at 60-sec intervals may be different than are presented in Table 3-8. As a result, the statistical analysis would also be different.

Figure 3-4. THC Concentrations During Intermittent Loadout Testing

3-18

3.3.3 Tracer Gas Capture Efficiency Test Results

Tracer gas capture efficiency was calculated using the lower confidence limit (LCL) approach contained in the EPA guidance document EMC GD-036.¹ Using this approach, the LCL was determined at the 90% confidence limit, and capture data from each test run was broken into 7 to 10 approximately equal time intervals of greater than 20 min each. The exact number of individual time intervals for each run was dependent upon the raw data and timing of SF₆ data collection within the run. Similarly, not every individual time interval was the exact same length, and actual time intervals varied from 21 to 27 min in length, depending upon the data available for each run. Table 3-9 summarizes this information and the LCL capture efficiency calculations.

As shown in Table 3-9, the 90%-LCL for the test series ranged from 54% to 65% for the three loadout test runs. The reported tracer gas capture efficiencies are believed to be underestimates of the actual emission capture efficiency. The tracer gas injection angles, location, and direction imposed a more severe challenge to the capture system than the emissions produced during loadout operations. The baseline test (Run 4) showed the poorest 90%-LCL capture efficiency (45%) and may be partially explained by the noticeably higher winds during the test. Of even greater importance, only two trucks were operating during the baseline test, creating large time intervals in which winds into the tunnel doorway were not blocked by awaiting truck traffic.

Appendix F contains a full summary of the SF_6 capture data and time plots of the measured SF_6 concentrations with the corresponding asphalt loadout. SF_6 gas release data is summarized in Appendix G. Loadout raw data is contained in Appendix H.

	0 1			
Test conditions	Run 1	Run 2	Run 3	Run 4
Test date	7/24/98	7/25/98	7/27/98	7/26/98
Nominal test times (24-hr)	805-808	713-844	715-932	931-1345
	830-916	931-1112	1003-1044	
	925-932		1117-1135	
	1100-1257		1137-1152	
			1154-1200	
Elapsed time (min)	173	192	217	254
Silos operating	Silos 2,3,4 & 5	Silos 2,3,4 & 5	Silos 2,4 & 5	Silo 2
Loadout during capture tests (tons/hr)	478	391	723	NA
Loadout during all testing (tons/hr)	453	400	573	NA
	SF ₆ Release	Rates		
	Run 1	Run 2	Run 3	Run 4
Average release rate (LPM)	4.07	4.04	4.01	4.11
Gas SF ₆ concentration	0.0199	0.0199	0.0200	0.0200
Mass release rate (g/min)	0.490	0.487	0.486	0.498
	Capture Efficie	encyª (%)		
Interval No. ^b	Run 1	Run 2	Run 3	Run 4
No. 1	93.0	78.5	79.8	55.9
No. 2	90.1	81.2	77.6	51.1
No. 3	82.1	82.3	65.1	65.6
No. 4	67.3	71.0	79.4	82.9
No. 5	64.4	53.7	53.0	55.2
No. 6	49.4	65.0	49.9	68.8
No. 7	63.1	73.9	46.1	38.1
No. 8	ļ	59.4	55.6	51.3
No. 9	ļ	ļ	50.1	23.4
No. 10	ļ	!	47.4	32.8
Average capture efficiency	72.8	70.6	60.4	52.5
Std. Deviation	16.0	10.5	13.8	17.7
n	7	8	10	10
t (0.90 LCL)	1.440	1.415	1.383	1.383
Capture Efficiency @ 90% LCL	64	65	54	45

Table 3-9. S	SF ₆ Car	oture Effi	iciencv Ca	lculations
--------------	---------------------	------------	------------	------------

^a Complete calculation spreadsheets are contained in Appendix F.

^b Exact times for each interval are in Appendix F.

3.4 Line Calibration Checks

The calibration standard mixture of 105 ppm toluene and 3.83 ppm SF_6 was measured directly by filling the FTIR cell from the cylinder and recording the spectrum of the gas standard. Then at least once each test day the same calibration mixture was injected into the sample line directly upstream of the first particulate filter at the end of the sample probe. The gas standard was allowed to flood the line from the probe to the FTIR cell. The cell was filled and the spectrum of the line spike was recorded. The line-spike spectra were analyzed using the spectrum of the direct measurement to calculate the recovered concentrations. The calculated concentrations in each of the line-spike spectra were compared to the 100 % recovery concentrations. The results are shown in Table 3-10.

	То	luene	Ş	SF ₆
File Name	(ppm)	% Recovery	(ppm)	% Recovery
SP0727B	102.0	97.1%	2.72	97.2%
SP0727A	103.0	98.1%	3.70	96.7%
SP0726A	104.0	99.0%	3.79	98.8%
SP0722Aª	99.5	94.7%	3.67	95.9%
SP0721A	101.7	96.8%	3.75	97.8%

 Table 3-10.
 Calibration Standard Line Check Results

^aThe calculated recovery for "sp0722a" was slightly below 95% because this sample contained a significant amount of moisture compared to the direct measurement or the other line measurements. This indicates "sp0722a" was slightly diluted by air compared to the other measurements. If the line had been purged longer with the gas standard, this measurement would also have been within 95%. The SF₆ recovery for "sp0722a" fell within 95%, but the SF₆ measurement also shows the slight dilution from air.

Section 4. Sampling and Analytical Methods

Midwest Research Institute operated a sampling system (Figure 4-1) that transports sample gas through heated Teflon® lines. The sample stream passed through a gas manifold that distributed sample to the FTIR instrumentation and the total hydrocarbon analyzers (THC CEMS). Concentrated samples for FTIR analysis were collected separately, using a sampling train at each sampling location.

Sampling procedures followed the test plan and are further described in the FTIR Draft EPA Method 320² for hazardous air pollutants (HAPs), the EPA Protocol³ for extractive FTIR testing at industrial point sources, and EPA Method 25A. The objectives of the field test were to use the FTIR method to measure emissions from the processes, screen for HAPs in the EPA FTIR reference spectrum library, conduct analyte spiking for quality assurance, and analyze the spectra for compounds not in the EPA library. The manual emissions measurements were performed by PES, who provided the manual data to MRI for the load-out and silo tests. MRI collected manual emission data for the process stack tests.

4.1 Sampling System Description

4.1.1 Extractive System

Sample was extracted through a single port using a 0.5-in diameter stainless steel probe (Figure 4-1). Sample was transported through heated Teflon[®] line using a KNF Neuberger heated head sample pump (Model No. 35 ST.11I). A Balston particulate filter (holder Model Number 30-25, filter element Model Number 100-25-BH, 99% removal efficiency at 0.1 mm) was connected in-line at the outlet of the sample probe. The sample line was heat wrapped and insulated.

The sample pump outlet was connected to the sample manifold where the sample stream passed through a secondary Balston particulate filter immediately after entering the manifold box. The manifold was constructed of stainless steel 3/8-in tubing and contains 4-way valves and heated rotameters (0 to 20 LPM) to allow the operator to control sample flow to the FTIR cell and the THC CEMS. A heated 1/4-in diameter 20-ft long Teflon jumper line connected the manifold to the inlet of the FTIR gas cell and to the THC CEMS. All sampling system components were maintained above the duct temperature (200EF for the load-out testing, 300EF for the process stack).

The manifold consists of a secondary particulate filter, control valves, rotameters, back pressure regulators and gauges, and a mass flow controller. The manifold can control

MRI-AED\R4951-04-08.wpd

Figure 4-1. Extractive Sampling System

980806

Mr. Hall

4-2

two sample gas stream inputs, eight calibration gases, and has outputs for three analyzers. Also included on the cart is a computer work station and controls for the spike valves and mass flow controller.

MRI used a KVB/Analect model RFX-40 FTIR spectrometer equipped with a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. Samples were contained in an Infrared Analysis (model D-22H) variable path gas cell equipped with treated ZnSe windows. The cell was equipped with temperature controllers and was fitted with a digital pressure gauge. The FTIR gas cell was maintained at 250EF (120EC). The interior cell walls were coated with Teflon to minimize potential analyte losses.

The cell pathlength was set by adjusting an objective mirror to control the number of IR beam passes through the cell. The number of beam passes was measured by shining a He/Ne laser through the optical path and observing the number of laser spots on the field mirror. The pathlength in meters was determined by comparing Calibration Transfer Standard (CTS) EPA reference spectra to the CTS spectra recorded in the field, and was measured to be 9.9 meters. This path length was used in all of the analyses.

All data were collected at a resolution of 1.0 cm. One hundred scans were co-added for each spectrum (200 for background spectra). Each spectrum required about 2 min to record.

4.1.2 Sample Concentration

Using procedures contained in Appendix I, a measured volume of sample gas was collected using an absorbent tube filled with 10 g of Tenax sorbent material. The sampling train was a modified VOST train and used both a primary and backup trap for all tests. Prior to testing, the primary trap for each train was spiked with a measured volume of d_8 -toluene in nitrogen (compressed gas). One sample concentration train was set up and run simultaneously with other methods (PES manual methods) at each test location.

Prior to sampling, each train was checked for contamination by collecting a measured volume of dry nitrogen through the sampling train. This tube was then desorbed in the same way as all of the sample tubes. One contamination check was run for each sampling train.

Field raw data sheets for the sample concentration technique are contained in Appendix I.

4.2 Sampling Procedures

Most of the FTIR measurements were performed using the continuous sampling procedure described below. Spectra of all calibrations, background measurements and some samples were

recorded using the batch sampling procedure. All of the Method 25A measurements were performed as indicated in the method.

Batch Sampling—This procedure is described in Section 8.7.1 in EPA Method 320. With this technique, sample gas continuously flows from the probe, through the sample line, through the manifold, and out a manifold vent. A 4-way valve on the manifold is turned to direct a portion of the gas stream to fill the evacuated FTIR cell to ambient pressure. The manifold total flow meter before the vent is monitored to ensure that a positive flow is always directed out the vent during sampling. The cell is pressurized to slightly over 1 atmosphere before the inlet is closed. The cell outlet vent valve is opened to allow the sample to equilibrate at 1 atmosphere and then closed. The spectrum of the static sample is then recorded before the cell is evacuated to prepare for the next sample.

Continuous Sampling—Sample gas is flowed continuously from the probe through the sample line, through the manifold, and to the FTIR cell at ambient pressure. After the cell is filled as in the batch sampling procedure, the cell inlet and outlet valves are kept open to allow gas to pass through the cell. Spectra of the flowing sample is collected continuously by co-addition of 50 to 100 scans (approximately 1-min time period). The sampling and measurement times are expected to be longer than the 30-sec truck loading events. The observed emissions peaks may appear lower and to occur over a longer interval than the actual emissions from each 30-sec event. However, the integrated area under a plot of the observed emissions vs. time should give an accurate representation of the total emissions. Sample flow rate through the cell will be monitored and recorded so that a determination of cell purge time can also be made. Performance Specification 15 gives more detail on sampling rate and its effect on continuous measurements.

Sample Concentration—After the sample tubes were collected, they were placed on ice (up to several hours) until they could be analyzed. The sample tube was dried with a nitrogen purge connected to the tube inlet. The dried tube was placed in a tubular heating jacket and the tube outlet was connected to the FTIR cell inlet. The tube inlet was connected to a nitrogen cylinder. The tube was gradually heated to 220EC (under low flow) before the inlet and outlet valves were opened to allow nitrogen at 1 LPM to carry desorbed gases into the cell. Once the cell reached 1 atmosphere, the valves were closed and a spectrum of the contained sample was recorded.

4.3 FTIR Analytical Procedures

Analytical procedures in the EPA FTIR Protocol were followed for this test. Analytical programs were prepared prior to the field test for use in estimating some concentrations on site (i.e., SF_6 concentration). After the data collection was completed the spectra were analyzed using a computer program that employed a linear least squares fit routine (Rho Squared, Durham,

NC).^{4,5} The program operated in the Midac Grams/32® software package (Version 4.11, Level II, Galactic, Inc.). The input data (reference spectra and analytical regions) for the computer program are identified in Tables 4-1 and 4-2.

Initially, the spectra were evaluated to select suitable reference spectra as input for the computer program. Next an analysis was run on all of the sample spectra using the reference spectra listed in Tables 4-1 and 4-2. Undetected compounds were removed from the analysis and the spectra were analyzed again using reference spectra only for the detected compounds. The complete results from this second analytical run are summarized in tables in Appendices C and D (for the direct and sample concentration results, respectively).

The same program that performed the analysis calculated the residual spectra (the difference between the observed and least squares fit absorbance values). Residual spectra were calculated for each analytical region and for each sample spectrum. All of the residuals were stored electronically and are included with the electronic copy of the sample data provided with this report. The computer program calculated the standard 1sigma uncertainty for each analytical result, but some of the reported uncertainties for the detected compounds are equivalent to 2*sigma.

The concentrations were corrected for differences in absorption path length and temperature between the reference and sample spectra using the equation below.

$$C_{corr} \left(\frac{Lr}{Ls} \right) \left(\frac{Ts}{Tr} \right) \left(\frac{Pr}{Ps} \right) C_{calc}$$
(1)

where: C_{corr} = concentration, corrected for path length and temperature

- C_{calc} = uncorrected sample concentration
- L_r = cell path length(s) (meters) used in recording the reference spectrum
- L_s = cell path length (meters) used in recording the Sample spectra
- T_r = absolute temperature(s) (Kelvin) of gas cell used in recording the reference spectra
- T_s = absolute temperature (Kelvin) of the sample gas when confined in the FTIR gas cell

 P_r = pressure of the reference spectrum sample

 P_s = pressure of the sample gas in the FTIR cell

The sample path length was estimated by measuring the number of laser passes through the infrared gas cell. These measurements were recorded in the data records. The actual sample path length, L_s , was calculated by comparing the sample calibration transfer standard CTS spectra to CTS spectra in the EPA FTIR reference spectrum library. Reference CTS spectra from the EPA reference library, were used as input for an automated analysis of the CTS spectra recorded at the test site.

				Refe	rence
Compound Name	File name	Region No.	ISC *	Meters	Т (К)
Water	194jsub	1,2,3	100*		
	194gsub		35.8*		
	194hsub		61.3*		
Carbon monoxide	co20829a	1	167.1	22	394
Sulfur dioxide	198c1bsi	2	90.3	22	394
Carbon dioxide	193b4a_b	1,2,3	415*		
Formaldehyde	087c1anb	3	100.0	11.25	373
Benzene	015a4ara	3	496.6	3	298
Methane	196c1bsd	3	80.1	22	394
Carbonyl Sulfide	030a4ase	2	19.5	3	298
Toluene	153a4arc	3	103.0	3	298
Methyl chloride	107a4asa	3	501.4	3	298
Methyl chloroform	108a4asc	2	98.8	3	298
1,1-Dichloroethane	086b4asa	2	499.1	2.25	373
1,3-Butadiene	023a4asc	2	98.4	3	298
Propane	prophan	3	39.3	3	298
Chlorobenzene	037a4arc	2 502.9		3	298
Cumene	046a4asc	3	3 96.3		298
Ethyl benzene	077a4arb	3	515.5	3	298
Hexane	095a4asd	3	101.6	3	298
Methylene chloride	117a4asa	2	498.5	3	298
Propionaldehyde	140b4anc	3	99.4	2.25	373
Styrene	147a4asb	2	550.7	3	298
1,1,2,2-Tetrachloroethane	150b4asb	2	493.0	2.25	373
<i>p</i> -Xylene	173a4asa	2	488.2	3	298
o-Xylene	171a4asa	3	497.5	3	298
<i>m</i> -Xylene	172a4arh	2	497.8	3	298
Isooctane	165a4asc	3	101.4	3	298
Ethylene	C0726b	2	99.9	9.9	397
SF ₆	Sf0722a	2	0.205	9.9	397

 Table 4-1. Program Input for FTIR Analysis (Loadout and Silo Samples)

Region No.	Upper cm ⁻¹	Lower cm ^{! 1}
1	2,142.0	2,002.1
2	1,275.0	722.6
3	3,160.8	2,650.1

* Indicates an arbitrary concentration was used for the interferant.

¥	-	•			
				Refe	rence
Compound Name	File name	Region No.	ISC *	Meters	T (K)
Water	194jsub	1,2,3	100*		
Carbon monoxide	co20829a	1	167.1	22	394
Sulfur dioxide	198c1bsi	2	90.3	22	394
Carbon dioxide	193c1bsc	1,2,3	415*		
Formaldehyde	087c1anb	3	100.0	11.25	373
Benzene	015a4ara	3	496.6	3	298
Methane	196c1bsb	3	80.1	22	394
Carbonyl Sulfide	030a4ase	2	19.5	3	298
Toluene	153a4arc	3	103.0	3	298
Methyl chloride	107a4asa	3	501.4	3	298
Methyl chloroform	108a4asc	2	98.8	3	298
1,1-Dichloroethane	086b4asa	2	499.1	2.25	373
1,3-Butadiene	023a4asc	2	98.4	3	298
Propane	prophan	3	39.3	3	298
Cumene	046a4asc	3	96.3	3	298
Ethyl benzene	077a4arb	3	515.5	3	298
Hexane	095a4asd	3	101.6	3	298
Methylene chloride	117a4asa	2	498.5	3	298
Propionaldehyde	140b4anc	3	99.4	2.25	373
Styrene	147a4asb	2	550.7	3	298
1,1,2,2-Tetrachloroethane	150b4asb	2	493.0	2.25	373
<i>p</i> -Xylene	173a4asa	2	488.2	3	298
o-Xylene	171a4asa	3	497.5	3	298
<i>m</i> -Xylene	172a4arh	2	497.8	3	298
Isooctane	165a4asc	3	101.4	3	298
Ethylene	C0726b	2	99.9	9.9	397
SF ₆	Sf0722a	2	0.205	9.9	397
Ammonia	174c1asc	2	10.0	20	388

 Table 4-2. Program Input for FTIR Analysis (Process Stack and Tenax Samples)

Region No.	Upper cm ⁻¹	Lower cm ^{! 1}
1	2,201	1952.3
2	1,331.8	750.5
3	3,160.3	2,450

* Indicates an arbitrary concentration was used for the interferant.

4.3.1 Computer Program Input

Tables 4-1 and 4-2 present a summary of the reference spectra input for the computer program used to analyze the sample spectra. Table 4-3 summarizes the program input used to analyze the CTS spectra recorded at the field test. The CTS spectra were analyzed as an independent determination of the cell path length. To analyze the CTS spectra, MRI used 0.25 cm⁻¹ spectra "cts0814b" and "cts0814c." These reference CTS spectra were recorded on the same dates as the toluene reference spectra used in the analyses. These spectra were deresolved in the same way as the toluene reference spectra using Section K.2.2 of the EPA FTIR protocol. The program analyzed the main two ethylene bands centered near 2,989 and 949 cm¹¹. Table 4-4 summarizes the results of the CTS analysis. The cell path length from this analysis was used as L_s in equation (1).

4.3.2 EPA Reference Spectra

HAP spectra used in the MRI analysis were taken from the EPA reference spectrum library (http://134.67.104.12/html/emtic/ftir2.htm). The original sample and background interferograms were truncated to the first 16,384 data points. The truncated interferograms were Fourier transformed using Norton-Beer medium apodization and no zero filling. The transformation parameters were chosen to agree with those used to collect the sample absorbance spectra. The new 1.0 cm⁻¹ toluene single beam spectra were combined with their de-resolved single beam background spectra and converted to absorbance.

4.3.3 Estimated Uncertainties of Non-Detects

The analytical program quantified each of the principal sample components. Then each standard spectrum was mathematically scaled and subtracted from the sample spectrum. The resulting residual spectra were analyzed to estimate quantitation limits for undetected HAPs. These quantitation limits, expressed as uncertainties in the non-detects (zero concentrations) are included in Appendix C.

4.3.4 FTIR System

A KVB/Analect Diamond RFX-40 spectrometer was used to record all of the data in this field test. The gas cell is a heated variable path (D-22H) gas cell from Infrared Analysis, Inc. The path length of the cell was set at 20 laser passes and was measured to be 9.9 meters using the CTS reference and sample spectra. The interior cell walls have been treated with a Teflon® coating to minimize potential analyte losses. An MCT liquid nitrogen detector was used. The spectra were recorded at a nominal resolution of 1.0 cm¹.

Compound name	File name	ASC	ISC	% Difference
Ethylene*	cts0814b.spc	1.007	1.014	0.7349
Ethylene	cts0814c.spc	1.007	0.999	0.7350

Table 4-3. Program Input for Analysis of CTS Spectra

* This spectrum was used in the analysis of the Irvine CTS spectra. Analytical Regions for CTS analysis were 842.5 cm^{!1}-1107 cm^{!1} and 2984.36 cm^{!1}-2992.38 cm^{!1}.

Analysis of Hot (397 K) CTS Spectra										
CTS spectra	S									
(99.9 ppm Ethylene)	Meters	Delta ^a	% Delta							
C0721B	10.3	! 0.36	! 3.6%							
C0721C	9.9	! 0.05	! 0.6%							
C0721D	10.1	! 0.20	! 2.0%							
C0721E	9.9	0.03	0.3%							
C0722A	9.8	0.08	0.9%							
C0722B	9.9	0.04	0.4%							
C0723A	9.8	0.12	1.2%							
C0723B	9.8	0.11	1.2%							
C0723C	9.9	! 0.03	! 0.3%							
C0724A	9.8	0.05	0.5%							
C0724B	10.0	! 0.08	! 0.8%							
C0725A	9.8	0.12	1.2%							
C0725B	9.8	0.06	0.6%							
C0725C	10.0	! 0.10	! 1.0%							
C0726A	9.9	! 0.01	! 0.1%							
C0726B	9.9	! 0.01	! 0.1%							
C0727A	9.8	0.07	0.7%							
C0727B	9.9	0.04	0.4%							
C0727C	9.8	0.05	0.5%							
C0727D	9.9	0.04	0.5%							
Average Path Length (M)	9.9									
Standard Deviation	0.12									

Table 4-4. Path Length Determinations From the
Analysis of Hot (397 K) CTS Spectra

^a The difference between the calculated and average values.

4.4 Total Hydrocarbon Sampling Procedures

THC sampling was conducted simultaneously with the FTIR sampling at each of the test locations. The same sampling system used for the FTIR sampling was used for the THC sampling. Sample gas was directed to the analyzer through a separate set of rotameters and control valves on the manifold. A brief description of each system component follows.

• THC Analyzer—The THC concentration was measured using a flame ionization detector (FID). MRI used a J.U.M. Model VE-7 analyzer. The THC analyzer was operated on the zero to 100 ppm range throughout the test period (0-1000 ppm for SED). The fuel for the FID is 40 percent hydrogen and 60 percent helium mixture.

- Data Acquisition System—MRI used LABTECH notebook (Windows version), which is an integrated system that provides data acquisition, monitoring and control. The system normally writes data to a disk in the background while performing foreground tasks or displaying data in real time. The averaging period set for this test was one minute.
- Calibration Gases—Calibration gases were prepared from an EPA Protocol 1 cylinder of propane (5278 ppm propane in nitrogen) using an Environics Model 2020 gas dilution system that complies with the requirements of EPA Method 205. High, medium, and low standard gases were generated to perform analyzer calibration checks. The raw data are recorded in ppm as propane but are converted to an as carbon basis for reporting.

5.1 Sampling and Test Conditions

Before the test, sample lines were checked for leaks and were cleaned by purging with moist air (250EF). Following this, the lines were checked for contamination using dry nitrogen. This is done by heating the sampling lines to 250EF and purging with dry nitrogen. The FTIR cell was filled with some of the purging nitrogen, and the spectrum of this sample was collected. This single beam spectrum was converted to absorbance using a spectral background of pure nitrogen (99.9 percent) taken directly from a cylinder. The lines were checked again on-site before sampling, after each change of location, and after spiking.

During sampling, spectra of at least 10 different samples were collected during each hour. Each spectrum was assigned a unique file name and written to the hard disk and a backup disk under that file name. Each interferogram was also saved under a file name that identifies it with its corresponding absorbance spectrum. All background spectra and calibration spectra were also stored on disks with their corresponding interferograms.

Notes on each calibration and sample spectrum were recorded on hard copy data sheets. Below are listed some sampling and instrument parameters that were documented in these records.

Sampling Conditions:

- Line temperature
- Process conditions
- Sample flow rate
- Ambient pressure
- Time of sample collection

Instrument Configuration:

- Cell volume (for continuous measurements)
- Cell temperature
- Cell path length
- Instrument resolution
- Number of scans co-added
- Length of time to measure spectrum
- Time spectrum was collected
- Time and conditions of recorded background spectrum
- Apodization

MRI-AED\R4951-04-08.wpd

Hard copy records were also kept of all flue gas measurements, such as sample flow, temperature, moisture, and diluent data. Equipment calibration data and gas certifications are presented in Appendix J.

Effluent was allowed to flow through the entire sampling system for at least 5 minutes before a sampling run started or after changing to a different test location. FTIR spectra were continuously monitored to ensure that there was no deviation in the spectral baseline greater than \pm 5 percent (! 0.02 # absorbance # +0.02). When this condition occurred, sampling was interrupted and a new background spectrum was collected. The run was then resumed until completed or until it was necessary to collect another background spectrum.

Results of the analyte spiking were presented earlier in Section 3.4 and met all QA/QC criteria, except where noted due to the presence of ambient air. These checks served to demonstrate sample line integrity during the field testing.

Results from the CTS spectra were presented earlier in Section 4.3.4 and met all QA/QC criteria. These checks served to demonstrate instrument stability and optical conditions during the field testing.

5.2 FTIR Spectra

For a detailed description of QA/QC procedures relating to data collection and analysis, refer to the "Protocol for Applying FTIR Spectrometry in Emission Testing."

A spectrum of the CTS was recorded at the beginning and end of each test day. A leak check of the FTIR cell was also performed according to the procedures in References 1 and 2. The CTS gas was 100 ppm ethylene in nitrogen. The CTS spectrum provided a check on the operating conditions of the FTIR instrumentation, e.g., spectral resolution and cell path length. Ambient pressure was recorded whenever a CTS spectrum was collected. The CTS spectra were compared to CTS spectra in the EPA library. This comparison is used to quantify differences between the library spectra and the field spectra so library spectra of HAPs can be used in the quantitative analysis.

Two copies of all interferograms, processed backgrounds, sample spectra, and the CTS were stored on separate computer disks. Additional copies of sample and CTS absorbance spectra were also stored for data analysis. Sample absorbance spectra can be regenerated from the raw interferograms, if necessary.

The compact disk enclosed with this report contains one complete copy of all of the FTIR data recorded at the field test. The data are organized into directories, whose titles identify the contents. The continuous data are in directories identified by the date on which the spectra were

recorded. Additional subdirectories "AIF" and "ASF" identify interferograms and absorbance spectra, respectively. All of the sample data are in the Analect instruments software format. The directories "refs" and "residuals" contain de-resolved reference spectra that were used in the analyses and the residual spectra, respectively. There are three residual spectra for each sample spectrum, one for each analytical region. The information on the enclosed disk with the data records in Appendix A meets the reporting requirements of the EPA FTIR Protocol and Method 320.

To measure HAPs detected in the gas stream MRI used spectra from the EPA library, when available.

5.3 Method 25A

5.3.1 Initial Checks

Before starting the first run, the following system checks were performed:

- 1. Zero and Span check of the analyzer
- 2. Analyzer linearity check at intermediate levels
- 3. Response time check of the system

Calibration criteria for Method 25A is \pm 5 % of calibration gas value.

5.3.2 Daily Checks

The following checks were made for each test run:

- 1. Zero/Span calibration and linearity checks before each test run
- 2. Final Zero and span calibration check of the analyzer at the end of each test run

The difference between initial and final zero and span checks agreed within ± 3 % of the instrument span.

Section 6. References

- 1. "Revised Capture Efficiency Guidance for Control of Volatile Organic Compound Emissions," EMC GD-036, Prepared by EPA/OAQPS/EMC, February 7, 1995.
- 2. Test Method 320 "Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy," Proposed in Federal Register, March 11, 1998.
- 3. "Protocol For The Use of FTIR Spectrometry to Perform Extractive Emissions Testing at Industrial Sources," Revised, EPA Contract No. 68-D2-0165, Work Assignment 3-12, September, 1996.
- "An Examination of a Least Squares Fit FTIR Spectral Analysis Method," G. M. Plummer and W. K. Reagen, Air and Waste Management Association, Paper Number 96-WA65.03, 1996.
- 5. "*Computer-Assisted Quantitative Infrared Spectroscopy*," Gregory L. McClure (ed.), **ASTM Special Publication 934** (ASTM), 1987.

Appendix A

Process Data

Sheet __1__ of ___1__

MRI Pro	oject No	э.		4701-08-03-0	04								Run No.		1	
Client/S	ource:			EPA/Plant C (Hot Mix Asphalt Plant) Date: 7/21/98												
		Data Recorded By: Pam Murowch											chick			
					Liquid			Burner					Baghouse	Exh	aust	
				Aggregate	Asphalt		Liquid	Turndown	Mix	Cyclone	Dryer	Baghouse	Pressure	Fa	ins	
	Natu	ural	Gas	Feed Rate	Feed Rate	Mix Rate	Asphalt	Position	Temp.	Entrance	Pressure	Exit Temp.	Drop (in	Ampe	erage	
Time	Rate	(A(CFM)	(TPH)	(TPH)	(TPH)	Temp. (F)	(%)	(F)	Temp. (F)	(in Hg)	(F)	Hg)	(am	nps)	Comments
								a								Mix 2 (3/4 inch) Started
1119	1160	@	76.3	436.38	23.08	459.46	355.24	34.5	330.87	286	0.29	248	0	77	81	testing at 1120.
1145	1140	0	76.7	490.09	25.09	517.85	354.89	28.8	312.66	274	0.31	250	0	75	78	
					20.00	011.00	001.00	20.0	012.00		0.00	200		10	, 0	
1154	1180	@	76.9	492.44	26.04	518.47	353.24	30.0	315.82	273	0.29	261	0	75	78	Switched to Mix 4 (1/2 inch).
1200	1200	@	77.1	505.36	28.08	533.44	353.24	30.0	313.01	268	0.31	261	0	75	79	
1215	1200	@	77.3	500.48	27.91	528.40	354.18	30.0	302.86	268	0.29	257	0	75	80	
1230	1190	@	77.4	508.51	28.37	536.88	354.87	30.0	313.40	280	0.30	264	0	75	78	
1245	1100	@	77.6	510.60	28.52	539.13	355.05	30.0	310.80	264	0.31	258	0	75	78	
1257	1180	@	77.7	503.73	28.17	531.90	307.32	29.5	304.16	266	0.28	256	0	75	79	Switched to Mix 2 (3/4 inch).
																Started to ramp down to 400
1306	1030	@	77.8	465.88	24.74	490.62	313.00	24.0	314.14	254	0.31	254	0	75	75	TPH production.
1315	947	@	78.0	438.60	23.22	461.82	318.18	21.5	307.64	243	0.28	246	0	75	75	
1330	988	@	78.3	463.55	23.29	463.55	324.24	22.5	302.00	241	0.28	237	0	75	75	
1345	1070	@	77.9	438.18	23.16	461.34	329.13	23.4	306.63	243	0.31	237	0	/5	/8	
1355	1150	@	77.4	436.68	23.09	459.76	328.68	28.3	305.62	251	0.30	240	0	75	75	Switched to Mix 4 (1/2 inch).
1400	1150	@	77.1	448.94	25.01	473.95	329.50	28.3	310.11	254	0.32	242	0	75	79	
1413	841	@	78.0	390.64	21.99	412.63	332.53	18.0	319.81	224	0.32	235	0	72	75	Switched to Mix 2 (3/4 inch).
1421																Plant down due to burner out.
Avg.	1102	@	77.35	470.16	25.36	494.11	338.64	27.4	311.187	260	0.30	251	0	75	78	
_															·	

1

Sheet __1__ of ___1__

MRI Pr Client/S	oject N Source:	0.		4701-08-03-0 EPA/Plant	04 t C (Hot N	lix Aspha	ait Plant)					Data R	Run No. Date: ecorded By:	2 7/22 Pam M	2 2/98 1urowc	hick
Time	Nati Rate	ural e (A(Gas CFM)	Aggregate Feed Rate (TPH)	Liquid Asphalt Feed Rate (TPH)	Mix Rate (TPH)	Liquid Asphalt Temp. (F)	Burner Turndown Position (%)	Mix Temp. (F)	Cyclone Entrance Temp. (F)	Dryer Pressure (in Hg)	Baghouse Exit Temp. (F)	Baghouse Pressure Drop (in Hg)	Exh Fa Ampe (arr	aust ins erage ips)	Comments
931	1170	@	73.1	478.20	26.69	504.89	347.63	34.0	306.86	281	0.31	268	0	79	82	Mix 4 (1/2 inch) Started testing at 935.
946	1290	@	73.3	479.05	26.76	505.81	344.53	34.0	304.08	283	0.31	269	0	80	81	
1001	1160	@	73.6	478.04	26.68	504.72	346.12	34.0	300.89	285	0.32	271	0	80	82	
1013	1100	@	73.4	476.50	26.57	503.07	344.45	28.0	300.55	266	0.30	261	0	78	79	Switched to Mix 2 (3/4 inch).
1031	1160	0	73.9	465.71	24.62	490.33	343.38	28.0	293.55	263	0.30	254	0	76	80	
1046	1290	0	73.9	477.01	26.60	503.61	344.15	33.1	303.98	268	0.28	258	0	79	82	Switched to Mix 4 (1/2 inch).
1101	1160	@	74.1	476.84	26.60	503.44	345.06	33.1	302.96	268	0.31	258	0	78	81	
1114	1240	0	74.3	479.16	26.72	505.88	345.06	33.1	301.19	267	0.30	258	0	78	80	
1131	1160	@	75.2	479.83	26.72	506.60	342.70	33.1	299.46	267	0.30	259	0	78	82	
1146	711	Ø	75.7	357.62	18.85	376.47	341.06	12.0	306.95	214	0.31	235	0	72	72	Switched to Mix 2 (3/4 inch). Started to ramp down to 325 TPH production.
1201	789	@	76.2	327.88	17.34	345.22	340.68	15.0	295.30	213	0.31	216	0	75	75	
1216	890	@	76.3	324.71	17.12	341.84	341.88	15.0	314.52	213	0.31	213	0	74	75	
1231	819	@	77.0	325.96	17.22	343.18	340.73	15.7	307.53	211	0.32	211	0	75	75	
Avg.	1072	@	74.6	432.81	23.73	456.54	343.65	26.8	302.91	254	0.31	249	0	77	79	

	P		•													Sheet_1	_of_1_
Pacific Enviror Client/Source:	nmental Se	ervices EPA/Plant	t C (Hot I	Vix Asp	halt Plar	nt)									Data R	Run No. Date: ecorded By:	2 7/25/98 JHL
Time	Natural Gas Rate (ACFM)	Aggregate Feed Rate (TPH)	Recycle (RAP) Feed Rate (TPH)	% RAP in mix	Rubber Feed Rate (TPH)	Liquid Asphalt Feed Rate (TPH)	Liquid Asphalt Type	Mix Rate (TPH)	Product Code	Liquid Asphalt Temp. (F)	Burner Pos. (%)	Mix Temp. (F)	Cyclone Entrance Temp. (F)	Dryer Pressure (in Hg)	Baghouse Exit Temp. (F)	Baghouse Pressure Drop (in Hg)	Exhaust Fans Amperage (amps) fan 1 / fan 2
6:12 AM	700	69	18.9	20.4	0	4.4	4000	92.7	4C	319.4	11	326.6	210	0.33	205	0	75/75
6:30 AM	0	178.8	79.8	29.3	0	13.4	4000	272	2	321.1	15.1	315.7	178	1.84	191	0	88/92
7:10 AM	745	181.3	82.7	29.8	0	13.7	4000	277.7	2C	321.7	14	312.1	228	0.28	203	0	75/78
7:40 AM	834	183.2	82.7	29.6	0	13.8	4000	279.7	2C	321.7	17.6	326.1	237	0.27	213	0	75/80
8:11 AM	950	261.2	110.7	28.2	0	20.4	4000	392.3	4C	325.6	21.4	338	281	0.31	255	0	74/79
8:41 AM	927	241.6	88.9	25.5	0	18.1	4000	348.6	4C	326.2	`19	336.9	251	0.31	242	0	73/79
9:11 AM	710	182.4	81.7	29.4	0	13.7	4000	277.8	2C	324.8	12	324.2	221	0.32	219	0	74/75
9:41 AM	710	182.7	80.9	29.2	0	13.7	4000	277.3	2C	325.2	11	317.6	209	0.28	209	0	72/76
10:11 AM	733	177.2	78.6	29.2	0	13.2	4000	269	2C	325.6	11.6	323.8	218	0.29	210	0	73/75
10:41 AM	741	196.4	87.2	29.2	0	14.7	4000	298.3	2C	327.5	13	327.6	228	0.29	219	0	71/74
11:10 AM	854	185.5	82.1	29.2	0	13.8	4000	281.4	2C	328	10.5	307.8	208	0.28	208	0	71/73
11:34 AM	Plant sl	hut down -	lack of c	ustome	rs												
12:02 PM	789	0.41	0.2	31.7	0	0.03	4000	0.63	2C	329.8	29.1	216.2	206	0.23	194	0	71/74
12:40 PM	812	207.7	82.5	27.1	0	14	4000	304.2	2C	330	15	336.6	232	0.29	219	0	71/72
1:13 PM	880	255.86	112.2	29.0	0	19.1	4000	387.1	2C	331.2	21	329.8	260	0.29	242	0	72/75
1:42 PM	899	292.7	113.2	26.5	0	21	4000	426.9	2C	332	20	324.8	252	0.27	251	0	72/75

	Sheet 1 of 1																
Pacific Environ Client/Source:	imental Se	ervices EPA/Plant (C (Hot M	lix Aspha	lt Plant)										Data R	Run No. Date:	1 7/24/98 JHI
Time	Natural Gas Rate (ACFM)	Aggregate Feed Rate (TPH)	Recycle (RAP) Feed Rate (TPH)	% RAP in mix	Rubber Feed Rate (TPH)	Liquid Asphalt Feed Rate (TPH)	Liquid Asphalt Type	Mix Rate (TPH)	Product Code	Liquid Asphalt Temp. (F)	Burner Pos. (%)	Mix Temp. (F)	Cyclone Entrance Temp. (F)	Dryer Pressure (in Hg)	Baghouse Exit Temp. (F)	Baghouse Pressure Drop (in Hg)	Exhaust Fans Amperage (amps) fan 1 / fan 2
6:34 AM	784	184.6	80.27	28.8	0	14	4000	278.9	2C	329.3	12.5	340	210	0.29	209	0	75/79
7:00 AM	841	295.1	0	0	0	15.6	4000	310.7	2	329.3	16	330	217	0.27	206	0	75/80
7:29 AM	1320	458.2	0	0	0	24.2	4000	482.4	2	331.8	37.3	319	332	0.31	280	0	81/88
8:00 AM	941	409.3	0	0	0	21.2	4000	430.5	2	332.2	21	324	268	0.33	283	0	75/79
8:30 AM	1040	383.5	0	0	0	21	4000	404.5	4	332	27	323	280	0.28	262	0	80/80
9:00 AM	915	328.9	0	0	0	18	4000	346.9	4	331.6	22	315	262	0.27	245	0	75/77
9:37 AM	878	322	0	0	0	16.7	4000	338.7	2	330.7	15	316	220	0.31	220	0	75/80
10:07 AM	847	322.6	0	0	0	16.7	4000	339.3	2	330.5	17	325	227	0.31	219	0	73/80
10:41 AM	974	328.6	0	0	0	18	4000	346.6	4	333.2	19.5	324	228	0.31	220	0	80/80
11:07 AM	899	319	0	0	0	16.6	4000	335.5	2	327.6	17.5	325	229	0.3	221	0	76/80
11:37 AM	945	320.2	0	0	0	16.6	4000	336.8	2	326.5	17.5	330	230	0.32	222	0	75/80
12:07 PM	913	319.9	0	0	0	16.6	4000	336.5	2	326.3	17.5	331	229	0.31	223	0	75/78
12:37 PM	920	320.4	0	0	0	16.6	4000	337	2	328.3	17.5	331	228	0.31	221	0	73/78
1:07 PM	858	320.2	0	0	0	16.6	4000	336.8	2	330.2	17.5	333	228	0.27	223	0	73/75

Sheet_1_of_1_

Pacific Enviror	acific Environmental Services Run No. 3																
Client/Source:		EPA/Plant	C (Hot N	∕lix Asp′	halt Plar	nt)										Date:	7/27/98
															Data R	Recorded By:	JHL
Time	Natural Gas Rate (ACFM)	Aggregate Feed Rate (TPH)	Recycie (RAP) Feed Rate (TPH)	% RAP in mix	Rubber Feed Rate (TPH)	Liquio Asphalt Feed Rate (TPH)	Liquid Asphalt Type	Mix Rate (TPH)	Product Code	Liquid Asphalt Temp. (F)	Burner Pos. (%)	Mix Temp.) (F)	Cyclone Entrance Temp. (F)	Dryer Pressure (in Hg)	Baghouse Exit Temp. (F)	Baghouse Pressure Drop (in Hg)	Exhaust Fans Amperage (amps) fan 1 / fan 2
6:30 AM	1190	0.9	0	0.0	0	3.6	4000	1.36	2C	319.3	24.9	316.1	271	0.33	231	0	78/81
6:59 AM	1190	342.8	140.3	27.6	0	24.6	4000	507.7	2C	321.9	31.3	324.7	341	0.28	306	0	78/81
7:36 AM	978	349.4	145.7	28.0	0	25.6	4000	520.7	2C	327.6	27	325.5	325	0.3	319	0	75/80
7:55 AM	1280	476.9	0	0.0	0	24.6	4000	501.5	2C	332.9	37	307.4	341	0.25	298	0	78/82
8:33 AM	1400	348.4	130.6	25.9	0	24.8	4000	503.8	2C	339.9	35.1	325.4	368	0.33	332	0	75/81
8:57 AM	1330	366.84	150.9	27.7	0	26.8	4000	544.6	2C	342.5	36	329.4	354	0.22	329	0	78/83
9:27 AM	1530	386.3	162	28.1	0	28.4	4000	576.6	2C	346.3	40.1	317.6	365	0.25	336	0	80/90
9:57 AM	1470	367.8	154.9	28.2	0	27.1	4000	549.8	2C	346.5	40	337.2	372	0.22	343	0	80/88
10:27 AM	1330	366.2	152.8	28.0	0	26.9	4000	545.9	2C	346.9	40	338.5	373	0.27	344	0	80/87
10:57 AM	1190	385.6	144.5	25.9	0	27.5	4000	557.5	2C	349	40	331.1	370	0.27	345	0	80/88
11:27 AM	1430	387.1	157.9	27.5	0	28.2	4000	573.2	2C	348.9	40	324.2	373	0.29	347	0	79/85
11:57 AM	1420	556	37.9	6.1	0	30.6	4000	624.4	2C	352.5	39.5	309.6	357	0.34	331	0	80/89
12:27 PM	1360	366.9	152.9	28.0	0	27	4000	546.9	2C	352.5	33	307.5	388	0.4	356	0	80/88
12:57 PM	1210	356.7	161.7	29.7	0	26.9	4000	545.2	2C	360.9	38.4	318.6	370	0.22	343	0	78/80
1:27 PM	1300	356.4	158.5	29.3	0	26.7	4000	541.5	2C	358	26.5	313	318	0.52	305	0	79/83
1:57 PM	1120	457.1	60	11.0	0	26.7	4000	543.3	2C	363.4	33.4	331.6	289	0.3	323	0	80/85
2:27 PM	881	374.7	0	0.0	0	19.5	4000	394.2	2	362.5	17.6	326.5	230	0.25	253	0	72/77
Comments	omments: Rap was put on hold at 7:49 AM and continued at 8:05 AM																

Plant was shut down at 3:20 AM due to energy conservation. Night shift was canceled.

Appendix B

Process Stack Testing Raw Data Sheets

40 CFR 60, APPENDIX A, METHOD 2* - GAS STREAM VELOCITY AND VOLUMETRIC FLOW RATE DATA ENTRY AND SUMMARY OF RESULTS

MRI Samplin	Project No. Client: ng Location:	4701.08.03 USEPA - El 3	.04 MC			Run No. Date:				1 07/21/98	-				
	Type S Pit	ot Tube No.	PT-003	Temperatur	e Meter No.	Y-0783		Bar	ometer No.	Y-2101	-				
Pito	t Tube Coef	ficient (Cp):	0.84	Eleva	ition Change	** from Baro	meter Locati	on to Samplin	g Location:	20	feet				
	Therm	ocouple No.	PT-36	_	Cross	Sectional A	rea of the Du	uct at Samplin	g Location:	13.8450	ft³				
Carb	oon Dioxide (Concentratio	n By Volume	e, Dry Basis:	6.0	%	Gas Mol.	Weight, Dry I	Basis (Md):	29.459	lb/lb-	mole			
	Oxygen (Concentration	n By Volume	, Dry Basis:	9.2	%									
	Ct- d Thurs	FIRST TRAN	/ERSE - ST		N		SECC	ND TRAVER	SE - END C	OF RUN					
	Start rime:	0930	Stop Time:	0950	_		Start Time:		Stop Time:		-				
Barome	tric Pressure	e at Baromete	er Location:	29.37	in. Hg	Barom	etric Pressur	e at Baromete	er Location:		in. H	g			
Barom	etric Pressul	re at Samplin	ig Location:	29.35	in. Hg	Baron	netric Pressu	ire at Samplin	g Location:		in. H	g			
	Ve	elocity Head	at Centroid:	0.400	in. w.c.			elocity Head a	at Centroid:		in. w	.C.			
	101	ai Pressure a	at Centrola:	0.180	In. w.c.		lo	tal Pressure a	at Centroid:		in. w	.C.			
	Absolute	o Dressure in	Duct (Pre):	-0.102	in. w.c.		Abaalut	Static	Pressure:		in. w	.C.			
Wat	ter Vapor Co	e Flessure II	By Volume:	29.34	⊪. ⊓g ≪	10/	Absolut	e Pressure in	DUCT (PS):		In. H	g			
•••	Gas Mot V	Veight Wet	Basis (Ms):	26.550	h/lb-mole	~~~	Gas Mol V	Moight Mot B	By volume:		% 15.05				
ſ		Velocity	Gas	20.000		1		Velgiti, vvet L		T	-מו/מו ן				
	Traverse	Head	Stream	Velocity	Rotation		Traverse	Hoad	Gas	Valasitur		RESULTS FOR	RUN		
	Point	(delta-p).	Temp	(vs)	Angle	1	Point	(delta-n)	Tomn	velocity,		Average Volumetric Flow Deter		1	
	Number	inches w.c.	(ts), °F	ft/sec	α		Number	linches w.c.	(ts) °F	ft/sec		Average Volumetric Flow Rate:	NA NA	dry std. 113/nr.	
	1-1	0.120	259	23.89	21		1-1			10.000		Average volumetric riow Nate.	MA	ary sta. nr/nr.	
	1-2	0.760	259	60.13	15		1-2				Г	eviation of the flow rate (actm) after th	~		
r l	1-3	0.450	259	46.27	13		1-3	·				run from the one before the run:		94	
	1-4	0.530	259	50.21	7		1-4					i an nom me one before me run.		70	
	2-1	0.090	259	20.69	18		2-1				C	OMMENTS: Second traverse not conc	ducted	due to	
	2-2	0.450	259	46.27	12		2-2					process change before traverse cou	Id be	run.	
-	2-3	0.490	259	48.28	8		2-3								
-	2-4	0.590	259	52.98	5		2-4								
-	3-1	0.190	258	30.04	17		3-1								
H	33	0.400	208	43.59	10		3-2								
F	3-4	0.430	258	45.20	0 6		3-3								
F	4-1	0.370	257	41.90	16		<u> </u>								
	4-2	0.560	257	51.54	12		4-1								
F	4-3	0.400	257	43.56	9		4-3								
ľ.	4-4	0.280	257	36.45	7	1	4-4		••••						
	5-1	0.220	256	32.28	15		5-1								
	5-2	0.380	256	42.43	10		5-2								
	5-3	0.320	256	38.94	5		5-3								
	5-4	0.320	256	38.94	5		5-4								
	6-1	0.090	253	20.61	12		6-1								
-	6-2	0.470	253	47.09	8		6-2								
	6-3	0.520	253	49.53	6		6-3					* 40 CFR 60, Appendix A, Method 3 is	s used	for the	
L	6-4	0.430	253	45.04	5	l	6-4					determination of dry molecular weigh	ht, and	l the	
A	verage Rota	tion Angle:	10.4									Alternative Method is used to determ	nine m	oisture	
	Averag	e Velocity:	41.94	ft/sec			Averag	je Velocity:		ft/sec (water vapor) content.					
	Volumetric	Flow Rate:	34,837 :	acim			Volumetric	Flow Rate:		acfm ** Positive values for locations above the barometer and					
	Volumetric	Flow Rate:	20,102 1	scim			Volumetric Flow Rate: so		scim negative values for locations below the barometer are						
	Volumetric	Flow Rate:	10,700	usciili drv std: m³/m	nin		Volumetric Flow Rate;			dry std. m ³ /min viold correct results)					
	Volumetric Flow Rate: 531 dry		ury stu. 111/11			volumetric	now reate;		ury std. m³/n	iin.	yield correct results.)				

40 CFR 60, APPENDIX A, METHOD 2* - GAS STREAM VELOCITY AND VOLUMETRIC FLOW RATE DATA ENTRY AND SUMMARY OF RESULTS

MR Sampli	l Project No. Client: ng Location:	4701.08.03 USEPA - E 3	8.04 MC		<u></u>				Run No. Date:	2 07/22/98	-
Pit Car	Type S Pi ot Tube Coe Therm bon Dioxide Oxvaen	itot Tube No. fficient (Cp): locouple No. Concentration Concentration	PT-003 0.84 PT-36 n By Volume	_Temperatur _ Eleva e, Dry Basis:	re Meter No. ation Change Cross 4.0	Y-0783 ** from Baro s Sectional A %	meter Locati rea of the Di Gas Mol.	Ba on to Samplir uct at Samplir Weight, Dry	rometer No. ng Location: ng Location: Basis (Md):	Y-2101 20 13.8450 29.257	feet ft³ lb/lb-mole
	Ox/gen	EIDET TOAL	CEDEE ET		IZ.Z	/0	0500				
		FIRST IRAN	VERSE - SI	ARI OF RUI	N .		SECC	IND TRAVEP	RSE - END C	OF RUN	
	Start Time:	0902	_Stop Time:	0916			Start Time:	1229	Stop Time:	1246	
Barome Barom	etric Pressur netric Pressu V	e at Baromete ire at Samplir elocity Head	er Location: ng Location: at Centroid:	29.33 29.31 0.600	in. Hg in. Hg in. w.c.	Barom Baron	etric Pressur netric Pressu V	e at Baromete ire at Samplir elocity Head	er Location: ng Location: at Centroid:	29.33 29.31 0.150	in. Hg in. Hg in. w.c.
	To	tal Pressure	at Centroid:	0.300	in. w.c.		To	tal Pressure	at Centroid:	0.006	in. w.c.
		Stati	c Pressure:	-0.123	in. w.c.			Stati	c Pressure:	-0.100	in. w.c.
147		te Pressure in	Duct (Ps):	29.30	in. Hg		Absolu	e Pressure ir	n Duct (Ps):	29.30	in. Hg
VVa	ater vapor C	oncentration	By Volume:	31.87	_%	W	ater Vapor C	oncentration	By Volume:	31.87	%
	Gas Mol.	vveignt, vvet	Basis (Ms):	25.674	ib/ib-mole	7	Gas Mol.	Weight, Wet	Basis (Ms):	25.674	lb/lb-mole
	-	Velocity	Gas					Velocity	Gas		
	Traverse	Head,	Stream	Velocity,	Rotation		Traverse	Head,	Stream	Velocity,	
	Point	(deita-p),	Temp.,	(vs),	Angle		Point	(delta-p),	Temp.,	(vs),	Aver
	Number	inches w.c.	(IS), F	TU/Sec	α		Number	Inches w.c.	_(ts), °F	ft/sec	Aver
	1-1	0.130	264	25.39	ļ	-	1-1	0.330	201	38.66	
	1-2	0.510	264	50.30		-	1-2	0.340	201	39.24	Deviati
	1-3	0.720	264	59.76		-	1-3	0.330	201	38.66	run f
	2.1	0.400	204	11.13		-	1-4	0.320	201	38.07	
	2-1	0.400	267	44.04		{	2-1	0.200	202	30.12	COMM
	2-3	0.550	267	52.34			2-2	0.320	202	38.10	me
	2-4	0.690	267	58.63	·		2-3	0.270	202	34.99	rec
	3-1	0.390	267	44 08		1	3-1	0.230	202	20.30	4 \ to
	3-2	0.530	267	51.38			3-2	0.150	203	33.02	10
	3-3	0.590	267	54.21			3-3	0 180	203	28.59	rer
	3-4	0.820	267	63.91			3-4	0.170	203	27.79	104
	4-1	0.700	267	59.05			4-1	0.340	204	39.33	
	4-2	0.790	267	62,73			4-2	0.350	204	39,90	
	4-3	0.570	267	53.29			4-3	0.130	204	24.32	
	4-4	0.780	267	62.33		ş	4-4	0.130	204	24.32	
	5-1	0.680	267	58.20			5-1	0.360	210	40.65	
	5-2	0.940	267	68.43			5-2	0.470	210	46.45	
	5-3	0.860	267	65.45			5-3	0.440	210	44.94	
	5-4	0.820	267	63.91			5-4	0.400	210	42.85	
	6-1	0.800	267	63.13			6-1	0.200	208	30.25	
	6-2	0.900	267	66.96			6-2	0.200	208	30.25	
	6-3	1.050	267	72.32			6-3	0.550	208	50.17	* 40
l	6-4	0.920	267	67.70			6-4	0.220	208	31.73	det
, A	Average Rota	ation Angle:	NR								Alte
	Avera	ge Velocity:	57.66	ft/sec			Averag	ge Velocity:	35.59	ft/sec	(wa
	Volumetric	Flow Rate:	47,901	acfm			Volumetric	Flow Rate:	29,562	acfm	** Pos
	Volumetric	⊢low Rate:	34,083	scfm			Volumetric	Flow Rate:	22,988 :	scfm	neg
	Volumetric	⊢low Rate:	23,221	dscfm			Volumetric	Flow Rate:	15.661	dscfm	ent

Volumetric Flow Rate:

443 dry std. m³/min.

RESULTS FOR RUN

Average Volumetric Flow Rate:	1,166,462 dry std. ft³/hr.
Average Volumetric Flow Rate:	33,031 dry std. m³/hr.

Deviation of the flow rate (acfm) after the run from the one before the run: -38.3 %

COMMENTS: For the second traverse, points were measured through ports 5 and 6 before word was received to stop sampling. Points at ports 1 through 4 were measured shortly after word was received to stop. The moisture and gas molecular weight values used for the second traverse are not representative. No data could be collected.

- * 40 CFR 60, Appendix A, Method 3 is used for the determination of dry molecular weight, and the Alternative Method is used to determine moisture (water vapor) content.
- Positive values for locations above the barometer and negative values for locations below the barometer are entered here. (Computations reverse the signs to yield correct results.)

Volumetric Flow Rate:

658 dry std. m³/min.

40 *CFR* 60, APPENDIX A, METHOD 2* -GAS STREAM VELOCITY AND VOLUMETRIC FLOW RATE FIELD DATA SHEET

MRI Proje Sampling Lo	ect No. 4701.08. Client: USEPA-EN	03.04 ИС	Rur	n No Date:	8	
Onera	ator(s): 1. See	1120 17 No31	R Ed an	11		
opere	Type S Pitot Tub	e No PI-00	<u>, U, CANJYA</u> 2	Normaratura Mata	V 10707	
Pitot	t Tube Coefficient	$(C_p): 0.84$		Thermocouple	No. <u>7-0783</u> No.T <u>P-07-36</u>	EE SWR 8-14-98
	Elevation	Change * * from B	arometer Locati	on to Sampling Loca	tion: $\frac{p-2/0}{4}$	foot
		Cross Sect	ional Area of Du	ict at Sampling Loca	tion: 13. 8:15	Teet f+3
		Carbon Dioxi	ide Concentratic	n By Volume, Dry B	asis: 6.0	10 %
		Oxyg	en Concentratio	n By Volume, Dry B	asis: 9.2	%
	FIRST TRAVER	SE - START OF R	UN	SECOND 1	RAVERSE - END	DF RUN
Start Time	: <u>0930</u> St	op Time:	0	Start Time:	Stop Tir	ne
Barometric Pr	essure (P _{bar}) at Ba	rometer Location:	29.37 in.	Hg	0000 m	in. Ha
Velo	city Head (Δp) at	Centroid of Duct:	0,40 in.	H ₂ O	Δp:	in. H ₂ O
Tot	al Pressure (P) at	Centroid of Duct:	+0,18 in.	H ₂ O	P:	in. H ₂ O
Leak Checks - I	nitial: NoLeak	Final: <u>No</u>	Lesk	Initial:	Final:	
Traverse	Velocity Head,	Gas Stream	Botation	Traverse	Velocity Hood	Cao Straam
Point Number	(Δp) , in. H_2O	Temp. (t _s), °F	Angle, α	Point Number	(Δp) , in. H ₂ O	Temp. (t.). °F
1-1	0.12	259	21			1
1-2	0.76	259	15			
1-3	0.45	259	13			
1-4	0,53	259	1			
2-1	0,09	259	18		-	
2-2	0,45	259	12			
2-3	0,49	259	8			
2-4	0,59	259	5			····
3-1	0,19	758	17			
3-2	0,40	258	10			
3-3	0,43	258	8			
3-4	0,54	258	6			
4-1	0,37	257	16			
4-2	0,56	257	12			
4-3	0.40	257	9			
4-4	0,28	257				
5-1	0.22	256	15			
5-2	0,38	256	10			
5-3	0.32	256	5			
5-4	0,32	256	5			
6-7	0,09	253	12			
6-2	0.47	253	8			
6-3	0,52	253	6	-		
6-4	0.43	253	5			

* 40 CFR 60, Appendix A, Method 3 is used for the determination of dry gas molecular weight, and the Alternative Method is used for the determination of moisture content.

** Enter positive values for locations above barometer and negative values for locations below barometer.

Comments:

40 *CFR* 60, APPENDIX A, METHOD 2* -GAS STREAM VELOCITY AND VOLUMETRIC FLOW RATE FIELD DATA SHEET

MRI Proje Sampling Lo	ect No. 4701.08. Client: USEPA-EN	03.04 //C		Run No. 7 Date: 07-72-38						
Opera	ator(s): $J_1 S_{M_2}$	man DNIZ) B Educio							
0000	Type S Pitot Tub	e No. PT-DA	·2	Jomporatura Matar	No Vanno	,				
Pito	t Tube Coefficient	(C _p): 0,84	<u> </u>	Thermocouple No. $P = 36$ Barometer No. $Y = 270$						
	Elevation	Change * * from B	arometer Locatio	n to Sampling Locat	No. $\frac{f^2}{20}$	 f +				
		Cross Sect	ional Area of Duc	t at Sampling Locat	tion: 1.3. 0.9.4	reet				
		Carbon Dioxi	ide Concentration	By Volume, Dry Ba	asis: $4D$	<u> </u>				
		Oxyg	en Concentration	By Volume, Dry Ba	asis: 12.2	- %				
	FIRST TRAVER	SE - START OF R	UN	SECOND T	BAVERSE - END					
Start Time	: 0902 St	op Time: 09/1	2	Start Time: 12	29 Stop Ti	192/2				
Barometric Pr	essure (P _{bar}) at Bar	rometer Location:	29.33 in. H	la	$\underline{P} \cdot MR$	in Ha				
Velo	city Head (∆p) at	Centroid of Duct:	0.60 in. H	,0	Ap: Mars	JUSH HO				
Tot	al Pressure (P) at	Centroid of Duct:	0,30 in. H	I ₂ O	P: MAR	h_1 H_2				
Look Charles 1	antista alla i anda			. / .	. 7/					
	nitial: <u>NOLCZR</u>	Final: _/V	<u>LCZ/L</u>	Initial: No Luz	Final: <u>n</u>	olizk				
Traverse	Velocity Head,	Gas Stream	Rotation	Traverse	Velocity Head,	Gas Stream				
Point Number	$(\Delta \mathbf{p}), \text{ in. } \mathbf{H}_2\mathbf{O}$	Temp. (t _s), °F	Angle, α	Point Number	(Δp) , in. H_2O	Temp. (t _s), °F				
1-1	10,2+0,13	264		1-1	0.23	201				
1-2	1 0,51	264		1-2	0,34	201				
1-3	0.72	24		1-3	0,33	201				
1-4	1.02	264		1-4	0.32	201				
8-1	0,40	267		2-1	0.20	202				
2-2	0.40	267		2-2	0,31	202				
2-3	0.55	267		2-3	0.27	202				
2-4	0,69	267		2-4	0.23	202				
3-1	0,39	267		3-1	0,19	203				
3-2	0,53	267		3-2	0.24	203				
3-3	0,59	267		3-3	0.18	203				
3-4	0.82	267		3-3	0.17	203				
4-1	0.70	267		4-1	0,34	204				
4-2	0,79	267		4-2	0,35	204				
4-3	0.57	267		4-3	0.13	204				
4-4	0.78	267		4-4	0.13	204				
5-1	0,68	267		5-1	0,36	210				
5-2	0,94	267		5-2	0,47	210				
53	0,86	267		5-3	0,44	210				
5-4	0,82	267		5-4	0,40	210				
6-)	0,80	267		6-1	0.20	208				
6-2	0.90	267		6-2	0.20	208				
6-3	1.05	267		6-3	0,55	208				
6-4	0,92	267		6-4	0,22	208				

* 40 CFR 60, Appendix A, Method 3 is used for the determination of dry gas molecular weight, and the Alternative Method is used for the determination of moisture content.

•

** Enter positive values for locations above barometer and negative values for locations below barometer.

Comments: Scional Treserse - Ports J-4 done after 1235 (time tober to shutdown)

TRAVERSE POINT LOCATION FOR RECTANGULAR DUCTS

MRI Project No.	4701.08.03.04	
Client:	USEPA-EMC	
Sampling Location:		
Date:	07-20-98	
For Run Numbers:	All	

Flow is toward away from observer and is upward downward horizontal

Inside of near wall to outside of port (Distance B): 4.25 inches Traverse distance (A - B): 36.75 inches
Traverse distance (A - B): <u>36,75</u> inches
Internet direct allows in the second se
internal duct dimension normal to traverses: <u>34,25</u> inches
Number of test ports:
Distance between port centers: inches
Distance of nearest flow disturbance upstream from ports: <u>177</u> inches
Distance of nearest flow disturbance downstream from ports: inches
Number of test points per traverse (i.e., per port):
Distance between test points on a traverse: 9.1875 inches
Dimensions obtained by/from: direct measurement
Data recorded by: J. Surman

COMMENTS:

OXYGEN AND CARBON DIOXIDE BY ORSAT

PROJECT NO. 4701-08	-03-04 RUN NO
SAMPLE NO	DATE7-21-98
PLANT SAMPLING LOCATION	DRYER STRCU
ANALYSIS TIME (24hr-CLOCK)	167-6
SAMPLE TYPE (BAG, GRAB)	
OPERATOR	SAL

ORSAT LEAK CHECK BEFORE ANALYSIS: BURETTE CHANGE IN 4 MIN. PIPETTES CHANGE IN 4 MIN. ORSAT LEAK CHECK AFTER ANALYSIS: BURETTE CHANGE IN 4 MIN. PIPETTES CHANGE IN 4 MIN.

RUN	1		2		3		
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME
co ₂	1 6.0 2 6.2 3 6.0	6.0	1 6.0 2 6.0 3 6.0	6.0	1 6.0 2 6.0 3 6.0	6.0	6.0
O ₂ (NET IS SECOND READING MINUS ACTUAL CO ₂ READING)	1 15,2 2 15,2 3 15,2	9.2	1 15.2 215.2 3 15.2	9.2	1 15.2 2 15.2 3 15.2	9.2	9.2

91-16 SEV SURMAN wksht 052191

Acceptance Criteria

CO 2	> 4%	.3% by Volume	0_2	≥ 15%	.2% by Volume
	≤4%	.2% by Volume	2	< 15%	.3% by Volume

Comments:

OXYGEN AND CARBON DIOXIDE BY ORSAT

PROJECT NO. 4701 - 08-0	BUNNO Runn 2
SAMPLE NO.	DATE 7-22-95
PLANT SAMPLING LOCATION Bu	ner Outliet Stack
ANALYSIS TIME (24hr-CLOCK)	1327
SAMPLE TYPE (BAG, GRAB)	BAG
OPERATOR _ Guliek	

ORSAT LEAK CHECK BEFORE ANALYSIS: BURETTE ______ CHANGE IN 4 MIN. PIPETTES ______ CHANGE IN 4 MIN. ORSAT LEAK CHECK AFTER ANALYSIS: BURETTE ______ CHANGE IN 4 MIN. PIPETTES ______ CHANGE IN 4 MIN.

RUN		1		2		3	
GAS	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	NET VOLUME
co ₂	1 4.0 2 4.0 3 4.0	4.0	1 4.0 2 4.0 3 4.0	4.0	1 <i>4.0</i> 2 <i>4.0</i> 3 <i>4.0</i>	4.6	4.0
O ₂ (NET IS SECOND READING MINUS ACTUAL CO ₂ READING)	1 /4 · 2 2 /4· 2 3 /4· 2	<i>12.</i> 2	1/6.~ 2/6-0 3/6-7	bb 1Q:1	140/6.2 2 /6.2 3 /6.2	12.2	12.2

91-16 SEV SURMAN wksht 052191

Acceptance Criteria

CO ₂	> 4% ≤ 4%	.3% by Volume .2% by Volume	02	≥ 15% < 15%	.2% by Volume .3% by Volume
				< 1070	

Comments:

MOISTURE (ALTERNATIVE METHOD) FIELD DATA CALCULATIONS DATA ENTRY AND SUMMARY OF RESULTS

MRI	Project No.	4701.08.03	.04				
Samplin	Client:	USEPA - E	MC				
Campin	g Location.	5					_
	Run No.	1	1 Metering Console No VOST 2				
	Date:	07/21/98	Dr	Gas Meter	Factor (Y):	0.983	
				Impin	ger Set No.	A	
			Ga	s Stream Te	mperature:	256	°F
1			Gas S	Stream Statio	C Pressure:	-0.10	in. w.c.
Í				Barometri	C Pressure:	29.35	in. Hg
			Gas Stream	Volumetric	Flow Rate:	18,758	dscfm
l Ir	nitial Imping	ers Weight:	550.90	grams	_		
		Average				Vapor	Percent
	Dry Gas	Dry Gas	Dry Gas	Gas	Constant	Pressure	Water
Clock	Meter	Meter	Meter	Stream	Sampling	Of	Vapor
Lime,	Volume,	Temp.,	Pressure,	Temp.,	Rate	Water,	(Saturated),
24-nr	Liters	۲۲	in. w.c.	°F	Variation	in. Hg	v/v
1122	0.000						
1132	6.250	42.0	0.00		1.12%		
1142	12.580	42.0	0.00		2.42%		
1152	18.800	41.0	0.00		0.64%		
1202	24.080	42.0	0.00		-14.57%		
1212	30.320	42.0	0.00		0.96%		
1222	30.570	45.0	0.00		1.12%		
1232	42.790	47.0	0.00		0.64%		
1242	55 320	47.0	0.00		1.45%		
1202	61 600	47.0	0.00		1.29%		
1312	67.850	40.0	0.00		1.61%		
1322	74 120	44.0	0.00		1.12%		
1332	80 360	45.0	0.00		1.45%		
1342	86.620	44.0	0.00		1 20%		
1352	92.870	43.0	0.00		1 1 2 %		
1402	99.140	43.0	0.00		1 45%		
1412	105.400	42.0	0.00		1 29%		
1422	111.250	41.0	0.00		-5.35%		
			-		0.0070		······
L							

Final Impingers Weight: _____579.60 grams

Sample Volume and Conditions and Moisture Results

Gas Sample Volume:	3.929	dcf
	0.1113	dcm
Gas Sample Volume at Standard Conditions:	3.971	dscf
	0.1125	dscm
Average Absolute Sampled Gas Temperature:	503.34	°R
	279.63	°K
Average Absolute Sampled Gas Pressure:	29.35	in. Hg
	745.49	mm Ĥg
Condensate Collected:	28.70	grams
Moisture (Water Vapor):	25.42	% v/v

MOISTURL.WK4 03/02/95 (rev. MOIST3_1.WK4 07/29/98 03:52 PM)
MOISTURE (ALTERNATIVE METHOD) FIELD DATA CALCULATIONS DATA ENTRY AND SUMMARY OF RESULTS

MRI	Project No. Client	4701.08.03 USEPA - E	.04 MC				
Samplin	g Location:	3					
	Run No.	2		Metering (oncolo No	VOST 2	-
	Date:	07/22/98	Dr	V Gas Motor	Easter (V):	2	-
		*		lmnin	racion (1). ner Set No		re .
			Ga	s Stream Te	mnerature:	267	- °⊏
1			Gas S	Stream Stati	c Pressure:	0.12	in we
				Barometri	c Pressure:	29.31	in Ha
			Gas Stream	Volumetric	Flow Rate:	23,221	dscfm
ll II	nitial Imping	ers Weight:	550.50	grams			
		Average				Vapor	Percent
~	Dry Gas	Dry Gas	Dry Gas	Gas	Constant	Pressure	Water
Clock	Meter	Meter	Meter	Stream	Sampling	Of	Vapor
Lime,	Volume,	lemp.,	Pressure,	Temp.,	Rate	Water,	(Saturated),
24-nr	Liters	- F	in. w.c.	۴	Variation	in. Hg	v/v
0936	0.000						
0946	6.980	28.0	0.00		-0.07%		
0956	14.010	29.0	0.00		0.64%		
1006	20.960	30.0	0.00		-0.50%		
1016	28.060	33.0	0.00		1.65%		
1020	35,110	35.0	0.00		0.93%		
1030	42.000	36.0	0.00		-0.50%		
1040	40.990	37.0	0.00		-0.79%		
1106	63.010	37.0	0.00		-0.07%		
1116	70.050	37.U 20 A	0.00		0.79%		
1126	77.010	38.0	0.00		0.79%		
1136	84.030	40.0	0.00		-0.36%		
1146	91.050	40.0	0.00		0.50%		
1156	98.010	40.0	0.00		0.00%		
1206	105.050	40.0	0.00		0.30%		
1216	112.070	39.0	0.00		0.50%		••••••
1226	119.010	40.0	0.00		-0.64%		
1234	124.333	40.0	0.00		-3.79%		
					211 0 70		
				1			
				i			

Final Impingers Weight: ______ grams

Sample Volume and Conditions and Moisture Results

Gas Sample Volume:	4.391	dcf
	0.1243	dcm
Gas Sample Volume at Standard Conditions:	4.496	dscf
	0.1273	dscm
Average Absolute Sampled Gas Temperature:	496.17	°R
	275.65	°K
Average Absolute Sampled Gas Pressure:	29.31	in. Hg
	744.47	mm Hg
Condensate Collected:	44.60	grams
Moisture (Water Vapor):	31.87	% v/v

MOISTURL.WK4 03/02/95 (rev. MOIST3_2.WK4 07/29/98 04:08 PM)

ALTERNATIVE METHOD - MOISTURE TRAIN FIELD DATA SHEET

7

MRI Project No. 4701.08.03.04 Client: USEPA-EMC

.....

Sampling Loc	ation:	3						
Ru	n No. 📶	1		4	Meterir	a Console No	VOST	2
	Date 🖌 🖊 🤅	2-07-2	11-98		Drv Gas M	eter Factor (Y):	0.983	
Operat	or(s):	1. Surm	97		, Im	pinger Set No	A	
					Gas Strean	n Temperature:	257	 ° E
Initial Impingers	Wt.:	550.9	grams	G	as Stream S	-0.102	in we	
Silica	a gel:	100	% blue		Barom	29.3		
				Gas Stre	am Volume	535	dscfm	
Initial Leak C	heck:	0	cc/min @	15	in. Hg vacu	um		doonn
	Dry	Gas	Dry Gas	Dry Gas	Flow	Impinger		Gas
Clock	Met	ter	Meter	Meter	Rate	Outlet	Pump	Stream
Time,	Volu	ime,	Temperature*,	Pressure,	Meter	Temperature,	Vacuum,	Temperature,
24-Hr	Lite	ers	°F	in. w.c.	Setting	°F	in. Hg	°F
1122	0.00	00						
1132	6,25	2	42	0	70	68	2	1
1142	12.58	>	42	0	70	67	2	
1152	18.80	>		0	70	67	2	
1202	24,08	·	42	0	70	68	2	
1212	30,31	2	42	0	70	68	2	
1722	36.5	7	45		70	59	2	
132	42.7	9	_47		70	60	2	
1242	49.00	0	47		_70_	61	2	
1252	55,3.	2	_47		70	61	2	
1302	61.60	2	46	0	70	63	2	
13/2	67,83	5			_70_	60	2	
1322	74.12				_70_	62	2	
1332	80,30	1		0	70	62	2	
1042	86.67		44	0	70	63		
1352	92.81		43		70	63	2	
1402	77.14		43	0	70	62		
Aluna	120120	11050	42	0	_70	62	2	
HTTKA 17	20:50 1	11,200			_70	63	<u></u>	
) <u>/</u>	<u> </u>						·	
						· · · · · · · · · · · · · · · · · · ·		
······	·-·· .							
	·							
* For dry gas meters hav	ing two thermo	couples, the ave	age temperature is entere	d.				
Final Look Ch		0		17				
I HUI LEAK CI	IGUN	V	cc/min @	10	in. Hg vacui	um		
Final Impingers	Wt.:	579.6	grams	Silica gel:	90	% blue		
			-	Ŭ				

Comments: Shut down #420:30 P)2nt down

ALTERNATIVE METHOD - MOISTURE TRAIN FIELD DATA SHEET

MRI Project N Clie	No. 4701.08.03 nt: USEPA-EMC	.04					
Sampling Locatio Run N Da	on: <u>3</u> No. 7 te: 07-22-5	78		Meterir Dry Gas M	ng Console No. eter Factor (Y):	VOST 2	2
Operator((s): <u>J, Sur</u> ,	<i>אס</i> אז איז איז איז איז איז איז איז איז איז א		Im Gas Strean	npinger Set No. n Temperature:	A	۰F
Initial Impingers W Silica g	/t.: <u>550,5</u> el: <u>100</u>	grams % blue	Ga	as Stream S Barom	Static Pressure: netric Pressure:	29.3	in. w.c. in. Hg
Initial Leak Cheo	ck:	cc/min @ _	Gas Stre 	am Volume in. Hg vacu	tric Flow Rate: ium		dscfm
Clock Time, 24-Hr	Dry Gas Meter Volume, Liters	Dry Gas Meter Temperature*, °F	Dry Gas Meter Pressure, in. w.c.	Flow Rate Meter Setting	Impinger Outlet Temperature, °F	Pump Vacuum, in. Hg	Gas Stream Temperature, °F
0936 0946 0956 1006 1016 1026 1026 1026 1026 1046 1046 1106 1106 1106 1126 1126 1206 1206 120	0,000 6.98 14:01 20:96 28:06 35:11 42,06 42,06 48,99 55:97 63:01 70,05 77.01 84.03 91.05 98.01 105,05 112.09 119.01 124.333	$ \begin{array}{r} 28 \\ 29 \\ 30 \\ 33 \\ 35 \\ 35 \\ 35 \\ 35 \\ 36 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 37 \\ 38 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 39 \\ 40 \\$		20 70 70 70 70 70 70 70 70 70 70 70 70 70	67 67 67 67 67 65 67 67 67 67	N N N N N N N N N N N N N N N N N N N	
	ut down at)	234					
• For dry gas meters having t Final Leak Chec Final Impingers W	two thermocouples, the avi tk:	erage temperature is entere cc/min @ grams	d. IZilica gel:	n. Hg vacu	um 2 % blue		

Comments:

 $\frac{A}{1}$

Appendix C

Direct (Extractive) FTIR Results

Loadout Concentration vs. Time (7/24)

Loadout Concentration vs. Time (7/24)

Time

Loadout Concentration vs. Time (7/25)

Time

Loadout Concentration vs. Time (7/25)

Loadout Concentration vs. Time (7/27)

Time

.

Time

Results:	1 /11/99 16 :19
Fit file:	procstk.fit

				Uncer-		Uncer-	I	Uncer-
File Name	Date	Time	Propane	tainty	Methane	tainty	СО	tainty
File Name	Date	Corrected	prop/upper/pp	2*sigma	196/upper/ppm	2*sigma	CO/Mid/pp	2*sigma
17210008	7/21/98	11:28	0.0	5.2	28.7	3.8	201.2	37.7
17210009	7/21/98	11:43	0.0	56.1	0.0	42.7	0.0	185.3
17210010	7/21/98	11:44	0.0	52.3	0.0	39.9	0.0	173.0
17210011	7/21/98	11:46	0.0	56.2	0.0	42.8	0.0	185.8
17210012	7/21/98	11:48	0.0	47.5	0.0	36.2	0.0	173.8
17210013	7/21/98	11:50	0.0	52.2	0.0	39.8	0.0	178.7
17210014	7/21/98	11:51	0.0	56.1	0.0	42.7	0.0	183.6
17210015	7/21/98	11:53	0.0	37.8	0.0	28.8	0.0	182.9
17210016	7/21/98	11:55	0.0	42.6	0.0	32.5	0.0	178.2
17210017	7/21/98	11:57	0.0	29.0	0.0	22.1	0.0	168.1
17210018	7/21/98	11:58	0.0	51.8	0.0	39.4	0.0	169.7
17210019	7/21/98	12:00	0.0	52.2	0.0	39.8	0.0	171.1
17210020	7/21/98	12:02	0.0	52.0	0.0	39.6	0.0	176.9
17210021	7/21/98	12:04	0.0	44.2	0.0	33.7	0.0	179.0
17210022	7/21/98	12:06	0.0	44.2	0.0	33.7	0.0	179.1
17210023	7/21/98	12:07	0.0	37.9	31.1	26.8	0.0	171.6
17210024	7/21/98	12:09	0.0	56.6	0.0	43.1	0.0	181.9
17210025	7/21/98	12:11	0.0	52.2	0.0	39.8	0.0	187.6
17210026	7/21/98	12:13	0.0	38.2	31.3	27.0	0.0	165.8
17210027	7/21/98	12:14	0.0	51.8	0.0	39.4	0.0	164.3
17210028	7/21/98	12:16	0.0	51.7	0.0	39.4	0.0	164.9
17210029	7/21/98	12:18	0.0	55.8	0.0	42.5	0.0	174.6
17210030	7/21/98	12:20	0.0	51.8	0.0	39.4	0.0	164.3
17210031	7/21/98	12:21	0.0	30.5	26.9	21.6	0.0	163.8
17210032	7/21/98	12:23	0.0	43.4	0.0	33.1	0.0	164.7
17210033	7/21/98	12:25	0.0	36.9	0.0	28.1	0.0	164 7
17210034	7/21/98	12:27	0.0	51.8	0.0	39.4	0.0	164.1
17210035	7/21/98	12:28	0.0	51.8	0.0	39.5	0.0	164.8
17210036	7/21/98	12:30	0.0	36.9	0.0	28.1	0.0	162.5
								102.0
17210037	7/21/98	12:41	71.5	1.8	14.3	5.9	0.0	97 5
17210038	7/21/98	12:42	73.9	1.5	12.3	5.1	0.0	98.0
17210039	7/21/98	12:44	74.5	1.5	12.3	5.1	0.0	97.9
17210040	7/21/98	12:46	75.1	1.5	12.2	5.1	0.0	97.9
17210041	7/21/98	12:48	40.6	2.0	19.1	6.7	0.0	124.1
17210042	7/21/98	12:49	0.0	12.8	28.2	9.1	153.4	129.9
17210043	7/21/98	12:51	0.0	11.7	26.5	8.3	159.0	133.2
17210044	7/21/98	12:53	0.0	11.5	25.9	8.2	146.3	133.8
17210045	7/21/98	12:55	0.0	12.5	23.2	8.8	0.0	131.5
17210046	7/21/98	12:57	0.0	10.9	23.0	7.7	0.0	136.3

			· · · · · · · · · · · · · · · · · · ·	Uncer-		Uncer-		Uncer-
File Name	Date	Time	Propane	tainty	Methane	tainty	СО	tainty
17210047	7/21/98	12:58	0.0	14.3	26.1	10.1	0.0	126.4
17210048	7/21/98	13:07	0.0	51.9	75.9	36.7	348.1	176.0
17210049	7/21/98	13:08	0.0	42.6	77.1	30.2	331.0	168.5
17210050	7/21/98	13:10	0.0	38.1	84.2	27.0	354.8	167.4
17210051	7/21/98	13:12	0.0	36.8	98.3	26.0	327.0	163.4
17210052	7/21/98	13:14	0.0	42.9	93.3	30.4	280.9	166.8
17210053	7/21/98	13:15	0.0	36.8	103.5	26.0	244.5	170.4
17210054	7/21/98	13:17	0.0	39.7	96.0	28.1	228.4	166.0
17210055	7/21/98	13:19	0.0	58.8	72.9	41.6	267.0	172.5
17210056	7/21/98	13:21	0.0	37.3	92.5	26.3	264.7	169.7
17210057	7/21/98	13:22	0.0	55.5	76.8	39.3	270.6	177.5
17210058	7/21/98	13:24	0.0	51.5	80.3	36.4	244.2	176.9
17210059	7/21/98	13:26	0.0	37.0	96.7	26.2	238.7	168.6
17210060	7/21/98	13:28	0.0	51.3	88.5	36.3	224.3	164.3
17210061	7/21/98	13:30	0.0	46.5	91.2	32.9	226.6	164.7
17210062	7/21/98	13:31	0.0	51.5	97.7	36.4	233.0	167.2
17210063	7/21/98	13:33	0.0	51.3	97.3	36.3	246.9	164.8
17210064	7/21/98	13:35	0.0	51.4	76.2	36.4	209.7	183.6
17210065	7/21/98	13:37	0.0	41.9	75.1	29.7	195.2	167.1
17210066	7/21/98	13:38	0.0	51.3	72.2	36.3	205.3	167.4
17210067	7/21/98	13:40	0.0	51.4	75.3	36.3	213.3	170.5
17210068	7/21/98	13:42	0.0	51.8	69.8	36.6	198.8	183.3
17210069	7/21/98	13:44	0.0	41.7	77.3	29.5	201.6	168.4
17210070	7/21/98	13:45	0.0	51.4	68.4	36.4	200.4	175.8
17210071	7/21/98	13:47	0.0	51.4	71.8	36.3	181.8	170.7
17210072	7/21/98	13:49	0.0	51.5	75.2	36.5	193.3	178.3
17210073	7/21/98	13:51	0.0	51.4	69.3	36.4	183.7	169.2
17210074	7/21/98	13:52	0.0	46.6	46.6	33.0	191.9	168.4
17210075	7/21/98	13:54	0.0	51.4	0.0	39.1	0.0	167.9
17210076	7/21/98	13:56	0.0	37.5	35.5	26.6	0.0	167.9
17210077	7/21/98	13:58	0.0	55.2	0.0	42.0	0.0	176.5
17210078	7/21/98	14:00	0.0	51.4	0.0	39.1	0.0	168.0
17210079	7/21/98	14:01	0.0	55.3	0.0	42.1	0.0	172.6
17210080	7/21/98	14:03	0.0	51.4	0.0	39.1	0.0	164.4
17210081	7/21/98	14:05	0.0	52.6	0.0	40.0	0.0	177.2
17210082	7/21/98	14:07	0.0	49.1	0.0	37.4	0.0	164.0
17210083	7/21/98	14:08	0.0	37 3	61.6	26.4	181 /	166.4
17210084	7/21/98	14.10	0.0	55.4	62.5	39.3	228 5	175.0
17210085	7/21/98	14.12	0.0	51.4	96.3	36.4	220.5	182.1
17210086	7/21/98	14:14	0.0	55 3	1174	39.1	230.1	182.2
17210087	7/21/98	14:15	0.0	51.6	144 1	36.5	180.6	172.2
17210088	7/21/98	14.17	0.0	36.7	160.0	25.0	176.0	161 /
17210089	7/21/98	14.19	0.0	61.1	268.0	43 D	0.0	172.0
1,210009	1121190	Average>	<u>v.v</u> 4 1	<u>01.1</u> 41.0	<u>200.0</u> 42.5	30.0	<u>0.0</u> 102.0	$\frac{1/8.9}{162.1}$
		1	7.1	71.7	72.3	50.7	102.9	105.1

				Uncer-		Uncer-		Uncer-
File Name	Date	Time	Propane	tainty	Methane	tainty	СО	tainty
17220002	7/22/98	9:38	0.0	48.1	0.0	36.6	0.0	164.3
17220003	7/22/98	9:41	0.0	60.2	51.8	42.9	0.0	175.8
17220004	7/22/98	9:43	0.0	60.1	49.5	42.9	0.0	174.2
17220005	7/22/98	9:44	0.0	65.5	0.0	49.9	0.0	180.8
17220006	7/22/98	9:46	0.0	62.9	0.0	47.9	0.0	173.8
17220007	7/22/98	9:48	0.0	65.6	0.0	49.9	0.0	179.6
17220008	7/22/98	9:50	0.0	65.8	0.0	50.1	0.0	177.5
17220009	7/22/98	9:51	0.0	65.9	0.0	50.2	0.0	180.4
17220010	7/22/98	9:53	0.0	65.3	0.0	49.7	0.0	182.6
17220011	7/22/98	9:55	0.0	65.6	0.0	50.0	0.0	181.2
17220012	7/22/98	9:57	0.0	65.5	0.0	49.9	0.0	180.9
17220013	7/22/98	9:58	0.0	65.8	0.0	50.1	0.0	177.8
17220014	7/22/98	10:00	0.0	65.7	0.0	50.0	0.0	181.1
17220015	7/22/98	10:02	0.0	62.9	0.0	47.9	0.0	174.5
17220016	7/22/98	10:04	0.0	65.7	0.0	50.0	0.0	180.9
17220017	7/22/98	10:06	0.0	60.1	48.7	43.0	0.0	175.3
17220018	7/22/98	10:07	0.0	66.5	0.0	50.6	0.0	174.2
17220019	7/22/98	10:09	0.0	60.6	52.2	43.3	0.0	168.9
17220020	7/22/98	10:11	0.0	74.8	0.0	57.0	0.0	180.5
17220021	7/22/98	10:13	0.0	64.8	0.0	46.3	0.0	174.9
17220022	7/22/98	10:14	0.0	62.8	52.1	44.8	0.0	170.2
17220023	7/22/98	10:16	0.0	66.0	0.0	47.1	0.0	181.6
17220024	7/22/98	10:18	0.0	64.7	0.0	46.1	0.0	178.8
17220025	7/22/98	10:20	0.0	66.0	0.0	47.1	0.0	177.0
17220026	7/22/98	10:21	0.0	57.5	41.7	41.0	0.0	160.0
17220027	7/22/98	10:23	0.0	65.9	0.0	47.1	0.0	176.7
17220028	7/22/98	10:25	0.0	64 7	0.0	46.2	0.0	177.6
17220029	7/22/98	10:27	0.0	65.7	0.0	50.0	0.0	181.5
17220030	7/22/98	10:28	0.0	63.0	46 7	45.0	0.0	175 4
17220031	7/22/98	10:30	0.0	57.7	43.4	41.2	0.0	175.4
17220032	7/22/98	10:32	0.0	62.7	52.7	44 7	0.0	177.0
17220033	7/22/98	10:34	0.0	54.3	0.0	41.4	0.0	161.0
17220034	7/22/98	10:36	0.0	54.4	0.0	41.4	0.0	164.0
17220035	7/22/98	10:37	0.0	54.6	0.0	41.5	0.0	164 A
17220036	7/22/98	10:39	0.0	66.4	0.0	50.5	0.0	178.9
17220037	7/22/98	10:41	0.0	60.3	51.2	43.1	0.0	170.5
17220038	7/22/98	10:43	0.0	76.6	0.0	58.3	0.0	177.3
17220039	7/22/98	10:45	0.0	65.9	0.0	50.5	0.0	170.0
17220040	7/22/98	10:46	0.0	65.9	0.0	50.2	0.0	184.6
17220041	7/22/98	10:48	0.0	66.0	0.0	50.2	0.0	178.4
17220042	7/22/98	10:50	0.0	66.1	0.0	50.3	0.0	180.1
17220043	7/22/98	10:52	0.0	75 1	0.0	57.2	0.0	170.0
17220044	7/22/98	10:53	0.0	65.9	0.0	50.2	0.0	1785
17220045	7/22/98	10:55	0.0	66 7	0.0	50.2	0.0	1/0.3
17220046	7/22/98	10:57	0.0	57 7	0.0	44.0	0.0	1770
17220047	7/22/98	10.59	0.0	66.3	0.0	50.5	0.0	1760
17220048	7/22/98	11.01	0.0	66.1	0.0	50.5	0.0	1/0.8
., 220070	1122190	11.01	0.0	00.1	0.0	50.3	0.0	184.0

				Uncer-		Uncer-		Uncer-
File Name	Date	Time	Propane	tainty	Methane	tainty	со	tainty
17220049	7/22/98	11:02	0.0	73.7	0.0	56.1	0.0	178.8
17220050	7/22/98	11:04	0.0	75.5	0.0	57.5	0.0	183.6
17220051	7/22/98	11:06	0.0	60.5	50.6	43.2	0.0	170.8
17220052	7/22/98	11:08	0.0	54.4	0.0	41.5	0.0	162.9
							-	
17220053	7/22/98	11:32	0.0	54.8	0.0	41.8	0.0	173.6
17220054	7/22/98	11:33	0.0	54.6	0.0	41.6	0.0	162.9
17220055	7/22/98	11:35	0.0	57.7	50.7	41.1	0.0	174.3
17220056	7/22/98	11:37	0.0	64.6	64.9	46.0	0.0	172.2
17220057	7/22/98	11:39	0.0	62.8	104.2	44.7	276.8	172.2
17220058	7/22/98	11:40	0.0	60.5	109.9	43.1	317.9	174.0
17220059	7/22/98	11:42	0.0	60.4	124.2	43.0	258.5	162.6
17220060	7/22/98	11:44	0.0	64.8	199.1	46.2	200.2	178.4
17220061	7/22/98	11:46	0.0	60.3	219.1	42.9	0.0	168.2
17220062	7/22/98	11:48	0.0	50.1	257.7	35.5	0.0	171.1
17220063	7/22/98	11:49	0.0	64.9	268.2	46.2	174.6	165.4
17220064	7/22/98	11:51	0.0	50.3	223.5	35.7	182.6	170.7
17220065	7/22/98	11:53	0.0	65.3	219.8	46.5	0.0	176.9
17220066	7/22/98	11:55	0.0	61.4	178.6	43.7	0.0	164.3
17220067	7/22/98	11:56	0.0	50.2	136.0	35.7	0.0	169.3
17220068	7/22/98	11:58	0.0	49.7	122.0	35.3	0.0	169.6
17220069	7/22/98	12:00	0.0	53.4	117.6	38.0	0.0	168.4
17220070	7/22/98	12:02	0.0	45.0	122.3	32.0	0.0	171.8
17220071	7/22/98	12:03	0.0	44.8	121.6	31.8	0.0	178.0
17220072	7/22/98	12:05	0.0	57.3	122.8	40.8	0.0	163.8
17220073	7/22/98	12:07	0.0	45.2	110.6	32.1	0.0	171.1
17220074	7/22/98	12:09	0.0	45.0	118.1	31.9	0.0	179.9
17220075	7/22/98	12:11	0.0	45.1	123.7	32.0	0.0	183.2
17220076	7/22/98	12:12	0.0	53.3	110.3	37.9	0.0	167.2
17220077	7/22/98	12:14	0.0	62.4	163.3	44.5	0.0	176.1
17220078	7/22/98	12:16	0.0	56.7	119.9	40.3	0.0	165.8
17220079	7/22/98	12:18	0.0	55.1	117.8	39.2	0.0	166.6
17220080	7/22/98	12:19	0.0	56.7	119.7	40.3	0.0	165.6
17220081	7/22/98	12:21	0.0	53.3	114.7	37.9	0.0	168.1
17220082	7/22/98	12:23	0.0	60.8	145.3	43.3	0.0	175.6
17220083	7/22/98	12:25	0.0	59.9	163.5	42.7	0.0	165.9
17220084	7/22/98	12:26	0.0	51.1	174.8	36.2	0.0	170.4
17220085	7/22/98	12:28	0.0	46.7	194.8	33.1	0.0	171.3
17220086	7/22/98	12:30	0.0	60.1	185.7	42.7	175.5	167.1
17220087	7/22/98	12:32	0.0	65.4	219.8	46.6	0.0	182.3
17220088	7/22/98	12:34	0.0	64.9	244.8	46.2	195.1	166.8
17220089	7/22/98	12:35	0.0	57.3	161.1	40.8	184.2	165.7
17220090	7/22/98	12:37	0.0	62.7	187.3	44.6	0.0	166.4
17220091	7/22/98	14:31	0.0	0.1	0.0	0.1	0.0	0.2
A	verage>		0.0	60.7	68.3	44.5	22.1	173.7

													Formal-			
					Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17240030	7/24/98	8:12	0.0	5.7	0.0	1.1	2.8	0.2	0.0	0.3	3.1	0.6	0.0	0.8	8.0	4.5
17240031	7/24/98	8:14	0.0	6.2	0.0	1.2	5.0	0.2	0.0	0.4	3.3	0.6	0.0	0.9	5.4	4.8
17240032	7/24/98	8:16	0.0	5.9	0.0	1.1	3.4	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	4.9
17240033	7/24/98	8:18	0.0	5.6	0.0	1.0	2.2	0.2	0.0	0.3	3.1	0.6	0.0	0.8	5.3	4.4
17240034	7/24/98	8:20	0.0	5.3	0.0	1.0	1.3	0.2	0.0	0.3	3.0	0.5	0.0	0.8	0.0	4.6
17240035	7/24/98	8:21	0.0	5.3	0.0	1.0	0.9	0.2	0.0	0.3	3.0	0.5	0.0	0.7	0.0	4.5
17240036	7/24/98	8:23	0.0	5.6	0.0	1.0	2.4	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.8
17240037	7/24/98	8:25	0.0	5.8	0.0	1.1	3.3	0.2	0.0	0.3	3.3	0.6	0.0	0.8	7.5	4.6
17240038	7/24/98	8:27	0.0	5.5	0.0	1.0	2.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.3	4.5
17240039	7/24/98	8:28	0.0	5.4	0.0	1.0	2.0	0.2	0.0	0.3	3.1	0.6	0.0	0.8	5.1	4.4
17240040	7/24/98	8:30	0.0	5.8	0.0	1.1	3,6	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	4.9
17240041	7/24/98	8:32	0,0	5.9	0.0	1.1	4.5	0.2	0.0	0.4	3.4	0.6	0.0	0.8	7.4	4.7
17240042	7/24/98	8:34	0.0	5.7	0.0	1.1	3.4	0.2	0.0	0.4	3.2	0.6	0.0	0.8	5.2	4.6
17240043	7/24/98	8:36	0.0	5.7	0.0	1.1	3.3	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	4.9
17240044	7/24/98	8:37	0.0	5.5	0.0	1.0	1.6	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.7
17240045	7/24/98	8:39	0.0	5.6	0.0	1.0	1.9	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.8
17240046	7/24/98	8:41	0.0	6.1	0.0	1.1	4.4	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.1
17240047	7/24/98	8:43	0.0	6.1	0.0	1.1	4.9	0.2	0.0	0.4	3.3	0.6	0.0	0.9	6.3	4.8
17240048	7/24/98	8:44	0.0	6.0	0.0	1.1	4.0	0.2	0.0	0.4	3.2	0.6	0.0	0.8	5.7	4.8
17240049	7/24/98	8:46	0.0	5.8	0.0	1.1	3.0	0.2	0.0	0.4	3.1	0.6	0.0	0.8	7.4	4.7
17240050	7/24/98	8:48	0.0	5.9	0.0	1.1	4.0	0.2	0.0	0.4	3.3	0.6	0.0	0.8	6.3	4.7
17240051	7/24/98	8:50	0.0	5.6	0.0	1.0	2.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.8
17240052	7/24/98	8:52	0.0	6.5	0.0	1.2	5.0	0.2	0.0	0.4	3.3	0.7	0.0	0.9	0.0	5.4
17240053	7/24/98	8:53	0.0	6.4	0.0	1.2	5.1	0.2	0.0	0.4	3.3	0.7	0.0	0.9	7.3	5.0
17240054	7/24/98	8:55	0.0	6.1	0.0	1.1	4.6	0.2	0.0	0.4	3.3	0.6	0.0	0.9	5.8	4.8
17240055	7/24/98	8:57	0.0	6.1	0.0	1.1	4.7	0.2	0.0	0.4	3.3	0.6	0.0	0.9	6.3	4.8
17240056	7/24/98	8:59	0.0	5.8	0.0	1.1	3.2	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	4.9
17240057	7/24/98	9:00	0.0	5.8	0.0	1.1	3.1	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	5.0
17240058	7/24/98	9:02	0.0	5.6	0.0	1.0	2.4	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.8
17240059	7/24/98	9:04	0.0	5.4	0.0	1.0	1.3	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.7
17240060	7/24/98	9:06	0.0	6.0	0.0	1.1	3.8	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	5.1

Table ____ Tunnel Emissions Duct

													Formal-			
					Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	СО	Uncer-
File Name	Date	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17240060	7/24/98	9:06	0.0	6.0	0.0	1.1	3.8	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	5.1
17240061	7/24/98	9:07	0.0	5.8	0.0	1.1	3.3	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	4.9
17240062	7/24/98	9:09	0.0	5.5	0.0	1.0	1.5	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.8
17240063	7/24/98	9:11	0.0	5.9	0.0	1.1	3.0	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.0
17240067	7/24/98	9:18	0.0	3.6	data unavai	lable	2.9	0.3	0.0	0.2	2.2	0.4	0.0	0.5	3.8	3.2
17240068	7/24/98	9:20	0.0	4.5	due to		2.6	0.3	0.0	0.3	2.8	0.5	0.0	0.6	7.8	3.9
17240069	7/24/98	9:22	0.0	5.3	THC spikin	g	2.1	0.3	0.0	0.3	3.0	0.5	0.0	0.7	9.5	4.4
17240070	7/24/98	9:23	0.0	6.1	0.0	0.6	4.0	0.4	0.0	0.4	3.3	0.6	0.0	0.9	8.2	4.8
17240071	7/24/98	9:25	0.0	6.7	0.0	0.7	5.5	0.2	0.0	0.4	3.3	0.7	0.0	0.9	5.5	5.2
17240072	7/24/98	9:27	0.0	6.2	0.0	1.2	3.6	0.2	0.0	0.4	3.1	0.6	0.0	0.9	0.0	5.2
17240073	7/24/98	9:29	0.0	5.9	0.0	1.1	2.3	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240074	7/24/98	9:30	0.0	6.1	0.0	1.1	3.0	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240120	7/24/98	10:55	0.0	5.7	0.0	1.1	1.5	0.2	0.7	0.4	3.0	0.6	0.0	0.8	0.0	4.9
17240121	7/24/98	10:57	0.0	5.6	0.0	1.1	1.4	0.2	0.7	0.4	3.1	0.6	0.0	0.8	0.0	4.9
17240122	7/24/98	10:59	0.0	5.9	0.0	1.1	2.8	0.2	0.0	0.4	3.3	0.6	0.0	0.8	7.8	4.7
17240123	7/24/98	11:00	0.0	6.2	0.0	1.2	3.6	0.2	0.7	0.4	3.3	0.6	0.0	0.9	7.0	4.9
17240124	7/24/98	11:02	0.0	6.1	0.0	1.1	4.0	0.2	0.0	0.4	3.4	0.6	0.0	0.9	13.9	4.9
17240125	7/24/98	11:04	0.0	6.2	0,0	1.2	4.4	0.2	0.0	0.4	3.5	0.6	0.0	0.9	10.5	4.9
17240126	7/24/98	11:06	0.0	5.7	0.0	1.1	2.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.9
17240127	7/24/98	11:07	0.0	5.6	0.0	1.0	1.5	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.8
17240128	7/24/98	11:09	0.0	5.7	0.0	1.1	1.9	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.9
17240129	7/24/98	11:11	0.0	6.0	0.0	1.1	2.7	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	5.1
17240130	7/24/98	11:13	0.0	6.1	0.0	1.1	3.0	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240131	7/24/98	11:14	0.0	5.7	0.0	1.1	1.6	0.2	0.0	0.4	3.0	0.6	0.0	0.8	0.0	4.9
17240132	7/24/98	11:16	0.0	5.7	0.0	1.1	1.3	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.9
17240133	7/24/98	11:18	0.0	6.1	0.0	1.1	3.0	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.4	4.9
17240134	7/24/98	11:20	0.0	6.4	0.0	1.2	3.9	0.2	0.0	0.4	3.3	0.7	0.0	0.9	0.0	5.4
17240135	7/24/98	11:21	0.0	6.1	0.0	1.1	2.7	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240136	7/24/98	11:23	0.0	6.1	0.0	1.2	2.9	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240137	7/24/98	11:25	0.0	6.4	0.0	1.2	4.2	0.2	0.0	0.4	3.4	0.7	0.0	0.9	0.0	5.3

Table _-_. Tunnel Emissions Duct

													Formal-			
					Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17240138	7/24/98	11:27	0.0	6.3	0.0	1.2	4.1	0.2	0.0	0.4	3.3	0.6	0.0	0.9	0.0	5.3
17240139	7/24/98	11:28	0.0	6.3	0.0	1.2	3.6	0.2	0.0	0.4	3.3	0.6	0.0	0.9	0.0	5.3
17240140	7/24/98	11:30	0.0	6.3	0.0	1.2	3.6	0.2	0.0	0.4	3.3	0.6	0.0	0.9	6.1	5.0
17240141	7/24/98	11:32	0.0	5.8	0.0	1.1	2.1	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.0
17240142	7/24/98	11:34	0.0	5.9	0.0	1.1	1.7	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240143	7/24/98	11:36	0.0	6.3	0.0	1.2	3.1	0.2	0.0	0.4	3.3	0.6	0.0	0.9	0.0	5.3
17240144	7/24/98	11:37	0.0	6.0	0.0	1.1	2.5	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240145	7/24/98	11:39	0.0	6.1	0.0	1.1	2.3	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240146	7/24/98	11:41	0.0	6.5	0.0	1.2	3.2	0.2	0.0	0.4	3.3	0.7	0.0	0.9	0.0	5.4
17240147	7/24/98	11:43	0.0	6.3	0.0	1.2	3.8	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.3
17240148	7/24/98	11:44	0.0	6.2	0.0	1.2	3.3	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.3
17240149	7/24/98	11:46	0.0	6.3	0.0	1.2	3.8	0.2	0.0	0.4	3.2	0.6	0.0	0.9	6.1	5.0
17240150	7/24/98	11:48	0.0	6.2	0.0	1.2	3.8	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.9	4.9
17240151	7/24/98	11:50	0.0	5.8	0.0	1.1	2.1	0.2	0.0	0.4	3.0	0.6	0.0	0.8	0.0	5.0
17240152	7/24/98	11:51	0.0	6.1	0.0	1.1	2.5	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.1
17240153	7/24/98	11:53	0.0	5.9	0.0	1.1	2.4	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240154	7/24/98	11:55	0.0	6.1	0.0	1.1	2.8	0.2	0.0	0.4	3.1	0.6	0.0	0.9	0.0	5.1
17240155	7/24/98	11:57	0.0	6.1	0.0	1.1	2.8	0.2	0.0	0.4	3.1	0.6	0.0	0.9	0.0	5.2
17240156	7/24/98	11:58	0.0	6.4	0.0	1.2	4.3	0.2	0.0	0.4	3.3	0.7	0.0	0.9	0.0	5.4
17240157	7/24/98	12:00	0.0	5.9	0.0	1.1	2.9	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240158	7/24/98	12:02	0.0	5.7	0.0	1.1	1.6	0.2	0.0	0.4	3.0	0.6	0.0	0.8	0.0	4.9
17240159	7/24/98	12:04	0.0	6.1	0.0	1.1	2.6	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240160	7/24/98	12:05	0.0	6.6	0.0	1.2	4.4	0.2	0.6	0.4	3.2	0.7	0.0	0.9	0.0	5.5
17240161	7/24/98	12:07	0.0	6.1	0.0	1.1	3.2	0.2	0.0	0.4	3.1	0.6	0.0	0.9	0.0	5.2
17240162	7/24/98	12:09	0.0	6.4	0.0	1.2	3.7	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.7	5.0
17240163	7/24/98	12:11	0.0	6.0	0.0	1.1	2.9	0.2	0.0	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240164	7/24/98	12:12	0.0	6.1	0.0	1.1	3.4	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240165	7/24/98	12:14	0.0	5.7	0.0	1.1	2.0	0.2	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.9
17240166	7/24/98	12:16	0.0	6.1	0.0	1.1	2.6	0.2	0.7	0.4	3.1	0.6	0.0	0.9	0.0	5.1
17240167	7/24/98	12:18	0.0	6.0	0.0	1.1	2.6	0.2	0.0	0.4	3.2	0.6	0.0	0.8	0.0	5.1
17240168	7/24/98	12:19	0.0	6.1	0.0	1.1	3.4	0.2	0.0	0,4	3.2	0.6	0.0	0.9	0.0	5.2

Table _-_. Tunnel Emissions Duct

													Formal-			
					Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17240169	7/24/98	12:21	0.0	6.2	0.0	1.2	3.7	0.2	0.7	0.4	3.2	0.6	0.0	0.9	0.0	5.2
17240170	7/24/98	12:23	0.0	5.9	0.0	1.1	2.7	0.2	0.7	0.4	3.1	0.6	0.0	0.8	0.0	5.0
17240171	7/24/98	12:25	0.0	6.3	0.0	1.2	4.0	0.2	0.0	0.4	3.2	0.6	0.0	0.9	0.0	5.3
17240172	7/24/98	12:26	0.0	6.0	0.0	1.1	3.4	0.2	0.7	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240173	7/24/98	12:28	0.0	5.7	0.0	1.1	1.9	0.2	0.7	0.4	3.1	0.6	0.0	0.8	0.0	4.9
17240174	7/24/98	12:30	0.0	5.9	0.0	1.1	2.0	0.2	0.6	0.4	3.1	0.6	0.0	0.8	0.0	5.0
17240175	7/24/98	12:32	0.0	6.0	0.0	1.1	2.9	0.2	0.6	0.4	3.1	0.6	0.0	0.8	0.0	5.1
17240176	7/24/98	12:33	0.0	5.8	0.0	1.1	2.0	0.2	0.7	0.4	3.1	0.6	0.0	0.8	0.0	5.0
17240177	7/24/98	12:35	0.0	6.9	0.0	1.3	4.4	0.2	0.7	0.4	3.3	0.7	0.0	1.0	8.0	5.3
17240178	7/24/98	12:37	0.0	6.9	0.0	1.3	5.8	0.2	0.7	0.4	3.4	0.7	0.0	1.0	6.7	5.3
17240179	7/24/98	12:39	0.0	7.0	0.0	1.3	6.5	0.2	0.7	0.4	3.4	0.7	0.0	1.0	0.0	5.7
17240180	7/24/98	12:41	0.0	6.7	0.0	1.3	6.3	0.2	0.7	0.4	3.4	0.7	0.0	0.9	0.0	5.5
17240181	7/24/98	12:42	0.0	6.3	0.0	1.2	5.4	0.2	0.7	0.4	3.3	0.6	0.0	0.9	0.0	5.2
17240182	7/24/98	12:44	0.0	6.1	0.0	1.1	4.3	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.4	4.8
17240183	7/24/98	12:46	0.0	6.2	0.0	1.2	4.8	0.2	0.0	0.4	3.3	0.6	0.0	0.9	6.6	4.9
17240184	7/24/98	12:48	0.0	6.0	0.0	1.1	3.6	0.2	0.7	0.4	3.2	0.6	0.0	0.8	6.7	4.7
17240185	7/24/98	12:49	0.0	5.9	0.0	1.1	3.5	0.2	0.0	0.4	3.2	0.6	0.0	0.8	8.5	4.7
17240186	7/24/98	12:51	0.0	6.1	0.0	1.1	3.7	0.2	0.0	0.4	3.2	0.6	0.0	0.9	7.6	4.8
17240187	7/24/98	12:53	0.0	6.1	0.0	1.1	3.5	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.5	4.8
17240188	7/24/98	12:55	0.0	6.3	0.0	1.2	4.2	0.2	0.7	0.4	3.4	0.6	0.0	0.9	5.4	4.9
L	Ave	erage>	0.0	6.0	0.0	1.1	3.2	0.2	0.1	0.4	3.2	0.6	0.0	0.8	2.3	5.0

Table _-_. Tunnel Emissions Duct

-

														Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
							-										
17250001	7/25/98	10:12	7:12	0.0	3.4	0.0	0.6	1.4	0.1	0.0	0.2	2.6	0.4	0.0	0.5	8.5	2.9
17250002	7/25/98	10:13	7:13	0.0	3.9	0.0	0.7	1.9	0.1	0.0	0.2	3.1	0.4	0.0	0.6	11.7	3.2
17250003	7/25/98	10:15	7:15	0.0	3.9	0.0	0.7	1.6	0.1	0.0	0.2	3.0	0.4	0.0	0.5	11.9	3.1
17250004	7/25/98	10:17	7:17	0.0	3.8	0.0	0.7	1.0	0.1	0.0	0.2	2.8	0.4	0.0	0.5	8.3	3.1
17250005	7/25/98	10:19	7:19	0.0	3.9	0.0	0.7	0.7	0.1	0.0	0.2	2.9	0.4	0.0	0.5	6.0	3.1
17250006	7/25/98	10:20	7:20	0.0	4.0	0.0	0.8	1.4	0.1	0.0	0.2	3.0	0.4	0.0	0.6	8.1	3.2
17250007	7/25/98	10:22	7:22	0.0	4.4	0.0	0.8	2.5	0.1	0.0	0.3	3.2	0.5	0.0	0.6	10.0	3.4
17250008	7/25/98	10:24	7:24	0.0	4.4	0.0	0.8	2.2	0.1	0.0	0.3	3.1	0.5	0.0	0.6	10.6	3.4
17250009	7/25/98	10:26	7:26	0.0	4.3	0.0	0.8	2.0	0.1	0.0	0.3	3.2	0.5	0.0	0.6	10.7	3.3
17250010	7/25/98	10:27	7:27	0.0	4.3	0.0	0.8	2.1	0.1	0.0	0.3	3.2	0.5	0.0	0.6	8.6	3.3
17250011	7/25/98	10:29	7:29	0,0	4.1	0.0	0.8	1.5	0.1	0.0	0.3	3.0	0.5	0.0	0.6	6.2	3.3
17250012	7/25/98	10:31	7:31	0.0	4.4	0.0	0.8	2.0	0.1	0.0	0.3	3.1	0.5	0.0	0.6	7.9	3.4
17250013	7/25/98	10:33	7:33	0.0	4.5	0.0	0.8	2.5	0.1	0.0	0.3	3.3	0.5	0.0	0.6	11.5	3.4
17250014	7/25/98	10:35	7:35	0.0	4.3	0.0	0.8	2.2	0.1	0.0	0.3	3.1	0.5	0.0	0.6	7.7	3.3
17250015	7/25/98	10:36	7:36	0.0	4.4	0.0	0.8	2.6	0.1	0.0	0.3	3.4	0.5	0.0	0.6	9.4	3.4
17250016	7/25/98	10:38	7:38	0.0	4.3	0.0	0.8	2.1	0.1	0.0	0.3	3.1	0.5	0.0	0.6	9.0	3.4
17250017	7/25/98	10:40	7:40	0.0	4.4	0.0	0.8	1.9	0.1	0.0	0.3	3.0	0.5	0.0	0.6	8.8	3.4
17250018	7/25/98	10:42	7:42	0.0	4.5	0.0	0.8	2.1	0.1	0.0	0.3	3.1	0.5	0.0	0.6	7.9	3.5
17250019	7/25/98	10:43	7:43	0.0	4.6	0.0	0.9	2.8	0.2	0.0	0.3	3.4	0.5	0.0	0.6	10.7	3.6
17250020	7/25/98	10:45	7:45	0.0	4.6	0.0	0.9	2.8	0.2	0.0	0.3	3.2	0.5	0.0	0.7	9.3	3.6
17250021	7/25/98	10:47	7:47	0.0	4.8	0.0	0.9	3.3	0.2	0.0	0.3	3.2	0.5	0.0	0.7	9.7	3.6
17250022	7/25/98	10:49	7:49	0.0	4.7	0.0	0.9	3.4	0.2	0.0	0.3	3.4	0.5	0.0	0.7	11.0	3.6
17250023	7/25/98	10:50	7:50	0.0	4.5	0.0	0.8	2.8	0.1	0.0	0.3	3.2	0.5	0.0	0.6	8.0	3.5
17250024	7/25/98	10:52	7:52	0.0	4.5	0.0	0.8	2.3	0.1	0.0	0.3	3.1	0.5	0.0	0.6	8.0	3.5
17250025	7/25/98	10:54	7:54	0.0	4.6	0.0	0.9	2.5	0.1	0.0	0.3	3.1	0.5	0.0	0.6	8.2	3.5
17250026	7/25/98	10:56	7:56	0.0	4.4	0.0	0.8	2.0	0.1	0.0	0.3	3.1	0.5	0.0	0.6	7.8	3.5
17250027	7/25/98	10:57	7:57	0.0	4.6	0.0	0.9	2.6	0.2	0.0	0.3	3.3	0.5	0.0	0.7	9.1	3.6
17250028	7/25/98	10:59	7:59	0.0	4.8	0.0	0.9	3.1	0.2	0.0	0.3	3.4	0.5	0.0	0.7	10.6	3.7
17250029	7/25/98	11:01	8:01	0.0	4.8	0.0	0.9	3.3	0.2	0.0	0.3	3.2	0.5	0.0	0.7	9.3	3.7
17250030	7/25/98	11:03	8:03	0.0	4.5	0.0	0.8	2.2	0.1	0.0	0.3	3.1	0.5	0.0	0.6	6.5	3.5
17250031	7/25/98	11:05	8:05	0.0	4.4	0.0	0.8	1.6	0.1	0.0	0.3	3.0	0.5	0.0	0.6	6.0	3.5
17250032	7/25/98	11:06	8:06	0.0	4.7	0.0	0.9	2.2	0.2	0.0	0.3	3.1	0.5	0.0	0.7	8.8	3.6
17250033	7/25/98	11:08	8:08	0.0	4.9	0.0	0.9	2.8	0.2	0.0	0.3	3.2	0.5	0.0	0.7	10.8	3.7

Table - . Tunnel Emissions Duct

				1								T		Formal-		<u> </u>	
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17250033	7/25/98	11:08	8:08	0.0	4.9	0.0	0.9	2.8	0.2	0.0	0.3	3.2	0.5	0.0	0.7	10.8	3.7
17250034	7/25/98	11:10	8:10	0.0	4.7	0.0	0.9	2.5	0.2	0.0	0.3	3.0	0.5	0.0	0.7	7.9	3.6
17250035	7/25/98	11:12	8:12	0.0	5.0	0.0	0.9	2.9	0.2	0.0	0.3	3.1	0.5	0.0	0.7	7.6	3.8
17250036	7/25/98	11:13	8:13	0.0	4.6	0.0	0.9	2.4	0.2	0.0	0.3	3.0	0.5	0.0	0.7	7.1	3.6
17250037	7/25/98	11:15	8:15	0.0	4.7	0.0	0.9	2.2	0.2	0.0	0.3	3.1	0.5	0.0	0.7	10.1	3.7
17250038	7/25/98	11:17	8:17	0.0	4.7	0.0	0.9	2.4	0.2	0.0	0.3	3.1	0.5	0.0	0.7	12.6	3.7
17250039	7/25/98	11:19	8:19	0.0	5.0	0.0	0.9	3.2	0.2	0.0	0.3	3.1	0.5	0.0	0.7	13.7	3.9
17250040	7/25/98	11:20	8:20	3.2	1.3	0.0	0.9	5.7	0.2	0.0	0.3	3.1	0.6	0.0	0.7	9.9	3.9
17250041	7/25/98	11:22	8:22	0.0	5.1	0.0	0.9	5.5	0.2	0.0	0.3	3.3	0.6	0.0	0.7	11.9	3.9
17250042	7/25/98	11:24	8:24	0.0	5.3	0.0	1.0	4.6	0.2	0.0	0.3	3.3	0.6	0.0	0.8	12.3	4.0
17250043	7/25/98	11:26	8:26	0.0	5.2	0.0	1.0	3.7	0.2	0.0	0.3	3.1	0.6	0.0	0.7	8.7	4.0
17250044	7/25/98	11:28	8:28	0.0	4.9	0.0	0.9	3.1	0.2	0.0	0.3	3.0	0.5	0.0	0.7	6.1	3.8
17250045	7/25/98	11:29	8:29	0.0	5.1	0.0	1.0	3.1	0.2	0.0	0.3	3.1	0.5	0.0	0.7	6.8	3.9
17250046	7/25/98	11:31	8:31	0.0	5.2	0.0	1.0	3.3	0.2	0.0	0.3	3.1	0.6	0.0	0.7	7.3	3.9
17250047	7/25/98	11:33	8:33	0.0	5.0	0.0	0.9	3.1	0.2	0.0	0.3	3.1	0.5	0.0	0.7	6.8	3.8
17250048	7/25/98	11:35	8:35	0.0	5.3	0.0	1.0	3.5	0.2	0.0	0.3	3.1	0.6	0.0	0.7	7.1	4.0
17250049	7/25/98	11:36	8:36	0.0	5.7	0.0	1.1	4.3	0.2	0.0	0.3	3.1	0.6	0.0	0.8	9.3	4.2
17250050	7/25/98	11:38	8:38	0.0	5.2	0.0	1.0	3.2	0.2	0.0	0.3	3.2	0.6	0.0	0.7	11.4	4.0
17250051	7/25/98	11:40	8:40	0.0	5.1	0.0	1.0	3.3	0.2	0.0	0.3	3.3	0.5	0.0	0.7	10.0	3.9
17250076	7/25/98	12:24	9:24	0.0	144.4	0.0	27.0	211.9	4.7	0.0	6.7	0.0	15.2	0.0	20.4	0.0	109.1
17250077	7/25/98	12:29	9:29	9.6	2.6	0.0	2.0	14.0	0.3	0.7	0.5	3.8	1.1	4.4	1.5	7.1	6.9
17250078	7/25/98	12:31	9:31	5.5	1.9	0.0	1.4	8.1	0.2	0.0	0.4	3.3	0.8	0.0	1.1	5.3	5.1
17250079	7/25/98	12:33	9:33	0.0	6.5	0.0	1.2	6.2	0.2	0.0	0.4	3.3	0.7	0.0	0.9	9.0	4.7
17250080	7/25/98	12:35	9:35	0.0	5.8	0.0	1.1	4.9	0.2	0.0	0.3	3.2	0.6	0.0	0.8	6.6	4.3
17250081	7/25/98	12:36	9:36	0.0	5.6	0.0	1.0	4.5	0.2	0.0	0.3	3.2	0.6	0.0	0.8	7.3	4.2
17250082	7/25/98	12:38	9:38	0.0	5.3	0.0	1.0	3.8	0.2	0.0	0.3	3.2	0.6	0.0	0.7	7.1	4.0
17250083	7/25/98	12:40	9:40	0.0	5.1	0.0	1.0	3.0	0.2	0.0	0.3	3.1	0.5	0.0	0.7	7.0	3.9
17250084	7/25/98	12:42	9:42	0.0	5.2	0.0	1.0	3.0	0.2	0.0	0.3	3.2	0.6	0.0	0.7	7.4	4.0
17250085	7/25/98	12:43	9:43	0.0	5.1	0.0	1.0	2.9	0.2	0.0	0.3	3.1	0.5	0.0	0.7	6.5	4.0
17250086	7/25/98	12:45	9:45	0.0	5.1	0.0	1.0	2.5	0.2	0.0	0.3	3.1	0.5	0.0	0.7	7.0	4.0
17250087	7/25/98	12:47	9:47	0.0	5.2	0.0	1.0	3.0	0.2	0.0	0.3	3.0	0.6	0.0	0.7	7.7	4.0
17250088	7/25/98	12:49	9:49	0.0	5.2	0.0	1.0	2.7	0.2	0.0	0.3	3.1	0.5	0.0	0.7	6.9	4.0
17250089	7/25/98	12:51	9:51	0.0	5.4	0.0	1.0	3.3	0.2	0.0	0.3	3.2	0.6	0.0	0.8	7.7	4.1

Table _-_. Tunnel Emissions Duct

									·			1		Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17250090	7/25/98	12:52	9:52	0.0	5.1	0.0	1.0	2.8	0.2	0.0	0.3	3.1	0.5	0.0	0.7	6.6	4.0
17250091	7/25/98	12:54	9:54	0.0	5.0	0.0	0.9	2.1	0.2	0.0	0.3	3.0	0.5	0.0	0.7	6.9	3.9
17250092	7/25/98	12:56	9:56	0.0	5.4	0.0	1.0	2.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	8.2	4.1
17250093	7/25/98	12:58	9:58	0.0	5.6	0.0	1.0	3.2	0.2	0.0	0.3	3.1	0.6	0.0	0.8	8.8	4.2
17250094	7/25/98	12:59	9:59	0.0	5.5	0.0	1.0	3.5	0.2	0.0	0.3	3.1	0.6	0.0	0.8	8.1	4.2
17250095	7/25/98	13:01	10:01	0.0	5.4	0.0	1.0	3.7	0.2	0.0	0.3	3.1	0.6	0.0	0.8	7.1	4.1
17250096	7/25/98	13:03	10:03	0.0	5.3	0.0	1.0	3.1	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.7	4.1
17250097	7/25/98	13:05	10:05	0.0	5.4	0.0	1.0	3.4	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.6	4.1
17250098	7/25/98	13:07	10:07	0.0	5.4	0.0	1.0	3.0	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.8	4.1
17250099	7/25/98	13:08	10:08	0.0	5.2	0.0	1.0	2.9	0.2	0.0	0.3	3.0	0.6	0.0	0.7	5.7	4.0
17250100	7/25/98	13:10	10:10	0.0	5.0	0.0	0.9	2.2	0.2	0.0	0.3	3.0	0.5	0.0	0.7	0.0	4.0
17250101	7/25/98	13:12	10:12	0.0	5.3	0.0	1.0	2.4	0.2	0.0	0.3	3.0	0.6	0.0	0.8	6.2	4.1
17250102	7/25/98	13:14	10:14	0.0	5.1	0.0	0.9	2.2	0.2	0.0	0.3	2.9	0.5	0.0	0.7	8.1	3.9
17250103	7/25/98	13:15	10:15	0.0	5.3	0.0	1.0	2.3	0.2	0.0	0.3	3.0	0.6	0.0	0.7	9.1	4.1
17250104	7/25/98	13:17	10:17	0.0	5.3	0.0	1.0	2.8	0.2	0.0	0.3	3.0	0.6	0.0	0.7	8.8	4.1
17250105	7/25/98	13:19	10:19	0.0	5.1	0.0	0.9	2.6	0.2	0.0	0.3	3.0	0.5	0.0	0.7	7.2	4.0
17250106	7/25/98	13:21	10:21	0.0	5.0	0.0	0.9	2.2	0.2	0.0	0.3	3.0	0.5	0.0	0.7	6.1	3.9
17250107	7/25/98	13:23	10:23	0.0	5.0	0.0	0.9	1.9	0.2	0.0	0.3	3.0	0.5	0.0	0.7	5.8	3.9
17250108	7/25/98	13:24	10:24	0.0	4.9	0.0	0.9	1.7	0.2	0.0	0.3	2.9	0.5	0.0	0.7	5.7	3.9
17250109	7/25/98	13:26	10:26	0.0	4.9	0.0	0.9	1.6	0.2	0.0	0.3	2.9	0.5	0.0	0.7	5.6	3.9
17250110	7/25/98	13:28	10:28	0.0	5.1	0.0	0.9	1.8	0.2	0.0	0.3	3.0	0.5	0.0	0.7	6.5	3.9
17250111	7/25/98	13:29	10:29	0.0	5.4	0.0	1.0	2.7	0.2	0.0	0.3	3.1	0.6	0.0	0.8	9.1	4.2
17250112	7/25/98	13:31	10:31	0.0	5.4	0.0	1.0	3.3	0.2	0.0	0.3	3.2	0.6	0.0	0.8	16.0	4.1
17250113	7/25/98	13:33	10:33	0.0	5.6	0.0	1.0	4.2	0.2	0.0	0.3	3.4	0.6	0.0	0.8	16.9	4.2
17250114	7/25/98	13:35	10:35	0.0	5.3	0.0	1.0	3.7	0.2	0.0	0.3	3.3	0.6	0.0	0.8	10.1	4.1
17250115	7/25/98	13:36	10:36	0.0	5.3	0.0	1.0	3.3	0.2	0.0	0.3	3.2	0.6	0.0	0.7	10.3	4.1
17250116	7/25/98	13:38	10:38	0.0	5.2	0.0	1.0	3.3	0.2	0.0	0.3	3.1	0.6	0.0	0.7	9.2	4.1
17250117	7/25/98	13:40	10:40	0.0	5.0	0.0	0.9	2.5	0.2	0.0	0.3	3.0	0.5	0.0	0.7	6.5	4.0
17250118	7/25/98	13:42	10:42	0.0	5.1	0.0	1.0	2.6	0.2	0.0	0.3	3.1	0.5	0.0	0.7	10.9	4.0
17250119	7/25/98	13:44	10:44	0.0	5.2	0.0	1.0	3.3	0.2	0.0	0.3	3.3	0.6	0.0	0.7	12.1	4.1
17250120	7/25/98	13:45	10:45	0.0	5.3	0.0	1.0	3.7	0.2	0.0	0.3	3.3	0.6	0.0	0.7	10.9	4.1
17250121	7/25/98	13:47	10:47	0.0	5.2	0.0	1.0	3.0	0.2	0.0	0.3	3.1	0.5	0.0	0.7	8.2	4.0
17250122	7/25/98	13:49	10:49	0.0	5.2	0.0	1.0	2.7	0.2	0.0	0.3	3.1	0.5	0.0	0.7	7.3	4.1
17250123	7/25/98	13:51	10:51	0.0	5.5	0.0	1.0	2.8	0.2	0.0	0.3	3.2	0.6	0.0	0.8	7.8	4.2

Table -... Tunnel Emissions Duct

										[Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17250124	7/25/98	13:52	10:52	0.0	5.3	0.0	1.0	2.8	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.7	4.1
17250125	7/25/98	13:54	10:54	0.0	5.4	0.0	1.0	2.8	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.4	4.1
17250126	7/25/98	13:56	10:56	0.0	5.4	0.0	1.0	2.7	0.2	0.0	0.3	3.1	0.6	0.0	0.8	7.1	4.2
17250127	7/25/98	13:58	10:58	0.0	5.3	0.0	1.0	2.9	0.2	0.0	0.3	3.1	0.6	0.0	0.8	5.9	4.1
17250128	7/25/98	14:00	11:00	0.0	5.1	0.0	1.0	2.2	0.2	0.0	0.3	3.0	0.5	0.0	0.7	5.3	4.0
17250129	7/25/98	14:01	11:01	0.0	5.5	0.0	1.0	2.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	7.5	4.2
17250130	7/25/98	14:03	11:03	0.0	5.3	0.0	1.0	2.6	0.2	0.0	0.3	3.0	0.6	0.0	0.7	6.1	4.1
17250131	7/25/98	14:05	11:05	0.0	5.2	0.0	1.0	2.2	0.2	0.0	0.3	3.0	0.6	0.0	0.7	5.5	4.1
17250132	7/25/98	14:07	11:07	0.0	5.3	0.0	1.0	2.4	0.2	0.0	0.3	3.0	0.6	0.0	0.7	5.9	4.1
17250133	7/25/98	14:08	11:08	0.0	5.1	0.0	1.0	1.9	0.2	0.0	0.3	3.0	0.5	0.0	0.7	0.0	4.2
17250134	7/25/98	14:10	11:10	0.0	5.2	0.0	1.0	1.6	0.2	0.0	0.3	2.9	0.5	0.0	0.7	0.0	4.2
		А	verage>	0.0	4.9	0.0	0.9	2.8	0.2	0.0	0.3	3.1	0.5	0.0	0.7	8.2	3.8

Table - . Tunnel Emissions Duct

														Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17260001	7/26/98	12:23	9:23	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.7	0.5	0.0	0.7	0.0	4.3
17260002	7/26/98	12:25	9:25	0.0	5.8	0.0	1.1	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	0.0	4.7
17260003	7/26/98	12:27	9:27	0.0	6.1	0.0	1.1	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	0.0	4.8
17260004	7/26/98	12:29	9:29	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	0.0	4.9
17260005	7/26/98	12:30	9:30	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	0.0	4.9
17260006	7/26/98	12:32	9:32	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	0.0	4.9
17260007	7/26/98	12:34	9:34	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	5.0
17260008	7/26/98	12:36	9:36	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	4.9
17260009	7/26/98	12:38	9:38	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	4.9
17260010	7/26/98	12:39	9:39	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	4.9
17260011	7/26/98	12:41	9:41	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	4.9
17260012	7/26/98	12:43	9:43	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	5.0
17260013	7/26/98	12:45	9:45	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	5.0
17260014	7/26/98	12:46	9:46	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260015	7/26/98	12:48	9:48	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.7	0.0	0.9	0.0	4.9
17260016	7/26/98	12:50	9:50	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260017	7/26/98	12:52	9:52	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260018	7/26/98	12:53	9:53	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260019	7/26/98	12:55	9:55	0.0	6.6	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	5.0
17260020	7/26/98	12:57	9:57	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260021	7/26/98	12:59	9:59	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260022	7/26/98	13:01	10:01	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260023	7/26/98	13:02	10:02	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260024	7/26/98	13:04	10:04	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260025	7/26/98	13:06	10:06	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.9
17260026	7/26/98	13:08	10:08	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.8
17260027	7/26/98	13:09	10:09	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.8
17260028	7/26/98	13:11	10:11	0.0	6.5	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.8
17260029	7/26/98	13:13	10:13	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.8
17260030	7/26/98	13:15	10:15	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.4	4.6
17260031	7/26/98	13:16	10:16	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.8
17260032	7/26/98	13:18	10:18	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260033	7/26/98	13:20	10:20	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260034	7/26/98	13:22	10:22	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260035	7/26/98	13:24	10:24	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7

Table _-_. Tunnel Emissions Duct

									· · · · ·			[Formal-			<u> </u>
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17260035	7/26/98	13:24	10:24	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260036	7/26/98	13:25	10:25	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260037	7/26/98	13:27	10:27	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260038	7/26/98	13:29	10:29	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260039	7/26/98	13:31	10:31	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260040	7/26/98	13:32	10:32	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.4	4.5
17260041	7/26/98	13:34	10:34	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.6	4.5
17260042	7/26/98	13:36	10:36	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260043	7/26/98	13:38	10:38	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.3	4.5
17260044	7/26/98	13:40	10:40	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	6.1	4.5
17260045	7/26/98	13:41	10:41	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.4	4.5
17260046	7/26/98	13:43	10:43	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.7
17260047	7/26/98	13:45	10:45	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.6
17260048	7/26/98	13:47	10:47	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	0.0	4.6
17260049	7/26/98	13:48	10:48	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.4	4.4
17260050	7/26/98	13:50	10:50	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	7.6	4.4
17260051	7/26/98	13:52	10:52	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	7.6	4.4
17260052	7/26/98	13:54	10:54	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	6.6	4.5
17260053	7/26/98	13:56	10:56	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	7.2	4.4
17260054	7/26/98	13:57	10:57	0.0	6.4	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	6.6	4.5
17260055	7/26/98	13:59	10:59	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	6.6	4.4
17260056	7/26/98	14:01	11:01	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.3	0.7	0.0	0.9	6.4	4.4
17260057	7/26/98	14:03	11:03	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.8	4.4
17260058	7/26/98	14:04	11:04	0.0	6.3	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.7	0.0	0.9	5.7	4.4
17260059	7/26/98	14:06	11:06	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	5.4	4.3
17260060	7/26/98	14:08	11:08	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	5.1	4.3
17260061	7/26/98	14:10	11:10	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	0.0	4.5
17260062	7/26/98	14:11	11:11	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	0.0	4.5
17260063	7/26/98	14:13	11:13	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	0.0	4.4
17260064	7/26/98	14:15	11:15	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	0.0	4.4
17260065	7/26/98	14:17	11:17	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	5.4	4.3
17260066	7/26/98	14:19	11:19	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	6.6	4.3
17260067	7/26/98	14:20	11:20	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.2	0.6	0.0	0.9	5.5	4.3
17260068	7/26/98	14:22	11:22	0.0	6.1	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	5.7	4.3
17260069	7/26/98	14:24	11:24	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	3.1	0.6	0.0	0.9	5.6	4.3

Table - . Tunnel Emissions Duct

[İ						[Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehvde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17260070	7/26/98	14:26	11:26	0.0	6.2	0.0	1.2	0.0	0.6	0.0	0.3	31	0.6		0.9	71	43
											- 10		0.0	0.0	0.9	7.1	1.2
17260071	7/26/98	14:49	11:49	0.0	4.9	0.0	0.9	0.0	0.5	0.0	0.3	2.8	0.5	0.0	0.7	4.9	3.7
17260072	7/26/98	14:50	11:50	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	5.1	3.9
17260073	7/26/98	14:52	11:52	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	5.1	4.0
17260074	7/26/98	14:54	11:54	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	4.9	4.0
17260075	7/26/98	14:56	11:56	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	4.8	4.0
17260076	7/26/98	14:57	11:57	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.2	4.0
17260077	7/26/98	14:59	11:59	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.2	4.0
17260078	7/26/98	15:01	12:01	0.0	5.6	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.6	4.0
17260079	7/26/98	15:03	12:03	0.0	5.6	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.7	4.0
17260080	7/26/98	15:05	12:05	0.0	5.6	0.0	1.1	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.7	4.0
17260081	7/26/98	15:06	12:06	0.0	5.6	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	5.5	4.0
17260082	7/26/98	15:08	12:08	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.1	4.0
17260083	7/26/98	15:10	12:10	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.4	4.0
17260084	7/26/98	15:12	12:12	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.8	4.0
17260085	7/26/98	15:13	12:13	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.8	4.0
17260086	7/26/98	15:15	12:15	0.0	5.5	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	5.5	4.0
17260087	7/26/98	15:17	12:17	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.2	3.9
17260088	7/26/98	15:19	12:19	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.5	3.9
17260089	7/26/98	15:20	12:20	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	7.0	4.0
17260090	7/26/98	15:22	12:22	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	6.3	4.0
17260091	7/26/98	15:24	12:24	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.4	3.9
17260092	7/26/98	15:26	12:26	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	5.0	3.9
17260093	7/26/98	15:28	12:28	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.7	5.3	3.9
17260094	7/26/98	15:29	12:29	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	6.0	3.9
17260095	7/26/98	15:31	12:31	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	7.2	3.9
17260096	7/26/98	15:33	12:33	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.7	6.5	3.9
17260097	7/26/98	15:35	12:35	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.8	3.9
17260098	7/26/98	15:36	12:36	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.5	3.9
17260099	7/26/98	15:38	12:38	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.5	3.9
17260100	7/26/98	15:40	12:40	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.4	3.8
17260101	7/26/98	15:42	12:42	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.7	3.9
17260102	7/26/98	15:43	12:43	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.7	3.9
17260103	7/26/98	15:45	12:45	0.0	5.3	0.0	1.0	0,0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.1	3.9

Table _-_ Tunnel Emissions Duct

														Formal-		1	
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17260104	7/26/98	15:47	12:47	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	6.0	3.9
17260105	7/26/98	15:49	12:49	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	3.0	0.5	0.0	0.7	6.0	3.9
17260106	7/26/98	15:50	12:50	0.0	5.0	0.0	0.9	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.3	3.8
17260107	7/26/98	15:52	12:52	0.0	5.0	0.0	0.9	0.0	0.5	0.0	0.3	2.8	0.5	0.0	0.7	5.1	3.7
17260108	7/26/98	15:54	12:54	0.0	5.1	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.1	3.8
17260109	7/26/98	15:56	12:56	0.0	5.1	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.1	3.8
17260110	7/26/98	15:57	12:57	0.0	5.1	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.1	3.8
17260111	7/26/98	15:59	12:59	0.0	5.1	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.4	3.8
17260112	7/26/98	16:01	13:01	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.6	3.8
17260113	7/26/98	16:03	13:03	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.4	3.9
17260114	7/26/98	16:05	13:05	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.5	0.0	0.7	5.4	3.8
17260115	7/26/98	16:06	13:06	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.1	3.9
17260116	7/26/98	16:08	13:08	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.2	3.9
17260117	7/26/98	16:10	13:10	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.9	3.9
17260118	7/26/98	16:12	13:12	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	5.4	3.9
17260119	7/26/98	16:13	13:13	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	5.3	3.9
17260120	7/26/98	16:15	13:15	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	5.3	3.9
17260121	7/26/98	16:17	13:17	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	5.3	3.9
17260122	7/26/98	16:19	13:19	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	4.9	3.9
17260123	7/26/98	16:21	13:21	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	5.3	3.9
17260124	7/26/98	16:22	13:22	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	4.8	3.9
17260125	7/26/98	16:24	13:24	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	4.7	3.9
17260126	7/26/98	16:26	13:26	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.8	0.0	4.0
17260127	7/26/98	16:28	13:28	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.8	0.0	4.0
17260128	7/26/98	16:29	13:29	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.8	4.7	3.9
17260129	7/26/98	16:31	13:31	0.0	5.4	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.8	0.0	4.0
17260130	7/26/98	16:33	13:33	0.0	5.3	0.0	1.0	0.0	0.5	0.0	0.3	2.9	0.6	0.0	0.7	4.9	3.9
17260131	7/26/98	16:35	13:35	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	4.6	3.8
17260132	7/26/98	16:37	13:37	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	0.0	3.9
17260133	7/26/98	16:38	13:38	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.7	0.5	0.0	0.7	0.0	3.9
17260134	7/26/98	16:40	13:40	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.5	0.0	0.7	0.0	3.9
17260135	7/26/98	16:42	13:42	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	5.3	3.8
17260136	7/26/98	16:44	13:44	0.0	5.2	0.0	1.0	0.0	0.5	0.0	0.3	2.8	0.6	0.0	0.7	4.6	3.8
		A	verage>	0.0	5.8	0.0	1.1	0.0	0.5	0.0	0.3	3.0	0.6	0.0	0.8	3.5	4.3

Table _-_. Tunnel Emissions Duct

				[l				1		Formal-		T	i
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Hncer-	Methane	Uncer-	dehvda	Uncer	CO	Uncor
File Name	Date	Time	Time	Toluene		(nnm)	tainty	(nnm)	tainty	(nnm)	tainty	(nnm)	tainty	(nnm)	tainty		tointy
The runne	Date	1 1110				(PP)		(PPm)		(ppm)			tann y		tantiy	(ppm)	
17270001	7/27/08	10.06	7.06	0.0	27	0.0	07	1.0	0.1	0.0	0.0	2.0	0.4	0.0		-	
17270001	7/27/00	10.00	7.00	0.0	3.7	0.0	0.7	1.9	0.1	0.0	0.2	2.8	0.4	0.0	0.5	7.9	3.0
17270002	7/27/08	10.08	7.08	0.0	4.2	0.0	0.8	2.5	0.1	0.0	0.3	3.1	0.4	0.0	0.6	10.1	3.2
17270003	7/27/98	10:09	7:09	0.0	4.5	0.0	0.8	2.5	0.1	0.0	0.3	3.2	0.5	1.6	0.6	11.3	3.3
17270004	7/27/98	10:11	7:11	0.0	4.5	0.0	0.8	2.6	0.1	0.0	0.3	3.2	0.5	1.6	0.6	9.8	3.4
17270005	7/27/98	10:13	7:13	0.0	4.6	0.0	0.9	2.8	0.1	0.0	0.3	3.1	0.5	0.0	0.6	7.6	3.4
17270006	7/27/98	10:15	7:15	0.0	4.3	0.0	0.8	2.3	0.1	0.0	0.3	3.1	0.5	0.0	0.6	6.9	3.3
17270007	7/27/98	10:17	7:17	0.0	4.1	0.0	0.8	1.4	0.1	0.0	0.3	3.0	0.4	0.0	0.6	6.7	3.2
17270008	7/27/98	10:18	7:18	0.0	4.0	0.0	0.8	1.0	0.1	0.0	0.3	3.0	0.4	0.0	0.6	6.6	3.2
17270009	7/27/98	10:20	7:20	0.0	4.3	0.0	0.8	1.2	0.1	0.0	0.3	3.0	0.5	0.0	0.6	7.5	3.3
17270010	7/27/98	10:22	7:22	0.0	4.2	0.0	0.8	1.3	0.1	0.0	0.3	3.1	0.4	0.0	0.6	6.4	3.3
17270011	7/27/98	10:24	7:24	0.0	4.1	0.0	0.8	0.8	0.1	0.0	0.3	3.0	0.4	0.0	0.6	4.4	3.2
17270012	7/27/98	10:25	7:25	0.0	4.0	0.0	0.7	0.5	0.1	0.0	0.2	3.0	0.4	0.0	0.6	0.0	3.3
17270013	7/27/98	10:27	7:27	0.0	4.0	0.0	0.7	0.4	0.1	0.0	0.2	3.0	0.4	0.0	0.6	0.0	3.3
17270014	7/27/98	10:29	7:29	0.0	4.0	0.0	0.8	0.0	0.4	0,0	0.3	3.0	0.4	0.0	0.6	0.0	3.3
17270015	7/27/98	10:31	7:31	0.0	4.1	0.0	0.8	0.0	0.4	0.0	0.3	3.0	0.4	0.0	0.6	0.0	3.4
17270016	7/27/98	10:33	7:33	0.0	4.1	0.0	0.8	0.0	0.4	0.0	0.3	3.0	0.4	0.0	0.6	6.0	3.3
17270017	7/27/98	10:34	7:34	0.0	4.1	0.0	0.8	0.0	0.4	0.0	0.3	2.9	0.4	0.0	0.6	5,4	3.3
17270018	7/27/98	10:36	7:36	0.0	4.1	0.0	0.8	0.0	0.4	0.0	0.3	2.9	0.4	0.0	0.6	6.8	3.3
17270019	7/27/98	10:38	7:38	0.0	4.5	0.0	0.8	0.7	0.1	0.0	0.3	3.0	0.5	0.0	0.6	8.1	3.5
17270020	7/27/98	10:40	7:40	0.0	4.7	0.0	0.9	1.5	0.1	0.0	0.3	3.0	0.5	0.0	0.7	8.9	3.6
17270021	7/27/98	10:41	7:41	0.0	4.8	0.0	0.9	2.2	0.2	0.0	0.3	3.1	0.5	0.0	0.7	9.2	3.6
17270022	7/27/98	10:43	7:43	0.0	4.4	0.0	0.8	1.4	0.1	0.0	0.3	3.0	0.5	0.0	0.6	6.1	3.4
17270023	7/27/98	10:45	7:45	0.0	4.5	0.0	0.8	1.3	0.1	0.0	0.3	3.1	0.5	0.0	0.6	8 5	3.5
17270024	7/27/98	10:47	7:47	0.0	4.6	0.0	0.9	1.8	0.1	0.0	0.3	3.1	0.5	0.0	0.7	10.0	3.6
17270025	7/27/98	10:49	7:49	0.0	4.8	0.0	0.9	2.3	0.2	0.0	0.3	32	0.5	0.0	0.7	9.8	37
17270026	7/27/98	10:50	7:50	0.0	4.6	0.0	0.9	2.0	0.1	0.0	0.3	3.1	0.5	0.0	0.6	8.5	3.6
17270027	7/27/98	10:52	7:52	0.0	4.4	0.0	0.8	1.4	0.1	0.0	0.3	3.0	0.5	0.0	0.6	117	3.5
17270028	7/27/98	10:54	7:54	0.0	4.4	0.0	0.8	13	0.1	0.0	0.3	3.0	0.5	0.0	0.0	13.0	3.6
17270029	7/27/98	10:56	7:56	0.0	47	0.0	0.9	2.0	0.1	0.0	0.3	3.0	0.5	0.0	0.0	0.9	3.0
17270030	7/27/98	10.57	7.57	0.0	49	0.0	0.9	2.6	0.2	0.0	0.3	3.2	0.5	0.0	0.7	2.0 Q 1	20
17270031	7/27/98	10.59	7.59	0.0	47	0.0	0.9	2.0	0.1	0.0	0.3	3.1	0.5	0.0	0.7	0.1	2.7
17270032	7/27/98	11:01	8:01	0.0	47	0.0	0.9	1.5	0.1	0.0	0.3	3.1	0.5	0.0	0.7	0.1	3.7
17270033	7/27/98	11.01	8.03	0.0	5.2	0.0	1.0	1.2	0.1	0.0	0.3	5.I 2.2	0.5	0.0	0.7	6.9 C 7	3.7
17270034	7/27/00	11.05	8.05	0.0	5.2	0.0	1.0	2.2	0.2	0.0	0.3	3.2	0.5	0.0	0.7	6.7	3.9
17270025	1/2//28	11.05	0.00	0.0	5.5	0.0	1.0	2.4	0.2	0.0	0.3	3.3	0.6	0.0	0.8	6.2	4.0
17270026	7/27/98	11:00	8:00	0.0	3.Z 4.9	0.0	1.0	2.5	0.2	0.0	0.3	5.5	0.5	0.0	0.7	5.5	3.9
17270027	7/27/98	11:08	8:08	0.0	4.8	0.0	0.9	1.6	0.2	0.0	0.3	3.2	0.5	0.0	0.7	0.0	3.9
1/2/003/	7/27/98	11:10	8:10	0.0	4./	0,0	0.9	1.1	0.1	0.0	0.3	3.2	0.5	0.0	0.7	0.0	3.9

Table _-_. Tunnel Emissions Duct

				1		T		1		1		1		Formal		1	
				1		Pronane	Uncer-	Hexane	Uncer-	Ethylene	Uncer	Mathana	Uncar	dahuda	Uncor	C0	Lincor
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(nnm)	tainty	(nnm)	tainty	(nnm)	tainty	(nnm)	tainty
17270037	7/27/00	11.10	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	0.0	47			1 1	0.1				- anny			(ppm)	tanny
17270037	7/27/08	11.10	0:10	0.0	4.7		0.9		0.1	0.0	0.3	3.2	0.5	0.0	0.7	0.0	3.9
17270030	7/27/08	11.12	0.12	0.0	5.0	0.0	0.9	2.3	0.2	0.0	0.3	3.3	0.5	0.0	0.7	0.0	4.1
17270040	7/27/09	11.15	0:15	0.0	5.4 5.4	0.0	1.0	3.3	0.2	0.0	0.3	3.4	0.6	0.0	0.8	4.6	4.1
17270040	7/27/98	11:15	8:15	0.0	5.4	0.0	1.0	3.4	0.2	0.0	0.3	3.5	0.6	0.0	0.8	5.4	4.1
17270041	7/27/98	11:17	8:17	0.0	5.3	0.0	1.0	3.3	0.2	0.0	0.3	3.5	0.5	0.0	0.7	5.9	4.0
17270042	7/27/98	11:19	8:19	0.0	5.1	0.0	1.0	3.0	0.2	0.0	0.3	3.5	0.5	0.0	0.7	5.0	3.9
17270043	7/27/98	11:21	8:21	0.0	5.5	0.0	1.0	3.3	0.2	0.0	0.3	3.6	0.5	0.0	0.7	5.0	4.0
17270044	7/27/98	11:22	8:22	0.0	5.5	0.0	1.0	3.8	0.2	0.0	0.3	3.7	0.6	0.0	0.8	5.6	4.1
17270045	7/27/98	11:24	8:24	0.0	5.5	0.0	1.0	3.7	0.2	0.0	0.3	3.7	0.6	0.0	0.8	5.7	4.2
17270046	7/27/98	11:26	8:26	0.0	5.5	0.0	1.0	4.0	0.2	0.0	0.3	3.8	0.6	0.0	0.8	5.9	4.1
17270047	7/27/98	11:28	8:28	0.0	5.5	0.0	1.0	3.7	0.2	0.0	0.3	3.8	0.6	0.0	0.8	5.8	4.2
17270048	7/27/98	11:29	8:29	0.0	5.6	0.0	1.1	3.4	0.2	0.0	0.3	3.9	0.6	0.0	0.8	5,7	4.2
17270049	7/27/98	11:31	8:31	0.0	5.6	0.0	1.0	3.6	0.2	0.0	0.3	4.0	0.6	0.0	0.8	11.5	4.2
17270050	7/27/98	11:33	8:33	0.0	5.7	0.0	1.1	4.4	0.2	0.0	0.3	4.1	0.6	0.0	0.8	11.5	4.3
17270051	7/27/98	11:35	8:35	0.0	5.9	0.0	1.1	4.9	0.2	0.0	0.3	4.1	0.6	0.0	0.8	8.2	4.5
17270052	7/27/98	11:37	8:37	0.0	5.9	0.0	1.1	4.5	0.2	0.0	0.3	4.2	0.6	0.0	0.8	7.0	4.4
17270053	7/27/98	11:38	8:38	0.0	5.7	0.0	1.1	4.4	0.2	0.0	0.3	4.1	0.6	0.0	0.8	6.0	4.3
17270054	7/27/98	11:40	8:40	0.0	5.8	0.0	1.1	4.0	0.2	0.0	0.3	4.1	0.6	0.0	0.8	6.8	4.4
17270055	7/27/98	11:42	8:42	0.0	5.9	0.0	1.1	4.7	0.2	0.0	0.3	3.9	0.6	0.0	0.8	6.8	4.4
17270056	7/27/98	11:44	8:44	0.0	5.8	0.0	1.1	5.0	0.2	0.0	0.3	3.6	0.6	0.0	0.8	7.6	4.4
17270057	7/27/98	11:45	8:45	0.0	5.6	0.0	1.0	4.7	0.2	0.0	0.3	3.7	0.6	0.0	0.8	12.3	4.3
17270058	7/27/98	11:47	8:47	0.0	5.6	0.0	1.1	3.8	0.2	0.0	0.3	3.4	0.6	0.0	0.8	6.6	4.3
17270059	7/27/98	11:49	8:49	0.0	5.6	0.0	1.0	3.0	0.2	0.0	0.3	3.3	0.6	0.0	0.8	5.3	4.3
17270060	7/27/98	11:51	8:51	0.0	5.8	0.0	1.1	3.1	0.2	0.0	0.3	3.3	0.6	0.0	0.8	5.2	4.4
17270061	7/27/98	11:53	8:53	0.0	5.9	0.0	1.1	3.4	0.2	0.0	0.3	3.3	0.6	0.0	0.8	5.5	4.5
17270062	7/27/98	11:54	8:54	0.0	6.0	0.0	1.1	3.4	0.2	0.0	0.3	3.2	0.6	0.0	0.8	5.2	4.5
17270063	7/27/98	11:56	8:56	0.0	5.8	0.0	1.1	2.9	0.2	0.0	0.3	3.2	0.6	0.0	0.8	5.4	4.4
17270064	7/27/98	11:58	8:58	0.0	6.0	0.0	1.1	3.4	0.2	0.0	0.3	3.2	0.6	0.0	0,8	5.9	4.5
17270065	7/27/98	12:00	9:00	0.0	5.9	0.0	1.1	3.2	0.2	0.0	0.3	3.2	0.6	0.0	0.8	5.9	4.5
17270066	7/27/98	12:01	9:01	0.0	5.9	0.0	1.1	3.4	0.2	0.0	0.3	3.2	0.6	0.0	0.8	7.1	4.5
17270067	7/27/98	12:03	9:03	0.0	6.0	0.0	1.1	3.5	0.2	0.0	0.4	3.1	0.6	0.0	0.9	6.8	4.6
17270068	7/27/98	12:05	9:05	0.0	6.0	0.0	1.1	3.6	0.2	0.0	0.3	3.1	0.6	0.0	0.8	6.6	4.5
17270069	7/27/98	12:07	9:07	0.0	6.2	0.0	1.2	4.2	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.8	47
17270070	7/27/98	12:09	9:09	0.0	5.8	0.0	1.1	4.8	0.2	0.0	0.3	3.1	0.6	0.0	0.8	51	4.5
17270071	7/27/98	12:10	9:10	0.0	5.7	0.0	1.1	3.6	0.2	0.0	0.3	31	0.6	0.0	0.8	5.0	4.4
17270072	7/27/98	12:12	9:12	0.0	5.9	0.0	1.1	3.2	0.2	0.0	03	31	0.6	0.0	0.0	49	4.4
17270073	7/27/98	12:14	9:14	0.0	6.1	0.0	1.1	3.5	0.2	0.0	0.4	31	0.6	0.0	0.0	7.2 5.2	4.5
1				0.0	0.1	0.0		0.0	0.2	0.0	V.7	5.1	0.0	0.0	0.9	5.2	4.0

Table _-_. Tunnel Emissions Duct

						1								Formal-			
						Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehvde	Uncer-	со	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17270074	7/27/98	12:16	9:16	0.0	6.0	0.0	1.1	3.3	0.2	0.0	0.4	3.0	0.6	0.0	0.8	5.4	46
17270075	7/27/98	12:17	9:17	0.0	6.0	0.0	1.1	3.4	0.2	0.0	0.4	3.1	0.6	0.0	0.8	5.0	4.6
17270076	7/27/98	12:19	9:19	0.0	6.0	0.0	1.1	3.8	0.2	0.0	0.4	3.0	0.6	0.0	0.9	5.5	4.6
17270077	7/27/98	12:21	9:21	0.0	5.7	0.0	1.1	3.0	0.2	0.0	0.3	3.0	0.6	0.0	0.8	4.9	4.5
17270078	7/27/98	12:23	9:23	0.0	5.6	0.0	1.1	2.5	0.2	0.0	0.3	3.0	0.6	0.0	0.8	4.8	4.4
17270079	7/27/98	12:25	9:25	0.0	5.8	0.0	1.1	2.4	0.2	0.0	0.3	3.0	0.6	0.0	0.8	4.9	4.5
17270080	7/27/98	12:26	9:26	0.0	5.6	0.0	1.0	2.1	0.2	0.0	0.3	3.0	0.6	0.0	0.8	5.4	4.4
17270081	7/27/98	12:28	9:28	0.0	5.7	0.0	1.1	1.9	0.2	0.0	0.3	3.0	0.6	0.0	0.8	5.7	4.4
17270082	7/27/98	12:30	9:30	0.0	5.9	0.0	1.1	2.2	0.2	0.0	0.3	3.1	0.6	0.0	0.8	5.8	4.5
17270083	7/27/98	12:32	9:32	0.0	5.8	0.0	1.1	2.3	0.2	0.0	0.3	3.0	0.6	0.0	0.8	5.6	4.5
17270089	7/27/98	12:57	9:57	0.0	5.2	0.0	1.0	1.9	0.2	0.0	0.3	2.8	0.5	0.0	0.7	5.6	4.2
17270090	7/27/98	12:59	9:59	0.0	5.6	0.0	1.1	3.6	0.2	0.0	0.3	3.2	0.6	0.0	0.8	7.6	4.4
17270091	7/27/98	13:01	10:01	0.0	6.0	0.0	1.1	3.9	0.2	0.0	0.4	3.3	0.6	0.0	0.8	5.7	4.6
17270092	7/27/98	13:03	10:03	0.0	5.9	0.0	1.1	2.9	0.2	0.0	0.4	3.2	0.6	0.0	0.8	5.2	4.6
17270093	7/27/98	13:05	10:05	0.0	6.1	0.0	1.1	3.1	0.2	0.0	0.4	3.2	0.6	0.0	0.9	6.4	4.7
17270094	7/27/98	13:06	10:06	0.0	6.2	0.0	1.2	3,5	0.2	0.0	0.4	3.3	0.6	0.0	0.9	7.1	4.8
17270095	7/27/98	13:08	10:08	0.0	6.3	0.0	1.2	3.6	0.2	0.0	0.4	3.3	0.6	0.0	0.9	6.6	4.8
17270096	7/27/98	13:10	10:10	0.0	6.3	0.0	1.2	3.5	0.2	0.0	0.4	3.3	0.6	0.0	0.9	5.8	4.8
17270097	7/27/98	13:12	10:12	0.0	6.3	0.0	1.2	3.4	0.2	0.0	0.4	3.2	0.7	0.0	0.9	5.5	4.8
17270098	7/27/98	13:13	10:13	0.0	6.2	0.0	1.2	3.3	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.5	4.8
17270099	7/27/98	13:15	10:15	0.0	6.0	0.0	1.1	2.9	0.2	0.0	0.4	3.2	0.6	0.0	0.8	5.4	4.6
17270100	7/27/98	13:17	10:17	0.0	6.1	0.0	1.1	2.7	0.2	0.0	0.4	3.2	0.6	0.0	0.9	6.8	4.7
17270101	7/27/98	13:19	10:19	0.0	6.1	0.0	1.1	2.9	0.2	0.0	0.4	3.2	0.6	0.0	0.9	6.0	4.7
17270102	7/27/98	13:21	10:21	0.0	5.7	0.0	1.1	2.3	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.7
17270103	7/27/98	13:22	10:22	0.0	5.8	0.0	1.1	2.1	0.2	0.0	0.3	3.1	0.6	0.0	0.8	0.0	4.8
17270104	7/27/98	13:24	10:24	0.0	6.1	0.0	1.1	2.5	0.2	0.0	0.4	3.2	0.6	0.0	0.9	5.2	4.7
17270105	7/27/98	13:26	10:26	0.0	5.9	0.0	1.1	2.4	0.2	0.0	0.3	3.1	0.6	0.0	0.8	5.3	4.6
17270106	7/27/98	13:28	10:28	0.0	6.0	0.0	1.1	2.6	0.2	0.0	0.4	3.1	0.6	0.0	0.9	5.5	4.7
17270107	7/27/98	13:29	10:29	0.0	6.4	0.0	1.2	2.9	0.2	0.0	0.4	3.2	0.7	0.0	0.9	5.3	4.8
17270108	7/27/98	13:31	10:31	0.0	6.5	0.0	1.2	3.3	0.2	0.0	0.4	3.2	0.7	0.0	0.9	6.3	4.9
17270109	7/27/98	13:33	10:33	0.0	6.2	0.0	1.2	3.7	0.2	0.0	0.4	3.3	0.6	0.0	0.9	10.2	4.8
17270110	7/27/98	13:35	10:35	0.0	6.4	0.0	1.2	3.8	0.2	0.0	0.4	3.3	0.7	0.0	0.9	12.1	4.9
17270111	7/27/98	13:37	10:37	0.0	6.4	0.0	1.2	5.3	0.2	0.0	0.4	3.5	0.7	0.0	0.9	13.8	4.9
17270112	7/27/98	13:38	10:38	0.0	6.8	0,0	0.7	6.2	0.2	0.5	0.4	3.6	0.7	0.0	1.0	10.4	5.1
17270113	7/27/98	13:40	10:40	0.0	6.4	0.0	1.2	5.0	0.2	0.5	0.4	3.5	0.7	0.0	0.9	8.4	4.9
17270114	7/27/98	13:42	10:42	0.0	6.1	0.0	1.1	4.2	0.2	0.0	0.4	3.4	0.6	0.0	0.9	6.8	4.7

Table - . Tunnel Emissions Duct

										T				Formal-			1
	_			I		Propane	Uncer-	Hexane	Uncer-	Ethylene	Uncer-	Methane	Uncer-	dehyde	Uncer-	CO	Uncer-
File Name	Date	Time	Time	Toluene		(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty	(ppm)	tainty
17270115	7/27/98	14:15	11:15	24.3	4.8	0.0	2.4	37.7	0.6	1.2	0.9	5.7	2.1	8.4	2.8	0.0	12.8
17270116	7/27/98	14:17	11:17	10.7	2.5	0.0	1.3	14.7	0.3	0.8	0.5	4.0	1.1	3.9	1.5	9.4	7.3
17270117	7/27/98	14:19	11:19	0.0	7.3	0.0	1.4	7.8	0.2	0.7	0.4	3.5	0.8	0.0	1.0	6.7	5.3
17270118	7/27/98	14:21	11:21	0.0	6.7	0.0	1.3	6.1	0.2	0.7	0.4	3.3	0.7	0.0	1.0	7.6	5.0
17270119	7/27/98	14:22	11:22	0.0	6.5	0.0	1.2	5.1	0.2	0.7	0.4	3.3	0.7	0.0	0.9	6.5	4.9
17270120	7/27/98	14:24	11:24	0.0	6.7	0.0	1.3	5.1	0.2	0.6	0.4	3.3	0.7	0.0	0.9	6.5	5.0
17270121	7/27/98	14:26	11:26	0.0	6.4	0.0	1.2	4.8	0.2	0.7	0.4	3.2	0.7	0.0	0.9	6.2	4.8
17270122	7/27/98	14:28	11:28	0.0	6.3	0.0	1.2	4.2	0.2	0.7	0.4	3.2	0.7 ′	0.0	0.9	6.1	4.7
17270123	7/27/98	14:29	11:29	0.0	6.2	0.0	1.2	3.7	0.2	0.7	0.4	3.2	0.6	0.0	0.9	5.8	4.7
17270124	7/27/98	14:31	11:31 '	0.0	6.1	0.0	1.1	3.6	0.2	0.7	0.4	3.2	0.6	0.0	0.9	6.0	4.6
17270125	7/27/98	14:33	11:33	0.0	6.2	0.0	1.2	3.3	0.2	0.7	0.4	3.2	0.6	0.0	0.9	6.1	4.6
17270126	7/27/98	14:35	11:35	0.0	6.5	0.0	1.2	3.9	0.2	0.8	0.4	3.2	0.7	0.0	0.9	7.6	4.8
17270127	7/27/98	14:37	11:37	0.0	6.6	0.0	1.2	4.8	0.2	0.8	0.4	3.4	0.7	0.0	0.9	16.5	4.9
17270128	7/27/98	14:38	11:38	0.0	6.6 '	0.0	1.2	6.4	0.3	0.8	0.4 '	3.6	0.7	0.0	0.9	17.7	5.0
17270129	7/27/98	14:40	11:40	0.0	6.6	0.0	1.2	5.9	0.2	0.8	0.4 '	3.5	0.7	0.0	0.9	11.6	4.9
17270130	7/27/98	14:42	11:42	0.0	6.4	0.0	1.2	5.0	0.2	0.7	0.4	3.3	0.7	0.0	0.9	9.4	4.8
17270131	7/27/98	14:44	11:44	0.0	6.4	0.0	1.2	4.6	0.2	0.7	0.4	3.3	0.7	0.0	0.9	8.0	4.8
17270132	7/27/98	14:45	11:45	0.0	6.5	0.0	1.2	4.5	0.2	0.7	0.4	3.3	0.7	0.0	0.9	7.2	4.8
17270133	7/27/98	14:47	11:47 /	0.0	6.3	0.0	1.2	4.3	0.2	0.7	0.4	3.2	0.7	0.0	0.9	6.4	4.8
17270134	7/27/98	14:49	11:49	0.0	6.2	0.0	1.2	1 3.7	0.2	0.8	0.4	3.2	0.6	0.0	0.9	5.8	4.7
17270135	7/27/98	14:51	11:51	0.0	6.4 1	0.0	1.2	3.8	0.2	0.7	0.4	3.2	0.7 J	0.0	0.9	6.2	4.8
17270136	7/27/98	14:52	11:52	0.0	6.4 1	0.0	1.2	4.0	0.2	0.7	0.4	3.2	0.7 J	0.0	0.9	6.9	4.8
17270137	7/27/98	14:54	11:54	0.0	6.5	0.0	1.2	4.3	0.2	0.8	0.4 J	3.3	0.7 /	0.0	0.9	11.0	4.9
17270138	7/27/98	14:56	11:56	0.0	6.3	0.0	1.2	4.1	0.2	0.8	0.4	3.2	0.6 I	0.0	0.9	8.8	4.7
17270139	7/27/98	14:58	11:58	0.0	6.4	0.0	1.2	4.2	0.2	0.7	0.4	3.2	0.7	0.0	0.9	7.8	4.8
17270140	7/27/98	15:00	12:00	0.0	6.5	0.0	1.2	4.7	0.2	0.8	0.4 J	3.3	0.7	0.0	0.9	7.9	4.8
SP0727B	7/27/98	17:13	14:13 J	151.0	2.0	0.0	0.3	0.0	0.2	1.9	1.7	2.3	0.3	1.3	0.4	3.1	0.2
·]					L		L		Ĺ		L			
L		<u>A</u> ·	verage>	0.0	5.6	0.0	1.0	3.1	0.2	0.1	0.3	3.3	0.6	0.0	0.8	6.7	4.3

Table _-__ Tunnel Emissions Duct

<u></u>			1				5	lo Emissions I	Juct							
			TT 1		180-								Formalde-			
			Toluene		Octane		Hexane		Ethylene		Methane		hyde		CO	
File Name	Date	Time	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	ncertaint	(ppm)	ncertaint	(ppm)	Uncertainty
17240003	7/24/98	7:25	53.6	10.6	9.8	2.1	104.0	2.9	1.4	0.7	10.3	4.5	16.4	6.1	61.3	10.6
17240004	7/24/98	7:26	86.8	17.1	15.7	3.4	165.2	4.7	2.2	0.9	15.6	7.2	23.8	9.8	115.4	65.0
17240005	7/24/98	7:28	108.9	21.7	18.4	4.3	205.3	6.0	2.7	1.2	18.6	9.2	28.5	12.4	97.7	18.6
17240006	7/24/98	7:30	126.8	25.7	20.5	5.1	238.3	7.1	3.1	1.4	21.3	10.9	32.1	14.7	104.1	22.0
17240007	7/24/98	7:32	167.9	37.2	23.5	7.4	258.7	10.3	3.7	1.6	31.5	15.9		21.4	108.0	25.6
17240008	7/24/98	7:34	182.6	41.0	25.0	8.2	276.7	11.3	3.9	1.7	33.9	17.5		23.6	107.9	28.2
17240009	7/24/98	7:35	191.9	44.2	23.7	8.8	284.5	12.2	4.1	1.9	34.9	18.8		25.7	104.0	31.8
17240010	7/24/98	7:37	200.9	46.6	25.8	9.3	294.3	12.9	4.3	2.0	36.0	19.9		27.1	104.4	34.0
17240011	7/24/98	7:39	176.8	45.5	16.9	9.0	331.9	12.6	4.4	2.1		14.6		19.5	105.6	37.0
17240012	7/24/98	7:41	192.0	52.9	14.4	10.5	356.0	14.6	4.6	2.2		18.0		24.0	107.3	39.2
17240013	7/24/98	7:42	201.5	58.0	11.9	11.5	371.0	16.0	4.6	2.3		20.2		27.0	106.1	42.7
17240014	7/24/98	7:44	234.9	59.0	23.8	11.8	314.8	16.3	4.7	2.4		14.6		33.5	96.6	48.2
17240015	7/24/98	7:46	236.2	59.6	26.8	11.9	313.8	16.4	4.7	2.4		14.8		33.8	95.7	49.2
17240016	7/24/98	7:48	174.6	36.9	23.3	7.3	302.1	10.2	4.6	2.4		10.0	37.5	21.1	89.5	47.9
17240017	7/24/98	7:49	163.4	34.2	22.7	6.8	288.4	9.4	4.4	2.3	23.6	14.5	37.9	19.6	88.3	44.7
17240018	7/24/98	7:51	206.8	48.8	26.7	9.7	284.5	13.5	4.3	2.2	36.2	20.8		28.5	95.7	41.3
17240019	7/24/98	7:53	179.1	45.3	17.0	9.0	330.6	12.5	4.3	2.2		14.6		19.5	100.7	40.4
17240020	7/24/98	7:55	210.9	49.9	27.0	9.9	289.2	13.8	4.3	2.3	35.8	21.3		29.1	95.6	42.7
17240021	7/24/98	7:56	224.0	53.2	29.6	10.6	293.4	14.7	4.5	2.4		10.7		31.1	96.9	49.1
17240022	7/24/98	7:58	216.6	51.5	28.2	10.3	290.2	14.2	4.3	2.4	36.8	21.9		30.0	97.7	46.4
17240023	7/24/98	8:00	216.9	51.3	26.8	10.2	292.9	14.1	4.2	2.4	37.3	21.9		29.9	97.9	46.4
							_									
17240077	7/24/98	9:39	109.9	23.3	13.1	4.6	204.4	6.4	3.5	1.9	18.4	9.9	28.7	13.3	76.8	31.2
17240078	7/24/98	9:41	108.5	23.5	12.0	4.6	201.5	6.5	3.6	1.9	18.0	9.9	30.4	13.4	73.4	31.0
17240079	7/24/98	9:43	102.9	22.2	11.7	4.4	191.4	6.1	3.5	1.9	17.0	9.4	28.3	12.7	67.9	30.7
17240080	7/24/98	9:45	101.8	21.9	11.9	4.3	187.5	6.1	3.5	1.9	16.8	9.3	27.6	12.5	67.0	30.5
17240081	7/24/98	9:46	100.8	21.5	12.2	4.3	186.7	5.9	3.3	1.9	16.8	9.1	26.6	12.3	67.6	29.9
17240082	7/24/98	9:48	102.0	21.8	11.9	4.3	188.5	6.0	3.4	1.8	16.9	9.2	27.7	12.5	69.8	29.2
17240083	7/24/98	9:50	105.5	22.2	13.0	4.4	194.9	6.1	3.3	1.8	17.4	9.4	27.7	12.7	72.9	28.6
17240084	7/24/98	9:52	106.7	22.4	13.1	4.4	197.2	6.2	3.3	1.8	17.2	9.5	27.2	12.8	70.8	29.2
17240085	7/24/98	9:53	105.4	22.5	12.0	4.5	194.7	6.2	3.4	1.9	17.2	9.5	28.0	12.9	68.4	30.1
17240086	7/24/98	9:55	103.2	22.2	12.0	4.4	191.0	6.1	3.5	1.9	17.1	9.4	27.8	12.7	70.0	30.5
17240087	7/24/98	9:57	102.8	22.0	12.1	4.4	192.7	6.1	3.4	1.8	17.5	9.3	28.6	12.6	75.8	29.7
17240088	7/24/98	9:59	103.7	21.9	13.0	4.3	192.4	6.1	3.2	1.8	17.4	9.3	27.7	12.5	77.1	28.5
17240089	7/24/98	10:00	104.4	22.0	12.9	4.4	193.4	6.1	3.2	1.7	17.5	9.3	27.9	12.6	77.1	27.7
17240090	7/24/98	10:02	102.8	21.7	12.9	4.3	191.4	6.0	3.2	1.8	17.3	9.2	27.6	12.4	75.4	28.0
17240091	7/24/98	10:04	101.8	21.5	12.6	4.2	188.2	5.9	3.1	1.7	17.0	9.1	27.2	12.3	73.4	27.4
17240092	7/24/98	10:06	100.8	21.5	12.2	4.3	187.8	5.9	3.2	1.7	16.7	9.1	28.4	12.3	73.7	26.5
17240093	7/24/98	10:07	101.3	21.5	12.1	4.3	189.2	5.9	3.2	1.7	16.8	9.1	27.9	12.3	73.2	27.2
17240094	7/24/98	10:09	98.7	21.0	12.0	4.2	183.3	5.8	3.2	1.7	16.4	8.9	26,6	12.0	70.8	27.4
				'				1		1		1		1		#/··*

			-				Si	ilo Emissions I	Duct							
					Iso-								Formalde-			
			Toluene		Octane		Hexane		Ethylene		Methane		hyde		CO	
File Name	Date	Time	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	ncertaint	(ppm)	ncertaint	(ppm)	Uncertainty
17240094	7/24/98	10:09	98.7	21.0	12.0	4.2	183.3	5.8	3.2	1.7	16.4	8.9	26.6	12.0	70.8	27.4
17240095	7/24/98	10:11	95.3	20.2	11.7	4.0	177.2	5.6	3.1	1.6	15.9	8.6	26.3	11.6	69.4	26.1
17240096	7/24/98	10:13	94.6	19.9	11.7	3.9	176.2	5.5	3.0	1.6	15.7	8.4	26.1	11.4	70.0	24.7
17240097	7/24/98	10:14	95.1	19.9	11.7	3.9	176.6	5.5	3.0	1.6	15.7	8.4	25.8	11.4	68.5	24.6
17240098	7/24/98	10:16	94.1	20.1	11.2	4.0	175.5	5.5	3.1	1.6	15.6	8.5	26.5	11.5	66.7	25.9
17240099	7/24/98	10:18	92.2	19.6	10.5	3.9	172.4	5.4	3.1	1.6	15.2	8.3	25.8	11.2	64.7	25.7
17240100	7/24/98	10:20	91.1	19.3	10.6	3.8	169.9	5.3	3.0	1.5	15.1	8.2	26.0	11.0	66.4	24.2
17240101	7/24/98	10:22	91.3	19.1	10.8	3.8	170.6	5.3	3.0	1.5	15.5	8.1	25.1	10.9	70.8	24.4
17240102	7/24/98	10:23	90.2	19.1	10.3	3.8	170.2	5.3	3.0	1.6	15.6	8.1	26.1	10.9	74.4	24.8
17240103	7/24/98	10:25	92.0	19.3	10.6	3.8	172.1	5.3	3.0	1.6	16.2	8.2	26.2	11.1	79.2	25.9
17240104	7/24/98	10:27	94.0	19.7	10.5	3.9	177.2	5.4	3.0	1.6	16.8	8.3	26.8	11.3	84.4	26.0
Av	erage>		130.4	29.7	15.7	5.9	221.1	8.2	3.5	1.8	16.9	11.4	19.0	16.5	81.7	31.9

							<u> </u>	ilo Emissions J	Juct							
			Tataana	······	Iso-						<u> </u>		Formalde-	- /		,
T'L NT	5	-TD'	Toluene		Octane	• .	Hexane		Ethylene		Methane	ļ	hyde	ļ	СО	1
File Name	Date	Time	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	ncertaint	(ppm)	ncertaint	(ppm)	Uncertainty
17250052	7/25/98	8:42		10.6	1	1.0	3.2	0.3	1	0.6	3.1	1.1		1.5	[8.3
17250053	7/25/98	8:43		11.3	1	0.6	6.1	0.4	1	0.6	4.5	1.2	1	1.6	29.5	8.5
17250054	7/25/98	8:45		13.7	1.8	0.7	20.8	1.2	1	0.7	7.3	1.6	6.6	2.1	69.0	10.2
17250055	7/25/98	8:47	27.1	6.0 J	4.7	1.2	53.2	1.7 ′	1	0.9	10.2	2.6	12.7	3.5	88.6	11.6
17250056	7/25/98	8:49	54.4	11.4	6.9	2.3	105.5	3.2	2.3	1.0	13.5	4.8	20.9	6.5	104.9	16.2
17250057	7/25/98	8:51	98.3	21.3	7.9	4.2	181.3	5.9	3.3	1.7	17.2	9.0	31.7	12.2	102.4	30.0
17250058	7/25/98	8:52		284.5	Í.	14.6	273.5	9.6	1	3.7	1	30.0	1	40.2	1	179.3
17250059	7/25/98	8:54		305.0	1	15.8	322.8	10.5	1	15.5	1	32.2	1	43.1	1	212.8
17250060	7/25/98	8:56		427.0	1	39.1	333.6	14.2	1	23.0	1	45.1	1	60.3	1	253.4
17250061	7/25/98	8:58		425.1	1	38.9	337.0	14.3	1	23.7	1	44.9	1	60.0	1	243.5
17250062	7/25/98	8:59		452.3	1	41.4	326.2	15.0	1	26.2	1	47.8	1	63.9	1	245.8
17250063	7/25/98	9:01	1	435.2	1	39.9	334.5	14.7	t	27.4	1	46.0	1	61.5	1	252.4
17250064	7/25/98	9:03	1	434.2	1	39.8	319.8	14.6	1	27.6	1	45.9	1	61.3	1	253.5
17250065	7/25/98	9:05		432.7	í	21.7	297.5	14.4	1	27.0	1	45.7	1	61.1	i -	250,7
17250066	7/25/98	9:06 ′	1	408.1	i	20.2	253.6	13.4 ^J	1	22.7	1	43.1	i i	57.6	1	244.6
17250067	7/25/98	9:08 ′	1	401.3	i	19.7	242.1	13.1	1	23.2	1	42.4	i i	56.7	1	246.8
17250068	7/25/98	9:10 '	1	402.5	i	19.7	235.7	13.1	1	18.7	1	42.5	I	56.9	1	223.7
17250069	7/25/98	9:12	1	403.3	i	19.7	225.9	13.1	1	18.6	1	42.6	I	57.0	1	223.8
17250070	7/25/98	9:13		355.6	i	17.4	214.8	11.5	1	18.6	1	37.6	F	50.2	1	222.4
17250071	7/25/98	9:15	1	321.4	i	15.6	209.0	10.4	1	19.3	i	33.9	i	45.4	1	228.2
17250072	7/25/98	9:17	1	303.8	i	14.8	216.5	9.9	1	14.0	i i	32.1	i	42.9	1	214.9
17250073	7/25/98	9:19	1	288.9	i	14.4	216.5	9.5	1	13.5	I	30.5	I.	40.8		218.5
17250074	7/25/98	9:20	1	291.9	i	14.6	214.1	9.6	1	13.7	I	30.8	I.	41.2		222.0
17250075	7/25/98	9:22	1	302.2		14.7	208.5	9.8	1	19.4	I	31.9		42.7		211.4
I.)	1			ļ	1	1	i .		i					
L		!	1]	f	J	1		i		1			
Av	erage>		7.5	281.2	0.9	18.0	214.7	9.7	0.2	15.1	2.3	30.2	3.0	40.4	16.4	176.4
					Iso-								Formalde-			
-----------	---------	-------	---------	-------------	--------	-------------	--------	-------------	----------	-------------	---------	-----------	-----------	-----------	-------	-------------
			Toluene		Octane		Hexane		Ethylene		Methane		hyde		CO	
File Name	Date	Time	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	Uncertainty	(ppm)	ncertaint	(ppm)	ncertaint	(ppm)	Uncertainty
SED0727A	7/27/98	10:51	522.4	197.7		75.9	233.1	26.5		54.2		87.4		117.0	426.4	390.7
SED0727B	7/27/98	11:01		357.7		32.8	126.0	11.3	62.9	16.1		37.8		50.5		288.7
SED0727C	7/27/98	11:12		571.2		27.2	150.5	18.1		37.5		60.3		80.7		326.7
Av	/erage>		174.1	375.6		45.3	169.9	18.6	21.0	35.9		61.8		82.7	142.1	335.4

Silo Emissions Duot

	Molar Mass	Silo	Loadout	Process Stack
Compound Name	(g/mol)	QL (ppm)	QL (ppm)	QL (ppm)
Acetaldehyde	44.05	1.20	0.34	1.49
Benzene	78.11	3.77	1.89	5.36
Carbonyl Sulfide	60.07	0.16	0.07	0.07
Methyl Chloride	50.49	2.92	3.83	2.52
Methyl Chloroform	133.42	0.37	0.41	2.16
1,1-dichloroethane	98.96	0.42	0.45	1.3
Toluene	92.13	3.52	2.4	12.56
1,3-Butadiene	54.09	0.45	0.5	2.27
Methanol	32.04	1.96	0.78	2.08
Cumene	120.19	0.76	0.38	2.24
Ethylbenzene	106.16	3.48	2.06	3.95
Hexane	86.17	0.06	0.21	0.42
Methylene chloride	84.94	0.39	0.35	2.27
Propionaldehyde	58.08	0.37	0.82	0.31
Styrene	104.14	1.38	1.31	2.69
1, 1,2,2-Tetrachloroethane	167.86	0.23	0.32	0.88
p-Xylene	106.16	1.44	1.08	0.82
o-Xylene	106.16	0.09	0.68	6.91
m-Xylene	106.16	2.48	0.79	8.73
2,2,4-Trimethylpentane	114.22	0.45	0.25	0.32
Formaldehyde	30.03	1.15	0.48	3.94
SO ₂	64.1	2.94	0.36	2.94
NO	30.0	4.38	1.21	4.38
NO ₂	46.0	0.63	0.20	0.63
N ₂ O	44.0	0.19	0.024	0.19

Estimated Quantitation Limits (QL, ppm) From FTIR Spectra of Direct Samples Taken From the Silo, Loadout, and Process Stack Locations.

Differences in quantitation limits among the locations are primarily due to differences in moisture concentration.

Procedure for Estimating Quantitation Limits

Measurement limits are typically estimated by using the method to analyze samples known to contain zero concentrations of the target analytes. Usually these samples are blanks that are prepared by procedures similar to the samples.

For Method 320 the samples are spectra. The most important feature of the spectra for determining measurement limits is the spectral absorbance of interfering compounds. For this source the major interfering species were water vapor and carbon dioxide. The objective is to prepare spectra containing levels of water vapor and CO_2 , equivalent to those in the sample spectra, but containing none of the target analytes. These spectra are then analyzed using the same computer program that was used to analyze the sample spectra. The average of the concentration results obtained from this analysis are presented as the estimated quantitation limits for the target analytes.

The spectra were prepared from the sample spectra measured in the field. Most of the sample spectra contained primarily percent levels of water vapor and CO2 with a mixture of ppm concentrations of hydrocarbon species. The interference concentrations were similar in all of the spectra at each location, but in most of the samples the hydrocarbon spectral absorbance was relatively low, while in some samples the hydrocarbon absorbance was much higher. The hydrocarbon absorbance was removed from some lowhydrocarbon spectra with little effect on the absorbance of the interferences. This was done by scaling a high-hydrocarbon spectrum and then subtracting the result from a low-hydrocarbon spectrum. For example spectrum "17240103" was multiplied by a constant factor of 0.01 and the result was subtracted from spectrum "17240075" (see figures 1 and 2). Some of these spectra had also been spiked with SF_6 , which was removed by subtracting a scaled spectrum of the SF₆, standard. This procedure was performed on at least three spectra from each location. The subtracted spectra were then analyzed with the computer program. The results for each compound were averaged and the averages are presented in Table 1 as the quantitation limits for the listed HAPs. Before the quantitation limit analysis the program was modified to include a reference spectrum of acetaldehyde, but this did not significantly affect the results for the other target analytes. The advantage of preparing the spectra by the above procedure is that these spectra closely model the sample spectra.

Figure 1. Spectrum before and after hydrocarbon subtraction to prepare for quantitation limit analysis. Both spectra are plotted on the same absorbance scale from -.045 to .07 absorbance units. Note that the water vapor features don't change appreciably after subtraction of the hydrocarbon component.

Figure 2. Same Spectra as in Figure 1 plotted on a scale from -.045 to .07 absorbance units. The SF_6 in the top spectrum resulted from the controlled release of the gas standard during testing.

Appendix D

Sample Concentration FTIR Results

		I Chux C	oneenti ation 1 acto	713	
Run No.	Location	Date	Adj. Volume (L)	Cell Volume (L)	Conc. Factor
	Train Blank	7/20/98	85	6.3	13.5
_	Train Blank	7/21/98	86		13.6
-	Train Blank	7/22/98	85		13.5
_	Upwind	7/22/98	82		13.0
1	Process Stack	7/21/98	239		37.9
2	Process Stack	7/22/98	211		33.5
1	TED	7/24/98	338		53.7
1	SED	7/24/98	177		28.1
2	TED	7/25/98	336		53.3
2	TED (duplicate)	7/25/98	213		33.8
2	SED	7/25/98	169		26.8
3	TED	7/27/98	331		52.5
3	TED (duplicate)	7/27/98	331		52.5
3	SED	7/27/98	173		27.5
4	TED	7/26/98	328		52.1

Tenax Concentration Factors

					r			
		VOST		Volume	Meter			Adjusted
	Sampling	Console		sampled	temp.	BP	Meter	volume
Run #	Location	No.	Date	(L)	(°C)	("Hg)	coef.	(m ³)
1	#1	1	7/23/98	69.4	25.6	29.28	0.971	0.065
1-Rerun	#1	1	7/24/98	187.7	22.6	29.30	0.971	0.177
2	#1	1	7/25/98	181.0	25.1	29.28	0.971	0.169
3	#1	1	7/27/98	187.6	27.3	29.17	0.971	0.173
1	#3	1	7/21/98	268.6	41.1	29.35	0.971	0.239
2	#3	1	7/22/98	233.7	36.1	29.31	0.971	0.211
Blank	#3	1	7/20/98	93.2	32.2	29.33	0.971	0.085
Preliminary	Tunnel Entrance	3	7/22/98	90.2	34.4	29.34	0.978	0.082
Preliminary	Loadout	3	7/23/98	108.2	23.1	29.33	0.978	0.103
1	Loadout	3	7/24/98	360.0	26.2	29.35	0.978	0.338
2	Loadout	3	7/25/98	360.0	27.9	29.33	0.978	0.336
2-Dup.	Loadout	2	7/25/98	231.5	34.4	29.33	0.983	0.213
3	Loadout	3	7/27/98	360.1	31.9	29.24	0.978	0.331
3-Dup	Loadout	2	7/27/98	360.1	33.3	29.24	0.983	0.331
4	Loadout	3	7/26/98	360.0	35.2	29.31	0.978	0.328
Blank	Trailer	3	7/21/98	90.3	23.1	29.30	0.978	0.086
Blank	Trailer	3	7/22/98	90.5	26.0	29.34	0.978	0.085

 Table ______.
 Adjusted Tenax Concentration Sample Volumes

Date	Run	Sample	Trap Nos.	Spectral Files	Spiking	Notes
7/20/98		Train Blank	101	T010720i T010720f T010720g	NA	
7/21/98		Train Blank	103	T030720i T030721f	NA	
7/22/98		Train Blank	101	T010722i T010722f	NA	
7/22/98		Upwind	102	T020722i T020722f	NA	
7/21/98	1	Process Stack	102	T020720i T020721f	8.5L	
			101	T020721g T010720g T010721f	NA	
7/22/98	2	Process Stack	106	T060721i	8.5L	
			105	T050721i T050722f	NA	
7/23/98	1-aborted	Tunnel Exhaust Duct	104	T040720i	8.5L	
			103	T030722i	NA	
		Silo Exhaust Duct	108	T080722i	8.5L	
			107	T070722i T070723f	NA	
7/24/98	1	Tunnel Exhust	112	T120722i	16.5L	
			111	%110722i	NA	
		Silo Exhaust Duct	106	T060723i	16.5L	
			105	T050723i NA	NA	Sample lost-overhead

Summary of Tenax Concentrated Samples

Date	Run	Sample	Trap Nos.	Spectral Files	Spiking	Notes
7/25/98	2	Tunnel Exhaust Duct	101	T010723i T010725f	16.5L	
			107	T070724i T070725f	NA	
			113	T130723i T130725f	16.5L	Duplicate Train
			103	T030724i T030725f	NA	Duplicate Train
		Silo Exhaust Duct	102	T020723i T020725f	16.5L	
			104	T040724i T040725f	NA	
7/26/98	4	Tunnel Exhaust Duct	115	T150725i	16.5L	
			108	T080725i T080726f	NA	
7/27/98	3	Tunnel Exhaust Duct	111	T110726i T110727f	16.8L	
			107	T070726i T070727f	NA	
			101	T010726i T010727f	16.8L	Duplicate Train
			103	T030726i T030727f	NA	Duplicate Train
		Silo Exhaust Duct	113	T130726i T130727f	16.8L	1:1 dilution w/N ₂ during final desorption
			104	T040726i T040727f	NA	C First

•

D'1 M			Danzana		Toluene-	$ppm \Lambda^2$	Methyl	$nnm \Lambda^2$	Methyle	$nnm \Lambda^2$	Ethylene	$nnm \Lambda^2$	Toluana	$nnm \Lambda^2$
File Name	Date	Time	Benzene	$ppm \Delta$	uo	ppm A	chionae	ppm 🗠	Cillorotorini	ppin 73	diemotide	ppm 2	Toluelle	ppm \
Train Blank	S													
T010720I	7/20/98	19:13	0.0	0.8	14.6	4.2	0.0	2.2	1.7	0.2	0.8	0.5	0.0	2.3
T010720F	7/20/98	21:39	0.0	1.0	13.0	5.9	0.0	2.8	2.6	0.3	0.0	0.6	0.0	2.9
T010720G	7/20/98	21:53	0.0	0.7	0.0	3.8	0.0	2.1	1.7	0.2	0.0	0.4	0.0	2.1
T0307201	7/20/98	20:52	0.0	1.2	28.0	9.2	0.0	4.2	4.1	0.4	0.0	1.1	0.0	4.4
T030721F	7/21/98	20:58	0.0	1.9	0.0	8.5	0.0	5.1	0.0	0.4	0.0	1.0	4.8	1.1
T010722I	7/22/98	11:42	0.0	0.7	0.0	0.9	0.0	1.8	0.1	0.0	0.0	0.1	5.4	0.4
T010722F	7/22/98	20:51	0.0	1.1	0.0	6.0	0.0	3.1	0.0	0.3	0.0	0.7	0.0	3.2
Average			0.0	1.1	7.9	5.5	0.0	3.0	1.4	0.3	0.1	0.6	2.6	2.3

¹ High CO₂ gives a false positive ² ppm Δ = the estimted uncertainty in the measurement

File Name	Date	1,3- butadiene	ppm Δ^2	Methanol	ppm Δ^2	Cumene	ppm Δ^2	Ethyl benzene	ppm Δ^2	Hexane	ppm Δ^2	Methylene chloride	ppm Δ^2	Propionald ehyde	ppm Δ^2
Train Blank	s	1													
T010720I	7/20/98	0.0	0.4	0.4	0.3	0.0	0.8	0.0	0.8	1.6	0.1	0.0	0.3	0.0	0.4
T010720F	7/20/98	0.0	0.6	0.0	0.4	0.0	0.5	0.0	3.0	6.9	0.3	0.0	0.4	0.0	0.5
T010720G	7/20/98	0.0	0.4	0.4	0.3	0.0	0.8	0.0	0.8	1.2	0.1	0.0	0.3	0.0	0.3
T030720I	7/20/98	0.0	1.0	0.0	0.7	0.0	0.8	0.0	4.4	14.4	0.2	1.5	0.6	0.0	0.7
T030721F	7/21/98	0.0	0.9	0.0	0.7	0.0	2.0	0.0	5.4	4.1	0.2	0.0	0.6	0.0	0.9
T010722I	7/22/98	0.2	0.1	0.0	0.1	0.0	0.7	0.0	1.9	1.3	0.1	0.0	0.1	2.3	0.2
T010722F	7/22/98	0.0	0.6	0.5	0.4	0.0	1.2	0.0	3.2	2.1	0.1	0.0	0.4	0.0	0.5
Average		0.1	0.6	0.1	0.5	0.0	1.2	0.0	3.7	4.5	0.2	0.2	0.4	0.3	0.5

¹ High CO₂ gives a false p

² ppm Λ = the estimated un

Fila Noma	Data	Styrene	nom Λ^2	1,1,2,2- Tetrachlor	$nnm \Lambda^2$	n-Xvlene	$nnm \Lambda^2$	o-Xylene	$nnm \Lambda^2$	m-Xylene	nnm A ²	2,2,4- Trimethylp	nom Λ^2	Formaldeh	$nnm \Lambda^2$
	Date	Btyrene	Ppm 2	oethane	PPin 2	p rijiene	ppin <u>a</u>	o nyione	ppm <u>a</u>	In Aylone	ppin 5	Cirtuite	ppm <u>A</u>		ppin 3
Fram Blank	S														
T010720I	7/20/98	0.0	0.7	1.3	0.3	1.5	0.7	0.0	1.4	0.0	0.7	0.0	0.2	I.4	0.3
T010720F	7/20/98	0.0	0.9	2.1	0.4	1.7	0.9	0.0	1.8	0.0	0.9	1.8	0.2	2.3	0.4
T010720G	7/20/98	0.0	0.6	1.5	0.3	1.6	0.6	0.0	1.3	0.0	0.7	0.0	0.2	2.0	0.4
T030720I	7/20/98	0.0	1.6	2.9	0.7	3.8	1.7	0.0	2.5	3.3	1.4	0.0	0.4	3.9	0.7
T030721F	7/21/98	0.0	1.4	0.0	0.6	0.0	1.4	0.0	2.7	0.0	4.2	0.0	0.5	1.2	0.6
T010722I	7/22/98	0.0	0.2	0.0	0.1	0.0	0.1	0.0	1.1	0.0	1.5	0.0	0.2	0.0	0.3
T010722F	7/22/98	0.0	1.0	0.0	0.4	0.0	1.0	0.0	2.0	0.0	2.5	0.0	0.3	0.5	0.4
Average		0.0	0.9	1.1	0.4	1.2	0.9	0.0	1.8	0.5	1.7	0.3	0.3	1.6	0.4

¹ High CO₂ gives a false p

² ppm Δ = the estimated un

File Name	Date	Time	Benzene	ppm Δ^2	Toluene- d8 ¹	ppm Δ^2	Methyl chloride	ppm Δ^2	Methyle chloroform	ppm Δ^2	Ethylenc dichloride	ppm Δ^2
Upwinds												- 11
T020722I	7/22/98	14:26	0.0	1.9	0.0	8.9	0.0	5.3	0.0	0.4	0.0	1.0
T020722F	7/22/98	20:10	0.0	3.8	21.0	16.4	0.0	10.6	0.0	0.8	0.0	2.0
Average			0.0	2.9	10.5	12.6	0.0	7.9	0.0	0.6	0.0	1.5

			. 2	1,3-	. 2		. 2		. 2	Ethyl	. 2		. 2
File Name	Date	Toluene	ppm Δ^{-}	butadiene	$ppm \Delta^-$	Methanol	ppm Δ^{2}	Cumene	ppm Δ^{-}	benzene	ppm Δ^{2}	Hexane	_ ppm Δ ~
Upwinds													•
T020722I	7/22/98	0.0	5.5	0.0	0.9	0.0	0.6	0.0	2.0	0.0	5.5	1.2	0.2
T020722F	7/22/98	0.0	11.0	0.0	1.8	0.0	1.4	0.0	4.1	0.0	11.1	2.8	0.3
Average		0.0	8.2	0.0	1.4	0.0	1.0	0.0	3.1	0.0	8.3	2.0	0.2

File Name	Date	Methylene chloride	ppm Δ^2	Propional dehyde	ppm Δ^2	Styrene	ppm Δ^2	1,1,2,2- Tetrachlor oethanc	ppm Δ^2	p-Xylene	ppm Δ^2	o-Xylene	ppm Δ^2
Upwinds													
T020722I	7/22/98	0.0	0.6	0.0	0.9	0.0	1.5	0.0	0.6	0.0	1.5	0.0	3.3
T020722F	7/22/98	0.0	1.3	0.0	1.8	0.0	3.0	0.0	1.3	0.0	2.9	0.0	6.7
Average		0.0	0.9	0.0	1.3	0.0	2.2	0.0	1.0	0.0	2.2	0.0	5.0

File Name	Date	m-Xylene	ppm Δ^2	2,2,4- Trimethyl pentane	ppm Δ^2	Formaldeh yde	ppm Δ^2
Upwinds							
T020722I	7/22/98	0.0	4.3	0.0	0.5	0.7	0.6
T020722F	7/22/98	0.0	8.6	0.0	1.1	0.0	1.5
Average		0.0	6.4	0.0	0.8	0.3	1.1

File Name	Date	Time	Benzene	ppm Δ^2	Toluene- d8 ⁻¹	ppm Δ^2	Methyl chloride	ppm Δ^2	Methyle chloroform	ppm Δ^2	Ethylene dichloride	ppm Δ^2
Sila Fyhaust												
T080723F	7/23/98	17:38	0.0	194.3	399.1	109.7	0.0	771.2	0.0	5.1	0.0	13.0
T070723F	7/23/98	17:25	0.0	1.9	0.0	9.4	0.0	5.3	1.2	0.4	1.9	1.0
T060725F	7/25/98	19:08	242.1	194.0	1477.0	351.8	0.0	1043.1	0.0	16.3	0.0	41.9
T020725F	7/25/98	18:46	215.0	193.4	1346,1	368.8	0.0	1030.5	0.0	17.1	0.0	43.8
T040725F	7/25/98	16:14	0.0	13.7	0.0	24.0	0.0	28.0	0.0	1.1	8.0	2.6
T130726I	7/26/98	18:33	0.0	1.0	0.0	4.7	0.0	2.7	0.0	0.2	0.0	0.5
T130727F	7/27/98	18:31	334.1	195.1	0.0	68.9	0.0	1085.0	10.8	3.0	0.0	7.8
T040726I	7/26/98	19:08	0.0	0.8	0.0	3.5	0.0	2.2	0.0	0.2	0.0	0.4
T040727F	7/27/98	16:59	0.0	142.6	0.0	22.4	0.0	565.5	0.0	1.0	0.0	2.5
Average			0.0	4.3	0.0	10.4	0.0	9.5	0.3	0.5	2.5	1.1

				13-						Ethyl	
File Name	Date	Toluene	ppm Δ^2	butadiene	ppm Δ^2	Methanol	ppm Δ^2	Cumene	ppm Δ^2	benzene	ppm Δ^2
Cilo Eshanat											
TOSO723E	7/23/98	1 0.0	801.5	0.0	11.8	0.0	8.8	0.0	297.1	0.0	301.9
T070723F	7/23/98		5.5		0.8	0.0	0.7		2.0	0.0	2.2
T060725F	7/25/98	0.0	1084.1	0.0	38.3	0.0	28.5	0.0	401.9	0.0	443.5
T020725F	7/25/98	0.0	1071.0	0.0	40.0	0.0	29.7	0.0	397.1	0.0	438.9
T040725F	7/25/98	0.0	31.9	5.5	2.1	0.0	1.9	0.0	10.8	0.0	19.1
T130726I	7/26/98	0.0	2.8	0.0	0.5	0.0	0.3	0.0	1.0	0.0	0.9
T130727F	7/27/98	0.0	1127.7	0.0	7.1	0.0	5.3	0.0	418.1	0.0	462.1
T040726I	7/26/98	0.0	2.2	0.0	0.4	0.4	0.2	0.0	0.8	0.0	0.8
T040727F	7/27/98	0.0	587.8	9.9	2.3	0.0	1.7	0.0	217.9	0.0	220.2
Average		0.0	10.6	1.4	0.9	0.1	0.8	0.0	3.7	0.0	5.7

File Name	Date	Hexane	ppm Δ^2	Methylene chloride	ppm Δ^2	Propional dehyde	ppm Δ^2	Styrene	ppm Δ^2	1,1,2,2- Tetrachlor oethane	ppm Δ^2
Silo E-hourst											
Sho Exhaust		1	210				1001		140		
T080723F	7/23/98	1197.6	34.9	0.0	8.2	0.0	128.1	29.7	16.8	12.5	6.7
T070723F	7/23/98	7.5	0.5	0.0	0.7	15.2	0.9	0.0	1.6	0.0	0.7
T060725F	7/25/98	840.3	73.9	0.0	26.5	0.0	173.2	111.0	54.1	0.0	26.9
T020725F	7/25/98	854.1	73.7	0.0	27.7	0.0	171.1	85.1	56.5	36.2	22.7
T040725F	7/25/98	145.1	4.6	0.0	1.7	0.0	8.5	0.0	4.1	3.0	1.5
T130726I	7/26/98	0.7	0.1	0.0	0.3	0.0	0.4	0.0	0.8	0.0	0.3
T130727F	7/27/98	859.5	79.0	10.3	3.4	0.0	180.2	61.2	10.3	26.6	4.5
T040726I	7/26/98	1.2	0.1	0.0	0.2	0.0	0.4	0.0	0.6	0.0	0.3
T040727F	7/27/98	1095.6	52.3	0.0	1.6	0.0	84.7	6.9	3.9	0.0	1.5
Average		38.6	1.3	0.0	0.7	3.8	2.6	0.0	1.8	0.7	0.7

File Name	Date	p-Xylene	ppm Δ^2	o-Xylene	ppm Δ^2	m-Xylene	ppm Δ^2	2,2,4- Trimethyl pentane	ppm Δ^2	Formaldeh yde	ppm Δ^2
		<u>+</u>		<u> </u>				1		<u> </u>	
Silo Exhaust											
T080723F	7/23/98	0.0	18.8	0.0	487.2	727.4	201.8	0.0	46.6	613.6	100.1
T070723F	7/23/98	0.0	1.6	3.6	1.2	0.0	4.3	1.2	0.3	6.8	0.8
T060725F	7/25/98	0.0	60.8	0.0	659.0	0.0	845.4	0.0	71.5	724.3	133.7
T020725F	7/25/98	0.0	63.5	0.0	651.0	0.0	835.2	0.0	70.7	733.6	133.3
T040725F	7/25/98	0.0	4.0	0.0	28.0	96,1	13.9	30.1	3.0	46.6	6.6
T130726I	7/26/98	0.0	0.8	0.0	1.7	0.0	0.8	0.0	0.2	0.0	0.3
T130727F	7/27/98	0.0	11.3	0.0	685.5	0.0	879.4	0.0	74.5	857.0	141.1
T040726I	7/26/98	0.0	0.6	0.0	1.4	0.0	0.7	0.0	0.1	0.0	0.3
T040727F	7/27/98	0.0	3.7	0.0	357.3	289.7	153.8	61.2	35.0	0.0	82.6
Average		0.0	1.7	0.9	8.1	24.0	4.9	7.8	0.9	13.3	2.0

File Name	Date	Time	Benzene	ppm Δ^2	Toluene- d8 ⁻¹	ppm Δ^2	Methyl chloride	ppm Δ^2	Methyle chlorofòrm	ppm Δ^2	Ethylene dichloride	ppm Δ^2	Toluene	ppm Δ^2
Tunnel Fy	naust													
T040723F	7/23/98	16:51	0.0	2.9	18.3	12.9	0.0	10.3	0.0	0.6	0.0	1.6	0.0	10.8
T030723F	7/23/98	17:08	0.0	1.4	0.0	7.0	0.0	3.9	0.0	0.3	0.0	0.8	0.0	4.1
T120725F	7/25/98	18:00	0.0	12.2	276.9	78.1	0.0	31.2	0.0	3.7	0.0	9.5	35.4	9.5
T110725F	7/25/98	16:01	0.0	2.6	12.8	10.2	0.0	7.2	0.0	0.5	0.0	1.2	0.0	7.5
T010725F	7/25/98	18:33	0.0	11.8	197.1	64.1	0.0	28.0	0.0	3.0	0.0	7.8	0.0	31.2
T070725F	7/25/98	15:48	0.0	3.0	17.8	12.1	0.0	8.3	0.0	0.6	0.0	1.5	0.0	8.6
T030725F	7/25/98	15:32	0.0	1.9	0.0	7.6	0.0	5.1	0.0	0.3	0.0	0.9	0.0	5.3
T150726F	7/26/98	19:47	0.0	3.8	88.9	39.6	0.0	20.6	0.0	1.9	0.0	4.8	0.0	21.4
T080726F	7/26/98	19:24	0.0	5.4	40.1	25.3	0.0	15.0	0.0	1.2	0.0	3.1	0.0	15.5
T110727F	7/27/98	18:00	0.0	14.6	226.5	71.6	0.0	32.5	0.0	3.4	0.0	8.7	0.0	38.8
T070727F	7/27/98	16:47	10.9	4.1	143.1	59.5	0.0	24.6	0.0	2.8	0.0	7.2	0.0	25.6
T010727F	7/27/98	17:45	0.0	51.6	1724.8	413.7	0.0	142.1	0.0	19.6	0.0	50.3	0.0	147.7
T030727F	7/27/98	17:30	0.0	3.7	0.0	17.9	0.0	10.3	0.0	0.8	0.0	2.0	0.0	10.7
Average			0.8	9.2	211.3	63.1	0.0	26.1	0.0	3.0	0.0	7.7	2.7	25.9

File Name	Date	1,3- butadiene	ppm Λ^2	Methanol	ppm Δ^2	Cumene	ppm Δ^2	Ethyl benzene	ppm Δ^2	Hexane	ppm Δ^2	Methylene chloride	ppm Δ^2	Propional dehyde	ppm Δ^2
Tunnel Ext	naust														
T040723F	7/23/98	0.0	1.4	0.0	1.1	0.0	4.0	0.0	10.8	34.2	1.1	0.0	1.0	0.0	1.7
T030723F	7/23/98	0.0	0.7	0.0	0.5	0.0	1.5	0.0	1.1	2.3	0.3	0.0	0.5	0.0	0.7
T120725F	7/25/98	0.0	8.7	0.0	6.5	0.0	12.0	0.0	32.6	102.7	3.2	0.0	6.0	0.0	5.2
T110725F	7/25/98	0.0	1.1	0.0	0.8	0.0	2.8	0.0	7.5	4.8	0.5	0.0	0.8	0.0	1.2
T010725F	7/25/98	0.0	7.1	0.0	5.3	0.0	10.8	0.0	29.2	79.3	2.9	0.0	4.9	0.0	4.6
T070725F	7/25/98	0.0	1.3	0.0	1.0	0.0	3.2	0.0	8.6	3.0	0.5	0.0	0.9	0.0	1.4
T030725F	7/25/98	0.0	0.8	0.0	0.6	0.0	2.0	0.0	5.3	1.2	0.3	0,0	0.5	0.0	0.8
T150726F	7/26/98	0.0	4.4	0.0	3.3	0.0	7.9	0.0	21.5	30.0	0.7	0.0	3.1	0.0	3.4
T080726F	7/26/98	0.0	2.8	0.0	2.1	0.0	5.8	0.0	15.6	3.2	0.5	0.0	1.9	0.0	2.5
T110727F	7/27/98	0.0	8.0	0.0	5.9	0.0	12.5	0.0	33.9	116.7	3.7	0.0	5.5	0.0	5.4
T070727F	7/27/98	0.0	6.6	0.0	4.9	0.0	9.5	0.0	25.7	0.0	2.5	0.0	4.6	0.0	4.1
T010727F	7/27/98	0.0	45.9	0.0	34.2	0.0	54.8	0.0	148.5	95.1	4.5	0.0	31.8	0.0	23.6
T030727F	7/27/98	0.0	1.9	0.0	1.4	0.0	4.0	0.0	10.7	4.3	0.7	0.0	1.3	0.0	1.7
Average		0.0	7.0	0.0	5.2	0.0	10.1	0.0	27.0	36.7	1.6	0.0	4.8	0.0	4.3

File Name	Date	Styrene	ppm Δ^2	1,1,2,2- Tetrachlor oethane	ppm Δ^2	p-Xylene	ppm Δ^2	o-Xylene	ppm Δ^2	m-Xylene	ppm Δ^2	2,2,4- Trimethyl pentane	ppm Λ^2	Formaldeh yde	ppm Δ^2
Tunnal Fyh	nouet														
T040723E	7/23/98	0.0	24	1 0.0	1.0	0.0	23	L 0.0	5.9	20.9	33	28	0.7	68	1.6
T040723F	7/23/98	0.0	1.4	0.0	0.5	0.0	11	0.0	2.5	0.0	3.2	0.0	0.7	0.0	0.6
T120725F	7/25/98	0.0	14.2	0.0	6.1	0.0	13.8	0.0	22.5	0.0	25.3	6.9	2.3	28.2	5.1
T110725F	7/25/98	0.0	1.8	0.0	0.8	0.0	1.8	0.0	4.5	0.0	5.8	0.0	0.7	1.5	0.8
T010725F	7/25/98	0.0	11.7	0.0	5.0	0.0	11.3	0.0	17.9	50.9	8.8	2.9	1.9	13.6	4.2
T070725F	7/25/98	0.0	2.2	0.0	0.9	0.0	2.1	0.0	5.2	0.0	6.7	0.0	0.8	1.9	0.9
T030725F	7/25/98	0.0	1.3	0.0	0.6	0.0	1.3	0.0	3.2	0.0	4.1	0.0	0.5	0.8	0.6
T150726F	7/26/98	0.0	7.2	0.0	3.1	0.0	7.0	0.0	13.0	0.0	16.7	0.0	1.4	3.3	2.6
T080726F	7/26/98	0.0	4.6	0.0	2.0	0.0	4.5	0.0	9.5	0.0	12.1	0.0	1.5	0.0	2.2
T110727F	7/27/98	0.0	13.0	0.0	5.6	0.0	12.6	0.0	22.2	75.5	11.2	2.5	2.4	18.9	5.3
T070727F	7/27/98	0.0	10.8	0.0	4.6	0.0	10.5	0.0	15.6	0.0	20.0	0.0	2.5	0.0	3.6
T010727F	7/27/98	0.0	75.3	0.0	32.3	0.0	73.0	0.0	89.8	0.0	115.2	0.0	7.3	21.6	16.6
T030727F	7/27/98	0.0	3.0	0.0	1.3	0.0	3.0	0.0	6.5	0.0	8.3	1.0	0.5	0.0	1.5
Average		0.0	11.4	0.0	4.9	0.0	11.1	0.0	16.8	11.3	18.5	1.2	1.8	7.4	3.5

File Name	Date	Time	Benzene	ppm Δ^2	Toluene-	ppm Δ^2	Methyl chloride	ppm Δ^2	Methyle chloroform	ppm Δ^2	Ethylene dichloride	ppm Δ^2
Process Sta	ick											
T020721F	7/21/98	20:10	0.0	12.1	362.0	97.8	0.0	38.3	0.0	4.6	0.0	11.7
T010721F	7/21/98	20:41	32.6	7.5	1917.8	340.3	0.0	45.2	0.0	16.1	0.0	41.3
T060722F	7/22/98	19:28	16.7	6.9	162.0	66.6	0.0	30.4	0.0	3.1	0.0	8.1
T050722F	7/22/98	19:55	26.9	7.1	1925.6	339.1	0.0	42.4	0.0	16.1	0.0	41.2
Average			19.0	8.4	1091.9	210.9	0.0	39.1	0.0	10.0	0.0	25.6

File Name	Date	Toluene	ppm Δ^2	1,3- butadienc	ppm Δ^2	Methanol	ppm Δ^2	Cumene	ppm Δ^2	Ethyl benzene	ppm Δ^2	Hexane	ppm Δ^2
Process Sta	ick						i						
T020721F	7/21/98	92.0	9.0	13.5	9.6	0.0	7.9	0.0	14.8	0.0	40.1	79.0	1.5
T010721F	7/21/98	0.0	47.0	0.0	37.7	0.0	28.0	0.0	17.4	0.0	47.2	9.2	1.5
T060722F	7/22/98	0.0	31.6	10.6	5.8	0.0	5.5	0.0	11.7	0.0	31.7	37.6	1.9
T050722F	7/22/98	0.0	44.1	0.0	37.6	0.0	28.0	0.0	16.3	0.0	44.3	5.9	1.4
Average		23.0	32.9	6.0	22.7	0.0	17.4	0.0	15.1	0.0	40.8	32.9	1.6

File Name	Date	Methylene chloride	ppm Δ^2	Propional dehyde	ppm Δ^2	Styrene	ppm Δ^2	1,1,2,2- Tetrachlor oethane	ppm Δ^2	p-Xylene	ppm Δ^2	o-Xylene	ppm Δ^2
Process Sta	ick												
T020721F	7/21/98	0.0	7.4	8.0	6.3	17.3	17.0	0.0	7.5	0.0	16.9	0.0	22.6
T010721F	7/21/98	0.0	26.1	10.5	5.8	0.0	61.8	0.0	26,5	0.0	59.9	0.0	28.6
T060722F	7/22/98	0.0	5.1	0.0	4.9	0.0	12.0	0.0	5.2	0.0	11.7	22.1	8.7
T050722F	7/22/98	0.0	26.0	7.6	5.4	0.0	61.6	0.0	26.4	0.0	59.7	0.0	26.8
Average		0.0	16.2	6.5	5.6	4.3	38.1	0.0	16.4	0.0	37.1	5.5	21.7

File Name	Date	m-Xylcne	ppm Δ^2	2,2,4 - Trimethyl pentane	ppm Δ^2	Formaldeh yde	ppm Δ^2
Process Sta	ck						
T020721F	7/21/98	0.0	31.1	0.0	3.9	16.5	5.8
T010721F	7/21/98	0.0	36.7	0.0	4.5	0.0	6.6
T060722F	7/22/98	0.0	24.6	0.0	3.1	9.7	3.8
T050722F	7/22/98	0.0	34.4	0.0	4.3	0.0	6.2
Average		0.0	31.7	0.0	3.9	6.6	5.6

Appendix E THC Data

Run 1 - Dryer Stack - 7/21/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
THC	0.0	0.0	0.0	Pass
	90.3	90.2	0.1	Pass
	50.2	50.9	0.7	Pass
	25.0	25.0	0.0	Pass

Instrument Span for THC is 100 ppm Pass/Fail Criteria is +/- 5% of Cal Gas for THC

Zero Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
0.0	0.3	0.3	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % span error	
0.3	0.3	0.0	Pass

Span Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
90.2	89.9	0.3	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % Error	
89.9	89.5	0.4	Pass

Run 2 - Dryer Stack - 7/22/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
тнс	0.0	0.2	0.2	Pass
	90.3	90.1	0.2	Pass
	50.2	50.6	0.4	Pass
	25.0	25.6	0.6	Pass

Instrument Span for THC is 100 ppm Pass/Fail Criteria is +/- 5% of Cal Gas for THC

Zero Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
0.2	-0.1	0.3	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % span error	
-0.1	0.3	0.4	Pass

Span Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
90.2	90.9	0.7	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % Error	
89.9	90.3	0.4	Pass

Run 1 - Load Out - 7/24/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As %span error	Pass/ Fail
THC	0.0	1.2	0.1	Pass
	899.0	905.1	0.6	Pass
	498.0	508.0	1.0	Pass
	249.0	246.0	0.3	Pass
Instrument Spa	an for THC Silo is	1000 ppm		
Pass/Fail Crite	ria is +/- 5% of Ca	al Gas for THC		
		Zerc	o Drift	
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC	1.2	-0.1	0.1	Pass
		Spar	n Drift	
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Silo	905.0	906.8	0.2	Pass

Run 2 - Load Out - 7/25/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
THC	0.0	1.7	0.2	Pass
	899.0	902.4	0.3	Pass
	498.0	506.3	0.8	Pass
	249.0	254.6	0.6	Pass
Instrument Spa	an for THC is 100) ppm		
Pass/Fail Crite	ria is +/- 5% of Ca	al Gas for THC		
		Zero	o Drift	
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC	1.7	3.7	0.2	Pass
		Spa	n Drift	
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Silo	902.0	900.1	0.2	Pass

Run 3 - Load Out - 7/27/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
THC Silo	0.0	1.1	0.1	Pass
	899.0	907.6	0.9	Pass
	498.0	505.0	0.7	Pass
	249.0	261.3	1.2	Pass

Instrument Span for THC Silo is 1000 ppm

Pass/Fail Criteria is +/- 5% of Cal Gas for THC

	Cal Gas	Measured	Difference	Pass/ Fail
	Value	Value	As % span error	
THC Tunnel	0.0	0.2	0.2	Pass
	90.4	90.4	0.0	Pass
	50.2	50.9	0.7	Pass
	25.0	25.5	0.5	Pass
Instrument Spa	an for THC Tunnel i	s 100 ppm		

Pass/Fail Criteria is +/- 5% of Cal Gas for THC

	Zero Drift			
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Silo	1.1	-0.9	0.2	Pass
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Tunnel	0.2	0.1	0.1	Pass
			Span Drift	
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Silo	907.6	903.3	0.4	Pass
	Initial Value	Final Value	Difference As % span error	Pass/Fail
THC Tunnel	90.4	90.6	0.2	Pass

Run 4 - Baseline - 7/26/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
THC	0.0	0.2	0.2	Pass
	90.3	90.6	0.3	Pass
	50.2	51.1	0.9	Pass
	25.0	25.5	0.5	Pass

Instrument Span for THC is 100 ppm Pass/Fail Criteria is +/- 5% of Cal Gas for THC

Zero Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
0.2	0.1	0.1	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % span error	
0.1	0.1	0.0	Pass

Span Drift

Initial	1st Drift Check	Difference	Pass/Fail
Value	Value	As % span error	
90.5	90.4	0.1	Pass
1st Drift Check	Final	Difference	Pass/Fail
Value	Value	As % span error	
90.4	90.8	0.4	Pass

Intermittent Load Dump - 7/25/98

Calibration Error Determination

	Cal Gas Value	Measured Value	Difference As % span error	Pass/ Fail
THC	0.0 90.4 50.2 25.0	0.2 90.7 50.9 24.7	0.2 0.3 0.7 0.3	Pass Pass Pass Pass
Instrument S Pass/Fail Cri	pan for THC is 100 ppn teria is +/- 5% of Cal G	n as for THC		
		Zero Drift		
	Initial Value	1st Drift Check Value	Difference As % span error	Pass/Fail
THC	0.2	0.4	0.2	Pass
	1st Drift Check Value	Final Value	Difference As % span error	Pass/Fail
	0.4	0.0	0.4	Pass
		Spa	ın Drift	
	Initial Value	1st Drift Check Value	Difference As % span error	Pass/Fail
THC Silo	90.7	90.4	0.3	Pass
	1st Drift Check Value	Final Value	Difference As % span error	Pass/Fail
	90.4	90.4	0.0	Pass
Response Times

Analyzer	Response Time
THC Silo	1 min. 25 sec.
THC Tunnel	35 sec.
THC Dryer Stack	1 min. 30 sec.

Graph

THC Concentrations During Intermittant Loadout Testing

Plant C Run 1 Dryer Stack Date: 7/21/98 Project # 4701-08-03-04 Operator: Gulick

TIME		THC Dryer Stack
24 hr		ppm
1120	11:20	10.7
1121	11:21	5.2
1122	11:22	8.7
1123	11:23	11.5
1124	11:24	18.5
1125	11:25	20.7
1126	11:26	16.1
1127	11:27	20.8
1128	11:28	23.8
1129	11:29	24.4
1130	11:30	22.1
1131	11:31	21.4
1132	11:32	23.9
1133	11:33	21.5
1134	11:34	20.2
1135	11:35	23.0
1136	11:36	19.3
1137	11:37	16.5
1138	11:38	14.0
1139	11:39	17.6
1140	11:40	14.2
1141	11:41	14.8
1142	11:42	16.9
1143	11:43	13.6
1144	11:44	15.4
1145	11:45	17.9
1146	11:46	18.2
1147	11:47	11.3
1148	11:48	14.6
1149	11:49	17.9
1150	11:50	11.4
1151	11:51	12.7
1152	11:52	12.2
1153	11:53	11.6
1154	11:54	11.1
1155	11:55	13.1
1156	11:56	10.4

1157	11:57	14.7
1158	11:58	17.2
1159	11:59	16.2
1200	12:00	12.6
1201	12:01	13.4
1202	12:02	17.1
1203	12:03	17.2
1204	12:04	14.6
1205	12:05	16.5
1206	12:06	16.7
1207	12:07	16.5
1208	12:08	16.9
1209	12:09	18.2
Flame Out		
1218	12:18	11.0
1219	12:19	14.7
1220	12:20	18.8
1221	12:21	14.9
1222	12:22	16.0
1223	12:23	16.2
1224	12:24	10.0
1225	12:25	8.6
1226	12:26	9.6
1227	12:27	8.6
1228	12:28	6.2
1229	12:29	7.3
1230	12:30	5.7
1231	12:31	7.1
1232	12:32	7.6
1233	12:33	7.5
1234	12:34	9.9
1235	12:35	9.6
0:00	12:36	13.9
0:00	12:37	6.9
0:00	12:38	7.8
Calibration Che	eck	
1249	12:49	8.8
1250	12:50	11.4
1251	12:51	17.3
1252	12:52	16.2
1253	12:53	13.0
1254	12:54	12.7
1255	12:55	8.1
1256	12:56	9.1
1257	12:57	8.5
1258	12:58	10.1

1259	12:59	9.5
1300	13:00	10.6
1301	13:01	10.5
1302	13:02	6.0
Flame Out		
1305	13:05	19.3
1306	13:06	26.7
1307	13:07	28.0
1308	13:08	32.0
1309	13:09	24.0
1310	13:10	28.7
1311	13:11	24.1
1312	13:12	28.7
1313	13:13	32.8
1314	13:14	28.4
1315	13:15	38.4
1316	13:16	33.2
1317	13:17	36.3
1318	13:18	35.5
Flame Out		
1320	13:20	21.0
1321	13:21	23.4
1322	13:22	29.6
1323	13:23	32.6
1324	13:24	24.3
1325	13:25	24.3
1326	13:26	24.8
1327	13:27	26.0
1328	13:28	31.4
1329	13:29	26.9
1330	13:30	26.2
1331	13:31	31.1
1332	13:32	31.8
Flame Out		
1338	13:38	25.7
1339	13:39	26.5
1340	13:40	28.1
1341	13:41	26.3
1342	13:42	27.4
1343	13:43	19.7
1344	13:44	27.5
1345	13:45	30.7
1346	13:46	24.2
1347	13:47	22.2
1348	13:48	30.5
1349	13:49	27.1

1350	13:50	22.8
1351	13:51	24.2
1352	13:52	24.0
1353	13:53	14.5
1354	13:54	12.6
1355	13:55	8.8
1356	13:56	10.5
1357	13:57	9.5
1358	13:58	10.4
1359	13:59	5.8
1400	14:00	6.0
1401	14:01	8.5
1402	14:02	7.6
1403	14:03	5.1
1404	14:04	12.7
1405	14:05	11.0
1406	14:06	9.3
1407	14:07	12.8
1408	14:08	18.5
1409	14:09	17.0
1410	14:10	16.5
1411	14:11	24.2
1412	14:12	25.5
1413	14:13	34.1
1414	14:14	55.8
1415	14:15	54.1
1416	14:16	49.4
1417	14:17	58.9
1418	14:18	63.5
1419	14:19	40.8
1420	14:20	47.0
Minimum=		5.1
Maximum=		63.5
Average=		19.2

Plant C Run 2 Dryer Stack Date: 7/21/98 Project # 4701=08-03-04 Operator: Gulick

TIME		THC Dryer Stack
24 hr		ppm
935	9:35	8.2
936	9:36	8.4
937	9:37	7.0
938	9:38	7.1
939	9:39	8.2
940	9:40	6.0
941	9:41	7.1
942	9:42	7.3
943	9:43	8.4
944	9:44	7.1
945	9:45	5.6
946	9:46	6.9
947	9:47	7.6
948	9:48	6.6
949	9:49	5.6
950	9:50	6.8
951	9:51	5.6
952	9:52	5.8
953	9:53	5.8
954	9:54	6.0
955	9:55	4.7
956	9:56	6.1
957	9:57	6.1
958	9:58	6.6
959	9:59	4.8
1000	10:00	6.5
1001	10:01	5.6
1002	10:02	5.4
1003	10:03	6.6
1004	10:04	6.5
1005	10:05	4.8
1006	10:06	5.1
1007	10:07	5.7
1008	10:08	4.5
1009	10:09	4.4
1010	10:10	7.7
1011	10:11	2.9

1012	10:12	7.2
1013	10:13	8.0
1014	10:14	7.5
1015	10:15	7.6
1016	10:16	7.5
1017	10:17	8.8
1018	10:18	7.2
1019	10:19	8.1
1020	10:20	6.9
1021	10:21	7.0
1022	10:22	7.5
1023	10:23	9.7
1024	10:24	8.2
1025	10:25	7.1
1026	10:26	8.1
1027	10:27	6.6
1028	10:28	7.4
1029	10:29	7.0
1030	10:30	8.1
1031	10:31	8.7
1032	10:32	9.0
1033	10:33	7.8
1034	10:34	7.2
1035	10:35	7.9
1036	10:36	8.2
1037	10:37	7.3
1038	10:38	8.0
1039	10:39	7.5
1040	10:40	4.9
1041	10:41	4.7
1042	10:42	5.2
1043	10:43	4.6
1044	10:44	3.4
1045	10:45	4.2
1046	10:46	3.5
1047	10:47	3.2
1048	10:48	4.0
1049	10:49	4.0
1050	10:50	3.7
1051	10:51	3.4
1052	10:52	3.8
1053	10:53	2.8
1054	10:54	4.8
1055	10:55	3.6
1056	10:56	3.5

Calibration Check

1104	11:04	4.7
1105	11:05	4.6
1106	11:06	5.2
1107	11:07	4.9
1108	11:08	5.8
1109	11:09	5.5
1110	11:10	5.4
1111	11:11	5.3
1112	11:12	5.2
1113	11:13	5.4
1114	11:14	5.1
1115	11:15	6.4
1116	11:16	9.0
1117	11:17	4.7
1118	11:18	6.0
1119	11:19	6.7
1120	11:20	7.6
1121	11:21	6.5
1122	11:22	6.3
1123	11:23	6.5
1124	11:24	6.8
1125	11:25	6.2
1126	11:26	6.2
1127	11:27	6.6
1128	11:28	6.8
1129	11:29	6.0
1130	11:30	6.7
1131	11:31	6.8
1132	11:32	4.6
1133	11:33	6.1
1134	11:34	10.6
1135	11:35	14.3
1136	11:36	10.7
1137	11:37	6.9
1138	11:38	10.3
1139	11:39	24.1
1140	11:40	24.5
1141	11:41	41.8
1142	11:42	28.8
1143	11:43	35.8
1144	11:44	22.7
1145	11:45	46.7
1146	11:46	65.4
1147	11:47	84.4
1148	11:48	67.9
1149	11:49	80.9

4450		
1150	11:50	61.6
1151	11:51	53.8
1152	11:52	66.3
1153	11:53	58.3
1154	11:54	45.1
1155	11:55	35.8
1156	11:56	36.8
1157	11:57	47.3
1158	11:58	37.8
1159	11:59	41.3
1200	12:00	37.2
1201	12:01	38.7
1202	12:02	38.3
1203	12:03	38.3
1204	12:04	39.2
1205	12:05	27.5
1206	12:06	32.1
1207	12:07	26.8
1208	12:08	34.0
1209	12:09	57.3
1210	12:10	42.4
1211	12:11	41.8
1212	12:12	36.5
1213	12:13	28.7
1214	12:14	33.7
1215	12:15	30.2
1216	12:16	40.1
1217	12:17	35.7
1218	12:18	39.6
1219	12:19	31.2
1220	12:20	37.5
1221	12:21	41.0
1222	12:22	34.5
1223	12.23	31.3
1224	12:20	34.4
1225	12:25	45.9
1226	12:26	37.5
1227	12.20	57.3
1228	12.28	417
1229	12.29	72.5
1230	12:20	63.3
1231	12:31	46.4
1232	12:32	44 A
1233	12:32	55 1
1234	12.30	65 A
1234	12.07	00.0 0/ 1
1200	12.00	24.I

1236	12:36	38.3	
1237	12:37	36.4	
Minimum=		2.8	
Maximum=		84.4	
Average		10 7	
Average-		18.7	

Plant C Run 1 Load Out Date 7/24/98 Project # 4701-08-03-04 Operator: Gulick

Time		THC Silo		THC Tunnel
24 hr		ppm		ppm
720	7:20	56.1	7:20	
721	7:21	99.8	7:21	
722	7:22	146.2	7:22	
723	7:23	202.8	7:23	
724	7:24	259.0	7:24	
725	7:25	314.7	7:25	
726	7:26	360.5	7:26	
727	7:27	412.4	7:27	
728	7:28	447.5	7:28	
729	7:29	490.0	7:29	
730	7:30	532.5	7:30	
731	7:31	560.9	7:31	
732	7:32	599.7	7:32	
733	7:33	614.5	7:33	
734	7:34	647.5	7:34	
735	7:35	638.6	7:35	
736	7:36	639.6	7:36	
737	7:37	658.4	7:37	
738	7:38	682.0	7:38	
739	7:39	690.3	7:39	
740	7:40	707.7	7:40	
741	7:41	726.4	7:41	
742	7:42	749.8	7:42	
743	7:43	771.4	7:43	
744	7:44	748.9	7:44	
745	7:45	726.4	7:45	
746	7:46	751.0	7:46	
747	7:47	765.5	7:47	
748	7:48	724.9	7:48	
749	7:49	692.9	7:49	
750	7:50	699.6	7:50	
751	7:51	692.4	7:51	
752	7:52	723.1	7:52	
753	7:53	757.2	7:53	
754	7:54	780.2	7:54	
755	7:55	732.6	7:55	
756	7:56	734.5	7:56	

757	7:57	767.0	7:57	
758	7:58	789.5	7:58	
759	7:59	747.8	7:59	
800	8:00	748.5	8:00	
801	8:01	770.8	8:01	
802	8:02	744.2	8:02	
803	8:03	702.6	8:03	
804	8:04	712.4	8:04	
805	8:05	714.0	8:05	
806	8:06		8:06	
807	8:07		8:07	
808	8:08		8:08	
809	8:09		8:09	
810	8:10		8:10	
811	8:11		8:11	
812	8:12		8:12	
813	8:13		8:13	
814	8:14		8:14	12.8
815	8:15		8:15	26.0
816	8:16		8:16	15.5
817	8:17		8:17	11.5
818	8:18		8:18	10.1
819	8:19		8:19	8.4
820	8:20		8:20	7.1
821	8:21		8:21	6.3
822	8:22		8:22	5.6
823	8:23		8:23	5.3
824	8:24		8:24	10.0
825	8:25		8:25	15.5
826	8:26		8:26	12.7
827	8:27		8:27	10.1
828	8:28		8:28	6.6
829	8:29		8:29	8.0
830	8:30		8:30	6.1
831	8:31		8:31	17.2
832	8:32		8:32	10.1
833	8:33		8:33	16.8
834	8:34		8:34	7.5
835	8:35		8:35	9.6
836	8:36		8:36	14.9
837	8:37		8:37	6.2
838	8:38		8:38	4.6
839	8:39		8:39	4.1
840	8:40		8:40	3.7
841	8:41		8:41	15.6
842	8:42		8:42	17.3

843	8:43		8:43	11.1
844	8:44		8:44	15.6
845	8:45		8:45	6.0
846	8:46		8:46	17.3
847	8:47		8:47	6.8
848	8:48		8:48	4.7
849	8:49		8:49	18.2
850	8:50		8:50	6.6
851	8:51		8:51	4.7
852	8:52		8:52	19.1
853	8:53		8:53	16.0
854	8:54		8:54	12.0
855	8:55		8:55	12.9
856	8:56		8:56	12.0
857	8:57		8:57	12.0
858	8:58		8:58	14.4
859	8:59		8:59	8.3
900	9:00		9:00	5.2
901	9:01		9:01	4.9
902	9:02		9:02	14.9
903	9:03		9:03	5.2
904	9:04		9:04	3.5
905	9:05		9:05	3.0
906	9:06		9:06	11.7
907	9:07		9:07	10.9
908	9:08		9:08	11.0
909	9:09		9:09	4.6
910	9:10		9:10	3.3
911	9:11		9:11	2.8
912	9:12		9:12	14.2
913	9:13		9:13	11.0
914	9:14		9:14	4.6
915	9:15		9:15	14.9
916	9:16		9:16	6.8
917	9:17		9:17	19.0
Off Line				
936	9:36	394.0	9:36	
937	9:37	509.3	9:37	
938	9:38	512.5	9:38	
939	9:39	499.6	9:39	
940	9:40	505.3	9:40	
941	9:41	512.2	9:41	
942	9:42	489.5	9:42	
943	9:43	468.7	9:43	
944	9:44	456.3	9:44	
945	9:45	457.5	9:45	

946	9:46	454.1	9:46
947	9:47	461.6	9:47
948	9:48	467.1	9:48
949	9:49	472.5	9:49
950	9:50	484.4	9:50
951	9:51	495.4	9:51
952	9:52	485.9	9:52
953	9:53	482.8	9:53
954	9:54	473.7	9:54
955	9:55	465.0	9:55
956	9:56	468.1	9:56
957	9:57	477.0	9:57
958	9:58	494.8	9:58
959	9:59	481.6	9:59
1000	10:00	485.2	10:00
1001	10:01	487.3	10:01
1002	10:02	477.8	10:02
1003	10:03	473.7	10:03
1004	10:04	457.0	10:04
1005	10:05	460.9	10:05
1006	10:06	472.6	10:06
1007	10:07	475.1	10:07
1008	10:08	479.8	10:08
1009	10:09	473.3	10:09
1010	10:10	454.8	10:10
1011	10:11	445.9	10:11
1012	10:12	438.0	10:12
1013	10:13	434.1	10:13
1014	10:14	442.0	10:14
1015	10:15	438.8	10:15
1016	10:16	444.6	10:16
1017	10:17	444.7	10:17
1018	10:18	437.7	10:18
1019	10:19	430.8	10:19
1020	10:20	427.2	10:20
1021	10:21	423.3	10:21
1022	10:22	426.2	10:22
1023	10:23	425.9	10:23
1024	10:24	427.9	10:24
1025	10:25	424.6	10:25
1026	10:26	442.1	10:26
1027	10:27	451.3	10:27
1028	10:28	455.2	10:28
1029	10:29	455.4	10:29
1030	10:30	454.3	10:30
1031	10:31		10:31

1032	10:32	10:32	
1033	10:33	10:33	
1034	10:34	10:34	
1035	10:35	10:35	
1036	10:36	10:36	9.3
1037	10:37	10:37	13.9
1038	10:38	10:38	10.3
1039	10:39	10:39	16.3
1040	10:40	10:40	7.6
1041	10:41	10:41	13.0
1042	10:42	10:42	8.2
1043	10:43	10:43	6.3
1044	10:44	10:44	14.2
1045	10:45	10:45	7.9
1046	10:46	10:46	15.4
1047	10:47	10:47	5.3
1048	10:48	10:48	3.0
1049	10:49	10:49	11.9
1050	10:50	10:50	5.5
1051	10:51	10:51	2.4
1052	10:52	10:52	1.4
1053	10:53	10:53	1.0
1054	10:54	10:54	0.8
1055	10:55	10:55	1.1
1056	10:56	10:56	1.9
1057	10:57	10:57	0.1
1058	10:58	10:58	-0.2
1059	10:59	10:59	9.3
1100	11:00	11:00	2.0
1101	11:01	11:01	8.0
1102	11:02	11:02	8.7
1103	11:03	11:03	4.3
1104	11:04	11:04	12.9
1105	11:05	11:05	5.9
1106	11:06	11:06	2.6
1107	11:07	11:07	0.8
1108	11:08	11:08	0.0
1109	11:09	11:09	-0.2
1110	11:10	11:10	4.0
1111	11:11	11:11	3.7
1112	11:12	11:12	2.7
1113	11:13	11:13	9.4
1114	11:14	11:14	1.8
1115	11:15	11:15	0.2
1116	11:16	11:16	-0.6
1117	11:17	11:17	-1.1

1118	11:18	11:18	6.0
Off Line			010
1124	11:24	11:24	6.3
1125	11:25	11:25	6.0
1126	11:26	11:26	9.0
1127	11:27	11:27	11.4
1128	11:28	11:28	3.6
1129	11:29	11:29	8.2
1130	11:30	11:30	2.9
1131	11:31	11:31	9.7
1132	11:32	11:32	2.8
1133	11:33	11:33	1.1
1134	11:34	11:34	0.2
1135	11:35	11:35	3.9
1136	11:36	11:36	3.7
1137	11:37	11:37	9.4
1138	11:38	11:38	2.5
1139	11:39	11:39	1.1
1140	11:40	11:40	4.8
1141	11:41	11:41	5.8
1142	11:42	11:42	6.5
1143	11:43	11:43	7.1
1144	11:44	11:44	7.1
1145	11:45	11:45	1.7
1146	11:46	11:46	11.5
1147	11:47	11:47	3.7
1148	11:48	11:48	12.0
1149	11:49	11:49	4.3
1150	11:50	11:50	2.0
1151	11:51	11:51	0.8
1152	11:52	11:52	3.0
1153	11:53	11:53	7.1
1154	11:54	11:54	2.4
1155	11:55	11:55	4.2
1156	11:56	11:56	4.2
1157	11:57	11:57	1.6
1158	11:58	11:58	9.0
1159	11:59	11:59	9.4
1200	12:00	12:00	6.9
1201	12:01	12:01	2.2
1202	12:02	12:02	0.9
1203	12:03	12:03	0.4
1204	12:04	12:04	0.2
1205	12:05	12:05	10.6
1206	12:06	12:06	7.6
1207	12:07	12:07	10.2

1208	12:08	12:08	2.7
1209	12:09	12:09	1.5
1210	12:10	12:10	11.9
1211	12:11	12:11	3.6
1212	12:12	12:12	2.1
1213	12:13	12:13	9.0
1214	12:14	12:14	2.3
1215	12:15	12:15	1.0
1216	12:16	12:16	0.2
1217	12:17	12:17	8.7
1218	12:18	12:18	3.3
1219	12:19	12:19	3.3
1220	12:20	12:20	8.1
1221	12:21	12:21	2.9
1222	12:22	12:22	9.4
1223	12:23	12:23	2.8
1224	12:24	12:24	1.3
1225	12:25	12:25	9.7
1226	12:26	12:26	8.9
1227	12:27	12:27	4.6
1228	12:28	12:28	2.0
1229	12:29	12:29	0.9
1230	12:30	12:30	0.2
1231	12:31	12:31	3.3
1232	12:32	12:32	8.4
1233	12:33	12:33	2.5
1234	12:34	12:34	1.0
1235	12:35	12:35	3.3
1236	12:36	12:36	7.3
1237	12:37	12:37	18.6
1238	12:38	12:38	11.4
1239	12:39	12:39	13.1
1240	12:40	12:40	12.1
1241	12:41	12:41	14.7
1242	12:42	12:42	9.4
1243	12:43	12:43	11.5
1244	12:44	12:44	3.8
1245	12:45	12:45	9.4
1246	12:46	12:46	10.6
1247	12:47	12:47	6.9
1248	12:48	12:48	3.0
1249	12:49	12:49	8.1
1250	12:50	12:50	5.2
1251	12:51	12:51	5.3
1252	12:52	12:52	6.8
1253	12:53	12:53	2.4

1254	12:54		12:54	8.6
1255	12:55		12:55	7.7
1256	12:56		12:56	6.5
1257	12:57		12:57	10.3
Minimum=		56.1		-1.1
Maximum=		789.5		26.0
Average=		531.4		7.1

Plant C Run 2 Load Out Date: 7/25/98 Project # 4701-08-03-04 Operator: Gulick

Time 24 hr		THC Tunnel ppm		THC Silo ppm
				11
710	7:10	3.1	7:10	
/11	7:11	8.5	7:11	
/12	7:12	11.1	7:12	
713	7:13	5.7	7:13	
/14	7:14	7.3	7:14	
/15	7:15	9.5	7:15	
/16	7:16	6.0	7:16	
/17	7:17	7.6	7:17	
718	7:18	3.8	7:18	
719	7:19	7.3	7:19	
720	7:20	8.6	7:20	
721	7:21	9.4	7:21	
722	7:22	9.4	7:22	
723	7:23	8.1	7:23	
724	7:24	2.0	7:24	
725	7:25	10.4	7:25	
726	7:26	13.5	7:26	
727	7:27	4.9	7:27	
728	7:28	9.0	7:28	
729	7:29	8.7	7:29	
730	7:30	7.2	7:30	
731	7:31	4.7	7:31	
732	7:32	7.3	7:32	
733	7:33	1.9	7:33	
734	7:34	5.3	7:34	
735	7:35	8.1	7:35	
736	7:36	8.6	7:36	
737	7:37	7.1	7:37	
738	7:38	8.3	7:38	
739	7:39	10.8	7:39	
740	7:40	8.9	7:40	
741	7:41	10.6	7:41	
742	7:42	6.3	7:42	
743	7:43	11.8	7:43	
744	7:44	4.1	7:44	
745	7:45	4.3	7:45	
746	7:46	14.1	7:46	

747	7:47	5.9	7:47
748	7:48	4.8	7:48
749	7:49	12.3	7:49
750	7:50	8.7	7:50
751	7:51	9.5	7:51
752	7:52	9.0	7:52
753	7:53	4.0	7:53
754	7:54	11.7	7:54
755	7:55	6.8	7:55
756	7:56	8.1	7:56
757	7:57	8.0	7:57
758	7:58	16.0	7:58
759	7:59	14.7	7:59
800	8:00	12.1	8:00
801	8:01	4.3	8:01
802	8:02	13.0	8:02
803	8:03	11.8	8:03
804	8:04	11.0	8:04
805	8:05	9.8	8:05
806	8:06	12.0	8:06
807	8:07	10.2	8:07
808	8:08	10.6	8:08
809	8:09	9.7	8:09
810	8:10	10.9	8:10
811	8:11	7.9	8:11
812	8:12	11.9	8:12
813	8:13	10.6	8:13
814	8:14	11.8	8:14
815	8:15	7.5	8:15
816	8:16	8.5	8:16
817	8:17	8.0	8:17
818	8:18	10.7	8:18
819	8:19	8.9	8:19
820	8:20	7.4	8:20
821	8:21	11.5	8:21
822	8:22	10.3	8:22
823	8:23	1.6	8:23
824	8:24	8.0	8:24
825	8:25	7.6	8:25
826	8:26	10.2	8:26
827	8:27	7.2	8:27
828	8:28	12.1	8:28
829	8:29	6.3	8:29
830	8:30	2.8	8:30
831	8:31	10.5	8:31
832	8:32	7.8	8:32

833	8:33	8.0	8:33	
834	8:34	5.4	8:34	
835	8:35	8.5	8:35	
836	8:36	6.0	8:36	
837	8:37	7.6	8:37	
838	8:38	6.5	8:38	
839	8:39	9.3	8:39	
840	8:40	6.0	8:40	
841	8:41	3.4	8:41	
842	8:42	8.4	8:42	
843	8:43	8.0	8:43	
844	8:44	4.9	8:44	
845	8:45	8.8	8:45	28.9
846	8:46	5.1	8:46	56.4
847	8:47	5.8	8:47	97.8
848	8:48	9.3	8:48	147.5
849	8:49	6.8	8:49	213.1
850	8:50	8.0	8:50	286.7
851	8:51	9.2	8:51	370.5
852	8:52	10.3	8:52	468.5
853	8:53	13.4	8:53	548.6
854	8:54	15.0	8:54	609.1
855	8:55	16.9	8:55	639.2
856	8:56	15.5	8:56	648.8
857	8:57	14.8	8:57	646.2
858	8:58	16.0	8:58	652.6
859	8:59	16.4	8:59	655.6
900	9:00	14.7	9:00	649.0
901	9:01	15.6	9:01	655.2
902	9:02	17.5	9:02	632.3
903	9:03	13.1	9:03	605.6
904	9:04	13.1	9:04	595.1
905	9:05	15.4	9:05	587.0
906	9:06	10.0	9:06	560.5
907	9:07	10.5	9:07	477.3
908	9:08	12.7	9:08	447.8
909	9:09	9.8	9:09	444.7
910	9:10	13.3	9:10	439.2
911	9:11	11.1	9:11	443.7
912	9:12	11.5	9:12	448.3
913	9:13	12.6	9:13	433.1
914	9:14	14.4	9:14	423.6
915	9:15	11.7	9:15	419.6
916	9:16	11.0	9:16	411.9
917	9:17	12.6	9:17	426.8
918	9:18	11.7	9:18	442.7

919	9:19	13.6	9:19	443.8
920	9:20	14.0	9:20	435.0
921	9:21	13.8	9:21	432.5
922	9:22	11.7	9:22	446.5
923	9:23	13.4	9:23	458.4
924	9:24	11.5	9:24	456.5
925	9:25	17.5	9:25	439.9
926	9:26	14.2	9:26	431.5
927	9:27	6.4	9:27	264.3
928	9:28	4.1	9:28	69.3
929	9:29	5.9	9:29	48.0
930	9:30	8.6	9:30	37.5
931	9:31	6.9	9:31	35.0
932	9:32	4.0	9:32	28.8
933	9:33	11.6	9:33	26.3
934	9:34	5.6	9:34	24.5
935	9:35	7.7	9:35	21.3
936	9:36	4.5	9:36	20.3
937	9:37	2.5	9:37	18.4
938	9:38	7.5	9:38	20.5
939	9:39	9.4	9:39	16.7
940	9:40	7.3	9:40	15.3
941	9:41	8.9	9:41	14.2
942	9:42	5.1	9:42	14.2
943	9:43	7.0	9:43	15.1
944	9:44	9.3	9:44	14.1
945	9:45	8.4	9:45	12.8
946	9:46	6.7	9:46	12.0
947	9:47	7.6	9:47	12.5
948	9:48	8.7	9:48	14.2
949	9:49	6.6	9:49	11.7
950	9:50	10.0	9:50	12.6
951	9:51	4.7	9:51	12.7
952	9:52	8.9	9:52	14.4
953	9:53	7.8	9:53	11.5
954	9:54	3.0	9:54	10.3
955	9:55	6.1	9:55	9.7
956	9:56	7.1	9:56	9.3
957	9:57	11.8	9:57	12.8
958	9:58	7.1	9:58	11.5
959	9:59	8.7	9:59	13.7
1000	10:00	4.9	10:00	12.0
1001	10:01	12.0	10:01	12.7
1002	10:02	4.7	10:02	13.9
1003	10:03	13.6	10:03	11.1
1004	10:04	6.7	10:04	9.9

1005	10:05	8.2	10:05	14.2
1006	10:06	8.7	10:06	11.5
1007	10:07	9.1	10:07	9.7
1008	10:08	6.9	10:08	11.9
1009	10:09	5.3	10:09	10.4
1010	10:10	5.0	10:10	9.0
1011	10:11	7.0	10:11	8.0
1012	10:12	11.3	10:12	7.6
1013	10:13	14.0	10:13	10.3
1014	10:14	12.3	10:14	8.9
1015	10:15	6.2	10:15	7.8
1016	10:16	5.2	10:16	7.8
1017	10:17	11.4	10:17	10.8
1018	10:18	2.2	10:18	10.1
1019	10:19	6.5	10:19	10.2
1020	10:20	6.3	10:20	8.9
1021	10:21	6.0	10:21	8.4
1022	10:22	9.9	10:22	7.9
1023	10:23	4.6	10:23	7.4
1024	10:24	6.3	10:24	7.1
1025	10:25	2.9	10:25	6.8
1026	10:26	6.0	10:26	6.8
1027	10:27	5.8	10:27	6.3
1028	10:28	6.6	10:28	6.7
1029	10:29	8.6	10:29	7.1
1030	10:30	7.9	10:30	9.9
1031	10:31	5.4	10:31	9.1
1032	10:32	6.9	10:32	9.6
1033	10:33	5.9	10:33	12.0
1034	10:34	-0.1	10:34	13.6
1035	10:35	33.0	10:35	10.7
1036	10:36	6.2	10:36	8.4
1037	10:37	0.0	10:37	5.5
1038	10:38	-0.2	10:38	12.9
1039	10:39	-0.2	10:39	4.0
1040	10:40	-0.2	10:40	2.8
1041	10:41	-0.2	10:41	7.5
1042	10:42	-0.1	10:42	7.0
1043	10:43	-0.2	10:43	7.4
1044	10:44	-0.2	10:44	12.7
1045	10:45	-0.2	10:45	7.8
1046	10:46	-0.2	10:46	13.8
1047	10:47	0.7	10:47	8.2
1048	10:48	1.1	10:48	5.6
1049	10:49	1.0	10:49	4.1
1050	10:50	1.0	10:50	1.8

1051	10:51	1.0	10:51	8.7
1052	10:52	1.0	10:52	9.5
1053	10:53	1.0	10:53	8.6
1054	10:54	16.4	10:54	6.9
1055	10:55	6.9	10:55	9.4
1056	10:56	7.1	10:56	0.5
1057	10:57	4.1	10:57	6.6
1058	10:58	-0.2	10:58	10.2
1059	10:59	-3.2	10:59	8.4
1100	11:00	-0.1	11:00	7.0
1101	11:01	8.3	11:01	6.2
1102	11:02	2.3	11:02	6.0
1103	11:03	0.7	11:03	9.9
1104	11:04	-1.9	11:04	6.8
1105	11:05	2.0	11:05	4.2
1106	11:06	3.0	11:06	5.7
1107	11:07	2.3	11:07	8.2
1108	11:08	1.6	11:08	6.1
1109	11:09	1.5	11:09	6.2
1110	11:10	1.4	11:10	5.0
1111	11:11	1.2	11:11	1.2
1112	11:12	1.2	11:12	7.2
Offline				
1114	11:14	1.1	11:14	6.4
1115	11:15	0.7	11:15	6.7
1116	11:16	0.3	11:16	3.7
1117	11:17	0.8	11:17	-1.1
1118	11:18	0.7	11:18	4.4
Minimum=		-3.2		-1.1
Maximum=		33.0		655.6
Average=		7.7		135.1

Plant C Run 3 Loadout Date: 7/27/98 Project # 4701-08-03-04 Operator: Gulick

TIME		THC Tunnel		THC Silo	
		ppm		ppm	
710	7:10	7.9	7:10		
711	7:11	6.3	7:11		
712	7:12	8.7	7:12		
713	7:13	6.9	7:13		
714	7:14	7.8	7:14		
715	7:15	5.6	7:15		
716	7:16	4.3	7:16		
717	7:17	3.7	7:17		
718	7:18	3.2	7:18		
719	7:19	3.0	7:19		
720	7:20	2.9	7:20	999.5	999.5 = Off Scale
721	7:21	6.0	7:21	999.5	
722	7:22	4.3	7:22	856.4	
723	7:23	3.1	7:23	999.5	
725	7:25	2.2	7:25	999.5	
726	7:26	2.2	7:26	999.5	
727	7:27	2.0	7:27	999.5	
728	7:28	1.9	7:28	999.5	
729	7:29	1.8	7:29	999.5	
730	7:30	1.8	7:30	999.5	
731	7:31	1.8	7:31	999.5	
732	7:32	1.7	7:32	999.5	
733	7:33	1.8	7:33	999.5	
734	7:34	2.0	7:34	811.9	
735	7:35	1.9	7:35	548.2	
736	7:36	1.8	7:36	388.9	
737	7:37	2.0	7:37	263.2	
741	7:41	7.5	7:41		
742	7:42	6.3	7:42		
743	7:43	4.0	7:43		
744	7:44	3.1	7:44		
745	7:45	3.0	7:45		
746	7:46	6.5	7:46		
747	7:47	5.1	7:47		
748	7:48	6.3	7:48		

749	7:49	7.4	7:49	
750	7:50	6.4	7:50	52.5
751	7:51	5.0	7:51	49.5
752	7:52	4.4	7:52	45.5
753	7:53	4.0	7:53	42.2
754	7:54	3.9	7:54	39.6
755	7:55	6.0	7:55	37.6
756	7:56	6.7	7:56	34.9
757	7:57	6.3	7:57	35.2
758	7:58	8.4	7:58	61.0
759	7:59	5.7	7:59	105.2
800	8:00	4.5	8:00	167.0
801	8:01	3.8	8:01	235.9
802	8:02	5.4	8:02	301.3
803	8:03	7.1	8:03	355.7
804	8:04	8.0	8:04	393.7
805	8:05	5.8	8:05	419.8
806	8:06	7.8	8:06	448.1
807	8:07	6.4	8:07	466.0
808	8:08	4.3	8.08	487.8
809	8:09	3.5	8:09	505.9
810	8:10	3.1	8:10	518.6
811	8:11	4.6	8:11	532.2
812	8:12	8.1	8:12	532.6
813	8:13	5.5	8:13	524.7
814	8:14	12.1	8:14	538.5
815	8:15	7.9	8:15	532.6
816	8:16	7.4	8:16	542.7
817	8:17	8.6	8:17	545.4
818	8:18	8.9	8:18	552.0
819	8:19	7.7	8:19	553.9
820	8:20	6.6	8:20	556.5
821	8:21	9.3	8:21	561.7
822	8:22	10.1	8:22	563.1
823	8:23	10.1	8:23	589.8
824	8:24	7.7	8:24	618.6
825	8:25	10.5	8:25	634.8
826	8:26	9.9	8:26	658.4
827	8:27	10.7	8:27	686.2
828	8:28	8.7	8:28	738.8
829	8:29	8.7	8:29	752.5
830	8:30	8.6	8:30	776.0
831	8:31	9.0	8:31	797.0
832	8:32	11.0	8:32	807.4
833	8:33	11.8	8:33	816.0

834	8:34	14.4	8:34	847.2
835	8:35	11.2	8:35	872.3
836	8:36	10.4	8:36	871.7
837	8:37	11.1	8:37	919.0
838	8:38	13.1	8:38	931.7
839	8:39	8.5	8:39	960.3
840	8:40	10.7	8:40	993.6
841	8:41	9.7	8:41	999.5
842	8:42	13.1	8:42	999.5
843	8:43	12.5	8:43	999.5
844	8:44	11.8	8:44	999.5
845	8:45	12.9	8:45	982.1
846	8:46	10.6	8:46	939.4
847	8:47	10.7	8:47	815.5
848	8:48	7.9	8:48	668.0
849	8:49	7.3	8:49	743.7
850	8:50	8.9	8:50	758.1
851	8:51	7.6	8:51	759.6
852	8:52	9.4	8:52	781.1
853	8:53	10.0	8:53	794.4
854	8:54	8.5	8:54	810.1
855	8:55	9.1	8:55	900.8
856	8:56	6.8	8:56	979.8
857	8:57	8.4	8:57	999.5
858	8:58	9.7	8:58	979.7
859	8:59	8.7	8:59	999.5
900	9:00	7.9	9:00	976.6
901	9:01	9.4	9:01	962.0
902	9:02	9.3	9:02	909.3
903	9:03	8.7	9:03	919.7
904	9:04	9.7	9:04	852.7
905	9:05	9.8	9:05	745.0
906	9:06	8.3	9:06	634.0
907	9:07	11.2	9:07	726.4
908	9:08	13.5	9:08	687.6
909	9:09	11.1	9:09	642.3
910	9:10	8.3	9:10	642.1
911	9:11	8.5	9:11	610.3
912	9:12	7.3	9:12	573.2
913	9:13	9.0	9:13	504.3
914	9:14	10.0	9:14	545.8
915	9:15	7.3	9:15	564.8
916	9:16	8.6	9:16	585.0
917	9:17	8.3	9:17	568.2
918	9:18	5.8	9:18	497.0

919	9:19	9.6	9:19	503.3	
920	9:20	9.3	9:20	601.4	
921	9:21	6.6	9:21	651.2	
922	9:22	7.2	9:22	710.8	
923	9:23	5.6	9:23	722.4	
924	9:24	6.2	9:24	720.5	
925	9:25	6.6	9:25	672.0	
926	9:26	6.0	9:26	653.6	
927	9:27	5.0	9:27	632.6	
928	9:28	4.6	9:28	554.0	
929	9:29	6.4	9:29	559.7	
930	9:30	5.7	9:30	530.3	
931	9:31	8.2	9:31		
932	9:32	5.7	9:32		
933	9:33	5.7	9:33		
934	9:34	7.3	9:34		
935	9:35	5.8	9:35		
936	9:36	7.7	9:36		
937	9:37	7.1	9:37		
938	9:38	11.7	9:38		
939	9:39	6.8	9:39		
940	9:40	7.2	9:40		
941	9:41	6.0	9:41		
942	9:42	4.7	9:42		
943	9:43	4.2	9:43		
944	9:44	5.6	9:44		
945	9:45	7.5	9:45		
947	9:47	6.0	9:47		
948	9:48	7.8	9:48		
949	9:49	6.2	9:49		
950	9:50	6.6	9:50		
951	9:51	5.4	9:51		
952	9:52	4.4	9:52		
953	9:53	4.0	9:53		
954	9:54	5.4	9:54		
955	9:55	5.9	9:55		
956	9:56	6.0	9:56		
957	9:57	6.1	9:57		
958	9:58	5.5	9:58		
959	9:59	5.9	9:59		
1000	10:00	9.4	10:00		
1001	10:01	10.1	10:01		
1002	10:02	10.9	10:02		
1003	10:03	6.7	10:03		

1004	10:04	5.8	10:04	
1005	10:05	9.0	10:05	
1006	10:06	7.9	10:06	
1007	10:07	8.8	10:07	
1008	10:08	8.7	10:08	
1009	10:09	9.1	10:09	
1010	10:10	8.6	10:10	603.4
1011	10:11	8.7	10:11	619.9
1012	10:12	9.1	10:12	570.4
1013	10:13	7.5	10:13	522.9
1014	10:14	8.9	10:14	526.6
1015	10:15	7.1	10:15	512.5
1016	10:16	7.1	10:16	568.3
1017	10:17	7.1	10:17	526.1
1018	10:18	6.7	10:18	560.2
1019	10:19	8.0	10:19	559.1
1020	10:20	7.7	10:20	524.7
1021	10:21	6.3	10:21	486.9
1022	10:22	4.9	10:22	516.0
1023	10:23	5.2	10:23	522.2
1024	10:24	5.7	10:24	505.5
1025	10:25	6.6	10:25	518.0
1026	10:26	7.9	10:26	493.9
1027	10:27	5.6	10:27	463.6
1028	10:28	7.0	10:28	505.2
1029	10:29	6.6	10:29	521.8
1030	10:30	7.0	10:30	503.7
1031	10:31	8.4	10:31	455.1
1032	10:32	8.2	10:32	486.5
1033	10:33	8.0	10:33	473.6
1034	10:34	10.4	10:34	475.0
1035	10:35	8.3	10:35	488.1
1036	10:36	9.4	10:36	496.3
1037	10:37	14.6	10:37	477.9
1038	10:38	13.4	10:38	455.6
1039	10:39	13.5	10:39	525.3
1040	10:40	15.8	10:40	514.2
1041	10:41	9.3	10:41	533.4
1042	10:42	12.6	10:42	543.4
1043	10:43	8.7	10:43	549.3
1044	10:44	6.8	10:44	541.9
1045	10:45	6.0	10:45	494.1
1046	10:46	10.4	10:46	578.8
1047	10:47	8.7	10:47	508.5
1048	10:48	12.3	10:48	571.6

1049	10:49	7.7	10:49	576.2
1050	10:50	12.6	10:50	562.7
1051	10:51	8.4	10:51	591.2
1052	10:52	9.9	10:52	569.7
1053	10:53	10.0	10:53	550.3
1054	10:54	12.6	10:54	543.4
1055	10:55	11.3	10:55	518.4
1056	10:56	8.9	10:56	499.3
1057	10:57	8.8	10:57	514.1
1058	10:58	7.6	10:58	511.4
1059	10:59	8.0	10:59	543.1
1100	11:00	9.7	11:00	533.2
1101	11:01	8.8	11:01	506.3
1102	11:02	7.3	11:02	514.9
1103	11:03	7.4	11:03	530.8
1104	11:04	8.5	11:04	518.4
1105	11:05	8.3	11:05	505.3
1106	11:06	10.1	11:06	519.8
1107	11:07	6.7	11:07	468.7
1108	11:08	5.7	11:08	580.6
1109	11:09	4.9	11:09	579.3
1110	11:10	6.9	11:10	657.3
1111	11:11	9.1	11:11	553.5
1112	11:12	12.6	11:12	605.3
1113	11:13	9.2	11:13	589.7
1114	11:14	11.4	11:14	565.8
1115	11:15	7.8	11:15	518.4
1116	11:16	10.2	11:16	491.0
1117	11:17	8.9	11:17	503.6
1118	11:18	6.4	11:18	505.5
1119	11:19	5.6	11:19	525.1
1120	11:20	5.0	11:20	495.6
1121	11:21	7.8	11:21	518.5
1122	11:22	7.9	11:22	514.3
1123	11:23	5.7	11:23	511.9
1124	11:24	8.1	11:24	497.2
1125	11:25	7.3	11:25	472.3
1126	11:26	9.5	11:26	463.4
1127	11:27	7.0	11:27	448.1
1128	11:28	6.4	11:28	445.2
1129	11:29	6.8	11:29	474.0
1130	11:30	5.1	11:30	493.6
1131	11:31	5.6	11:31	504.4
1132	11:32	6.5	11:32	483.7
1133	11:33	4.8	11:33	498.5

1134	11:34	4.9	11:34	527.0
1135	11:35	7.7	11:35	499.8
1136	11:36	7.4	11:36	500.9
1137	11:37	8.5	11:37	492.8
1138	11:38	11.3	11:38	495.0
1139	11:39	17.1	11:39	498.6
1140	11:40	13.2	11:40	484.9
1141	11:41	10.9	11:41	486.6
1142	11:42	11.1	11:42	489.8
1143	11:43	8.7	11:43	512.0
1144	11:44	9.6	11:44	516.6
1145	11:45	8.5	11:45	514.6
1146	11:46	9.9	11:46	485.2
1147	11:47	8.6	11:47	518.9
1148	11:48	9.5	11:48	522.9
1149	11:49	6.8	11:49	527.5
1150	11:50	6.9	11:50	523.8
1151	11:51	7.5	11:51	512.5
1152	11:52	9.0	11:52	505.9
1153	11:53	7.6	11:53	452.6
1154	11:54	9.4	11:54	471.9
1155	11:55	9.0	11:55	452.3
1156	11:56	9.8	11:56	444.7
1157	11:57	7.3	11:57	451.4
1158	11:58	9.0	11:58	449.8
1159	11:59	8.9	11:59	437.7
1200	12:00	9.7	12:00	433.8
Minimum=		1.7		34.9
Maximum=		17.1		999.5
Average=		7.7		590.1

Plant C Run 4 - Baseline Date: 7/26/98 Project # 4701-08-03-04 Operator: Gulick

TIME		THC Tunnel
24 hr		ppm
925	9:25	1.1
926	9:26	1.1
927	9:27	1.1
928	9:28	1.1
929	9:29	1.1
930	9:30	1.0
931	9:31	1.0
932	9:32	1.0
933	9:33	0.9
934	9:34	1.0
935	9:35	0.9
936	9:36	1.0
937	9:37	0.9
938	9:38	0.9
939	9:39	0.9
940	9:40	0.9
941	9:41	0.9
942	9:42	0.9
943	9:43	0.9
944	9:44	0.8
945	9:45	0.8
946	9:46	0.8
947	9:47	0.7
948	9:48	0.8
949	9:49	0.8
950	9:50	0.8
951	9:51	0.9
952	9:52	0.8
953	9:53	0.8
954	9:54	0.8
955	9:55	0.7
956	9:56	0.8
957	9:57	0.8
958	9:58	0.8
959	9:59	0.7
1000	10:00	0.8
1001	10:01	0.7
1002	10:02	0.8
1003	10:03	0.8
1004	10:04	0.8

1005	10:05	0.8
1006	10:06	0.7
1007	10:07	0.7
1008	10:08	0.7
1009	10:09	0.7
1010	10:10	0.7
1011	10:11	0.7
1012	10:12	0.7
1013	10:13	0.7
1014	10:14	0.7
1015	10:15	0.7
1016	10:16	0.7
1017	10:17	0.7
1018	10:18	0.7
1019	10:19	0.7
1020	10:20	0.7
1021	10:21	0.7
1022	10:22	0.7
1023	10:23	0.7
1024	10:24	0.6
1025	10:25	0.7
1026	10:26	0.6
1027	10:27	0.6
1028	10:28	0.6
1029	10:29	0.7
1030	10:30	0.7
1031	10:31	0.7
1032	10:32	0.8
1033	10:33	0.8
1034	10:34	0.9
1035	10:35	0.8
1036	10:36	0.8
1037	10:37	0.8
1038	10:38	0.7
1039	10:39	0.8
1040	10:40	0.8
1041	10:41	0.8
1042	10:42	0.8
1043	10:43	0.8
1044	10:44	0.8
1045	10:45	0.8
1046	10:46	0.8
1047	10:47	0.8
1048	10:48	0.8
1049	10:49	0.8
1050	10:50	0.8
1051	10:51	0.8
1052	10:52	0.8
1053	10:53	0.8

1054	10:54	0.8	
1055	10:55	0.9	
1056	10:56	0.9	
1057	10:57	0.9	
1058	10:58	0.9	
1059	10:59	0.9	
1100	11:00	1.0	
1101	11:01	1.0	
1102	11:02	1.0	
1103	11:03	1.0	
1104	11:04	1.1	
1105	11:05	1.0	
1106	11:06	1.0	
1107	11:07	1.0	
1108	11:08	0.9	
1109	11:09	0.9	
1110	11:10	0.9	
1111	11:11	0.9	
1112	11:12	0.9	
1113	11:13	0.8	
1114	11:14	0.8	
1115	11:15	0.8	
1116	11:16	0.8	
1117	11:17	0.9	
1118	11:18	0.9	
1119	11:19	0.9	
1120	11:20	0.9	
1121	11:21	0.9	
1122	11:22	0.8	
1123	11:23	0.8	1st half
1124	11:24	0.9	average=
1125	11:25	0.9	0.83
Cal Check			
1148	11:48	1.2	
1149	11:49	1.2	
1150	11:50	1.3	
1151	11:51	1.3	
1152	11:52	1.3	
1153	11:53	1.4	
1154	11:54	1.4	
1155	11:55	1.4	
1156	11:56	1.4	
1157	11:57	1.4	
1158	11:58	1.4	
1159	11:59	1.4	
1200	12:00	1.4	
1201	12:01	1.4	
1202	12:02	1.5	
1203	12:03	1.5	

1204	12:04	1.5
1205	12:05	1.5
1206	12:06	1.5
1207	12:07	1.6
1208	12:08	1.5
1209	12:09	1.5
1210	12:10	1.5
1211	12:11	1.5
1212	12:12	1.5
1213	12:13	1.6
1214	12:14	16
1215	12:15	17
1216	12:16	17
1217	12:17	17
1218	12:18	16
1219	12.10	1.0
1220	12:20	1.7
1221	12:20	1.7
1222	12.21	1.7
1223	12.22	1.7
1220	12.20	1.7
1225	12.24	1.7
1226	12.20	1.7
1220	12.20	1.7
1227	12.27	1.0
1220	12.20	1.7
1220	12.29	1.7
1230	12.00	1.7
1231	12.01	1.0
1232	12.32	1.7
1233	12.00	1.0
1234	12.34	1.0
1236	12.00	1.0
1230	12:30	1.7
1237	12.07	1.0
1230	12.00	1.7
1239	12.39	1.7
1240	12.40	1.7
1241	12.41	1.7
1242	12.42	1.7
1245	12.40	1.7
1244	12.44	1.7
1245	12.40	1.7
1240	12.40	1.0
1247 1240	12:47	1.7
1240	12.40	1.7
1249	12.49	1.ð 4 0
1250	12.00	1.8
1201	12.01	1.7
1202	12.52	1.7

1253	12:53	1.7
1254	12:54	1.7
1255	12:55	1.7
1256	12:56	1.7
1257	12:57	1.7
1258	12:58	1.7
1259	12:59	1.7
1300	13:00	1.7
1301	13:01	1.7
1302	13:02	1.7
1303	13:03	1.7
1304	13:04	1.7
1305	13:05	1.7
1306	13:06	17
1307	13:07	17
1308	13.08	17
1309	13:09	1.7
1310	13.10	17
1311	13.11	17
1312	13.12	1.7
1313	13.13	1.7
1314	13.14	1.7
1315	13.15	1.7
1316	13.16	1.7
1317	13.10	1.7
1318	13.17	1.7
1319	13.10	1.7
1320	13.10	1.7
1321	13.21	1.7
1322	13.21	1.7
1323	13.22	1.0
1324	13.20	1.0
1325	13.24	1.0
1326	13.20	1.5
1320	13.20	1.0
1328	13.27	1.5
1320	13.20	1.0
1330	13:30	1.0
1331	13.30	1.5
1332	13.31	1.5
1333	13.32	1.5
133/	13.33	1.5
1335	13.35	1.5
1336	13:36	1.5
1337	13.30	1.5
1338	12.20	1.0
1330	12.20	1.0
1340	13.39	1.0
13/1	13.40	0.1 4 4
10+1	10.41	1.4

1342	13:42	1.4			
1343	13:43	1.5			
1344	13:44	1.4			
1345	13:45	1.4			
Minimum=	=	0.6			
Maximum	=	1.8			
Average=	:	1.2			
Ē	Run 4 -	THC Loa	dout (E	3kgd)	
HC Conc. (ppn propane)	5 4 3 2 1 0			*	
F	9:00 10:	00 11:00	12:00	13:00	14:00
		Time (24	-hr clocl	k)	

Plant C Intermittent Loading Test 1 Date: 7/25/98 Project # 4701-08-03-04 Operator: Gulick

TIME				THC Tunnel			
Hours	Min	Sec		ppm			
13	42	24	13:42.24	68			
13	42	34	13:42:34	6.7			
13	42	44	13:42:44	6.5			
13	42	54	13:42:54	6.2			
13	43	4	13:43:04	5.9			
13	43	14	13:43:14	5.7			
13	43	24	13:43:24	5.6			
13	43	34	13:43:34	5.5			
13	43	44	13:43:44	5.3			
13	43	54	13:43:54	5.3		52.979	arnag B
13	44	4	13:44:04	6.7		67.432	1. Sector Sec
13	44	14	13:44:14	7.0		69.531	alalan makan
13	44	24	13:44:24	6.6		66.26	1000
13	44	34	13:44:34	7.5		75.049	2002.2009.000
13	44	44	13:44:44	8.1		81.299	
13	44	54	13:44:54	7.5		75.049	
13	45	4	13:45:04	7.4	5.0	74.17	
13	45	14	13:45:14	8.8		87.939	
13	45	24	13:45:24	8.1		81.494	
13	45	34	13:45:34	7.7	5.0	77.246	
13	45	44	13:45:44	8.9		88.672	
13	45	54	13:45:54	8.2		81.738	
13	46	4	13:46:04	7.5	5.0	74.902	
13	46	14	13:46:14	6.9		68.945	1 Martine Contraction
13	46	24	13:46:24	6.5		64.941	
13	46	34	13:46:34	6.2	5.0	62.061	and
13	46	44	13:46:44	6.1		60.742	
13	46	54	13:46:54	5.9		58.936	
13	47	4	13:47:04	5.7		56.934	Number of the local diversion of the local di
13	47	14	13:47:14	5.6		55.908	
13	47	24	13:47:24	5.5		54.59	
13	47	34	13:47:34	5.4		<u>26.782</u>	
13	47	39	13:47:39	5.3		1563.599 =Integral 1	
13	47	44	13:47:44	5.2			46 ³⁸
13	47	54	13:47:54	5.1			
13	48	4	13:48:04	5.1			
13	48	14	13:48:14	4.9			

13	48	24	13:48:24	4.9		
13	48	34	13:48:34	4.8		
13	48	44	13:48:44	4.7		
13	48	54	13:48:54	4.7		
13	49	4	13:49:04	4.7		
13	49	14	13:49:14	4.6		
13	49	24	13:49:24	4.5		
13	49	34	13:49:34	4.5		
13	49	44	13:49:44	4.4		
13	49	54	13:49:54	4.4		
13	50	4	13:50:04	4.4		
13	50	14	13:50:14	4.4		
13	50	24	13:50:24	4.3		
13	50	34	13:50:34	4.3		
13	50	44	13:50:44	4.3		
13	50	54	13:50:54	4.2		
13	51	4	13:51:04	4.2	·	
13	51	14	13:51:14	4.2	(2.2009) - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	41.602
13	51	24	13:51:24	10.1		100.635
13	51	34	13:51:34	12.8		128.418
13	51	44	13:51:44	13.0		130.127
13	51	54	13:51:54	12.8		128.125
13	52	4	13:52:04	12.9	5.0	128.906
13	52	14	13:52:14	13.2		131.836
13	52	24	13:52:24	14.5		144.922
13	52	34	13:52:34	14.2	5.0	141.797
13	52	44	13:52:44	14.1		141.406
13	52	54	13:52:54	14.8		148.145
13	53	4	13:53:04	13.4	5.0	134.18
13	53	14	13:53:14	5.7		57.178
13	53	24	13:53:24	6.3		62.744
13	53	34	13:53:34	7.3	5.0	72.803
13	53	44	13:53:44	7.1		70.947
13	53	54	13:53:54	7.9		79.102
13	54	4	13:54:04	6.9		69.336
13	54	14	13:54:14	6.4		63.818
13	54	24	13:54:24	6.0		59.863
13	54	34	13:54:34	5.7		56.641
13	54	44	13:54:44	5.5		55.029
13	54	54	13:54:54	5.4		54.248
13	55	4	13:55:04	5.2		52.148
13	55	14	13:55:14	5.0		<u>50.244</u>
13	55	24	13:55:24	4.8		2304.2 = Integral 2
13	57	21	13:57:21	4.2		The second se
13	57	31	13:57:31	3.9		
13	57	41	13:57:41	3.9		

13	57	51	13:57:51	3.9			
13	58	1	13:58:01	3.8	5.0		
13	58	11	13:58:11	3.7			
13	58	21	13:58:21	3.7			
13	58	31	13:58:31	3.7	5.0		
13	58	41	13:58:41	4.0			
13	58	46	13:58:46	4.8		24	
13	58	51	13:58:51	5.5		54.883	
13	59	1	13:59:01	5.5	5.0	55.029	
13	59	11	13:59:11	6.0		60.498	****
13	59	21	13:59:21	7.3		73.145	
13	59	31	13:59:31	6.6	5.0	65.82	
13	59	41	13:59:41	7.4		73.584	
13	59	51	13:59:51	8.1		80.713	144 - 128 - 228 -
14	0	1	14:00:01	7.2		71.631	1900
14	0	11	14:00:11	8.4		83.887	21 FE 1444 MAR 10
14	0	21	14:00:21	8.1		80.957	
14	0	31	14:00:31	7.3		73.193	2004-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-
14	0	41	14:00:41	6.7		66.504	1000
14	0	51	14:00:51	6.1		60.742	
14	1	1	14:01:01	5.8	5.0	57.764	
14	1	11	14:01:11	5.6		56.055	
14	1	21	14:01:21	5.3		53.467	
14	1	31	14:01:31	5.2	5.0	51.514	
14	1	41	14:01:41	5.0		50.098	
14	1	51	14:01:51	4.9		<u>49.121</u>	
14	2	1	14:02:01	4.8	5.0	1242.605 = Integral 3	48.047
14	2	11	14:02:11	6.1			61.279
14	2	21	14:02:21	6.5			64.648
14	2	31	14:02:31	6.1	5.0		61.475
14	2	41	14:02:41	6.9			68.652
14	2	51	14:02:51	8.4			83.594
14	3	1	14:03:01	7.5			75
14	3	11	14:03:11	6.8			68.066
14	3	21	14:03:21	8.5			84.912
14	3	31	14:03:31	8.6			85.596
14	3	41	14:03:41	8.8			88.037
14	3	51	14:03:51	8.6			86.475
14	4	1	14:04:01	7.8			77.734
14	4	11	14:04:11	7.0			69.678
14	4	21	14:04:21	6.5			64.941
14	4	31	14:04:31	6.2			62.354
14	4	41	14:04:41	5.9			58.984
14	4	51	14:04:51	5.7			56.592
14	5	1	14:05:01	5.5			54.834

14	5	11	14:05:11	5.3				53.271
14	5	21	14:05:21	5.1				51.318
14	5	31	14:05:31	5.0				50.049
14	5	41	14:05:41	4.9				48.682
14	5	51	14:05:51	4.8			Integral 4 =	1524.218
14	6	1	14:06:01	4.7	###			Language of a second
14	6	11	14:06:11	4.5				
14	6	21	14:06:21	4.5				
14	6	31	14:06:31	4.4				
14	6	41	14:06:41	4.6				
14	6	45	14:06:45	5.0		30		
14	6	51	14:06:51	5.7		57.324		
14	7	1	14:07:01	5.7		57.08		
14	7	11	14:07:11	5.5		54.688		
14	7	21	14:07:21	6.4		64.258		
14	7	31	14:07:31	6.4		64.258		
14	7	41	14:07:41	7.3		73.193		
14	7	51	14:07:51	8.4		83.74		
14	8	1	14:08:01	8.1		81.494		
14	8	11	14:08:11	8.9		89.063		
14	8	21	14:08:21	7.7		76.611		
14	8	31	14:08:31	6.7		67.236		
14	8	41	14:08:41	6.2		62.207		
14	8	51	14:08:51	5.9		58.984		
14	9	1	14:09:01	5.7		56.738		
14	9	11	14:09:11	5.5		55.322		
14	9	21	14:09:21	5.4		54.248		
14	9	31	14:09:31	5.2		52.148		
14	9	41	14:09:41	5.1		<u>50.684</u>		
14	9	51	14:09:51	5.0	11	189.276	=Integral 5	50.098
14	10	1	14:10:01	7.1				70.752
14	10	11	14:10:11	11.2				112.354
14	10	21	14:10:21	12.7				126.758
14	10	31	14:10:31	10.6				106.006
14	10	41	14:10:41	9.1				90.723
14	10	51	14:10:51	8.1				80.908
14	11	1	14:11:01	7.3				72.51
14	11	11	14:11:11	6.8				68.359
14	11	21	14:11:21	6.6				65.527
14	11	31	14:11:31	6.4				63.574
14	11	41	14:11:41	6.1				60.84
14	11	51	14:11:51	5.8				58.203
14	12	1	14:12:01	5.6				56.396
14	12	11	14:12:11	5.5				55.029
14	12	21	14:12:21	5.3				52.734

14	12	31	14:12:31	5.2				51 758
14	12	41	14:12:41	5.0		Ir	ntegral 6 =	1242,529
14	12	51	14:12:51	4.9		nan an		
14	13	1	14:13:01	4.8				
14	13	11	14:13:11	4.8				
14	13	21	14:13:21	4.6				
14	13	31	14:13:31	4.5				
14	13	41	14:13:41	4.5				
14	13	51	14:13:51	4.4				
14	14	1	14:14:01	4.3				
14	14	11	14:14:11	4.3				
14	14	21	14:14:21	4.2				
14	14	31	14:14:31	4.1				
14	14	41	14:14:41	4.1				
14	14	51	14:14:51	4.0				
14	15	1	14:15:01	4.1				
14	15	11	14:15:11	4.0				
14	15	21	14:15:21	4.0				
14	15	31	14:15:31	4.0				
14	15	41	14:15:41	3.9				
14	15	51	14:15:51	3.9				
14	16	1	14:16:01	3.8				
14	16	11	14:16:11	3.8				
14	16	21	14:16:21	3.8				
14	16	31	14:16:31	3.7				
14	16	41	14:16:41	3.7				
14	16	51	14:16:51	3.6				
14	17	1	14:17:01	3.7	###			
14	17	7	14:17:07	5.0		20		
14	17	11	14:17:11	6.0		60.254		
14	17	21	14:17:21	10.3		103.32		
14	17	31	14:17:31	12.5		125.049		
14	17	41	14:17:41	9.9		99.219		
14	17	51	14:17:51	8.4		83.936		
14	18	1	14:18:01	7.3		73.096	2000 (Contraction of Contraction of	
14	18	11	14:18:11	6.7		67.09		
14	18	21	14:18:21	6.3		62.695		
14	18	31	14:18:31	5.9		59.082		
14	18	41	14:18:41	5.7		57.178		
14	18	51	14:18:51	5.4		54.004		
14	19	1	14:19:01	5.2	###	<u>51.709</u>		
14	19	11	14:19:11	5.0		916.632 =	Integral 7	50
14	19	21	14:19:21	5.9				59.277
14	19	31	14:19:31	9.7				96.68
14	19	41	14:19:41	12.5				125.195

14	19	51	14:19:51	11.7				116 699
14	20	1	14:20:01	9.6				96 436
14	20	11	14:20:11	8.6				85 938
14	20	21	14:20:21	7.9				78 662
14	20	31	14:20:31	7.1				71 387
14	20	41	14:20:41	6.7				66 797
14	20	51	14:20:51	6.5				65 186
14	21	1	14:21:01	6.2				61 768
14	21	11	14:21:11	6.0				60 205
14	21	21	14:21:21	5.8				58 203
14	21	31	14:21:31	5.7				56 502
14	21	41	14:21:41	5.6				55 615
14	21	51	14:21:51	5.5				51.015
14	22	1	14:22:01	5.4				52 957
14	22	11	14:22.11	5.3				52.007
14	22	21	14.22.21	5.3				50.004
14	22	31	14.22.31	5.2				52.001
14	22	41	14.22.41	5.2				52.441
14	22	51	14.22.11	5.2				52.051
14	23	1	14.22.01	5.1				51.807
14	23	11	14.20.01	5.1				51.221
14	23	21	14.23.21	5.1				50.977
14	23	31	14.23.31	5.0			Intogral 9 -	<u>50.781</u>
14	23	41	14.23.41	5.0				1720.013
14	23	51	14.20.41	4 Q				
14	24	1	14.20.01	4.5 1 Q				
14	24	11	14.24.01	4.9				
14	24	21	14.24.11	4.0				
14	24	31	14.24.21	4.0				
14	24	<u>4</u> 1	14.24.01	4.7				
14	24	51	14.24.41	4.7				
14	25	1	14.25.01	4.7				
14	25	11	14.25.01	4.0				
14	25	21	1/1.25.21	4.5				
14	25	21	14.20.21	4.5				
14	25	<u></u>	14.25.01	4.J 1 5				
14	25		14.20.41	4.5				
1/	25	57	14.20.01	4.4 5 1		00.4		
14	20	1	14.20.07	5.1	11 11 11	20.4	-	
1/	20	י 11	14.20.01	0.0 7 4	//////	20.152		
14	20	11 21	14.20.11	62		60,700		
1/	20	21	14.20.21	0.5		62.793		
1 <u>4</u>	20 26	J1	14.20.31	0.0 70		58.496		
14	20 26	-+ I 51	14.20.41	1.2		/1.826		
14	20 27	1	14.20.01	0.Z 7 6		02.178 75.00		
14	21 27	11	14.07.11	7.0 6.0		/ 5.83		
177	21	11	14.27.11	0.9		68.848		

14	27	21	14:27:21	6.4		64.258		7
14	27	31	14:27:31	6.0		60.303		
14	27	41	14:27:41	5.7		56.982		
14	27	51	14:27:51	5.4		54,199		
14	28	1	14:28:01	5.3	###	53.467		
14	28	11	14:28:11	5.2		52,197		
14	28	21	14:28:21	5.1		25 2685		
14	28	26	14:28:26	5.9		934.6815	=Integral 9	
14	28	31	14:28:31	6.6				66 162
14	28	41	14:28:41	9.2				00.102
14	28	51	14:28:51	12.6				125 537
14	29	1	14:29:01	12.8				127.588
14	29	11	14:29:11	10.0				99.658
14	29	21	14:29:21	8.4				83 936
14	29	31	14:29:31	7.6				76 465
14	29	41	14:29:41	7.2				71 582
14	29	51	14:29:51	6.7				67 139
14	30	1	14:30:01	6.4				64 063
14	30	11	14:30:11	6.1				61 23
14	30	21	14:30:21	5.9			Integal 10 =	935 792
14	37	45	14:37:45	7.4				000.102
14	37	55	14:37:55	9.7				
14	38	5	14:38:05	7.8				
14	38	15	14:38:15	6.8				
14	38	25	14:38:25	6.2				
14	38	35	14:38:35	5.8				
14	38	45	14:38:45	5.5				
14	38	55	14:38:55	5.3				
14	39	5	14:39:05	5.2	###			
14	39	15	14:39:15	5.0				
14	39	25	14:39:25	4.8		48.291		
14	39	35	14:39:35	5.3		52.881		
14	39	45	14:39:45	7.2		71.582		
14	39	55	14:39:55	9.2		91.943		
14	40	5	14:40:05	8.5		84.814		
14	40	15	14:40:15	7.6		76.221		
14	40	25	14:40:25	7.0		69.58		
14	40	35	14:40:35	6.3		62.842		
14	40	45	14:40:45	6.0		59.912		
14	40	55	14:40:55	5.7		57.275		
14	41	5	14:41:05	5.5		55.176		
14	41	15	14:41:15	5.3		52.93		
14	41	25	14:41:25	5.2		51.611		
14	41	35	14:41:35	5.0		49.658		
14	41	45	14:41:45	4.9		<u>48.8</u> 28		
			•				1	

14	41	55	14:41:55	4.8	933.544 = Integral 11
14	42	5	14:42:05	4.7	
14	42	15	14:42:15	4.6	
14	42	25	14:42:25	4.5	
14	42	35	14:42:35	4.4	
14	42	45	14:42:45	4.4	
14	42	55	14:42:55	4.2	
14	43	5	14:43:05	4.2	
14	43	15	14:43:15	4.3	
14	43	20	14:43:20	4.6	23
14	43	25	14:43:25	5.9	59.473
14	43	35	14:43:35	5.9	58.594
14	43	45	14:43:45	5.5	55.322
14	43	55	14:43:55	5.6	56.152
14	44	5	14:44:05	6.5	65.234
14	44	15	14:44:15	6.4	63.623
14	44	25	14:44:25	6.5	64.893
14	44	35	14:44:35	7.4	73.779
14	44	45	14:44:45	7.0	69.922
14	44	55	14:44:55	8.0	80.225
14	45	5	14:45:05	7.4	73.926
14	45	15	14:45:15	6.7	66.797
14	45	25	14:45:25	6.1	61.084
14	45	35	14:45:35	5.8	58.252
14	45	45	14:45:45	5.6	55.908
14	45	55	14:45:55	5.4	<u>53.76</u>
14	46	5	14:46:05	5.1	1039.944 =Integral 12
Minimu	ım=			3.6	
Maxim	um=			14.8	
Averag	ge=			3.6	

Appendix F

SF₆ Capture and Loadout Summaries

725adj1 list.xls chart1

726LISTadj1.xls chart1

727LISTadj1.xls chart1

		Run 1 - Ca	apture Effic	iency LCL	Calculation	S		
SF6 Release Rates	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	All NA
Avg. Release Rate (LPM)	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07
Gas SF6 concentration	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199
Mass release rate (g/min)	0.490	0.490	0.490	0.490	0.490	0.490	0.490	0.490
Time of Release (min)	25	23	23	25	24	25	25	7
Mass released (g)	12.26	11.28	11.28	12.26	11.77	12.26	12.26	3.43
Capture Rates				ж. 				
Avg. Concentration (ppm)	0.236	0.228	0.208	0.170	0.163	0.125	0.160	0.202
Avg. Concentration (g/ft3)	4.05E-05	3.92E-05	3.58E-05	2.93E-05	2.81E-05	2.15E-05	2.75E-05	3.47E-05
Stack Gas Flowrate (acfm)	11261	11261	11261	11261	11261	11261	11261	11261
Capture Rate (g/min)	0.456	0.442	0.403	0.330	0.316	0.242	0.310	0.391
Sampling Time (min)	25	23	23	25	24	25	25	7
Total Capture (g)	11.40	10.16	9.26	8.25	7.58	6.05	7.74	2.74
Avg. Capture Efficiency	93.0	90.1	82.1	67.3	64.4	49.4	63.1	79.7
Run 1 - Statistical Calculation	ons	Time Inter	val (24-hr)					
LCL Subset No.	CE	Start	Stop					
No. 1	93.0	8:30	8:55					
No. 2	90.1	8:55	9:18					

No. 2	90.1	8:55	9:18
No. 3	82.1	11:00	11:23
No. 4	67.3	11:23	11:48
No. 5	64.4	11:48	12:12
No. 6	49.4	12:12	12:37
No. 7	63.1	12:37	13:02
Average	72.8		
Std. Dev.	16.0011		

Sta. Dev.	10.0011
n	7
t	1.440
LCL	64.058

Run 2 - Capture Efficiency LCL Calculations								
SF6 Release Rates	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8
Avg. Release Rate (LPM)	4.04	4.04	4.04	4.04	4.04	4.04	4.04	4.04
Gas SF6 concentration	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199	0.0199
Mass release rate (g/min)	0.487	0.487	0.487	0.487	0.487	0.487	0.487	0.487
Time of Release (min)	23	23	23	23	27	26	25	25
Mass released (g)	11.20	11.20	11.20	11.20	13.14	12.66	12.17	12.17
Capture Rates								
Avg. Concentration (ppm)	0.203	0.211	0.213	0.184	0.139	0.168	0.192	0.154
Avg. Concentration (g/ft3)	3.50E-05	3.62E-05	3.67E-05	3.16E-05	2.39E-05	2.89E-05	3.29E-05	2.65E-05
Stack Gas Flowrate (acfm)	10922	10922	10922	10922	10922	10922	10922	10922
Capture Rate (g/min)	0.382	0.395	0.401	0.345	0.261	0.316	0.360	0.289
Sampling Time (min)	23	23	23	23	27	26	25	25
Total Capture (g)	8.78	9.09	9.22	7.95	7.06	8.22	8.99	7.22
Avg. Capture Efficiency	78.5	81.2	82.3	71.0	53.7	65.0	73.9	59.4
Run 2 - Statistical Calculation	ons		Time Inter	val (24-hr)				
LCL Subset No.		CE	Start	Stop				
No. 1		78.5	7:13	7:36				
No. 2		81.2	7:36	7:59				
No. 3		82.3	7:59	8:22				

8:22

9:31

9:58

10:24

10:49

8:45

9:58

10:24

10:49

11:14

71.0

53.7

65.0

73.9

59.4

70.6 10.4603

1.415

65.367

8

No. 4

No. 5

No. 6

No. 7

No. 8

n

t LCL

Average

Std. Dev.

Run 3 - Capture Efficiency LCL Calculations										
SF6 Release Rates	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Avg. Release Rate (LPM)	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01	4.01
Gas SF6 concentration	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200
Mass release rate (g/min)	0.486	0.486	0.486	0.486	0.486	0.486	0.486	0.486	0.486	0.486
Time of Release (min)	25	23	23	23	23	22	21	22	21	23
Mass released (g)	12.14	11.17	11.17	11.17	11.17	10.68	10.20	10.68	10.20	11.17
Capture Rates										
Avg. Concentration (ppm)	0.208	0.202	0.170	0.207	0.138	0.130	0.120	0.145	0.131	0.124
Avg. Concentration (g/ft3)	3.58E-05	3.48E-05	2.92E-05	3.56E-05	2.38E-05	2.24E-05	2.06E-05	2.49E-05	2.25E-05	2.13E-05
Stack Gas Flowrate (acfm)	10832	10832	10832	10832	10832	10832	10832	10832	10832	10832
Capture Rate (g/min)	0.388	0.377	0.316	0.385	0.258	0.242	0.224	0.270	0.243	0.230
Sampling Time (min)	25	23	23	23	23	22	21	22	21	23
Total Capture (g)	9.69	8.67	7.27	8.87	5.92	5.33	4.70	5.94	5.11	5.30
Avg. Capture Efficiency	79.8	77.6	65.1	79.4	53.0	49.9	46.1	55.6	50.1	47.4
Run 3 - Statistical Calculation	ons		Time Inter	val (24-hr)						
LCL Subset No.		CE	Start	Stop						
No. 1		79.8	7:15	7:40						
No. 2		77.6	7:40	8:03						
No. 3		65.1	8:03	8:26						
No. 4		79.4	8:26	8:49						
No. 5		53.0	8:49	9:12			-			
No. 6		49.9	9:12	9:34						
No. 7		46.1	10:03	10:24						
No. 8		55.6	10:24	10:46						
No. 9		50.1	11:19	11:40						
No. 10		47.4	11:40	12:03						
Average		60.4								
Std. Dev.		13.8381								
n		10								
t		1.383								
LCL		54.356								

Run 4 - Capture Efficiency LCL Calculations										
SF6 Release Rates	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10
Avg. Release Rate (LPM)	4.11	4.11	4.11	4.11	4.11	4.11	4.11	4.11	4.11	4.11
Gas SF6 concentration	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200	0.0200
Mass release rate (g/min)	0.498	0.498	0.498	0.498	0.498	0.498	0.498	0.498	0.498	0.498
Time of Release (min)	24	25	23	23	23	25	23	23	23	23
Mass released (g)	11.94	12.44	11.45	11.45	11.45	12.44	11.45	11.45	11.45	11.45
Capture Rates										
Avg. Concentration (ppm)	0.136	0.125	0.160	0.202	0.135	0.168	0.093	0.125	0.057	0.080
Avg. Concentration (g/ft3)	2.34E-05	2.14E-05	2.75E-05	3.47E-05	2.31E-05	2.88E-05	1.60E-05	2.15E-05	9.80E-06	1.38E-05
Stack Gas Flowrate (acfm)	11886	11886	11886	11886	11886	11886	11886	11886	11886	11886
Capture Rate (g/min)	0.278	0.254	0.327	0.413	0.275	0.342	0.190	0.255	0.116	0.163
Sampling Time (min)	24	25	23	23	23	25	23	23	23	23
Total Capture (g)	6.68	6.36	7.51	9.49	6.32	8.56	4.36	5.87	2.68	3.76
Avg. Capture Efficiency	55.9	51.1	65.6	82.9	55.2	68.8	38.1	51.3	23.4	32.8
Run 4 - Statistical Calculation	ons		Time Inter	val (24-hr)						
LCL Subset No.		CE	Start	Stop						
No. 1		55.9	9:31	9:55						
No. 2		51.1	9:55	10:20						
No. 3		65.6	10:20	10:43						
No. 4		82.9	10:43	11:06						
No. 5		55.2	11:06	11:29						
No. 6		68.8	11:50	12:15						
No. 7		38.1	12:15	12:38						
No. 8		51.3	12:38	13:01						
No. 9		23.4	13:01	13:24						
No. 10		32.8	13:24	13:47						
Average		52.5								
Std. Dev.		17.7252								
n		10								
t		1.383								
LCL		44.777								

•

				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
NA	17240026 ASF	7/24/98	8:07	0.134	
NA	17240027 ASF	7/24/98	8:09	0.183	
No. 1	17240039 ASF	7/24/98	8:30	0.206	
	17240040 ASF	7/24/98	8:32	0.262	
	17240041 ASF	7/24/98	8:34	0.264	
	17240042 ASF	7/24/98	8:36	0.218	
	17240043 ASF	7/24/98	8:37	0.215	
	17240044 ASF	7/24/98	8:39	0.242	
	1/240045 ASF	7/24/98	8:41	0.261	
	17240046 ASF	7/24/98	8:43	0.224	
	17240047 ASF	7/24/98	8:45	0.199	
	17240040 ASF	7/24/98	0.40	0.227	Time (min)
	17240049 ASF	7/24/90	0.40 8.50	0.201	25
	17240050 ASF	7/24/90	8.50	0.247	
	17240051 ASF	7/24/98	8.53	0.241	Avg. (ppin) 0.236
No 2	17240053 ASE	7/24/98	8:55	0.208	0.200
110. 2	17240054 ASF	7/24/98	8:57	0.206	
	17240055 ASF	7/24/98	8:59	0.240	
	17240056 ASF	7/24/98	9:00	0.250	
	17240057 ASF	7/24/98	9:02	0.215	
	17240058 ASF	7/24/98	9:04	0.246	
	17240059 ASF	7/24/98	9:06	0.256	
	17240060 ASF	7/24/98	9:08	0.229	
	17240061 ASF	7/24/98	9:09	0.244	Time (min)
	17240062 ASF	7/24/98	9:11	0.216	23
	17240063 ASF	7/24/98	9:13	0.235	
	17240064 ASF	7/24/98	9:15	0.235	Avg. (ppm)
	17240065 ASF	7/24/98	9:16	0.187	0.228
NA	17240070 ASF	7/24/98	9:25	0.151	
NA	17240071 ASF	7/24/98	9:27	0.198	
NA	17240072 ASF	7/24/98	9:29	0.211	
NA	1/2400/3 ASF	7/24/98	9:30	0.264	
NA	1/2400/4 ASF	7/24/98	9:32	0.273	
NO. 3	17240122 ASF	7/24/98	11:00	0.166	
	17240123 AOF	7/24/98	11:02	0.102	
	17240124 AOF	7/24/30	11.04	0.229	
	17240126 ASE	7/24/02	11.00	0.220	
	17240127 ASE	7/24/98	11.07	0 182	
	17240128 ASF	7/24/98	11.03	0.153	
	17240129 ASF	7/24/98	11.13	0.203	
	17240130 ASF	7/24/98	11:15	0.254	Time (min)
	17240131 ASF	7/24/98	11:16	0.226	23
	17240132 ASF	7/24/98	11:18	0.228	10

Run 1 - 7/24/98 (equal intervals)

	17240133 ASF	7/24/98	11:20	0.234	Avg. (ppm)
	17240134 ASF	7/24/98	11:22	0.243	0.208
No. 4	17240135 ASF	7/24/98	11:23	0.242	
	17240136 ASF	7/24/98	11:25	0.248	
	17240137 ASF	7/24/98	11:27	0.187	
	17240138 ASF	7/24/98	11:29	0.158	
	17240139 ASF	7/24/98	11:30	0.193	
	17240140 ASF	7/24/98	11:32	0.225	
	17240141 ASF	7/24/98	11:34	0.145	
	17240142 ASF	7/24/98	11:36	0.159	
	17240143 ASF	7/24/98	11:37	0.152	
	17240144 ASF	7/24/98	11:39	0.097	Time (min)
	17240145 ASF	7/24/98	11:41	0.144	25
	17240146 ASF	7/24/98	11:43	0.172	
	17240147 ASF	7/24/98	11:44	0.139	Avg. (ppm)
	17240148 ASF	7/24/98	11:46	0.124	0.170
No. 5	17240149 ASF	7/24/98	11:48	0.170	
	17240150 ASF	7/24/98	11:50	0.163	
	17240151 ASF	7/24/98	11:52	0.186	
	17240152 ASF	7/24/98	11:53	0.215	
	17240153 ASF	7/24/98	11:55	0.137	
	17240154 ASF	7/24/98	11:57	0.091	
	17240155 ASF	7/24/98	11:59	0.100	
	17240156 ASF	7/24/98	12:00	0.127	
	17240157 ASF	7/24/98	12:02	0.135	_
	17240158 ASF	7/24/98	12:04	0.152	Time (min)
	1/240159 ASF	7/24/98	12:05	0.180	24
	17240160 ASF	7/24/98	12:07	0.164	• ()
	17240161 ASF	7/24/98	12:09	0.206	Avg. (ppm)
No. C	17240162 ASF	7/24/98	12:11	0.257	0.163
NO. 6	17240163 ASF	7/24/98	12:12	0.131	
	17240164 ASF	7/24/98	12:14	0.164	
	17240100 ASF	7/24/90	12.10	0.139	
	17240100 ASF	7/24/90	12:10	0.104	
	17240107 ASF	7/24/90	12:19	0.135	
	17240100 ASF	7/24/90	12.21	0.109	
	17240109 ASI	7/24/90	12.25	0.129	
	17240170 ASI	7/24/90	12.20	0.009	
	17240171 ASE	7/24/98	12.20	0.135	Time (min)
	17240173 ASE	7/24/98	12.20	0.117	25
	17240174 ASF	7/24/98	12.00	0.002	20
	17240175 ASE	7/24/98	12.02	0.120	Ava (nom)
	17240176 ASE	7/24/98	12:35	0.100	0 125
No. 7	17240177 ASE	7/24/98	12:37	0.002	0.120
	17240178 ASF	7/24/98	12:39	0.151	
	17240179 ASF	7/24/98	12:00	0.182	
	17240180 ASE	7/24/98	12:42	0.175	
	17240181 ASF	7/24/98	12:44	0.146	

	0.168	12:46	7/24/98	17240182 ASF	
	0.165	12:48	7/24/98	17240183 ASF	
	0.123	12:49	7/24/98	17240184 ASF	
Time (min)	0.183	12:51	7/24/98	17240185 ASF	
25	0.166	12:53	7/24/98	17240186 ASF	
	0.137	12:55	7/24/98	17240187 ASF	
Avg. (ppm)	0.123	12:56	7/24/98	17240188 ASF	
0.160	0.203	12:58	7/24/98	17240189 ASF	
		13:02			
Time (min)					
7					ll NA's
Avg (ppm)					
0 202					

				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
No. 1	17250001 ASF	7/25/98	7:13	0.176	
	17250002 ASF	7/25/98	7:15	0.194	
	17250003 ASF	7/25/98	7:17	0.206	
	17250004 ASF	7/25/98	7:19	0.193	
	17250005 ASF	7/25/98	7:20	0.269	
	17250006 ASF	7/25/98	7:22	0.272	
	17250007 ASF	7/25/98	7:24	0.234	
	17250008 ASF	7/25/98	7:26	0.236	
	17250009 ASF	7/25/98	7:28	0.168	Time (min)
	17250010 ASF	7/25/98	7:29	0.161	23
	17250011 ASF	7/25/98	7:31	0.148	
	17250012 ASF	7/25/98	7:33	0.156	Avg. (ppm)
	17250013 ASF	7/25/98	7:35	0.231	0.203
No. 2	17250014 ASF	7/25/98	7:36	0.181	
	17250015 ASF	7/25/98	7:38	0.199	
	17250016 ASF	7/25/98	7:40	0.217	
	17250017 ASF	7/25/98	7:42	0.228	
	17250018 ASF	7/25/98	7:43	0.227	
	17250019 ASF	7/25/98	7:45	0.231	
	17250020 ASF	7/25/98	7:47	0.213	
	17250021 ASF	7/25/98	7:49	0.199	
	17250022 ASF	7/25/98	7:50	0.218	Time (min)
	17250023 ASF	7/25/98	7:52	0.188	23
	17250024 ASF	7/25/98	7:54	0.222	
	17250025 ASF	7/25/98	7:56	0.199	Ava. (ppm)
	17250026 ASF	7/25/98	7:58	0.213	0.211
No. 3	17250027 ASF	7/25/98	7:59	0.197	
	17250028 ASF	7/25/98	8:01	0.174	
	17250029 ASF	7/25/98	8:03	0.143	
	17250030 ASF	7/25/98	8:05	0.131	
	17250031 ASF	7/25/98	8:06	0.221	
	17250032 ASF	7/25/98	8:08	0.238	
	17250033 ASF	7/25/98	8:10	0.220	
	17250034 ASF	7/25/98	8:12	0.223	
	17250035 ASF	7/25/98	8:13	0.281	Time (min)
	17250036 ASF	7/25/98	8:15	0.260	23
	17250037 ASF	7/25/98	8:17	0.250	
	17250038 ASE	7/25/98	8:19	0.216	Ava. (ppm)
	17250039 ASF	7/25/98	8:21	0.219	0.213
No. 4	17250040 ASF	7/25/98	8:22	0.204	0.210
	17250041 ASF	7/25/98	8:24	0.231	
	17250042 ASE	7/25/98	8.26	0.175	
	17250043 ASF	7/25/98	8.28	0 197	
	17250044 ASF	7/25/98	8:29	0.133	
			0.20		

Run 2 - 7/25/98

Prepared by MRI 2/4/00

Page 1

				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
	17250045 ASF	7/25/98	8:31	0.107	
	17250046 ASF	7/25/98	8:33	0.106	
	17250047 ASF	7/25/98	8:35	0.188	
	17250048 ASF	7/25/98	8:36	0.197	Time (min)
	17250049 ASF	7/25/98	8:38	0.193	23
	17250050 ASF	7/25/98	8:40	0.214	
	17250051 ASF	7/25/98	8:42	0.232	Avg. (ppm)
	17250052 ASF	7/25/98	8:44	0.216	0.184
No. 5	17250077 ASF	7/25/98	9:31	0.188	
	17250078 ASF	7/25/98	9:33	0.169	
	17250079 ASF	7/25/98	9:35	0.170	
	17250080 ASF	7/25/98	9:36	0.132	
	17250081 ASF	7/25/98	9:38	0.114	
	17250082 ASF	7/25/98	9:40	0.147	
	17250083 ASF	7/25/98	9:42	0.116	
	17250084 ASF	7/25/98	9:44	0.101	
	17250085 ASF	7/25/98	9:45	0.161	
	17250086 ASF	7/25/98	9:47	0.183	
	17250087 ASF	7/25/98	9:49	0.158	Time (min)
	17250088 ASF	7/25/98	9:51	0.098	27
	17250089 ASF	7/25/98	9:52	0.099	
	17250090 ASF	7/25/98	9:54	0.103	Avg. (ppm)
·	17250091 ASF	7/25/98	9:56	0.151	0.139
No. 6	17250092 ASF	7/25/98	9:58	0.166	
	17250093 ASF	7/25/98	10:00	0.199	
	17250094 ASF	7/25/98	10:01	0.174	
	17250095 ASF	7/25/98	10:03	0.137	
	17250096 ASF	7/25/98	10:05	0.172	
	17250097 ASF	7/25/98	10:07	0.193	
	17250098 ASF	7/25/98	10:08	0.152	
	17250099 ASF	7/25/98	10:10	0.137	
	17250100 ASF	7/25/98	10:12	0.165	
	17250101 ASF	7/25/98	10:14	0.156	
	17250102 ASF	7/25/98	10:15	0.160	Time (min)
	17250103 ASF	7/25/98	10:17	0.204	26
	17250104 ASF	7/25/98	10:19	0.156	
	17250105 ASF	7/25/98	10:21	0.168	Avg. (ppm)
	17250106 ASF	7/25/98	10:23	0.185	0.168
No. 7	17250107 ASF	7/25/98	10:24	0.207	
	17250108 ASF	7/25/98	10:26	0.151	
	17250109 ASF	7/25/98	10:28	0.106	
	17250110 ASF	7/25/98	10:30	0.149	
	17250111 ASF	7/25/98	10:31	0.238	
	17250112 ASF	7/25/98	10:33	0.263	

Run 2 - 7/25/98
		······			
				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
	17250113 ASF	7/25/98	10:35	0.277	
	17250114 ASF	7/25/98	10:37	0.200	
	17250115 ASF	7/25/98	10:38	0.189	
	17250116 ASF	7/25/98	10:40	0.179	Time (min)
	17250117 ASF	7/25/98	10:42	0.161	25
	17250118 ASF	7/25/98	10:44	0.178	
	17250119 ASF	7/25/98	10:45	0.190	Avg. (ppm)
	17250120 ASF	7/25/98	10:47	0.193	0.191
No. 8	17250121 ASF	7/25/98	10:49	0.135	······································
	17250122 ASF	7/25/98	10:51	0.167	
	17250123 ASF	7/25/98	10:53	0.178	
	17250124 ASF	7/25/98	10:54	0.127	
	17250125 ASF	7/25/98	10:56	0.140	
	17250126 ASF	7/25/98	10:58	0.136	
	17250127 ASF	7/25/98	11:00	0.149	
	17250128 ASF	7/25/98	11:01	0.142	
	17250129 ASF	7/25/98	11:03	0.179	1
	17250130 ASF	7/25/98	11:05	0.134	Time (min)
	17250131 ASF	7/25/98	11:07	0.171	25
	17250132 ASF	7/25/98	11:08	0.118	
	17250133 ASF	7/25/98	11:10	0.167	Avg. (ppm)
	17250134 ASF	7/25/98	11:12	0.213	0.154

Run 2 - 7/25/98

				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
No. 1	17270005 ASF	7/27/98	7:15	0.206	
	17270006 ASF	7/27/98	7:17	0.226	
	17270007 ASF	7/27/98	7:18	0.253	
	17270008 ASF	7/27/98	7:20	0.240	
	17270009 ASF	7/27/98	7:22	0.211	
	17270010 ASF	7/27/98	7:24	0.201	
	17270011 ASF	7/27/98	7:25	0.206	
	17270012 ASF	7/27/98	7:27	0.205	
*	17270013 ASF	7/27/98	7:29	0.218	
	17270014 ASF	7/27/98	7:31	0.209	Time (min)
	17270015 ASF	7/27/98	7:33	0.203	25
	17270016 ASF	7/27/98	7:34	0.197	
	17270017 ASF	7/27/98	7:36	0.193	Avg. (ppm)
	17270018 ASF	7/27/98	7:38	0.147	0.208
No. 2	17270019 ASF	7/27/98	7:40	0.165	
	17270020 ASF	7/27/98	7:42	0.237	
	17270021 ASF	7/27/98	7:43	0.204	
	17270022 ASF	7/27/98	7:45	0.190	
	17270023 ASF	7/27/98	7:47	0.184	
	17270024 ASF	7/27/98	7:49	0.221	
	17270025 ASF	7/27/98	7:50	0.191	
	17270026 ASF	7/27/98	7:52	0.208	
	17270027 ASF	7/27/98	7:54	0.277	Time (min)
	17270028 ASF	7/27/98	7:56	0.267	23
	17270029 ASF	7/27/98	7:58	0.200	
	17270030 ASF	7/27/98	7:59	0.166	Avg. (ppm)
	17270031 ASF	7/27/98	8:01	0.122	0.202
No. 3	17270032 ASF	7/27/98	8:03	0.119	
	17270033 ASF	7/27/98	8:05	0.159	
	17270034 ASF	7/27/98	8:06	0.157	
	17270035 ASF	7/27/98	8:08	0.196	
	17270036 ASF	7/27/98	8:10	0.206	
	17270037 ASF	7/27/98	8:12	0.200	
	17270038 ASF	7/27/98	8:14	0.172	
	17270039 ASF	7/27/98	8:15	0.190	
	17270040 ASF	7/27/98	8:17	0.158	Time (min)
	17270041 ASF	7/27/98	8:19	0.144	23
	17270042 ASF	7/27/98	8:21	0.138	
	17270043 ASF	7/27/98	8:22	0.190	Avg. (ppm)
	17270044 ASF	7/27/98	8:24	0.178	0.170
No. 4	17270045 ASF	7/27/98	8:26	0.179	
	17270046 ASF	7/27/98	8:28	0.182	
	17270047 ASF	7/27/98	8:29	0.181	
	17270048 ASF	7/27/98	8:31	0.166	

Run 3 - 7/27/98

, 				SF ₆ Conc.	Subsample
Subsample	Filename	Date 1	Time (PST)	(ppm)	Time & Avg.
	17270049 ASF	7/27/98	8:33	0.235	
	17270050 ASF	7/27/98	8:35	0.221	
	17270051 ASF	7/27/98	8:37	0.225	
	17270052 ASF	7/27/98	8:38	0.205	
	17270053 ASF	7/27/98	8:40	0.201	Time (min)
	17270054 ASF	7/27/98	8:42	0.213	23
	17270055 ASF	7/27/98	8:44	0.255	
	17270056 ASF	7/27/98	8:45	0.241	Avg. (ppm)
	17270057 ASF	7/27/98	8:47	0.188	0.207
No. 5	17270058 ASF	7/27/98	8:49	0.164	
	17270059 ASF	7/27/98	8:51	0.150	
	17270060 ASF	7/27/98	8:53	0.135	
	17270061 ASF	7/27/98	8:54	0.137	
	17270062 ASF	7/27/98	8:56	0.120	
	17270063 ASF	7/27/98	8:58	0.128	
	17270064 ASF	7/27/98	9:00	0.151	
	17270065 ASF	7/27/98	9:01	0.174	
	17270066 ASF	7/27/98	9:03	0.149	Time (min)
	17270067 ASF	7/27/98	9:05	0.160	23
	17270068 ASF	7/27/98	9:07	0.112	
	17270069 ASF	7/27/98	9:09	0.117	Avg. (ppm)
	17270070 ASF	7/27/98	9:10	0.102	0.138
No. 6	17270071 ASF	7/27/98	9:12	0.109	
	17270072 ASF	7/27/98	9:14	0.131	
	17270073 ASF	7/27/98	9:16	0.132	
	17270074 ASF	7/27/98	9:17	0.141	
	17270075 ASF	7/27/98	9:19	0.175	
	17270076 ASF	7/27/98	9:21	0.155	
	17270077 ASF	7/27/98	9:23	0.101	
	17270078 ASF	7/27/98	9:25	0.090	Time (min)
	17270079 ASF	7/27/98	9:26	0.170	22
	17270080 ASF	7/27/98	9:28	0.132	
	17270081 ASF	7/27/98	9:30	0.108	Avg. (ppm)
	17270082 ASF	7/27/98	9:32	0.118	0.130
No. 7	17270091 ASF	7/27/98	10:03	0.107	
	17270092 ASF	7/27/98	10:05	0.121	
	17270093 ASF	7/27/98	10:06	0.120	
	17270094 ASF	7/27/98	10:08	0.164	
	17270095 ASF	7/27/98	10:10	0.132	
	17270096 ASF	7/27/98	10:12	0.115	
	17270097 ASF	7/27/98	10:14	0.112	
	17270098 ASF	7/27/98	10:15	0.112	Time (min)
	17270099 ASF	7/27/98	10:17	0.115	21
	17270100 ASF	7/27/98	10:19	0.116	

Run 3 - 7/27/98

				SF ₆ Conc.	Subsample
Subsample	Filename	Date	Time (PST)	(ppm)	Time & Avg.
	17270101 ASF	7/27/98	10:21	0.143	Avg. (ppm)
	17270102 ASF	7/27/98	10:22	0.084	0.120
No. 8	17270103 ASF	7/27/98	10:24	0.099	
	17270104 ASF	7/27/98	10:26	0.116	
	17270105 ASF	7/27/98	10:28	0.098	
	17270106 ASF	7/27/98	10:30	0.121	
	17270107 ASF	7/27/98	10:31	0.105	
	17270108 ASF	7/27/98	10:33	0.140	
	17270109 ASF	7/27/98	10:35	0.181	
	17270110 ASF	7/27/98	10:37	0.214	Time (min)
	17270111 ASF	7/27/98	10:38	0.235	22
	17270112 ASF	7/27/98	10:40	0.202	
	17270113 ASF	7/27/98	10:42	0.135	Avg. (ppm)
	17270114 ASF	7/27/98	10:44	0.092	0.145
No. 9	17270116 ASF	7/27/98	11:19	0.101	
	17270117 ASF	7/27/98	11:21	0.112	
	17270118 ASF	7/27/98	11:22	0.158	
	17270119 ASF	7/27/98	11:24	0.142	
	17270120 ASF	7/27/98	11:26	0.191	
	17270121 ASF	7/27/98	11:28	0.135	
	17270122 ASF	7/27/98	11:30	0.096	
	17270123 ASF	7/27/98	11:31	0.089	Time (min)
	17270124 ASF	7/27/98	11:33	0.107	21
	17270125 ASF	7/27/98	11:35	0.144	
	17270126 ASF	7/27/98	11:37	0.149	Avg. (ppm)
	17270127 ASF	7/27/98	11:38	0.143	0.131
No. 10	17270128 ASF	7/27/98	11:40	0.125	
	17270129 ASF	7/27/98	11:42	0.114	
	17270130 ASF	7/27/98	11:44	0.153	
	17270131 ASF	7/27/98	11:45	0.121	
	17270132 ASF	7/27/98	11:47	0.117	
	17270133 ASF	7/27/98	11:49	0.104	
	17270134 ASF	7/27/98	11:51	0.087	
	17270135 ASF	7/27/98	11:53	0.124	
	17270136 ASF	7/27/98	11:54	0.139	Time (min)
	17270137 ASF	7/27/98	11:56	0.133	23
	17270138 ASF	7/27/98	11:58	0.127	
	17270139 ASF	7/27/98	12:00	0.149	Avg. (ppm)
	17270140 ASF	7/27/98	12:01	0.115	0.124

Run 3 - 7/27/98

Run 4 - 7/26/98

Subsample Filename Date Time (PST) (ppm) Time & No. 1 17260004 ASF 7/26/98 9:31 0.134 17260005 ASF 7/26/98 9:32 0.160 17260006 ASF 7/26/98 9:32 0.164 17260007 ASF 7/26/98 9:36 0.103 17260007 ASF 7/26/98 9:36 0.103 17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:43 0.176 17260011 ASF 7/26/98 9:43 0.176 17260011 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260013 ASF 7/26/98 9:48 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppm 17260017 ASF 7/26/98 9:55 0.136 17260019 ASF	Avg.
No. 1 17260004 ASF 7/26/98 9:31 0.134 17260005 ASF 7/26/98 9:32 0.160 17260006 ASF 7/26/98 9:34 0.164 17260007 ASF 7/26/98 9:36 0.103 17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:43 0.176 17260013 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:48 0.108 17260015 ASF 7/26/98 9:50 0.103 17260015 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260005 ASF 7/26/98 9:32 0.160 17260006 ASF 7/26/98 9:34 0.164 17260007 ASF 7/26/98 9:36 0.103 17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:43 0.176 17260013 ASF 7/26/98 9:45 0.147 17260014 ASF 7/26/98 9:48 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260015 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260006 ASF 7/26/98 9:34 0.164 17260007 ASF 7/26/98 9:36 0.103 17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:43 0.176 17260013 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:48 0.108 1 17260015 ASF 7/26/98 9:50 0.103 1 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260007 ASF 7/26/98 9:36 0.103 17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:45 0.147 17260014 ASF 7/26/98 9:46 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:50 0.103 17260017 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260008 ASF 7/26/98 9:38 0.144 17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:48 0.108 108 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 17260017 ASF 7/26/98 9:55 0.136 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260009 ASF 7/26/98 9:39 0.152 17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:43 0.176 17260013 ASF 7/26/98 9:45 0.147 17260014 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:48 0.108 108 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075) 24
17260010 ASF 7/26/98 9:41 0.156 17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:46 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075)
17260011 ASF 7/26/98 9:43 0.176 17260012 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:46 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:55 0.136) 24
17260012 ASF 7/26/98 9:45 0.147 17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:48 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 17260017 ASF 7/26/98 9:55 0.136 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075) 24
17260013 ASF 7/26/98 9:46 0.108 Time (min 17260014 ASF 7/26/98 9:48 0.108 Time (min 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075) 24
17260014 ASF 7/26/98 9:48 0.108 17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075	24
17260015 ASF 7/26/98 9:50 0.103 17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075	4 4
17260016 ASF 7/26/98 9:52 0.107 Avg. (ppn 17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075	
17260017 ASF 7/26/98 9:54 0.147 No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075	ו)
No. 2 17260018 ASF 7/26/98 9:55 0.136 17260019 ASF 7/26/98 9:57 0.075	0.136
17260019 ASF 7/26/98 9:57 0.075	
17260020 ASF 7/26/98 9:59 0.103	
17260021 ASF 7/26/98 10:01 0.096	
17260022 ASF 7/26/98 10:02 0.093	
17260023 ASF 7/26/98 10:04 0.101	
17260024 ASF 7/26/98 10:06 0.088	
17260025 ASF 7/26/98 10:08 0.127	
17260026 ASF 7/26/98 10:09 0.115	
17260027 ASF 7/26/98 10:11 0.125 Time (mir	ı)
17260028 ASF 7/26/98 10:13 0.176	25
17260029 ASF 7/26/98 10:15 0.175	
17260030 ASF 7/26/98 10:17 0.182 Avg. (ppn	ו)
17260031 ASF 7/26/98 10:18 0.151	0.124
No. 3 17260032 ASF 7/26/98 10:20 0.172	
17260033 ASF 7/26/98 10:22 0.184	
17260034 ASF 7/26/98 10:24 0.146	
17260035 ASF 7/26/98 10:25 0.169	
17260036 ASF 7/26/98 10:27 0.148	
17260037 ASF 7/26/98 10:29 0.175	
17260038 ASF 7/26/98 10:31 0.160	
17260039 ASF 7/26/98 10:33 0.122	
17260040 ASF 7/26/98 10:34 0.170 Time (mir	1)
17260041 ASF 7/26/98 10:36 0.225	23
17260042 ASF 7/26/98 10:38 0.148	
17260043 ASF 7/26/98 10:40 0.114 Ava. (ppn	ר)
17260044 ASF 7/26/98 10:41 0.144	0.160
No. 4 17260045 ASF 7/26/98 10:43 0.106	
17260046 ASF 7/26/98 10:45 0.156	
17260047 ASF 7/26/98 10:47 0.211	

				SF ₆ Conc.	Subsample
	17260048 ASF	7/26/98	10:49	0.149	•
	17260049 ASF	7/26/98	10:50	0.190	
	17260050 ASF	7/26/98	10:52	0.218	
	17260051 ASF	7/26/98	10:54	0.229	
	17260052 ASF	7/26/98	10:56	0.202	
	17260053 ASF	7/26/98	10:57	0.234	Time (min)
	17260054 ASF	7/26/98	10:59	0.229	2
	17260055 ASF	7/26/98	11:01	0.257	
	17260056 ASF	7/26/98	11:03	0.234	Ava. (ppm)
	17260057 ASF	7/26/98	11:04	0.211	0.20
No. 5	17260058 ASF	7/26/98	11:06	0.195	
	17260059 ASF	7/26/98	11:08	0.129	
	17260060 ASF	7/26/98	11:10	0.186	
	17260061 ASF	7/26/98	11:11	0.173	
	17260062 ASE	7/26/98	11:13	0 175	
	17260063 ASE	7/26/98	11.15	0 178	
	17260064 ASE	7/26/98	11.10	0.157	
	17260065 ASE	7/26/98	11.19	0.074	
	17260066 ASE	7/26/98	11.10	0.011	Time (min)
	17260067 ASE	7/26/98	11.20	0.000	2
	17260068 ASE	7/26/98	11.22	0.124	μ.
	17260069 ASE	7/26/98	11.24	0.107	Ava (nnm)
	17260070 ASE	7/26/98	11.20	0.000	0 13
No. 6	17260071 ASE	7/26/98	11.50	0.072	0.10
110.0	17260072 ASE	7/26/98	11.00	0.170	
	17260073 ASE	7/26/98	11.54	0.153	
	17260074 ASE	7/26/98	11:56	0.100	
	17260075 ASE	7/26/98	11.00	0.125	
	17260076 ASE	7/26/98	11.59	0.120	
	17260077 ASE	7/26/98	12.01	0.100	
	17260078 ASE	7/26/98	12:01	0.100	
	17260079 ASE	7/26/98	12:00	0.210	
	17260080 ASE	7/26/98	12:00	0.100	Time (min)
	17260081 ASE	7/26/98	12:00	0.103	11110 (11111) 2
	17260082 ASE	7/26/98	12.00	0.140	2
	17260083 ASE	7/26/98	12.10	0.102	
	17260084 ASE	7/26/98	12.12	0.104	Avg. (ppiii) 0.16
No 7	17200004 ASI	7/26/98	12.15	0.134	0.10
NO. 7	17260086 ASE	7/26/98	12.10	0.133	
	17260087 ASE	7/26/08	12.17	0.142	
	17260088 ASE	7/26/08	12.13	0.077	
	17260080 435	7/26/02	10.00	0.000	
	17260009 ASE	7/26/02	12.22	0.114	
	17200090 AOF	7/26/00	12.24	0.140	
	17200091 AOF	7/26/09	12.20	0.107	
	17200082 AOF	7/26/09	12.20	0.107	
	17200093 ASF	1/20/90	12:29	0.077	nine (min)
	17200094 AOF	1120/90	12:31	0.090	2
	11200093 ASF	1/20/90	12:33	0.002	

726Icl	
--------	--

				SF ₆ Conc	Subsample
	17260096 ASF	7/26/98	12:35	0.000	Avg. (ppm)
	17260097 ASF	7/26/98	12:36	0.060	0.093
No. 8	17260098 ASF	7/26/98	12:38	0.137	
	17260099 ASF	7/26/98	12:40	0.074	
	17260100 ASF	7/26/98	12:42	0.085	
	17260101 ASF	7/26/98	12:43	0.169	
	17260102 ASF	7/26/98	12:45	0.130	
	17260103 ASF	7/26/98	12:47	0.083	
	17260104 ASF	7/26/98	12:49	0.119	
	17260105 ASF	7/26/98	12:50	0.132	
	17260106 ASF	7/26/98	12:52	0.100	Time (min)
	17260107 ASF	7/26/98	12:54	0.156	23
	17260108 ASF	7/26/98	12:56	0.144	
	17260109 ASF	7/26/98	12:58	0.145	Avg. (ppm)
	17260110 ASF	7/26/98	12:59	0.150	0.125
No. 9	17260111 ASF	7/26/98	13:01	0.081	
	17260112 ASF	7/26/98	13:03	0.099	
	17260113 ASF	7/26/98	13:05	0.093	
	17260114 ASF	7/26/98	13:06	0.086	
	17260115 ASF	7/26/98	13:08	0.095	
	17260116 ASF	7/26/98	13:10	0.049	
	17260117 ASF	7/26/98	13:12	0.061	
	17260118 ASF	7/26/98	13:14	0.000	
	17260119 ASF	7/26/98	13:15	0.000	Time (min)
	17260120 ASF	7/26/98	13:17	0.000	23
	17260121 ASF	7/26/98	13:19	0.047	
	17260122 ASF	7/26/98	13:21	0.069	Avg. (ppm)
	17260123 ASF	7/26/98	13:22	0.062	0.057
No. 10	17260124 ASF	7/26/98	13:24	0.093	
	17260125 ASF	7/26/98	13:26	0.070	
	17260126 ASF	7/26/98	13:28	0.069	
	17260127 ASF	7/26/98	13:30	0.059	
	17260128 ASF	7/26/98	13:31	0.053	
	17260129 ASF	7/26/98	13:33	0.052	
	17260130 ASF	7/26/98	13:35	0.068	
	17260131 ASF	7/26/98	13:37	0.073	
	17260132 ASF	7/26/98	13:38	0.109	Time (min)
	17260133 ASF	7/26/98	13:40	0.082	23
	17260134 ASF	7/26/98	13:42	0.072	
	17260135 ASF	7/26/98	13:44	0.131	Avg. (ppm)
	17260136 ASF	7/26/98	13:45	0.108	0.080

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
17240001 ASF	7/24/98	7:22			Silo Exhaust Duct (SED)
17240002 ASF	7/24/98	7:24			being monitored by FTIR,
17240003 ASF	7/24/98	7:26			capture data not usable.
17240004 ASF	7/24/98	7:28		20.89	
17240005 ASF	7/24/98	7:30			
17240006 ASF	7/24/98	7:32		21.45	
17240007 ASF	7/24/98	7:34			
17240008 ASF	7/24/98	7:35			
17240009 ASF	7/24/98	7:37			
		7:38		21.20	
17240010 ASF	7/24/98	7:39			
17240011 ASF	7/24/98	7:41		21.34	
17240012 ASF	7/24/98	7:42			
		7:43		20.83	
17240013 ASF	7/24/98	7:44			
		7:45		21.39	
17240014 ASF	7/24/98	7:46		20.10	
17240015 ASF	7/24/98	7:48		21.04	
		7:49		4.03	
17240016 ASF	7/24/98	7:50			
17240017 ASF	7/24/98	7:51			
		7:52		21.19	
17240018 ASF	7/24/98	7:53			
17240019 ASF	7/24/98	7:55	,		
		7:56		21.12	
17240020 ASF	7/24/98	7:57			
17240021 ASF	7/24/98	7:58		3.99	
		7:59		21.27	
17240022 ASF	7/24/98	8:00			
17240023 ASF	7/24/98	8:02		21.12	
17240024 ASF	7/24/98	8:04			
17240025 ASF	7/24/98	8:05		21.17	Usable data.
17240026 ASF	7/24/98	8:07	0.134	21.25	
17240027 ASF	7/24/98	8:09	0.183		
17240028 ASF	7/24/98	8:11			Silo 1 being used
		8:12		21.39	sporadically, capture data
17240029 ASF	7/24/98	8:13			not usable.
17240030 ASF	7/24/98	8:14			
		8:15		21.16	
17240031 ASF	7/24/98	8:16			
17240032 ASF	7/24/98	8:18			
17240033 ASF	7/24/98	8:20			
17240034 ASF	7/24/98	8:21			
17240035 ASF	7/24/98	8:23		21.40	

File list for 7/24/98 - Run 1 Loadout and Silo

4lcl
4lcl

		line nite a second	SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		8:24		20.91	
17240036 ASF	7/24/98	8:25			
17240037 ASF	7/24/98	8:27		2.54	
17240038 ASF	7/24/98	8:28		21.22	
17240039 ASF	7/24/98	8:30	0.206	21.43	Usable data.
17240040 ASF	7/24/98	8:32	0.262		
		8:33		21.20	
17240041 ASF	7/24/98	8:34	0.264		
17240042 ASF	7/24/98	8:36	0.218		
17240043 ASF	7/24/98	8:37	0.215		
		8:38		21.22	
17240044 ASF	7/24/98	8:39	0.242	21.36	ι.
17240045 ASF	7/24/98	8:41	0.261	21.35	
17240046 ASF	7/24/98	8:43	0.224	21.05	
17240047 ASF	7/24/98	8:45	0.199		
17240048 ASF	7/24/98	8:46	0.227		
		8:46		20.94	
17240049 ASF	7/24/98	8:48	0.251		
		8:49		21.38	
17240050 ASF	7/24/98	8:50	0.247	21.33	
17240051 ASF	7/24/98	8:52	0.241	21.12	
17240052 ASF	7/24/98	8:53	0.239		
		8:54		21.04	
17240053 ASF	7/24/98	8:55	0.208	21.17	
17240054 ASF	7/24/98	8:57	0.206		
17240055 ASF	7/24/98	8:59	0.240	21.26	
17240056 ASF	7/24/98	9:00	0.250		
17240057 ASF	7/24/98	9:02	0.215		
		9:03		20.88	
17240058 ASF	7/24/98	9:04	0.246		
		9:05		19.91	
17240059 ASF	7/24/98	9:06	0.256		
17240060 ASF	7/24/98	9:08	0.229		
17240061 ASF	7/24/98	9:09	0.244		
170 10000 105	7/04/00	9:10	0.040	21.22	Gate open on truck; 2 tons
17240062 ASF	//24/98	9:11	0.216	04.40	spilled in tunnel.
17040060 405	7/04/00	9:12	0.005	21.10	
17240003 ASF	7/24/98	9:13	0.235		
17240004 AOF	7/24/98	9:15	0.230	04.04	
17240000 AOF	7/24/98	9:10	U. 187	21.04	THC spike goo rup through
17240000 ASF	7/24/90	9.10 0.20			sample lines, conture data
TIZHUUUI MOF	1/24/30	9.20		21 10	sample lines, capture uata
17240068 ASE	7/2//09	3.21 Q.22		21.1U 01 EQ	not usable. Spill cleaned up in tuppol
17240060 ASE	7/24/09	9.22 Q·9/		21.00	opin dealled up in tunnel
17240070 ASF	7/24/98	0.24	0 151	21.21	l Isable data
17240071 ASE	7/24/98	9:27	0,198		

			SF _e Conc.	Load Out	
Filename	Date	Time (PST)	(nnm)	(tone)	Comments
riiename	Date		(ppm)		Comments
17240072 485	7/01/00	9:20	0.011	21.40	
17240072 ASF	7/24/90	9.29	0.211		
17240073 ASF	7/24/90	9.30	0.204		
17240074 ASF	1/24/90	9.32	0.273	21 14	Sile Exhaust Dust (SED)
17040075 485	7/04/00	9.33		21.44	Silo Exhaust Duct (SED)
17240075 ASF	1/24/90	9.34		24 42	penture data pet useble
		9.37		21.42	capture data not usable.
17040076 485	7/04/00	9.30		21.30	
17240070 ASF	7/24/90	9.39		21.20	
17240077 ASF	1124/90	9.41		24.06	
17040079 485	7/01/00	9.42		21.00	
17240076 ASF	1/24/90	9.43		7.00	
17240070 ASE	7/24/00	9.44		7.00	
17240079 ASF	7/24/90	9.45		21.13	
17240000 ASF	7/24/90	9.40			
17240001 ASF	1124/90	9.40		20 00	
17240092 485	7/2/100	9.49		20.00	
17240002 ASF	7/24/90	9.50	•	21.34	
17240003 ASF	7/24/90	9.02		24.20	
17240004 ASF	7/24/90	9.00		21.20	
17240000 ASF	7/24/90	9.55		21.00	
17240000 ASF	1124/90	9.57		01 50	
17240097 485	7/2/100	9.50		21.02	
17240007 ASF	7/24/90	9.09		21.20	
17240080 ASF	7/24/90	10.00		21.29	
17240009 ASF	7/24/90	10.02		21.00	
17240090 ASI	1124/90	10:05		20.04	
17240001 ASE	7/24/08	10:05		20.34	
17240091 ASF	1/24/90	10.00		21.27	
17240002 ASE	7/24/09	10.07		21.22	
17240092 ASF	7/24/90	10.08		20.06	
17240093 ASF	7/24/90	10.09		20.90	
17240094 ASF	7/24/90	10.11		21.44	
17240030 AOP	1124/30	10.13		21 00	
17240006 495	7/2//00	10.14		21.00	
17240030 ASP	7/24/30	10.10			
17240001 AOF	7/24/30	10.10			
17240000 AOF	1/24/30 7/91/00	10.10			
17240033 AOF	7/24/30	10.20			
17240100 AOP	7/24/30 7/9//00	10.22			
17240101 AOF	7/24/30	10.23			
17240102 AOF	7/24/30	10.20		94 E0	
11240103 ASE	1/24/30	10.27		21.0U 2∆ ∆2	
17240104 495	7/2//09	10.20		20.43	
	1/24/30	10.29		21 /1	
17240105 495	7/24/09	10.30		21.41	
11240100 AOF	1/24/30	10.51			

Filename Date Time (PST) (ppm) (tons) Comments 17240106 ASF 7/24/98 10:32 10:33 21.29 17240107 ASF 7/24/98 10:35 21.08 17240108 ASF 7/24/98 10:36 21.39 17240109 ASF 7/24/98 10:38 21.33 17240100 ASF 7/24/98 10:38 21.33 17240110 ASF 7/24/98 10:40 21.14 17240110 ASF 7/24/98 10:43 21.25 17240111 ASF 7/24/98 10:45 17240114 21.45 17240113 ASF 7/24/98 10:45 17240114 21.45 17240114 ASF 7/24/98 10:45 17240115 1724018 10:46 21.26 17240114 ASF 7/24/98 10:52 21.40 1724018 10:55 10:56 21.40 17240120 ASF 7/24/98 10:55 10:58 21.07 17240121 11:01 21.33 17240121 ASF 7/24/98 10:59 <td< th=""></td<>
17240106 ASF 7/24/98 10:32 21.29 17240107 ASF 7/24/98 10:34 10:35 21.08 17240108 ASF 7/24/98 10:36 21.39 17240109 17240109 ASF 7/24/98 10:38 21.33 17240110 17240110 ASF 7/24/98 10:39 21.33 17240111 17240111 ASF 7/24/98 10:41 21.45 17240112 17240112 ASF 7/24/98 10:43 21.25 17240113 17240113 ASF 7/24/98 10:46 21.26 17240114 17240114 ASF 7/24/98 10:46 21.26 17240116 17240117 ASF 7/24/98 10:50 17240117 ASF 7/24/98 17240114 ASF 7/24/98 10:50 17240118 ASF 7/24/98 10:51 17240114 ASF 7/24/98 10:52 21.40 17240119 ASF 7/24/98 10:55 17240118 ASF 7/24/98 10:55 10:56 21.40 17240120 ASF 7/24/98 10:59 11:01 21.33 17240122 17240122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17240117 ASF 7/24/98 10:52 21.40 17240118 ASF 7/24/98 10:53 10:56 21.40 17240120 ASF 7/24/98 10:57 10:58 21.07 17240121 ASF 7/24/98 10:59 21.33 10:58 21.07 17240121 ASF 7/24/98 10:59 21.33 11:01 21.33 17240122 ASF 7/24/98 11:00 0.166 21.51 Usable data. 11:01 21.33 17240123 ASF 7/24/98 11:02 0.162 17240124 ASF 7/24/98 11:04 0.229 17240125 ASF 7/24/98 11:06 0.220 17240126 ASF 7/24/98 11:07 0.207 17240127 ASF 7/24/98 11:09 0.182 21.29 11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17240120 ASF 7/24/98 10:57 10:58 21.07 17240121 ASF 7/24/98 10:59 17240122 ASF 7/24/98 11:00 0.166 21.51 Usable data. 11:01 21.33 17240123 ASF 7/24/98 11:02 0.162 17240124 ASF 7/24/98 11:04 0.229 17240125 ASF 7/24/98 11:06 0.220 17240126 ASF 7/24/98 11:07 0.207 17240127 ASF 7/24/98 11:09 0.182 21.29 11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
17240121 ASF 7/24/98 10:59 17240122 ASF 7/24/98 11:00 0.166 21.51 Usable data. 11:01 21.33 17240123 ASF 7/24/98 11:02 0.162 17240124 ASF 7/24/98 11:04 0.229 17240125 ASF 7/24/98 11:06 0.220 17240126 ASF 7/24/98 11:07 0.207 17240127 ASF 7/24/98 11:09 0.182 21.29 11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
17240126 ASF 7/24/98 11:07 0.207 17240127 ASF 7/24/98 11:09 0.182 21.29 11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42
17240127 ASF 7/24/98 11:09 0.182 21.29 11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42 17240129 ASE 7/24/98 11:13 0.202
11:10 21.34 17240128 ASF 7/24/98 11:11 0.153 11:12 21.42
1/240128 ASF //24/98 11:11 0.153 11:12 21.42
11:12 21.42 17240120 ASE 7/24/08 11:13 0.202
- 1/2/11/2/20 ASE //2/2008 11/2/2 11/2/2
17240727 MOR 7724/30 11.10 U.2U0
17240130 ASF 7/24/98 11:15 0.254
1/240131 ASF //24/98 11:10 0.220
17040122 ASE 7/04/09 11:17 21:30
17240132 AGE 7/24/30 11.10 0.220 21.23 17240133 ASE 7/24/08 11.20 0.234
17240133 ASF 7/24/90 11.20 0.234 17240134 ASE 7/24/98 11.22 0.243 21.40
17240134 ASI $1724/30$ 11.22 0.243 21.40
11·24 20 78
17240136 ASE 7/24/98 11·25 0.248
11.26 21.43
17240137 ASF 7/24/98 11:27 0.187
11:28 21.32
17240138 ASF 7/24/98 11:29 0.158
17240139 ASF 7/24/98 11:30 0.193
17240140 ASF 7/24/98 11:32 0.225

7	2	4	I	С	
7	2	4	I	С	

	4		SE, Conc	Load Out	·
Filonomo	Data	Time (PST)		(tone)	Commonto
Fliendine	Dale	11:00	(ppm)		Comments
17040444 485	7/04/00	11:33	0.445	21.35	
17240141 ASF	7/24/98	11:34	0.145	04.40	
17240142 ASF	7/24/98	11:36	0.159	21.19	
17240143 ASF	7/24/98	11:37	0.152	04.40	
47040444 405	7/04/00	11:38	0.007	21.12	
17240144 ASF	7/24/98	11:39	0.097	21.14	
17240140 ASF	7/24/90	11.41	0.144	24.84	
17240140 ASF	7/24/90	11.43	0.172	21.17	
17240147 ASF	1/24/90	11.44	0.159	20.40	
17040149 485	7/2/100	11.40	0 104	20.12	
17240140 ASF	7/24/90	11.40	0.124		
17240149 ASF	7/24/90	11.40	0.170	21.24	
17240150 ASF	7/24/90	11.50	0.105	21.34	
17240151 ASF	7/24/90	11.02	0.100	21.06	
17240152 ASF	7/24/90	11.00	0.215	21.00	
17240155 ASF	7/24/90	11.55	0.137	21.10	
17240154 ASF	7/24/90	11.57	0.091	21.51	
17240155 ASF	7/24/90	12:00	0.100		
17240150 ASI	7/24/90	12.00	0.127	21.25	
17240157 ASI	7/24/30	12.02	0.150	21.00	
17240150 ASI	7/24/90	12.04	0.132	21.22	×
17240109 ASI	7/24/90	12.03	0.160	21.02	
17240161 ASE	7/24/08	12.07	0.104		
	1124/00	12:00	0.200	21 22	
17240162 ASE	7/24/98	12:10	0 257	£ 1.££	
17240163 ASE	7/24/98	12:17	0.131		
17240164 ASE	7/24/98	12.14	0 164		
		12:15		21.02	
17240165 ASF	7/24/98	12:16	0.139		
		12:17		23.99	
17240166 ASF	7/24/98	12:18	0.104		
17240167 ASF	7/24/98	12:19	0.135	21.29	
17240168 ASF	7/24/98	12:21	0.159		
		12:22		21.00	
17240169 ASF	7/24/98	12:23	0.129		
17240170 ASF	7/24/98	12:25	0.089	21.47	
17240171 ASF	7/24/98	12:26	0.139		
17240172 ASF	7/24/98	12:28	0.117		
17240173 ASF	7/24/98	12:30	0.092	21.46	
17240174 ASF	7/24/98	12:32	0.128		
17240175 ASF	7/24/98	12:34	0.135		
17240176 ASF	7/24/98	12:35	0.092	21.33	
		12:36		20.40	
17240177 ASF	7/24/98	12:37	0.159	21.73	
		12:38		21.28	
17240178 ASF	7/24/98	12:39	0.151		

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		12:40		21.16	
17240179 ASF	7/24/98	12:41	0.182		
17240180 ASF	7/24/98	12:42	0.175	21.39	
17240181 ASF	7/24/98	12:44	0.146	20.33	
17240182 ASF	7/24/98	12:46	0.168		
17240183 ASF	7/24/98	12:48	0.165	21.57	
17240184 ASF	7/24/98	12:49	0.123	21.25	
17240185 ASF	7/24/98	12:51	0.183	21.20	
17240186 ASF	7/24/98	12:53	0.166	21.17	
		12:54		21.31	
17240187 ASF	7/24/98	12:55	0.137		
17240188 ASF	7/24/98	12:56	0.123		
17240189 ASF	7/24/98	12:58	0.203		
		13:02		21.19	
Average Concentrat	ion (ppm)		0 185		
Maximum Concentra	ation (ppn	า)	0.273		
Minimum Concentra	ition (ppm)	0.089		
Average Concentrat	tion (g/ft ³)		3.17E-05		
Stack Gas Flowrate	(acfm)		11,261		
Capture Rate (g/min	ı)		0.357		
Sampling Time (min)		173		
Total Capture (g)			61.8		
Loadout during capt	ure tests	(tons/hr)		478.05	
Loadout during all te	esting (ton	s/hr)		453.17	

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
	·····	7:02		21.12	
		7:04		21.43	
		7:08			
		7:09		21.24	
		7:12		21.02	
17250001 ASF	7/25/98	7:13	0.176		Usable data.
17250002 ASF	7/25/98	7:15	0.194		
17250003 ASF	7/25/98	7:17	0.206		
17250004 ASF	7/25/98	7:19	0.193		
17250005 ASF	7/25/98	7:20	0.269	20.92	
17250006 ASF	7/25/98	7:22	0.272		
		7:23		23.87	
17250007 ASF	7/25/98	7:24	0.234		
		7:25		23.65	
17250008 ASF	7/25/98	7:26	0.236		
17250009 ASF	7/25/98	7:28	0.168	·	
17250010 ASF	7/25/98	7:29	0.161	21.21	
17250011 ASF	7/25/98	7:31	0.148		
		7:32		23.93	
17250012 ASF	7/25/98	7:33	0.156		
17250013 ASF	7/25/98	7:35	0.231	21.09	
17250014 ASF	7/25/98	7:36	0.181		
17250015 ASF	7/25/98	7:38	0.199		
17250016 ASF	7/25/98	7:40	0.217	24.43	
17250017 ASF	7/25/98	7:42	0.228	20.59	
17250018 ASF	7/25/98	7:43	0.227		
		7:44		23.24	
17250019 ASF	7/25/98	7:45	0.231	20.64	× .
17250020 ASF	7/25/98	7:47	0.213		
		7:48		24.47	
17250021 ASF	7/25/98	7:49	0.199		
17250022 ASF	7/25/98	7:50	0.218		
		7:51		21.26	
17250023 ASF	7/25/98	7:52	0.188		
17250024 ASF	7/25/98	7:54	0.222		
		7:55		24.52	
17250025 ASF	7/25/98	7:56	0.199		
		7:57		21.32	
17250026 ASF	7/25/98	7:58	0.213		
17250027 ASF	7/25/98	7:59	0.197	21.26	
17250028 ASF	7/25/98	8:01	0.174		
17250029 ASF	7/25/98	8:03	0.143		
17250030 ASF	7/25/98	8:05	0.131	19.73	
17250031 ASF	7/25/98	8:06	0.221		

File list for 7/25/98 - Run 2 Loadout and Silo

72510	cl
-------	----

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		8:07		21.05	
17250032 ASF	7/25/98	8:08	0.238		
17250033 ASF	7/25/98	8:10	0.220	21.45	
17250034 ASF	7/25/98	8:12	0.223		
17250035 ASF	7/25/98	8:13	0.281		
		8:14		21.31	
17250036 ASF	7/25/98	8:15	0.260		
17250037 ASF	7/25/98	8:17	0.250	24.65	
17250038 ASF	7/25/98	8:19	0.216		
		8:20		24.48	
17250039 ASF	7/25/98	8:21	0.219		
17250040 ASF	7/25/98	8:22	0.204	21.13	
17250041 ASF	7/25/98	8:24	0.231		
		8:25		24.03	
17250042 ASF	7/25/98	8:26	0.175		
17250043 ASF	7/25/98	8:28	0.197	21.50	
17250044 ASF	7/25/98	8:29	0.133		
		8:30		21.16	
17250045 ASF	7/25/98	8:31	0.107		
		8:32		21.27	
17250046 ASF	7/25/98	8:33	0.106		
		8:34		21.25	
17250047 ASF	7/25/98	8:35	0.188		
17250048 ASF	7/25/98	8:36	0.197		
17250049 ASF	7/25/98	8:38	0.193	24.45	
		8:39		21.26	
17250050 ASF	7/25/98	8:40	0.214		
17250051 ASF	7/25/98	8:42	0.232	21.30	
17250052 ASF	7/25/98	8:44	0.216		
17250053 ASF	7/25/98	8:45			SED being monitored by
		8:46		23.21	FTIR, capture data not
17250054 ASF	7/25/98	8:47			usable.
		8:48		21.00	
17250055 ASF	7/25/98	8:49			
17250056 ASF	7/25/98	8:51		24.47	
17250057 ASF	7/25/98	8:52		21.18	
17250058 ASF	7/25/98	8:54			
17250059 ASF	7/25/98	8:56			
17250060 ASF	7/25/98	8:58			
17250061 ASF	7/25/98	8:59			
		9:00		23.80	
17250062 ASF	7/25/98	9:01			
		9:02		21.00	
17250063 ASF	7/25/98	9:03		20.80	
17250064 ASF	7/25/98	9:05			
17250065 ASF	7/25/98	9:06		21.18	
17250066 ASF	7/25/98	9:08			

	7	25	cl
--	---	----	----

Filename Date Time (PST) (ppm) (tons) Comments 17250067 ASF 7/25/98 9:10 23.67 17250068 ASF 7/25/98 9:12 17250069 ASF 7/25/98 9:13 20.89 17250070 ASF 7/25/98 9:15 20.87 17250071 ASF 7/25/98 9:17 21.02 17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:22 17250076 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250067 ASF 7/25/98 9:10 23.67 17250068 ASF 7/25/98 9:12 17250069 ASF 7/25/98 17250070 ASF 7/25/98 9:13 20.89 17250071 ASF 7/25/98 9:15 20.87 17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 1.01 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Lisable data
17250068 ASF 7/25/98 9:12 17250069 ASF 7/25/98 9:13 20.89 17250070 ASF 7/25/98 9:15 20.87 17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250069 ASF 7/25/98 9:13 20.89 17250070 ASF 7/25/98 9:15 20.87 17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250072 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Lisable data
17250070 ASF 7/25/98 9:15 20.87 17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Lisable data
17250071 ASF 7/25/98 9:17 21.02 9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Lisable data
9:18 12.00 17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250072 ASF 7/25/98 9:19 17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250073 ASF 7/25/98 9:20 9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
9:21 21.01 17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250074 ASF 7/25/98 9:22 17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250075 ASF 7/25/98 9:24 24.19 17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250076 ASF 7/25/98 9:26 9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
9:28 20.93 17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250077 ASE 7/25/98 9:31 0.188 20.94 Usable data
17250078 ASF 7/25/98 9:33 0.169 8.00
17250079 ASF 7/25/98 9:35 0.170 21.10
17250080 ASF 7/25/98 9:36 0.132
17250081 ASF 7/25/98 9:38 0.114
17250082 ASF 7/25/98 9:40 0.147
9:41 23.87
17250083 ASF 7/25/98 9:42 0.116
17250084 ASF 7/25/98 9:44 0.101
17250085 ASF 7/25/98 9:45 0.161 15.03
17250086 ASF 7/25/98 9:47 0.183 24.58
9:48 21.17
17250087 ASF 7/25/98 9:49 0.158
17250088 ASF 7/25/98 9:51 0.098
17250089 ASF 7/25/98 9:52 0.099
17250090 ASF 7/25/98 9:54 0.103
9:55 23.58
1/250091 ASF //25/98 9:56 0.151
9:57 20.86
17250092 ASF 7725/98 9:58 0.100
9:59 22.79 17350002 ASE 7/35/08 10:00 0.100
17250093 ASF 7/25/96 10:00 0.199
1/200004 AOF 1/20/00 10.01 0.1/4 10:02 20.70
17250095 ASE 7/25/98 10:03 0 137
17250095 ASF 7/25/98 10:05 0.157
10.06 24.10
17250097 ASE 7/25/98 10:07 0.193
17250098 ASE 7/25/98 10:08 0.152
10:09 21:06
17250099 ASE 7/25/98 10:10 0 137
17250100 ASE 7/25/98 10:12 0.165
17250101 ASE 7/25/98 10:14 0.156
17250102 ASF 7/25/98 10:15 0.160 23.54

725	cl
-----	----

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		10:16		6.18	
17250103 ASF	7/25/98	10:17	0.204		
17250104 ASF	7/25/98	10:19	0.156		
17250105 ASF	7/25/98	10:21	0.168		
17250106 ASF	7/25/98	10:23	0.185		
17250107 ASF	7/25/98	10:24	0.207		
17250108 ASF	7/25/98	10:26	0.151		
17250109 ASF	7/25/98	10:28	0.106	24.06	
17250110 ASF	7/25/98	10:30	0.149	20.91	
17250111 ASF	7/25/98	10:31	0.238		
		10:32		21.06	
17250112 ASF	7/25/98	10:33	0.263		
17250113 ASF	7/25/98	10:35	0.277	20.79	
17250114 ASF	7/25/98	10:37	0.200		
17250115 ASF	7/25/98	10:38	0.189		
		10:39			
17250116 ASF	7/25/98	10:40	0.179		
		10:41		21.03	
17250117 ASF	7/25/98	10:42	0.161		
		10:43		21.00	
17250118 ASF	7/25/98	10:44	0.178		
17250119 ASF	7/25/98	10:45	0.190		
		10:46			
17250120 ASF	7/25/98	10:47	0.193		
		10:48		20.90	
17250121 ASF	7/25/98	10:49	0.135		
		10:50		20.80	
17250122 ASF	7/25/98	10:51	0.167		
		10:52		20.87	
17250123 ASF	7/25/98	10:53	0.178		
17250124 ASF	7/25/98	10:54	0.127	20.91	
17250125 ASF	7/25/98	10:56	0.140		
17250126 ASF	7/25/98	10:58	0.136		
17250127 ASF	7/25/98	11:00	0.149	20.91	
17250128 ASF	7/25/98	11:01	0.142		
17250129 ASF	7/25/98	11:03	0.179		
		11:04		21.07	
17250130 ASF	7/25/98	11:05	0.134		
17250131 ASF	7/25/98	11:07	0.171		
17250132 ASF	7/25/98	11:08	0.118		
17250133 ASF	7/25/98	11:10	0.167	21.13	
17250134 ASF	7/25/98	11:12	0.213		
	_	_			
Average Concentra	ation (ppr	n)	0.182		
Maximum Concent	ration (p	om)	0.281		
Minimum Concentr	ation (pp	m)	0.098	6	
Average Concentra	ation (g/ft	(*)	3.13E-05	i	

4 5 2/10/00 11:52 AM 725lcl 725 All

Ч.			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
Stack Gas Flowrate	e (acfm)		10,922		
Capture Rate (g/min)			0.341		
Sampling Time (min)		192			
Total Capture (g)			65.6		
Loadout during capture tests (tons/hr)				391.41	
Loadout during all testing (tons/hr)				399.72	

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
17270001 ASF	7/27/98	7:08	· .		
17270002 ASF	7/27/98	7:09		21.13	
17270003 ASF	7/27/98	7:11			
17270004 ASF	7/27/98	7:13		23.06	
17270005 ASF	7/27/98	7:15	0.206		Usable data.
17270006 ASF	7/27/98	7:17	0.226		
17270007 ASF	7/27/98	7:18	0.253	21.28	
17270008 ASF	7/27/98	7:20	0.240		
17270009 ASF	7/27/98	7:22	0.211		
17270010 ASF	7/27/98	7:24	0.201		
17270011 ASF	7/27/98	7:25	0.206		
17270012 ASF	//2//98	7:27	0.205		
17270013 ASF	7/27/98	7:29	0.218		
17270014 ASF	7/27/98	7:31	0.209		
17270015 ASF	7/27/98	7:33	0.203		
17270017 ASE	7/27/90	7.34	0.197		
17270017 ASF	1121/90	7.30	0.193	04.00	
17270019 485	7/07/09	7.37	0 1 4 7	24.33	
17270010 ASF	1121190	7.30	0.147	25.65	
17270010 ASE	7/27/08	7.39	0 165	20.00	
17270019 ASE	7/27/98	7.40	0.100		
17270020 ASF	7/27/98	7.43	0.207		
112100211101	1121100	7:44	0.204	24 80	
17270022 ASE	7/27/98	7:45	0.190	21.00	
17270023 ASF	7/27/98	7:47	0.184	24.66	
17270024 ASF	7/27/98	7:49	0.221		
17270025 ASF	7/27/98	7:50	0.191		
17270026 ASF	7/27/98	7:52	0.208		
17270027 ASF	7/27/98	7:54	0.277	25.28	
17270028 ASF	7/27/98	7:56	0.267	25.21	
17270029 ASF	7/27/98	7:58	0.200		
17270030 ASF	7/27/98	7:59	0.166		
17270031 ASF	7/27/98	8:01	0.122	24.38	
		8:02		20.95	
17270032 ASF	7/27/98	8:03	0.119		
		8:04		25.70	
17270033 ASF	7/27/98	8:05	0.159		
17270034 ASF	7/27/98	8:06	0.157		
17270035 ASF	7/27/98	8:08	0.196	C .	
17270036 ASF	7/27/98	8:10	0.206	27.84	
17270037 ASF	7/27/98	8:12	0.200	21.40	
17270038 ASF	7/27/98	8:14	0.172	24.25	
17270039 ASF	7/27/98	8:15	0.190		
		8:16		25.16	

File list for 7/27/98 - Run 3 Loadout and Silo

-	-	-		
1	•)	/	ы	
	~	1	L.	
-		-		

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
17270040 ASF	7/27/98	8:17	0.158		
17270041 ASF	7/27/98	8:19	0.144	25.56	
17270042 ASF	7/27/98	8:21	0.138	24.04	
17270043 ASF	7/27/98	8:22	0.190	21.38	
		8:23			
17270044 ASF	7/27/98	8:24	0.178	24.23	
		8:25			
17270045 ASF	7/27/98	8:26	0.179	25.71	
17270046 ASF	7/27/98	8:28	0.182	26.16	
17270047 ASF	7/27/98	8:29	0.181		
		8:30		24.72	
17270048 ASF	7/27/98	8:31	0.166		
		8:32		21.37	
17270049 ASF	7/27/98	8:33	0.235		
		8:34		25.66	
17270050 ASF	7/27/98	8:35	0.221	21.18	
17270051 ASF	7/27/98	8:37	0.225	2	,
17270052 ASF	7/27/98	8:38	0.205	26.16	
17270053 ASE	7/27/98	8:40	0.201	25.40	
		8:41	0.201	21.36	
17270054 ASE	7/27/98	8.42	0.213	21.00	
112100047101	1121100	8.43	0.210	21 30	
17270055 ASE	7/27/98	8:44	0 255	25.84	
17270056 ASE	7/27/98	8:45	0.200	20.04	
17270057 ASE	7/27/08	8:47	0.241		
ITZ/0001 A01	1121100	8.48	0.100	25.06	
17270058 ASE	7/27/08	8.40	0 164	20.00	
17270059 ASE	7/27/08	8.51	0.104	21.12	
17270060 ASE	7/27/08	8.53	0.135	26.13	
17270061 ASE	7/27/08	8.54	0.133	20.15	
11210001 ASI	1/2//30	9.55	0.157	24.45	
17270062 485	7/07/09	0.00	0 120	24.40	
17270062 ASE	7/27/00	0.00	0.120	21.31	
17270003 ASF	7/27/90	0.00	0.120	20.44	
17270065 ASE		9:00	0.151	24.01	
17270065 ASF	1/2//98	9:01	0.174	00.04	
47070000 405	7/07/00	9:02	0.4.40	26.01	
17270066 ASF	//2//98	9:03	0.149	24.10	
47070007 405	7/07/00	9:04	0.400	21.28	
1/2/006/ ASF	//2//98	9:05	0.160	<u> </u>	
1/2/0068 ASF	1/27/98	9:07	0.112	23.19	
47070000 105		9:08		25.55	
1/2/0069 ASF	7/27/98	9:09	0.117	* • • •	
1/2/00/0 ASF	//27/98	9:10	0.102	24.46	
17270071 ASF	7/27/98	9:12	0.109	21.28	
17270072 ASF	7/27/98	9:14	0.131	21.37	
17270073 ASF	7/27/98	9:16	0.132	25.64	
17270074 ASF	7/27/98	9:17	0.141		

2 5 2/10/00 12:00 PM 727Icl 727 All

121ICI	:
--------	---

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
17270075 AS	F 7/27/98	9:19	0.175	25.13	
17270076 AS	F 7/27/98	9:21	0.155		
17270077 AS	F 7/27/98	9:23	0.101	24.44	
17270078 AS	F 7/27/98	9:25	0.090		
17270079 AS	F 7/27/98	9:26	0.170		
		9:27		25.54	
17270080 AS	F 7/27/98	9:28	0.132		
		9:29		21.36	
17270081 AS	F 7/27/98	9:30	0.108		
17270082 AS	F 7/27/98	9:32	0.118	25.71	
17270083 AS	F 7/27/98	9:33			Instrument off-line for
		9:34		27.74	manual method port change,
17270084 AS	F 7/27/98	9:35		21.49	capture data not usable.
17270085 AS	F 7/27/98	9:37			
		9:38		24.79	
17270086 AS	F 7/27/98	9:39			
		9:43		24.51	
		9:45		25.72	
		9:47		25.18	
		9:52		25.88	
17270087 AS	F 7/27/98	9:54		26.39	
17270088 AS	F 7/27/98	9:56			
		9:57		8.02	
		9:58		21.26	
17270089 AS	F 7/27/98	9:59			
		10:00		21.07	
17270090 AS	F 7/27/98	10:01			
17270091 AS	F 7/27/98	10:03	0.107		Usable data.
		10:04		26.08	
17270092 AS	F 7/27/98	10:05	0.121		
17270093 AS	F 7/27/98	10:06	0.120	25.78	
		10:07		24.42	
17270094 AS	F 7/27/98	10:08	0.164		
		10:09		24.33	
17270095 AS	F 7/27/98	10:10	0.132		
		10:11		25.93	
17270096 AS	F 7/27/98	10:12	0.115		
17270097 AS	F 7/27/98	10:14	0.112	25.22	
17270098 AS	F 7/27/98	10:15	0.112		
		10:16		24.78	
17270099 AS	F 7/27/98	10:17	0.115		
17270100 AS	F 7/27/98	10:19	0.116		
		10:20		25.86	
17270101 AS	F 7/27/98	10:21	0.143		
17270102 AS	F 7/27/98	10:22	0.084	24.52	
		10:23		21.25	
17270103 AS	F 7/27/98	10:24	0.099		

	•		SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		10:25		25.72	
17270104 ASF	7/27/98	10:26	0.116		
		10:27		26.14	
17270105 ASF	7/27/98	10:28	0.098	20.98	
17270106 ASF	7/27/98	10:30	0.121	21.35	
17270107 ASF	7/27/98	10:31	0.105		
		10:32		26.10	
17270108 ASF	7/27/98	10:33	0.140		
		10:34		21.25	
17270109 ASF	7/27/98	10:35	0.181	21.29	
17270110 ASF	7/27/98	10:37	0.214	21.40	
17270111 ASF	7/27/98	10:38	0.235		
		10:39		25.70	
17270112 ASF	7/27/98	10:40	0.202		
17270113 ASF	7/27/98	10:42	0.135		
		10:43		25.28	
17270114 ASF	7/27/98	10:44	0.092		
		10:45	¢ .	21.39	SED being monitored by
		10:47		21.38	FTIR (grab samples),
		10:50		25.76	capture data not usable.
		10:51		21.21	
		10:52		21.44	
		10:56		25.52	
		10:57		21.61	
		11:00		25.58	
		11:01		20.87	
		11:03		21.30	
		11:08		25.74	
		11:09		21.45	
		11:11		22.47	
		11:13		27.91	
17270115 ASF	7/27/98	11:17			Usable data.
		11:18		23.26	
17270116 ASF	7/27/98	11:19	0.101		
17270117 ASF	7/27/98	11:21	0.112	25.22	
17270118 ASF	7/27/98	11:22	0.158		
		11:23		25.78	
17270119 ASF	7/27/98	11:24	0.142		
		11:25		24.53	
17270120 ASF	7/27/98	11:26	0.191		
17270121 ASF	7/27/98	11:28	0.135		
		11:29		25.92	
17270122 ASF	7/27/98	11:30	0.096		
17270123 ASF	7/27/98	11:31	0.089		
17270124 ASF	7/27/98	11:33	0.107	25.79	
		11:34		24.91	
17270125 ASF	7/27/98	11:35	0.144		

			SF ₆ Conc.	Load Out	
Filename	Date	Time (PST)	(ppm)	(tons)	Comments
		11:36		24.56	
17270126 ASF	7/27/98	11:37	0.149	26.60	
17270127 ASF	7/27/98	11:38	0.143		
		11:39		26.14	
17270128 ASF	7/27/98	11:40	0.125		
		11:41		25.67	
17270129 ASF	7/27/98	11:42	0.114		
		11:43		26.10	
17270130 ASF	7/27/98	11:44	0.153		
17270131 ASF	7/27/98	11:45	0.121	24.49	
17270132 ASF	7/27/98	11:47	0.117		
		11:48		25.96	
17270133 ASF	7/27/98	11:49	0.104		
		11:50		25.46	
17270134 ASF	7/27/98	11:51	0.087	24.81	
		11:52		21.08	
17270135 ASF	7/27/98	11:53	0.124		
17270136 ASF	7/27/98	11:54	0.139		
		11:55		24.64	
17270137 ASF	7/27/98	11:56	0.133		
17270138 ASF	7/27/98	11:58	0.127		
17270139 ASF	7/27/98	12:00	0.149		
17270140 ASF	7/27/98	12:01	0.115		
Average Conceptre	tion (nnn	_)	0.450		
Average Concentra	uon (ppn	(I) (ma)	0.159		
Maximum Concentr	ation (pp	((T)) 	0.277094		
	auon (ppi	(TL) 3.	0.0843839		
Average Concentra	tion (g/ft	()	2.73E-05		
Stack Gas Flowrate (acfm)			10,832		<i>,</i>
Capture Rate (g/min)			0.296		
Sampling Time (mir	ר)		217		
Total Capture (g)	1 1 4	(1 h X	64.2	700.00	
Loadout during cap	ture tests	s (tons/hr)		/22.69	
Loadout during all to	esting (to	ons/hr)		573.38	

726Icl

		5	SF ₆ Conc.	
Filename	Date T	ïme (PST	(ppm)	Comments
17260001 ASF	7/26/98	9:25		
17260002 ASF	7/26/98	9:27		
17260003 ASF	7/26/98	9:29		
17260004 ASF	7/26/98	9:31	0.134	
17260005 ASF	7/26/98	9:32	0.160	
17260006 ASF	7/26/98	9:34	0.164	
17260007 ASF	7/26/98	9:36	0.103	
17260008 ASF	7/26/98	9:38	0.144	
17260009 ASF	7/26/98	9:39	0.152	
17260010 ASF	7/26/98	9:41	0.156	
17260011 ASF	7/26/98	9:43	0.176	
17260012 ASF	7/26/98	9:45	0.147	
17260013 ASF	7/26/98	9:46	0.108	
17260014 ASF	7/26/98	9:48	0.108	
17260015 ASF	7/26/98	9:50	0.103	
17260016 ASF	7/26/98	9:52	0.107	
17260017 ASF	7/26/98	9:54	0.147	
17260018 ASF	7/26/98	9:55	0.136	
17260019 ASF	7/26/98	9:57	0.075	
17260020 ASF	7/26/98	9:59	0.103	
17260021 ASF	7/26/98	10:01	0.096	
17260022 ASF	7/26/98	10:02	0.093	
17260023 ASF	7/26/98	10:04	0.101	
17260024 ASF	7/26/98	10:06	0.088	
17260025 ASF	7/26/98	10:08	0.127	
17260026 ASF	7/26/98	10:09	0.115	
17260027 ASF	7/26/98	10:11	0.125	
17260028 ASF	7/26/98	10:13	0.176	
17260029 ASF	7/26/98	10:15	0.175	
17260030 ASF	7/26/98	10:17	0.182	
17260031 ASF	7/26/98	10:18	0.151	
17260032 ASF	7/26/98	10:20	0.172	
17260033 ASF	7/26/98	10:22	0.184	
17260034 ASF	7/26/98	10:24	0.146	
17260035 ASF	7/26/98	10:25	0.169	
17260036 ASF	7/26/98	10:27	0.148	
17260037 ASF	7/26/98	10:29	0.175	
1/260038 ASF	7/26/98	10:31	0.160	
1/260039 ASF	7/26/98	10:33	0.122	
1/260040 ASF	7/26/98	10:34	0.170	
1/260041 ASF	//26/98	10:36	0.225	
17260042 ASF	7/26/98	10:38	0.148	
1/260043 ASF	7/26/98	10:40	0.114	
1/260044 ASF	7/26/98	10:41	0.144	

File list for 7/26/98 - Run 4 (Background) Loadout

			SF ₆ Conc.	
Filename	Date T	ime (PST	(ppm)	Comments
17260045 ASF	7/26/98	10:43	0.106	
17260046 ASF	7/26/98	10:45	0.156	
17260047 ASF	7/26/98	10:47	0.211	
17260048 ASF	7/26/98	10:49	0.149	
17260049 ASF	7/26/98	10:50	0.190	
17260050 ASF	7/26/98	10:52	0.218	
17260051 ASF	7/26/98	10:54	0.229	
17260052 ASF	7/26/98	10:56	0.202	
17260053 ASF	7/26/98	10:57	0.234	
17260054 ASF	7/26/98	10:59	0.229	
17260055 ASF	7/26/98	11:01	0.257	
17260056 ASF	7/26/98	11:03	0.234	3 e
17260057 ASF	7/26/98	11:04	0.211	
17260058 ASF	7/26/98	11:06	0.195	
17260059 ASF	7/26/98	11:08	0.129	
17260060 ASF	7/26/98	11:10	0.186	
17260061 ASF	7/26/98	11:11	0.173	
17260062 ASF	7/26/98	11:13	0.175	
17260063 ASF	7/26/98	11:15	0.178	
17260064 ASF	7/26/98	11:17	0.157	
17260065 ASF	7/26/98	11:19	0.074	
17260066 ASF	7/26/98	11:20	0.089	
17260067 ASF	7/26/98	11:22	0.124	
17260068 ASE	7/26/98	11:24	0.107	
17260069 ASE	7/26/98	11:26	0.089	
17260070 ASE	7/26/98	11.20	0.000	
17260071 ASE	7/26/98	11:50	0.179	
17260072 ASE	7/26/98	11.50	0.170	
17260073 ASE	7/26/98	11.54	0.153	
17260074 ASE	7/26/98	11:56	0.100	
17260075 ASE	7/26/98	11.50	0.125	
17260076 ASE	7/26/08	11.50	0.125	
17260070 AOF	7/26/08	12.03	0.100	
17260078 ASE	7/26/09	12.01	0.133	
17260070 ASF	7/20/90	12.05	0.219	
17260079 ASF	7/20/90	12.00	0.100	
17200000 ASF	7/20/90	12.00	0.109	
17200001 ASF	7/20/90	12:00	0.148	
17200082 ASF	7/20/98	12:10	0.162	
17200083 ASF	1/20/90	12:12	0.164	
17200084 ASF	7/20/90	12:13	0.154	
17200085 ASF	7/20/98	12:15	0.133	
17200086 ASF	7/26/98	12:17	0.142	
17260087 ASF	7/26/98	12:19	0.077	
17260088 ASF	1/26/98	12:21	0.085	
17260089 ASF	//26/98	12:22	0.114	
1/260090 ASF	7/26/98	12:24	0.145	
17260091 ASF	7/26/98	12:26	0.107	

7	2	6	ŀ	С	I
•	_	_	٠	-	•

Filename				
	Date In	ne (PST	(ppm)	Comments
17260092 ASF	7/26/98	12:28	0.107	
17260093 ASF	7/26/98	12:29	0.077	
17260094 ASF	7/26/98	12:31	0.096	
1/260095 ASF	7/26/98	12:33	0.062	
17260096 ASF	7/26/98	12:35	0.000	
1/26009/ ASF	7/26/98	12:36	0.060	
17260098 ASF	7/26/98	12:38	0.137	
17260099 ASF	7/26/98	12:40	0.074	
1/260100 ASF	7/26/98	12:42	0.085	
17260101 ASF	7/26/98	12:43	0.169	
1/260102 ASF	7/26/98	12:45	0.130	
1/260103 ASF	7/26/98	12:47	0.083	
1/260104 ASF	//26/98	12:49	0.119	
1/260105 ASF	7/26/98	12:50	0.132	
17260106 ASF	7/26/98	12:52	0.100	
17260107 ASF	7/26/98	12:54	0.156	
17260108 ASF	7/26/98	12:56	0.144	
17260109 ASF	7/26/98	12:58	0.145	
17260110 ASF	7/26/98	12:59	0.150	
17260111 ASF	7/26/98	13:01	0.081	
17260112 ASF	7/26/98	13:03	0.099	
17260113 ASF	7/26/98	13:05	0.093	
17260114 ASF	7/26/98	13:06	0.086	
17260115 ASF	7/26/98	13:08	0.095	
17260116 ASF	7/26/98	13:10	0.049	
17260117 ASF	7/26/98	13:12	0.061	
17260118 ASF	7/26/98	13:14	0.000	
17260119 ASF	7/26/98	13:15	0.000	
17260120 ASF	7/26/98	13:17	0.000	
17260121 ASF	7/26/98	13:19	0.047	
17260122 ASF	7/26/98	13:21	0.069	
17260123 ASF	7/26/98	13:22	0.062	
17260124 ASF	7/26/98	13:24	0.093	
17260125 ASF	7/26/98	13:26	0.070	
17260126 ASF	7/26/98	13:28	0.069	
17260127 ASF	7/26/98	13:30	0.059	
17260128 ASF	7/26/98	13:31	0.053	
17260129 ASF	7/26/98	13:33	0.052	
17260130 ASF	7/26/98	13:35	0.068	
17260131 ASF	7/26/98	13:37	0.073	
17260132 ASF	7/26/98	13:38	0.109	
17260133 ASF	7/26/98	13:40	0.082	
17260134 ASF	7/26/98	13:42	0.072	
17260135 ASF	7/26/98	13:44	0.131	
17260136 ASF	7/26/98	13:45	0.108	
	<i></i>			

			SF ₆ Conc.	
Filename	Date	Time (PST	(ppm)	Comments
Maximum Concer	ntration (p	pm)	0.257	
Minimum Concen	tration (p	pm)	0.000	
Average Concent	ration (g/f	ť ³)	2.21E-05	
Stack Gas Flowrate (acfm)			11,886	
Capture Rate (g/r	nin)		0.262	
Sampling Time (n	nin)		254	
Total Capture (g)			66.6	

Appendix G

SF₆ Gas Release Data

SF6 Gas Delivery Data Spreadsheet Loadout Run 1

Date: 7/24/98

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
8:05:00	2	4.06	Usable data	4.06
8:06:00	2	4.03		4.03
8:07:00	2	4.00		4.00
8:08:00		· · · · · · · · · · · · · · · · · · ·	Stop Gas Release	
8:13:30	2	4.07	Resume Gas Release	
8:14:00	2	4.05		
8:15:00	2	4.03	Silo 1 being used sporadically	;
8:16:00	2	4.00	data not usable.	
8:16:30			Stop Gas Release	
8:26:30	3	4.14	Resume Gas Release	
8:27:00	3	4.13		
8:28:00	3	4.10		
8:29:00	2	4.00		
8:30:00	2	4.03	Usable data	4.03
8:31:00	3	4.08		4.08
8:32:00	3	4.10		4.10
8:33:00	3	4.11		4.11
8:34:00	2	4.03		4.03
8:35:00	2	4.04		4.04
8:36:00	2	4.04		4.04
8:37:00	2	4.04		4.04
8:38:00	2	4.04		4.04
8:39:00	2	4.04		4.04
8:40:00	2	4.04		4.04
8:41:00	2	4.04		4.04
8:42:00	3	4.10		4.10
8:43:00	2	4.03		4.03
8:44:00	2	4.04		4.04
8:45:00	2	4.04		4.04
8:46:00	3	4.10		4.10
8:47:00	3	4.11		4.11
8:48:00	3	4.11		2.05
8:48:30	2	4.03		2.01
8:49:00	2	4.04		4.04
8:50:00	2	4.04		4.04
8:51:00	2	4.04		4.04
8:52:00	2	4.04		4.04
8:53:00	4	4.10		4.10
8:54:00	3	4.08		4.08
8:55:00	3	4.10		4.10
8:56:00	4	4.08		4.08
8:57:00	4	4.08		4.08
8:58:00	4	4.09		4.09
8:59:00	4	4.09		4.09

LRun1	
-------	--

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
9:00:00	2	4.00		4.00
9:01:00	2	4.02		4.02
9:02:00	2	4.02		4.02
9:03:00	2	4.02		4.02
9:04:00	2	4.02		4.02
9:05:00	3	4.09		4.09
9:06:00	2	4.03		4.03
9:07:00	2	4.02		4.02
9:08:00	2	4.02		4.02
9:09:00	2	4.02		4.02
9:10:00	2	4.03		4.03
9:11:00	2	4.03		4.03
9:12:00	2	4.02		4.02
9:13:00	2	4.02		4.02
9:14:00	2	4.09		4.09
9:15:00	3	4.09		4.09
9:16:00	3	4.10		4.10
9:17:00	4	4.12	THC spike gas run through	
9:18:00	4	4.13	sample lines; capture data	
9:19:00	4	4.14	not usable.	
9:20:00	4	4.14		
9:21:00	4	4.14		
9:22:00	2	4.04		
9:23:00	3	4.10		
9:24:00	2	4.03		
9:25:00	2	4.05	Usable data.	4.05
9:26:00	2	4.04		4.04
9:27:00	2	4.05		4.05
9:28:00	2	4.04		4.04
9:29:00	2	4.03		4.03
9:30:00	2	4.03		4.03
9:31:00	2	4.03		4.03
9:32:00	2	4.04		4.04
9:33:00	2	4.03	SED being monitored by FTIF	२;
9:34:00	2	4.03	capture data not usable.	,
9:35:00			Stop Gas Release	
10:57:00	5	4.08	Resume Gas Release	
10:58:00	5	4.05		
10:59:00	3	4.03		
11:00:00	3	4.03	Usable data.	4.03
11:01:00	4	4.07		4.07
11:02:00	5	4.04		4.04
11:03:00	5	4.04		4.04
11:04:00	5	4.05		4.05
11:05:00	5	4.05		4.05
11:06:00	5	4.05		4.05
11:07:00	5	4.05		4.05
11:08:00	5	4.05		4.05

LRun1	
-------	--

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
11:09:00	5	4.05		4.05
11:10:00	4	4.07		4.07
11:11:00	3	4.04		4.04
11:12:00	3	4.05		4.05
11:13:00	3	4.05		4.05
11:14:00	3	4.05		4.05
11:15:00	3	4.05		4.05
11:16:00	4	4.05		4.05
11:17:00	4	4.06		4.06
11:18:00	4	4.06		4.06
11:19:00	3	4.04		4.04
11:20:00	3	4.05		4.05
11:21:00	3	4.04		4.04
11:22:00	4	4.04		4.04
11:23:00	4	4.05		4.05
11:24:00	4	4.05		4.05
11:25:00	4	4.05		4.05
11:26:00	4	4.05		4.05
11:27:00	3	4.03		4.03
11:28:00	3	4.03		4.03
11:29:00	2	3.95		3.95
11:30:00	2	3.98		3.98
11:31:00	2	4.00		4.00
11:32:00	2	4.00		4.00
11:33:00	2	4.00		4.00
11:34:00	2	4.00		4.00
11:35:00	3	4.00		4.00
11:36:00	3	4.02		4.02
11:37:00	3	4.03		4.03
11:38:00	3	4.02		4.02
11:39:00	2	3.98		3.98
11:40:00	2	3.99		3.99
11:41:00	3	4.02		4.02
11:42:00	3	4.00		4.00
11:43:00	2	4.00		4.00
11:44:00	2	3.99		3.99
11:45:00	2	4.00		4.00
11:46:00	2	4.00		4.00
11:47:00	2	4.00		4.00
11:48:00	2	4.00		4.00
11:49:00	2	4.00		4.00
11:50:00	2	4.00		4.00
11:51:00	2	4.00		4.00
11:52:00	2	3.99		3.99
11:53:00	2	4.00		4.00
11:54:00	2	4.00		4.00
11:55:00	2	4.00		4.00
11:56:00	2	4.00		4.00

LRun	1
------	---

11:57:002 4.00 4.00 $11:59:00$ 2 4.00 4.00 $12:00:00$ 2 4.00 4.00 $12:01:00$ 2 4.00 4.00 $12:01:00$ 2 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 3.99 3.99 $12:2:00$ 2 3.99 3.99 $12:2:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 3.99 3.99 $12:2:00$ 2 4.00 4.00 $12:12:00$ 2 3.99 3.99 $12:2:00$ 2 4.00 4.00 $12:2:00$ 2 4.00 4.00 <t< th=""><th>Time</th><th>Silo No.</th><th>Flow Rate (LPM)</th><th>Comments</th><th>Liters</th></t<>	Time	Silo No.	Flow Rate (LPM)	Comments	Liters
11:58:002 4.00 4.00 $11:59:00$ 2 4.00 4.00 $12:00:00$ 2 4.00 4.00 $12:01:00$ 2 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 3.99 3.99 $12:20:00$ 2 4.00 4.00 $12:21:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 </td <td>11:57:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4.00</td>	11:57:00	2	4.00		4.00
11:59:002 4.00 4.00 $12:00:00$ 2 4.00 4.00 $12:01:00$ 2 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:21:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 </td <td>11:58:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4.00</td>	11:58:00	2	4.00		4.00
12:00:002 4.00 4.00 $12:01:00$ 2 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:04:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:21:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 </td <td>11:59:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4.00</td>	11:59:00	2	4.00		4.00
12:01:002 4.00 4.00 $12:02:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:04:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 3.99 3.99 $12:12:00$ 2 3.99 3.99 $12:12:00$ 2 3.99 3.99 $12:12:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 </td <td>12:00:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4.00</td>	12:00:00	2	4.00		4.00
12:02:002 4.00 4.00 $12:03:00$ 2 4.00 4.00 $12:04:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:11:00$ 2 3.99 3.99 $12:12:00$ 2 3.99 3.99 $12:12:00$ 2 3.99 3.99 $12:20:00$ 2 4.00 4.00 $12:21:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 </td <td>12:01:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:01:00	2	4.00		4 00
12:03:002 4.00 4.00 $12:04:00$ 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 </td <td>12:02:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:02:00	2	4.00		4 00
12:04:00 2 4.00 4.00 $12:05:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:07:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:19:00$ 2 3.99 3.99 $12:22:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 <td< td=""><td>12:03:00</td><td>2</td><td>4.00</td><td></td><td>4 00</td></td<>	12:03:00	2	4.00		4 00
12:05:002 4.00 4.00 $12:06:00$ 2 4.00 4.00 $12:07:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 </td <td>12:04:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:04:00	2	4.00		4 00
12:06:002 4.00 4.00 $12:07:00$ 2 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 </td <td>12:05:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:05:00	2	4.00		4 00
12:07:002 4.00 4.00 $12:08:00$ 2 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 </td <td>12:06:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:06:00	2	4.00		4 00
12:08:002 4.00 4.00 $12:09:00$ 2 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 </td <td>12:07:00</td> <td>2</td> <td>4.00</td> <td></td> <td>4 00</td>	12:07:00	2	4.00		4 00
12:09:002 4.00 4.00 $12:10:00$ 2 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 </td <td>12:08:00</td> <td>2</td> <td>4 00</td> <td></td> <td>4.00</td>	12:08:00	2	4 00		4.00
12:10:002 4.00 4.00 $12:11:00$ 2 4.00 4.00 $12:12:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 </td <td>12:09:00</td> <td>2</td> <td>4 00</td> <td></td> <td>4.00</td>	12:09:00	2	4 00		4.00
12.11.00 2 4.00 4.00 $12.11.00$ 2 4.00 4.00 $12.12.00$ 2 4.00 4.00 $12.13.00$ 2 4.00 4.00 $12.14.00$ 2 4.00 4.00 $12.15.00$ 2 4.00 4.00 $12.16.00$ 2 4.00 4.00 $12.17.00$ 2 4.00 4.00 $12.18.00$ 2 3.99 3.99 $12.20.00$ 2 3.99 3.99 $12.22.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.24.00$ 2 4.00 4.00 $12.25.00$ 2 4.00 4.00 $12.26.00$ 2 4.00 4.00 $12.28.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.23.00$ 2 4.00 4.00 $12.33.00$ 2 4.00 4.00 $12.33.00$ 2 4.00 4.00 $12.33.00$ 2 4.00 4.00 $12.33.00$ 2 4.00 4.00 $12.33.00$ 2 4.00 4.00 $12.36.00$ 3 4.00 4.00 $12.36.00$ 2 4.00 4.00 <td< td=""><td>12:10:00</td><td>2</td><td>4 00</td><td></td><td>4.00</td></td<>	12:10:00	2	4 00		4.00
12:12:002 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 2 4.00 4.00 </td <td>12:11:00</td> <td>2</td> <td>4 00</td> <td></td> <td>4.00</td>	12:11:00	2	4 00		4.00
12.12.00 2 4.00 4.00 $12:13:00$ 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 <td>12.12.00</td> <td>2</td> <td>4.00</td> <td></td> <td>4.00</td>	12.12.00	2	4.00		4.00
12:14:00 2 4.00 4.00 $12:14:00$ 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:37:00$ 2 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:12:00	2	4.00		4.00
12:15:00 2 4.00 4.00 $12:15:00$ 2 4.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 4.00 4.00 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 2 4.00 4.00 <td< td=""><td>12:14:00</td><td>2</td><td>4 00</td><td></td><td>4.00</td></td<>	12:14:00	2	4 00		4.00
12:16:00 2 1.00 4.00 $12:16:00$ 2 4.00 4.00 $12:17:00$ 2 3.99 3.99 $12:18:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:15:00	2	4.00		4.00
12:17:00 2 4.00 4.00 $12:17:00$ 2 3.99 3.99 $12:18:00$ 2 3.99 3.99 $12:19:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:16:00	2	4.00		4.00
12:11:00 2 $1,00$ $1,00$ $12:18:00$ 2 3.99 3.99 $12:19:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:21:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:10:00	2	4.00		4.00
12:10:00 2 3.99 3.99 $12:19:00$ 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:21:00$ 2 3.99 3.99 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:18:00	2	3.00		3 99
12:10:00 2 3.99 3.99 $12:20:00$ 2 3.99 3.99 $12:21:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:19:00	2	3 99		3.00
12:21:00 2 3.99 3.99 $12:21:00$ 2 4.00 4.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:20:00	2	3 99		3 00
12.21.00 2 0.00 0.00 $12:22:00$ 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:20:00	2	3 99		3 99
12.22.00 2 4.00 4.00 $12:23:00$ 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:21:00	2	4.00		3.99
12.20.00 2 4.00 4.00 $12:24:00$ 2 4.00 4.00 $12:25:00$ 2 4.00 4.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:22:00	2	4.00		4.00
12.24.00 2 4.00 4.00 $12.25.00$ 2 4.00 4.00 $12:26.00$ 2 4.00 4.00 $12:27.00$ 2 4.00 4.00 $12:28.00$ 2 4.00 4.00 $12:29.00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:20:00	2	4.00		4.00
12.20.00 2 1.00 1.00 $12:26:00$ 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:25:00	2	4.00		4.00
12.20.00 2 4.00 4.00 $12:27:00$ 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00 $12:37:00$ 2 4.00 4.00	12:26:00	2	4.00		4.00
12:21:00 2 4.00 4.00 $12:28:00$ 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:34:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:20:00	2	4.00		4.00
12.20.00 2 4.00 4.00 $12:29:00$ 2 4.00 4.00 $12:30:00$ 2 4.00 4.00 $12:31:00$ 2 4.00 4.00 $12:32:00$ 2 4.00 4.00 $12:33:00$ 2 4.00 4.00 $12:34:00$ 2 4.00 4.00 $12:35:00$ 2 4.00 4.00 $12:36:00$ 3 4.00 4.00	12:27:00	2	4.00		4.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12:29:00	2	4.00		4.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12:20:00	2	4.00		4.00
12:32:00 2 4.00 4.00 12:33:00 2 4.00 4.00 12:34:00 2 4.00 4.00 12:35:00 2 4.00 4.00 12:36:00 3 4.00 4.00 12:37:00 2 4.00 4.00	12:31:00	2	4 00		4.00
12:32:00 2 4.00 4.00 12:33:00 2 4.00 4.00 12:34:00 2 4.00 4.00 12:35:00 2 4.00 4.00 12:36:00 3 4.00 4.00 12:37:00 2 4.00 4.00	12:32:00	2	4.00		4.00
12:36:00 2 4.00 4.00 12:35:00 2 4.00 4.00 12:36:00 3 4.00 4.00 12:37:00 2 4.00 4.00	12:33:00	2	4.00		4.00
12:35:00 2 4.00 4.00 12:36:00 3 4.00 4.00 12:37:00 2 4.00 4.00	12:34:00	2	4.00		4.00
12:36:00 3 4.00 4.00 12:37:00 3 4.00 4.00	12:35:00	2	4.00		4.00
12:30:00 3 4:00 4:00	12:36:00	2	4.00		4.00
	12:30:00	2	4.00		4.00
12:38:00 2 4:02	12:38:00	2	4.02 4.00		4.02
12:39:00 2 4:00 4:00	12.30.00	2	4.00		4.00
12:40:00 2 4:00 4:00	12:40:00	2	4.00		4.00
12:41:00 2 4:00 4:00	12:40:00	2	4.00		4.00
12:42:00 2 4:00 4:00	12.42.00	2	4.00		4.00
12:43:00 2 4:00 4:00	12:42:00	2 う	4.00		4.00
12.44.00 2 4.00 4.00	12.40.00	2	4.00		4.00

LRun1	l
-------	---

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
12:45:00	2	4.00		4.00
12:46:00	2	4.00		4.00
12:47:00	2	4.00		4.00
12:48:00	2	4.00		4.00
12:49:00	4	4.07		4.07
12:50:00	4	4.06		4.06
12:51:00	4	4.06		4.06
12:52:00	4	4.06		4.06
12:53:00	2	4.00		4.00
12:54:00	2	4.00		4.00
12:55:00	2	4.00		4.00
12:56:00	2	4.00		4.00
12:57:00	Stop Gas R	elease	End of run	
Average Belages Bate (LDM) =				
Average Release Rate (LFW) =			4.07	
Time of Delegas (min) -		0.491		
(Time of Release (min) =			173	
Mass Releas	sed (g) =			84.9

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
7:10:00	3	4.10		
7:11:00	5	4.00		
7:12:00	5	4.05		
7:13:00	5	4.06	Usable data.	4.06
7:14:00	5	4.07		4.07
7:15:00	5	4.08		4.08
7:16:00	5	4.00		4.00
7:17:00	3	4.06		4.06
7:18:00	3	4.06		4.06
7:19:00	3	4.06		4.06
7:20:00	3	4.06		4.06
7:21:00	3	4.06		4.06
7:22:00	3	4.06		2.03
7:22:30	2	4.02		2.01
7:23:00	2	4.03		4.03
7:24:00	2	4.04		4.04
7:25:00	3	4.07		4.07
7:26:00	3	4.07		4.07
7:27:00	3	4.08		4.08
7:28:00	3	4.08		8.16
7:30:00	2	4.04		4.04
7:31:00	2	4.05		2.02
7:31:30	3	4.08		2.04
7:32:00	3	4.08		4.08
7:33:00	3	4.08		4.08
7:34:00	3	4.08		4.08
7:35:00	3	4.08		4.08
7:36:00	3	4.09		4.09
7:37:00	2	4.04		4.04
7:38:00	2	4.05		4.05
7:39:00	2	4.05		4.05
7:40:00	2	4.05		4.05
7:41:00	2	4.05		4.05
7:42:00	3	4.09		4.09
7:43:00	3	4.08		2.04
7:43:30	2	4.04		2.02
7:44:00	2	4.04		4.04
7:45:00	2	4.04		4.04
7:46:00	2	4.05		4.05
7:47:00	2	4.05		2.02
7:47:30	3	4.07		2.03
7:48:00	3	4.07		4.07
7:49:00	3	4.07		4.07
7:50:00	2	4.03		4.03

SF6 Gas Delivery Data Spreadsheet Loadout Run 2

Date: 7/25/98

LR	un	2
----	----	---

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
7:51:00	2	4.05		4.05
7:52:00	2	4.05		4.05
7:53:00	2	4.04		4.04
7:54:00	2	4.04		4.04
7:55:00	3	4.07		4.07
7:56:00	3	4.06		4 06
7:57:00	3	4.06		4.06
7:58:00	3	4.06		4.06
7:59:00	3	4.06		2.03
7:59:30	2	4.03		2.01
8:00:00	2	4.03		4.03
8:01:00	2	4.03		4.03
8:02:00	2	4.03		4.03
8:03:00	2	4.04		2.02
8:03:30	3	4.04		2.02
8:04:00	3	4.04		4.04
8:05:00	3	4.04		4.04
8:06:00	3	4.04		4.04
8:07:00	3	4.04		4.04
8:08:00	2	4.03		4.03
8:09:00	3	4.04		4.04
8:10:00	3	4.00		4.00
8:11:00	3	4.00		4.00
8:12:00	4	4.09		4.09
8:13:00	4	4.09		4.09
8:14:00	4	4.09		4.09
8:15:00	4	4.09		4.09
8:16:00	4	4.09		2.04
8:16:30	3	4.00		2.00
8:17:00	3	4.00		4.00
8:18:00	3	4.00		4.00
8:19:00	3	4.00		4.00
8:20:00	3	4.00		4.00
8:21:00	3	4.00		4.00
8:22:00	5	4.04		4.04
8:23:00	5	4.03		4.03
8:24:00	3	4.00		4.00
8:25:00	3	4.00		4.00
8:26:00	3	4.00		4.00
8:27:00	2	4.00		4.00
8:28:00	2	4.00		4.00
8:29:00	2	4.02		4.02
8:30:00	3	4.03		4.03
8:31:00	3	4.02		4.02
8:32:00	3	4.02		4.02
8:33:00	3	4.00		4.00
8:34:00	3	4.00		4.00
0.35.00	2	4.00		4.00

LRun:	2
-------	---

Time	Silo No.	Flow Rate (LPM)	Comments Li	iters
8:36:00	2	4.00		2.00
8:36:30	4	4.08		2.04
8:37:00	4	4.08		4.08
8:38:00	4	4.07		4.07
8:39:00	4	4.07		4.07
8:40:00	4	4.06		4.06
8:41:00	3	3.97		3.97
8:42:00	3	3.98		3.98
8:43:00	5	4.00		4.00
8:44:00			Stop Gas Release	
9:27:00	2	4.00	Resume Gas Release	
9:28:00	2	3.97	SED being monitored by FTIF	२;
9:29:00	2	3.95	capture data not usable.	
9:30:00	2	4.06		
9:31:00	2	4.06	Usable data.	4.06
9:32:00	2	4.06		4.06
9:33:00	3	4.06		4.06
9:34:00	3	4.07		4.07
9:35:00	2	4.11		4.11
9:36:00	2	4.11		4.11
9:37:00	2	4.05		4.05
9:38:00	2	4.05		4.05
9:39:00	2	4.05		4.05
9:40:00	2	4.05		4.05
9:41:00	2	4.05		4.05
9:42:00	2	4.05		4.05
9:43:00	2	4.05		4.05
9:44:00	2	4.05		4.05
9:45:00	2	4.04		4.04
9:46:00	3	4.05		4.05
9:47:00	2	4.04		4.04
9:48:00	2	4.04		4.04
9:49:00	2	4.05		4.05
9:50:00	2	4.05		4.05
9:51:00	2	4.05		4.05
9:52:00	2	4.05		4.05
9:53:00	2	4.05		4.05
9:54:00	2	4.04		4.04
9:55:00	2	4.03		4.03
9:56:00	2	4.04		4.04
9:57:00	2	4.03		4.03
9:58:00	2	4.04		4.04
9:59:00	2	4.03		4.03
10:00:00	2	4.03		4.03
10:01:00	2	4.03		4.03
10:02:00	2	4.04		4.04
10.03:00	2	4.04		4.04
10.04.00	2	4.04		4.04
LRun2				
-------	--			
-------	--			

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
10:05:00	2	4.04		4 04
10:06:00	2	4.04		4 04
10:07:00	2	4.04		4 04
10:08:00	2	4.04		4 04
10:09:00	2	4.04		4 04
10:10:00	2	4.03		4.04
10:11:00	2	4.03		4.00
10:12:00	2	4.03		4.03
10:13:00	2	4.04		4.00
10:14:00	2	4.04		4.04
10:15:00	2	4.04		4.04
10:16:00	2	4.04		4.04
10:17:00	- 3	4.05		4.04
10:18:00	3	4.06		4.03
10:19:00	3	4 07		4.00
10:20:00	3	4.06		4.07
10:21:00	3	4.06		4.00
10:22:00	3	4 09		4.00
10:23:00	3	4.06		4.09
10:24:00	3	4.06		4.00
10:25:00	3	4.07		4.00
10:26:00	2	4 00		4.07
10:27:00	2	4 00		4.00
10:28:00	2	4 00		4.00
10:29:00	2	4.00		4.00
10:30:00	4	4.05		4.00
10:31:00	4	4.07		4.00
10:32:00	4	4.06		4 06
10:33:00	4	4.06		4.06
10:34:00	4	4.06		4.06
10:35:00	4	4.06		4 06
10:36:00	4	4.06		4.06
10:37:00	4	4.06		4 06
10:38:00	4	4.06		4.06
10:39:00	4	4.05		4.05
10:40:00	4	4.05		4.05
10:41:00	4	4.05		4.05
10:42:00	5	3.96		3.96
10:43:00	5	3.96		3.96
10:44:00	5	3.97		3.97
10:45:00	5	3.97		3.97
10:46:00	5	3.97		3.97
10:47:00	5	3.97		3.97
10:48:00	2	4.04		4.04
10:49:00	2	4.04		4.04
10:50:00	2	4.03		4.03
10:51:00	2	4.00		4.00
10:52:00	2	4.00		4.00

LRun2	
-------	--

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
10:53:00	2	3.98		3.98
10:54:00	2	3.96		3.96
10:55:00	2	4.00		4.00
10:56:00	2	4.00		4.00
10:57:00	2	4.00		4.00
10:58:00	2	4.00		4.00
10:59:00	2	4.00		4.00
11:00:00	2	4.00		4.00
11:01:00	2	4.00		4.00
11:02:00	2	4.00		4.00
11:03:00	2	4.00		4.00
11:04:00	2	4.00		4.00
11:05:00	2	4.00		4.00
11:06:00	2	4.00		4.00
11:07:00	2	4.00		4.00
11:08:00	2	4.00		4.00
11:09:00	2	4.00		4.00
11:10:00	2	4.00		4.00
11:11:00	2	3.99		3.99
11:12:00	2	3.98	End of Run	
11:13:00	2	3.99		
11:14:00	2	3.99		
11:15:00	2	3.99		
11:16:00	2	3.99		
11:17:00	2	4.02		
11:18:00	2	4.00		
11:19:00	2	4.00		
11:20:00	2	3.99		
11:21:00	2	3.99		
11:22:00	2	3.98		
11:23:00	2	3.97		
11:24:00	2	3.97		
11:25:00	2	3.98		
11:26:00	2	3.99		
11:27:00	2	3.99		
11:28:00	2	4.00		
11:29:00	2	4.03		
11:29:30			Stop Gas Release	
		·		
Average Rel	ease Rate (LPM) =		4.04
Iviass Releas	se Rate (g/n	nin) =		0.486
	ase (min) =			192
iviass Releas	sea (g) =			93

SF6 Gas Delivery Data Spreadsheet Loadout Run 3

Date: 7/27/98

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
7:10:00	2	4.00	Start Gas Release	
7:11:00	2	3.97		
7:12:00	2	4.03		
7:13:00	2	4.03		
7:14:00	2	4.04		
7:15:00	2	4.04	Usable data.	4.04
7:16:00	2	4.04		4.04
7:17:00	2	4.04		4.04
7:18:00	2	4.04		4.04
7:19:00	2	4.04		4.04
7:20:00	2	4.04		4.04
7:21:00	2	4.04		4.04
7:22:00	2	4.03		4.03
7:23:00	2	4.03		4.03
7:24:00	2	4.03		4.03
7:25:00	2	4.02		4.02
7:26:00	2	4.00		4.00
7:27:00	2	4.00		4.00
7:28:00	2	4.00		4.00
7:29:00	2	4.00		4.00
7:30:00	2	4.00		4.00
7:31:00	2	4.00		4.00
7:32:00	2	4.00		4.00
7:33:00	2	4.00		4.00
7:34:00	2	4.00		4.00
7:35:00	2	4.00		4.00
7:36:00	2	4.00		4.00
7:37:00	2	4.00		4.00
7:38:00	2	4.00		4.00
7:39:00	2	4.00		4.00
7:40:00	2	3.99		3.99
7:41:00	2	3.99		3.99
7:42:00	2	3.99		3 99
7:43:00	2	3.99		3 99
7:44:00	2	3.99		3.99
7:45:00	2	3.99		3 99
7:46:00	2	3.99		3 99
7.47.00	2	3.99		3 99
7.48.00	2	3 99		3 99
7:49:00	2	3 99		3 99
7:50:00	2	3 99		3.99
7:51:00	2	4.00		3.99 4.00
7:52:00	2	4.00 4.00		4.00 1 00
7:53:00	2	4.00 3.00		4.00
1.00.00	۷ ک	5.99		5.99

LRu	n3
-----	----

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
7:54:00	2	3.99		3.99
7:55:00	2	3.99		3.99
7:56:00	2	3.99		3.99
7:57:00	2	3.99		3.99
7:58:00	2	3.98		3.98
7:59:00	2	4.00		4.00
8:00:00	2	4.00		4.00
8:01:00	2	4.00		4.00
8:02:00	2	4.00		4.00
8:03:00	2	4.00		4.00
8:04:00	2	4.00		4.00
8:05:00	2	4.00		4.00
8:06:00	2	4.00		4.00
8:07:00	2	4.00		4.00
8:08:00	2	4.00		4.00
8:09:00	2	4.00		4.00
8:10:00	2	4.00		4.00
8:11:00	2	4.00		4.00
8:12:00	2	4.00		4.00
8:13:00	2	4.00		4.00
8:14:00	2	4.00		4.00
8:15:00	2	4.00		4.00
8:16:00	2	4.00		4.00
8:17:00	2	4.00		4.00
8:18:00	2	4.00		4.00
8:19:00	2	4.00		4.00
8:20:00	2	4.00		4.00
8:21:00	2	4.00		4.00
8:22:00	2	4.00		4.00
8:23:00	2	4.00		4.00
8:24:00	2	4.00		4.00
8:25:00	2	4.00		4.00
8:26:00	2	4.00		4.00
8:27:00	2	4.00		4.00
8:28:00	2	4.00		4.00
8:29:00	2	4.00		4.00
8:30:00	4	4.06		4.06
8:31:00	4	4.07		4.07
8:32:00	4	4.00		4.00
8:33:00	4	4.00		4.00
8:34:00	4	4.00		4.00
8:35:00	4	4.00		4.00
8:36:00	4	4.00		4.00
8:37:00	4	4.00		4.00
8:38:00	4	4.00		4.00
8:39:00	4	4.00		4.00
8:40:00	4	4.00		4.00
8:41:00	4	4.02		4.02

LR	un3
----	-----

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
8:42:00	4	4.00		4.00
8:43:00	4	4.02		4.02
8:44:00	5	3.99		3.99
8:45:00	2	4.00		4.00
8:46:00	2	4.00		4.00
8:47:00	2	4.00		4.00
8:48:00	2	4.00		4.00
8:49:00	2	4.00		4.00
8:50:00	2	4.00		4.00
8:51:00	2	4.00		4.00
8:52:00	2	4.00		4.00
8:53:00	2	4.00		4.00
8:54:00	2	4.00		4.00
8:55:00	2	4.00		4.00
8:56:00	2	4.00		4.00
8:57:00	2	4.00		4.00
8:58:00	2	4.00		4.00
8:59:00	2	4.02		4.02
9:00:00	2	4.00		4.00
9:01:00	2	4.00		4.00
9:02:00	2	4.00		4.00
9:03:00	2	4.00		4.00
9:04:00	2	4.00		4.00
9:05:00	2	4.00		4.00
9:06:00	2	4.00		4.00
9:07:00	2	4.00		4.00
9:08:00	2	4.00		4.00
9:09:00	2	4.00		4.00
9:10:00	2	4.00		4.00
9:11:00	2	4.00		4.00
9:12:00	2	3.99		3.99
9:13:00	2	3.99		3.99
9:14:00	2	3.99		3.99
9:15:00	2	3.99		3.99
9:16:00	2	3.99		3.99
9:17:00	2	3.99		3.99
9:18:00	2	4.04		4.04
9:19:00	2	4.04		4.04
9:20:00	2	4.04		4.04
9:21:00	2	4.03		4.03
9:22:00	2	4.02		4.02
9:23:00	2	4.03		4.03
9:24:00	2	4.03		4.03
9:25:00	2	4.03		4.03
9:26:00	2	4.04		4.04
9:27:00	2	4.04		4.04
9:28:00	2	4.04		4.04
9:29:00	2	4.04		4.04

LRun	3
------	---

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
9:30:00	2	4.04		4.04
9:31:00	2	4.04		4.04
9:32:00			Stop Gas Release	
9:52:00	2	4.08	Resume Gas Release	
9:53:00	2	4.00		
9:54:00	2	3.98	Instrument off-line for ma	anual
9:55:00	2	3.98	method port change;	
9:56:00	2	3.98	· -	
9:57:00			Stop Gas Release	
9:59:00	2	4.03	Resume Gas Release	
10:00:00	2	4.00		
10:01:00	2	3.99		
10:02:00	2	3.98		
10:03:00	2	3.99	Usable data.	3.99
10:04:00	2	3.99		3.99
10:05:00	2	3.99		3.99
10:06:00	2	3.99		3.99
10:07:00	2	3.99		3.99
10:08:00	2	3.99		3.99
10:09:00	2	3.99		3.99
10:10:00	2	3.99		3.99
10:11:00	2	3.99		3.99
10:12:00	2	4.00		4.00
10:13:00	2	4.00		4.00
10:14:00	2	3.99		3.99
10:15:00	2	3.99		3.99
10:16:00	2	3.99		3.99
10:17:00	2	3.99		3.99
10:16:00	2	3.99		3.99
10.19.00	2	3.99		3.99
10:20:00	2	3.90		3.98
10.21.00	2	3.99		3.99
10.22.00	2	3.90		3.90
10:20:00	2	4.00		4.00
10:25:00	2	4.00		4.00
10:26:00	2	4.00		4.00
10:27:00	2	4.00		4.00
10:28:00	2	4 00		4.00
10:29:00	2	4.00		4.00
10:30:00	2	4.00		4.00
10:31:00	5	4.00		4.00
10:32:00	2	4.02		4.02
10:33:00	2	4.03		4.03
10:34:00	5	4.00		4.00
10:35:00	5	3.99		3.99
10:36:00	5	3.99		3.99
10:37:00	5	3.99		3.99

LRUNS	L	.Run	3
-------	---	------	---

Time	Silo No.	Flow Rate (LPM)	Comments Lite	ers
10:38:00	5	3.99		3.99
10:39:00	5	3.99		3.99
10:40:00	5	3.99		3.99
10:41:00	5	4.03		4.03
10:42:00	5	3.99		3.99
10:43:00	5	4.00		4.00
10:44:00	5	4.00	SED being monitored by FTIR	
10:45:00	5	4.00	(grab samples); data not usable	e.
10:46:00	5	4.00		
10:47:00	5	3.99		
10:48:00	5	3.99		
10:49:00	2	4.00		
10:50:00	2	4.00		
10:51:00	2	4.07		
10:52:00	2	4.04		
10:53:00	2	4.04		
10:54:00	2	4.03		
10:55:00	2	4.04		
10:56:00	2	4.04		
10:57:00	2	4.04		
10:58:00	2	4.04		
10:59:00	2	4.05		
11:00:00	2	4.05		
11:01:00	2	4.05		
11:02:00	2	4.06		
11:03:00	2	4.00		
11:04:00	2	4.00		
11:05:00	2	4.00		
11:06:00	2	4.00		
11:07:00	2	4.00		
11:08:00	2	4.00		
11:09:00	2	4.00		
11:10:00	2	4.00		
11:11:00	2	4.00		
11:12:00	2	4.00		
11:13:00	2	4.00		
11:14:00	2	4.00		
11:15:00	2	4.00		
11:16:00	2	4.00		
11:17:00	2	4.00	Usable data.	4.00
11:18:00	2	4.00		4.00
11:19:00	2	4.00		4.00
11:20:00	2	4.00		4.00
11:21:00	2	4.00		4.00
11:22:00	2	4.00		4.00
11:23:00	2	4.03		4.03
11:24:00	2	4.04		4.04
11:25:00	2	4.00		4.00

LRu	n3
-----	----

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
11:26:00	2	3.98		3.98
11:27:00	2	3.99		3.99
11:28:00	2	3.99		3.99
11:29:00	2	3.99		3.99
11:30:00	2	3.99		3.99
11:31:00	2	3.99		3.99
11:32:00	2	3.99		3.99
11:33:00	2	3.99		3.99
11:34:00	2	4.00		4.00
11:35:00	2	4.00		
11:35:30	1		Stop Gas Release	
11:37:00	2	4.00	Resume Gas Release	4.00
11:38:00	2	3.96		3.96
11:39:00	2	4.03		4.03
11:40:00	2	4.05		4.05
11:41:00	2	4.05		4.05
11:42:00	2	4.05		4.05
11:43:00	2	4.04		4.04
11:44:00	2	4.04		4.04
11:45:00	2	4.04		4.04
11:46:00	2	4.04		4.04
11:47:00	2	4.04		4.04
11:48:00	2	4.04		4.04
11:49:00	2	4.04		4.04
11:50:00	2	4.04		4.04
11:51:00	2	4.00		4.00
11:52:00	2	4.00		
11:53:00	1		Stop Gas Release	
11:54:30	2	4.05	Resume Gas Release	2.02
11:55:00	2	4.03		4.03
11:56:00	2	4.00		4.00
11:57:00	2	3.99		3.99
11:58:00	2	3.99		3.99
11:59:00	2	3.99	3.99
12:00:00		****±	Stop Gas Release	
			End of Run	
Average Rele	ease Rate (LPM) =		4.01
IVIASS Releas	e Rate (g/m	nin) =		0.485
I ime of Rele	ase (min) =			217
IVIASS Releas	ea (g) =			105

SF6 Gas Delivery Data Spreadsheet Background Loadout Run 4

Date: 7/26/98

Time	Silo No.	Flow Rate (LPM)	Comments	Liters
9:27:00	2	4.13		
9:30:00	2	4.13		56.79
9:43:45	2	4.10		66.63
10:00:00	2	4.12		135.96
10:33:00	2	4.06		117.74
11:02:00	2	4.15		53.95
11:15:00	2	4.16		104.00
11:40:00	2	4.24		161.84
12:18:10	2	4.05		116.76
12:47:00	2	4.04		54.86
13:00:35	2	4.04		184.83
13:46:20	2		End of Run	
Average Rel Mass Releas Time of Rele Mass Releas	ease Rate se Rate (g/ ease (min) = sed (g) =	(LPM) = min) = =		4.11 0.497 256 128

-830

Sheet _/_ of _7__

	4704 00 00 5	4		والمواجدة والمراجع والمراجع والمحاجب والمراجع			7	
Mri Project No.	4/01-08-03-0	4					Run No.	
Client/Source:	PLANT	G					Date: 7-24	-98
Sampling Location:	PTE Loadout						Operator: D, NE	,Le
-Bry Gee Meter No:	R-c	0308		······		Gas Cyl	inder No: <u>ALMØ</u>	01387Ø
Time	Silo No.	Flow Rate	Pres. PSI				Comments	
OBO5.	#2	4.06	13	TRUCK	1.	Tyn.	NEL, CLOU	0Y
0806	#2	4.03	13	ئم	¢,	Lj		
0807	#2	4.00	13	90	<i>,</i> '	r	WIND SPEEK	0-200 FPm
0808	STOP	GAS RE	LERSE				INTO TRINNEL	0-100 Frim
							Gress wind	/
0813,5	#2	4.07	13	TRACK	. 15	Tuin	EL . RESUME	GAS RELEOSI
0814	#2	4.05	13	1.1	L1	61		
0815	#2	4.03	13	31	11			
0816	#2	4,00	13	11	17	12		
0816.5	STOP (Sas RELE	0:6					
0826.5	#3	4.14	13	TRACE	12	TANN	EL, RESUMI	Gos RELEOS
0827	#3	4,13	13	4		ч		
082B	#3	4.10	13	<i>i</i> 1	+ I	ŋ		
0829	#2	4.00	13	<i>₹4</i>	11	<i>‡</i> ,		
0830	#2	4.03	13	11	11	11		
0831	#3	4.08	13	16	15	Ţ.\$		
0832	#3	4.10	13	1r	11	(1		
0833	#3	4,11	13	11	1.	13		
0834	#2	4.03	13	1.	<i>y</i> ,	12		
0835	#2	4.04	/3	+1	<i>(</i> /	t,		······
0836	#2	4.04	13	u	u	÷)		
0837	#2	4.04	13	1.		ر،	······································	
0838	#2	4.04	/3	14	,/	11		
0839	#2	4.04	13	и	C.F.	ы		
0840	#2	4,04	13	15	r1	1.		
0841	#2	4.04	13	11	fr.	1,		
0842	#3	4.10	13	11	,,	11	CLOUDY WIN	19 SPEED AND
0843	#2	4.03	13	11	11	<i>.</i> .	DIRBETION IIN	CHANGED
0844	#2	4.04	13	1	1.	11		- 1141 · UU U,
0845	#2	4.04	13	4	ч	4		
6846	#3	4.10	13	11	1.	, .1		
				1				

. مەربىي مەربىي Sheet $\underline{\mathcal{Z}}$ of $\underline{\mathcal{T}}$

Mri Project No.	4701-08-03-0	4		Run No.
Client/Source:	PLRIN	C		Date: 7-24-98
Sampling Location:	PTE Loadout			Operator. D. NSOL
MASJ PLO Dy Cos Meter No:	W R-0:	308		Gas Cylinder No: ALMØ13870
Timer	01111			
10110	Silo No.	Flow Rate	Pres. PSI	Comments
0041	# 3	9.11	14	TRACH IN TUNNEL
1040 -	#2	4.11	14	
DOUG	# 1	1.05	17	
0899	#1-	4.04	14	
DOSU	# 0	7.04 4 MI	111	
1857	#2	11.04	14	
0853	# 4	4.10	14	
0854	43	4 118	14	
0855	# 3	N. IO	14	
0856	ل ا	4.08	14	
ARST	# 4	4 08	14	
0858	#4	4.09	14	
0859	#4	4.19	14	
0900	#2	4.00	14	
0901	#2	4.02	14	() <i>K</i> ()
0902	#2	4.02	14	NIG TRUCK TAL TU ALLEI
0903	#2	4.02	14	
0904	#2	4.02	14	at a training the
0905	#3	4.09	14	TRUCK IN TUNNEL
0906	#2	4,03	14	
0907	#2	4.02	14	NO TRUCK IN TUNNEL
09 08	#2	4.02	14	4 11 12 11 11
0909	#2	4.02	14	in y u y
0910	#2	4.03	14	TRUCK IN TUNNEL
0911	#7	4.03	14	u u u CLOUDY WINA SPEED
0712	#2	4.02	14	un u & DIRECTION USCHMADE
0713	#2	4.02	14	ii u il
0914	#3	4,09	14	4 7 N
0915	#3	4.09	14	NO PRACE IN TUNNEL
0916	#3	4,10	14	11 41 43 49

Sheet $3_{of} 7_{c}$

Mri Project No	4701-08-03-0			Run No.
Client/Source	PLANT	· C		Date: 7-24-98
Sampling Location	PTE Loadout			Operator: D. NEQU
C, Cos Meter No	R-0	308		Gas Cylinder No: ALM Ø13870
Time	Silo No.	Flow Rate	Pres. PSI	Comments
0917	#4	4.12	14	TRUCK IN FRANKS
0918	#4	413	14	н 4 л
0919	#4	4.14	14	NO TRUCK IN TUNNEL
0970	ĦЧ	4,14	14	a a la ij
0721	#4	8.14	14	e 11 11 11
0922	#2	4.04	14	TRUCK IN TUNNEL
0923	#3	4.10	14	h u n
0924	#2	4,03	14	in 11 il
0925	#2	4.05	14	··· // ٦
0926	#2	4.04	14	u u u
0927	#2	4.05	14	in in n
0928	#2-	4,04	14	li 12 li
0929	#2	4,03	14	is n n
0930	#2	4.03	14	li li n
0931	#2	4.03	14	4 4 11
0932	#2	4.04	14	ci it li
0933	#2	4.03	14	n is
0934	#2	4.03	14	ie pe is
0935	STOP	GAS REC	EDSE	
1057	#5	4.08	14	TRUCK IN TUNNEL. RESUME GAS RELEA
1058	#5	4.05	14	h h h CLOUDY. WIDA SPEEd
1059	#3	4.03	14	11 11 " 100-250 FPM G45T
1100	#93	4.03	14	11 11 1' For To 300+ FIM
1151	#4	4.07	14	
1102	45	4.04	14	4 n li
1103	#5	4.04	14	the transformed to the transform
1104	#5	4.05	14	A (1 2)
1105	#5	4.05	14	NO TROCK IN TANNEL
1106	#5	4.05	14	(1 4) (1 (1
1107	#5	4.05	14	21 71 24 41
1108	#5	4.05	14	TRUCK IN TUNNOL

Sheet <u>4</u> of <u>7</u>

Mri Project Na	. 4701-08-03-0	4				Run No	. /		1
Client/Source	PLON	+ C				Date	7-24-98		
Sampling Location	PTE Loadout					Operator	O. NEDL-		
MASS FLOCA DRICOG Meter No	R-03	30 B				Gas Cylinder No	ALMB13	97 Ø	
								<u> </u>	
l ime	Silo No.	Flow Rate	Pres. PSI				Comments		
1109	# 5	9.05	14	TRUC	K IN	TUNNE	2		
1100	# 9	9,01	19		ć.	21			
////	#3	9.09	19	4		4			
1112	#3	4.05	14	1	£*	и			
1113	#3	4.05	14	NOT	RUCK	IN TUN.	NEL CLO	334	
1114	#3	4.05	/4	j a	61	11 4	WIND SPEC	50 0-250	FPM
1115	#3	4.05	14	\$1	Ë1	t: in	300+ CROSS	WIND .	
1116	#4	4.05	14	TRACK	EIN	TUNNEL	_		
1117	#4	4.06	14	и	4	41			
1118	#9	4,06	14	ι.	u	i,			
1119	#3	4,04	14	μ	'n	()			
1120	#3	4.05	14	24	Þ	и			
1121	#3	4.04	14	'n	4	-1			
1172	#34	4.04	14	Li	41	4			
1123	#4	4.05	14	21	ł s	61	CLOUDY		
1124	#4	4.05	14	'n	il	is .	WINN; VOR	EINPLE	
1125	#4	4.05	14	ы	14	41	0-250 FPM	GUSTS TO	3007
1126	#4	4.05	14	4.8	h	1.			
1127	#3	4,03	14	и	ć.	Li			
1128	#3	4.03	14	N	v	<i>i</i> s			ĺ
1129	#2	3.95	14	<i>i</i> ı	**	12			[
1130	#2	3.98	14	¢ι	n	и			
1131	#2	4,00	14	ĩ.	L1	in			
1132	#2	4.00	14	rl	41	11	· , , , , , , , , , , , , , , , , , , ,		
1133	#2	4.00	14	4	ù				
1134	#2	4.00	14	ŧı.	23	4,			
1135	#3	4.00	14	21	и	ц			
1136	#3	4.02	/4	és –	4	Ŀı	······································		
1/37	#3	4.03	14	U	u				
1138	#3	402	14	11	<u>م</u>	/1			
1139	#2	398	14	<u> </u>	4	13			

Sheet <u>5</u> of <u>7</u>

Mri Project No.	4701-08-03-04	1				Run N	lo.
Client/Source:	PLANT	r C				Dai	te: 7-24-98
Sampling Location:	PTE Loadout					Operate	or D. NENL
- Dry Cas Meter No:	~ R-0.	308				Gas Cylinder N	10: ALMØ13870
						·····	
	Silo No.	Flow Rate	Pres. PSI				Comments
1190	#L	3:99		TRUC	k IN	FUNN	182
// 4/	# 5	4,02	14	7 i	<i>u</i>	4	
1142	# 3	4,00	14	t i			
1143	#2	4.00	14		4	4	
1199	#2	3.99	14	ц. ц	24	<u> </u>	
1145	#2	4,00	19	и	11	\$2	
1146	#2	4.00	14	41	<i>(</i>)	<u>4</u>	
1147	#2	4.00	14	11		, ·	CLOUDY, WINDS SAME
1148	#2	4.00	14	21	<i>µ</i>	11	
1149	#2	4,00	14	<i>j</i> (1'	11	
1150	#2	4.00		и	/1	4 ۱	
1151	#2	4.00	14].	ć1	17	
1152	#2	3.99	14	¢1	e+	ţ,	
1153	#2	4.00	14	Ц	4	ł,	
1154	#2-	4,00	14	lı	٤.	£ i	
1155	#2	4.00	14	\$1	in	ц	
1156	#2_	4.00	14	in	и	"	
1157	#2	4.00	14	in	£ 1	+1	
1158	#2	4.00	14	ě(ir	?a	
1159	#2-	4.00	14	NO	TRUEIL	- 1M	TUNNEL
1200	#2	4,00	14	ч	и	п	<i>i</i> 1
1201	#2	4.00	14	TEUC	de 11 -	TUNNE	L. MOSTLY CLOUDY
1202	#2	4.00	14	41	н	i1	WINDS 300+ FPM
1203	#Z	4.00	14	и	Lr.	i.	WINDS &-10 MPH
1204	#2	4.00	14	и	и	i1	
1205	#2	4.00	14	а	п	n	
1206	#2	4.00	14	и	<i>j</i> 1	и	
1207	#2	4.00	14	11	ι.	'n	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
1208	#2	4,00	14	4	и	и	araana ahaana ahaana ah
1209	#2	4.00	14	и	n	4	
1210	#2	4,00	14	en	4	4	

Sheet <u>6</u> of <u>7</u>

Mri Project No.	4701-08-03-04	1				Run No.	1
Client/Source:	PLANT	- C				Date:	7-24-98
Sampling Location:	PTE Loadout					Operator:	D. NEAL
-Dry Oas Meter No:	TOIL R-	0308				Gas Cylinder No:	16m \$ 1387\$
	Silo No.	Flow Rate	Pres. PSI	Tailet		Cor	nments
1811	HL Va	9.00	14	712494	<u> /N</u>	TUNNEL	
1264	#1_	4.00	14	<i>μ</i>		()	
1213	#2	9.00	14	મ.	и	<i>j</i> A	
1214	#1	4,00	14	1.	<i>is</i>	<i>د</i> و 	
1215	72	4.00	14	41t	4	и	
12-16	#2	4.00	14	i.t	tr	ч	
1217	#2-	4.00	14	и	4	<u> </u>	
1218	#2	3.99	14	L1	<u>~</u>	L1	
1219	#2	3.94	14	4	11	<u> </u>	
1220	#2	3,99	14	+1	<i>n</i>	и	
1221	#2	3.99	14	4	õL	ч	· · · · · · · · · · · · · · · · · · ·
1222	#2-	4.00	14	i.	ч	4	
1223	#2	4.00	14	n	i i	4	
1224	#2	4.00	14	21	4	41	
1225	#2	4.00	14	¢ t	и	4	
1226	#2	4.00	14	NO TRE	ich	IN TUNN	iel
1227	#2	4.00	14	Truck	IN	TUNNEL	MADSTLY CLOUDY
1228	#2	4.00	14	n	is	и	WINDS SOME
1229	#2	4,00	14	e's	и	4	
1230	#2	4,00	14	LI	и	<i>и</i> .	
1731	#2	4,00	14	и	h	Ê1	
1232	#2	4.00	14	'n	i .	4	
1233	#2	4.00	14	11	n	и	
1234	#2	4.00	14	i,	is	٤	
1235	#2	4.00	14	Li	v	ધ	
1236	#3	4.00	14	и	4	4	
1237	#2	4.07	14	и	41	i1	
1238	#2	4.00	14	51	и	U	
1239	#2	4.00	14	4	21	ы	
1240	#2	4,00	14	4	'n	L	an a
1741	#2	4,00	14	11	11	<i>(</i>)	

Sheet _7_ of _7_

Mri Project No.	4701-08-03-0	4				Run No	1
Client/Source:	PLAN	r C		·		Date:	7-24-98
Sampling Location:	PTE Loadout					Operator:	A NA:
FM.455 FLO	W R-0	303					AI 40 11 17:07 A
					,		11cm (01001 (
Time	Silo No.	Flow Rate	Pres. PSI				Comments
1242	#2	4,00	14	TRUC	RIN	TUNNE	ĨŁ
1243	#2	4.00	14	"	<i>4</i> 1	4	
1244	#2-	4.00	14	6.	۴L	Ц	
12.45	#2	4.00	14	4	n	ч	
1246	#2	4,00	14	n	in	4	
1247	#2	4.00	14	и	И	4	
1248	#2	4.00	14	ц	61	'n	
1249	#4	4.07	14	in	h	L	······································
1250	#44	4.06	14	1	is a	ч	
1251	# iq	4.06	14	и	11	41	
1252	# 4	4.06	14	4	Ц	и	
1253	#2	4.00	14	и	<i>c</i> 1	4	· · · · · · · · · · · · · · · · · · ·
1254	#2	4,00	14	н	и	4	
1255	#2	4.00	14	4	ч	4	
1256	#2	4.00	14	ان	i1	ų	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1257	STOP	GAS REL	East	ENO	OF Ru	ر.	
							anaratikan ku
							anna ann an an ann an ann an ann an ann an
,							
				1			

Sheet _/_ of _8__

Mri Project No	4701-08-03-0)4		Run No. 2
Client/Source	PLAATT	· c		Date: 7-25-98
Sampling Location	PTE Loadout			Operator: D. NEOL
-Dry Os Meter No	R-0.	308		Gas Cylinder No: DLM 01387 0
Time	Silo No.	Flow Rate	Pres PSI	Commente
710	#3	4.10	14	START RULL TRUCK IN TRUCK
7/1	#5	4.00	14	TRACK I TULITI CLOUDY IN TOTAL
712	#5	4.05	14	" " " " 1-260 FRA 15 5000
7/3	#5	4.06	14	Coss and to a sector
714	#5	4.07	14	AD TRICK IN THE SI
715	#5	4.08	14	h h h
716	#5	4.00	14	и и и и и и и и
717	#3	4.06	14	in n n ut
718	#3	4,06	14	n u n u
719	# 3	4.06	14	TRUCK IN THNNEL
720	#3	4.06	14	
721	#3	4.06	14	cs h li
722	#3	4.06	. 14	n 41 6
722.5	#2	4.02	14	a n y
723	#2	4.03	14	in m el
724	#2	4.04	14	n n in
725	#3	4.07	14	h h u
726	#3	4.07	14	it the sy
727	#3	4.08	14	it is u
228	#3	4,0B	14	in the la
729	#3	4.08	14	li li
730	#2	4.04	14	is it to
731	#2	4.05	14	in the cy
134.5	#3	4.08	14	
732	#3	4.08	14	the second secon
733	#3	4.08	14	4 61 61
734	#3	4.08	14	-1 -1 -1
735	#3	4.08	14	u z 4
736	#3	4109	14	in a WINKS SAME
737	#2	4.04	14	1. 1. 11 W/ GUSTS TO 300+ FPM
738	#2	4.05	14	1. 1. 11 3-4 MPH

Sheet 2 of 8

Mri Project No.	4701-08-03-0	4				Run No. 2	
Client/Source:	PLANT	С				Date: 7-25-98	
Sampling Location:	PTE Loadout					Operator: D. NEOL	
MASS F-LO. Dry Gas Meter No:	W R-0	308				Gas Cylinder No: ALM 013870	1
					1		
lime	Silo No.	Flow Rate	Pres. PSI			Comments	
0757	*1	9.05	19	TRUCK	!~	TUNNEL	
0790	#2	9.05	14	4.	12	41	
0741	#2	4,05	14	~		<i>ن</i> ر	
0742	#3	4.09		*	<i>i</i> 1	и	
0743	#3	4.08	14	د -		U	
0743.5	#2	4.04		u	e.	4	
0744	#2	4.04	14	~	~	4	
0745	#2	4.04	14	n	í.	V	
0746	#2	4.05	14	ч	n	L,	
0747	#2	4.05	14	h	* *	4	
0747.5	#3	4.07	14	п	n	ч	
0748	#3	4.07	14	4	v	ν	
0749	#3	4.07	14	h	n	4.	
0750	#2	4.03	14	и	n	ц	
0751	#2	4.05	14		v	V	
0752	#2	4.05	14	13	L	4	
0753	#2	4.04	14)1		<i>r</i> -	
0754	#2	4,04	14	ч	r	ч	
0755	#3	4.07	14	4	<u>د ا</u>	ц	
0756	#3	4.06	14	v	n	4	
0757	#3	4.06	14	n	£~	l-	
0758	#3	4.06	14	ц	ч	И	
0759	#3	4.06	14	и	~	4	
0759.5	#2	4.03	14	7		4	
0800	#2	4.03	14	4	 ~	<i>د</i>	
0801	#2	4.03	14	4	n	4	
0802	#2	4.03	14	ů	и	<i>ذ</i> ا	
0803	#2	4.04	14	٤.	h	1 /	
0803.5	#3	4.04	14	1.	~	И	
0804	#3	4,04	14		n	'n	
0805	#3	4,04	14	4	и	h	

Sheet <u>3</u> of <u>8</u>

Mri Project No.	4701-08-03-04	1				Run No.	2
Client/Source:	PLANT	с				Date:	7-25-98
Sampling Location:	PTE Loadout					Operator.	D. NEAL
ASS FLO Dry Oes Meter No:	W R-	0308				Gas Cylinder No:	ALM Ø13870
							<u> </u>
Time	Silo No.	Flow Rate	Pres. PSI			С	omments
0806	#3	4,04	14	TRUCK	1~	TUNNEL	. WINDS JAMAE
0807	#3	4.04	14	is	in	u.	
0808	#2	4.03	14	ц	u.	ما	
0809	#3	4.04	14	h	'n	6	
0810	#3	4.00	14	u	~	4	
0811	#3	4,00	14	<i>L</i> i	n	ц	
0812	#34	4.09	14	ü	h	ધ	
0813	#4	4.09	14	u	и	ч	
0814	# Y	4.09	14	n	н	h	
0815	#4	4,09	14	La	и	4	
0816	# <i>4</i>	4,09	14	ч	je.	4	
0816.5	#3	4.00	14	и	r	ч	
0817	#3	4.00	14	n	n	и	
0818	#3	4.00	14	'n	ч	· •	· · · · · · · · · · · · · · · · · · ·
0819	#3	4.00	14	પ	i.	Ц	······································
0820	#3	4,00	14	4	n	Ÿ	
0821	#3	4,00	14	h	н	íz.	
0822	#5	4.04	14	и	sr	5	9946-994-994-994-994-994-994-994-994-994
0823	#5	4.03	14	ü	ц	u	
0824	#3	4.00	14	n	ч	и	
0825	#3	4.00	14	ü	n	и	MOSTLY CLOUNG
0826	#3	4.00	14	ie	U	ľ	WINDS SAME
0827	#2	4.00	14	-1	h	۱٦	
082-8	#2	4.00	14	u	h	Ц	
0829	#2	4.02	14	ч	h	~	
0830	#3_	4,03	14	h	i.	й	
0831	#3	4,02	14	ü	ч	И	
0832	#3	4.02	14	L	и	ia .	анна англияна на селото на село
0833	#3	4.00	14	n	24	4	
0834	#3	4.00	14	i.	h	5	
0835	#2	4.00	14	~	u	и	

and the state of t	ويجرجون فالبانية فالمتحد والمحجود والتقاد المحجو								
Mri Project No.	4701-08-03-0	4				Run No.	2		1
Client/Source:	PLANT	С				Date:	7-25-98		
Sampling Location:	PTE Loadout					Operator:	D. NEAL		
MOSS FLOC -Dry Cas Meter No:	R-0.	308				Gas Cylinder No:	ALM \$ 1387	Ó	
							presi	·	
Time	Silo No.	Flow Rate	Pres. PSI		2 4-10-32 -10-1		Comments		
0836	#2	4,00	14	TRUCK	IN	TUNNEL			1
0836.5	#4	4.08	14	ir	u	u			
0837	#4	4.08	14	и	r	ч]
0838	#4	4.07	14	<i>N</i>	h	ч			
0839	#4	4.07	14	ч	n	h			
0840	#4	4.06	14	v	n	и			
0841	#3	3.97	14	h	r	и	· · · · · · · · · · · · · · · · · · ·		
0842	#3	3,98	14	u	n	4	MOSTLY	Ciousy	
0843	#5	4.00	14	i.	is	h	WINDS	Same	
0844	STOP	GAS RO	SLEASE						
0927	#2	4.00	14	TRUCK	12	TUNNEL	SUNNY	RESUME	G
0928	#2	3.97	14	n	и	4		RELEASE	ľ
0929	#2	3.95	14	Ľ1	n	ų	WINDS	SomA	[
0930	#2	4,06	14	ы	er	h		<u> </u>	
0931	#2	4,06	14	ч	<i>L</i> -	h	· · · · · · · · · · · · · · · · · · ·		
0932	#2	4.06	14	4	н	4			
0933	#3	4.06	14	in.	v	4			
0934	#2	4.07	14	ц	u	ч	······································		
0935	#2	4.11	14	4	u	η			
0936	#2	4.11	14	и	и	4			
0937	#2	4.05	14	и	vi	ч	······································		l
0938	#2	4.05	14	h	L	iy			
0939	#2	4.05	14	h	L	ri			
1940	#2_	4.05	14	L1	٤،	4			
0941	#2	4.05	14	h	п		<u> </u>		
1947	42	4.05	14	j.r.	L	4			
0943	#2	4.05	14	2.	د.م م	٤.			
0944	#2	4.05	14	13	n	4			
0945	#2	4.04	14	4	и	i.			1
0941	#3	4.05	14	<i>L</i> 1	41	4			1
0947	#2	4,04	14	u	н	4			1

Sheet 5 of 8

Mri Project No.	4701-08-03-04	4				Run No.	2
Client/Source:	PLANT	C				- Date:	7-25-98
Sampling Location:	PTE Loadout					- Operator:	D. NEAL
-Dry-Cao-Meter No:	" R-0	308				- Gas Cylinder No:	ALM \$13870
				······		-	
Time	Silo No.	Flow Rate	Pres. PSI		<u>.</u>		Comments
0778	#1	4.04	14	IRUCK	IN	TUNNEL	
0999	H L Kn	9,05	/7		<i>r</i>	U	Anno 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1
0950	#1	4.03	14	24	<i>n</i>	1-	
0751	#1-	7.03	14	<u>4</u>	4	й	
0952	#2	4.05	14	61	<u> </u>	И	
0953	#2	4.05	14		<i>s</i> r	4	
0954	#2	4.04	14	23	4	<i>L</i> 1	
0955	#2	4.03	14	£s.	n	81	·
0956	#2	4.04	14	4	4	и	SUNNY
0957	#2	4.03	14	'n	۲.	n	5-7 mPH
0958	#2	4.04	14	и	4	51	
0959	#2	4.03	14	и	ч	4	
1000	#2	4.03	14	и	47	43	
1001	#2	4.03	14	le	ų	is	
1002	#2	4.04	14	ч	ч	4	
1003	#2	4.04	14	i.	h	L,	
1004	#2	4.04	14	h	£1	v	
1005	#2	4.04	14	Le	h	4	•
1006	#2	4.04	14	<i>i</i> .	4 N	0	
1007	#2	4.04	14	h	in	ls.	
1008	#2	4.04	14	Ĺ1	и	ù	
1009	#2	4.04	14	la la	4	4	· · · · · · · · · · · · · · · · · · ·
1010	#2	4.03	14	21	h	l.	
1011	#2	4.03	14	41	L	ы	
1012	#2	4.03	14	4	21	4	
1013	#2	4.04	14	ž	h	h	чение на
1014	#2	4.04	14	L	U	61	
1015	#2	4.04	14	6	in	4	
1016	#2	4.04	14	v	~	i.	
1017	#3	4.05	14	и	4	L _I	
1018	#3	4.06	14	er	14	и	

Sheet <u>6</u> of <u>8</u>

Mri Project No.	4701-08-03-04	4			0.000 kilone nam og 4 <u>0 k</u>	Run No.	2-
Client/Source:	PLANT	C					7.25.90
Sampling Location	PTE Loadout					Date.	X 15:
MASS FLO	W R-D	148				Operator:	D. WERL
	<u></u>	500			(Jas Cylinder No: –	ALMØT3810
Time	Silo No.	Flow Rate	Pres. PSI				Comments
1019	#3	4.07	14	Tauck	12	TUNNE	L
1020	#3	4,06	14	42	se	Ц	
1021	#3	4.06	14	и	'n	4	54.0.04
1022	#3	4.09	14	u	1.	42	WINDS SALLS
1023	#3	4.06	14	i.	u	ધ	<u> </u>
1024	#3	4.06	14	ü	и	L)	
1025	#3	4.07	14	и	ч	и	
1026	#2	4,00	14	u	и	ц	· · · · · · · · · · · · · · · · · · ·
1027	#2	4,00	14	и	4	и	
1028	#2	4.00	14	ч	ч	и	
1029	#2	4,00	14	и	i.	ч	
1030	#4	4.05	14	Ц	5	4	
1031	#4	4.07	14	6.	n	4	
1032	#4	4.06	14	4	4	i.	
1033	#4	4.06	14	لي. لي	٤.	ц	
1034	#4	4.06	14	и	4	И	
1035	#4	4.06	14	и	? L	ч	
1036	#4	4.06	14	м	ы	41	
1037	#4	4.06	14	и	4	й	
1038	#4	4.06	14	и	а	4	
1039	#4	4.05	14	L.e	h	U	
1040	#4	4.05	14	ы	h	24	
1041	#4	4,05	14	ч	h	2	
1042	#5	4-3.96	14	u	и	ч	
1043	#5	3.96	14	и	ţ.	<u>Ľ.</u>	
1044	#5	3.97	14	is	r	4	SUNNY
1045	#5	3,87	14	и	÷ı	n W	12055-10 MPH
1046	#5	3.97	14	и	и	61	
1047	#5	3.97	14	п	K	ц	
1048	#2	4,04	14	n	v	v	······································
1049	#2	4.04	14	41	n	ч	

SF6 Gas Delivery data Spreadsheet

Sheet _7_ of _8_

P	وروسيب منتقل أفاكيا والإنجاب محدثة أأتاك			
Mri Project No.	4701-08-03-04	1		Run No. 2
Client/Source:	PLAN	t C		Date: 7-25-98
Sampling Location:	PTE Loadout			Operator: D. NEAL
MASS J-LOU -Dry-Cap Meter No:	R-C	308		Gas Cylinder No: ALMO 13870
Time	Silo No.	Flow Rate	Pres. PSI	Comments
1050	#1	9.05	/7	TAUCK IN TUNNEL
1051	# 4	4.00	.17	
1052	#12	4,00		u ú ú
1053	#2	7.98	14	4 4 u
1054	#2	3.96	19	a h h
1055	#2	4,00		u n h
1056	#2	4.00	14	n 4 4
1057	#2	4.00	14	c, n 4
1058	#2	4-00	14	n y y
1059	#2	4.00	14	и и и
1100	#2	4,00	14	п и ч
1101	#2	4,00	14	n a U
1102	#2	4.00	14	u u U
1103	#2	4.00	14	4 n 4
1104	#2	4.00	14	u y
1105	#2	4.00	14	n a a Sanny
1106	#2	4,00	14	on a a WINOS SAME
1107	#2	4.00	14	NO TRUCK IN TRANADL
1108	#2	4,00	14	TRUCK IN TUNNEL
1109	#2	4.00	14	in in y WINDS Calin
1110	#2	4,00	14	и н и 0-100 FPM
1111	#2	3.99	14	" " " WINDSPICKER BACK
1112	#2	3.98	14	u u u up To Some AS BEFORE
1113	#2	3,99	14	NO TAUCK IN TUNNEL WINDS 0-250 FP
1114	#2	3.99	14	u u u 4 Gusts To 300+ FA
1115	#2	3.99	14	i, n y y
1116	#2	3.99	14	in u in U
1117	#2	4.02	14	n it it 4
1118	#2	4.00	14	a u n n
1119	#2	4,00	14	TRUCH IN TUNNEL
1120	#2	3.99	14	h in h

Sheet $\underline{\mathscr{B}}$ of $\underline{\mathscr{B}}$

Mri Project No.	4701-08-03-0	4		Run No. 2
Client/Source:	PLANT	С		Date: 7-25-98
Sampling Location:	PTE Loadout			Operator: D. NER(-
-Dry.Gas Meter No:	ow Re	0308		Gas Cylinder No: ALM Ø13870
Time	Silo No	Elow Pata	Brog BSI	
1121	#2	3,99	ries. F31	Comments
1122	#2,	3,90	14	in a n n
1123	42	3,97	14	u a n h
1124	#2	3.97	14	n le la p
1125	#2	3,98	14	TEUCH IN TIONNEL
112-6	#2	3,99	14	и и и
1127	#2	3,99	14	NO TANCK IN TANNEL
1128	#2	4,00	14	
1129	#2	4,03	14	it U 24 y
1129.5	Stop	GAS REC	SAJU	END OF RUN
			· · · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·				

Sheet <u>/</u> of <u>9</u>

Mri Project No.	4701-08-03-04	ļ.		Run No. 3
Client/Source:	PLANT	C		Date: 7-2
Sampling Location:	PTE Loadout			Operator: D. NEAL
MASS FLO -Dry-Cos Meter No:	N R-0	308		Gas Cylinder No: AAL 19338
Time	Silo No.	Flow Rate	Pres. PSI	Comments
0710	# 1	9.00	19	TRUCIU IN TUNNEL, SUNNY
07/1	#2	3.97	14	n n h
0712	#2	4.03	14	· · · · ·
0713	#2	4.03	14	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
0714	#2	4,04	14	n n 4
0715	#2	4.04	14	" " " WINDS O-50 FPM
0716	#2	4.04	14	" " Guszs to 100 FPm
0717	#2	4.04	14	n n n
0718	#2	4.04	14	3 × 11
0719	#2	4.04	14	in a n
0720	#2	4.04	14	NO FRACK IN TUNNEL
0721	#2	4,04	14	in the second
0722	#2	4.03	14	<i>(</i> , <i>i</i>
0723	#2	4.03	14	the in the st
0724	#2	4.03	14	in cr in 4
0725	#2	4.02	14	le en la la
0726	#2	4,00	14	y in a co
0727	#2	4.00	14	a h a c
0728	#2	4.00	14	a contraction in
0729	#2	4.00	14	it is in the
0730	#2	4,00	14	v v v v
0731	#2	4.00	14	TRUCK IN TUNNEL
0732	#2	4,00	14	u n u
0733	#2	4,00	14	No TRack IN TUNNEL
0734	#2	4.00	14	THUCK IN TONNEL
0735	#2	4,00	14	1. 4. P
0736	#2	4.00	14	1× 1× 2×
0737	#2	4.00	14	ix ix h
0738	#2	4.00	14	in Li Li
0739	#2	4.00	14	ίη ω 21
0740	#2	3.99	14	- h is

Sheet 2 of 9

Mri Proiect No.	4701-08-03-0	4				Rup No	Ż		
Client/Source:	PLOATE	C				Date:	2.27	.90	
Sampling Location:	PTE Loadout					Operator:	A A	<u> </u>	
MASS FLOG	W R-0	30B			Ga	s Cylinder No:	DAL	37L2 3720	
				· · · · · · · · · · · · · · · · · · ·	04	.a Cylinder No.	741-1	1550	
Time	Silo No.	Flow Rate	Pres. PSI				Comments		
0741	#2	43.79	14	NO TR	ucie IN	TUNA	iez,	SUNNY	
0742	#2	3,99	14	in the	en (.	и	iv,	NOS SA	mε
0743	#2	3.99	14	21	u n	٤٦			
0744	#2	3.99	14	TRUCK	KIN T	TUNNEL	/		
0745	#2-	3.99	14	V	v	is			
0746	#2	3.99	14	n	ε٢.	и			
0747	#2	3.99	14	lı	1.	4			
0748	#2	3,79	14	u	4	U			
0749	#2	3.99	14	1	1	ц			
0750	#2	3.99	14	13	L <u>L</u>	٤,	<u>, , , , , , , , , , , , , , , , , , , </u>		
0751	#2	4.00	14	L.	l-	L.			
0752	#2	4.00	14	н	и	h			
0753	#2	3.99	14	1	i.	4			
0754	#2	3.99	14	v	L-	i.			
0755	#2	3,99	14	1.	(1	٤.			
0756	#2	3.99	14	4.	ы	÷			
0757	#2	3.99	14	'n	ч	4.		·	
0758	#2	3.93	14	n	'n	4.			
0759	#2	4.00	14	2 .	<i>د</i> ر	11			
0800	#2	4.00	14	61	LI	۴.,			
0801	#2	4.00	14	21	21	1.			
0802	#2	4.00	14	'n	r	4		<u></u>	
0803	#2	4.00	14	ц.	in	и			
0804	#2	4.00	14	e	i.	4,		Michaelen, av. 199	
0805	#2	4.00	14		L.	12			
0806	#2	4.00	14	1	u	h	uu		
0807	#2	4.00	14	и	n	u	SUNNY	1	
0808	#2	4.00	14	u	5	4	01,005	SAME	0-20
0809	#2	4.00	14	20	4	4	Gusi	570 300.	+ FPM
0810	#2	4.00	14	+1	Lį –	Ĺs			
ORIL	#2	4.00	14	и	1.	t.			

Sheet <u>3</u> of <u>9</u>

	4704 00 00 0	4					2
Mri Project No.	4701-08-03-0	4				Run No.	3
Client/Source:	- TLANT	· C				Date:	7-27-98
Sampling Location:	PTE Loadout		······			Operator:	D. NEAL
Dry Gos Meter No:		308				Gas Cylinder No:	AAL 19338
Time	Silo No.	Flow Rate	Pres. PSI				Comments
0812	#2	4.00	14	TRICK	1~	TUNNEL	
0813	#2	4.00	14	in	n	ы	
0814	#2	4.00	14	4	4	ધ	SUNNY
0815	#2	4.00	14	4	i-	4	WINDS 0-100 FR
0816	#2	4.00	14	4	ч	и	GUITS TO ISO FPA
0817	#2	4.00	14	и	4.2		
0818	#2	4.00	14	h	н	6	
0819	#2	4.00	14	31	4	ч	
0820	#2	4.00	14	и	ч	<i>{</i> 1	
0821	#2	4,00	14	и	is	6	
0822	#2	4.00	14	24	1.	61	
0823	#2	4.00	14	и	1~	۴	
0824	#2	4,00	14	4	 La	Ч	
0825	#2	4.00	14	ų	ļù	и	
0826	#2	4.00	14	и	ч	'n	
0827	#2	4.00	14	4	~	ч	
0878	#2	4.00	14	in	6	ы	
0829	#2	4.00	14	n	h	Li Li	·
0830	#4	4.06	14	n	in	ч	
0831	#4	4.07	14	4	4	17	
0832	#4	4.00	14	i.	4	٤	
0833	#4	4.00	14	~	Ц	и	SUNNY
0834	#4	4.00	14	4	h	b	WINDS SOME
0835	#4	4.00	14	در	n	ų	
0836	#4	4.00	14	14	n	4	
0837	#44	4.00	14	**	tr	in	
0838	#4	4.00	14	n	ч	<i>ц</i>	
0839	#4	4.00	14	ü	и	7	
0840	#4	4,00	14	24	r	ч	
0841	#4	4.02	14	٤،	n	ч	
0842	#4	4,00	14	u	•••	1 •	· · · · · · · · · · · · · · · · · · ·

Sheet 4 of 9

Mri Project No.	4701-08-03-04	1				Run N	o. 3	
Client/Source:	PLONT	r C				Dat	e: 7-2	-7-98
Sampling Location:	PTE Loadout					Operato	or Dil	JEAL
TASS FL.	ow R-0	308				Gas Cylinder N	· AAL	19338
	······		· · · · · · · · · · · · · · · · · · ·					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Time	Silo No.	Flow Rate	Pres. PSI				Comment	s
0843	#4	4.02	14	TRUCK	IN	TUNN	sl	
0849	#5	3.99	14	<i>i</i> .	£ Y	L		· · · · · · · · · · · · · · · · · · ·
0845	#2	4.00	14	и	<i>i</i> 1	4		
0846	#2	4,00	14	и	í.	n		SUNNY
0847	#2	4.00	14	4	r	r	WINDS	100-200 FPM
0848	#2	4.00	14	и	r	n	GUSPS	To 250 FPM
0849	#2	4,00	14	u	и	'n		
0850	#2	4.00	14	L	n	ч		
0851	#2	4.00	14	и	н	и	······	
0852	#2	4.00	14	L	5	4		
0853	#2	4-00	14	u	n	5		
0854	#2	4.00	14	er .	a	и		
0855	#2	4.00	14	li	ы	i.		
0856	#2	4,00	14	и	u	13		
0857	#2	4.00	14	ć.	h	ц		
0858	#2	4.00	14	h	61	и		
0859	#2	4.02	14	n	٤٠	Le Le		SUNJAY
0900	#2	4,00	14	n	4	in	WIN	105 100-250 F
0901	#2	4.00	14	u	и	'n	Gu	STI TO ROOT FA
0901	#2	4.00	14	u	41	 Ľi	· · · · · · · · · · · · · · · · ·	51 10 900 1 1
0903	#2	4,00	14	и	·····	ં પ		
0904	#2	4.00	14	(1		ы	······	
0905	#2	4.00	14	A	н	<i>L</i> 1		
0906	#2	4.00	14	и	<i>u</i>	6	= .	
0907	# 2_	4.00	14	4	د ر	4		
0908	#2-	4,00	14	u	ч	м.		
0909	#2	4.00	14	4	~			
0910	#2	4.00	14	4	n	1.0		
0911	#2	4.00	14	11	и			
0911	# 2.	799	14		п	и		
DQ 13	# 7	2.99	,4	n	n			····

Sheet 5 of 9

Mri Project No.	4701-08-03-0	4	1	Run No. 3
Client/Source:	PLAN	т С		Date: 7-27-98
Sampling Location:	PTE Loadout			Operator: D. NEOCLA PALES
-Bry Oas Meter No:	ow R-c	0308		Gas Cylinder No: AAL 19338
Time	Silo No.	Flow Rate	Pres. PSI	Comments
0119	# 1	3.77	14	TRUCK IN TUNNEL SUNNY
0715	#1	3,99	19	u u u WINDS SAINE
0916	#2	3.99		<i>iv il ll</i>
0417	#2	3.99		n u v
0918	#2	4.04	14	a u u
0919	#2	4.04	14	n u u
0970	#2	4.04	14	u u u
0921	#2	4.03	14	ic n u
0922	#2	4.02	14	4 ° ~
0923	#2	4.03	14	i' n h
0924	#2	4.03	14	u u U
0925	#2	4.03	14	u u u
0926	#2	4.04	14	4 a a
0977	#2	4.04	14	4 n 4 54NNY
0928	#2	4.04	14	n n n WIND; SAME
0929	#1	4.04	14	u u u
0930	#2	4.04	14	in u u
0931	#2	4,04	14	vi u x
0932	STOP	GAS RE	LEASE	
0952	#2_	4.08	14	TRUCK IN TUNNEL
0953	#2	4.00	14	(1 1) 11
0954	#2	3.98	14	11 11 11 SUNJY
0955	#2	3.98	14	Il II WINGS SOME
0956	#2	3.98	14	11 11 11
0957	#/ ner	Stop G	as Re	lease
0959	#2	4.03	14	TRUCK IN TUNNEL
1000	#2	4.00	14	11 11 11
1001	#2	3.99	14	NO TRUCK IN TUNNEL
1002	#2	3.98	14	TRUCK IN TUNNEL
1003	#2_	3,99	14	u u u
1004	#2	3.99	14	te a h

Sheet 6 of 9

Mri Project No.	4701-08-03-04	4				Run No	o. 3		
Client/Source:	PLONT	, <u>с</u>		1999- 8		Date	e: 7-7	-7-98	-
Sampling Location:	PTE Loadout					Operato	· D.A	JAOL.	-
MASS HLOR Bry Gas Meter No:	W R-0	308			C	Gas Cylinder Nr	. AAL	19338	
Time	Silo No.	Flow Rate	Pres. PSI				Comment	S	
1005	#2	3.99	14	TRUCK	1~	TUNA	JEL		
1006	#2	3.49	14	(،	u	<i>L</i> 1			
1007	#2	3.99	14	4	لر	Ŀ			
1008	#2	3,99	14	п	4	4			
1009	#2	3.99	14	is	u	4			
1010	#2	3.99	14	п	n	~			
1011	#2	3.99	14	n	u	U			
1012	#2	4.00	14	и	<i>i</i> 1	v			
1013	#2	4.00	14	и	w	4		SUNNY	
1014	#2	3.89	14	24	n	4	WINDS	100-250 F	Pm
1015	#2	3,99	14	ιL	12	л	Gusts	To 300+ F.	Pin
1016	#2	3.99	14	к	4	u			
1017	#2	3,99	14	61	ч	4			
1018	#2	3.99	14	22	<i>i</i> .	٤-		·	
1019	#2	3,99	14	ls	i.	i 1			
1020	#2	3.9B	14	и	4	4			
1021	#2	3,99	14	er	in	4	····		
1022	#2	3.98	14	и	4	4		<u> </u>	
1023	#2	4.00	14	4	4	i~			·
1024	#2	4.00	14	1.	4	5			
1025	#2	4.00	14	и	u	4		<u> </u>	
1026	#2	4,00	14	~		ë.		*****	
1027	#2	4.00	14	in	6	<i>2</i>]			
1028	#2	4.00	14	и	in .	*7			
1029	#2	4.00	14	и	v	4			
1030	#2	4,00	14	in	n	и		.	
1031	#25	4.00	14	п	n	in			
1032	#2	4.02	14	п	u	'n			
1033	#2-	4.03	14	41	и				
1034	#5	4.00	14	4	11	· ·			
1035	#5	3.99	14	in	n	4			

Sheet 7_ of 9_

Mri Project No.	4701-08-03-04	1				Run No.	3	
Client/Source:	PLONT	C				Date:	7-27-0	78
Sampling Location:	PTE Loadout					Operator:	D. NE.	Ŀ
MASS FLL -Dry-Ges Meter No:	NW Rol	0308			(Gas Cylinder No:	ARL 19	338
			r	1				
Time	Silo No.	Flow Rate	Pres. PSI				Comments	
1036	#5	3.99	14	TRUCH	1~	TUNNE	<u>۲</u>	
1037	#5	3.99	14	н	4	4		
1038	#5	3.99	14	in .	n	4		
1039	#5	3.49	14	4	<i>n</i>	n	54	NNY
1040	#5	3,99	14	u	n	4	W1205 1	00-250 FPn
1041	#5	4.03	14	4	4 1	4	GUSTS	To 300+ FPM
1042	#5	3.99	14	n .	<i>د</i>	4	· ·	
1043	#5	4,00	14	11	• •	и		
1044	#5	4.00	14	4	u	ы		
1045	#5	4.00	14	h	и	4		
1046	#5	4.00	14	r	/>	n		
1047	#5	3.99	14	u	v	и		
1048	#5	3.99	14	и	u	in		
1049	#2	4-00	14	~	er.	v		
1050	#2	4.00	14		n	r		
1051	#2	4.07	14	61	и	u		
1052	#2	4.04	14	4	ù	ч		·····
1053	#2	4.04	14	sh	n	4		
1054	#2	4,03	13	12	in	4		
1055	#2	4.04	13	н	n	4	50	NNY
1056	#2	4.04	13	in	п	4	WINDS	Some
1057	#2	4.04	13	h	п	<i>U</i>	<u></u>	· · · · · · · · · · · · · · · · · · ·
1058	#2	4.04	13	34	i.	ц		
1059	#2	4.05	13	и	и	ś		
1000	#2	4.05	13	n	h	ч		
1101	#2	4.05	13	и	n	<i>c1</i>		
1102	#2	4.06	13	n	u	પ		
1103	#2	4,00	13	11	*,	11		
1104	#2	4,00	13	f i	1.	1.		
1105	#2	4.00	/3	'n	u	и		
1106	#2	4.00	13	11	11	; i		

Sheet $\underline{\mathcal{B}}$ of $\underline{\mathcal{G}}$

Mri Project No.	4701-08-03-04	4				Run No	. 3		
Client/Source:	PLONT	C				Date	7-2	7-98	
Sampling Location:	PTE Loadout					Operator	D.N	1Epc	
MASS FL Dry Cas Meter No:	ow R-	0308				Gas Cylinder No	AAL	19338	
			p i						
Time	Silo No.	Flow Rate	Pres. PSI				Comments		
1101	# 1	4,00	/3	TRUCK	IN	TUNNE	<u>ل</u>		
1108	#2	4.00		<i></i>	h	<i>u</i>	54	INNY	
//07	#2	4.00	13	ir.	<i>n</i>	и	WINDS	100-23	JO FPM
1110	#2	4,00	13	£1	٩	ĥ	Guirs	To 300-	t FPM
////	#2	4-00	13	a	~	11			
1112	#2	4.00	13	it	42	и			
1113	#2	4.00	13	n	h	<i>i</i> ,			
1114	#2	4,00	13	n	n	4			
1115	#2	4,00	/3	n	n	Ц			
1116	#2	4.00	13	ér (n	h			
1117	#2	4.00	/3	in	5	5			
1118	#2	4,00	13	n	1.	4	<u></u>		
1119	#2	4.00	13	in	er	u			
1120	#2	4.00	13	in	ч	и			
1121	#2	4,00	13	u	in	ь			
1122	#2	4.00	13	и	ir	4			
1123	#2	4.03	13	in	n	и		**	
1124	#2	4.04	13	'n	ц	L1			
1125	#2	4.00	13	n		ы			
1126	#2	3.98	13	u	<u>i</u>	и			
1127	#2	3,99	13	in	n	4			
1128	#2	3.99	13	1	n	ч			
1129	#2	3,99	13	ñ	<i>u</i>	и	541	אתנ	
1130	#2	3,99	/3	n	и	÷-4	WINDS	5 Som	ĸ
1131	#2	3.99	13	in	h	и			
1132	#2	3,99	13	n	·	n			
1/33	#2	3.89	13	h	v	'n			
1134	#2	4.00	13	24	и	v			
1135	#2	4,00	13	u	n	4			
1135.5	#1	STOP E	LAS REL	EASIS					
1137	#2	4,00	13	TRUCK	- 1~	TUNN	ec.		

Sheet <u>9</u> of <u>9</u>

Client/Source: PLANT C Date: 2-27-	88
Sampling Location: PTE Loadout Operator: D. NE.	<u>і</u>
MASS FLOW R-0308 Gas Cylinder No: AAL19	338
Time Silo No. Flow Rate Pres. PSI Comments	
1190 # 1 3.96 13 TRUCK IN TUNNEL	
1/37 $4/2$ $1/26$ $1/2$ $1/2$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J.J.Y
1/1 $7/1$	100-250712
1176 # 1 4.03 13 - n 4 Gusts 1	6 300+FP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1149 # 1 4.09 13 x x x	
1/95 # 2 4.04 15 u u u	
1/46 + 1/9 + 1/9 + 1/3 + 1/4 + 1/4 + 1/2 + 1/4 + 1/4 + 1/2 + 1/4 + 1/2 + 1/4 + 1/2 + 1/4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1/78 = 7.09 13 n n n	
1199 # L 9,09 13 h h h	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$1131 \# 1 \ q. 00 \ 13 \ n \ n \ v$	
115 L # L 9,00 13 11 12 14	
1155 HI STOP GOS RELEASE	
1154.5 # 2 4.05 13 IROCH IN TUNNEL	
1/35 # 1 = 9,03 = 13 = 10 = 10	
1136 77 7 700 13 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
1/5/7/2 3.77/3 4 4 4	
1138 #F 3.91 13 4 h 4	
$\frac{1137}{1200} \neq 2$	
TFOU STOP GAS RELEASE END OF TOUN	

Sheet _ 1_ of _ 6_

Mri Project No.	4701-08-03-04	4		RUN NO. 4 (BAT INGTONIND)
Client/Source:	Plan	nt C		Date: $7/2b/98$
Sampling Location:	PTE Loadout			Operator: Klomm
Dry Gas Meter No:	MASS FL	owineer R-O	308	Gas Cylinder No: DAL 102335
			2000 p	Si in cylinder @ STATET (2-0% SF6)
Time	Silo No.	Flow Rate	Pres. PSI	Comments
0927	_2_	4.13	14	START Run Y (BKGRD) - START SFG Release
				Winds culm, Sunny. 3-5 mph winds
0930	2	4.13	14	Truck 30 in Turnel (Two trucks throw
0933				Truck 29 enter turnel
0935				Truch 30 anterarrive Dentrance
0936				Truch 30 enter
0939				Truck 29 Irrive @ ontrance
0 939.00				Truck 29 anter
0943				Truck 30 arrive @ entrance
0943.45	2	4-10	14	Truck 30 enter
0945			.,	Truck 29 errive Dentrance
0946.50				Truck 29 enter
0950.15				Trund SP zerive B cateroner
0950.50		<u></u>		Truck 30 enter
0953.34				Truch 24 zorive Alastrance
0954.00				Touch 29 enter
0957.10				Truch 30 zonive AV autoria
095750				Touck 20 enter
1000,45				Touch 29 zacing Bl automa
1000 55				Truck 29 enter
1000	7	V.17	14	Frank 20 Prove Al protocold
1004 200		1-12-	1.7	Track To the of the start
1004 20				Truck 20 211102 O annuce
1007 41				T il an - i an t
100905				Touch 24 enter
101100				Taut 20 anive a trained
101135			<u> </u>	Truch 30 entre
1017 35	-			Tauch 29 project & a tange
101255				Truck and entruce
1017.00				+ h Ed anista not
1017.10			· · · · · · · · · · · · · · · · · · ·	Truck so errively company
1011.50				I ruch so enter

,

Sheet 2 of 6

Mri Project No.	4701-08-03-04	ļ		Run No. 4 (Barkanned)
Client/Source:	Plant	C		Date: 7/26/98
Sampling Location:	PTE Loadout			Operator: Klamm
Dry Gas Meter No:	R-0	308		Gas Cylinder No: A24 / 9338
Time	Silo No.	Flow Rate	Pres. PSI	Comments
1020.35				Truck 29 zrrive @ entrance
1020.70				Truck 29 onten
1023,40				Truck 30 zrrive @ entrance
1024.20			: 	Truch 30 enter
1025.50		and the second	·····	Truck 29 arrive & entrance
1027.20				Truck 29 anter
1028.37				Truck 30 arrive & entrance
1030.35				Truck 30 enter
1031.15			·····	Truck 29 Znrive @ entrance
1033	2_	4.06	14	Fruck 30 enter
103.3.50				Truck 29 enter
1037.05				Truck 30 arrive @ entrance
1037,17				Truck 3 9 enter
10 40.00				Truck 29 arrive & entrance
1040.35				Truch 29 onten
1042.00				Truck 30 arrive @ entrance
1043.25				Truck 30 onter
1044.55				Truck 29 zrrive @ entrance
1046.15				Truck 29 enter
1047.30				Truch 30 errive @ entrance
1049.40				Truck 30 ente-
1050:00			aa	Truck 29 Irnive @ entrance
10 52:25				Truck 29 enter-
10:53:50				Truck 30 arrives a entrance
10:55:39				Truck 30 enters -
10:56:58				Truck 29 arrive a entrance
10:58:29				Truck 29 enters -
10:59:40				Truck 30 arrive @ entrance
11:01:42				Truck 30 enters -
1500-	2	4.15	14	Truck the comine a cake onthe
11:03:14			· · · ·	Truck 29 arrives 2 entrance

Sheet 3 of 6

	Mri Project No.	4701-08-03-04		Andrew Control of	Run No. 4 (Barkanna)
	Client/Source;	Plai	+ C		
	Sampling Location:	PTE Loadout			Operator: K(Amm
	Dry Gas Meter No:	R-	0308		Gas Cylinder No: Apr. 19328
				7	
	lime	Silo No.	Flow Rate	Pres. PSI	Comments
	11.09.36				Truck 29 & enters -
	11:05:54		······		Truck 30 arrives & entrance
	11:06:56	-			Truck 30 enters -
	11:08:29				Truck 29 arriver & entrance
	11:09:44				Truck 29 enters
	11:10:53				Truck 30 arrive & entrance
	11:12:52				Truck 30 enters
	11:14:25				Truck 29 arriver & entrance
Scott		2	4.16	14	Ende 200 - enter -
	11:15:47				Truck 29 enters
	11:16:01				Truck 30 arrives D' entrace
	11:19:55				Truck 30 enters
	11:20:29				Truck 29 arrives @ Entrance
	11:21:48				Truck 29 enters
	11:23:16				Truck 30 arrives a entrance
	11:24:59		an annaiste a star a star an st		Truck 30 enters -
ж	11:26:19				Truck 29 arriver @ entrance
	11:26:19				Truck 29 enters
	11:29:15				Truck 30 arrives 2 entrance
	11:32:10				Truck 30 Enters
	11:33:46				Truck 29 arrives a entrance
	11: 34: 39				Truck 29 enters -
	11:36:20				Truck 30 arrives & entrace
	11:37:59				Truck 30 enters -
	11:39:37				Truck 29 arrives a entrunce
	Hitt	2	Y.24	14	Truck Dege Criters
Stopped	11:40:46				Truck 23 enters
be tore at arriving at	11:43:27				Truck 30 arrives & entrunce
Near heated	11:43:49				Truck 30 enters
tanks	11:45:40				Truck 29 garnes at entrance
	11:46:45				Truck 29 enters

mri files\ftirform\gasreleasePSI
SF6 Gas Delivery data Spreadsheet

Sheet 4 of 6

Mri Project No.	4701-08-03-04	4		Run No. 4 (Background)
Client/Source:	Plant	C		Date:
Sampling Location:	PTE Loadout			Operator: KLAMM
Dry Gas Meter No:		0308		Gas Cylinder No: AAC19338
Time	Silo No.	Flow Rate	Pres. PSI	Comments
11: 48:16				Truck 30 arrives @ putrance
11:49:57		······································		Truck 30 enters -
//:s/:41				Truck 29 arrives Dentrance
11:52:40		- pulled to	area	Truck 25 enters
11:53:51	11.56:33	stopping		Truck 30 arrives Dentrance
11:56:46				Truck 30 enters
11:58:30				Truck 29 arrives @ entrance
11:59:58				Truck 29 enters
12:01:34				Truck 30 arrives @ entrance
12:03:18				Truck 30 enters
2:04:42				Truck 29 arrives Dentrance
12:05:51				Truck 29 enters
12:07:26				Truck 30 arrives @ entrance
12:09:10				Truck 30 mtors
1211.45				Fruck 29 zerives @ entrance
211.55				Truck 29 enters
213.10				Truck 30 Errives @ entrance
1219.20				Truck 30 enters
121635				Truck 29 Brives @ astrance
1218,10	2	4.05	14	Truck 29 enters
1219.30				Truck 30 arrives @ antimer
1221:15				Truck 30 onters
12:22:54				Truck 29 ancives of entrance
12:24:10				Truck 29 enters
12:25:15				Truck 30 prives A entrance
12:27:15				Truck 30 anters
2:28:15				Truck 29 Irrives @ entrure
2:30:45				Truck 29 enters
2:32:05				Truck 30 zrrives @ ontrance
2:34:20				Truck 30 enters
				· · · · · · · · · · · · · · · · · · ·

stopped ie. prove

mri files\ftirform\gasreleasePSI

4

~

SF6 Gas Delivery data Spreadsheet

Sheet <u>5</u> of <u>6</u>

Mri Project No.	4701-08-03-0	4		RUN NO. 4 (Background)
Client/Source:	Plan	+c		Date: $2/26/98$
Sampling Location:	PTE Loadout			Operator: KLAMM
Dry Gas Meter No:	<i>R</i>	R-0308		Gas Cylinder No: AAI 19338
T:	01.1		1	
	Silo No.	Flow Rate	Pres. PSI	Comments
1276:20				Truck 29 arrives @ Entrance
12.37.00				Truch 29 enters
12:50:25				Truck 30 arrives Ocationce
12:40:15				Truck 30 enters
12:42:00				Truck 29 arrives @ entrance
12:42:55				Truch 29 enters
12:44:05				Truck 30 arrives @ ontrance
12:46:40				Truck 30 enters
12:47	2	4.04	14	
12:47:50				Truck 29 arrives @ entrance
12:49:25	-			Truck 29 enters
12:51:05				Truck 30 arriver & entruce
12:52:40				Truck 3d enters
12:54:15				Truck 29 Decimes & Ratezard
2:55:30				Truck 29 enters
				White down 200 - 400 G (4 4/2 4 2 ()
				0-280 (a (blad at # + 16)
12:57:10				Taugh 201 Zacing (2) Bat 2
12:59:05				Track so entres of marine
13:00:35	2	Y: nV	14	Truck 30 entres
13:01:25		//		The 29 and an interest
13:02:40				T Za z in Circle
1305.00				T 1 ZO Puter
12:06:50				Truck 20 anter 2
12:17:21				The dy arriver D contrance
3.08:501	2			Truck 27 enters
12111.45				T 1 70 1
1212125				Truck SU onters
1767.00				1 ruck 29 zrrives @ ontrance
				Velocity M Innnel ~ 400 tom w/ ontside
17.17				velocity of 550 FTM w/o truck in entrance
1719:45				I ruck 29 enters

SF6 Gas Delivery data Spreadsheet

Sheet <u>6</u> of <u>6</u>

	والمربع المستخد المراج بالم متعاد المراجع	والمتعالية والمتحد والمتحافظ المتحد والمتحد المتكاف	ى بزرغانياري برداخة اختيرت بدوجة الذكات ال	
Mri Project No.	4701-08-03-04	4		Run No. 4 (Background)
Client/Source:	V/2n	IT C		Date: 7/26/98
Sampling Location:	PTE Loadout			Operator: K (Amm
Dry Gas Meter No:		2-0308		Gas Cylinder No:
Time	Silo No.	Flow Rate	Pres PSI	Community
1315.10				To a 21 Zacina CO a
13:16:45				T Zu a la
13:19:00		· · · · · · · · · · · · · · · · · · ·		T 129
12.19:50				Truck al zrrives (entrance
17 72.46				I ruck al enters
17 ~ 7.7.75				I ruck 30 2rrives @ entrance
1203:11-				The watering
1723.45				I ruch 30 enters
721 55				Truck 29 zrrives & ontrance
1326 15		······································		Truck 29 enters
				Fruck 30 Volocity in Junne/ pesks@ 600
				during gust of eve about 150 form True
13:2/:45				Truck 30 prives p) entrance
132950				Truck 30 onters
				outside =in vel peaks@ 050 fpm
13:31:15				Truck 29 arrives @ entrance
332:20				Truck 29 onk-5
333:10				Truck 30 arrives & entrance
3:35:35				Truck 30 enters
3:36:55				Truck 29 zorives @ entrance
13:38:35				Truck 29 enters
13:40:20				Truck 30 zrrives a entrance
13:48:00				truch 29 enters
1344120				Truch 30 arrives A artimice
344:20				Truck 30 enters
			~ 1	
		V	mish	
			······································	

Appendix H

Loadout Raw Data

Orange Country Name (State Name) 1002 III B3 AR-4000 (Same as 1024 Type B 314 30% AAP 5.2% Liquid Asphalt (AR-4000) 36% Rock Dust (Small 3670 Rock Dust 24% 3/8" Rock 22 To Crushed 1/2" Rock 1876 314" Rock [1]2" Same as 1018 112" Fine 1004 TIT C3 AR-4000 30% RAP 5.5% Liquid Asphat 4370 Rock Dist 4270 313" Rock 1570 2" Rock 3/8 TT DX AR-4000 1010 6.4% Asphalt 20 % Sand 5470 Rock Bust 2670 318" Rock

Sheet / of 5

Mri Project No.	4701-08-03-04					Run No.	1 -	Load Out			
Client/Source:	EPA- Pla	nt C		Date: 7/24/98							
	Hot Mix,	Aspha	il+	Data Recorded By: PS Murowchick							
		/									
Product	Product Description	Jop	Time	Actual	Truck	Silo	Mix	Comments			
U		Name	Of Loading	Tons Loaded	No	No.	Temp. in Truck				
1002	TIT BZ AP-400	, 23	0713	20.86	27	4		2 min difference	hot		
1004	TI 03 AR-4000	14	1715	20 89	94	3		Arduction + Incol	out.		
1024	THOIR 3/4	31	0717	2134	95	4	/	0717 Becalast	51		
1002	TH B3 AR-4000	33	12719	219-	89	4	ϵ	Chin Change	0,10		
1004	TT C3 AR-4000	\$15	0728	20.89	99	2		Plomaters Tin	rar		
1002	TI B3 AR-4000	33	0732	21.45	37	42		here are trop 1	40		
1004	HI C3 AR-4000	15	073A	21.20	04	3		out con Dotter			
1024	TUPEB 314	31	0741	21.34	15	2		Testing is using	ŀ		
1004	TT (3 AR. 400	15	0743	20.83	96	3		production comp	a ten		
1021	Type 13 314	31	0745	21.39	13	2		tin, Product	0-		
1002	TI 133 AR. 4000	33	0746	20.10	05	2		Computy is	ahe		
1002	II 133 AK-400	5.9310	0748	21.04	93	2		of load out Com	oute		
1004	17 (3 AR-400	,47	0749	4.03	91	3		/			
1024	Type B 3/4	31	0752	21.19	21	2					
1024	Type B 314	31	0154	21,12	26	ス					
1004	II 03 AR-400	> 71	0758	3,99	25-	1			ĺ		
1024	Type B 3/4	49	0759	21.27	84	2					
	7				-95				-		
1024	Two1 13 314	3/	0802	21,12	29	2		0805 Gas Release	57a.		
1024	Type B 314	31	0805	21.17	16	2					
1004	TT (3 AR-4000	15	2807	21.25	08	/					
1002	TT B3 AR-YOOD	33	0812	21.39	27	2					
1004	TI (3 AL. 4000	15	0815	21.16	07	1					
1024	Type B 314	31	0823	21.40	20	2			5		
1004	AC3 AR-400	15	0824	20.91	92	<u>X3</u>					
1004	II C3 AC. 400	75	0827	2.54	25	3					
1624	Tipp: 13 - 3/4"	\$133	0323		21-	2			ŀ		
1002	HI B- AL-4000	33	0823	21,22	21	ス					
1004	TI C3 AR-	15	0830	21.4=	89	3	 				
1024	Tupe B 314"	31	0833	21.20	10	2					

PSM

Sheet 2 of 5

Client/Source:	EPA - Plant	0				Date:	7/2	4/98		
	Hot Mix A	Asphat	2	Data Recorded By: PS MUROWCHICK						
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments		
D		Name	Of Loading	Tons Loaded	No	No.	Temp. in Truck	Community		
1024	Type B 314	31	083 B	21.72	12	2				
1002	II B3 AR 4000	33	0839	21.36	13	2				
1004	TI C3 AX-4000	15	0841	21,35	30	3				
1024	Type B 314	31	0843	21.05	15	2				
1004	III C3 AR-4000	15	0846	20.94	24	3	: 			
1024	Typi B 314	31	0849	21.38	92	2				
1002	TT B3 AR-4000	33	0850	21.33	29	2		· · · · · · · · · · · · · · · · · · ·		
1002	TT B 3 AL-YOOD	10	0352	21.12	93	4				
1004	TT C3 AR-4000	15	0 354	21.04	16	3				
1024	14p1 B 314	31	0853	21.17	11	4	O5M	0858 Began tilling		
1002	TI B3 AR. 4000	33	0859	21,26	09	X2				
1004	TI C3 AR 4000	15	0903	20.88	599	3				
1024	-14p2 B -14	31	0905	19.91	05	2				
1024	74p1 B -14"	-51	0910	21,22	86	2	~	Gate open on 1		
1004	TH (3 AR-4000	15	0912	21.10	95	×2		Spilling in tunn		
1002	II B3 ALYan	35	0916	21.04	79	4		Gion in Nrn.		
1004	THE P 311	75	0921	210	100	2		1-920 Cleaning U		
1024	1401 5 -14 THE B 31,111	<u>/ </u> 3/	Dani	1.50	1/2	1		N'UMARC		
1000	TTT B3 Averia	-1 33	09202	2141.	10	2				
1000	TIMIB 3/1"	21	h933	21.014	20	2		921 Sampling bei		
1004	TH C3 Ar Uni	15	0937	21.112	15	3		Location 1		
1024	Type B 3/4"	31	09393	21.36	18	2		0135 Stopped Gas		
1002	II B3 AR4000	33	0939	21.20	21	2		//////////////////////////////////////		
1024	TUP2 B 314"	31	0942	21.04	11	2				
1004	#1 C3 AK4000	15	0944	7.0	95	3				
1004	II (3 AC 4000	15	0945	21.13	13	3				
1024	Tran B 3/1	3/32			91	2				

Sheet 3 of 5

	Mrt Project No.	4701-08-03-04					Run No.	1-4	load out
	Client/Source:	EPA / Plant	Ĉ				Date:	July	24,1998
		Hot Mix ASP	shalt			Data P	ecorded By:	PS,	Murowchick
					faster at the second		-		
	Product	Product Description	Jab	Time	Actual	Truck	Siło	Mix	Comments
	Ð		Name	Loading	Loaded	NO	™0.	in Truck	
	1024	Tupe B 314 "	31	0950	21,34	08	2		
	1004	# C3 AR-4000	15	0953	21,20	07	3+1		
	1024	Type B 314"	31	0955	21,53	29	2		
	1002	II B3 ARYOCO	33	0953	21.52	27	2		
	1024	Typ: B 31411	49	1000	21.29	89	2		
	1024	Type B 314"	31	100a	21.60	09	2		
	1004	TTT C3 AR-4000	15	1005	20.94	02	1		<u></u>
	1002	TT B3 AR-4000	33	1004	21.27	12	2		
	1024	Type B 314"	31	1007	21.22	64	2		
PSM	1004	TT C3 AR-4000	15	1009	20.96	96	/		
1024	1002	TI B3 AF- 4000	3331	10 11	21.44	20	2		
	1002	TT B3 AF. 4000	33	1014	21.06	99	2		e an gan an a
	1004	TIC3 AR. YOOU	15	1027	21.50	92			
	1002	TTE 133 AK-4000	33	1028	20.13	05	5		
	1024	Type B 314"	31	1030	21.41	11	5		
	1004	TIT C3 ARY000	15	1033	21.29	18	B1		
	1024	Type B 314"	31	1035	21.08	16	5		
	1004	Typ: B 3/4/1	31	1036	21.39	10	5		
	1000	TI B3 ARYOW	33	1039	21.33	86	5		
	1004	TI (3 AR 4000	15	1040	21.14	93	/		
	1014	Type B 314"	31	1041	21.45	46	5		
	1024	Type B 314		10.43	21.25	2/	5		
	1002	174 B3 AR 4060	33	1046	21.26	00	5	k	
	1004	14 C3 At 4000	15	1052	1,40	71		<u> </u>	
	1024	1 upe B 214	31	1054	21.40	1 0.4 a.1	2		
	1004	TT C3 4K-4000	15	1050	01,01	29	$\frac{3}{l}$		
	1002	TH 33 AF 4000	20	1104	1.71	27	16		
	1024	1401 13 14	$\frac{21}{22}$	1101	4123	100	544	*	
	1002	14137 11-400	22	IIU H	121.00	100	1	1	

1109

Sheet _____ of _____

Mri Project No.	4701-08-03-04					Run No.	1-6	oad Out
Client/Source:	EPA / Plant	0				Date:	July	24,1998
	Hot Mix H	ts pha	lt		Deta R	ecorded By:	PS,	Murowchick
		,						
Product	Product Description	Job	Time	Actual	Truck	São	Mix	Comments
D		Name	Of Loading	Tons Loaded	No	No.	Temp.	
1004	TTT 03 AR4060	15	11:117	21.34	79	3		
1024	TUD: B 314"	31	1112	21.42	/2	4		
1002	TE B3 AR4600	33	1117	21.30	04	4		
1004	TH C3 ARYOOU	3,15	1118	21.29	11	3	1	
1024	Type B 314"	31	1122	21,40	20	4		
1024	Type B 314"	31	1103	21.45	16	4		
1002	TI B3 ARYOCO	33	1124	20.78	02	4		
1004	TT C3 AR4000	15	1126	21.43	13	3		
1024	Type B 3/4"	31	1128	21.32	10	2		
100 Y	Type B 3/4"	31	1133	21.35	15	2		an an the second state of the
1004	TTC3 ARYOD	15	1136	21.19	95	3		
1002	TI B3 ARYDOQ	33	1138	21.12	24	2		
1024	Type 13 314	31	1139	21.14	21	2		
1004	TT C3 AR 4000	15	1140	$\mathbf{V}_{\mathbf{i}}$	3053	3		Front of Truck
1004	II (3 AR400-	15	1141	24.84	3058	3		Back of Truck
1024	Type 3 3/4"	31	11+3	21.17	96	2		
1074	Type B 3/4"	3/	1.45	20.12	05	2		
1074	[yp: B 3/4"	31	1150	21.34	07	$\frac{2}{2}$		
100+	TH B3 AC 4000	33	1153	21.04	08	~		
1024	14p1 D -14'	3/	1155	21,15	171	2		
1024	14p2 5 -19"	31	1151	21.31	27	2	<u> </u>	
1002	TH 03 ARY000	32	1002	21.35		7		
1024	14P1B -19"	$\frac{2}{2}$	1204	21.27	29			
1024	TI RO NO I	32	1205	21.22	11	2		
1000	T. R. B 31,1"	21	1215	2/02	82	2	1	
10FY	TA BZ ARILIN	30	1217	1344	3710	2	1	······
1002	TI DO AP Um	77	1219	21.29	12	2		
1000	TTTE B3 ARYODO	33	1,2,22	21,00	15	2		

 \bigcirc

Wri Project No.	4701-08-03-04					Run No.	1 0	Load Out
Cilent/Source:	EPA / Plan	+C				Date:	Ju/4	24,1998
	Hot Mix A	1sphal	17		Deta F	Recorded By:	PS /	Nurauchick
Product	Product Description	Jab	Time	Actual	Truck	Silo	Mix	Comments
10		Name	Loading	Loaded	140	NEC.	in Truck	
1002	II B3 Arc 4000	38	1223	21,52	20	2		
1024	Type B 3/4"	31	1225	21.17	30	2		
1002	II B3 AF4000	33	1230	21,46	18	2		
1004	TI C3 AR4000	15	1235	21.33	21	3		
1024	Type B 314"	31	1236	20,40	87	2		
1002	TT B3 ALLOOD	38	1237	21,73	92	2		
1002	TT B3 AR-Yaco	33	1238	21.28	02	2		
1024	Typ1 B 314"	31	12-10	21.16	04	2		
1002	TI B3 AR 1/000	38	1:12	21.39	26	2		
1024	Type B 3/4"	3/	1244	20,23	05	2		
1002	II B3 AF-4000	33	1246	V	96	2		
	+	V	1248	21,57	\square	4		
1024	Type B 314"	31	12-19	21.25	07	4		
1002	II B3 ARY000	38	1251	21.20	43	4		
1024	Type B 314"	31	1253	21.17	99	2		
1002	II B3 ARYON	36	1254	21.31	11	2		
1024	Type B 314"	31	1301	$\downarrow V$	89	2	<u></u>	
dr	V	<u> </u>	1302	21.19	39	4		······································
ļ		ļ			_			
<u> </u>		_		+	<u> </u>	<u> </u>		
		<u> </u>				<u> </u>	 	
ļ				<u></u>	+	·	+	
		<u> </u>			+		<u> </u>	
ļ			-			+	<u> </u>	
 		+	+		+		+	
			+	+	+			
 			+		+	+	+	
		+					+	
1		ł.	1		1			Lange and the second se

Sheet _____ of _____

	Mri Project No.	4701-08-03-04					Run No.	à-	Load Out		
	Client/Source:	EPA / Plan	tC		Date: July 35, 1998						
		Hot Mix As	phal	' <i>†</i>	Data Recorded By: PS Murowchick						
			1						ananan ata barta da ana ana ata pananan any ana ang mang mang mang mang mang mang m		
	Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments		
	ID		Name	Of Loading	Tons	No	No.	Temp.			
	1004	TTI (3 AR-400	11	0702	2/12	20		III II UCK			
	1024	TUDEB 314"	193	0704	21 13	29	5				
	1004	TH 13 AR-4000		0708		16	2		Sen truck		
\mathbf{i}	1004	III (3 Al-4000	11	0709	21.24	16	3				
	1024	TUPL B 314"	18	0712	21.02	18	5		0715 Sampling		
	1004	II C3 AR-YOCO	11	0720	20,92	09	3				
	1024	Type B 314"	18	0721	\checkmark	31250.	ュス		Front of truck		
	()	11	18	0723	23.87	312502	A		Back of truck		
	1018	1/2" Fine	12	0724	4	3405	3		Front		
	1018	1/2" 500	12	0725	23.65	/(3		Back		
	1024	Type B 314"	18	0729	21.21	27	2		Front		
	1004	TIF C3 AR-4000	11	0731	\checkmark	312503	3		Back Front		
	11			0732	23.93	\checkmark	3		Back		
	1018	1/2" Fine F	SM 6/2	0735	21.09	23	3				
	1024	Tupe 13 314"	18	0738	\checkmark	312501	2		Front		
	4		11	0740	24.43	17	(j		Back		
	1004	TT (3 AR-your	11	0742	20.59	,25	3				
	1024	Type B 31411	18	0743	\checkmark	3106	2		Front		
	11	11	- 11	0744	23.24	"	lr		BACK		
	10-24	Typi B 34"	19	0745	20.64	22	2				
	1018	"3" Finy	12	0747	V	3425	3				
	10	11	K	0748	24.47	"	/(
	1024	Typ1 B 314"	18	0751	21.26	21	2				
	1004	II C3 AR-4000	11	0753	\mathbf{V}	812504	3		Front		
	11	15	//	0755	24.52	11	11		Back		
	1010	1/2" Fine	12	0757	21,32	15	3	L			
	1024	Typ: B 3/4"	18	0759	21.26	11	a				
	1004	II C3 AC YOUS		0805	19.73	08	3	 			
	1624	Typi B 314"	18	0807	21.05	07	2		<u> </u>		

Sheet 2 of 4

	Mri Project No.	4701-08-03-04				dan da katistika tara ya kata	Run No.	2	Logd Out		
	Client/Source:	EPA/ Plan-	tC		_		Date	- Jula	425,1993		
		Hot Mix A	spha	17	Data Recorded By: PS Murowchick						
						a providio de la constante de l					
	Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments		
			Name	Loading	Loaded	INO	NO.	in Truck			
	1018	12 Fine	12	OBE /	En 214.	29	3				
	1024	Tupe B 314"	18	0814	21.31	18	4				
	1004	TT C3 AR 4000	11	0817	\checkmark	3597	3	\sum	Front		
	r	11	//	0817	24.65	1/	11	\bigvee	Back		
\langle	1018	1/2" Fine	12	0819	\downarrow	3084	3	\sum	Front		
\setminus	11	11	11	0820	24.48	"	11		Back		
	1024	Typ1 B 3/4"	18	0822	21.13	30	5	l			
	1004	TI 03 AR-4000		0824		312505	- 3		Front		
	11	11	17	0825	24.03	11	//		Back		
	1024	74pe B 314"	18	12828	21.50	09	2				
	1018	1/2" Fing	12	0830	21.16	16	3				
	1004	711 C3 AR-4000	//	0832	21.27	10	3				
1	1024	-14pe B 314"	18	0834	21.25	27	2				
<	1024	Typ: B =14"	18	0837		312501	4	\rightarrow	tront		
\mathbf{X}		TT (3 2 "		0838	24,45	"	"	ļ	Bacic		
04 PS1	1024	Fypt B-24	_//	0839	21,26	20	3				
	1024	14p1 13 -14"	18	0842	21.30	1/2	5	<u> </u>	844 Simpling SI		
	1024	Type B 14	10	0845	V	3106	4	\rightarrow	Front		
a d		-II C3 3.11		0046	23.21		<u> </u>	<u> </u>	1)Ack		
04 psn	104	1902 B 14		0848	21.00	2 1 - 0					
	1024	Type D 19"	18	0850	Y 1/17	5129. VI.			P /		
	1024	Turk B 3/1"	19	0051	21 10	<u> </u>	2		DACK		
	10.21	THE B 3	12	0859	-11-10 11	11 Biscar	3		Fran +		
	10-1	19701 1. 19		Dgnn	22 20	11	11	17-	Bak		
	innu	TI CZ ARIUMA	//	0902	2100	07	3	ļ <i>1</i>	1 HCK		
	1024	TUDO R 3/11	18	1902	2001	25	4				
	1024	Tupe B 311"	18	1906	21.18	12	4				
		- i i i fina de la companya de la co									
	L	1		1		1	1	I	1		

Sheet 3 of 4

	Mri Project No.	4701-08-03-04					Run No.	2	Load Out		
	Client/Source:	EPA / Plann	+ 0				Date:	Jula	125,1998		
		Hot Mix As	phar	17	Data Recorded By: PS MUrowchile						
			/								
	Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments		
	טו		Name	Of Loading	Tons Loaded	No	No.	Temp. in Truck			
	1024	Tup: B 314"	18	0910	V	3405	2		Front		
\backslash	11	4	11	0910	23,67	3405	//		Back		
	1004	II C3 AK 4000	/	0913	20.89	30	3¢	3 FSM			
	1024	Type B 314"	18	0.915	20.87	23	× ó	R			
	1024	Type B 314"	19	0917	21.02	11	2				
	1018	"12" Fine	1218	0918	12,0	09	3				
	1024	TUPIB 314"	18	0921	21.01	27	2				
$\left(\right)$	1024	Typ: B 314"	18	0923	\checkmark	312505	2	\square	Front		
\setminus	11	"	11	0924	24.19	"	2	/	Back		
	1024	Type 13 314"	18	0938	20.93	21	2				
	1024	Туре В З/4"	18	0931	20.94	08	2				
	1018	">" Fin	12	0933	8.0	09	3				
	1024	Typi B "4"	18	0935	21.10	15	2				
	1024	Typi B Ty	18	0940	V	3597	2		Front		
	- 11	11	/*	0941	23.87	11	10		1 Back		
	1024	Type B 3/4"	-18-	094		10			Cancelled		
,	1004	TT (3 AR 4000		0945	1503	10	3				
\langle	1024	14pr B 314"	18	0947	\checkmark	34.25	A	\rightarrow	Front		
\backslash			11	0948	24,58	"	"	/	Back		
	1024	74p1 B 34	18	0949	21.17	29	2	<u> </u>			
	1024	Typ: B 3/4	10	0954	¥ .	\$12505	2	\mapsto	Tront		
	"	- P 31.11	11	0455	23.58	"	/		Back		
	1029	14p2 B 14	19	2451	20.86	//	2	<u></u>			
	1024	1401 13 14	18	0957	<u> </u>	3106	2	\mapsto	Front		
	// //	Tue 12 3/11	12	0757	00 7-			¥	DACK		
	1004	T, R 31,1"	10 1R	1002	20,10 J		2		Frank I		
	1 Udy	I H I H	10	Innla	1410	11	11	$\not\vdash$	Rock		
	lhaul	T. 1 12 3/a"	10	1000	21.17	m		/	LACT		
	10049	114pl 12 14	0	1004	01.06	00	A	<u> </u>	L		

Sheet _____ of _____

Mri Project No.	4701-08-03-04				Run No.	2	logd out	
Client/Source:	EPA/ Pla.	nt (7			Date:		125 1993
	Hot Mix F	150ha	1+	-	Data	Recorded By:	P5	Mumachick
				•				
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of	Tons	No	No.	Temp.	
Inal	THOM B 3. "	10		Loaded	212502	2		tent
11	1402 0 14	10	1019	V 22 T	11	11	\rightarrow	Root
1018	11." F.	12	1015	42,29	:22-	- Fr		DACK
1010	TI P 3. "	1d	1010	6.10	2.01	of a	<u> </u>	E. F
10-4	1401 1 74	12	1021	V D// a/a	3089	\angle	\rightarrow —	Front R i
	T 531		1028	29.00	10	//	/	Dugere
10,74	TYPIB 14	18	1030	20.91	18			
1029	THE B 3 M	18	1032	21.06	27	4		
1024	19p1 B 314	10	1035	20.79	16	4		21.03
1024	14pl B 74	18	1039	3.14	21	4		-3.14
			1041	11.89	"	5		11.89
1024	14p1 B 14	18	1043	21.00	22	5		20 00
1024	-Type B "14"	18	1046	14.52		5		- 14.52
1024	1(18	1048	6.38	X//	2		638
1034	Typ1 B 314"	18	1050	20.80	07	2		
1024	Type B 314"	18	1052	20.87	08	A		
1024	Typ. B 314"	18	1054	20.91	30	ス		
1024	Typi B 314"	18	100	20.91	15	2		
1024	Type B 314"	18	1104	21.07	29	2		
1024	Type B 3/4"	18	1110	21,13	09	2		
1024	Type B 51411	18	1119	20.64	25	2		
1024	Type1B 3/4"	12	1124	21.01	30	2		
							*	

Sheet _____ of ____7

	Mri Project No.	4701-08-03-04	1940979-0444 1-05-0-04 44	in an ann an tha an		teriti ann ait da bhaile	Run No	2	Load Dut
	Client/Source:	EPA / Source	-0 (Data:	<u></u>	17 199R
		Hot Mix A	Isphal	't	•	Data	Recorded By:	Pr	Murauchiak
									THE COUCERA
	Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
	ID		Name	Of	Tons	No	No.	Temp.	
loat	Inat	Tupi B 3/4"	22	0702	17 70	120	- 2	HTBUCK	Frint 22 AR
1024	1001		22	DOTOS	10.28		2		R26K 12.70
	1024	Turo B 3/1"	18	0709	2113	21	7		
	1002	ITT B3 Agun	, 20	07/1	11.74	3106	2		Front 1171
	//	11	20	07/3	11.37	11	2		Box 11.32
	1007	TIL B3 AP-4000	20	OTIB	21.28	09	2		
			72			1717	2		Ane Aborted
	1002	IIB3 AR YOUD	20	0736	12.21	2 ~ 17	ュン		Front 24.33
:	t	"		0737	12.12	Xa	ir		Buck 12.21
	1024	TUPE B 314"	22	0736	12.75	1717	2		Front 25.45
	4	<i>)</i> // <i>v</i>	4	0739	12.90	11	11		Buile 12.75
	1024	T402 B 314"	28	0743	12.42	3597	2		Front 24.80
	ų	1	(/	0744	12.38	<i>ii</i>	11		Back 12.42
	1007	TIB3 ARYOD	20	0746	12.36	3542	2		Front 24.40
	//	11	"	0747	12.30	10	k		Back 12.36
	1024	Tupe B 314"	22	0753	12.64	23051	52		Front 25.20
	//	10 le	"	0754	12.62	74	2		Back 12.60
	1024	Type B 314"	22	0755	12.34	2305	2		Front 25.21
	"	U U	11	0756	12.87	11	"		Back 11.57
	1002	TT B3 AR 400	0 20	0800	12.00	3125	5/2		Front
	11	1/	11	0 801	12,38	ít.	11		Back
	1024	Type 13 = 14"	18	0802	20,95	16	2		
	1024	Typi B 514"	<u>I</u>	0803	13.00	3475	2		Front
		11	<i>i</i> ,	0904	17.70	"	ħ		BACK
	10-4	74p1 13 \$14"	22	0809	13.84	1001	2		Front 13,84
	4	11	"	0810	14.00	((Ÿ.		Back
	1007	TH B3 AR-Yow	20	0812	21.40	27	2		
	1602	II B3 AR-4000	70	0813	12.00	3084	ン		Front
	10	k	20	0814	12.05	11	4		Back

Sheet 2 of 7

Mri Project No.	4701-08-03-04					Run No.	3	Load Out
Client/Source:	EPA / Sou	rel	C	-		Date:	Juli	1 27 1998
[Hot Mix	ASPF	nalt	-	Data	Recorded By:	P5-	Murowchick
			<u> </u>	-				
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of	Tons	No	No.	Temp.	
1024	TURB 3/1	22	Caunity	10-71.	0.00	2	In Truck	Enet 2510
*	*	<i>V V V</i>	0010	12 00	0000	<u> </u>		Rail 1216
1021	TUD B 3/11		0014	12,00	20140		·······	Tar d
1024	i gpi is i	11	DRID	17.00	11	<u>}</u>		Davis
(0)1	T. B 3/1"	70	0019	12.50	31752	5		BULIC Feld all
1021	19021- 4	10	0821	11.56	1	$\frac{\mathcal{F}}{\mathcal{F}}$		17001 14.04
1002	TT B3 ARK	202	084	1/202	()	2		124UC
1002	TT B3 AP 1000	00	DByl	71.50	2001	2		E.t.
1-03-	10 15 MR 4000	10	OBH	12.23	3014			Pront
IDAY	Tun B 3/1"	27	0014	12.00	2200			ISCCK Econt
"	ight is the	10	0826	17200	4 70501			Print
1024	TUN 13 311"	27	0877	13.02	(020-0	2	••••••	Back
<u>1071</u> 	19pi - 7	1	0800	1212	105201	~		Rect
1002	TT R3 AP 11mm	7227	08.9	1205	2.200			Fait
1000	<u>4 0 - 14-700</u>	1000	082	10,00	- <u> </u>	-4		R = /
1024	TUR B 3/11	18	1020	7,27	202			174 (16
lord	Tues 12 3/1/1	22	0052	1272	-7	- 7	······	
"	1992 17 19	<u> </u>	0821	12,10	1 21505			Pront
1002	TT R-2 April .	.200	0039	1.00	10	d		15477
Ibsy	T. A. B. 3/111	70 D	2200 7 227	12 00	100	7		En 1
10-1	<u>19pz 10</u> 19	11	0027	13,00	100801	<u> </u>		Back
Insel	T. B. 3/1"	22	1920	13,10	" "]			Dalk
1037	19 3.6 2 19		0059	(2,73	+305.040	4		Prik
10.04	Tun R 3/1/1	18	ngui	7,24	7.7	1		DACK
1000	TT P 2 April	10	NQU.	271	12	4		Loaded for
100 -	11 D-> /7C-9000	<u>v</u>	NOUS	17 61	1	É		Econoria 19009
1621	Tup. R 3/11	<u></u> 	DOTS	11.74	201 -1	5		+TON+ ~ NIOS
1024	19412 19	<i>y y</i>	0044	12.00	201 D41			
	· · ·	11	0015	15.04		11		
					H			

Sheet 3 of 7

Mri Project No.	4701-08-03-04			-		Run No.	3-	Load Out
Client/Source:	EPA / Su	DUrce	C			Date:	Jul	4 27 1993
	Hot Mix	AS DF	halt		Data	Recorded By:	PS	Murowchick
		/		•				
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
D		Name	Of	Tons	No	No.	Temp.	
1835	T. B3 3/11			Loaded	IGALIO	2	in Truck	
10-1	"If the the second seco	12	084	17.00	177508			
	TT DO AQU	<u> </u>	0048	12.96				
100-	14 13 5 AK 4000	20	0279	4.12	01	4		
1079	14p1 155 14	2	0851	11.35	15	2		
1034	Type is ry	12	0852	13.00	20042	2 2		Front
		1(0853	13.13	16			BACK
1034	14pz 13 214"		0854	11,59	10280	62		Front
	// 2	"	0855	12.84	4			Back
1024	Type 13 34"	18	0856	21.31	18	ヌ		· · · · · · · · · · · · · · · · · · ·
1002	TI B3 AR-4000	70	0858	20.44	44	ア		
1024	Type B "14"	22	0859	13.14	121415	2		Front
4	· · · · · · · · · · · · · · · · · · ·	il .	0900	11.47	4	11		Back
1024	Type B Ziy"	22	0901	13.00	1298	チ		Trua t
11	10	li	0902	13.01	10	11		Back
1002	II B3 ARNO0	20	0902	13.05	3744	2		Front
μ	"	4	0903	11.05	11	æ		Back
1024	Type B 31411	[B]	0904	21.28	09	2		
1002	II B3 AR. 4003	70	0906	12.00	3106	2		Front
4	đ	lý	0907	11.19	"	(/		Back
1024	T401 B 311"	72	0908	12.94	230504	2		Front
4	/1	11	0908	12.61	11	17		Back
10+4	Thpe B 314"	27	0910	12.20	15440	, 2		Front
11	<i>μ</i>	((0910	12,24	//	11		Back
1002	IF B3 AR 1000	70	0912	21,23	00	ア		
1024	Thor 13 3/4"	10	0914	21.37	21	ス		
1024	TUDEB 314"	22	915	12.12	1717	2		Front
11	11	11	0916	13.5h	11	(1		Rack
1024	Pro, 13 314"	22	0917	12.50	2705	2		Front
10	4	ii	0919	12.63	11	î/		Back

Sheet <u>4</u> of <u>7</u>

Mri Project No.	. 4701-08-03-04					Run No.	.3 -	Load Out
Client/Source:	EPA/Soc	ICCO	0	•		Date:		1 27 1992
	Hot Mix +	AS ph.	<u>alt</u>	•	Data	Recorded By:	PS ,	Murswchick
		<i>f</i>		-				110.0.0
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of	Tons	No	No.	Temp.	
1000	TT N 3 ADU	20	Loading	Loaded	<u></u>	<u> </u>	in Truck	
1000	11 M-5 MK-4000		0921	12.35	303503	10		Front
		<u> </u>	0923	12.09	"	/		Back
102 Y_	14p112 "4"	132	0920	12.77	2255	2		Front
		1(P27	12.77	<u> </u>	11		Back
1002	TT B-3 AR 1000	38	0929	21,34	12	2	ļ	
1024	T401 B 314"	22	0931	13.00	2475	7		Front
N	"	1	0932	12.71	*	4		Back
10-4	Typi B 31411	22	0933	13.00	1001	2		Front
1.		11	0934	14.74	4	11		Back
1024	Type B 314"	18	0935	21.49	27	2		
1002	TH A-3 AR. 4000	20	0937	12.74	3/25-	み		Frint
1(11	11	0938	12.05	11	"		Rork
1002	TI B-3 AR-400	30	0939	12.00	312501	2		Front
R	11		0943	12.51	11	~		Back
1024	TUDI B 341"	22	0944	1200	20101.0	1		Front
11	- J#		1945	1272	1/	11		Rat
Innu	Tun: B 314"		naula	12 00	2200			reich
101-1	- 44 e L - 1 		1917	13 18	1024301			P
1001	Tuni R 314"		nas 1	12:10	77-854			DALK C-+
1071	1415. 17 7		ngez	12.12	11 Il	-		170n1
	T 13 34.1	27	-967	17,20	600	~		Dack
1027	1401 5 - 14	\sim	0153	15,12	105207	đ		Wont
		"	0154	13,21	ļ."			Back
1004	711 (3 Arc 4000		0957	8.02		_/	·	
1024	14p1 B 214"	10	0958	1.26	10	2		
1002	TIL B-3 AK-4000	20	1000	21.07	16	2		
1024	Type B 314"	22	1003	13,00	10201	2		Front
11	11	"	1004	13,08	3094	*		Back
1004	Type 13 314"	22	1005-	12,86	221505	22		
K –	11	4	1006	12,92	10	11		

Mri Project No	4701-08-03-04					Run No	. 3-	I and out
Client/Source	EPA/Source	C				Date	Juli	, 27 1998
	Hot Mil Az	ohalt	L		Data	Recorded By	De	Murauchick
	- Contraction of the traction	2.10-0-			000	inducided by	<u>_</u>	THOWARK
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Commente
D		Name	Of	Tons	No	No.	Temp.	Comments
			Loading	Loaded	ļ	<u> </u>	in Truck	
1002	74 B-3 AC-4000	20	1007	12.00	3094	2		Front
11	(1	"	"	12.42	11	"		Back
1007	TI B-3 ACYCON	30	1009	11.69	3004	2		Front
11	11	"	1009	12.64	11	1	an	BACK
1024	Type B 34"	22	1011	13,00	1950	195508	12	Front
(1	"	4	1011	12,93	11	11		Back
1024	Typi B 31411	22	1012	13.00	30506	2		Front
4	1	4	1014	12.22	11	11		RACK
1002-	II B-3 AK-4000	20	1015	12.61	3200	2	·····	Front
11	11	11	1016	A.17	11	11		Berk
1024	TYPI B 314"	22	1017	13.00	22106	7		Front
11	11	13	10:20	12.86	, (c	"		beck
1024	Tupe 13 31411	22	1021	12.79	10281	2		Frank
1	11 11	11	1022	11.73	((//		Rack
1024	TUDI B 31411	27	1013	2125	07	2		/340/
1024	Type B 3/4/1	22	1025	12.82	121410	2		Front
11	1		1025	1290	4	11	·	Drok
1024	THOIR 31	22	Inta	13 00	20012	2		Free t
11	11		1027	1314	1	11		Berk
1002	TTE B-3 Arum	20	1020	20.98	26	2		ierc K
1024	Tup: B 311"	18	10.29	895	18	$\overline{2}$		Filled Ray
11	11	()	1030	1240	11	5		25:45
1024	-Tune B 34/1	22	1032	1300	1299	2		Front
11	11	(1	1032	13.10	· · Q //			Rach
602	II B-3 AR-YAN	, 38	1034	2125	11 117	5		1.5 C/C
1002	THE B-2 AC-4mo	20	103-	2129	20	4		
1002	TT-R-2 AR. In	1800	1037	2140	20	5		
1024	Tupi B 31.11	22	1039	1201	22,6	65		
	1952	11	10-1	1210	100	11		
				10,07				

Mri Project N	o. 4701-08-03-04				an ang ang ang ang ang ang ang ang ang a	Pue Me	2	land 10 t
Client/Source	EPA Sour	ro n				Kun No.		LOAD UUT
	Ant Miv	App	1.4			Date	- h/	421, 1998
		TSPIN	0		Data	Recorded By:	<u>PS /</u>	Nowchick
Product	Draduct Description	- <u>1</u>						
ID	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
		Name	Loading	Loaded	No	No.	Temp.	
10-24	TYPI B 314"	22	1043	12.80	2805	5	In Huck	8 5.2 ش
11	11	11	1043	1248	11			R
1024	Type B 31411	13	1045	21, 24	10-	5		
1002	TI B-3 AF-400	20	1047	21,39	21	5		
1024	Typ: B 314"	22	1049	13.00	1717	Y	PSM	Front
4	11	11	1050	12.76	11	11		Rede
1002	THE B-3 A9-4000	20	1051	21,21	09	2		
1024	Type B 314"	18	1052	21,44	13	2		
1024	Type B 31411	22	1054	12.79	15540	2		Front
4	<i>J</i> ″ <i>I</i> I	11	1054	12.73	11	11		Beile
1002	TI B-3AR-4000	a	1057	21.61	20	2		2/01-
1024	TYPIB 341	22	1059	12.86	22515	- a		Front
11	1	11	1120	12.72	1	11		Berr
1000	TT B-3 AR.4000	20	1101	20,87	44	2		2-1 ()2
10-4	Type 13 3/4"	18	1103	21,30	08	2		
1024	Type B 341	24	1107	12,91	2475	a		Front
11	0 11	11	1108	12,83	((2		Back
1002	II B-3 AR1400	$\partial \partial \partial$	1109	21,45	27	2		·····
1024	Type B 34"	18	1110	11.50	3246	2		Front
4	11	1	1111	10.97	17	17		Back
1024	Typ1 B 314"	22	11/3	12,68	1001	2		Front
	J• //	11	1113	15.23	11	17		Back
1002	TI B-3 AR-YOOD	20	11/8	12.00	3106	2		Front
<u>n</u>	1	1	1118	11.26	//	//		Back
1024	Type B 314"	22	121	12.00	22501	2		Front
		K	1121	13.22	10	11		Back
1024	Type B 34"	22	1122	13.00		2		****
1	J. 11	10	1123	12.78	11	ir		

F

Sheet 7 of 7

	Mri Project Na	. 4701-08-03-04 ,					Run No	2 /	ord out
	Client/Source	EPA /Source	, C				Onte	<u> </u>	2 D GGB
		Hot Mit A	solv.11	L		Date	Date.	PZ	10/1990
			puga		-	Udia	Recorded By:	1.2.	IN DIOWCHACK
	Product	Product Description	Job	Time	Actual	Truck	Silo	Maine	
	D		Name	Of	Tons	No	No.	Temp.	Comments
1			170-2	Loading	Loaded			in Truck	
1024.	1007	Type B zy"	197	1125	21.53	803 50-	22		
	1024	Type B 3rg"	22	1128	13.00	12305	12		Front
	"	7. 11	11	1129	12.92	11	11		Reck
1						10000	_		
	1024	T401 B 34	22	1131	13.00	1952	2		Front
	U	11	11	1133	12 73	11	11		Back
	1024	Type B 3ry"	28	1133	12.00	2597	2		INGCR Trout
	10	"	11	1/34	1291		11		R
	1004	TIL C3 ARYOOZ	17	1/35	1200	2,2001			Fort
	((11	1	1136	17 510	11			Rak
	1024	TUDOB B 3/11	2022	1136	1300	VORTA			Fart
	()	11	11	11:2-	13 60	11			Rat
	1024	THOR B 311	22	1/20	12.00	inn	-7		Tack Tack
	<u> </u>	11	11	1120	13 11	10001			P
	1024	TUN B BUI	2	$\frac{1}{1}$	12.00	274			12ct
	(19pe p ig	11		13.00	24105	$\lceil \frac{1}{2} \rceil$		TY On T
	1021	Then R 31.11	27	1141	12,01	10			Back
	11	19p2 15 . 9"		1142	15.00	195508			Tront
ł	1002	TT DO ARIAN	0-	114 3	13,10				Dack
ł	1000	J B S A 1000	\mathcal{N}	1199	12.00	5094			[Yunt
ł	1	7 5 3.11	11	1/45	12.49	((//		Back
ł	ICTY	17pr 13 - "4"	22	//47	13.00	20/06	2		Front
ŀ		$\frac{(1)}{2} = \frac{1}{2} + $	(1	1148	12,96	1	11		Back
ļ	1024	14pr 5 214"	22	1149	13.00	22050	62		Front
ŀ	10	11	//	1150	12.46	11	11		Back
ļ	1002	111 B3 AKY000	20	1151	12.50	3200	2		Front
ŀ		11	11	1151	12.31	11	11		Back
Ļ	1004	111 ('3 AR 1000	17	1152	21.08	26	_/		
ŀ	1024	TUP1 B 314"	22	1154	1200	10280	2		Front
L	1	"	11	1155	1264	"	11		Beck

Appendix I

Sample Concentration Procedure and Raw Data Sheets

Run N	o. <u>3</u>	Date _0	7-27-98	S	ample Type	* Source	,
Project	t No470/	1,08,03.0	14	CI	lient USE	PA-Emi	3
Barom	etric Pressu	ire 29	24	in Ha Si	ampling Log	sation $\overline{\mathcal{F}}$	لمر
Barom	eter to Loca	ation Elevat	tion 50	ft O	nerator d		
Correc	ted Baro, P	ressure 3	29.19	in Ha M	otoring Cor	Colo No.	1017 1
Desire	d Probe/STI	Temperati	ure 140	°C D.	etering Cor		72557
Desire	d Sampling	Rate Z				er Correction	n (Y) <u>0,977</u>
Desire	d Sample V			S/IIIII Sa	ampling ira	in Unit No.	
Probe	In-Stack Lor	orume	10		enax iniet i	nermocoupl	e No
Probe	liner Matori	ing		in. ie	emperature	Meter No.	<u>Y-0784</u>
First T			1-117	Ie	emperature	Controller N	10. <u>VC-1</u>
Secon	d Topay Tuber		-113	I e	emperature	Meter No	Y-0783
Look C	book from	De No. <u> </u>	1-104	He	eated SIL L	ength	<u> 60 </u>
Boforo		-robe iniet:	·	SI	L Lubing N	laterial	Tetlon
After	Sampling _	0,00	_ In. Hg chai	nge at 🗾 差	<u>73</u> in	. Hg vacuur	n for <u>60</u> sec.
Alter	Sampling _	0,00	In. Hg chai	nge at	<u>73</u> in	. Hg vacuur	n for <u>60</u> sec.
	neck from \	valve at Inl	et to First C	ondenser:			
Detore	Sampling _	0.00	In. Hg char	nge at	<u>23</u> in	. Hg vacuun	n for <u>60</u> sec.
After	Sampling _	0,00	<u>in. Hg char</u>	nge at 🔜	<u>55/in</u>	. Hg vacuur	n for <u>60</u> sec.
Notes	on Spiking:						
	DGM	DGM	Prohe/STI	1 et Tubo	Dump	[
Time,	Reading	Temp	Tomp		Pump	Rotameter	
24-Hr	litere	°C	°C		vacuum,	Setting	Remarks
1010			C	Temp., °C	in. Hg		
0770	0,000	24	141	15	3.5	150	Process feeding RAP.
0720	13.02	24	141		3.5	150	Conclusione collection
0122	18.005	Stoppy.	simpling -	No Leek C	beck		nigher than before
0758	18,005	26	.141	15	3.0	150	Process stapped
0008	33.08	37	141	13	3.0	150	feeding RAP
0818	48.18	27	141	12	3.0	150	Plant Feeding ROP
0828	63,20	127-26	141	12	3.0	150	again, Started???
0838	18,15	27	142		3.5	150	
0848	93,28	28	142	10	3.5	150	
0858	108.38	29	143	11	3.5	150	
0908	123.40	29	143	11	3,5	150	
0918	138.65	78	143	11	3.5	150	
0928	153.47	29	143	11	3.0	150	
0938	168.58	29	143	<i>i</i> 1	3.5	150	
0943	183,60	29	141	11	3,5	150	
0951	187.553	Stopped	Sempline				
		19					
				- 			
				<u></u>			

Sample Concentrating Procedures for Gas Phase FTIR Analysis

Midwest Research Institute

Version 3

December 23, 1997

1.0 Introduction

This method describes a procedure for collection of volatile organic compounds onto a sorbent material (Tenax), storage of samples (if necessary), thermal desorption of captured volatile compounds from the sorbent material into a multi-pass White cell, and analysis of the gases by FTIR. This method is intended to complement sampling and analysis of pollutant gas streams by EPA Method 320 (FTIR) by providing one mechanism by which, under certain circumstances, greater detection limits can be achieved. The sorbent collection and desorption aspects of this method are based largely upon field and laboratory work performed by Entropy Environmentalists, Inc. (Entropy), laboratory work performed by Midwest Research Institute (MRI), and EPA-approved Tenax-based procedures for stack sampling, such as the Volatile Organic Sampling Train (VOST), SW-846, Method 0030, which is widely used for collection of volatile organic compounds with analysis by GC/MS.

Previous work has been done using Tenax concentrating systems for FTIR analysis by Entropy (1993, 1994) and MRI (1993, 1994), but has not been published. Entropy's work involved validation of certain equipment and procedures based on Method 301, and ultimately the procedures were used for collection of field samples. MRI's work involved laboratory validations of certain equipment and procedures in an effort to duplicate, and potentially improve upon, the techniques developed by Entropy, and was never used to collect field samples. The procedures described in this document represent a hybrid of Entropy's and MRI's collective experiences and also the availability of MRI equipment currently available to collect and analyze samples.

2.0 Sample Collection

A concentrated sample is collected by drawing source gases through a sampling train equipped with one or more Tenax cartridges under controlled conditions. This method uses an oversized (10 g) Tenax trap in order to concentrate a large gas volume while protecting against breakthrough. A second trap may also be placed in-line to provide additional protection against breakthrough, as necessary.

Components of the concentrative FTIR sampling train include a heated stainless steel probe with a glass liner, heated filter and glass filter holder (optional), heated teflon

connecting line, a water-cooled glass condenser, nickel adsorbant trap, empty catch flask or impinger for water removal, a second water-cooled glass condenser (optional), a second nickel adsorbant trap (optional), a silica gel drying tube, a calibrated rotometer, a sampling pump, and a dry gas meter. An untreated glass wool plug may also be included at the probe tip as an optional particulate removal method. Treated, or silanized, glass wool should not be used with this sampling system as it has been shown to introduce contamination. All heated components will be kept at a temperature of 120 C or greater to ensure no condensation of water vapor within the system.

The Tenax cartridge design is based largely on the inside-outside VOST configuration from SW-846, Method 0030, without using the outer metal carrier tube. Cartridges will be made of 1" diameter nickel tubing and will be filled with about 10 grams of Tenax TA adsorbant material. Nickel was chosen as the construction material due to its low reactivity and high thermal conductivity. It is believed that glass may have poor heat transfer for a tube of this size, limiting both sample collection and desorption functions, and that stainless steel is considered reactive, and may adsorb trace volatile organics which may be present in the gas stream. Both ends of the tube will be plugged with a 1" diameter screen held in place by a C-clip. Approximately 1" on either end of the tubing will be polished to allow leak-free connection with the end cap o-ring. Cartridges will be individually marked for clear identification and direction of sample flow.

Previous field work with this method by Entropy has demontrated effective sample collection and retention by using a stainless steel U-shaped tube (which was immersed in an ice bath). MRI's straight nickel tube design, which has undergone laboratory validation, is expected to provide even better performance due to reduced chemical reactivity and improved moisture removal. "Drying" of the tube prior to thermal desorption and analysis is discussed further in Section 5.0.

Prior to use in the field, the packed tube will be heated to 350 F while being purged with dry nitrogen (typically 1-2 LPM) for up to 18 hours. Cleanliness may be verified by laboratory FID (pass/fail criteria for THC of <5 ppb), laboratory FTIR, and/or field FTIR, whichever is most appropriate for the necessary application. Note that FTIR checks for cleanliness may allow identification of specific contaminants.

Spiking with a surrogate gas is suggested as a measure of effectiveness of the sampling system and of the desorption/recovery procedures. To be the most representative, spiking should be performed on-line (during normal sample collection) with spike gases passing through the entire Tenax concentrating system, including the probe, if possible. If spiking in this manner is not practical, other types of surrogate and QA spiking should be considered. Section 4.1 of this method describes surrogate spiking procedures in greater detail.

For concentration of the sample gases, one trap or (optionally) two traps will be placed in-line in a sampling train. Inclusion of the second trap allows determination of breakthrough, if any, to be determined. The train is equipped with glass water-cooled condensers and has fittings specifically built to allow connection of the 1" diameter concentrative FTIR Tenax cartridges. A catch flask will be connected at the lower end of the first trap for collection of moisture, but will not be analyzed by FTIR. If necessary, this condensate can be archived and analyzed by purge and trap GC/MS.

Cooling water flow will be maintained through the condensers in order to collect sample gases at the appropriate temperatures. Of primary importance is the temperature at the base of the first condenser (inlet to the first Tenax trap), which must be maintained at 20 C or lower. The condensers will be sized large enough to maintain <20 C temperatures at the desired gas sampling rates.

Sample gas flow will be maintained at 1-5 LPM for the duration of the test, and will depend upon the specific needs of the site being tested. Nominal flow will be set by a calibrated rotometer mounted on the sampling apparatus console, and the exact volume drawn through the collection train will be measured by a dry gas meter. An approximate concentration factor can be calculated by dividing the dry gas meter volume by the FTIR cell volume (nominally 7.0 liters). Thus, sample collection at 1.5 LPM for 4 hrs (240 minutes) produces approximately 360 liters of sample. Dividing 360 by 7 results in a concentration factor of 51. Operating flowrates and breakthrough volumes for this method have not been extensively researched, but in general one can expect concentration factor of about 57) have been demonstrated in the laboratory for certain compounds.

Since sample collection could potentially involve a time period of up to several hours, the silica gel cartridge should be periodically checked for saturation. Saturation of the silica gel cartridge is apparent when the silica gel begins to turn pink. If necessary, the sampling apparatus can be shut down temporarily to replace the silica gel cartridge. Removal of all water from the gas stream is essential to accurately measuring the dry gas volume of the sample.

Sample train configuration is as shown in Figure 1.

3.0 Sample Storage

Following collection of the sample, sealed end caps will be placed on both ends of the cartridge and the cartridge will be kept on ice in a contaminant-free container. The intention of the method is to store samples only temporarily until analysis can be performed by thermal desorption into the FTIR gas cell. Such analysis will, in all likelihood, be performed in the field within a few hours of sample collection. Sample storage procedures of this method, however, are identical to those of SW-846, Method 0030, which specifies a holding time of 14 days prior to analysis.

4.0 QA/QC Spiking and Blanks

In an effort to somewhat duplicate the QA/QC procedures frequently associated with other methods of sorbent tube sampling, the use of surrogate spikes and analysis of blank traps is included in this method. Application of these procedures, however, must be dictated by the practical aspects of field sampling conditions and the analytical matrix of the actual gas samples. Thus, the following QA/QC procedures should be considered only as guidelines and subject to modification under field conditions.

4.1 Surrogate Spiking

During collection of the actual field samples, traps will be simultaneously spiked with an appropriate, non-native surrogate compound which is both effectively retained by Tenax and which displays a distinct, identifiable infrared absorbance spectrum. Spiking with such surrogates will demonstrate that losses are not occurring due to the sampling equipment itself, and will also verify effective retention and recovery by the Tenax sorbent bed. Since it may be difficult to choose *a priori* a compound or compounds which are non-native, the operator may wish to examine the use of deuterated species for use as surrogates. Deuterated species which are commonly used with Tenax-based analytical systems and which are expected to display useful infrared spectral features include:

Chlorobenzene-d5 1,4-Dichlorobenzene-d4 1,2-Dichlorobenzene-d4 Dichloroethane-d4 Toluene-d8

Non-deuterated species which are also commonly used for other Tenax-based analysis also include:

1,4-Difluorobenzene 4-Bromofluorobenzene Dibromofluoromethane Pentafluorobenzene Fluorobenzene

If possible, the surrogate compound(s) will be purchased as a compressed cylinder gas in nitrogen. Concentrations will be chosen as necessary to establish the necessary spiking level. Some consideration should be given to choosing the gas concentration, since this gas will be used to (1) perform the surrogate spike onto the Tenax trap, and (2) directly fill the FTIR gas cell to generate a reference spectrum for analysis of the surrogate recovery. Gas concentrations should approximate the levels expected in the trap after sample collection (i.e. 20x, 50x, etc., the source gas concentration). Note that two or more gas cylinders at different concentrations may be necessary to generate proper spiking levels in the concentrated trap and direct to the gas cell (for reference spectrum).

On-line surrogate spiking procedure with compressed gases involves first connecting the compressed gas cylinder to a calibrated flowmeter and then connecting to a tee on the back of the sampling probe. During the time of operation for the sampling train (1-hr or more), surrogate gas is metered directly into the back of the sampling probe and drawn through the sampling train along with actual source gases. An accurate record of the surrogate gas flowrate and exact length of time for the spike must be kept, allowing the measured volume of the spike to be calculated. The measured volume of surrogate gas should ideally be such that the amount collected by the Tenax trap, and thus the expected cell concentration as determined by FTIR, is fairly close to the concentrations of the compressed gas standard (which directly fills the FTIR gas cell to generate the recovery reference spectrum).

In situations where the practical constraints of field sampling will not allow on-line surrogate sampling to be performed, a post-test laboratory spiking procedure may be useful. To perform this type of surrogate spike, connect the compressed gas cylinder to a calibrated rotometer, and then connect directly to the concentrative FTIR Tenax trap. The trap must be aligned in the same direction as sample collection was performed, so that surrogate gas will flow in a cocurrent direction. The trap will be kept cold (<20 C) as per normal sample collection, and a measured volume of surrogate gas will be allowed to flow through the trap. Again, the measured volume of surrogate gas should ideally be such that the amount collected by the Tenax trap, and thus the expected cell concentration as determined by FTIR, is fairly close to the concentrations of the compressed gas standard (which directly fills the FTIR gas cell to generate the recovery reference spectrum).

A third option for surrogate spiking is also of use, especially in cases where the surrogate compounds of interest not available in gas cylinders at the necessary concentrations. In these cases, spiking can be performed by using a gastight syringe and neat or mixed chemical solutions. Calculations must be performed to determine the liquid volume needed to achieve the desired spiking level onto the trap and/or into the FTIR gas cell. Using a heated injection port (120 C) to assure full vaporization of the liquid, the measured syringe volume is injected into a flowing dry nitrogen stream (0.5 LPM). For spiking onto the trap, nitrogen flow will be maintained at 0.5 LPM for 10 minutes to assure full transfer of the spike to the Tenax bed. For injection of the standard directly into the evacuated cell, dry nitrogen will be used to backfill the FTIR gas cell until atmospheric pressure is achieved. Note that this method of spiking may introduce a greater amount of imprecision in the spike and recovery determinations than does use of compressed cylinder gases. Use of neat chemicals or chemical solutions for reference spectrum generation will also generally introduce a greater degree of interference from atmospheric water and carbon dioxide bands than does use of compressed cylinder gases, which can be used to thoroughly flush the cell prior to spectral collection.

4.2 Blank Traps

Whenever collecting trace levels of volatile organics on a sorbent material, appropriate blanks must be collected and analyzed. The exact number and types of blanks necessary will vary based upon field conditions, but the following should be considered.

Train or Baseline Blank - In order to demonstrate cleanliness of the sampling equipment itself, install a sorbent tube in the sampling system, connect the probe, and sample approximately 100 L of clean air or dry nitrogen. Desorb the tube using normal procedures and analyze the sample by FTIR to verify that the sampling system is clean. Perform this procedure when the train is initially used at a new sampling location.

Upwind or Ambient Air Blank - To allow for correction for upwind or ambient air contamination, install a sorbent tube in the sampling system, connect the probe, and sample approximately 100 L of ambient air. Desorb the tube using normal procedures and analyze by FTIR. Perform this procedure as necessary to determine upwind or ambient air contamination, or to demonstrate cleanliness.

Field Blank - To determine any contamination which may occur during installation, leak checking, and temporary storage of Tenax traps, collect a field blank sample by taking the trap to the appropriate sampling location and removing the end caps from the Tenax trap for a length of time simulating installation of two traps into the sampling apparatus. Replace the end caps and place the samples in temporary storage (if used). Desorb the tube using normal procedures and analyze by FTIR.

Trip Blank - For samples which will be stored prior to analysis, a blank trap will be kept in each individual container used for sample storage and analyzed for background contamination. These samples will be treated like any other cartridge except that the end caps will not be removed during storage at the site. Note that for many applications of the concentrative FTIR method, samples will be stored for approximately 4-hrs or less and will be analyzed in the field, eliminating the need for trip blanks.

5.0 Thermal Desorption

The thermal desorption procedure involves connecting the Tenax trap to an evacuated FTIR gas cell, heating the trap to the appropriate temperature, and flushing the heated trap with dry nitrogen directly into the evacuated gas cell until full cell pressure is obtained. Analysis can then be performed by FTIR. The following paragraphs provide greater details for the thermal desorption procedure.

Thermocouple placement and temperature control for the thermal desorber have been established in previous experiments. Since the concentrative FTIR cartridge is much larger than traditional Tenax-based sampling cartridges, heat wraps, insulation, and thermocouples may have localized effects. Such effects may ultimately cause degradation of the Tenax and/or poor recovery of the sample.

Similarly, MRI lab personnel have observed thermal degradation of Tenax at 250 C, which, although specified by SW-846, Method 0030 (VOST), potentially leads to poor sample retention and recovery. MRI analysts routinely use thermal desorption temperatures of 200 C for normal VOST analysis without sample loss, and in 1993-94 MRI demonstrated quantitative recovery of the concentrated samples at a thermal desorption temperature of 220 C. Although not physically measured with a thermocouple, it was believed that a shell temperature of 220 C would assure a 200 C temperature at the core of the larger 10-g cartridge.

In order to limit interferences from water in the infrared spectrum, traps will be "dried" prior to analysis. This will be accomplished by maintaining the trap at a cold temperature and purging it with dry nitrogen for 8-10 minutes. Nitrogen flow is expected to be about 2.5 LPM, and will be co-current with the direction of sample flow. Water purged from the trap in this manner will not be retained as part of the condensate fraction. Note that for ambient air or low moisture sources, this "drying" phase may not be necessary. The amount of water present with MRI's straight tube design is expected to be significantly less than the amount present with Entropy's previous U-tube design, since any water drawn through the trap will drop out directly into a catch flask.

Thermal desorption of the traps will be accomplished by using an insulated tubular heater monitored by thermocouples at two locations. The trap will be placed in the heater with flow aligned countercurrent to the sampling flow direction. The upstream end of the trap will be connected to a mass flowmeter or similar precision device and connected to a gas stream of prepurified dry nitrogen. The downstream end of the trap will be connected to the inlet of the FTIR gas cell. Prior to desorption of the trap, the FTIR gas cell will be thoroughly purged with dry nitrogen and evacuated.

Upon initiating the heating cycle (ramp up), nitrogen flow will be maintained through the trap at 0.10 LPM. This flow is necessary to insure heating in the absence of oxygen, which could otherwise contribute to thermal degradation of the Tenax. Upon reaching full temperature (220 C), nitrogen flow will be raised to 0.45 LPM. Flow will then be maintained at 0.45 LPM until full cell pressure is achieved (nominally 760 mm Hg). Typical times for desorption should be approximately 5 minutes for the ramp up cycle and 12-15 minutes for desorption at 0.45 LPM. Previous work performed by MRI demonstrated that complete desorption occurred will before the 15 minute desorption cycle was finished.

Since the sample concentration methods described in this document are intended to provide samples for field analysis, used Tenax traps will not necessarily be returned to the laboratory for analysis and cleanup before reuse. Thus, to clearly demonstrate thorough desorption of the samples, and that individual traps may be returned to use, it is necessary to perform a second thermal desorption and analysis of each trap. Desorption and analysis procedures for the second desorption are identical to those followed for the first desorption. Following the second desorption and verification of trap cleanliness, the trap is again ready to collect field samples. Should the trap show contamination, additional desorptions will be performed as necessary to clean the trap and/or the trap will be removed from service.

Figure 2 shows the equipment configuration for thermal desorption.

6.0 Analysis by FTIR

Sample analysis will follow EPA Method 320, Measurement of Vapor Phase Organic and Inorganic Emissions by Extractive FTIR. Due to the thermal desorption mechanism by which sample is introduced into the gas cell, "Batch" mode must be used to collect the sample spectrum.

7.0 References

- 1. Entropy Environmentalists, Inc., 1993-1994.
- 2. Midwest Research Institute, 1993-1994.
- 3. SW-846, Method 0030, Volatile Organic Sampling Train (VOST), September 1986.

Figure 1. Sample Concentrating System

Figure 2. Thermal Desorber System

Run No	. NA	Date 0	7-20-98	S	ample Type	* Trai-	RIDEN				
Project	No. 470	1,08,03	.04	C	Client USEPA-EmC.						
Barom	etric Pressur	e 29.	3 <i>3</i> i	in. Ha S	ampling Loc	ation 3					
Barom	eter to Loca	tion Elevat	ion - 20	ft. C	nerator .	Surphis	<u>ົ</u>				
Correc	ted Baro. Pr	essure	29.31	n Ha M	letering Cor	sole No	Vacr 1				
Desired	d Probe/STL	Temperati	Ire NA	°C D	ry Gas Met	ar Correction	VI A GAI				
Desired	d Sampling I	Rate /	5 Liter	s/minS	ampling Tra	in Unit No					
Desired	sample Vo	olume	90	Liters T	enav inlet T	hermocoupl	ONO 5				
Probe	n-Stack Ler	ath J	NA	in T	emperature	Meter No	V-0787				
Probe I	Liner Materi	al /	VA	п. т т	emperature	Controller N	- PC PS				
First Te	enax Tube N	lo. S	U 101	· T	emperature	Meter No	N/A				
Second	d Tenax Tub	e No.	Biank	н	eated STL I	enath	A	in			
Leak C	heck from F	robe Inlet:		S	Tl Tubing N	Aaterial A	'A				
Before	Sampling	NA	in. Ha char	nge at	in in		o for				
After	Sampling	NA	in. Ho char	nge at		Ha vacuun	n for	_ Sec.			
Leak C	heck from V	alve at Inl	et to First C	ondenser	111	. ng vacuun		_sec.			
Before	Sampling	0	in. Ha char	nde at	23 in	На узоние	for ho	000			
After	Sampling	0	in. Ha char	nde at	4,2 in	Ha vacuun	for ΔD	_ sec.			
Notos	on Sniking			<u>igo ar</u>	111	. ng vacuun		<u>_ sec.</u>			
Notes	on spiking.										
			r	······			······				
Time.	DGM	DGM~	Probe/STL	1st Tube	Pump	Botameter					
24-Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Sotting	Remarks				
	Liters	°C	°C	Temp.,°C	in. Hg	Setting					
1646	0.000	32	NA	21	2	140					
1656	15.12	32	NA	21	3	140					
1706	130.18	32	NA	21	3	140					
1716	1646.05	32	NA	17	4	150					
1726	62.46	32	NA	17	4	150					
1736	78,04	33	NA	18	4	150					
1746	93-240	- 10 M		1931	end						
						1					
						†					

Run No Project Barome Barome Correc Desired Desired Probe I First Te Second Leak C Before After	b. <u>N/A</u> t No. <u>4</u> etric Pressur eter to Loca ted Baro. Pr d Probe/STL d Sampling d Sample Vo ln-Stack Ler Liner Materi enax Tube N d Tenax Tub heck from F Sampling Sampling	Date reZ tion Elevat ressure Temperat Rate plume ngth ngth al pe No probe Inlet: N/A N/A	$\frac{1}{21/98}$ $\frac{1}{23} \frac{1}{04}$ $\frac{1}{1} \frac{1}{1} $	Sa Cli in. Hg Sa ft. Op in. Hg Ma °C Dr s/min Sa Liters Te in. Te Te Te Te Te ST nge at	ample Type ient ampling Loc perator etering Cor y Gas Mete ampling Tra mperature amperature ated STL L L Tubing N in	* <u>Traw</u> US <u>EPP</u> ation <u>EOWA</u> asole No. <u>FOWA</u> asole No. <u>FOWA</u> asole No. <u>FOWA</u> or Correction in Unit No. <u>FOWA</u> beter No. <u>Controller No.</u> Meter No. <u>FOWA</u> Aterial <u>FOWA</u>	B/a, 1 - E 1 (Y) ⇒ No. 	NK MC TRDICER VOST-3 0.97 4 V-4 Y-4 Y-4 Y-4 X-4 N/A N/A N/A N/A	8 in. sec.
Leak C	heck from \	/alve at Inl	et to First C	ondenser:		. ng vacuun	1101		_ sec.
Before	Sampling	<u>0, ()</u>	in. Hg char	nge at <u>2</u>	<u>20, 0</u> in	. Hg vacuum	for _	60	sec.
After	Sampling _	0,0	_ in. Hg chai	nge at	<u>4.0 </u>	. Hg vacuum	n for		_sec.
Notes	on Spiking:	DOM	Due la COTL	4		······			
Time, 24-Hr	Reading, Liters	Temp., °C	Temp., °C	Ist Tube Inlet Temp.,°C	Vacuum, in. Hg	Rotameter Setting		Remarks	
1558 1608 1618	0.00 15,20 29,91	21 22 23 23	N/A N/A N/A	14 12 12 12	2 ,0 2.0 2.0	125 +15-RHE 115	112	(1/21/48, Mi rading).	is-mai kew
1638	59 98 75.01 90.33	24	N/4 N/4 N/14	12	2.0	115			
					2.0				

Run No	. frelim	Date	7/22/98	5	Sample T	vne	* TRAIN	R.	ANK	
Project	No.	4101-0	8-03-00	4	Client	ype	US EPA	- FI	nR	
Barome	etric Pressur	·e 29	. 34	in. Ha	Sampling		ation (A	nolus"	TOAJED	
Barome	eter to Loca	tion Elevat	ion O	ft.	Operator	200	FJ	word	/ CHILFR	
Correct	ed Baro. Pr	essure	29.34 j	in. Ha	Meterina	Con	sole No.	Ve	257 3	
Desired	I Probe/STL	Temperatu	ire 🧹	°Č	Drv Gas I	Mete	r Correction	(Y)	G 919	2
Desired	l Sampling I	Rate /	5 Liter	s/min	Sampling	Trai	n Unit No		$-\eta'$	<u> </u>
Desired	l Sample Vo	lume	90	Liters	Tenax Int	et T	hermocount		V-17	
Probe I	n-Stack Len	ath	NIA	in	Temperat	ture	Mater No	5 NO	V-3018	
Probe L	iner Materia	al	N/4		Temperat	tura	Controller N	0	1-3413	
First Te	enax Tube N	Jo. SV	-101		Temperat	ture	Meter No	0	<u> </u>	·
Second	l Tenax Tub	e No	BLANK	••••••••••	Heated S	TII	enath	11	<u>~~//+</u>	in
Leak Cl	heck from F	Prohe Inlet			STI Tubi	na M	latorial	~~/	1/1	111.
Before	Sampling	N/D	in Ha cha	nae at		ing in			-/H	
After	Sampling _	N/A	in. Hg chai in Hg chai	nge at _		111 in		for		_ sec.
Look Cl	back from \	/alvo at Inl	the First C	hye at		111	пу масции	1 10r _		_ sec.
Boforo	Sampling		in Ug obor		10 -	:		e	10	
Aftor	Sampling _	0.0	in. ⊓g char	ige at _	11.5	_ 1/1.	Hg vacuum	tor _		_sec.
Aitei	Sampling_			nge at _	9.0		. Hg vacuum	i tor _		<u>_ sec.</u>
Notes	on Spiking:									
	DGM	DGM	Probe/STL	1st Tul	be Pum	ar				
lime,	Reading,	Temp.,	Temp.,	Inlet	Vacu	um,	Rotameter		Remarks	
24-Hr	Liters	°C	°C	Temp.	°C in F	la í	Setting			
100U	0.00	24	A174	20	2 2 0		110			
1011	11 91	- <u>~</u> }	AID	20	210	• ;	1/8			
1024	20 20	26	N/H AI/D	19	2.0	<u>/</u>	120			
1024	30.20	26	NIA	10	$-\frac{2}{3}$	<u>,</u>	12.0			
10 34	42,24	20	10/14 14 1 / D	10						
ideu	80.20	20	ALLA		2	<u>0</u> 7		-		
11057	10129	20	N/IT	16		<u> </u>	-// 1			
μφч_	40,48	61	NIA	15	<u> </u>	0				
				<u> </u>						
				ļ						
				<u> </u>						
			l							
	Press/101111.0.0.0									
	·····									
e

Run No. <u>Prehm</u> Project No. <u>470</u> Barometric Pressu Barometer to Loca Corrected Baro. Pr Desired Probe/STL Desired Sampling Desired Sample Vo Probe In-Stack Ler Probe Liner Materi First Tenax Tube N Second Tenax Tube Leak Check from N Before Sampling Leak Check from N Before Sampling After Sampling	Date re tion Elevat essure Temperat Rate Dume al pe No Probe Inlet: W/μ /alve at Inl O, O $O_1(C)$	$\frac{7/22/9}{23 - C/4}$ $\frac{23 - C/4}{23 - C/4}$ $\frac{23 - C/4}{23 - C/4}$ $\frac{29 - 34}{24}$ $\frac{9}{24}$ $\frac{9}{24}$ $\frac{1}{24}$	E Sa in. Hg Sa in. Hg Sa ft. Op in. Hg Ma °C Dr rs/min Sa °C Dr rs/min Sa °C Dr rs/min Sa °C Te Te Q Te ondenser: ST nge at ondenser: nge at	ample Type ient operator etering Con y Gas Meter impling Tra mperature imperature mperature ated STL L L Tubing N in in in. <u>9.5</u> in.	* <u>Upwing</u> sation <u>Up</u> sole No. <u>-</u> er Correction in Unit No. <u>-</u> hermocouple Meter No. <u>-</u> Controller N Meter No. <u>-</u> ength <u>-</u> laterial <u>-</u> . Hg vacuum . Hg vacuum	$\frac{1}{2} \frac{TRAIN}{RAIN}$ $\frac{EMB}{VOST}$ $\frac{VOST}{VOST}$ $\frac{VOST}{VOST}$ $\frac{V-39}{R}$ $\frac{V}{R}$ $\frac{N}{R}$	Blank TunnclEntranc 3 7 7 in. sec. sec. sec.
Notes on Spiking:				<u> </u>	. ng vacuun		sec.
Time, 24-Hr 1225 1225 1225 1235 1245 1245 1245 1245 129,92 1255 13,05 12,07 13,05 12,07 13,05 12,12 13,05 12,12 13,05 12,12 13,05 12,12 13,05 12,15	DGM ⁻ Temp., °C <u>30</u> 32 34 35 36 37 37	Probe/STL Temp., °C <i>N/A</i> <i>N/A</i> <i>N/A</i> <i>N/A</i> <i>N/A</i> <i>N/A</i> <i>N/A</i>	1st Tube Inlet Temp.,°C <i>EC</i> 18 19 19 18 19 18 19	Pump Vacuum, in. Hg 2,0 2,0 2,0 2,0 2,0 2,0 2,0 2,0	Rotameter Setting 120 120 120 119 119 119 119 119 119	Remark	<s< td=""></s<>

Run No	/	_ Date	07-21-98		Sample Type	* JOUTLE	<			
Project	No. 470	1,08,03.	.04	(Client USE	PA-EM	6			
Barome	etric Pressur	e <u>29</u>	, <u>37</u> i	n.Hg S	Sampling Loc	ation 3				
Barome	eter to Loca	tion Elevat	ion -20	ft. (Operator J	, Surmer	1			
Correct	ted Baro. Pr	essure 🚅	79.35	n. Hg N	Vetering Cor	isole No. V	OSTI			
Desired	d Probe/STL	Temperatu	ure 140	°Č [Drv Gas Mete	er Correction	(Y) 0.971			
Desired	d Sampling I	Rate /	S Liter	s/min S	Sampling Tra	in Unit No				
Desired	d Sample Vo	lume	360	Liters 7	Fenax Inlet T	hermocoupl	a No 5			
Probe I	n-Stack Len	ath	20	in. 7	Cemperature	Meter No	V-0787			
Probe I	_iner Materia	al <i>612</i>	کک	 T	Cemperature	Controller N	0 B(-3			
First Te	enax Tube N	lo. 51	-102	7	Temperature	Meter No	Y-0783			
Second	d Tenax Tub	e No. Ju	1-101	F	leated STL I	enath	60	in		
Leak C	heck from F	robe Inlet:			STL Tubina N	Aaterial 7	Flon	<u> </u>		
Before	Sampling _	0,00	in. Ha char	nge at	2 3 in	. Ha vacuun	n for 60	Sec		
After	Sampling _	0,00	in. Hq char	nge at	23 in	. Ha vacuun	n for 60	300. Sec		
Leak C	heck from V	alve at Inle	et to First C	ondenser		, ing radaan		500.		
Before Sampling in. Hg change at in. Hg vacuum for kl2 sec										
After	Sampling	0,00	in. Ha char	nde at	<i>4.9</i> in	Ha vacuun	n for la O	500.		
Notes	on Spiking:			. <u>90 ut</u>		. ng vaoaan		360.		
Notes	on opiking.									
				r						
Time,	DGM	DGM	Probe/STL	1st Tub	e Pump	Botameter				
24-Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Setting	Remarks			
	Liters	°C	°C	Temp.,°	C in. Hg	ocering				
1121	0.000	4/	140	21	3	150				
1131	15,05	41	140	20	3	150				
1191	29.96	39	140	19	3	150		1		
1151	44,90	41	140	19	3	150				
1201	59.96	45	140	19	3	150				
1211	75,05	42	140	17	3	150				
1221	90.01	43	140	18	3	150				
1231	105,08	44	140	18	3	150				
1241	119.98	43	140	19	3	150				
1251	135.05	42	140	20	3	150				
1301	150,08	4D	140	19	3	150				
1311	165.11	40	140	19	3	150	-	1		
1321	180,04	42	140	20	3	150				
1331	194.94	41	140	19	3	150				
1341	210,05	40	141	18	3	150		t		
1351	225,12	39	141	17	3	150				
1401	240,14	39	141	18	3	150		1		
1411	255,09	38	141	18	3	150	SAUTDONN			
1421	268.600						- 1420:30			
· · · ·							Piznt down			
·										
· ·										

	Run No		_ Date _	7-22-98	sa Sa	imple Type	* 50076	c	
	Project	No. 470.	1.08.03,	04	Cli	ient US	EPA-Eme	2	
	Barome	etric Pressu	re 29.3	3	n. Hg Sa	mpling Loc	ation 3		
	Barome	eter to Loca	tion Elevat	ion 20	ft. Or	perator 🖌	Surman		
	Correc	ted Baro. Pr	essure 📴	29.31	n.Hg Me	eterina Cor	nsole No.	IDST1	
	Desired	d Probe/STL	Temperatu	ure 140	°Č Dr	v Gas Mete	er Correction	n (Y) 1,971	
	Desired	Sampling	Rate 💋 🏒	S Liter	s/min Sa	moling Tra	in Unit No		
	Desired	l Sample Vo	olume	270	Liters Te	nax Inlet T	hermocount	a No 5	
	Probe I	n-Stack Ler	nath	20	in. Te	mperature	Meter No	Y- 0783	
	Probe l	_iner Materi	al G.	1755	111 Te	mperature	Controller N	10 B1-3	
	First Te	enax Tube N	lo. 50	1-106	Te	mperature	Meter No	V-D787	•
	Second	l Tenax Tub	e No. 51	1-105	He	ated STL I	ength	60	
	Leak C	heck from F	robe Inlet:		ST	l Tubina N	Aaterial ~	TADO	111.
	Before	Sampling	0.00	in. Ha char	nge at 🧳	23 in		n for <i>LP</i>	
	After	Sampling	Vot A Pigg	in. Ha char	nge at	7.3 in	Ha vacuun	n for $\angle O$	
	Leak C	heck from	/alve at Inle	et to First C	ondenser:		. ng vacaan		ec.
	Before	Sampling J	O, DD	in Harchar	nde at	11a in		a for in	~ ~
	After	Sampling	Nor deico	in. Hg char		4.7 in		1101 <u>60</u> s	ec.
I	Notos	Calling (<u>ni, ng cha</u>			. ng vacuun	n tor <u> </u>	ec.
	Notes	on Spiking:							
	Timo	DGM	DGM~	Probe/STL	1st Tube	Pump			
	24-Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Rotameter	Remarks	
	2.4-11	Liters	°C	°C	Temp.,°C	in. Hg	Setting		
	0935	0.000	30	140	18	3	150		
	0945	14,95	31	1412	15	73	150		
	0955	30.02	33	140	14	.3	150		
	1005	44.94	35	140	14	3	150		
	1015	60.05	36	140	121	3	150		
	1025	25:10	37	140	14	3	150		
	1035	90.12	37	140	14	3	150		
N	1045	105.00	37	140	14	3	150		
- Ch	1055	120.03	37	140	14	2	450		-
1200	1105	127.740	<i></i>	110			,000	Shurdown about	
~/~	1125	112.760	36	140	20	3	150	1200. Norserser	.
	1135	142.52	30	140	18	1	150	that (Airst) N2.	rection
	1146	157.43	29	140	17	7	150	inter discounce	re reconcil
	1155	172.40	38	141	14	3	100	Larother of it	a) to tee !
	1205	197.28	78	1110	10	7	130 1	125 100 100	d is the
	1215	202.41	20	170	13	2	130 /	Did not 12-5hours	m2 , 1155
	1000	21717	27	171	15	2	150	leet chartestest	formes
	1200	73730	20	171	10	2	150	he ok brokes	tice .
N.	10.33	722 11	Jo Stand	171	ele	<u></u>	130	in a nin anning	Travior
12.00	1072	~20,11	Sivjeca	scongling	o			than 5 Pice	n B Č
.								Loma Ling Ling	-
					······································			This ing	
					. <u> </u>		·····	10 10 100	
								15	
						· ·	f		

*Ambient air, train blank, preliminary, duplicate train, or source sample.

	in ton	was ar	ourred.					
	n	124/98	TENAX C	ONCENTRA	ATED SAI	MPLE COL		ΔΤΔ
i	Aborto	d Longe	¢ BIC	nhalas	~			
	Run No	D	Date	7/05/70	<u> </u>	ample Type	* <u> </u>	ource SAMple
	Barom	ntric Proces	<u>101 00</u>	03.04	(lient	US EP	4 - EMB AV
	Barom	eter to Loc	ation Flova	tion	n.Hg כ לא ל	ampling Lo	cation <u></u>	adout Duct
	Correct	ted Baro P	ressure		$\frac{1}{10}$ Ha N	perator	<u> </u>	owar cs
	Desired	1 Probe/ST	Temperat			recenng Cor	nsole No	VOST S
	Desired	d Sampling	Rate /	$\frac{1}{15}$ $\frac{1}{110}$	$\underline{\qquad}$ U U	ry Gas Met	er Correction	n(Y) = 0.975
	Desired	i Sampling Sample V	olume	360	litore T	amping re anav lalot T	in Unit No.	
	Probe I	n-Stack Le	nath	18	in T	emperature	Meter No	e No/
	Probe I	_iner Mater	ial	Glass	т. т	emperature	Controllor N	<u>y. Jy/0</u>
	First Te	enax Tube	No. 5	V-104	, T	emperature	Meter No	SVEZ REIZ
	Second	d Tenax Tu	be No. 🗧	51-103	، H	eated STL I	enath	<u> </u>
	Leak C	heck from	Probe Inlet	;	S	TL Tubina N	Material	Tet (an
	Before	Sampling _	0.0	_ in. Hg cha	ange at _	20.0 in	. Hq vacuun	n for 60 can
	After	Sampling _	-0.0	_ in. Hg cha	inge at	20,0 in	. Hq vacuun	n for $\overline{(C)}$ sec
	Leak C	heck from	Valve at In	let to First (Condenser:	,	0	<u> </u>
	Before	Sampling _	<u> </u>	_ in. Hg cha	nge at	<u>18,5</u> in	. Hg vacuum	n for 60 sec
	After	Sampling _	0,0	<u>in. Hg cha</u>	inge at	<u>4,0 </u>	. Hg vacuun	n for 60 sec
036:10	Notes	on Spiking	:					
	.	DGM	DGM	Probe/STI	1st Tube	Pump	1	
	lime,	Reading,	Temp.,	Temp.	Inlet	Vacuum	Rotameter	Pomarka
	24-Hr	Liters	°C	of ee	Temp. °C	in Ha	Setting	nemarks
	0925	0,00	20	107	1/		110	
	0935	14 84	20	107	16	10	122	
	0945	29.95	21	106	12	1.7	122	
	0955	45,10	23	101	15	1.5	110	
	1005	60,06	24	105	15	115	120	
	1015	75.15	25	107	15	1.5	118	
	1025	90.08	25	107	15	15	118	
	1035	104.90	27	10)	14	1.5	120	
]0		106.40						Stop
	1042 10							Start
	104241		EE . 24-91	e la				5-100
	104450		BEI					Start
	104600							stop
		108,24	Fingl Uc,	humn				/
					L			
					Ļ			
1								
~	<u>├</u>				<u> </u>			
1								
i i					ļ			
	. 1		1	1	1	1		
	├ ─ ────							

Run No	b. 1	Date	07-23-9	8 Sa	mple Type	* Source	· ·	
Project	No. 470	1,08,03,0	74	Cli	ent VSE	PA-EM	P.	
Barome	etric Pressu	re <i>29.</i>	33 i	n. Ho Sa	mpling Loc	ation #1	<u></u>	
Barome	eter to Loca	tion Elevat	ion 50	ft. On	erator d	Summar	7	·····
Correc	ted Baro. Pr	essure d	19,28	n Ha Me	etering Con	sole No V	MST1	
Desired	Probe/STL	Temperatu	Ire 140	°C Dr	v Gas Mete	r Correction	(V) A.971	,
Desired	l Sampling	Rate /	5 Liter	0 Di	moling Trai	n Unit No	5	
Desired	d Sample Vo	olume	NA	Liters Te	nav Inlet Ti	n onit No		
Probe I	n-Stack Ler	nath	10	in Te	mnerature	Meter No	Y-0784	
Probe I	iner Materi	al Tel	401	Te	mperature	Controller N	VC-1	····
First Te	enax Tube N	No 51	-108	To	mperature	Motor No	4-1.787	
Second	l Tenax Tub	No 31	1-107	Те Но		opath	10/03	
Leak C	heck from F	Probe Inlet		116 	L Tubing M	latorial "	Tellow	In.
Before	Sampling	0.00	in Halcha				tor ID	
Δfter	Sampling _	0.00	in. Hg chai	nge at	2 III. 3 in		n for <u>CO</u>	sec.
Leak C	beck from \	/alve at Inl	the First C	inge at <u>~</u>	<u> </u>	ng vacuun		sec.
Refore	Sampling	0.00	in Hacker		3 :		ter LD	
Δftor	Sampling _	0.00	in. Hy chai	ige at <u>ac</u>	<u>/</u> in. 7 in	Hg vacuum	for GD	sec.
				iye at		Hg vacuun		
Notes	on Spiking:							
Time	DGM	DGM	Probe/STL	1st Tube	Pump	D		
1 nne,	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Rotameter	- Remark	(S
24-11	Liters	°C	°C	Temp.,°C	in. Ha	Setting		
0949:30	0.000	37	142	16	3	150		
0959:30	15.02	26	142	13	3	150		
1009:30	29.98	24	142	11	3	150		
1018:30	#Stopped	52mpling.	-1.ezk Check	0.00 change	P. 4.8"HA	in 60 see	* 43,520Lit	rers-
1105	1.000	26	143	16	3	150	finalyolom	c
1115	15.12	25	147	14	7	150	reza.	ling
1123	25.900	STROOLD	53-01:-0-	-leals Chall	R. CDIhan	1.047"HA	inter an	
	0.000	Test Sr	wheel	2237-0	concerently		11003021	
		101 50)	U JAN CU					
						· · · · · · · · · · · · · · · · · · ·		
							-	
				<u> </u>				
			<u> </u>					
			ļ <u> </u>					
				ļ				
							1	
				1			ļ	
		-	·		ļ			
		1					1	

	Due M	Londory		nhule	70	-	~		
	Project	No/	Date	107	<u> </u>	Sample Type	*	unce Sample	
	Barom	1004	$\frac{10}{2}$	03.04	(Client	US EPK	1 - EMP3 1	
	Baram			4.00	in. Hg	Sampling Loc	ation	Loadon Port	-BRTED
	Corroo	tod Para Pr		70 2	TT. (Operator	Edu	ards	Name o
	Desire	leu baro. Pr	essure	27.33	in. Hg l	Vietering Con	isole No	VOST 3	Cocashov
	Desire	Probe/SIL	i emperat	ure <u>105</u>	¢ / I	Ory Gas Mete	er Correctior	н (Y) <u> </u>	- Changed
	Desire	a Sampling I		Liter	s/min S	Sampling Tra	in Unit No	7	
	Desnet	n Stock Law	oiume	<u> </u>	Liters	lenax Inlet T	hermocouple	e No/	- per
	Probe I	In-Stack Ler	igtn		in. 	emperature	Meter No	<u> </u>	/£3.
			ai	511 112		l emperature	Controller N	0. <u>545 2 Bo</u>	<u>S X</u>
	Second	Hax Tube P	NO	50 112		lemperature	Meter No	\	2 5/sC Pox
		hook from E	e No		ł	Heated SIL L	ength	144	in. "1/24/98
	Refore	Sampling		in Us show	n an a st		laterial	Tetlon	- In wrong
	Aftor	Sampling _	-20	_ in. Hg chai	nge at	<u></u> in	. Hg vacuun	n for <u>GC</u>	sec. blant
	Anter Look C	back from \	labua at lal	_ In. Hg chai	nge at	in	. Hg vacuun	n for	sec.
	Refore	Sampling	/ aive at im か.の		ondensei				
	Δftpr	Sampling	$O_{i}O_{i}$	in. Hy char	ige at	$\frac{7,0}{10}$ in.	. Hg vacuum	n for <u>60</u>	sec.
					nge at	<u>9,0</u> in	. Hg vacuun	n for <u>60</u>	sec.
1/24/98	Notes	on Spiking:							
Shutstewn		DGM	DGM [*]	Probe/STI	let Tub	o Pump			
with PES.	Time,	Reading.	Temn	Temn		Vacuum	Rotameter	Pomarka	
Lingout	24-Hr	Liters	°C	°C	Temn °	C in Ha	Setting	nemarks	
retlects	0720	0.0	20	INE	<u>, , , , , , , , , , , , , , , , , , , </u>		1200		
Stoppice.	0730	1495	20	100	13	213	100	Pace 1 of 2	
11 J- \	nnun	30.00	21	105	13	20	100		
Ľ	6950	44 90	17.	105	14	2.0	100		
ONSAAR	GACO	5801	Shit	Pla	17	5/01	100		
() 800.28	BAE		Reman	1 Samal	IT ON	2/10/1	0:05 50 19	^	
0.00	0802	60.25	21		19,000	2.17	12.0		
0801:45	COTO	C 1/24AS	Shut	Plan Plan	17	51/21			
0813:45		- 4 //10	Recum	d Sample	AC. do	un 6 min			
0816:38	08:57	\$ 1/24/98	Shutd	num Pla	n I ain	5.10 1			
0876:38		······································	Prom	od Samo	ling de	10 /			
	0878	74,94	24	107	14	2,7	170		
	0838	90.25	24	105	13	2.7	1201		
-	0848	104.90	24	106	13	2,7	17.0		
	0858	120,20	25	105	13	2,7	1201		
	0908	135,20	25	106	13	2.17	12.8		
	0918	150,24	26	108	13	2.7	120		
	0928	165,25	21	105	13	2.7	120		
	0938	180,00	21	105	13	7,5	120	-Down for Porte	change
	1107	194.75	24	106	15	3.0	1200	- Restart at 1	osta
	1117	209,86	, 25	107	15	3,0	122		
	1127	225,15	26	105	15	3.0	121		
	11 37	240,00	21	105	15	3,0	121		
	1147	255,10	28	106	15	3.0	120		
	1157	270,20	29	105	16	3.0	120		
-	1207	284.95	30	106	16	3,0	120		

	T	ENAX CO	NCENTRA	TED SAN	IPLE COLI	ECTION D	ΑΤΑ
—	Loadov	+	7 hube			~	
Run No	0	Date	7/04/10	Sa	mple Type	* <u>Sour</u>	ce SAmple
Project	t No. $\frac{q}{2}$	<u> </u>	3-04	Cli	ent (SEPA	EMB
Barom	etric Pressu	re <u> </u>	<u>JS</u> i	in.Hg Sa	mpling Loc	ation	TED
Barom	eter to Loca	ition Elevat	ion	ft. Op	erator	E	hurds
Correc	ted Baro. Pr	essure	<u>29.35</u> i	in. Hg Me	etering Cor	sole No	VOST 3
Desired	d Probe/STL	. Temperatu	ure	° <i>J</i> F Dr	y Gas Mete	er Correctior	ι (Υ) <u>Ο, 978</u>
Desired	d Sampling	Rate/.	<u>5</u> Liter	ˈs/min Sa	mpling Tra	in Unit No	7
Desired	d Sample Vo	olume <u>3</u>	60	Liters Te	nax Inlet T	hermocoupl	e No
Probe I	In-Stack Ler	igth	18	in. Te	mperature	Meter No	Y-39/8
Probe I	Liner Materi	al <u>6</u> 7	255	Те	mperature	Controller N	10. SUSZBOXZ
First Te	enax Tube N	10. <u>5</u> V	112	Те	mperature	Meter No	Sys 2 Box 2
Second	d Tenax Tub	be No. <u>5</u> 6	<u>/ \((</u>	Не	ated STL L	ength	<u>144</u> in.
Leak C	heck from F	Probe Inlet:		ST	L Tubing N	laterial	Teflan
Before	Sampling _		in. Hg chai	nge at	in	. Hg vacuun	n for sec.
After	Sampling _		in. Hg char	nge at	jp	Hg Vacuun	n for sec.
Leak C	heck from $\$	/alve at Inl	et to First C	ondenser:	NP BE	1-95	
Before	Sampling		in. Hg char	nge at	1'in.	Hg vacuum	n for sec.
After	Sampling		in. Hg char	nge at	in	. Hg vacuun	n for sec.
Notes	on Spikina:						
	1						
	DCM	DONT	De la CTI	4			
Time,		DGIVI		Ist lube	Pump	Rotameter	
24-Hr	Reading,	remp.,	l lemp.,	Inlet	Vacuum,	Setting	Remarks
	Liters	<u></u>		lemp.,°C	in. Hg		
1217	300,01	31	105		30	150	1 2 10
1221	514.92	32	105	17	3.0	120	Tage 20+2
17.31	330,06	32	100	11	3.0	120	J
1241	343.01	33	105	17	3,0	120	
1257	360,01	33	106	17	3.0	120	

*Ambient air, train blank, preliminary, duplicate train, or source sample.

,

Run N	o. Preru	Date (07-24-90	p c	ample Tupe	*		
Project	t No. 470	1,08,03.0	<i>z</i> t	3 	liont 1144	=PA - En	2	
Barom	etric Pressu	re 29.	35	in Ha S	nent <u>034</u>		1	
Barom	eter to Loca	ation Elevat	ion 50	nn ng S f+ ∩		ation	· · · ·	
Correc	ted Baro P		29-20	1. U		U. SUPMO	100-1	
Desire	d Prohe/STI	Temperati	ire 140	и.пу м °С р	etering Cor		001 /	
Desire	d Sampling	Rate Z	S liter	(min C)	ry das mete	er Correction	n (Y) 0,997	
Desired	d Sampling d Sample Vi		A/17	Litoro T	amping ira	in Unit No.	<u> </u>	
Probe	In-Stack Ler	ath	6	in T		nermocoupi		
Probe	l iner Materi	ial 7	ē.f.lom	וו. וי <u> </u>		Controllor No.	7-0-184	
First T	enax Tube I		V-106	10 		Controller N	10. <u>VC-1</u>	
Second	d Tenax Tuk	ne No	5V-105	IC		weter No	<u> </u>	<u> </u>
Leak C	heck from I	Prohe Inlet:	,,,,,,	□	TI Tubing N	.ength	6U T. A1	_ in.
Before	Sampling	0.00	in Halaba	S AGO At		laterial	12tion	
After	Sampling _	D.DD	in. Hy chai	nge at	<u>n</u> 10	. Hg vacuur	n for <u>60</u>	sec.
Leak C	beck from \	Valvo at Inl	_ III. ⊓g chai ot to Eirot C	ige at 🗾 🖉	in	. Hg vacuur	n for <u>60</u>	sec.
Before	Sampling	nne at Im	in Un aba	undenser:	92 .	11		
After	Sampling _	0.00	in Hacher	ige at	4 U II.	. Hg vacuun	n tor <u>60</u>	sec.
And A		0.00		ige at	7,7 in	. Hg vacuur	n for <u>60</u>	sec.
Notes	on Spiking:							
L		Y						
Time	DGM	DGM ⁻	Probe/STL	1st Tube	Pump	-		
21 Ur	Hr Reading, Temp.,		Temp.,	Inlet	Vacuum,	Rotameter	Bemarks	
24-11	Liters	°C	°C	Temp.,°C	in. Ha	Setting	literitarite	
0720	0.000	20	141	15	3	150		
0730	15.05	20	140	13	3	150		
0740	30.12	31	141	12	3	150		
0750	45.18	19	141	11	3	150		
0300	60.24	18	[4]	11	3	150		
0801	61.890	STOOPENS	Zmalina-La	3KCHUK (OUChener e	41,"Hate	lorseco	
08.58	0,000	23	142	15	3	150		
0908	14.96	21	141	13	3	150		
0913;30	22.30	STOPPEN 53	mpling-Le	excheck o	OChante P	3.7"HA For	60341	
0921:30	0.000	23	142	14	3	150		
0931:30	14,95	23	142	12	3	150		
0941:30	30,09	25	143	11	3	150		
0951;30	45,15	25	143	11	.3	150		
1001:30	60.20	26	143	12	3	150		
1011:30	75.25	26	143	12	3	150		
1021:30	90.27	26	143	12	3	150		
1030:00	103,550	STOPPEd S	mpling					
						· · · · · · · · · · · · · · · · · · ·		
					1			
	·····					· · · · ·		
						· · · · · · · · · · · · · · · · · · ·		

Run N	Longbut	- Date	17/25/9	8	· · · · · · · · · · · · ·			
Project	t No	Date		Si	ample lype	* JOUN	<u>ce sample</u>	
Barom	otrio Procou	29	17		lent	US EFA	EMB	
Barom	ettic riessu		<u> </u>	in. Hg Sa	ampling Loc	ation	TED	
Carras	ter to Loca		$\frac{100}{2}$	ft. O	perator	E	dwards	
Desired	leu baro. Pr	essure <u>c</u>	4,33	in. Hg M	etering Cor	nsole No	VOST 3	
Desire	a Probe/SIL	Temperat	ure $\frac{100}{100}$	°PF DI	ry Gas Mete	er Correction	n (Y) <u> </u>	<u>ب</u>
Desired	a Sampling	Rate	Liter	s/min Sa	ampling Tra	in Unit No.	7	
Desired	d Sample Vo	olume	.360	Liters T€	enax Inlet T	hermocoupl	e No. <u>7</u>	
Probel	In-Stack Ler	igth	_18	in. Te	emperature	Meter No	Y-3918	
Probe	Liner Materi	al(ass	Τε	emperature	Controller N	10. JXS Z BO	J X
First 1	enax lube N	10	0-101	Τε	emperature	Meter No	SISZ BO	7 X (
Second	d lenax Tub	e No	50-107	He	eated STL L	ength	144'	in
Leak C	heck from F	robe Inlet:		ST	FL Tubing N	Aaterial	Tation	
Before	Sampling _	$O_{i}O_{j}$	_ in. Hg cha	nge at	20 in	. Hg vacuur	n for 60	sec
After	Sampling _		_ in. Hg chai	nge at	in	. Hg vacuur	n for	_ sec
Leak C	heck from \	alve at Inl	et to First C	ondenser:		0	· · ·	_ 500
Before	Sampling	0.0	in. Hg char	nge at	1 9 in	. Hg vacuun	n for 60	sec
After	Sampling _	0.0	in. Hg chai	nge at	in ل	. Hq vacuun	n for 60	1900 - 192
Notes	on Spiking.							_ 000
	DCM	DOM			<u> </u>	T		
Time,	DGM		Probe/SIL	1st lube	Pump	Rotameter		
24-Hr	Reading,	lemp.,	lemp.,	Inlet	Vacuum,	Setting	Remarks	
	Liters	<u> </u>	°C	Temp.,°C	in. Hg	Jetting		
0710	0,00	20	105	11	2:0	120		
0920	14.88	15	106	16	2.0	122		
0130	29.96	SS	105	15	2.0	122		
0740	44 98	23	100	15	2.0	127.		
0750	60.10	24,	108	15	2.0	12.2		
0800	15.12	25,	107	15	2.0	172		
0810	90.26	7.5	105	16	2.0	121		
0820	105.15	26	106		2.0	121		
0830	120.12	11	100	16	2.01	121		
0840	13501	21	100	10	2.01	121		
0850	109 00	28	106	- 10	7.0	121		
0900	115-14	2.9	100	10	2.0	101		
0910	100,16	30	105	17	2.0	12/	- Ball	
0026	15010		100	10	0,0	101	- Turt Change	
0931	ICIS NO	-3[100	1	2.0	121	- Restar +	
ngur	2016 94	- 30	106		2.0	12/		
092	225 25	30	106	1/	2.0	101		
ling	200,00	<u></u>			LIU	161		
1000	255 21	- <u>+</u> > 72	101	100	20	121		
1070	210 19	37	104	12-	2.0	101		
1020		33	100	10	2.0	121		
10.30	287.16	<u>55</u>	100	10	2.0	121		
1046	300,18	54	105	18	0.5	121		
1056	3/5 22	154	105	18	2.2	121		
1106	324,88	34	105	_17	2.0	121		
1116	345,00	35	105		Zic	121		
11126	360,00	SC/	105	19		b i		

*Ambient air, train blank, preliminary, duplicate train, or source sample.

-2

	Coadov +	-	۰ د					
Run No	o	_ Date	7/25/1	8 5	Sample Type	* Source	e Sumado	Duch
Project	t No	1101-08	- 08-04	/(Client	US 5.4	A SMA	
Barom	etric Pressu	re <u> </u>	9.33	in. Ha S	Sampling Loo	ation	TEN	
Barom	eter to Loca	ition Eleva	tion 🖉 🗧	ft. C	Operator		Edwards	Klanum
Correc	ted Baro. Pr	essure	20133	in.Hg N	Vieterina Cor	isole No.	Va	ST Z
Desired	d Probe/STL	Temperat	ure / IC	νσ°č μ	Drv Gas Mete	er Correction		983
Desired	d Sampling	Rate	Liter	s/min S	Sampling Tra	in Unit No	<u> </u>	
Desired	d Sample Vo	olume		Liters T	enax Inlet T	hermocoupl	e No 4	
Probe	In-Stack Ler	ngth	18	in. T	emperature	Meter No		
Probe I	Liner Materi	al	6/ass	T	emperature	Controller N	10 SV5 7	BryZ
First To	enax Tube N	No	50113	Т	emperature	Meter No	<u> </u>	2 Ray 2
Second	d Tenax Tub	be No	50 103	+	leated STL I	enath	<u> </u>	in
Leak C	heck from F	Probe Inlet:			STI Tubina N	Aaterial	Tollon	(I) .
Before	Sampling		in. Ha chai	nge at	in in			
After	Sampling		in. Hg chai	nge at	in	Ha vacuun	1 for	sec.
Leak C	heck from \	/alve at Inl	et to First C	ondenser				<u> </u>
Before	Sampling		in. Ho char	nge at	No BE	7-24-98	for	000
After	Samplina -		in. Ha char	nae at	11	Ha vacuun	n for	sec.
Notes	on Sniking:			190 at		. ng vacuun	1101	sec.
110103	on opiking.							
		r	· · · · · · · · · · · · · · · · · · ·	·		· · · · · · · · · · · · · · · · · · ·		
Time.	DGM	DGM~	Probe/STL	1st Tube	e Pump	Potomotor		
24-Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Satting	Remark	s
4m 1 1 1 1	Liters	°C	°C	Temp.,°(C in. Hg	Setting		
0'711	0,00	22	106	16	2.5	148		
0721	9.50	S3	108	14	2:5	148		
0731	18.98	53	110	13	2.5	148		
0 741	27.41	25-	109	13	2.5	148		
0751	31,02	25	1(C)	13	25	148		
OSU	46.70	25	100	13	2.5	148		
0811	56.50	21	108	13	2,5	148		
0821	16.42	28	107	13	5.5	148		
0831	76.14	2.1	108	13	2.5	148		
0841	86.08	28	110	14	2.5	118		
0851	95,88	29	110	10	7.5	148		
0001	105.68	30	112	10	2,5	1118		
0911	115.41	30	108	12	2,5-	148	- Port how	
(1920)	11	37	108	17	2,5	1118	- Doudart	16
0937	124.40	31	11C	15	2.5	1115	K-S / Gr /	
0941	134,12	31	113	15-	20	1112		
0957	143.66	30	112	16	20	140		
1005	152 41	33		17	1200	112		
1017	163,18	35	114	18	2.5	172		
1027	172 07	38	112	-191-		110		
1027	100 74		116	17-	100	148		
1017	182.15	-27-	117	10	105	140		
10 20	20225	(()		10	100	148		
	212 01	<u> </u>	100	<u> </u>	- 6.5	148		
	271 71		108	- <u>/x</u>	2.5	148		
112	22: 4			-18-	1'2.5	148		
111011	1031.43 1	41	1 106	18	1 25	1900		1

Run N	0. 2	Date 0	2-25-98	2 S.	ample Type	* 500-21	· ·
Projec	t No. 470,	1,08.03.0	4	C	lient 12.51	=PA-Fm	<i>Р</i>
Barom	etric Pressu	re 29.	33	in Ha S	ampling Loc	ation #	<u>,</u>
Barom	eter to Loca	tion Elevat	ion .50	ft O	nerator	$l \leq n \leq m > 2$	1
Correc	ted Baro. Pr	essure	29.28	in Ha M	letering Cor		Insti
Desire	d Probe/STL	. Temperati	ire 140	'°C ⊓	ry Gas Mote	ar Correction	$(V) \rho(q)$
Desire	d Sampling	Rate 7	5 Liter	s/min S	ampling Tra	in Unit No	
Desire	d Sample Vo	olume	NA	litere Ta	anpling na anav Inlot T	hormooouni	
Probe	In-Stack Ler	nath	6	in Ta	amperaturo	Meter Ne	V = 0.781
Probe	Liner Materi	al Tet.	lon	11. 7. Te	emperature	Controllor N	10 1/2-1
First T	enax Tube I	NO SV	-102	Τ. Τ.	emperature	Meter No	V-170-2
Secon	d Tenax Tub	pe No. 51	V-104	····	eated STL I	ength	40 :
Leak C	Check from F	Probe Inlet:		S	TL Tubing N	Aatorial	Totla-
Before	Sampling	0.00	in. Ha cha	nde at 🖼	23 in		tor 60 and
After	· Sampling	0.00	in. Ha cha	nge at	13 in	Ha vacuur	n for <u>40</u> sec.
Leak C	heck from	/alve at Inl	et to First C	ondenser.	111	ing vacuul	Sec.
Before	Sampling	0.00	in. Ha char	nde at	<i>23</i> in	Havenue	for 60 cos
After	· Sampling	0,00	in. Ha chai	nge at 🧕 🧕	.9 in	Ha vacuur	$\frac{1}{2} \frac{1}{2} \frac{1}$
Notes	on Sniking			<u>190 at</u>		. ng vacuur	<u>sec.</u> sec.
Notes	on opiking.						
			r	r			·····
Time,	DGM		Probe/STL	1st Tube	Pump	Botamotor	
24-Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Sotting	Remarks
	Liters	°C	°C	Temp.,°C	in. Hg	Setting	
0715	0,000	27	142	16	3	150	
0725	15,11 1	26	143	14	3	150	
0735	30.21/	25	143	12	3	150	
0745	45.32	24	143	11	3	150	
0755	60.44	24	143	11	3	150	
6805	75.40	24	143	11	3	150	
2808	Shotdown-	Leskchuk	0.00 changel	4,5"Haf	or 60 sec.		* Finolulume
0844	0,000	25	143	15	3	150	10201. ng 77.630L
0954	15.09	25	143	13	3	150	
0904	30.05	22	143	13	3	150	
0914	45.01	25	143	12	3	150	
0924	60.12	26	143	12	3	150	
0928	66,565	Shutdown-	Leek check d.	DOCHZAGE C	24.3 'Ha for	60sel,	
0935	0.000	27	143	14	3	150	
0945	15,12	25	143	14	3	150	
02535	30.25	26	142	14	3	150	
0958	34.785	Shut dow	a .				
ļ							
L							
					1		

		Loadout		1 . 1			-		
	Run No	o. <u>4</u>	_ Date	7/26/98	۶ ک	ample Type	* Sau	rce Sampl	<u>ا</u>
	Project	: No 410	71-08-	0'3-04	C	lient	USFOR	1 - SMB	E
	Barome	etric Pressu	re í	29.31	n Ha S	ampling Loc	<u>vocrn</u>	- CMID	
	Barome	eter to Loca	tion Flevat	ion 0	ft O	ampling Luc		JED	
	Correct	ted Baro Pr	essure 2	931	1. U			dwards 2	
	Desirer	Probe/STI	Temporate	105				J	<u> </u>
	Dociroe				Y F D	ry Gas Mete	er Correction	ר) (Y) <u>U, Y</u>	8
	Desired	d Sampling i			s/min S	ampling Ira	in Unit No.	7	
	Desired	u Sample VC	biume	<u>560.0</u>	Liters I	enax Inlet T	hermocoupl	e No	
	Probe I	IN-SLACK LEP	igtn/	18	In	emperature	Meter No	<u> </u>	
	Probe I	Liner Materi	al6	6/255	T	emperature	Controller N	lo. Sys 2,	BoxZ
	First I	enax lube N	lo	5	T	emperature	Meter No.	Sys2	Borz
	Second	d Tenax Tub	e No	50-108	Н	eated STL L	.ength	144 /	in.
	Leak C	heck from F	Probe Inlet:		S	TL Tubing N	laterial	Teflon	
	Before	Sampling _		_ in. Hg chai	nge at	<u> </u>	. Hg vacuun	n for 60	sec.
	After	Sampling _	0.0	in. Hg chai	nge at	20,0 in	. Hg vacuun	n for GO	sec
	Leak C	heck from V	/alve at Inl	et to First C	ondenser:	•	0		
	Before	Sampling	0,0	in. Hg char	nge at	19.0 in.	. Ha vacuum	n for 60	SAC
	After	Sampling _	$-\mathcal{O}, \mathcal{O}$	in. Hg char	nge at	4.0 in	. Ha vacuun	for 60	000.
	Notes	on Sniking			<u> </u>		g .douan		300.
	1000	on opiking.							
				·····					
	Time	DGM	DGM	Probe/STL	1st Tube	Pump	D		
	24_Hr	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Rotameter	Remarks	
_	24-311	Liters	°C	°C	Temp.,°C	in. Ha	Setting		
	0915	0.00	2.4	111	10	20	121		
~	0935	14.89	25	111	15	37	101		
	naus	30.04	26	100	10	$\frac{c_i}{2}$	121		
	agent	44 00	20	10'9	-12	21	101		
	1005	10 15	70	ine	10		121		
	1005	10,15	21	100	10	2,7	101		
	1015	\mathcal{D} , \mathcal{D}	31	109	/3	2,7	121		
	1000	40.01	32	108	<u>_/</u>	2.7	121		-
	1035	103.20	33	108		2.7	121		
	1040	120, 69	2	109	15	211	12/		1
	1055	135.04		104	14	2,7	121		ł
	1105	150,00	56	108	15	2,7	121		
	ji is	165.11	37	108	15	2.7	12/	A -1 ale una	
	1125	180,02	31	109	16	2.7	121	- for - change	
	1145	11	38	109	15	2.7	151	- Restary	
	1155	145,08	31	101	16	2.7	151		
	1205	209,98	37	107	17	20	17.1		
	1215	224,99	31	107	16	2.7	121		[
	1225	240,04	38	101	16	2,0	121		
	1235	253,20	39	100	15	2.7	121		
	1245	270,21	39	107	14	2,1	121		[
-	1255	285 15	40	100	14	2.7	121		
	1305	300,21	ЦĊI	inh	1	25	12,		
	1315	315,06	47	101	11	21	121		ł
	1925	330,20	 	106	'in	130	121		ĺ
	1335	745 12		100	10	+ 3'4-	$\frac{1}{p}$		
	1345	360.04	40	106	18	150	121		

*Ambient air, train blank, preliminary, duplicate train, or source sample.

14

.

		Loadout	D 7	177/98	e.,	mala Tunat	Sauce	e Samak	
	Run No.	3		3-04	5a	inple i ype	USFR	M-SMR	President and a subscription of the second s
	Project i	NO. 7707		$\frac{1}{\sqrt{2}}$			tion	TED	
	Daromet	or to Locati	on Flouati	$\frac{1}{2}$	1. 119 00 ft 01	nerator	μ	dwards	
	Correcto	d Baro Pre	ecura		-Ha M	etering Cons	sole No.	VOST 3	Married Control of Con
	Desired	Probe/STI	Temperatu	$r_{a} = 1.05$		rv Gas Meter	Correction	(Y) 0.978	
	Desired	Sampling B	sto //	5 Liter	s/min S	amoling Trai	n Unit No.	7	
	Desired	Sample Vol	ume	360	liters Te	anax Inlet Th	ermocouole	No. 7	
	Prohe in	Stack Lenr	sth /	8	in. Tr	emperature l	Meter No.	Y-3918	
,	Prohe Li	ner Materia		10<1		emperature (Controller N	O, SVI 2 BOD	12
	First Ta	nax Tube N	n 5	0 111	T	emperature I	Meter No.	SYS2 BO	5 X
	Second	Tenax Tube	Nn.	50107	H	eated STL L	enath	144	in.
	Leak Ch	eck from Pr	obe inlet:		S	TL Tubing M	laterial	Toflan	
	Before S	Samoling	$\mathcal{Q}_{\mathcal{A}}(\mathcal{C})$	in. Ha char	nge at 2	1,5 in.	Hg vacuum	n for <u>60</u>	_ sec.
	After	Sampling	0,0	in. Ho char	nde at	20,0 in.	Hq vacuum	n for 60	_sec.
	Leak Ch	eck from V	alve at Inle	t to First C	ondenser:		U		
	Before S	Sampling	0,0	in. Hg char	nge at	20,0 in.	Hg vacuum	1 for 60	_sec.
	After	Sampling (7,0	in. Hg char	nge at	4.0 in.	Hg vacuum	n for <u>60</u>	_ sec.
	Natas	on Sniking:							
	INULES (Jir əpiking.							
	Time.	DGM	DGM	Probe/SIL	1st lube	Fump	Rotameter	Domaska	
	24-Hr	Reading,	lemp.,	lemp.,	Inlet	Vacuum,	Setting	Remarks	
		Liters	<u> </u>	°0	1emp., 1	- in. Fig			
	0710	0,00	20	105	16	0,5	121		
	0120	14.91	15	108	15	6,0	15.1	0	
	072/:30	16.81		<u> </u>	<u></u>			Pown	
	6740:30			26wn 19	min ne	ext point at	0144	- Lestart	
	0749	24.70		106	18	2,0	122		
	01/59	44,91	-25	105	15	10	100		
	0804	60.25	21	106	14	0.0	121	4	
	0814	75,18		100	19	12.0	10		
	1504	40,14	- 67	105	15		121	-	
	0857	105.20	30	106	13		171	-	
	0849	111.91		100	+ 13-	20	121	-	
	0859	133,16	- 21	100	17		121	4	
	0404	150,40	51	105	10	20	121	4	
	0119	160,12	32	100	17	7.0/	121	- Part change	
	0909	180,00	22	105		20	121	- Portoat	
00-10-1	0930	NIMIOC	54000		1.1.2	that sile	+7,01	Lesturi	
0757.151	and the second	1/0//18	Poppe	10, 1000	ing our	<u>0+ 51/0</u>	1002	-1	
0454:13	1002	19200		106	11/10	2.0	121	-	
	1012	200 86	22	1 105	16	1 2.0	171	1	
	1022	22 - 25	70	tine	15	7.0	17/	-	
	1023	240.01	27	1100		2.0	121	1	
	1042	255 17-	26	105	1 15	2.0	121	-	
	105	270.27	37	10.5	115	2.11	121	1	
	1102	285, 30	31	100	16	2.0	121	-	
	1112	300,02	38	105	16	2.0	171	1	

*Ambient air, train blank, preliminary, duplicate train, or source sample.

	Run No. Project I Baromet Baromet Correcto Desired Desired Desired Probe Ir Probe L First Te Second Leak Ct Before After	Longart 3 No tric Pressure ter to Locati ed Baro. Pre Probe/STL Sampling R Sample Vol Sample Vol Sample No Tenax Tube Nateria nax Tube N Tenax Tube Sampling Sampling	Date <u>[70] - 08 - 0</u> on Elevations ssure Temperatur ate ume3 gth 1 0 e No robe Inlet:	$\frac{12.7}{48}$ 3 - 04 $\frac{3}{48}$ ir on $\frac{1/2}{10}$ ir $\frac{1}{5}$ ir $\frac{105}{105}$ ir $\frac{105}{105}$ ir $\frac{105}{107}$ in. Hg char in. Hg char	San Clie Clie ft. Op ft. Op ft. Op Me OF Dry s/min San Liters Ter in. Ter in. Ter Ter He ST nge at	nple Type* nt npling Loca erator tering Cons Gas Meter npling Train nax Inlet The mperature for mperature for ated STL Loca L Tubing M in 	Source users sole No r Correction n Unit No rermocouple Meter No Controller No ength laterial Hg vacuum	Sample A- EMB TED Edwards VOST 3 (Y) 0,975 7 No. 7 Y-3918 D. Sys 2 Box 2 Sys 2 Box 2 144 in. Teflan for sec.
	Leak Cl	neck from V	alve at Inle	et to First C	ondenser.	NA BE	7-27-48	
	Before	Sampling		in. Hg char	ige at	in.	Hg vacuum	for sec.
	After	Sampling		in. Hg char	nge at	in.	. Hg vacuum	for sec.
	Notes	on Spikina:	<u></u>					
		(-					
		DGM	DGM	Probe/STL	1st Tube	Pump	D	
Marontra	Time,	Reading.	Temp.,	Temp.,	Inlet	Vacuum,	Hotameter	Remarks
Shutdown,	24-Hr	Liters	°C	°C	Temp.,°C	in. Hg	Setting	
4 sec.	1122	315.00	38	105	16	2,0	121	10 0 00
BM	1132	330,76	38	106	16	7.0	121	PagelotL
1142 426	1117	2115 11	78	106	17	2.0	121	
1. 10 7731.9	8 110	360.05	79	165	18	2.0	151	
401/10			<u>``</u> da{			and a second	1	
						ļ	L	
								-
								-
								-
	<u> </u>	· · · · · · · · · · · · · · · · · · ·						-
				_ <u>_</u>	<u></u>			-
								4
			<u> </u>					-
						- 		-1
		+	+					4
	}		+			+		-
			1					-

Rup No	badout 3	Dete	n lan lae			* Aude	ATA Course Sau
Project	$N_{\rm O} = \frac{N}{12}$	Date	10-011	Sa	пріе Туре	- Puplice	TT VOURCE JUP
Project	NO7	101- 08 -	05-04	Cli	ent		SEPA - FMB
Barome	etric Pressur	e		n.Hg Sa	mpling Loc	ation	TED
Barome	eter to Loca	tion Elevati	ion()	ft. Op	erator		Edwards
Correct	ted Baro. Pr	essure	NR i	n. Hg Me	etering Con	sole No	VOST 2
Desired	Probe/STL	Temperatu	1 re / 0.5	°Ø _F Dr	y Gas Mete	er Correctior	1(Y) = 0.983
Desirec	l Sampling I	Rate/	Liter	s/min Sa	mpling Tra	in Unit No. <u>-</u>	Ч
Desired	l Sample Vo	lume <u>3</u>	60 <u> </u>	Liters Te	nax Inlet T	hermocoupl	e NoY
Probe I	n-Stack Len	gth	18	in. Te	mperature	Meter No	NA
Probe L	_iner Materia	al	Glass	Те	mperature	Controller N	10 5457 Box 2
First Te	enax Tube N	lo	SU 101	Те	mperature	Meter No	5452 BOX2
Second	l Tenax Tub	e No	50 103	He	ated STL L	.enath	(44 in.
Leak C	heck from F	robe Inlet:	,	ST	L Tubina N	Aaterial	Tellon
Before	Sampling	\mathcal{O}, \mathcal{O}	in. Ha char	nge at	20.0 in	. Ha vacuun	n for 60 sec
After	Sampling	0,0	in. Ha char	nde at	19.0 in	. Ha vacuun	n for \overline{OO} sec
Leak Cl	heck from V	alve at Inle	et to First C	ondenser:	<u> </u>		000,
Before	Sampling	0,0	in. Ha char	nge at	19,5 in	Ha vacuum	a for GCI sea
After	Sampling	0.0	in Ha char	-90 at <u></u> /	U.C. in	Ha vacuun	for = 6C/ccc
Nata			In. rig ondi	igo ut	<u> </u>	. ng vacuun	
Notes	on Spiking:						
T :	DGM	DGM	Probe/STL	1st Tube	Pump		
1 me,	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Rotameter	Remarks
24-Hr	Liters	°C	°C	Temp.,°C	in. Ha	Setting	
ONI	$C_1 (1)(1)$	10	114	111	25	150	
0121	111 5 11	-19	108	19	25	150	
0122	17.57	20	100		<u> </u>		54 states 110
naui	10,69		0.10			000	-Surroow VI
	20 00		2004 194	nin, lext	point at	0750	- acstart
0750	21,00	-22		12 '	3,0	130	
0800	43,40	23	105		3,0	130	
05/0	60.51	25	109	12	2,0	15-0	
0820	16,00	151	109	12	2,5	145	- 4
08.30	40.05	28	107	13	2,5	148	
0890	105.22	28	106	12	2,5	148	
0850	119.88	29	109	57	2,5	150	
0900	134.48	31	10	14	2.5	150	
0910	149.33	_3]	105	14	3.0	150	
920	165.50	32	113)4	3.0	150	
6930	180,07	33	111	14	3.0	150	- Port change
0951	11	32	117	19	J.U	150	- Restart
09511:30		.54	poped In	adina ni	1 of eil	11	
0959:30		Ro-	farted	next n	int ad	1003	
1003	194.75	33	116	18 1	3.0	150	1
10/2	210.12	3.<	116	19	7.0	150	
1023	225.51	70	TIE	10	1 7	147	
103	240 22		122		20		-
nu2	25/102			1	J.U	-458-	4
1000	<u>224.62</u>	$-\frac{40}{2}$	164	18	5.0	130	4
1003	210,40	41	128	10	3.0	150	4
1100	100,04	42	051	18	3.0	150	
1113	1 244.75	43	124	1/2	1 70	1 100	1

*Ambient air, train blank, preliminary, duplicate train, or source sample.

è

Run No.	LONDOUR 3	Date 7/	27/98	Sar	mple Type*	Dup - S	ource Sample	
Project I	No4	701-08-03	-09	Clie	ent	USEPA-	ENB	
Baromet	tric Pressure	· /	<u>íA</u> ir	h. Hgi Sai	mpling Loca	ition	TED	
Barome	ter to Locati	ion Elevatio	on	ft. Op	erator	- Edi	aras	
Correcte	ed Baro. Pre	ssure	NAir	n. Hg _– Me	tering Cons	sole No.	UDST 2	
Desired	Probe/STL	Temperatu	re <u>105</u>	°&F Dry	y Gas Meter	Correction	(Y) = 0.483	
Desired	Sampling R	ate/	5 Liters	s/min Sa	mpling Trai	n Unit No.	<u> </u>	
Desired	Sample Vol	ume	<u>560</u> I	iters Te	nax Inlet Th	ermocouple	No. <u> </u>	
Probe Ir	h-Stack Leng	gth	i8	_in. Te	mperature I	Meter No	NA	
Probe L	iner Materia	1	Class	Te	mperature (Controller No	D. <u>Syl 2 Bot 2</u>	
First Te	nax Tube N	o /	N 101	Te	mperature l	Meter No	Sys Z Box 2	
Second	Tenax Tube	e No	51/103	He	ated STL L	ength	<u> </u>	_ in.
Leak Ch	neck from Pi	robe Inlet:	. ,	ST	L Tubing M	laterial	Tellon	
Before	Sampling		in. Hg char	ige at	in.	Hg vacuum	i for	SEC.
After	Sampling		in. Hg char	ige at	in.	Hg vacuum	Hor	sec.
Leak Ch	neck from V	alve at inle	et to First C	ondenser:		BE 7-27-	. GC	
Refore	Sampling		in. Ha char	08-81	-WH in.	Hg vacuum	for	sec.
After	Sampling		in. Ho char	nde at	in.	Hg vacuum	n for	sec.
Nieton		*	<u> </u>	<u></u>				
Notes	on spiking.							
		-			1	r		
Time	DGM	DGM	Probe/STL	1st Tube	Pump	Rotameter		
21 4	Reading,	Temp.,	Temp.,	Inlet	Vacuum,	Setting	Remarks	
24-11	Liters	°C	°C	Temp.,°C	in. Hg	Gotting		
1123	315.06	13	127	18	3. O	150	1 212	
1133	330,48	44	176	19	3,0	150	rage Cot C	1
1143	345,02	44	127	19	3.0	150	U U	
11.53	360.06	UU	121	19	3,0	150		
<i>µ</i>	<u> </u>	//		T]	
						-		
				1		1		
		<u> </u>			1	1		
				1		1		
		+				1	1	
	+	1						
	<u></u>	+	+				1	
			+				-	
		<u> </u>		4			-	
ļ	. <u></u>	+	+	- 			-	
				+			-	
	4	+	+				4	
		<u></u>	+			- <u>+</u>	-	
							-	
						+	-1	
ļ	<u></u>	+					-	
				_ 			-	
							-	
ļ							-	
1	1	1	1	1	1	ł	ł	

~

Run No	o. <u>3</u>	Date 0;	7-27-98	Sa	imple Type	* Source	
Project	t No. 470/	,08,03,0	4	Cl	ient USE	PA-Emc	· · · · · · · · · · · · · · · · · · ·
Barom	etric Pressu	re 29,1	24 1	n. Ha Sa	mnling Loc	ation #1	
Barom	eter to Loca	tion Elevat	ion 50	ft. Or	perator J	Surman	
Correc	ted Baro. Pr	essure 🖧	19.19 i	n Ha Mi	etering Con	sole No	10571
Desire	d Probe/STI	Temperati	Ire 140	°C Dr	v Gas Mete	sole No	
Desire	d Sampling	Rate /	Jitor		y das mete		
Desired	d Sample Vo		NA LILEI	Sinni Ja Litoro To	inping na	hi Unit No.	<u> </u>
Prohe	In-Stack Lor	ath	10	in To			
Prohe	l iner Materi	al Tot	-lon	III. Ie	mperature	Controllor No.	1-0194
First T	enav Tubo N		-117	ie	mperature		10. <u>VC-7</u>
Second	d Topay Tub		1-104	ie		ivieter No.	4-078.3
	book from F	Probe Inlet:	<u> </u>	He		engtn	in.
Before	Sampling	nobe inter.	in Un char			haterial	Crion
After	Sampling _	0,00	in. Hg char	ige at	7.7 in	. Hg vacuun	n for <u>60</u> sec.
Anter	Sampling _		In. Hg char	nge at 🔜	in <u>ک</u>	. Hg vacuun	n for <u>60</u> sec.
Leak C		vaive at inie	et to First C	ondenser:	nn .		
Derore	Sampling _	0,00	in. Hg char	ige at	<u>43</u> in.	Hg vacuun	n for <u>60</u> sec.
After	Sampling _	0,00	<u>in. Hg char</u>	nge at 🔜	<u>אין in</u>	. Hg vacuun	n for <u>60</u> sec.
Notes	on Spiking:						
	DGM	DGM ⁻	Probe/STL	1st Tube	Pump		
lime,	Reading.	Temp	Temp	Inlet	Vacuum	Rotameter	Bemarks
24-Hr	Liters	°C	°C	Temn °C	in Ha	Setting	HEIHAIKS
0710	A 000	71		101110-1	2,	, , , , , , , , , , , , , , , , , , ,	Day Andi + 0.00
1720	4500	711	171	19	3.3	150	Frouss tecanny ROP.
0727	19005	Small	141	17 Maladia	3,5	/90	Lonensono conconer
0750	18,000	Diggia.	conging -	NOLEER C	Pack 1		night then beier b
12218	10,005	10	1911	13	3.0	150	Process stapped
1818	33,00	21	14/	13	3.0	130	D x D A RAP
1808	78,18	Mangal	14/		3,0	150	Plans Felding Mos
08-28	10,20	107 20	141		3.0	150	39310, 55287601.1
1849	10/13	10	142		3,5	150	
0375	100 -7 0	10	142		33	1.50	
10000	108,38	29	14.5		3,5	150	
0908	123.40	29	143		3,5	150	
0918	138,65	78	143		3.5	150	
0728	15.3.47	29	143		3.0	150	
0130	168.58	29	143		3.5	150	
0743	183,00	29	141		3,5	150	
0957	187,533	Stopped	Sempling				
							-
	ļ					1	
	ļ	ļ					
		L			<u> </u>		
ļ			ļ				
1	1	1	1	1	1	1	1

Appendix J

Equipment Calibration Data

ANEROID BAROMETER CALIBRATION CHECK

Location:	Kansas City, Missouri
Altitude Above Sea Level:	913 feet
Latitude:	39° 05.8' north
Meteorological Gravity:	32.1516 feet/second ²
Mercury Barometer Description:	Sargent Welch, Cat. S-4519, Lot 791802000

MRI Project No.	4701-08-03-	04	
Date:	7-14-98		
Time:	1130		
Readings Obtained By:	D. Neal		FMK for DN
Observed Barometer Reading:	29.21	in. Hg	
Mercury Column Temperature:	74	°F	
Correction For Temperature:	-0.12	in. Hg	
Correction For Gravity:	-0.02	in. Hg	
Corrected Barometric Pressure:	29.07	in. Hg	
Anaroid Parameter I.D. No.	V 2101		
Anerola Barometer I.D. No	1-2101		
Reading Before Adjustment:	29.06	in. Hg	
Calibration Check Result:	within 0.1 in	. Hg	
Reading After Adjustment:	(NA)	in. Hg	

Remarks:

BAROMETR.WK4 02/27/95 (rev. BAROMTER.WK4 07/14/98 11:46 AM)

ANEROID BAROMETER CALIBRATION CHECK

Location:	Kansas City, Missouri
Altitude Above Sea Level:	913 feet
Latitude:	39° 05.8' north
Meteorological Gravity:	32.1516 feet/second ²
Mercury Barometer Description:	Sargent Welch, Cat. S-4519, Lot 791802000

MRI Project No.	4701	
Date:	8-12-98	
Time:	1648	
Readings Obtained By:	D Neal	Suffer DN
Observed Barometer Reading:	29.33	in. Hg
Mercury Column Temperature:	73	°F
Correction For Temperature:	-0.11	in. Hg
Correction For Gravity:	-0.02	in. Hg
Corrected Barometric Pressure:	29.20	in. Hg
	Man de Maria de La Maria d	
An avaid Davamatar I D. Na		
Aneroid Barometer I.D. No.:	y-2101	
Reading Before Adjustment:	29.09	in. Hg
Calibration Check Result:	NOT Satisf	actory - Needs Adjustment
Reading After Adjustment:	29.20	in. Hg

Remarks:

BAROMETR.WK4 02/27/95 (rev. BAROMTER.WK4 08/12/98 04:38 PM)

CAL-BENCH SERIAL NUMBER ANO125, REV 8.00.06 CALIBRATION DATA

> Sierra Instruments, Inc. 5 Harris Court, Bldg. L Monterey, CA 93940

File Name : c:\Records\RC31392\31392

Test Date: 4/30/1998

Print Date: 4/30/1998 Due Date: 4/30/99

Device Under Test _____ Orifice Size: N/A

Ambient Conditions _____ Description: 30462Gas Temperature:71.8 Degrees FModel#: 822S-L-2-OK1-PV1-V1-A1Room Temperature:73.8 Degrees FSerial No: 31392Ambient Pressure:29.67 In HgAccuracy: 1% OF FSBack Pressure:1.753 In H20Bypass: LFERelative Humidity:45.46 Percent

Master		STP				
Serial Number: Full Scale Flow:	0125 5.0 SLPM	Temperature: Pressure:	70.0 Degrees 29.92 In Hg	F		

----- GAS DATA -----

%	Density	Ν	Ср	Name
100.00	1.250	1.000	0.248	Nitrogen, N2

Test Gas: Nitrogen, N2 Calculated K Factor is: 1.000

----- DATA -----Full Scale Flow: 5.0 SLPM.

Voltage VDC	Indicated Flow SLPM	Actual Flow SLPM	Error % Full Scale	Error % Reading
0.000	0.0000	0.0000	0.0	0.0
1.247	1.2467	1.2562	-0.2	-0.8
2.507	2.5065	2.5232	-0.3	-0.7
3.730	3.7305	3.7486	-0.4	-0.5
5.022	5.0224	5.0237	-0.0	-0.0

----- Device Information -----

Vacuum Test: 5 x 10⁻ 9 Atm cc/sec (He) Sensor mV at Full Scale: N/A Outlet Pressure: N/A Fittings: 1/4" COMP Inlet Pressure: 10 PSIG

O-Rings: KALREZ ial Number: 31392	Valve Seat material: N/A Test Date: 4/30/98
-	Test Equipment
Cal Bench Asset No.: 0125 %RH Meter Asset No.: 0125 DVM(s) Asset No.: 0298	Barometer Asset No.: 0396 Thermometer Asset No.: 0125
0-5 VDC OUTPUT 12-15 VDC INPUT POWER	Comments

JACK SAXDOVA

X

A

The Cal=Bench System: 2/6/2000 D/A and A/D converters: 8/2/1998 Glass Tube Diameters: 1/6/2000 System Clock: 8/2/1998

The accuracy of this equipment is 0.2% of reading. Suggested recalibration due dates for the following critical items are:

Date:_

2/30/98

Date:__

Y

Calibration Technician:

Q.C. Technician:

Report No.842726 Page 1 of 1

Hart Scientific, Inc. 799 East Utah Valley Drive American Fork, Utah 84003-9775

Model:	Serial No.:	Customer:			
9100A	84414	Midwest Research Institute			
Description:		Kansas City, MO 64110			
Dry-Well, HDRC Handheld Block A		USA			
Received Condition:	Procedure:	Calibration Range (Limited or Full):			
New	HST042	Full			

The standards used in this calibration are traceable to the National Institute of Standards and Technology (NIST) and/or constants of nature (intrinsic standards). The working standards listed are calibrated by comparison with a Standard Platinum Resistance Thermometer (SPRT), Hart model 5681 (low temperatures), Hart model 5684 (high temperatures), and a Hart Super Thermometer, model 1575. Calibration procedures are in accordance with ITS - 90 and ANSI/NCSL Z540 - 1.

Test Well:	rror °F	ctual °F Ei	Set-Point °F A	rtor °C	ctual °C E	Set-Point °C 4
3 ·	-0.2	121.8	122.0	-0.1	49.9	50.0
(🙃 🍼 🙆)	0.5	212.5	212.0	0.3	100.3	100.0
	-0.4	301.6	302.0	-0.2	149.8	150.0
	0.2	392.2	392.0	0.1	200.1	200.0
V 4 V	-0.7	481.3	482.0	-0.4	249.6	250.0
•	0.0	572.0	572.0	0.0	300.0	300.0

°C Calibration Constants: Zero: -0.2 Span: 0.9

°F Calibration Constants: Zero: -0.4 Span: 1.6

The temperature observations were made by comparison with the following test equipment.

Test Equipment	est Equipment						
Instrument	Model	Serial No.	Recall Date				
Thermometer, "Super Thermometer"	1575	48048	09/26/1998				
Probe, Secon. PRT, 100 ohm 3/16" x 6"	5613	468523	05/06/1998				
Approximate Uncertainties: 50 to 300°C ±0.027°	C						

Environmental Conditions: Temperature: 25°C Humidity: 27% RH

Performed bw John Thomas

Approved by:____

Date: 04/27/1998

This report shall not be reproduced except in full without written approval of Hart Scientific, Inc.

STACK THERMOCOUPLE CALIBRATION DATA FORM

Job No.	4701-08-03-04		_ Stack Thermoco	ouple No. T	P-36	
Date	7-14	-98	Probe No.	TP-3		
Ambient '	Temp.(°F)	76	Barometer	29.07	in. H	Hg
Performe	d By D.	Alburty	Pyrometer No.	Y-3517	-	
Avg. Sta	ck Temp.(°	F) 108				

Reference Instrument: Hart Scientific 9100 HDRC Dry Well Calibration Date: 4-27-98

Reference Instrument Temp. (⁰ F)	Pyrometer Temp. ([°] F)	Temp. Difference (°F)	Temp. Difference (%)
86.0	86.2	-0.2	-0.037
122.0	121.8	0.2	0.034
212.0	212.2	-0.2	-0.030

(ref. temp., F + 460) - (pyro. temp., F + 460) (ref. temp., F + 460)

TSL CERTIFICATE OF CALIBRATION AND TESTING

TSI Model 8350

TSI Serial No. 2268

HAA Sin (A) and AA Sin (A) and AA

Description VELOCICALC PORTABLE AIR VELOCITY METER

Calibration Standard WIND TUNNEL CALIBRATION SYSTEM, SERIAL NO. 102

		CALIBRAT	TION VER	IFICATIO	ON RESU	LTS=		
Calib	ration	Instrum	nent	Percent	Error	· Compared to	Tolerance	
Star	nda r d	Outp	ut	Difference	Tolerance		Tole	rance
					Limit-	0	Lin	ıit+
34.7	ft/min	35.0	ft/min	0.9		• *		
65.4	ft/min	65.0	ft/min	-0.6		* ·		
148.9	ft/min	149.7	ft/min	0.5		• *		
325.4	ft/min	326.3	ft/min	0.3		• *		
652.9	ft/min	652.5	ft/min	-0.1		*		
999.0	ft/min	1011.9	ft/min	1.3		•	*	
1478.4	ft/min	1502.6	ft/min	1.6		•	*	
2515.1	ft/min	2563.8	ft/min	1.9		•	*	
4492.7	ft/min	4488.5	ft/min	-0.1		*		
7006.5	ft/min	7127.0	ft/min	1.7		•	*	
8758.3	ft/min	8844.5	ft/min	1.0		•	*	
						•		
32.0	°F	32.0	°F	r		Tolerance Lir	nits:	
140.0	°F	140.0	°F		±2.5% of rea	uding $\pm 2 f/m$ (3)	0-500),	
		e a construction de la construction			±10 f/m (500	-2000), ±50 f/n	i (2000-6000)	,
					±100 f/m (60	00-10000)		
				·	-Velocity C	orrected to Sta	l Conditions	of:
					Ambient	: Temperature:	21.1°C	
	•	1			Barome	tric Pressure:	760.0 mmH	8

TSI Incorporated does hereby certify that all materials, components, and workmanship used in the manufacture of this equipment are in strict accordance with the applicable specifications agreed upon by TSI and the customer and with all published specifications. All performance and acceptance tests required under this contract were successfully conducted according to required specifications. Furthermore, all test and calibration data supplied by TSI has been obtained using standards whose accuracies are traceable to the National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. Calibration procedures for this instrument comply with MIL-STD-45662A. The accuracy of the calibration facilities is greater that a ratio of 1:1 with respect to the accuracy specifications of the instrument being calibrated.

Applicable Test Report

DC voltage Barometric Pressure Temperature (0°C) (19-35°C) (60°C)

Pressure

Velocity Dewpoint

Calibrated by

TSI Incorporated Environmental Measurements and Controls Division Report Number 811/253708-94 P-8264 254798 203537 216642 822/255443-95 822/254253-94 836/254822 257589

 $\begin{array}{c} 08-05-97\\ 05-16-97\\ 04-10-97\\ 10-24-96\\ 04-22-97\\ 04-22-97\\ 01-23-95\\ 02-12-97\end{array}$

Date Last Verified

Final Function Check

Nov 20, 1997

Calibration Date

Mailing Address: P.O. Box 64394 St. Paul, MN 55164 USA Shipping Address: 500 Cardigan Road Shoreview, MN 55126 USA Phone: (800) 777-8356 or (612) 490-2888 Fax: (612) 490-2874

WET TEST METER CALIBRATION Using ASTM Method D 1071 - 83 (Reapproved 1993)

MRI Project No.	NA	Wet Test Meter No.	X-2538
Date:	05/02/97	Previous Wet Test Meter Factor (Yw):	0.9970
Operator:	J. Surman	Temperature Meter No.	Y-0815
Leak Checks:	No leaks	Balance No.	011907

	Run 1	Run 2	Run 3
CALIBRATION DATA	 •••• 		
Ambient Data:			
Barometric Pressure, in. Hg	28.68	28.68	28.68
Room Temperature, °F	74.0	74.0	74.0
Relative Humidity, percent	45.7%	45.5%	45.2%
Proportion of Water Vapor By Volume in ambient air	0.013	0.013	0.013
Wet Test Meter Data:			1
Initial Wet Test Meter Gas Volume, wet liters	0	0	0
Final Wet Test Meter Gas Volume, wet liters	9	9	9
Net Wet Test Meter Gas Volume (Vm), wet liters	9	9	9
Wet Test Meter Gas Temperature (tm), °F	71.5	71.5	71.6
Pressure at Wet Test Meter Inlet, in. w.c.	-1.23	-1.23	-1.23
Aspirator Bottle System Data:			
Bottle Temperature, °F	71.1	71.2	71.3
Bottle Pressure, in. w.c.	-1.32	-1.32	-1.32
Flow Rate Data:			and the second
Time, seconds	545	543	540
Gas Flow Rate, actual dry liters/minute	0.99	1.00	1.00
Average Gas Flow Rate, actual dry liters/minute	1.00		
Water Displacement Data:		2	
Receptacle A Tare Weight, grams	124.6	124.0	123.6
Receptacle A Gross Weight, grams	3,840.9	3,863.0	3,832.2
Receptacle B Tare Weight, grams	121.9	122.8	123.2
Receptacle B Gross Weight, grams	3,742.9	3,791.0	3,775.2
Receptacle C Tare Weight, grams	122.7	121.0	123.4
Receptacle C Gross Weight, grams	1,766.0	1,693.2	1,750.0
Weight of Water Collected, grams	8,980.6	8,979.4	8,987.2
Buoyancy factor	0.00101	0.00101	0.00101
Correction for Buoyancy, grams	9.04	9.04	9.05
Density of Water at Bottle Temperature, g/mL	0.99788	0.99786	0.99786
Correction for Density of Water at Bottle			
Temperature to Density at 39.2 °F, grams	19.08	19.26	19.27
Correction for Temperature Difference, grams	6.77	5.07	5.08
Correction for Pressure Difference, grams	1.24	0.40	0.41
Corresponding Weight of Water			
at Maximum Density, grams	9,016.7	9,013.2	9,021.0
Equivalent Volume, liters	9.017 .	9.013	9.021
CALIBRATION RESULTS			
Wet Test Meter Calibration Factor (Yw)	1.0019	1.0015	1.0023
Acceptability Criterion: 0.99 < Yw < 1.01	And the second second		
Tolerance Result:	PASS	PASS	PASS
Average Wet Test Meter Calibration Factor (Yw)	1.0019		

Remarks:

,

VOST METERING CONSOLE CALIBRATION WITH WET TEST METER

MRI Project No. 4701-08-03-04	3-04 Metering Console No. Vost 1			
Date: 8/13/98	Previous Dry Gas Meter Factor (Y)	0 971		
Operator: B. Edwards	Calibrated Wet Test Meter No	X_2538		
1 View View View View View View View View	Wet Test Meter Factor (Yw):	1 0010		
		1.0019 V.0045		
		<u>Y-0815</u>		
	Run 1 Run 2	Dun 2		
CALIBRATION DATA		<u>Kuli 3</u>		
Barometric Pressure, in. Hg	29.22 29.22	29.22		
VOST Data	1			
Initial Dry Gas Meter Volume, dry liters	0.000 16.910	37.060		
Final Dry Gas Meter Volume, dry liters	16.910 37.060	54.080		
Net Dry Gas Meter Volume (Vm), dry liters	16.910 20.150	17.020		
Dry Gas Meter Temperature, °C:				
Initial Inlet Temperature, °C	26.4 26.6	27.0		
Final Inlet Temperature, °C	26.6 26.9	27.4		
Initial Outlet Temperature*, °C				
Final Outlet Temperature", "C	00 F			
Average Dry Gas Meter Temperature (tm), "C	20.5 26.8	27.2		
Potomotor Setting		600		
Wet Test Meter Data	140 140	140		
Initial Wet Test Meter Gas Volume, wet liters	0.000 16.600	27.060		
Final Wet Test Meter Gas Volume, wet liters	16 600 36 400	54.080		
Net Wet Test Meter Gas Volume (Vm) wet liters	16.600 19.800	17 020		
Wet Test Meter Gas Temperature, °F:	10.000	17.020		
Initial Temperature, °F	70.0 70.5	70.5		
Final Temperature, °F	70.5 70.5	70.5		
Average Wet Test Meter Gas Temperature (tm), °F	70.3 70.5	70.5		
Pressure At Wet Test Meter Inlet, in. w.c.	-2.8 -2.8	-2.8		
COMPUTED CALIBRATION RESULTS				
Gas Flow Rate, actual dry liters/minute	1.64 1.63	1.68		
Average Gas Flow Rate, actual dry liters/minute	1.65			
Dry Gas Meter Volume (Vm(std)), dry std. liters	16.155 19.235	16.223		
Wet Test Meter Gas Volume (Vm(std)), dry std. liters	15.646 18.649	16.031		
Dry Gas Meter Calibration Factor (Y)	0.968 0.970	0.988		
	0.975			
Criterion: Y Must Be Within 2% Of Average V				
Percent Difference Of Y From Average Y	0.71% 0.60%	1 3104		
		DASS		
COMPARISON WITH PRETEST RESULTS		1,400		
Criterion: Y Must Be Within 5% Of Previous Y				
% Difference Of Average Y From Previous Y	0.45%			
Tolerance Result	PASS			

* For dry gas meters having only one thermocouple, temperatures are entered as inlet temperatures. Remarks:

VOSTCALB.WK4 09/11/95 (rev. 1V470108.WK4 08/27/98 02:41 PM)

VOST METERING CONSOLE CALIBRATION WITH WET TEST METER

MRI Project No.	4701-08-03-04	Me	tering Console No	Vost 2
Date:	8/14/98	Previous Dry Ga	s Meter Factor (V):	0.092
Operator:	Edwards	Calibrated V	Not Tost Motor No.	0.903
			X-2538	
		vvetrest	Weter Factor (YW):	1.0019
		lem	perature Meter No.	Y-0815
		Run 1	Run 2	Run 3
Barometri	o Prossura in Ma	20.15	20.45	
VOST Data	c riessure, in. ny	29.15	29.15	29.15
Initial Dry Gas Meter	Volume dry liters	0.000	14 700	30 020
Final Dry Gas Meter	Volume, dry liters	14 700	30.020	<u>30.020</u> <u>/3.080</u>
Net Dry Gas Meter Volur	ne (Vm), dry liters	14,700	15 320	13 960
Dry Gas Meter Temperati	ure, °C:			10.000
Initial Inle	t Temperature, °C	26.1	24.9	26,4
Final Inle	t Temperature, °C	24.8	26.4	27.4
Initial Outlet	Temperature*, °C			
Final Outlet	Temperature*, °C			
Average Dry Gas Meter Ten	nperature (tm), °C	25.5	25.7	26.9
	Time, seconds	630	660	600
Wet Test Mater Date	Rotameter Setting	142	142	142
Initial Wet Test Meter Can		0.000	11.000	
Final Wet Test Meter Gas	Volume, wet liters	0.000	14.630	29.900
Net Wet Test Meter Gas Volum	volume, wet liters	14.030	29.900	43.730
Wet Test Meter Gas Tempe	ature °F	14.000	13.270	13.030
Initia	Temperature °F	68.0	68.0	68.0
Fina	Temperature, °F	68.0	68.0	68 0
Average Wet Test Meter Gas Ter	nperature (tm), °F	68.0	68.0	68.0
Pressure At Wet Test N	leter Inlet, in. w.c.	-2.8	-2.8	-2.8
COMPUTED CALIBRATION RESUL	.TS			
Gas Flow Rate, actua	al dry liters/minute	1.38	1.37	1.37
Average Gas Flow Rate, actua	al dry liters/minute	1.38		
Dry Gas Meter Volume (Vm(s	td)), dry std. liters	14.060	14.643	13.287
Wet Test Meter Gas Volume (Vm(s	td)), dry std. liters	13.841	14.446	13.084
Dry Gas Meter Call	bration Factor (Y)	0.984	0.987	0.985
	Dration Factor (Y)	0.985		
Criterion: Y Must Be Within 2%	Of Average V			
Percent Difference Of S	(From Average Y	በ በጸ%	0.14%	0.06%
	PASS	PASS	PASS	
COMPARISON WITH PRETEST RE	SULTS		1 400	1 700
Criterion: Y Must Be Within 5%	Of Previous Y			2
% Difference Of Average Y	′ From Previous Y	0.23%		
	Tolerance Result	PASS	L	

* For dry gas meters having only one thermocouple, temperatures are entered as inlet temperatures. Remarks:

VOSTCALB.WK4 09/11/95 (rev. 2V470108.WK4 08/27/98 02:43 PM)

VOST METERING CONSOLE CALIBRATION WITH WET TEST METER

MRI Project No.	MRI Project No. 4701-08-03-04			Vost 3
Date:	8/13/98	Previous Dry Gas	Meter Factor (Y):	0.978
Operator:	B. Edwards	Calibrated V	Vet Test Meter No	X-2538
		Wet Test I	Meter Factor (Yw)	1 0019
		Temi	perature Meter No	V 0015
				1-0815
		Run 1	Pup 2	Dup 2
CALIBRATION DATA		i cuit i	Truit 2	Kuli 3
Barometric	Pressure, in. Hg	29.22	29.22	29.22
VOST Data				
Initial Dry Gas Meter V	/olume, dry liters	0.000	17.220	34.470
Final Dry Gas Meter V	/olume, dry liters	17.220	34.470	52.730
Net Dry Gas Meter Volum	e (Vm), dry liters	17.220	17.250	18.260
Dry Gas Meter Temperatur	e, °C: Tamparatura °C			an a
Final Inlet	Temperature, °C	23.8	25.4	26.7
Initial Outlet T	emperature, C	20.3	20.7	28.0
Final Outlet T	"emperature", C			
Average Dry Gas Meter Tem	perature (tm) °C	24.6	26.1	
	Time seconds	600	630	£7.4 600
R	otameter Setting	142	142	142
Wet Test Meter Data	<u> </u>			
Initial Wet Test Meter Gas V	olume, wet liters	0.000	17.320	34.710
Final Wet Test Meter Gas V	olume, wet liters	17.320	34.710	52.900
Net Wet Test Meter Gas Volume	e (Vm), wet liters	17.320	17.390	18.190
Wet Test Meter Gas Tempera	ture, °F:			
Initial	Temperature, °F	70.5	70.5	70.5
Final	Temperature, °F	70.5	70.5	70.5
Average vvet Test Meter Gas Tem	perature (tm), °F	/0.5	/0.5	70.5
	re friet, in. w.c.	-2.8	-2.8	-2.8
Gas Flow Rate actual	dry liters/minute	1 70	1 63	1 00
Average Gas Flow Rate, actual	dry liters/minute	1.70	1.00	1.00
Dry Gas Meter Volume (Vm(sto	d)), drv std. liters	16.559	16 505	17 396
Wet Test Meter Gas Volume (Vm(sto	d)), dry std. liters	16.313	16.379	17.133
Dry Gas Meter Calib	ration Factor (Y)	0.985	0.992	0.985
Average Dry Gas Meter Calib	ration Factor (Y)	0.987		
CALIBRATION RESULTS COMPARIS	SON		47 m	
Criterion: Y Must Be Within 2% C	of Average Y			
Percent Difference Of Y	0.24%	0.50%	0.26%	
	i olerance Result	PASS	PASS	PASS
Critarion: V Must Ba Within 5% C	DULIO			
% Difference Of Average V	From Previous V	0.97%		
	Tolerance Result	PASS		

* For dry gas meters having only one thermocouple, temperatures are entered as inlet temperatures. Remarks:

VOSTCALB.WK4 09/11/95 (rev. 3V470108.WK4 08/27/98 02:44 PM)

Environics

Daniel A. Kaplinski Sales Engineer Environics Inc. 69 Industrial Park Road East Colland, CT 06084 (860) 872-1111 • FAX: (860) 870-9333 World Wide Web: http://www.environics.com E-mail: dkaplinski@environics.com Computerized Gas Mixing/Dilution/Calibration Systems

٠,

ISO - 9001 CERT. #97-1068

ENVIRONICS FLOW CONTROLLER CALIBRATION SHEET

Mf #: 1, Description: AIR

, Size: 10000. SCCM, K-factor: 1.0

· · ·

SERIAL # Aw9502156

This flow controller was calibrated using a Sierra Cal Bench(TM), a traceable Primary Flow Standard Calibration System. This calibration is referenced to dry air at a temperature of \mathcal{F} (__C) and a pressure of 29.92 in.Hg (760Torr).

> True Flow Set Flow 5 % SØØ.Ø CCM 468.02 CCM 10 % 971.62 CCM 1000.0 CCM 20 % 2000.0 CCM 1988.1 CCM 3000.0 CCM 3010.5 CCM 30 % 4.0 % 4*000.0* CCM 4033.6 CCM 50 % 5Ø57.8 CCM 5000.0 CCM 60 % 6000.0 CCM 6076.6 CCM 70 % 7100.2 CCM 7000.0 CCM 8113.5 CCM 3ø % 8000.0 CCM 90 % 9000.0 CCM 9125.9 CCM 100%10000. CCM 10149. CCM

Calibration data was last saved on Thursday 23 April 98 at 07:04:00

Verified by: Augun (-23 - 98 Date: 4-23 - 98

ENVIRONICS FLOW CONTROLLER CALIBRATION SHEET

Mf #: 2, Description: AIR

, Size: 10000. SCCM, K-factor: 1.0

SERIAL # AW9502157 This flow controller was calibrated using a Sierra Cal Bench(TM), a traceable Primary Flow Standard Calibration System. This calibration is referenced to

dry air at a temperature of 32F (__C) and a pressure of 29.92 in Hg (760Torr). True Flow Set Flow 477.98 CCM 5 % 500.0 CCM 983.77 CCM 10 % 1000.0 CCM 2ø % 3ø % 2000.0 CCM 1991.6 CCM 3000.0 CCM 3021.6 CCM 40 % 4027.6 CCM 4000.0 CCM 50 % 5000.0 CCM 5071.8 CCM 60 % 6063.2 CCM 6000.0 CCM

7*000.0* CCM

8000.0 CCM

9000.0 CCM

1*0000.* CCM

Calibration data was last saved on Thursday 23 April 98 at 07:51:00

7072.1 CCM

811Ø.2 CCM

9117.1 CCM

1Ø134. CCM

Verified by: Jugar Clin Date: 4 - 23 -98

70 %

80 %

90 %

100%

ENVIRONICS FLOW CONTROLLER CALIBRATION SHEET

, Size: 1000.0 SCCM, K-factor: 1.0 Mf #: 3, Description: AIR

SERIAL # Aw 9502153

This flow controller was calibrated using a Sierra Cal Bench(TM), a traceable Primary Flow Standard Calibration System. This calibration is referenced to dry air at a temperature of 32F (__C) and a pressure of 29.92 in.Hg (76%Topr).

> Set Flow True Flow 5 % 44.233 CCM 50.0 CCM 103 % 94.868 CCM 100.0 CCM \mathbb{Z} \mathbb{Z} \mathbb{Z} 200.0 CCM 196.38 CCM 300.0 CCM 30 % 298.36 CCM 400.0 CCM 500.0 CCM 4.61 % 399.54 CCM 50 % 498.17 CCM 60 % 600.0 CCM 598.72 CCM 703 % 700,0 CCM 678.88 CCM 779.52 CCM 30 % 8øø.ø – CCM 900.0 CCM 90 % 901.61 CCM 1*000.0* CCM 1003.6 CCM 1 % % %

Calibration data was last saved on Thursday 23 April 78 at 08:38:00

..

1.1.1

Verified by: Muy 200 Date: 4 - 23-98

ENVIRONTES FLOW CONTROLLER CALIBRATION SHEET

Mf #: 4, Description: AIR

, Size: 100.0 SCCM, K-factor: 1.0

SERIAL # AW 9612049

This flow controller was calibrated using a Sierra Cal Bench(TM), a traceable Primary Flow Standard Calibration System. This calibration is referenced to dry air at a temperature of 32F (__C) and a pressure of 29.92 in.Hg (760Torr).

> . True Flow Set Flow 5.013 CCM 5 % S.Ø CCM 10.033 CCM 10.00 CCM 10 % 20 % 二回 。 创 \Box 20.078 CCM CCM 30.135 CCM 30 % 30.0 40.0 CCM 50.0 CCM 40.196 CCM 401 % 50.254 CCM 50 % 60 % 60.0 CCM 60.312 CCM 70.371 CCM 70 % 7Ø.Ø CCM 80.0 CCM 90.0 CCM 90.44 CCM 80 % 3Ø.Ø 90,504 CCM 90 % 1*00.0* CCM 100.57 CCM 100%

Calibration data was last saved on Thursday 23 April 98 at 13:28:00

. . '

Verified by: Ing Milin Date: 4 - 23 - 98

Certificate of Analysis - EPA Protocol Gas Standard						Page 1 of 1
PERFORMED ACCOR	RDING TO EPA TRACEABILITY PROTOCOL	FOR ASSAY	AND CERTIFICATION OF GASEOUS	CALIBRATION	I STANDARDS (
Customer: AIR PRODUCTS 518 CAMDEN ST	AND CHEMICALS, INC.			Order Batch	No:	312-020638-01 861-33582
PARKERSBURG	WV 26101- Rel:			Cylir Cylir Certi Evnir	der No: der Pressure fication Dat	SG9168085BAL *: 2000 psig e: 08/05/96
*** Certified C Component PROPANE	Concentration *** ******** Reference Certified <u>Concentration</u> Cylinder # 3690 ±23 PPM SG9164860BAL	ence Standar Standard <u>Number</u> GMIS	rds ********* **************************	Analytical Serial <u>Number</u> 59405U	Instrumentat Last Calibration 07/20/96 G	ion ************************************
Balance Gas: NI * Standard s	TROGEN should not be used below 150 psig					

Andle Analyst: James Laas

Approved By:

Richard Fry
AIR PRODUCTS AND CHEMICALS, INC. DATE: 06/17/98 SPECIALTY GAS DEPARTMENT TIME: 09:40 12722 Se WENTWORTH AVENUE PAGE: 1 CHIGAGO, IL 60628 TELEPHONE (312) 785-3000 FAX (312) 785-3008 ***** * CERTIFICATE OF ANALYSIS * ****** AIR PRODUCTS & CHEMICALS, INC CUSTOMER ACCOUNT : 375 13701 GREEN ASH COURT CUSTOMER ORDER NO : EARTH CITY MO 53045-CUST ORD LINE/REL : ORDER NO : 375-039909-01 ------

a second s

REMARKS : In accordance with our internal work instruction A-3, products below are traceable to NIST.

CERTIFIED GAS MIXTURE: HYDROGEN IN HELIUM

FILL\						P	NALYTICAL	Ĺ+	
BATCH ANALYSIS	BAR		COMPONENT	CAS	CONCENTRATION	ANALYTICAL	ACCURACY	UNIT OF	LAB
NO DATE	CODE	CYLINDER NO	REQUESTED	NUMBER	REQUESTED	RESULT	(+/-)	MEASURE	MET
861-47678A	Chica	igo Spec Gas							
06/11/98	DDP978	SG10397B	HYDROGEN	1333-74-0	40	39.3	18	MOLAR %	09
			HELIUM	7440-59-7		Balance			
	DJK992	SG137455	HYDROGEN	1333-74-0	40	39.3	1%	MOLAR 🕏	09
			HELIUM	7440-59-7		Balance			
	DRG647	SG303336	HYDROGEN	1333-74-0	40	39.3	18	MOLLAR %	09
			HELIUM	7440-59-7		Balance			
	DJL316	SG7002B	HYDROGEN	1333-74-0	40	39.3	1%	MOLAR %	09
			HELIUM	7440-59-7		Balance			
	DFQ531	SGKK064	HYDROGEN	1333-74-0	40	39.3	18	MOLAR 3	09
			HELIUM	7440-59-7		Balance			

+ Analytical Accuracy may vary for mixtures containing components which present adsorption, stability, or other blending problems.

LIST OF LAB METHODS USED : 09 GC-TCD

Scott Specialty Gases

6141 EASTON ROADEShippedPLUMSTEADVILLEPA 18949-0310From:Phone: 215-766-8861E

PO BOX 310 Fax: 215-766-2070

CERTIFICATE OF ANALYSIS

MIDWEST RESEARCH SCOTT KLAMM 425 VOLKER BLVD

_ _ _ _ _ _ _ _ _ _

PROJECT #: 01-01788-001 PO#: 033452 ITEM #: 0102S3000815AL DATE: 4/07/98

KANSAS CITY

MO 64110

CYLINDER #: AAL17264 FILL PRESSURE: 1280 PSIG

ANALYTICAL ACCURACY: +/-5%

BLEND TYPE : CERTIFIED WORKING STD

COMPONENT	REQUEST CONC	ED GAS MOLES	ANALYS (MOI	SIS LES)
SULFUR HEXAFLUORIDE	4.	PPM	3.83	PPM
TOLUENE NITROGEN	100.	PPM BALANCE	105.	PPM BALANCE

ANALYST: <u>T. LUD</u>WIG wew.

	Scott	Specialty C	iase	s				
A	shipped	6141 EASTON RC PLUMSTEADVILLE	AD	PA	1894	9-0310	PO BOX 310	
	From:	Phone: 215-766	-886	1			Fax: 215-766-2070	
		CERTIFI	CA	ΤE	OF	ΑΝΑ	LYSIS	
	MIDWEST RES SCOTT KLAMN 425 VOLKER	SEARCH M BLVD					PROJECT #: 01-01788-004 PO#: 033452 ITEM #: 01023822 5AL	
	KANSAS CITY	Z	MO	64110			DATE: 4/07/98	

CYLINDER #: ALM033887 ANALYTICAL ACCURACY: +/-5% FILL PRESSURE: 2000 PSIG

BLEND TYPE : CERTIFIED WORKING STD

COMPONENT	REQUESTED GAS CONC MOLES	ANALYSIS (MOLES)
SULFUR HEXAFLUORIDE	.2 PPM	0.205 PPM
NITROGEN	BALANCE	BALANCE

ANALYST: <u>AL ROJAS</u> <u>sjen</u>

MIDWEST RESEARCH	CERTIFI	CATE OF ANALYS
CAS Reg. Component No	Somponent	Centified Bhaidsis
2551-52-4 7727-37-9	SULFUR HEXAFLUORIDE NITROGEN	2 20 PCT/4 SPL
Pnaiytical Accuracy +/-5% Grade CERTIFIED WORKING S	Pnalysis Date 04/02/98 Analyst B LEWIS, JR TO	Project No 81-81788 Gjilnder No. 99L:3338 Item No 8102382302 BP
Reorder/Service Contact	.215)766-8861 PLUMS	TEADVILLE PO 18949

	CERTIFIC	CATE OF ANALYSIS		
11DNEST RESEARCH	ეი	PO No. 033452		
CAS Reg Component No.	Component	Certiî:ed Analysis		
2551-62-4 7727-37-9	SULFUR HEXAFLUORIDE NITROGEN	1.99 PCT/M 3AL		
Analytical Accuracy -7-5% Brade CERTIFIED WORKING ST	Analysis Date 04/02/98 Analyst 8 ⊥EWIS, JR. D	Project No 01-01788 Cylinder No. ALM013870 Item No.0102392302 SAL		

IIDWEST REBEARCH	CERTIF	FICATE OF ANALYS IN: 853452
98 Reg Component No	Component	Centified Analysis
1037-28-5 1727-37-8	TOLUENE DB N: TROGEN	te e eoman BPL
Analytical Accuracy +/-5% Brade CERTIFIED WORKING ST	Analysis Date 04-02799 Phalysi GENYA KOGUT D	Phojest No 01-01795 Oglinden No -4LM001809 Item No 0102720147256L