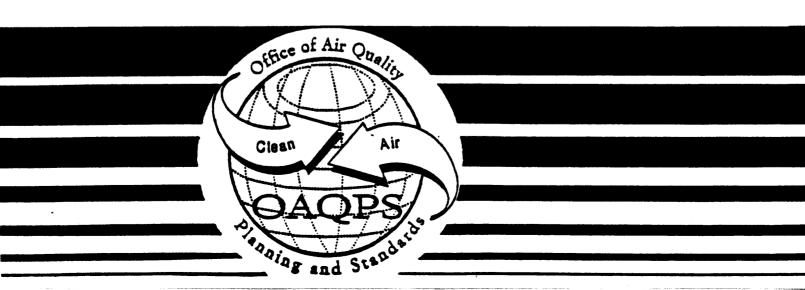
AIR



Final Report

Hot Mix Asphalt Plants
Truck Loading and Silo Filling
Manual Methods Testing

Asphalt Plant C Los Angeles, California

Volume 2 of 8

FINAL REPORT

HOT MIX ASPHALT PLANTS TRUCK LOADING AND SILO FILLING MANUAL METHODS TESTING ASPHALT PLANT C, LOS ANGELES, CALIFORNIA

VOLUME 2 OF 8 APPENDIX B

EPA Contract No. 68-D-98-004 Work Assignment No. 3-02

Prepared for:

Mr. Michael L. Toney (MD-19)
Work Assignment Manager
SMTG, EMC, OAQPS
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711

May 2000

Submitted by

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300
Post Office Box 12077
Research Triangle Park, NC 27709-2077
(919) 941-0333
FAX (919) 941-0234

DISCLAIMER

The information in this document has been funded wholly or in part by the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA) under contract to Pacific Environmental Services, Inc. (PES). PES performed the work presented in this document under three EPA contracts and seven Work Assignments; EPA Contract No. 68-D-98-004, Work Assignment Nos. 1-08, 2-07, 3-02, and 3-05, EPA Contract No. 68-D-70002, Work Assignment Nos. 0-05 and 1-07, and EPA Contract No. 68-D-70069, Work Assignment No. 2-16. This document has been prepared by PES, reviewed following PES' internal quality assurance procedures, and approved by PES for distribution. This document has been subjected to the Agency's review, and has been approved by EPA for publication as an EPA document. Mention of trade names does not constitute endorsement by the EPA or PES.

TABLE OF CONTENTS

<u>VOL</u>	UME 1		Page
1.0	INTF	RODUCTION	1-1
2.0	SUM	IMARY OF TEST RESULTS	2-1
	2.1	OVERVIEW	2-1
	2.2	TREATMENT OF NON-DETECTS AND ESTIMATES	2-2
	2.3	TUNNEL EXHAUST DUCT	
	2.4	SILO EXHAUST DUCT RESULTS	. 2-12
	2.5	PM AND MCEM DEPOSITION ESTIMATES	
	2.6	METEOROLOGICAL STATION RESULTS	. 2-15
3.0	PRO	CESS DESCRIPTION	3-1
	3.1	COORDINATION BETWEEN TESTING AND PROCESS	
		OPERATIONS	
	3.2	PROCESS MONITORING DURING TESTING	
	3.3	PROCESS SAMPLES	3-4
	3.4	VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS	
		DURING LOAD-OUT	3-5
4.0	SAM	IPLING LOCATIONS	4-1
	4.1	TUNNEL EXHAUST DUCT	4-1
	4.2	SILO EXHAUST DUCT	4-1
5.0	SAM	IPLING AND ANALYTICAL PROCEDURES	5-1
	5.1	LOCATION OF MEASUREMENT SITES AND	
		SAMPLE/VELOCITY TRAVERSE POINTS	5-1
	5.2	DETERMINATION OF EXHAUST GAS VOLUMETRIC	
		FLOW RATE	5-1
	5.3	DETERMINATION OF EXHAUST GAS DRY MOLECULAR	
		WEIGHT	
	5.4	DETERMINATION OF EXHAUST GAS MOISTURE CONTENT	5-3

TABLE OF CONTENTS (CONTINUED)

VOL	UME 1	(CONTINUED)	Page
	5.5	DETERMINATION OF PM AND MCEM	5-3
	5.6	DETERMINATION OF VOHAPs	5-3
	5.7	DETERMINATION OF SVOHAPs	
	5.8	DETERMINATION OF WIND SPEED, WIND DIRECTION,	
	0.0	AMBIENT TEMPERATURE, AND AMBIENT HUMIDITY	5-7
	5.9	ESTIMATE OF PM AND MCEM ON THE CEILING	
	0.15	OF THE LOAD-OUT TUNNEL DOWNSTREAM OF SILO NO. 5	5-7
	5.10	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
	0.110	WALLS OF THE SILO NO. 2 EXHAUST PLENUM	5-9
	5.11	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
	0.11	WALLS OF THE SILO EXHAUST DUCT	5-9
	5.12	ESTIMATE OF PM AND MCEM DEPOSITION ON THE INSIDE	
	3.12	WALLS OF THE TUNNEL EXHAUST DUCT	. 5-10
6.0	OUA	LITY ASSURANCE/QUALITY CONTROL (QA/QC) PROCEDURES	
		RESULTS	6-1
			- 1
	6.1	CALIBRATION AND PREPARATION OF APPARATUS	
	6.2	REAGENTS AND GLASSWARE PREPARATION	
	6.3	ON-SITE SAMPLING	
	6.4	SAMPLE RECOVERY	
	6.5	LABORATORY ANALYTICAL QA/QC PROCEDURES	
	6.6	QA COORDINATOR FIELD AUDIT	6-7
APPI	ENDIX	A - TEST RESULTS AND CALCULATIONS	1
	A.1	TED TEST RESULTS	3
	A.2	SED TEST RESULTS	
	A.3	EXAMPLE CALCULATIONS	
	A.4		
	A.5		
	11.5	Chi Total Bi Tiollive i Gille e Bi Tiolive i Tivi Vivivivivivi	
VOL	UME 2		
APPI	ENDIX	B - PROCESS DATA	1
	B.1	PRODUCTION RECORDS FOR 7/24/98 THROUGH 7/28/98	3
		PRODUCT STORAGE RECORDS FOR 7/25/98 THROUGH 7/28/98	

TABLE OF CONTENTS (CONTINUED)

VOLUME 2 (CONTINUED)

AP	PEND	IXI	B -]	PRO	CESS	DATA	(CONT	INUED)
----	------	-----	-------	-----	------	------	-------	--------

B.3	LOAD-OUT RECORDS USED IN TED EMISSION CALCULATIONS 19
B.4	LOAD-OUT RECORDS FOR 6/18/98 THROUGH 7/26/98
B.5	LOAD-OUT RECORDS FOR 7/24/98 THROUGH 7/28/98 44
B.6	SILO NO. 2 LOAD-IN RECORDS USED IN SED EMISSION
	CALCULATIONS 68
B.7	ASPHALT TEMPERATURES AT LOAD-OUT 90
B.8	MASS CHANGE RESULTS FROM ASTM TESTS PERFORMED ON
	ASPHALT CEMENT SAMPLES 93
B.9	VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS
2.5	DURING LOAD-OUT
B.10	METALS ANALYSIS OF PROCESS SAMPLES
D.110	
VOLUME 3	
APPENDIX (C - FIELD DATA 1
C.1	TED FIELD DATA 2
C.2	SED FIELD DATA 59
C.3	METEOROLOGICAL STATION DATA 89
C.4	ON-SITE GC/MS REPORT AND DATA
APPENDIX :	D - QA/QC DATA
APPENDIX :	E - PROJECT PARTICIPANTS
APPENDIX	F - TEST METHODS
F.1	EPA METHOD 1
F.2	EPA METHOD 1A
F.3	EPA METHOD 2
F.4	EPA METHOD 4
F.5	EPA METHOD 18
F.6	EPA METHOD 315
F.7	SW-846 METHOD 0010
F.8	SW-846 METHOD 0030

TABLE OF CONTENTS (CONCLUDED)

VOLUME 4	
APPENDIX (G - ANALYTICAL DATA 1
G.1 G.2	PM AND MCEM DATA
VOLUME 5	
APPENDIX (G - ANALYTICAL DATA (CONTINUED)
G.3	SVOHAPS DATA 659
VOLUME 6	
APPENDIX (G - ANALYTICAL DATA (CONTINUED) 1248
G.3	SVOHAPS DATA (CONCLUDED)
VOLUME 7	
APPENDIX (G - ANALYTICAL DATA (CONTINUED)1a
G.4	VOHAPS DATA1c
VOLUME 8	
APPENDIX (G - ANALYTICAL DATA (CONCLUDED)1a
G.4 G.5	VOHAPS DATA (CONCLUDED)

LIST OF TABLES

	<u>Page</u>
Table 1.1 Table 1.2	Test Log Tunnel Exhaust Duct, Asphalt Plant C - California
Table 2.1	Summary of Results, Production Emissions for PM, MCEM, PAH, SVOHAP and VOHAP, Asphalt Plant C, California - July 1998 2-3
Table 2.2	Summary of Results, Average PM and MCEM Emissions, Asphalt Plant C, California - July 1998
Table 2.3	Summary of Results, Average PAH and SVOHAP Emissions,
Table 2.4	Asphalt Plant C, California - July 1998
Table 2.5	Asphalt Plant C, California - July 1998
Table 2.6	Emissions, Silo Exhaust Duct - Asphalt Plant C, California, July 1998 2-7 PM and MCEM Emissions Sampling and Exhaust Gas Parameters
Table 2.7	Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California 2-16 PM and MCEM Exhaust Gas Concentrations and Emission Rates, Normal
Table 2.8	Operations, Tunnel Exhaust Duct, Asphalt Plant C - California 2-17 PAHs and Semi-Volatile Organics Emissions Sampling and
	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California
Table 2.9	PAHs Exhaust Gas Concentrations and Emission Rates, Normal Operations Tunnel Exhaust Duct, Asphalt Plant C - California 2-19
Table 2.10	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,
Table 2.11	Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California 2-21 Volatile Organics - SW-846 Method 0030 Emissions Sampling and
	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California
Table 2.12	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations and Emission Rates, Normal Operation, Tunnel Exhaust Duct,
Table 2.13	Asphalt Plant C - California
	Exhaust Gas Parameters, Normal Operations, Tunnel Exhaust Duct, Asphalt Plant C - California
Table 2.14	Volatile Organics - EPA Method 18 Exhaust Gas Concentrations and Emission Rates, Normal Operations, Tunnel Exhaust Duct,
Table 2.15	Asphalt Plant C - California
1 autc 2.13	Emission Rates with Vost (SW-846 Method 0030) and EPA Method 18
Table 2.16	Comparison, Tunnel Exhaust Duct, Asphalt Plant C - California 7/24/98 . 2-38 PM and MCEM Emissions Sampling and Exhaust Gas Parameters,
	Background Condition Tunnel Exhaust Duct Asphalt Plant C - California 2-39

LIST OF TABLES (CONTINUED)

Page

Table 2.17	PM and MCEM Exhaust Gas Concentrations and Emission Rates,
	Background Condition, Tunnel Exhaust Duct, Asphalt Plant C - California 2-40
Table 2.18	PAHs and Semi-Volatile Organics Emissions Sampling and Exhaust Gas
	Parameters Background Condition, Tunnel Exhaust Duct,
	Asphalt Plant C - California
Table 2.19	PAHs Exhaust Gas Concentrations and Emission Rates, Background
	Condition, Tunnel Exhaust Duct, Asphalt Plant C - California 2-42
Table 2.20	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,
	Background Condition, Tunnel Exhaust Duct, Asphalt
	Plant C - California 2-44
Table 2.21	Volatile Organics - SW-846 Method 0030 Emissions Sampling and
	Exhaust Gas Parameters, Background Condition, Tunnel Exhaust Duct,
	Asphalt Plant C - California
Table 2.22	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations
	and Emission Rates, Background Condition, Tunnel Exhaust Duct,
	Asphalt Plant C - California
Table 2.23	Volatile Organics - EPA Method 18 Emissions Sampling and Exhaust Gas
	Parameters, Background Condition, Tunnel Exhaust Duct, Asphalt
	Plant C - California
Table 2.24	Volatile Organics - EPA Method 18 Exhaust Gas Concentrations and
	Emission Rates, Background Condition, Tunnel Exhaust Duct,
	Asphalt Plant C - California
Table 2.25	Sample Log Silo Exhaust Duct, Asphalt Plant C - California 2-61
Table 2.26	PM and MCEM Emissions Sampling and Exhaust Gas Parameters,
	Silo Exhaust Duct, Asphalt Plant C - California
Table 2.27	PM and MCEM Exhaust Gas Concentrations and Emission Rates,
	Silo Exhaust Duct, Asphalt Plant C - California
Table 2.28	PAHs and Semi-Volatile Organics Emissions Sampling and Exhaust Gas
	Parameters, Silo Exhaust Duct, Asphalt Plant C - California 2-64
Table 2.29	PAHs Exhaust Gas Concentrations and Emission Rates, Silo Exhaust Duct,
	Asphalt Plant C - California
Table 2.30	Semi-Volatile Organics Exhaust Gas Concentrations and Emission Rates,
	Silo Exhaust Duct, Asphalt Plant C - California
Table 2.31	Volatile Organics - SW-846 Method 0030 Emissions Sampling and
	Exhaust Gas Parameters, Silo Exhaust Duct, Asphalt Plant C - California . 2-76
Table 2.32	Volatile Organics - SW-846 Method 0030 Exhaust Gas Concentrations
	and Emission Rates, Silo Exhaust Duct, Asphalt Plant C - California 2-77
Table 2.33	On-Site GC/MS Volatile Organics Exhaust Gas Concentrations and
	Emission Rates with Vost (SW-846 Method 0030) Comparison,
	Silo Exhaust Duct, Asphalt Plant C - California 7/25/98 2-82

LIST OF TABLES (CONCLUDED)

	<u>Page</u>
Table 2.34 Table 2.35	PM and MCEM Deposition Estimates, Asphalt Plant C - California 2-83 Meteorological Data Summary, Asphalt Plant C - California 2-84
Table 3.1 Table 3.2	Load-out Data Used in TED Emission Calculations
Table 3.3 Table 3.4 Table 3.5	Asphalt Temperatures at Load-out, Asphalt Plant C, California
Table 3.6	California
1 4010 3.0	California 3-11
Table 5.1	Summary of Sampling and Analytical Methods, Asphalt Plant C, California
Table 6.1	Summary of Temperature Sensor Calibration Data 6-8
Table 6.2	Summary of Pitot Tube Dimensional Data
Table 6.3	Summary of Dry Gas Meter and Orifice Calibration Data 6-10
Table 6.4	Summary of EPA Method 315 and SW-846 Method 0010
	Field Sampling QA/QC Data 6-11
Table 6.5	Summary of EPA Method 315 Blank Sample Catches 6-12
Table 6.6	SW-846 Method 0010 PAHs Field and Laboratory Blanks Results,
Table 6.7	Tunnel Exhaust Duct
Table 6.7	Silo Exhaust Duct
Table 6.8	SW-846 Method 0010 PAHs Surrogate Recovery Results,
	Tunnel Exhaust Duct
Table 6.9	SW-846 Method 0010 Semi-Volatile Surrogate Recovery Results
	Tunnel Exhaust Duct 6-16
Table 6.10	SW-846 Method 0010 PAHs Surrogate Recovery Results,
	Silo Exhaust Duct
Table 6.11	SW-846 Method 0010 Semi-Volatile Surrogate Recovery Results
	Silo Exhaust Duct
Table 6.12	SW-846 Method 0030 Field and Laboratory Blanks Results
T 11 6 12	Tunnel Exhaust Duct
Table 6.13	SW-846 Method 0030 Laboratory Blank Results, Silo Exhaust Duct 6-20
Table 6.14	SW-846 Method 0030 Surrogate Recovery Results Tunnel Exhaust Dust 6-21
Table 6 15	Tunnel Exhaust Duct
Table 6.15	Silo Exhaust Duct

LIST OF FIGURES

	<u>Page</u>
Figure 1.1	Project Organization - US EPA Hot Mix Asphalt Load-out Operation, Asphalt Plant C, California
Figure 2.1	Load-out Tunnel and MET Station Location and Average Wind Direction 2-85
Figure 3.1 Figure 3.2	Process Flow Schematic, Asphalt Plant C, California
Figure 4.1 Figure 4.2	Tunnel Exhaust Duct Sampling Locations, Asphalt Plant C, California 4-2 Tunnel Exhaust Duct Traverse Point Locations, Asphalt Plant C, California
Figure 4.3 Figure 4.4	Silo Exhaust Duct Sampling Locations, Asphalt Plant C, California 4-4 Silo Exhaust Duct Traverse Point Locations, Asphalt Plant C, California 4-5
Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4	EPA Method 315 Sampling Train Schematic5-4SW-846 Method 0030 Sampling Train Schematic5-6SW-846 Method 0010 Sampling Train Schematic5-8Location of TED Deposition Test Plates T1, T2, and T35-11

GLOSSARY OF TERMS

ASIM –	American S	Society for	lesting and	Materials
CEMS -	Continuous	Emissions	Monitoring	System

CTS – Calibration Transfer Standard

EMC – Emissions Measurement Center

EMAD – Emission Monitoring and Analysis Division

ESP - Electrostatic Precipitator

FID - Flame Ionization Detector

FTIR - Fourier Transform Infrared Spectroscopy

HAP – Hazardous Air Pollutant

MCEM – Methylene Chloride Extractable Matter

MRI - Midwest Research Institute

PES - Pacific Environmental Services

PM - Particulate Matter

PTE – Permanent Total Enclosure

RAP - Recycled Asphalt

RTFOT – Rolling Thin Film Oven Test

SED - Silo Exhaust Duct

GLOSSARY OF TERMS (CONTINUED)

SMTG – Source Measurement Technology Group SVOHAP – Semi-Volatile Organic Hazardous Air Pollutant TED – Tunnel Emissions Duct TFOT – Thin Film Oven Test THC – Total Hydrocarbons VOHAP – Volatile Organic Hazardous Air Pollutant VOST – Volatile Organic Sampling Train

VOLUME 2

APPENDIX B

PROCESS DATA

- B.1 PRODUCTION RECORDS FOR 7/24/98 THROUGH 7/28/98
- B.2 PRODUCT STORAGE RECORDS FOR 7/25/98 THROUGH 7/28/98
- B.3 LOAD-OUT RECORDS USED IN TED EMISSION CALCULATIONS
- B.4 LOAD-OUT RECORDS FOR 6/18/98 THROUGH 7/26/98
- B.5 LOAD-OUT RECORDS FOR 7/24/98 THROUGH 7/28/98
- B.6 SILO NO. 2 LOAD-IN RECORDS USED IN SED EMISSION CALCULATIONS
- B.7 ASPHALT TEMPERATURES AT LOAD-OUT, 7/24/98 THROUGH 7/28/98
- B.8 MASS CHANGE RESULTS FROM ASTM TESTS PERFORMED ON ASPHALT CEMENT SAMPLES
- B.9 VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS DURING LOAD-OUT
- B.10 METALS ANALYSIS OF PROCESS SAMPLES

APPENDIX B.1

PRODUCTION RECORDS FOR 7/24/98 THROUGH 7/28/98

Pacific Environmental Services

Client/Source:

Asphalt Plant C

Date: 7/24/98

		1	Recycle	1	<u> </u>	41 44	Γ'''	 	T	Γ		<u> </u>			Data Re	corded By:	JHL
Time	Natural Gas Rate (ACFM)	Aggregate Feed Rate (TPH)	(RAP) Feed Rate (TPH)	% RAP in mix	Rubber Feed Rate (TPH)	Liquid Asphalt Feed Rate (TPH)	Liquid Asphait Type	Mix Rate (TPH)	Product Code	Liquid Asphalt Temp. (F)	Burner Pos. (%)	Mix Temp. (F)	Cyclone Entrance Temp. (F)	Dryer Pressure (in Hg)	Baghouse Exit Temp. (F)	Pressure Drop	Exhaust Fan Amperage (amps) fan 1 / fan 2
6:34 AM	784	184.6	80.27	28.8	0	14	4000	278.9	2C	329	12.5	340	210	0.29	209	0	75/79
7:00 AM	841	295.1	0	0	0	15.6	4000	310.7	2	329.3	16	329.7	217	0.27	206	0	75/80
7:29 AM	1320	458.2	0	0	0	24.2	4000	482.4	2	331.8	37.3	319.2	332	0.31	280	0	81/88
8:00 AM	941	409.3	0	0	0	21.2	4000	430.5	2	332.2	21	323.7	268	0.33	283	0	75/79
8:30 AM	1040	383.5	0	0	0_	21	4000	404.5	4	332	27	323.3	280	0.28	262	0	80/80
9:00 AM	915	328.9	0	0	0	18	4000	346.9	4	331.6	22	314.9	262	0.27	245	0	75/77
9:37 AM	878	322	_ 0	0	0	16.7	4000	338.7	2	330.7	15	316.1	220	0.31	220	0	75/80
10:07 AM	847	322.6	0	0	0	16.7	4000	339.3	2	330.5	17	325.4	227	0.31	219	0	73/80
10:41 AM	974	328.6	0	0	0	18	4000	346.6	4	333.2	19.5	323.5	228	0.31	220	0	80/80
11:07 AM	899	319	0	0	0	16.6	4000	335.5	2	327.6	17.5	325	229	0.3	221	0	76/80
11:37 AM	945	320.2	0	0	0	16.6	4000	336.8	2	326.5	17.5	329.5	230	0.32	222	0	75/80
12:07 PM	913	319.9	0	0	_0	16.6	4000	336.5	2	326.3	17.5	331.4	229	0.31	223	0	75/78
12:37 PM	920	320.4	0	0	0	16.6	4000	337	2	328.3	17.5	331	228	0.31	221	0	73/78
1:07 PM	858	320.2	0	0	0	16.6	4000	336.8	2	330.2	17.5	332.7	228	0.27	223	0	73/75
										330.0		326.1	Average				
												.,,					

Pacific Environmental Services

Client/Source:

Asphalt Plant C

Date: Data Recorded By:

7/25/98 JHL

	Natural Gas Rate (ACFM)	Aggregate Feed Rate (TPH)	Recycle (RAP) Feed Rate (TPH)	% RAP	Rubber Feed Rate (TPH)	Liquid Asphalt Feed Rate (TPH)	Liquid Asphalt Type	Mix Rate (TPH)	Product Code	Liquid Asphalt Temp. (F)	Burner Pos. (%)	Mix Temp. (F)	Cyclone Entrance Temp. (F)	Pressure	Baghouse Exit Temp. (F)	Pressure Drop	Exhaust Fans Amperage (amps) fan 1 / fan 2
Time		<u> </u>			0	4.4	4000	92.7	4C	319.4	11	326.6	210	0.33	205	0	75 <i>1</i> 75
6:12 AM	700	69	18.9	20.4			4000	272	2	321.1	15.1	315.7	178	1.84	191	0	88/92
6:30 AM	0	178.8	79.8	29.3	0	13.4		 	2C	321.7	14	312.1	228	0.28	203	0	75/78
7:10 AM	745	181.3	82.7	29.8	0	13.7	4000	277.7			17.6	326.1	237	0.27	213	0	75/80
7:40 AM	834	183.2	82.7	29.6	0	13.8	4000	279.7	2C	321.7			281	0.31	255	0	74/79
8:11 AM	950	261.2	110.7	28.2	0	20.4	4000	392.3	4C	325.6	21.4	338		-	242	0	73/79
8:41 AM	927	241.6	88.9	25.5	0	18.1	4000	348.6	4C	326.2	`19	336.9	251	0.31	 	 	74/75
9:11 AM	710	182.4	81.7	29.4	0	13.7	4000	277.8	2C	324.8	12	324.2	221	0.32	219	0_	
9:41 AM	710	182.7	80.9	29.2	0	13.7	4000	277.3	2C	325.2	11	317.6	209	0.28	209	0	72/76
10:11 AM	733	177.2	78.6	29.2	0	13.2	4000	269	2C	325.6	11.6	323.8	218	0.29	210	0	73/75
10:41 AM	741	196.4	87.2	29.2	0	14.7	4000	298.3	2C	327.5	13	327.6	228	0.29	219	0	71/74
11:10 AM	854	185.5	82.1	29.2	0	13.8	4000	281.4	2C	328	10.5	307.8	208	0.28	208	0	71/73
		shut down	<u> </u>														
	ļ — —		0.2	31.7		0.03	4000	0.63	2C	329.8	29.1	216.2	206	0.23	194	0	71/74
12:02 PM		0.41	+	+		14	4000	+	+	330	15	336.6	232	0.29	219	0	71/72
12:40 PM	812	207.7	82.5	27.1	0	+	1	 	2C	331.2		329.8	 	0.29	242	0	72/75
1:13 PM	880	255.86		— —	+	19.1	4000	+	 		 	324.8	+	0.27	251	0	72/75
1:42 PM	899	292.7	113.2	26.5	0	21	4000	426.9	2C	332	20	324.0	252	0.21	251	 	
				<u> </u>		<u> </u>	-			325.7	,	324.8	Av	erage			
	 	-	 	+		 	1	1			1						
<u> </u>	-	-	 	<u> </u>	 		 			1	1						
	_	_	+-	+	+	 	+				1 -	1	1 -		<u> </u>		

Pacific Environmental Services

Client/Source:

Asphalt Plant C

Date: 7

7/27/98

Data Recorded By: JHL Recycle Liquid Natural (RAP) Rubber Asphalt Liquid Gas Aggregate Baghouse Feed **Exhaust Fans** Feed Feed Liquid Burner Asphalt Mix Cyclone Drver Baghouse Rate Feed Rate Pressure Rate % RAP Amperage Rate Rate Asphalt Mix Rate Product Temp. Pos. Temp. Entrance (ACFM) Pressure Exit Time (TPH) Drop (TPH) in mix (TPH) (amps) (TPH) Type (TPH) Code (%) (F) Temp. (F) (in Hg) Temp. (F) (in Hg) fan 1 / fan 2 6:30 AM 1190 0.9 0 0.0 0 3.6 4000 1.36 2C 319.3 249 316.1 271 0.33 231 78/81 6:59 AM 1190 342.8 140.3 27.6 0 24.6 4000 507.7 2C 321.9 31.3 324.7 341 0.28 306 0 78/81 7:36 AM 978 349.4 145.7 28.0 0 25.6 4000 520.7 327.6 2C 27 325.5 325 0.3 319 0 75/80 7:55 AM 1280 476.9 0 0.0 0 24.6 4000 501.5 2C 332.9 37 307.4 341 0.25 298 0 78/82 8:33 AM 1400 348.4 130.6 25.9 0 24.8 4000 503.8 2C 339.9 35.1 325.4 368 0.33 332 0 75/81 8:57 AM 1330 366.84 150.9 27.7 0 26.8 4000 544.6 2C 342.5 36 329.4 354 0.22 329 0 78/83 9:27 AM 1530 386.3 162 28.1 0 28.4 4000 576.6 2C 346.3 40.1 317.6 365 0.25 336 0 80/90 9:57 AM 1470 367.8 154.9 28.2 0 27.1 4000 549.8 2C 346.5 337.2 40 372 0.22 343 n 80/88 10:27 AM 1330 366.2 152.8 28.0 0 26.9 4000 545.9 2C 346.9 40 338.5 373 0.27 344 0 80/87 10:57 AM 1190 385.6 144.5 25.9 0 27.5 4000 2C 557.5 349 40 331.1 370 0.27 345 0 80/88 11:27 AM 1430 387.1 157.9 27.5 0 28.2 4000 573.2 2C 348.9 324.2 40 373 0.29 347 0 79/85 11:57 AM 1420 556 37.9 6.1 0 30.6 4000 624.4 2C 352.5 39.5 309.6 357 0.34 331 0 80/89 12:27 PM 1360 366.9 152.9 28.0 0 27 4000 546.9 2C 352.5 33 307.5 388 0.4 356 0 80/88 12:57 PM 1210 356.7 161.7 29.7 0 26.9 4000 545.2 2C 360.9 38.4 318.6 370 0.22 343 0 78/80 1:27 PM 1300 356.4 158.5 29.3 0 26.7 4000 541.5 2C 358 26.5 313 318 0.52 305 0 79/83 1:57 PM 1120 457.1 60 11.0 0 26.7 4000 543.3 2C 363.4 33.4 331.6 289 0.3 323 0 80/85 2:27 PM 881 374.7 0 0.0 0 19.5 4000 394.2 362.5 17.6 326.5 230 0.25 253 0 72/77 345.4 322.6 Average

Pacific Environmental Services 7/28/98 Date: Asphalt Plant C Client/Source: JHL Data Recorded By: Liquid Recycle Exhaust Fans Baghouse Liquid Asphalt Rubber (RAP) Natural Amperage Baghouse Pressure Burner Mix Cyclone Dryer Asphalt Liquid Feed Feed Feed Aggregate Gas (amps) Drop Exit Entrance Pressure Asphalt | Mix Rate | Product Temp. Pos. Temp. % RAP Rate Rate Rate Feed Rate Rate fan 1 / fan 2 Temp. (F) (in Hg) Temp. (F) (in Hg) (F) (%) (F) (TPH) Code (TPH) (TPH) Type in mix (TPH) (ACFM) (TPH) Time 73/80 0 0.31 281 306 339.2 34.3 327.5 4000 309.5 **2B** 0 16.22 18.8 234.4 58.3 1160 6:46 AM 73/79 0 0.28 286 277 348.1 389.1 2C 347.5 20 4000 19.16 0 258.4 111.6 28.7 1090 7:16 AM 74/80 247 0 267 0.3 320.4 359.7 2C 347.1 22 4000 0 17.7 28.3 240.1 101.8 1090 7:46 AM 75/80 286 0 0.29 324 319 348.5 28.3 418.6 2C 4000 20.6 0 277.9 120.1 28.7 1000 8:17 AM 75/80 0 0.32 315 349 352.5 34 335.2 4000 478.6 2C 0 23.6 28.6 317.9 137.1 1380 8:46 AM 322 0 73/80 0.25 347 33 335 4000 474.9 2C 354.5 0 23.4 28.6 315.9 135.7 1180 9:16 AM 0 73/80 330 0.29 355 33 336 4C 356.7 8000 445.7 0 23.11 297.8 124.8 28.0 9:34 AM 1160 75/80 0 289 0.27 336.2 292 286.4 33.5 8000 494.6 10 29.4 13.2 0 399.8 65.4 9:46 AM 1130 0 73/72 285 310 0.33 4C 296.5 30 341.1 4000 417.8 0 21.8 114.6 27.4 281.4 1130 10:15 AM 0 72/78 294 0.29 316 2C 358.2 29 329.2 450.7 22.2 4000 0 128.7 28.6 299.8 1030 10:46 AM 0 75/78 318 0.29 344 2C 356.1 32.2 346.6 448.1 22.1 4000 0 299 127 28.3 1160 11:16 AM 0 75/78 320 0.31 346.9 345 2C 254.5 32.2 460 22.6 4000 28.2 0 307.1 129.9 11:46 AM 11180 0 72/75 302 0.29 323 2C 354 31 341.1 4000 455.7 0 23.7 128.6 28.2 303.5 12:24 PM 1170 71/75 0 0.26 317 349 355.1 32.3 345.3 440.9 2C 4000 0 21.7 121.8 27.6 297.3 12:46 PM 1160 70/72 297 0.28 354.3 25.3 364.4 304 401.2 4C 4000 28.2 20.8 113.3 267.1 1:16 PM 1060 72/75 303 0 357.1 327 ..29 30.3 465.9 2C 355.1 4000 29.9 0 25 139.1 1010 301.8 1:46 PM 80/85 334 343.7 268 0.28 39.2 2C 355.7 486.5 24 4000 25.9 336.3 126.1 2:16 PM 1009 72/80 0 0.32 264 307.4 350 298.2 34.4 173.5 2C 8.9 4000 0 24.8 43.1 6:14 PM 1200 121.5 70/71 0.28 247 0.7 321.5 251 330.1 2C 299 15.2 4000 16.3 95.8 29.0 921 218 6:44 PM 70/73 246 0.7 0.32 322.9 259 298.3 17.3 330.6 2C 4000 16.3 95.6 28.9 218.7 6:56 PM 807 70/71 237 0.7 320.7 248 0.28 2C 298.3 16.8 329 16.2 4000 28.8 94.9 217.9 7:14 PM 919

335.7

331.7

Average

And the second of the second

	* · · ·		
•			
		-	

APPENDIX B.2

PRODUCT STORAGE RECORDS FOR 7/25/98 THROUGH 7/28/98

SILO STORAGE - Data for 7/24/98

		Binin mas		1
7:41 AM 1/2"	<u></u>	1/2"		
7:41 AM 1/2"	3/4"	1/2"	3/4"	3/4"
		-		
			<u> </u>	-
			<u> </u>	
			 	ļ
	 	 		
		 	 	ļ
	 	 	 	
		 	 	
	 	 _	 	<u> </u>
*	 	- 		
	 		 _	
	 		 	<u> </u>
	· 		 	
	 		 	
		 	 	
		 		
		· 		
		•		
	<u> </u>			
		_		
				
				
				

10 A

SILO STORAGE - Data for 7/24/98

		etrovio (57 /m.16) 9. – 1. vis. 4. – 1.			
6:34 AM	191.7	0.3	196.4	184	200
7:00 AM	191.7	0.3	145.9	117.8	203.4
7:24 AM	191.7	53.8	82.4	104.1	203.4
7:36 AM	191.7	123.75	61.6	104.1	203.4
7:42 AM	191.7	177.1	40.3	104.1	203.4
7:54 AM	191.7	174.3	15.5	104.1	203.4
8:05 AM	187.7	211.8	15.5	104.1	203.4
8:18 AM	145.2	214.7	15.7	147.8	203.4
8:30 AM	145.2	193.3	31.4	187	203.4
8:46 AM	145.2	87.1	88.7	187	203.4
9:00 AM	145.2	62.7	112.6	144.7	203.4
9:00 AM	145.2	90	70.8	172.6	203.4
9:33 AM	145.2	86.1	49.7	172.6	203.4
9:49 AM	145.2	97.9	0.1	172.6	203.4
10:07 AM	103	69.8	0.1	172.6	203.
10:07 AM	68.5	102.3	0.1	172.6	203.
10:41 AM	39.2	111.8	63.83	172.6	97.8
10:52 AM	18.84	111	126.5	172.6	33.7
11:09 AM	0	111	124.2	173.5	
11:24 AM	<u>ŏ</u>	147.9	131.8	153.4	
11:37 AM	0	189.2	89.14	111.2	
12:11 PM		138.8	64.3	111.2	
12:37 PM	- <u>ö</u>	108.4	43	111.2	
12:56 PM	- 	29.2	43.2	69.1	
1:07 PM		0	43.2	87.8	
1:07 PW					
				· · · · · · · · · · · · · · · · · · ·	
				ļ	
				 	
		<u> </u>			
				_t	<u> </u>

SILO STORAGE - Data for 7/25/98

	empty	1/2"		vi. Yo	
6:17	empty	1/2"	1/2"	3/4"	3/4"
7:10	empty "	3/4"	1/2"	3/4"	3/4"
7:40	"	H	"	111111111111111111111111111111111111111	11
9:40	#	"	ır	11	11
11:00	empty	3/4"	empty	empty	
			Crripty	empty	empty
7.					<u> </u>
:					
	1		 		
	· · · · · · · · · · · · · · · · · · ·		<u> </u>	 	
				 	
			 	<u></u>	
		 	 		
			 		
	 	 			
	<u> </u>			<u> </u>	
	1			 	
**				<u> </u>	
	 				
				·	
	 			•	
*					
ļ 					
					· · · · · · · · · · · · · · · · · · ·
, <u>, , , , , , , , , , , , , , , , , , </u>		<u> </u>			
		 			
					
					,
		<u> </u>			
	 	 	 		
· · · · · · · · · · · · · · · · · · ·		<u> </u>			
···					
		 			
- "					
	<u> </u>				
		-			
···					
	<u> </u>				
	<u> </u>				

SILO STORAGE - Data for 7/25/98

Company of the compan					
	Street, Street, Contract of the Street, Street	138.2	164.5	65.8	217.6
5:12 AM	0 0	57.6	201	149.1	196.5
6:30 AM		57.6	201	149.1	154.2
5:56 AM		7	198.8	174.5	111.8
7:10 AM	0	48	198.8	174.5	90.8
7:21 AM	0	56.3	154.3	174.5	90.8
7:31 AM	0	84.2	121.1	174.5	90.8
7:40 AM	0	82.6	75.9	174.5	90.8
7:51 AM		132.3	19.8	174.5	90.8
8:11 AM	0	132.3	54.7	153.2	69.7
8:24 AM	0	89.5	92.6	128.7	69.6
8:41 AM	0	117.6	63.7	105.6	48.3
8:54 AM	0	163.5	42.6	63.6	48.3
9:11 AM	0	141.3	0	63.6	48.3
9:25 AM	0	101.6	21	63.6	48.3
9:41 AM	0	59.9	6	63.6	48.3
0:11 AM	0	98	0	63.6	48.3
0:26 AM	0	156.8	0	0	30.5
0:42 AM		157	0	0	0
11:00 AM	0	163.1	0	0	0
11:10 AM	0	212.1	0	0	0
11:29 AM	0	full	0	0	0
11:34 AM	0	181.2	0	0	0
11:52 AM	0	111.3	0	0	0
12:02 PM	0	95.8	0	0	0
12:40 PM	1 0	49	0	0	0
12:56 PM	1 0	83.3	0	0	0
1:13 PM	0	102.5	0	0	0
1:26 PM	1 0	120.5	0	0	0
1:42 PM	 	120.5			
				_	
		<u> </u>			
		 			
		<u> </u>			
					

SILO STORAGE - Data for 7/27/98

			EMPTY		
6:30	1/2"	3/4"	EMPTY	EMPTY	3/4"
					
	<u> </u>				
	CAME CET UD	OD THE DEMANDS			
	SAME SET-UP	OR THE REMAINDE	R OF THE DAY	<u> </u>	
 			<u> </u>	 	
	 			<u> </u>	
				 	<u> </u>
		 		 -	
			<u> </u>		
	<u> </u>		 	<u> </u>	
				 	
				 	
					
4				 	
					<u> </u>
<u> </u>					
	 				
- 		<u> </u>			
	<u> </u>				
**		 			
- 					
	····				
					
		**			
	· · · · · · · · · · · · · · · · · · ·				
					······································
		<u> </u>			
	,, ,,				

SILO STORAGE - Data for 7/27/98

	and the second s			The second secon	Samuel Control of the
		and a section observed the section of the section o	0.2	210	200
:30 AM	198.3	24.2 155.6	0.2	19	157.5
:59 AM	198.3	101	0.2	19	157.5
:14 AM	198.3	233.9	0.5	19	201.3
:31 AM	198.3	134.5	0.5	132.8	203
2:50 AM	198.3	134.5	0.8	165.1	203
3:09 AM	198.3	81.4	0.8	106.4	203
3:33 AM	198.3		0.8	0	185
3:45 AM	198.3	160.9 140.1	0.8	0	185
3:57 AM	198.3	101.6	0.8	0	185
3:06 AM	198.3	97.1	0.8	0	185
20 AM	198.3		0.8	0	185
9:36 AM	198.3	117.1	0.8	0	185
9:57 AM	190.2	173.8	0.8	0	185
0:14 AM	190.2	147.5	0.8	0	185
0:27 AM	190.2	135.1	0.8	0	108.6
0:37 AM	190.2	48	0.8	1 0	14.7
0:57 AM	190.2	136.4	0.8	0	14.7
11:16 AM	190.2	138.9	0.8	0	14.7
1:33 AM	190.2	141.9	0.8	0	14.7
11:57 AM	144.5	88.6	0.8	0	14.7
12:12 PM	123.4	80	0.8	 0	14.7
12:27 PM	102.5	100.3	0.8	0	14.7
12:57 PM	34.6	125.8	0.8	0	14.7
1:12 PM	34.6	128.5	0.8	 0	14.7
1:27 PM	34.6	127.2	0.8	0	0
2:00 PM	34.6	129	0.8	0	0
2:27 PM	34.7	115.4	0.8		
roduction	ends for the	day			
	<u> </u>				
					
	 				
			_		

SILO STORAGE - Data for 7/28/98

		3/4" 4000	TANK SAN TENENT OF THE SAN TEN		
7:22 AM	1/2" 4000	3/4" 4000	3/8" 8000	3/4" 4000	3/4" 4000
ame for res	of dov				
diffe for resi	or day				
·					
			 		
					
					
	 -				
		<u> </u>			
					
			<u> </u>		
			 	 	<u> </u>
					
				 	
					
					
		<u></u>			
			<u> </u>		
		 			
			 		ļ
	······································			 	<u> </u>
					<u> </u>
					
	<u> </u>				
					<u>.</u>
					
				 -	-
					

SILO STORAGE - Data for 7/28/98

a special control		The state of the s			
And the second second	Sir Ne l		204.8	81.3	200
:46 AM	202.48	88.9	204.8	8.42	174.36
:16 AM	202.48	213.51	204.8	187.66	174.36
':31 AM	202.48	172.67	183.74	217.53	201.87
:48 AM	202.48	114.44	183.74	217.53	201.87
3:03 AM	202.48	79.42	141.33	217.53	201.87
3:18 AM	202.48	76.44	120.15	167.46	201.87
3:31 AM	202.48	119.64	98.84	167.46	201.87
8:49 AM	181.24	126.34	56.28	167.46	201.87
9:00 AM	181.24	131.94	32.14	167.46	201.87
9:19 AM	161.26	166.38	32.14	167.46	201.87
9:33 AM	140.08	148.38	48.16	167.46	201.87
9:46 AM	167.9	104.04	198.55	167.46	85.96
10:15 AM	152.66	0 74.50	207.77	105.65	85.96
10:33 AM	171.42	74.58	178.67	105.65	85.96
10:46 AM	147.48	130.81	157.45	105.65	85.96
11:05 AM	122.79	111.24	136.31	105.65	34.88
11:16 AM	98.52	186.54	115	105.65	9.3
11:36 AM	73.98	181.81	94.04	105.65	9.3
11:46 AM	28.52	186.99	73.37	132.21	9.3
12:04 PM	44.75	180.99	73.37	132.21	9.3
12:24 PM	128.75	14.14	31.04	116.7	9.3
12:46 PM	132.03	114.29	31.04	116.7	9.3
1:04 PM	55.22	165.24	31.04	116.7	9.3
1:16 PM	5.39	174.01	22.94	116.7	9.3
1:30 PM	57.68	83.98	22.94	37.15	9.3
1:48 PM	140.1	16.13	22.94	37.15	9.3
2:05 PM	94.8	53.26	22.94	37.15	9.3
2:16 PM	70.88	89.46	9.2	146.84	198.69
6:14 PM	115.46	11.08	9.2	146.84	156.57
6:26 PM	115.46	36.68 38.9	9.2	146.84	156.1
6:44 PM	115.46	57.85	9.2	146.84	156.1
6:56 PM	115.46	124.5	9.2	146.84	156.1
7:14 PM	115.46	148.25	9.2	146.84	156.1
7:36 PM	115.46	146.25	U.2		
Testing en	ds at 7:43 PM				
<u> </u>	 				
	- 				

	÷	
	. ,	
	egn .	•
•		

APPENDIX B.3 LOAD-OUT RECORDS USED IN TED EMISSION CALCULATIONS

Client/Source	EPA Plant C		Date	NA	/ Runs 1-4	
	Hot Mix Aspi	rait	Data Collected By:			
	<u></u>		Spreadsheet work:	Derek Ha	wkes	
Date	Test Method	Total Tons				
7/24/98	T-V-1-1	169.9		<u></u>		
7/24/98	T-V-1-2	262.3	 	· · · · · · · · · · · · · · · · · · ·		 -
7/24/98	T-V-1-3	276.9	 			
7/24/98	T-V-1-4	297.2				
7/24/98	T-MM5-1	1832.8	 			
7/24/98	T-M315-1	1875.0	†			
7/24/98	T-M18-1	1853.8				
7/25/98	T-V-2-1	177.8				
7/25/98	T-V-2-2	182.6	†			
7/25/98	T-V-2-3	162.9		-		 -
7/25/98	T-V-2-4	62.8	1	.		
7/25/98	T-MM5-2	1478.7				
7/25/98	T-M315-2	1499.7				
7/25/98	T-M18-2	1499.7				
7/27/98	T-V-3-1	258.4		·····		
7/27/98	T-V-3-2	292.2			" 	- -
7/27/98	T-V-3-3	273.9				
7/27/98	T-V-3-4		no data she	et		
7/27/98	T-MM5-3	2530.2		-		
7/27/98	T-M315-3	2529.7		 		
7/27/98	T-M18-3	2530.2				
V28/9/8	T-V-4-1		background			
1/28 <i>1/</i> 98	T-V-4-2		background			
//28//98	T-V-4-3		background			
1/2/8/98	T-V-4-4		background		<u> </u>	
28)98	T-MM5-4		background	_		
/28/98	T-M315-4		background			
/28/98	T-M18-4		background			

			Run No.	1-Load Out		•
Client/Source:	EDA Plant C			7/24/1998		, ,
	Hot Mix Asphall		- Data Collected By:	P.S. Murowch	ick	
	TOLIVITA ASPITAL		Spreadsheet work:	Derek Hawkes	<u> </u>	-
	A - t I	Silo				
Time	Actual	No.	T-V-1 (1-4)	T-MM5-1	T-M315-1	T-M18-1
Of	Tons	NU.	1-9-1 (1-4)			
Loading	Loaded					
7:13	20.86	4 3				
7:15	20.88	4	ļ			
7:17	21.34	4	ļ <u>-</u>	-		
7:19	20.92	3		1	1	1
7:28	20.89	2		1	1	1
7:32	21.45			- i	1	1
7:38	21.20	3	 	1	1	1
7:41	21.34	2	 	1	1	1
7:43	20.83	3	 	1 1	1 1	1 1
7:45	21.39	2	<u> </u>	1	1 1	1 1
7:46	20.10	2	 	 	 	
7:48	21.04	2		1 1	1	+ -
7:49	4.03	3	 	 	1	+ 1
7:52	21.19	2	_	1	+	+
7:56	21.12	2		 	 	-
7:58	3.99	1	_	 	+	1 1
7:59	21.27	2	<u> </u>	11	 	
8:02	21.12	2			 	+ 1
8:05	21.17	2		1	 	
8:07	21.25	1		_		
8:12	21.39	2		<u> </u>		
8:15	21.16	1				
8:23	21.40	2				_
8:24	20.91	3				
8:27	2.54	3				1
8:28	21.22	2		1	1	1
8:30	21.43	3	11_	1 1	1 1	1
8:33	21.20	2	1	11	1 1	-
8:38	21.22	2	1	11	1	1
8:39	21.36	2	11	11	1 1	1
8:41	21.35	3	11	11	1 1	1
8:43	21.05	2	11	11	1 1	 '
8:46	20.94	3	111	11	11	1 1
8:49	21.38	2	11	1	11	1
8:50	21.33	2		11	1 1	- -
8:52	21.12	4		1	11_	
8:54	21.04	3		11	11	1 1
8:55	21.17	4		11	11	1
8:59	21.26	2		11	11	1
9:03	20.88	3		11	1	1 1
9:05	19.91	2		1	11_	1 1
9:10	21.22	2	2	1	1	1

			-	1 Lood Ov		
Client/Sour	⇒: EPA Plant (1-Load Out		_
	Hot Mix Asp			7/24/1998		_
	TIOURIX ASP	illell.		P.S. Murowcl		_
<u> </u>			Spreadsheet work:	Derek Hawke	<u>s</u>	-
Time	Actual	Silo				
Of	Tons	No.	T-V-1 (1-4)	T-MM5-1	T-M315-1	T-M18-1
Loading	Loaded					1 -11110-1
9:12	21.10	3	2	1	1	1
. 9:16	21.04	4	2	1	i	
9:21	21.10	3	2	1	 	1
9:22	21.58	2	2	1	1	
9:24	21.27	2	2	1	1	1
9:28	21.46	2	2	1	1	1
9:33	21.44	2	2	1	1	1
9:37	21.42	3	2	1	1	1
9:38	21.36	2	2	<u>-</u>	1	1
9:39	21.20	2	2	1	1	1
9:42	21.06	2	2	1	1	1
9:44	7.00	3	2			
9:45	21.13	3	 			
9:49	20.88	2				
9:50	21.34	2				
9:53	21.20	3	 			
9:55	21.53	2				
9:58	21.52	2	 			
10:00	21.29	2	 			
10:02	21.60	2	 			
4 10:05	20.94	1				
10:06	21.27	2	 			
10:07	21.22	2				
10:09	20.96	1				 -
10:11	21.44	2				
10:14	21.06	2				
10:27	21.50	1				
10:28	20.43	5				
10:30	21.41	5		 +		·
10:33	21.29	1		 +		
10:35	21.08	5				
10:36	21.39	5		+		
10:38	21.33	5				
10:40	21.14	1				
10:41	21.45	5				
10:43	21.25	5				 -i
10:46	21.26	5			 +-	——
10:52	21.40	1				——
10:56	21.40	5				
10:58	21.07	3	3			1
11:00	21.51	4	3	1		1
11:01	21.33	5	3	1	1	1

				1-Load Out		-
Client/Source: E	PA Plant C			7/24/1998		-
Ī	lot Mix Asphal	t	oata Collected By:	P.S. Murowchi	UK	-
_			ipreadsheet work:	Derek Hawkes		
Time	Actual	Silo		T 14145 4	T-M315-1	T-M18-1
Of	Tons	No.	T-V-1 (1-4)	T-MM5-1	1-1410 10-1	' ' ' '
Loading	Loaded				1	1
11:09	21.29	4	3	1	<u>'</u>	1 1
11:10	21.34	3	3	1	1	1 1
11:12	21.42	4	3	1	1	
11:17	21.30	4	3	1	1	1 1
11:18	21.29	3	3	1	1	1 1
11:22	21.40	4	3		 	+ -
11:23	21.45	4	3	1	 	1
11:24	20.78	4	3	1 1	 	1
11:26	21.43	3	3	1	 	+ 1
11:28	21.32	2	3	1	 	+ -
11:33	21.35	2			 	1 1
11:36	21.19	3		1	 	1 1
11:38	21.12	2	ļ	 	 	1 1
11:39	21.14	2	 	 	+ 1	1 1
11:40		3		1 1	+	1
11:41	24.84	3	 	+-;	+ 1	1
11:43	21.17	2	- 	 	1	1
11:45	20.12	2 2	 	 	1 1	1 1
11:50	21.34	2		1 1	1	1
11:53	21.06	2	 -	1 1	1 1	1
11:55	21.15	2	<u> </u>	 	 	1
11:57	21.31	2		1 1	1	1
12:02	21.35	2	- 	1	1	1
12:04	21.22	2	╁───	1	1	1
12:05	21.32	2		1	1	1
12:10	21.22	2		1 1	1	1
12:15	21.02	2	+	1	1	1
12:17	23.99	2	+-4	1	1	1_
12:19	21.00	2	4	1	1	1
12:22	21.52	2	+4	1	1	1
12:23 12:25	21.32	2	4	1	11	1
12:25	21.47	2	4	1 1	1	1
12:30	21.40	3	4	1	1	1
12:35	20.40	2	4	1	11	1
12:37	21.73	2	4	1	1	1
12:37	21.28	1 2	4	1	1	1
12:30	21.16	$\frac{2}{2}$	4	1	1	1
12:40	21.39	2	4	11	11	1
12:44	20.33	$\frac{1}{2}$	4	1	11_	1
12:44		2	4	11	1	1
12:48	21.57	4	4	1	1	1

Client/Source:	EPA Plant C		Run No Date:			
	Hot Mix Asphait		_	P.S. Murowcl	nick	-
			Spreadsheet work:			
Time	Actual	Silo				
Of	Tons	No.	T-V-1 (1-4)	T-MM5-1	T-M315-1	T-M18-1
Loading	Loaded				l	
12:49	21.25	4	4	1	1	1
12:51	21.20	4		1	1	1
12:53	21.17	2		1	1	+-;-
12:54	21.31	2		1	1	
12:56			<u> </u>	•		
13:01	<u> </u>	2			1	
13:02	21.19	4	1		1	
					<u>'</u>	
Total	2673.49	-		1832.8	1875.0	1853.8

				2-Load Out 1/25/1998		-
_	EPA Plant C			P.S. Murowch	ick	• .
<u>1</u>	Hot Mix Asphall			Derek Hawke		- -
Time	Actual	Silo				
Of I	Tons	No.	T-V-2 (1-4)	T-MM5-2	T-M315-2	T-M18-2
Loading	Loaded					
7:02	21.12	2				-
7:04	21.43	5				
7:08		2				<u> </u>
7:09	21.24	3				2
7:12	21.02	5		2	2 2	2
7:20	20.92	3		2		2
7:21		2		2	2	2
7:23	23.87	2		2		2
7:24		3		2	2 2	2
7:25	23.65	3		2	2 2	2
7:29	21.21	2		2	2	$\frac{2}{2}$
7:31		3		2	2	2
7:32	23.93	3	<u> </u>	2	2	2
7:35	21.09	3		2	2	2
7:38		2	<u> </u>	2	2	2
7:40	24.43	2	<u> </u>	2	2	1 2
7:42	20.59	3		2	2	$\frac{1}{2}$
7:43		2	 	2	$\frac{2}{2}$	2
7:44	23.24	2	 	2	1 2	2
7:45	20.64	2		2	2	2
7:47	<u> </u>	3	 	2	2	2
7:48	24.47	3	 	2	2	2
7:51	21.26	3	 	2	2	2
7:53		3	 	2	2	2
7:55	24.52	3	 	2	2	2
7:57	21.32	2		2	2	2
7:59	21.26	3	1	2	2	2
8:05	19.73	2	+ ;	2	2	2
8:07	21.05 21.45	3	+ 1	2	2	2
8:10	21.45	4	1	2	2	2
8:14	21.31	3	 	2	2	2
8:17	24.65	3	1	2	2	2
8:17 8:19	24.05	3	1	2	2	2
8:19	24.48	3	1	2	2	2
8:02	21.13	5	1	2	2	2
8:24	- 21.15	3	 	2	2	2
8:25	24.03	$\frac{3}{3}$	1	2	2	2
8:28	21.50	$\frac{3}{2}$		2	2	2
8:30	21.16	3		2	2	2
8:32	21.27	3		2	2	2
8:34	21.25	2		2	2	2

				2 0 0		
Client/Sou	rce: EPA Plant (•		2-Load Out 7/25/1998		
	Hot Mix Asp					
1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		P.S. Murow Derek Hawl		
<u> </u>			Spreads/leet Won	Delek nawi	<u>kes</u>	
Time	Actual	Silo				
Of	Tons	No.	T-V-2 (1-4)	T-MM5-2	T-M315-2	T-M18-2
Loading	Loaded				la la	
8:37		4		2	2	2
8:38	24.45	4		2	2	$\frac{1}{2}$
8:39	21.26	3		2	2	1 2
8:42	21.30	5		2	2	2
8:45		4		2	2	2
8:46	23.21	4		2	2	2
8:48	21.00	3		2	2	2
8:50		2		2	2	2
8:51	24.47	2		2	2	2
8:52	21.18	2		2	2	2
8:59		2	2	2	2	2
9:00	23.80	2	2	2	2	1 2
9:02	21.00	3	2	2	2	2
9:03	20.80	4	2	2	2	2
9:06	21.18	4	2	2	2	2
9:10	23.67	2				
9:13	20.89	3	2			
9:15	20.87	2	2		†	T
9:17	21.02	2	2			
9:18	12.00	2	2			
9:21	21.01	2	2			
9:23		2	2			
9:24	24.19	3				
9:28	20.93			2	2	2
9:31	20.94	2		2	2	2
9:33	8.00	2		2	2	2
9:35	21.10	2		2	2	2
9:40		3		2	2	2
9:41 9:45	23.87	2		2	2	2
	15.03	2		2	2	2
9:47	24.50	2		2	2	2
9:48	24.58	2		2	2	2
9:49 9:54	21.17	2		2	2	2
9:54	20.50	2	3	2	2	2
9:55 9:57	23.58	2	3	2	2	2
9:59	20.86	2	3	2	2	2
9:59	22.79	2	3	2	2	2
10:02	20.70	2	3	2	2	2
10:02	20.70	2	3	2	2	2
10:06	24.19	2	3	2	2	2
10:09	21.06	2	3	2	2	2
. 5.00	21.00	۷	3	2	2	2

	EPA Plant C			2-Load Out 7/25/1998		•
-	Hot Mix Asphali			P.S. Murowch	ick	_
	Hor Mix Mahilai	<u>`</u>	Spreadsheet work:	Derek Hawke		- -
	Actual	Silo	1			
Time Of	Tons	No.	T-V-2 (1-4)	T-MM5-2	T-M315-2	T-M18-2
Loading	Loaded	110.	` ,			
10:14	20000	2	3	2	22	2
10:15	23.54	2	3	2	2	2
10:16	6.18	3	3	2	2	2
10:27		2		2	2	2
10:28	24.06	2		2	2	2
10:30	20.91	4		2	2	2
10:32	21.06	4		2	2	2
10:35	20.79	4		2	2	2
10:39	3.14			2	2	2
10:41	17.89	4		2	2	2
10:43	21.00	5		2	2	2
10:46	14.52	5		2	2	2
10:48	6.38	5		2	2	2
10:50	20.80	2		2	2	2
10:52	20.87	2		2	2	2
10:54	20.91	2		2	2	2 2
11:00	20.91	2		2	2	2
11:04	21.07	2	4	2	2	2
11:10	21.13	2	4	2	2	2
11:19	20.64	2	4	2	2 2	1 2
11:24	21.01	2		<u> </u>	 	+
Total	1707.13			1478.7	1499.7	1499.

0540	EDA DI- 4 d			3-Load Out		
CHantsour	ce: EPA Plant (e: 7/27/1998		- <u>-</u>
	Hot Mix Asp	nait		y: P.S. Murow		
			Spreadsheet work	c Derek Haw	kes	
Time	Actual	Silo				
Of	Tons	No.	T-V-3 (1-4)	T-MM5-3	T-M315-3	T-M18-3
Loading	Loaded					1-1111/0-5
7:02	12.70	2				
7:04	10.28	2				
7:09	21.13	2		1		
7:11	11.74	2		3	3	3
7:13	11.32	2		3	3	3
7:18	21.28	2		3	3	3
7:36	12.21	2				
7:37	12.12	2				
7:38	12.75	2				
7:39	12.90	2				
7:43	12.42	2		3	3	3
7:44	12.38	2		3	3	3
7:46	12.36	2		3	3	3
7:47	12.30	2	<u> </u>	3	3	3
7:53	12.66	2		3	3	3
7:54	12.62	2	<u> </u>	3	3	3
7:55	12.34	2		3	3	3
7:56	12.87	2	<u> </u>	3	3	3
8:00	12.00	2		3	3	3
8:01	12.38	2		3	3	3
8:02 8:03	20.95	2		3	3	3
8:04	13.00	2		3	3	3
8:09	12.70	2	ļ	3	3	3
8:10	13.84	2	<u> </u>	3	3	3
8:12	14.00	2	 	3	3	3
8:13	21.40	2		3	3	3
8:14	12.00 12.25	2	 	3	3	3
8:16	12.76	2		3	3	3
8:16	13.00	2		3	3	3
8:18	13.00	2		3	3	3
8:19	12.56	2		3	3	3
8:20	11.56	2	<u> </u>	3	3	3
8:21	12.48	2		3	3	3
8:22	21.38	2		3	3	3
8:24	12.00	2		3	3	3
8:24	12.23	2		3	3	3
8:26	13.00	2		3	3	3
8:26	12.71	2		3	3	3
8:27	13.03	2		3	3	3
8:28	13.13	2		3	3	3
8:29	12.05	4		3	3	3
			·L	<u>`</u>	<u> </u>	<u> </u>

			_	3-Load Out		
Client/Source:	EPA Plant C			7/27/1998	:-1.	-
	Hot Mix Asphal			P.S. Murowch		-
_		:	Spreadsheet work:	Derek Hawkes		
Time	Actual	Silo		45 1 44 4 5 O	T-M315-3	T-M18-3
Of	Tons	No.	T-V-3 (1-4)	T-MM5-3	1-M212-2	1-11110-0
Loading	Loaded				3	3
8:30	12.67	4		3	3	3
8:32	21.37	4	<u> </u>	3	3	3
8:33	12.78	4		3	3	3
8:34	12.88	44		3		3
8:35	21.18	4		3	3	3
8:37	13.00	4	<u> </u>	3	3	3
8:38	13.16	4		3	3	3
8:39	12.93	4		3	3	3
8:40	12.47	4		3	3	3
8:41	21.36	4	<u> </u>	3	3	3
8:42	3.36	4		3	3	3
8:43	17.94	5		3	3	
8:44	12.80	2		3	3	3
8:45	13.04	2	<u> </u>	3	3	3
8:47	13.00	2		3	3	3
8:48	12.96	2		3	3	3_
8:49	21.12	2		3	3	3
8:51	21.33	2		3	3	3
8:52	13.00	2		3	3	3
8:53	13.13	2		3	3	3
8:54	11.59	2		3	3	3
8:55	12.86	2		3	3	3_
8:56	21.31	2		3	3	3
8:58	20.44	2		3	3	3
8:59	13.14	2		3	3	3
9:00	11.47	2		3	3	3
9:01	13.00	2		3	3	3
9:02	13.01	2		3	3	3
9:02	13.05	2		3	3	3
9:03	11.05	2		3	3	3
9:04	21.28	2		3	3	
9:06	12.00	2		3	3	3
9:07	11.19	2		3	3	
9:08	12.94	2		3	3	3
9:08	12.61	2		3	3	
9:10	12.20	2		3	3	3
9:10	12.26	2		3	3	$\frac{3}{3}$
9:12	21.28	2		3	3	
9:14	21.37	2		3	3	3
9:15	12.12	2		3	3	
9:16	13.52	2		3	33	3
9:17	12.50	2	1	3	3	3

Client/Source	EPA Plant C	;		3-Load Out 7/27/1998		_
	Hot Mix Asp	halt	_	P.S. Murowo	hick	_
	<u>`</u>			Derek Hawk		_
				BOTOKTICHEK		-
Time	Actual	Silo	•			
Of	Tons	No.	T-V-3 (1-4)	T-MM5-3	T-M315-3	T-M18-3
Loading	Loaded					
9:19	12.63	2	1	3	3	3
9:21	12.35	2	1	3	3	3
9:23	12.09	2	1	3	3	3
9:26	12.77	2	1	3	3	3
9:27	12.77	2	1	3	3	3
9:29	21.36	2	1	3	3	3
9:31	13.00	2	1	3	3	3
9:32	12.71	2	1 1	<u>_</u>	3	
9:33	13.00	2	1		 	
9:34	14.74	2	1	<u> </u>	 	
9:35	21.49	2	1		 	<u> </u>
9:37	12.74	2	1		 	
9:38	12.05	2	1			
9:39	12	2	1		 -	
9:43	12.51	2	 	·		
9:44	13.00	2	 			
9:45	12.72	2	1 1			
9:46	12.00	2	1 1			
9:47	13.18	2	 			
9:51	12.65	$\frac{2}{2}$	 			<u> </u>
9:52	13.23	2	 			3
9:53	13.12	2		3		3
9:54	13.12	2	 	3	3	3
9:57	8.02	1		3	3	3
9:58	21.26			3	3	3
10:00	21.20	2		3	3	3
10:03				3	3	3
10:04	13.00 13.08	2		3	3	3
10:04		2		3	3	3
10:05	12.86	2	<u></u>	3	3	3
10:06	12.92	2		3	3	3
	12.00	2		3	3	3
10:07	12.42	2		3	3	3
10:09	11.69	2	2	3	3	3
10:09	12.64	2	2	3	3	3
10:11	13.00	2	2	3	3	3
10:11	12.93	2	2	3	3	3
10:12	13.00	2	2	3	3	3
10:14	12.22	2	2	3	3	3
10:15	12.61	2	2	3	3	3
10:16	12.17	2	2	3	3	3
10:17	13.00	2	2	3	3	3
10:20	12.86	2	2	3	3	3

				3-Load Out		!
Client/Source: E	EPA Plant C			7/27/1998		i
	Hot Mix Asphalt	Di	ita Collected By:	P.S. Murowchi	ck	
<u>-</u>		Sp	readsheet work:	Derek Hawkes		
Time	Actual	Silo				T 1440 0
Of	Tons	No.	T-V-3 (1-4)	T-MM5-3	T-M315-3	T-M18-3
Loading	Loaded					
10:21	12.79	2	2	3	3	3
10:22	11.73	2	2	3	3	3
10:23	21.25	2	2	3	3	3
10:25	12.82	2	2	3	3	3_
10:25	12.90	2	2	3	3	3
10:26	13.00	2	2	3	3	3
10:27	13.14	2	2	3	3	3_
10:08	20.98	2	2	3	3	3
10:29	8.95	2	2	3	3	3
10:30	12.40	5	2	3	3	3
10:31	13.00	2	2	3	3	3
10:32	13.10	2	2	3	3	3
10:34	21.25	5		3	3	3
10:35	21.29	5		3	3	3
10:37	21,40	5		3	3 .	3
10:39	13.01	5		3	3	3
10:39	12.69	5		3	3	3
10:43	12.80	5		3	3	3
10:43	12.48	5		3	3	3
10:45	21.39	5		3	3	3
10:47	21.38	5		3	3	3
10:49	13.00	2		3	3	3
10:50	12.76	2		3	3	3
10:51	21.21	2		3	3	3_
10:52	21.44	2		3	3	3
10:54	12.79	2	3	3	3	3_
10:56	12.73	2	3	3	3	3
10:57	21.61	2	3	3	3	3
10:59	12.86	2	3	3	3	3
11:00	12.72	2	3	3	3	3
11:01	20.87	2	3	3	3	3
11:03	21.30	2	3	3	3	3
11:07	12.91	2	3	3	3	3
11:08	12.83	2	3	3	3	3
11:09	21.45	2	3	3	3	3
11:10	11.50	2	3	3	3	$\frac{3}{3}$
11:11	10.97	2	3	3	3	$\frac{3}{3}$
11:13	12.68	2	3	3	3	3
11:13	15.23	2	3	3	3	3
11:18	12.00	2	3	3	3	3
11:18	11.26	2	3	3 3	3	3
11:21	12.00	2	3			

Client/Sour	ce: EPA Plant (3		3-Load Out 7/27/1998		
	Hot Mix Asp	halt		P.S. Murowo	shick	
				Derek Hawk		
***			opiosasinet work	Detek Hawk	.65	
Time	Actual	Silo				
Of	Tons	No.	T-V-3 (1-4)	T-MM5-3	T-M315-3	T-M18-3
Loading	Loaded					
11:21	13.22	2	3	3	3	3
11:22	13.00	2	3	3	3	3
11:23	12.78	2		3	3	3
11:25	24.53	2		3	3	3
11:28	13.00	2		3	3	3
11:29	12.92	2		3	3	3
11:31	13.00	2		3	3	3
11:33	12.73	2		3	3	3
11:33	12.00	2		3	3	3
11:34	12.91	2		3	3	3
11:35	12.00	1		3	3	3
11:36	12.56	1	i	3	3	3
11:36	13.00	2		3	3	3
11:37	13.60	2		3	3	3
11:38	13.00	2	 	3	3	3
11:39	13.14	2		3	3	3
11:41	13.00	2	 	3	3	3
11:41	12.67	2		3	3	3
11:42	13.00	2		3	3	3
11:43	13.10	2	 	3	3	
11:44	12.00	2		3	3	3
11:45	12.49	2		3	3	3
11:47	13.00	2		3	3	3
11:48	12.96	2		3	3	3
11:49	13.00	2		3	3	3
11:50	12.46	2		3		
11:51	12.50	2	 -	3	3	3
11:51	12.31	2		3	3	3
11:52	21.08	1		3	3	3
11:54	12.00	2		$\frac{3}{3}$	3	3
11:55	12.64	2		3	3	3
					<u> </u>	·
Total	2799.06			2530.2	2529.7	0500.0
				2000.2	2023.1	2530.2

APPENDIX B.4

LOAD-OUT RECORDS FOR 6/18/98 THROUGH 7/26/98

Date	Customer	Customer	Order#	Order	Presention	Mix	Product	Starting
	Name	Number		Amount (Tons)	Rate(TPH		Type	Time
6/18/98	ONYX Paving co, Inc.	1513	19	250	75	1/2"	1004 III C3 AR-4000	6:35
6/18/98	Griffith Co.	707	20	345	75	3/4"	1004 III C3 AR-4000	7:40
6/18/98	Hillcrest Contracting	837	25	300	125	1/2"	1004 III C3 AR-4000	
6/18/98	Hillcrest Contracting	837	26	500	*	3/4"	1002 III B3 AR-4000	6:35
6/18/98	City Of Dana Point	317	30	70	*	3/4"	1024 Type B AR-4000	<u>L</u>
6/18/98	Calfon Construction, Inc.	497	33	42	*	3/4"	1002 III B3 AR-4000	6:45
6/18/98	Sequel Contractors Inc.	2068	35	15	*	3/4"		
6/18/98	Silverado Constructors	2064	47	2,500	350	3/4"	1002 III B3 AR-4000	6:20
6/18/98	Meyer E.J. Company	1323	52	50	50	3/4"	1024 Type B AR-4000	7:10
6/18/98	Copp Contracting Inc.	478	58	50	25	3/4"	1004 III C3 AR-4000	13:20
6/18/98	Damon Construction Inc.	402	59	150	25	3/4"	1001 III B2 AR-4000	8:30
6/18/98	Copp Contracting Inc.	478	60	25	*	3/4"	1002 III B3 AR-4000	6:45
6/18/98	Copp Contracting Inc.	478	62	50	*	3/4"	1001 III B2 AR-4000	11:00
6/19/98	DBL Contruction	433	9	400	150	3/4"	1001 III B2 AR-4000	13:30
6/19/98	Copp Contracting Inc.	478	10	100	*	1/2"	1002 III B3 AR-4000	7:15
6/19/98	DBL Contruction	433	31	350	175	3/4"	1004 III C3 AR-4000	6:55
6/19/98	City Service Contracting	341	35	37	*	3/4"	1002 III B3 AR-4000	*
6/19/98	City Service Contracting	341	35	12	+	3/4	1002 III B3 AR-4000	8:00
6/19/98	Silverado Constructors	2064	39	1,800	300	3/4"	1010 III D AR-4000	8:00
6/19/98	Silverado Constructors	2064	40	2,200	350	3/4"	1024 Type B AR-4000	7:30
6/19/98	Meyer E.J. Company	1323	43	50	50		1024 Type B AR-4000	17:35
6/19/98	Calfon Construction, Inc.	497	44	42	2 0	1/2"	1004 III C3 AR-4000	13:20
6/19/98	Damon Construction Inc.	402	47	100	*	3/4"	1002 III B3 AR-4000	13:20
6/19/98	City Of Dana Point	317	48	70	*	3/4"	1002 III B3 AR-4000	6:45
6/20/98	Hillcrest Contracting	837	9	50	*	3/4"	1024 Type B AR-4000	6:45
6/20/98	Far West Paving and Sealing	617	10			3/8"	1010 III D AR-4000	7:20
6/20/98	South Western Paving Co.	2057	11	350	100	3/4"	1011 Class B AR-4000	6:00
6/20/98	Cash Account	1320	12	400	75 *	3/8"	1010 III D AR-4000	7:20
6/20/98	Seal Black	1968	13	42		3/8"	1010 III D AR-4000	8:00
6/20/98	Parker Engineering	1697	14	100	50	1/2"	1018 fine AR-4000	7:30
6/20/98	Parker Engineering	1697		25		3/8"	1010 III D AR-4000	7:00
6/20/98	Asphalt Management Inc.	_	15	25	*	3/8"	1010 III D AR-4000	9:30
6/20/98	Asphalt Management Inc.	642	21	200	75	3/4"	1042 III B3 AR-8000	7:00
6/20/98	City Service Contracting	642	21	100	50	1/2"	1018 fine AR-4000	11:00
6/20/98	Silverado Constructors	341	24	15	15	1/2"	1018 fine AR-4000	7:00
3/20/30	Oliverado Collstructors	2064	28	2,800	400	3/4"	1024 Type B AR-4000	15:40
<u></u> l				13,615				

^{*} Data Unavailable

ASPHALT PLANT C Historical Load-in Data

			1110	Ulical Luau-ii				***********
Date	Customer	Gustomer	Order#	Order	Production	Mix	Product	Starting Time
Date	Name	Number		Amount (Tons)	Rate(TPH)	Type	Type	
5/20/98	Snyder Langston Inc.	1964	29	25	*	3/8"	1010 III D AR-4000	5:30 AM 7:30 AM
6/20/98	Snyder Langston Inc.	1964	29	200	125	1/2"	1044 III C3 AR-8000	
6/20/98	Western Paving Contract	2332	30	30	15	1/2"	1004 III C3 AR-4000	3:00 PM
6/20/98	Griffith Co.	707	31	345	75	3/4"	1002 III B3 AR-4000	8:40 AM
6/20/98	Copp Contracting Inc.	478	32	75	*	1/2"	1004 III C3 AR-4000	6:40 AM
6/22/98	Seal Black	1968	9	50	50	1/2"	1018 fine AR-4000	6:45 AM
6/22/98	Damon Construction Co.	402	16	1,400	175	rubber	1032 ARHM-GG-C	6:15 AM
6/22/98	Hillcrest Contracting	837	17	1,300	175	3/4"	1002 III B3 AR-4000	6:55 AM
	Griffith Co.	707	18	1,500	250	3/4"	1002 III B3 AR-4000	6:35 AM
6/22/98	Silverado Constructors	2064	20	2,500	400	3/4"	Type B AR-4000	5:35 PM
6/22/98	Gansek Construction	721	27	30	30	3/4"	Type B AR-4000	9:20 AM
6/22/98	Copp Contracting Inc.	478	28	75	*	1/2"	1004 III C3 AR-4000	6:40 AM
6/22/98	Meyer E.J. Company	1323	29	50	50	1/2"	1004 III C3 AR-4000	1:25 PM
6/22/98	Silverado Constructors	2064	30	40	40	3/4"	Type B AR-4000	10:45 AN
6/22/98	City Of Dana Point	317	36	70	*	3/4"	Type B AR-4000	6:45 AV
6/22/98	Calfon Construction, Inc.	497	37	42	*	3/4"	1002 III B3 AR-4000	9:20 AN
6/22/98	Silverado Constructors	2064	38	600	100	3/4"	Type B AR-4000	9:40 AM
6/22/98	Damon Construction Co.	402	45	150	25	3/4"	1002 III B3 AR-4000	6:45 AN
6/22/98	Hillcrest Contracting	837	9	1,875	175	3/4"	1002 III B3 AR-4000	6:25 AM
6/23/98	Griffith Co.	707	10	1,600	250	1/2"	1002 III B3 AR-4000	6:35 AN
6/23/98		402	17	500	<u> </u>	rubber	1032 ARHM-GG-C	6:15 AN
6/23/98	Damon Construction Co.	402	17	600	150	1/2"	1004 III C3 AR-4000	6:15 AN
6/23/98	Damon Construction Co.	2064	19	1,300	200	perm	1039 A.T.P.B. AR-8000	5:35 PN
6/23/98	Silverado Constructors	497	21	42		3/4"	1002 III B3 AR-4000	10:20 A
6/23/98	Calfon Construction, Inc.	2719	23	150		3/4"	1524 Type B AR-4000	7:40 PN
6/23/98	Peterson-Chase Gen'l En.	1968	25	300		1/2"	1018 fine AR-4000	7:15 AN
6/23/98	Seal Black	317	33	70		3/4"	1024 Type B AR-4000	6:45 AN
6/23/98	City Of Dana Point	478	35	50		1/2"	1004 III C3 AR-4000	6:40 AN
6/23/98	Copp Contracting Inc.	1323	36	50		1/2"	1004 III C3 AR-4000	1:25 PN
6/23/98	Meyer E.J. Company		10	750		1/2"	1004 III C3 AR-4000	6:40 Al
6/24/98	Griffith Co.	707	11	550		3/4"	1001 III B2 AR-4000	6:25 Al
6/24/98	Hillcrest Contracting	837	26	1,000		3/4"	1002 III B3 AR-4000	7:30 Al
6/24/98	DBL Construction	433	27	2,100		3/4"	1024 Type B AR-4000	5:35 PM
6/24/98	Silverado Constructors	2064		2,100		3/4"	1002 III B3 AR-4000	10:20 A
6/24/98	Calfon Construction, Inc.	497	32	150		1/2"	1004 III C3 AR-4000	7:50 Al
6/24/98	Ben's Asphalt	202	36			1/2-	1	
				19,611				

ASPHALT PLANT C Historical Load-in Data

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	000000000000000000000000000000000000000		_		i-iii Data			
Date	Customer	Customer	Order #		Producijen	Mix	Product	Stating
6/24/98	Name	Number		Amount (Tens)	Rate(TPH)	Type	Type	Time
6/24/98	Damon Construction Co.	402	41	1,000	150	1/2"	1004 III C3 AR-4000	6:15 AM
6/24/98	Copp Contracting Inc.	478	43	50	25	3/4"	1001 III B2 AR-4000	8:20 AM
6/24/98	Copp Contracting Inc.	478	46	50	25	3/4"	1001 III B2 AR-4000	10:50 AM
	Brutoco Engineering	214	54	175	50	3/4"	1051 Class B AR-8000	5:30 AN
6/24/98	Brutoco Engineering	214	54	50	*	1/2"	1053 Class C2 AR-8000	5:30 AM
6/24/98	Anchor Paving	136	55	725	*	1/2"	1004 III C3 AR-4000	3.30 AIV
6/25/98	DBL Construction	433	14	1,000	125	3/4"	1002 III B3 AR-4000	6:30 AM
6/25/98	Copp Contracting Inc.	478	26	50	25	3/4"	1001 III B2 AR-4000	10:30 AN
6/25/98	City Of Dana Point	317	32	70	*	3/4"	1024 Type B AR-4000	10:30 AN
6/25/98	Calfon Construction Inc.	497	33	42	*	3/4"	1002 III B3 AR-4000	<u> </u>
6/25/98	Brutoco Engineering	214	34	2,800	350	3/4"	1051 Class B AR-8000	F 45 444
6/25/98	Palomar Grading/Paving	1657	35	15	*	1/2"	1001 Class B AR-8000	5:45 AM
6/25/98	Silverado Constructors	2064	46	400	50	3/4"	1004 III C3 AR-4000	9:00 AM
6/25/98	Griffith Co.	707	50	150	50	1/2"	1024 Type B AR-4000	7:35 AM
6/25/98	Ben's Asphalt	202	52	100	50	1/2"	1004 III C3 AR-4000	8:45 AM
6/25/98	Copp Contracting Inc.	478	56	50	25	3/4"	1004 III C3 AR-4000	6:30 AM
6/25/98	Copp Contracting Inc.	478	57	25	25	3/4"	1001 III B2 AR-4000	8:15 AM
6/25/98	Silverado Constructors	2064	58	16	16	1/2"	1001 III B2 AR-4000	1:00 PM
6/26/98	Noble R.J.	1437	29	450	150	3/4"	1004 III C3 AR-4000	12:45 PM
6/26/98	Silverado Constructors	2064	41	700	150	3/4"	1002 III B3 AR-4000	11:00 AM
6/26/98	Silverado Constructors	2064	42	700	*	3/4"	1024 Type B AR-4000	7:40 AM
6/26/98	Silverado Constructors	2064	42	1,400	300		1024 Type B AR-4000	5:35 PM
6/26/98	Silverado Constructors	2064	44	400	50	perm	1039 A.T.P.B. AR-8000	5:35 PM
6/26/98	Peterson Chase Gen'L En.	2719	30	90	50 50	3/4"	1024 Type B AR-4000	7:35 AM
6/26/98	Brutoco Engineering	214	38	1,700	<u> </u>	3/4"	524Type B 19MM AR400	*
6/26/98	Brutoco Engineering	214	38		350	1/2"	1053 Class C2 AR-8000	5:45 AM
6/26/98	Hillcrest Contracting	837	28	225	350	L1	1051 Class B AR-8000	5:45 AM
6/26/98	Griffith Co.	707	35	375 15	125	1/2"	1003 III C2 AR-4000	7:00 AM
6/26/98	Ben's Asphalt	202	52		*	1/2"	1004 III C3 AR-4000	8:40 AM
6/26/98	Meyer E.J. Co.	1323	59	15	*	1/2"	1018 Fine AR-4000	6:50 AM
6/26/98	Copp Contracting Inc.	478	53	25		1/2"	1004 III C3 AR-4000	1:20 PM
6/26/98	Copp Contracting Inc.	478	54	50	25	3/4"	1001 III B2 AR-4000	8:30 AM
6/29/98	Ben's Asphalt			100	25	3/4"	1001 III B2 AR-4000	11:00 AM
6/29/98	Meyer E.J. Co.	202	20	900	100	1/2"	1018 Fine AR-4000	7:20 AM
6/29/98	City Of Dana Point	1323	21	50	50	1/2"	1004 III C3 AR-4000	1:20 PM
	Ony Or Dalla Fulfit	317	26	1,000	150	rubber	1032 A.R.H.MGG-C	6:45 AM
 L		<u> </u>		1,950				

^{*} Data Unavailable

Date	Castomer	Customer	(e)(de) #		Production		Product	Starting Time
uace	Name	Number		Amount (Tens)			Type	5:35 PM
6/29/98	Silverado Constructors	2064	27	1,400	350	3/4"	1024 Type B AR-4000	3,33 FWI
6/29/98	Kajima Eng. & Const., Inc.	1129	28	25	*	1/2"	1004 III C3 AR-4000	8:30 AM
6/29/98	Copp Contracting Inc.	478	33	75	*	3/4"	1001 III B2 AR-4000	12:00 PM
6/29/98	Copp Contracting Inc.	478	34	50	*	3/4"	1001 III B2 AR-4000	7:30 AM
6/29/98	Silverado Constructors	2064	46	300	*	3/4"	1024 Type B AR-4000	
6/30/98	Silverado Constructors	2064	14	1,400	300	3/4"	1024 Type B AR-4000	8:15 PM
6/30/98	Silverado Constructors	2064	14	800	300	perm	1039 A.T.P.B. AR-8000	5:35 PM
	Silverado Constructors	2064	35	300	*	3/4"	1024 Type B AR-4000	7:35 AM
6/30/98	Excel Paving Co.	257	46	300	75	3/4"	1064 Type B AR-8000	6:40 PM
6/30/98	DBL Construction	433	23	200	75	1/2"	1004 III C3 AR-4000	7:15 AM
6/30/98	Meyer E.J. Co.	1323	15	50	50	1/2"	1004 III C3 AR-4000	1:20 PM
6/30/98	City Of Dana Point	317	19	1,100	150	rubber	1032 A.R.H.MGG-C	6:45 AM
6/30/98	Copp Contracting Inc.	478	44	50	25	3/4"	1001 III B2 AR-4000	10:50 AM
6/30/98		478	45	50	25	3/4"	1001 III B2 AR-4000	8:15 AM
6/30/98	Copp Contracting Inc. Silverado Constructors	2064	14	1,000	250	3/4"	1024 Type B AR-4000	7:40 AM
7/1/98		317	20	1,100		rubber	1032 A.R.H.MGG-C	6:45 AM
7/1/98	City Of Dana Point	1323	21	50		1/2"	1004 III C3 AR-4000	1:20 PM
7/1/98	Meyer E.J. Co.	1817	25	90		1/2"	1018 Fine AR-4000	7:30 AM
7/1/98	Charles C. Regan Inc.	497	34	42		3/4"	1002 III B3 AR-4000	8:50 AM
7/1/98	Calfon Construction, Inc.	2105	46	100		3/8"	1010 III D AR-4000	*
7/1/98	Universal Asphalt Co. Inc.	1968	47	550		1/2"	1018 Fine AR-4000	*
7/1/98	Seal Black	478	48	50		3/4"	1001 III B2 AR-4000	8:30 AM
7/1/98	Copp Contracting Inc.	478	49	75	1	3/4"	1001 III B2 AR-4000	11:00 AM
7/1/98	Copp Contracting Inc.	837	15	100		3/4"	1002 III B3 AR-4000	*
7/2/98	Hillcrest Contracting	2064	33	500		3/4"	1024 Type B AR-4000	5:35 PM
7/2/98	Silverado Constructors	2064	33	1,800		perm	1039 A.T.P.B. AR-8000	*
7/2/98	Silverado Constructors		36	900		1/2"	1004 III C3 AR-4000	7:15 AM
7/2/98	Noble R.J.	1437	40	500		1/2"	1025 Type B AR-4000	*
7/2/98	Moore Electrical Contractor	1329	41	1,150		rubber	1032 A.R.H.MGG-C	6:50 AM
7/2/98	City Of Dana Point	317		1,130		1/2"	1004 III C3 AR-4000	6:40 AM
7/2/98	Collins General Contractor	384	42	200		3/4"	1024 Type B AR-4000	7:40 AM
7/2/98	Silverado Constructors	2064	43	150	<u> </u>	3/4"	1001 III B2 AR-4000	8:20 AV
7/2/98	Copp Contracting Inc.	478	44	25		3/4"	1002 III B3 AR-4000	8:20 AM
7/2/98	City Service Contracting	341	47			3/4"	1002 III B3 AR-4000	10:20 A
7/2/98	Parker Engineering	1697	54	40		1/2"	1004 III C3 AR-4000	1:20 PN
7/2/98	Meyer E.J. Co.	1323	57)	1/2	1007 007 1300	
				15,852	<u> </u>			

Date	Customer Name	Customer Number	Order		Production	×	Proceed	Starung
7/3/98	Hillcrest Contracting	837		Amount (Tens)		Туре	Type	Time
7/3/98	Silverado Constructors	2064	9	300		3/4"	1002 III B3 AR-4000	7:00 AM
7/3/98	Palomar Grading/Paving	1657	13	2,450	350	3/4"	1024 Type B AR-4000	5:35 PM
7/3/98	Silverado Constructors	2064	26	25	*	3/4"	1002 III B3 AR-4000	10:10 AN
7/3/98	Cal-State Paving Co., Inc.		28	1,500	225	3/4"	1024 Type B AR-4000	7:40 AM
7/3/98	COPP Contracting Inc.	286	29	75	50	3/8"	1010 III D AR-4000	7:00 AM
7/3/98	Noble R.J.	478	31	75	25	3/4"	1001 III B2 AR-4000	8:30 AN
7/3/98	Bostic Co. J B	1437	32	600	150	3/4"	1002 III B3 AR-4000	6:45 AM
7/3/98	Snyder Langston Inc.	218	33	75	50	1/2"	1004 III C3 AR-4000	6:45 AM
7/3/98	Collins General Contracting	1964	34	17	*	1/2"	1044 III C3 AR-8000	
7/6/98	Palomar Grading/Paving	384	38	500	150	1/2"	1004 III C3 AR-4000	6:40 AM
7/6/98	Meyer E.J. Company	1657	10	150	75	1/2"	1004 III C3 AR-4000	6:40 AM
7/6/98	Russell's Site Contract	1323	15	25	*	1/2"	1004 III C3 AR-4000	7:10 AM
7/6/98	Russell's Site Contract	2071	16	600	100	1/2"	1004 III C3 AR-4000	1:20 PM
7/6/98	Russell's Site Contract	2071	16	260	100	1/2"	1004 III C3 AR-4000	7:40 614
7/6/98	City Of Dana Point	2071	16	600	100	3/4"	1001 III B2 AR-4000	7:40 AM
7/6/98	Silverado Constructors	317	17	1,375	150	rubber	1032 A.R.H.MGG-C	10:15 AM
7/6/98	COPP Contracting Inc.	2064	21	2,450	350	3/4"	1024 Type B AR-4000	6:45 AM
7/6/98	Hillcrest Contracting	478	38	125	25	1/2"	1004 III C3 AR-4000	7.00.41
7/6/98	Palamas Cradin - 10 i	837	41	1,300	175	3/4"	1002 III B3 AR-4000	7:30 AM
7/6/98	Palomar Grading/Paving	1657	42	1,600	200	1/2"	1002 III B3 AR-4000	7:35 AM
7/7/98	Hillcrest Contracting	837	43	300	*	1/2"	1004 III C3 AR-4000	6:50 AM
7/7/98	City Of Dana Point	317	17	1,500	200	rubber	1032 A.R.H.MGG-C	
7/7/98	COPP Contracting Inc. Silverado Constructors	478	18	125	25	1/2"	1004 III C3 AR-4000	6:45 AM
7/7/98	For West Davis and S	2064	19	2,450	350	3/4"	1024 Type B AR-4000	-
7/7/98	Far West Paving and Sealing	617	23	100	25	1/2"	1018 Fine AR-4000	5:40 PM
7/7/98	City of Irvine	347	24	750	125	rubber	1032 A.R.H.MGG-C	6:10 AM
7/7/98	Hillcrest Contracting	837	26	100	*	1/2"	1004 III C3 AR-4000	7:30 AM
7/7/98	Sequel Contractors Inc.	2068	29	100	25	3/4"	1004 III C3 AR-4000 1002 III B3 AR-4000	7.00
7/7/98	Sequel Contractors Inc.	2068	30	100	50	3/4"	1002 III D3 AR-4000	7:00 AM
///98 //7/98	Western Paving Contractors	2332	31	35	*	1/2"	1002 III B3 AR-4000	10:30 AM
	City Of Westminster	2305	33	750	*	rubber	1004 III C3 AR-4000	*
/7/98	City Of Westminster	2305	33	525	200	1/2"	1032 A.R.H.MGG-C	*
/7/98	Atkinson Grading and Equip.	166	38	25	25	3/4"	1004 III C3 AR-4000	6:15 AM
/7/98	Gillespie Construction	733	43	25	25	3/4"	1002 III B3 AR-4000	10:30 AM
/7/98	Clayton Engineering Inc.	367	46	100	25	1/2"	1042 III B3 AR-8000	
				21,087		1/2	1004 III C3 AR-4000	9:10 AM

^{*} Data Unavailable

Date	Castomer	Customer	Order#		Production		Product Type	Starting Time
	Name	Number		Amount (Tons)		Type	1004 III C3 AR-4000	1:20 PM
7/7/98	Meyer E J Co.	1323	50	50	100	1/2"	1004 III C3 AR-4000	7:20 AM
7/7/98	Copp Contracting Inc.	478	53	25	*	1/2"	1004 III C3 AR-4000	9:00 AM
7/7/98	Copp Contracting Inc.	478	54	100		3/4"	1002 III B3 AR-4000	*
7/7/98	Allied Paving Co.	161	62	25	25	J	1032 ARHM-GG-C	7:35 AM
7/8/98	City Of Irvine	347	13	800	125	rubber	1004 III C3 AR-4000	8:45 AM
7/8/98	Copp Contracting Inc.	478	15	50	25	1/2"	1053 C2 AR-8000	9:30 AM
7/8/98	Tyner Paving	2017	18	300	75	1/2"		7:15 AM
7/8/98	Integrated Waste Management	1537	21	1,000	200	3/4"	1002 III B3 AR-4000 1032 ARHM-GG-C	6:45 AM
7/8/98	City Of Dana Point	317	35	1,400	150	rubber	1032 ARHIVI-GG-C	5:40 PM
7/8/98	Silverado Constructors	2064	36	2,400	350	3/4"	1024 Type B AR-4000	*
7/8/98	City Of Westminster	2305	41	600	*	rubber	1032 ARHM-GG-C	7:10 AM
7/8/98	City Of Westminster	2305	41	875	150	1/2"	1004 III C3 AR-4000	*
7/8/98	Catellus Residential Co.	153	42	25	*	1/2"	1025 Type B AR-4000	6:45 AM
7/8/98	Catellus Residential Co.	153	42	25	*	3/4"	1024 Type B AR-4000	1:20 PM
7/8/98	Meyer E J Co.	1323	51	50	100	1/2"	1004 III C3 AR-4000	7:15 AM
7/8/98	Copp Contracting Inc.	478	52	25	*	1/2"	1004 III C3 AR-4000	9:50 AM
7/9/98	Beach Paving Inc.	354	23	300	50	3/8"	1010 III D AR-4000	7:10 AM
7/9/98	Hillcrest Contracting	837	25	900	150	3/4"	1001 III B2 AR-4000	7:15 AM
7/9/98	Hillcrest Contracting	837	26	300		1/2"	1004 III C3 AR-4000	12:00 AN
7/9/98	Hillcrest Contracting	837	27	300		1/2"	1004 III C3 AR-4000	6:45 AM
7/9/98	City Of Dana Point	317	36	1,400		rubber	1032 ARHM-GG-C	7:00 AM
7/9/98	Excel Paving Co.	357	42	225		3/4"	1024 Type B AR-4000	7:00 AM
	JES Engineering Contractors	1006	45	115		3/4"	1024 Type B AR-4000	6:20 AM
7/9/98	Shamrock Asphalt	1991	46	1,200		1/2"	1004 III C3 AR-4000	
7/9/98	Meyer E J Co.	1323	51	60		1/2"	1004 III C3 AR-4000	11:20 AN
7/9/98	Meyer E J Co.	1323	52	60		1/2"	1004 III C3 AR-4000	1:20 PM
7/9/98	Clayton Engineering Inc.	367	53	15		3/4"	1002 III B3 AR-4000	6:20 AM
7/9/98	Silverado Constructors	2064	55	600	150	perm	1039 A.T.P.B. AR-8000	5:35 PM
7/9/98	Silverado Constructors	2064	27	2,000	300	*	1039 A.T.P.B. AR-8000	5:40 PN
7/10/98	Shamrock Asphalt	1991	20	800	150	1/2"	1004 III C3 AR-4000	6:15 AN
7/10/98	Hillcrest Contracting	837	21	1,600	225	3/4"	1001 III B2 AR-4000	6:35 AN
7/10/98		837	21	500		1/2"	1003 III C2 AR-4000	
7/10/98	Hillcrest Contracting	1323	47	65		1/2"	1004 III C3 AR-4000	1:20 PN
7/10/98	Meyer E J Co.	317	23	1,300	<u> </u>	rubber	1032 ARHM-GG-C	5:15 AN
7/10/98		640	24	850		3/4"	1024 Type B AR-4000	7:20 AN
7/10/98	Fieldstone Communities	U-10		20,340				

Date	Customer	Customer	Order #	Order	Production	Mix	Product	
	Name	Number		Amount (Tens)	Reterited	Type	Type	Starting
7/13/98	Silverado Constructors	2064	24	2,400	325	3/4"	1024 Type B AR-4000	Time
7/13/98	Silverado Constructors	2064	27	120	50	3/4"	1024 Type B AR-4000	5:40 PM
7/13/98	Silverado Constructors	2064	27	300	*	3/8"	1066 Type B AR-8000	8:40 AM
7/13/98	Sequel Contractors Inc.	2068	35	75	50	3/4"	1000 Type B AR-8000	.1
7/13/98	Excel Paving Co.	357	15	1,600	250	3/4"	1024 Type B AR-4000	10:15 AM
7/13/98	Meyer E.J. Company	1323	36	65	75	1/2"	1004 III C3 AR-4000	7:00 AM
7/13/98	City Of Dana Point	317	22	1,175	175	rubber		1:20 PM
7/13/98	Brutoco Engineering	214	21	500	*	1/2"	1032 ARHM-GG-C 1053 C2 AR-8000	6:45 AM
7/13/98	Brutoco Engineering	214	21	75	125	3/4"	1053 C2 AR-8000	
7/14/98	John Laing Hones	1029	18	500	150	1/2"	1004 III C3 AR-4000	5:30 AM
7/14/98	Silverado Constructors	2064	21	3,200	450	3/4"	1004 III C3 AR-4000	7:40 AM
7/14/98	Silverado Constructors	2064	23	75	*	perm	1024 Type B AR-4000	5:48 PM
7/14/98	Silverado Constructors	2064	25	1,100	175	3/4"	1066 Type B AR-8000	*
7/14/98	Silverado Constructors	2064	25	150	175	perm	1024 Type B AR-4000	8:40 AM
7/14/98	Excel Paving Co.	357	30	650	150	3/4"	1039 A.T.P.B. AR-8000	7:40 AM
7/14/98	Sequel Contractors Inc.	2068	32	200	50	3/4"	1024 Type B AR-4000 1002 III B3 AR-4000	7:00 AM
7/14/98	Meyer E.J. Company	1323	34	75	75	1/2"	1002 III B3 AR-4000	4.00.514
7/14/98	Sequel Contractors Inc.	2068	37	200	50	3/4"	1004 III C3 AR-4000	1:20 PM
7/15/98	John Laing Homes	1029	15	475	150	1/2"	1002 III B3 AR-4000	7:20 414
7/15/98	City Of Irvine	347	18	800	125	rubber	1032 ARHM-GG-C	7:36 AM
7/15/98	Silverado Constructors	2064	19	3,200	450	3/4"	1024 Type B AR-4000	5.40.014
7/15/98	Silverado Constructors	2064	20	1,000	*	3/4"	1024 Type B AR-4000	5:40 PM
7/15/98	Bully Miller Contracting	1943	21	15	*	3/8"	1024 Type B AR-4000	1:40 PM
7/15/98	C A Rassmussen	483	22	1,100	250	3/4"	1001 III B2 AR-4000	12:15 AM
7/15/98	Silverado Constructors	2064	23	300	50	perm	1066 Type B AR-8000	6:45 AM
7/15/98	Kajima Eng. And Constr.	1129	24	12	*	3/4"	1000 Type B AR-8000 1002 III B3 AR-4000	7:40 AM
7/15/98	Asphalt Care	2703	37	25	*	1/2"	1018 Fine AR-4000	0.00.414
7/15/98	City Of Dana Point	317	40	50	*	1/2"	1004 III C3 AR-4000	9:30 AM
7/15/98	Hillcrest Contracting	837	43	100	175	3/4"	1004 III C3 AR-4000	
7/15/98	Meyer E.J. Company	1323	44	86	*	1/2"	1002 III B3 AR-4000	
7/16/98	Clayton Engineering Inc.	367	19	10	*	3/4"	1004 III C3 AR-4000	1:20 PM
7/16/98	Hillcrest Contracting	837	22	900	150	3/4"		7:30 AM
7/16/98	Bayley Construction	247	25	75	200	3/4"	1002 III B3 AR-4000	7:05 AM
7/16/98	Bayley Construction	247	25	1,600	200	1/2"	1024 Type B AR-4000	6:30 AM
7/16/98	Silverado Constructors	2064	26	300	50	berm	1025 Type B AR-4000	6:50 AM
				22,508		Detti:	1066 Type B AR-8000	7:40 AM

^{*} Data Unavailable

***	Customer	Customer	Older W		Production:	Mix	Product	Starting
Date	Name	Number		Amount (Tons)	Rate(TPH)	Type	Type	Time
7/40/09	City of Dana Point	317	33	50	50	1/2"	1004 III C3 AR-4000	7:15 AM
7/16/98	Silverado Constructors	2064	34	500	250	perm	1039 A.T.P.B. AR-8000	5:40 PM
7/16/98	Silverado Constructors	2064	34	1,200	250	3/4"	1024 Type B AR-4000	7:40 PM
7/16/98	Silverado Constructors	2064	35	3,200	450	3/4"	1024 Type B AR-4000	
7/16/98	C. A. Rassmussen	483	39	125	50	1/2"	1004 III C3 AR-4000	7:15 AM
7/16/98		850	49	6		3/4"	1524 Type B AR-4000	7:10 AM
7/16/98	Ahmadi M. Const. And Eng.	2064	38	2,400	350	3/4"	1024 Type B AR-4000	5:35 PM
7/20/98	Silverado Constructors	214	24	125	*	1/2"	1053 C2 AR-8000	*
7/20/98	Brutoco Engineering	214	24	250	175	3/4"	1051 B AR-8000	5:45 AM
7/20/98	Brutoco Engineering	1679	17	1,500	175	1/2"	1044 III C3 AR-8000	5:00 AM
7/20/98	Pave West Inc.	2068	44	2,000	200	1/2"	1004 III C3 AR-4000	6:40 AM
7/20/98	Sequel Contractors Inc.	478	20	291	*	1/2"	1004 III C3 AR-4000	*
7/20/98	Copp Contracting Inc.	478	21	650	125	1/2"	1004 III C3 AR-4000	7:25 AM
7/20/98	Copp Contracting Inc.		9	275		3/4"	1002 III B3 AR-4000	7:00 AM
7/21/98	GMC Enterprises	711	10	75		3/4"	1002 III B3 AR-4000	6:25 AM
7/21/98	Hillcrest Contracting	837	11	280		1/2"	1004 III Ç3 AR-4000	7:25 AN
7/21/98	Copp Contracting Inc.	478		25		1/2"	1004 III C3 AR-4000	*
7/21/98	Hillcrest Contracting	837	14 15	400		1/2"	1010 Fine AR-4000	6:50 AN
7/21/98	Allied Paving Co.	161		1,500		1/2"	1044 III C3 AR-8000	5:00 AN
7/21/98	Pave West Inc.	1679	16	200		1/2"	1004 III C3 AR-4000	8:30 PN
7/21/98	Avala and Sons, Inc.	128	17	850		rubber	1032 ARHM-GG-C	10:30 P
7/21/98	Avala and Sons, Inc.	128	17	1,225		3/4"	1002 III B3 AR-4000	6:20 AN
7/21/98	Irvine Company, The	909	21	400		1/2"	1004 III C3 AR-4000	*
7/21/98	Irvine Company, The	909	21	50		1/2"	1004 III C3 AR-4000	1:50 PM
7/21/98	Meyer E. J. Company	1323	40			3/4"	1024 Type B AR-4000	5:35 PI
7/21/98	Silverado Constructors	2064	41	2,400		1/2"	1025 Type B AR-4000	6:05 Al
7/21/98	Silverado Constructors	2064	44	90	·	3/4"	1024 Type B AR-4000	7:35 Al
7/22/98	Silverado Constructors	2064	26	1	<u> </u>	1/2"	1044 III C3 AR-8000	5:00 Al
7/22/98	Pave West Inc.	1679	27	1,500		1/2"	1044 III C3 AR-8000	6:50 A
7/22/98	Western Paving Contract	2332	25			3/4"	1002 III B3 AR-4000	9:50 A
7/22/98	Allied Paving Co.	161	46	25	<u> </u>	1/2"	1044 III C3 AR-8000	1:00 A
7/22/98	Western Paving Contract	2332	44	1	}	3/8"	1010 III D AR-4000	6:40 A
7/22/98	Preferred Paving	1618	28	700		1/2"	1003 III C2 AR-4000	*
7/22/98	Myles Construction	1305	82	475	<u> </u>	1/2"	1044 III C3 AR-8000	12:55 F
7/22/98	Meyer E. J. Company	1323	17	80		3/4"	1002 III B3 AR-4000	7:50 A
7/22/98	Hillcrest Contracting	837	49	7:	0	3/4"	1002 III B3 A10-1000	1
				24,62	6			

^{*} Data Unavailable

9212	Gustomer	Customer	Order#	Order	Production	Mix	Product	Starting
	Name	Number		Amount (Tons)	Rate(TPH)	Type	Type	Time
7/22/98	Hillcrest Contracting	837	20	500	125	1/2"	1004 III C3 AR-4000	6:50 AM
7/23/98	Ayala & Sons, Inc.	128	10	850	175	*	1032 ARHM-GG-C	*
7/23/98	Ayala & Sons, Inc.	128	10	200	100	*	1004 III C3 AR-4000	*
7/23/98	Hillcrest Contracting	837	12	75	*	*	1002 III B3 AR-4000	7:50 AM
7/23/98	Meyer E. J. Company	1323	14	80	80	*	1004 III C3 AR-4000	9:20 AM
7/23/98	Hillcrest Contracting	837	17	1,300	175	*	1002 III B3 AR-4000	7:05 AM
7/23/98	Haitbrink Asphalt Paving	852	18	250	75	*	1004 III C3 AR-4000	8:50 AM
7/23/98	Anchor Paving	136	20	40	25	*	1018 Fine AR-4000	10:50 AM
7/23/98	Hillcrest Contracting	837	23	50	*	*	1004 III C3 AR-4000	7:15 AM
7/23/98	Mission Paving	1315	26	800	100	*	1018 Fine AR-4000	6:15 AM
7/23/98	Silverado Constructors	2064	29	2,400	400	*	1024 Type B AR-4000	5:35 PM
7/24/98	Hillcrest Contracting	837	10	75	*	3/4"	1002 III B3 AR-4000	7:50 AM
7/24/98	Hillcrest Contracting	837	15	800	175	1/2"	1004 III C3 AR-4000	6:45 AM
7/24/98	Ben's Asphalt	202	16	200	*	1/2"	1018 Fine AR-4000	•
7/24/98	Ayala & Sons, Inc.	128	27	850	175	rubber	1032 ARHM-GG-C	10:20 PM
7/24/98	Ayala & Sons, Inc.	128	27	200	100	1/2"	1004 III C3 AR-4000	8:20 PM
7/24/98	Silverado Constructors	2064	30	2,800	400	3/4"	1024 Type B AR-4000	5:35 PM
7/24/98	Silverado Constructors	2064	31	2,400		3/4"	1024 Type B AR-4000	6:35 AM
7/24/98	Presley Company	1605	33	1,275		3/4"	1002 III B3 AR-4000	6:40 AM
7/24/98	Excel Paving Co.	357	47	15		1/2"	1004 III C3 AR-4000	6:45 AM
7/24/98	Clayton Engineering Inc.	367	48	25		1/2"	1004 III C3 AR-4000	6:15 AM
7/24/98	Silverado Constructors	2064	49	84	*	3/4:"	1024 Type B AR-4000	6:35 AM
7/24/98	Snyder Langston Inc.	1964	50	82	25	1/2"	1043 III C2 AR-8000	11:35 AM
7/24/98	Snyder Langston Inc.	1964	62	175		*	1025 Type B AR-4000	*
7/25/98	Silverado Constructors	2064	18	2,400	300	3/4"	1024 Type B AR-4000	6:40 AM
7/25/98	Silverado Constructors	2064	19	250		3/4"	1024 Type B AR-4000	7:40 AM
7/25/98	Silverado Constructors	2064	20	2,800		3/4"	1024 Type B AR-4000	5:40 PM
7/25/98	Ben's Asphalt	202	12	190	100	1/2"	1018 Fine AR-4000	6:15 AM
	Total for 6/29/98 - 6/29/98, use			1,950				
	Total for 6/29/98 - 7/2/98, used i			15,852				
	Total for 7/3/98 - 7/7/98, used in			21,087	1			
	Total for 7/7/98 - 7/10/98, used i			20,340				
1	Total for 7/13/98 - 7/16/98, used			22,508				
	Total for 7/16/98 - 7/22/98, used			24,626				
			/98 to 7/25/98 below, also see Note	20,666	_			•
1	Total for 6/29/98 - 7/25/98, used below, see Notes 2 & 3			125,079				
1	Total for 7/19/98 - 7/22/98, used			19,545	_			
	Total for 7/19/98 - 7/25/98, used	below, see	Note 4	40,211				
	Used in the TED Deposition Cal	cualtion			See note 1 below			
	Used in the Ceiling Deposition C	Calculation			See note 2 below			
1	Used in the Exhaust Plenum Ca				See note 3 below			
1	Used in the New SED Deposition	n Calculatior	1	8,042	See note 4 below			

NOTES:

- 1 TED Test plates were installed from 6/29/98 thru 7/25/98. Total production during that time was 125,079. Test plates were exposed to load-out from 3 of 5 silos. Three fifths of 125,079 equals 75,347
- 2 Ceiling plates were installed from 7/23/98 thru 7/25/98; Total production during that time was 20,666
- 3 Box pipe were installed from 7/23/98 thru 7/25/98; Total production during that time was 20,666. Box pipe were exposed in only one silo. One fifth of 20,666 equals 4,133 4 New SED was installed from 7/19/98 thru 7/25/98; Total production during that time was 40,711. SED was exposed in only one silo. One fifth of 40,711 equals 8,142

		i	

...

APPENDIX B.5

LOAD-OUT RECORDS FOR 7/24/98 THROUGH 7/28/98

lient/Source:	EPA - Pla	nt C	}	-		Run No Dete		<u>Load Out</u> 4/98	j
	Hot Mix	alt	Data Recorded By: PS Murounhick						
Product ID	Product Description	Job Name	Time Of Loading	Actual Tons Loaded	Truck No	Silo No.	Mbx Temp.	Comments	$\frac{1}{1}$
1002	TI B3 AR-400	33	07/3	20.86	32	4	in Truck	2 min difference	$\frac{1}{2}$
1004	TII C3 AR-4000	15	07/5			3	 		
024	TAPIB 3/4	3/	0717	21.34	95	4		production + logg	4
1002	III B3 AR-4000	33	0719	209	89	4	(0717 Beganlows	ሃ '
1004	III C3 AR-4000	815	0728	20.89	99	3		Imagetica T:	1
002	TI B3 AR-4000		0732	21.45	87	1/2		here are from	
1004	ttl C3 AC4000	15	0738	21.20		3	<u> </u>		4
024	Tupe B 3/4	3/	0741	21.34	15	2		out con poter	1
004	TH (3 AL. 400	15	0743	20.83	96	3		Testing is using	
150	Tupe 13 3/4	3/	0745	21.39	13	2		production can	_
002	# 133 AC. 4000	33	0746		05	2		time, Product	-
002	III 13 3 AK-400			21.04	93	2		Computar is	
004	111 03 AR-4000		0749	4.03	91	3		at load out Com	إ
024	Type B 3/4	31	0752	21.19	21	2			-
024	Tupe B 3/4	3/	0754	21,12	26	2			-
204	III C3 AR-YOW	7/	0758	3.99	25	-			1
124	Tupe B 3/4	49	0759	21.97	84	1		· · · · · · · · · · · · · · · · · · ·	ł
	#		<u> </u>	<i>F1.</i> Z <i>1</i>	95	2			ł
774	Twe 1 13 3/4	3/	0802	2/12	29				╀
	Type B 3/4					2		0805 Gas Rhose	157
204	II C3 AR-4000								
	TI B3 AL-YOUG		0807	- 1		/			ĺ
	TI (3 AC-4000		0812		07	2			
24			0815 0823						
04 7	II C3 AK-100		7	21,40	20	2			•
04	II C3 AK-400				92	<u>x3</u>			
7 1				2.54	25	3			
	7	27			21	八			}
	II 63 AR-		0828		21	2			
	Thore 5 3/4"		0830 0833 :		89	3			

P5M

-	4701-08-03-04 EPA - Plant	<i>(</i> ?	<u> </u>				7/24	Load Out
Client/Source:	Deta Recorded By: PS Murowchick							
Product ID	Product Description	Job Name	Time Of Loading	Actual Tons Loaded	Truck No	Silo No.	Mix Temp. In Truck	Comments
1024	Tupe B 3/4	3/	0838	21.72	12	2		
1002	TH B3 AR-4000	33	0839	21.36	13	2		
1004	TI 03 AX-4000		0841	21.35	30	3		
1024	Type B 3/4	3/	0843	21.05	15	2		
1004	TH C3 AR-4000	15	0846	20.94	26	3		
1024	T4PLB 314	3/	0849	21.38		2		
1002	TIT B3 AR 4000	33	0850	21.3 3		2	· · · · · · · · · · · · · · · · · · ·	
1002	TT B3 AL 4000	10	0852	2/12	93	4		
1004	HT C3 AR4000	15	0 854	21.04	T	3	<u> </u>	0858 Began filling
/بده/	Tupi B 3/4	31	0853		7——	4	D3M	USS Sigun IIII
1002	TI B3 ARYOO	-	0859			X	 	
1004	TII C3 ARYON			20.8	I	3	 	
1024	Tupe B 3/4"	3/	0905			2	 	Cate open on to
1024			0910			2 X	2	Spilling in tunne
1004	TIT 13 AR-4000		0912		95	4	1 (2Ton in tome
1002		- t	0916		88	 		F920 cleaning up
1004			0921			2	+	tunnel
	Type B 3/4"	3/	0927		1	2	1	Comize
1024		3/		21.27		2	+	
10 02	III B3 ARYOG			3 21.44		2	 	821 Sampling biggs
1024	7			7 21.4.		3		Loxation 1
1004	III (3 AR-YO		0938			2		Location 1
1024				1 21.2		2		
1000				2 21.0		2		
			094		_ I _	3		
1004				5 21.1		1		
1 1024	1 Tor. B 3/1	31			91	12		

	4304.00.00									
Client/Source	4701-08-03-04 EPA Plant	·	-		Run No.	/ -	Load Out			
CHEMISOLITOR: EPA Plant C Hot Mix Asphalt					Date: July 24,1998 Date Recorded By: PS Murouchick					
- Ilei IIIIx Asphalt					Date Recorded By: PS Murowchick					
Product	Product Description	Job	Time	Actual	Truck	02-				
√. ID		Name	Of .	Tons	No	Silo No.	Mbx Temp.	Comments		
12 1	T 0 3, 1/		Loading	Loaded			in Truck			
_	Type B 3/4"			21.34	08	2				
1004	# C3 AR-4000			21,20		3+1				
104	Type B 314"	3/		21.53		2				
1002	II B3 AR-4000			21.52		2	<u> </u>			
1024	Type B 31411	49	_	21.29		2				
1024	Type B 3/4"	3/		21.60		2				
1004	717 C3 AR-4000			20.94						
1002	TIT B3 AR-4000			21.27		2				
1024	Type B 314"	3/		21,22		2				
1004	TT C3 AR-4000		1009	20.96	96	1				
1002	## 83 AR-1000		10 11	21.44	20	2				
1002	TI B3 AK-4000		1014	21.06	99	2				
1004	TI C3 AR-4000		1027	21.50	92	/				
1002	TI 133 AK-4004		1028	20.43	05	5				
1024	Type B 34"	3/	1030	21.41	//	5				
1004	TIT 03 ARYOOU		1033	21.29	18	81				
1024	Type B 3/4"	31	1035	21.08	16	5				
1004	Type B 3/4"	3/		21.39		5				
1000	TI B3 ARYOW		1030	21.33	86	5		`		
1004	III (3 AR 4000	15	1040	21.14	93	/				
1044	Type B 3/4"	3/	1041	£1.45	26	5				
1074	Type B 3/4"	3/	1043	21.25	2/	5				
	## B3 AR 4000	<i>3</i> 3	1046	21.26	08	5				
1004	II C3 ALYON	15	1052	21,40	91	1+3				
	Tape B 3/4"	1		21.40		5				
	TI C3 AR-4000			21.07		3				
1002		33	1100	21.51	29	4				
1001	777	31		21.33		6				
1002	// /	33	11074	21.29	83	544				

48

Run No. 1- Load Out Mri Project No. 4701-08-03-04 Des: July 24, 1998 0 Plant CHAMISOURCE: EPA Hot Mix As shalt Comments Mix Sio Truck Actual Time Product Description Job **Product** Temp. No. No Of Tons Name ID in Truck Loaded Loading 3 21.31 TTI 03 AR4060 Type B 3/4" 21.42 21.30 TIL B3 AR4000 315 TIL C3 ARYOOC Type B 3/4" 21,40 20 1024 16 1103 Type B AR 4000 1002 43 1126 15 TTL C3 AR4000 1004 31 21.32 21.35 3 1136 1138 21.12 ARYDOO 1002 21.14 Front of Truck 305B TIT C3 AR 4000 1004 Back of Truck 3 24.84 3058 III (3 ARYOO. 2 Tupe 13 3/4" 1024 1.45 20.12 1024 2 31 21.04 05 //53 33 AL 4000 2 99 Tupe & 3/4" 1024 ے 86 21.31 3/ 1157 2 27 /3/)2 TIL B3 ARYODO THRIB 1024 21.32 29 1205 2 1024 21.72 32 1210 B3 AC4000 1007 88 21.02 TURE B 314" 23.49 3310 a 1247 38 13 1219 21.29 1002 TIF B3 AR 4000 21.00 TI B3 AR4000

Mri Project No	4701-08-03-04							1
Client/Source	150	of C	, , , , , , , , , , , , , , , , , , , 	-		Run No	· <u>-/</u>	Load Out
·	Hot MIX	Acho	11	-		Deta	- Ju/u	24,1998
		Spile	9		Deta	Recorded By	P3 7	Murauchick
Product	Product Description	Jab	Time	Actual	Truck	T 62	1 14:	
ID		Name	or	Tons	No	Silo No.	Mix Temp.	Comments
			Loading	Loaded			in Truck	
1002	II B3 AR4000		1223	21,52	20	2		
1024	Type B 3/4"	3/	1225	21.47	\$010	2		
1002	III B3 AP400	-	1230	21,46	18	2		
1004	TI C3 AR4000	15	1235	21.33	21	3		
1024	Type B 3/4"	3/	1236	20,40	8/	2		
1002	TIL B3 ARVOOD	38	1237	21,73	92	2		
1002	TI B3 AR-4000	33	1238	21.78	02	2		
1024	Type B 3/4"	31		21.16		2		
1002	TIT B3 ALYON	38	1212	21.39	26	2		
1024	Type B 3/4"	3/	1244	20.23	05	2		
1002	III B3 Af-4000	33	246	4	96	2		
	<u> </u>	V	1248	21.57	W	4		
1.024	Type B 3/4"	3/	1249	01.25	07	4		
1002	II B3 ARYOOO	38	1251	21.20	93	4		
1024	Type B 3/4"	3/	1253	21.17	99	2		
1002	II B3 ARYON	38	1254	21.31	11	ユ		
	Type B 3/4"	3/	1301	V	89	2	,	
d		V	1302	21.19	39	4		
		-						
								i

	Orange County Name	(State Name)
1002	III B3 AR-4000	(Same as 1024 Type B 3/4")
	30% RAP	
	5.2% Liquid Asphali	4 AR-4000)
	36% Rock Dust	(Sept.)
	24% 3/8" Rock	
	22% Crushed 1/2"	"Rock
	18% 314" Rock	
1004	III C3 AR-4000	(1/2" SANI QO 1018) 1/2" Fine
	30 % RAP	1/2" Fine
	5.5% liquid Asphat	
	43% Rock Dust	
	4270 3/8" Rock 1590 12" Rock	
	15% 1/2" Rock	
1010	TIL DX AK-4000	(3/8")
	6.4% As phat	
	20 % Sand	
	5470 Rock Bust 2670 318" Rock	<u> </u>
,	26% 3/8" Rock	
, 		
,		
	51	

Mri Project i	vo. 4701-08-03-04						-27	7- 161
Client/Sour	EPA / Plan	ot C	,			Run Ni	· <u> </u>	Load Out
	Hot MIX A	s abo	14	-	_	Dete	"- / //	y 25,1998
		3 price	<u></u>		Deb	Recorded By	r <u> 75</u>	Murowchick
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	
IĐ		Name	Of	Tons	No	No.	Temp.	Comments
1004	1 11 12 22		Loading	Loaded	<u> </u>		in Truck	
-	100		0703	21.12	20	2		
1024	1 //	18	0704	21,43	29	5		
1004	TH C3 AR-4000		0700	<u> </u>	16	12		Same truck
1004	TI (3 Al-4000	11	0709	21.24	16	3		
1024	Type B 314"	18	07/2	21.02	18	5		0715 Sampling
1004	III C3 AR-YOUO	11	0720	20.92	09	3		
1024	Type B 3/4"	18	0721	V	31250	ュス		Front of truck
	10	18	0723	23.87				Back of truck
1018		12	0724	4	3405			Front
1018		12	0725	23.65	/(3		Back
1004	Type B 3/4"	18	0729	21.21	27	2		Furt
1004	TI C3 AR-4000	11	0731	V	3/2503			Best Front
<u>'</u>	4		0732	23.93	V	3		Back
1018	1/2" Fine P	Mx 8/2		21.09	23	3		D46-
1024	Type 13 3/4"	18	0738		3/150/	2		Front
4	J. //	10	0740	24.43		"		Back
1004	TI (3 AR-4000	//		20.59		3		LACK
10-4	Type B 31411	18	0743	4				~ ·
11	" "	//	0744	23.24	31 <i>04</i> 11	2		Front
1024	Type B 3/4"	19		20 (1)	22	2		BACK
1018	1/3" Finy	14	7 40	20.64				
II.	"				3425	3		
1024	Tupi B 3/4"	18	0748		"	/(
1004	TH C3 ARMOON		0751	21.26		<u> </u>		
1	11		0753		12504	3		Front
1010	15" Fin		0755		"	<u>"</u>		Back
1024				21.32	15	3		
,	7/			21.26	_//	2		
1004	TII C3 ACYON		2805	19.73	08	3		
1124	Typ1 B 3/4"	18	0807	21.05	07	2		

Mri Project No	4701-08-03-04							Logd Out
Client/Source	EPA/Plan	+ C					7019	25,1999
	Hot Mix F	ts pha	<u> </u>		Deta R	corded By:	<u> 75</u>	Murowchick
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of	Tons	No	No.	Temp. in Truck	
	1/1/=	/2	Loading	Loaded 2	29	3	III TIGOR	
1018	13" Fine	18	0809	21 21	18	4		
1024	- 		0814	21.31		3		Front
1004	TI C3 AR 4000	11	0817	24.65	3597 11	11	/	Back
	11 11	 		17.63	30 <i>8</i> Y	3		Front
10 18		12	0819	24.48	3001 #	"	/	Back
	1 7 7 31.11	18	0822		30	5		, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
1024	Typ1 B 314"	+	0824		312505	7		Front
1004	TI C3 AR-400	0 11		24.03		11		Back
-	1 - 3 "			21.50	 	2		
1020	1111	1/2		21.16	16	3		
1018		 		21.27		3		
100	1 - 2 1	1/8		121,25	27	2		
102	1 2 2 1	1/18	083		312501	4		Front
102	1 1901 17 14	111		324,45	T	11		Back
\	+ Typt 8 34			721.24		3		
4 10F	1 - 22/1	18		21.30		5		844 Sampling S
102	1 7 3		084		3104	- 7		Front
102	Type B 3/4	11		623.21		4		Back
	1 THE C3 344	_ //	_	821.00		3		
1/24 /01)	1 9 2 3	" 18	0850			38 2		Front
102	y rype 5 4	"		124.4				/ Back
102	4 Type B 3/4	1 19	085			2		
د 10	1 -2	" 13	085		\$650	12		Front
,	11972 11	"		0 23.8		//	1/_	Rack
100	/ III C3 AR-YO	00 11	_	2 21.00		3		
102	2 3///			3 20.8				
100	. 1 2 2	1 13		621.18				
1,02								

	Mri Project N	ю. 4701-08-03-04							
	Client/Source	EPA IPIAN	10		_		Run Ne		Load Out
	j	Hot MIX A	5 060	14	_		Date	: <u> </u>	4 25,1998
		1101 /11/2 /1	3 price	17		Deta	Recorded By	r_ <i>PS</i>	Murowchide
	Product	Product Description	Job	Time	Actual	7	T ==-		
	OI.		Name	Of	Tons	Truck	Silo No.	Mix Temp,	Comments
	1		<u> </u>	Loading	Loaded			in Truck	
	1024	TypeB 3/4"	18	0910	1	3405	2		Front
/	",		"	0910	23.67	3405	11		Bock
	1004	III C3 ARYOOD	//	0913	20.89	30	30	3 FSM	
	1024	Type B 314"	18	0915	20.87	23	250	8	
	1024	Type B 3/1"	19	0917	21.02	11	2	<u> </u>	
	1018	1/2" Fine	1218		12,0	09	3	 -	
i	1024	TUPE B 3/4"	18		21.01	27	2	<i>y</i>	
1	1024	Typ1 B 3/4".	18	0923		3/2505			E- 4
\setminus	11	"	"		24.19	"	2	\	Front
Ì	1024	TUPE B 314"	18		20.93				Bock
	1024	Type B 314"	18	0931	2.94	21	2		
ı	018	1/2" 5M		0933		08	2		
ı	1024	Tupe B 3/4"	18		8.0	09	3		
ı	624	7	18	0935			2		
Ì	<u>"</u>	TypiB Fy	10	0940		3597	2		Front
ł	10.4	+ 0341		0941	23.87	"			Back
F		1 apr 6 ag	13	994		10			Cancelled
<i>/</i>	1004	TI (3 AR 4000		0945	1503	10	3		
\	1024	Type B 3/4"	18	0947	V	7/25	al		Front
╁			/*	0948	24.58	"	"		Back
ŀ	1221	Typi B 314"	/8	0949	21.17	29	2		
ŀ	1024	Typi B 3/4"	10	0954	<u> </u>	12505	ス		Front
ŀ	"				23.58	4	"	7	Back
L	1024	Type B 3/4"	19	- 1	20.86	//	ュ		12461-
L	1024	Type B 3/4"	18	0959	7	106	2		Front
L	μ),	٨	0951		"	"	/ 	Back
	024	Type B 34"	18	1002		25	2		
	224	Type B 34"	18	1005			2	$\overline{}$	Fr. d
	.1	<i>J</i> ,,		1006		"	"	/ - 	Front P +
1	124	TYP1 B 3/4"	4 - T		21.06	$\overline{}$	— <u>-</u>		Back
_	<u> </u>	///_		007	-1.00		고		

ri Proiect No.	4701-08-03-04					Run No.		Logd Out
Sent/Source:		+ C				Dete:		, 25, 1993
mentrocurce;	Hot MIX A	Soha	1+		Data R	scorded By:	クーノ	Murowchick
•	// /// ///	1	<u> </u>					
Product	Product Description	doL	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of	Tons	No	No.	Temp. in Truck	
			Loading	Loaded	2.2	2	NI ITUCK	Front
1024	Type B 3ry"	18	1014		312503	11	 	Front Back
μ	11	"	10/5	23.54				Dack
1018	113" Fine	12	1016	6.18	22	3×	 	<i>i i</i>
1024	Type B 34"	18	1027	V	3084	2	 	Front Back
И	" "	11	1028	24.06	"	"	/	BACK
1024	Type B 3/4"	18	1030	20.91	18	4	ļ	
1024	TUN B 319"	18	1032	21.06	27	4	<u> </u>	
1024	The 8 3/4"	18	1035	20.79	10	4		2/ 23
1024	Type B 3/4"	18	1039	3.14	21	4	<u> </u>	21.03
<u>IVOT</u>	19 11	11	1341	17.89	п	5		17.89
1024	Tupe B 314"	18	1043	21.00	22	5		
	Tupe B 3/4"	18	1046	14.52	11	5		- 14.52
1024	1900	18	1048		7//	2		638
1024	Tyel B 3/4"	18	1050			2		
1024	1 1 2 1	18	1052	1 - 4 2 -		2		
1024	1 31 2 11	18	1054	20.9	+	ス		
1024	7/ 2///		100	20.91		2		
1024	1 -11	18	1104	21,07		2		
1004	1 2 3 3 11	18				2	1	
1024			1110	21,13	9 25		1	
1024	Type B 3/4"	18	1119			12	 	
1024	TypiB 3/4"	12)	1124	21.01	10-	+~	_	
		 	 	- 			+	
		 			-		+	
		 		<u> </u>	+	 -		
							_	
		<u> </u>						
						<u> </u>	<u> </u>	

Load-Out Log Spreadsheet

	Mri Project No	o. 4701-08-03-04		• • • • • • • • • • • • • • • • • • • •	 				
	Client/Source		ce C		_		Run No		Load Out
			Aspha	1+			Dete	: July	
	1	- 7-101 //// X	rspna	ч .	-	Data	Recorded By	<u> 123</u>	Murowchek
	Product	Product Description	Job	Time	A second				
	ID		Name	Time Of	Actual	Truck	Silo No.	Mix	Comments
				Loading	Loaded		140.	Temp. in Truck	
1024	100+	Type B 3/4"	22	0702	12.70	153-4	132		Front 22 98
1024	1001	<i>'</i>	22	0704	10.28	1	2		Back 12.70
	1024	Type B 3/4"	18	0709		21	2	 	CACK
	1002	HT B3 AKK	20 20	0711	11.74	3106	2	 	F 4 23.00
	11	"	20	07/3	11.3Z	11	2		Front 11.74 Box 11.32
	1002	III B3 AR-4000	20	0718		09	a		Bak 11-32
			22			1717	2		0 - 11
	1002	II B3 AR YOU		0736	12.21		 		Brop Aborted
	ŧ	"	1	 	12.21		//		Front 24.33
	lory	TUPE B 314"	22	0737	12.12	ı			TACE
		1902 13 19	22	0738	12.76	1717	2		Front 25.45
	1024	Type B 314"	 	0739	12.90	"			134cle 12.75
	1007	19020 -19.	28	0743	12.42	3597			Front 24.80
	(00.3		"	0744	12.38	"	"		BACK 12.42
1	1002	II B3 ARYOUS	20	0746	12.36	3512	2		Front 24.00
- 1	/	7 2.11	lf .	0747	/2.30	N			Back 12.76
ŀ	1024	Type B 314"	22	0753	12.64	2365	12		Front 25.20
ŀ	"		"	0754	12.62	71	2		Back 1262
ŀ	1024	Type B By"	22	0755	12.34	2305	2		Front 25.21
- 1	"	"	"	0756	12.87	C!	п		Back 11.87
	1002	TI B3 ARYO	020	0800	12.00	2/25	12		Front
- 1	"	"	"	0801	12,38	11	"		Back
4	1024	Type B 3/4"	18	0801	20.45	10	2		746.1
L	1024	TUPE B 3/4"	22	0803		3475	2		Front
L	1.	11		- / l	12.70	,	,	I .	
	10-4	PUPIB 314"				1001	2	I	BACK 27.89
	4	"			14.00	"	-		70NT 1384
	1002	TI B3 AR-YOW			21.40	27			Beck
		II B3 AR-4000					3		<u></u>
	11	1		- /		-	}		Front
56				<i>U-7</i> /	2.05				Pack

Protect No. 4	701-08-03-04					_	<u> 3, , , </u>	Load Out
_		ce (7					27,1998
_	Hot Mix	Aspha	ult.	-	Data Re	corded By:	<i>45</i>	Murowchick
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID	. 100.00	Name	Of Loading	Tons Loaded	No	No.	Temp. in Truck	
1024	TYPEB 314"	22	0816	6.76	8280	2		Front 25.16
1	17/22	~	0816	13.00	*	//		Back 1216
1024	Type B 3/4"	22	0818	13.00	20110	2		Front
1024	19PED	"	0819	12.56	"	И		Back
1024	TypiB 34"	28	0820	11.50	31254	2		Front 24.04
1	102	1/	0821	12.48	*	"		Back ".so
1002	TI B3 AC4000	38	082	21,30	12	2	<u> </u>	
1002	TI B3 AR.4000		0824	12.00	Γ .	2		Front
"	"	1	0824	12.23	*	"	<u> </u>	Back
1024	Type B 314"	22	0826	1300	23050	د		Front
100.7	1972	11	0826	12,71	11	4		Back
1024	TYPEB 34"	22	0827	13.03	103201	2	<u> </u>	Front
"	190-	11	0829	13.13	μ	Ŋ		Back
1002	II B3 AR-YOU	782	0829	12.05	3200	4		Front
"	0	"	0830	12,67	4	11		Back
1024	Type B 314"	18	0832		29	4		
1024	Type B 3/4"	22	0833		22/50	st 4		Front
1007	1902	"	0834	12.88	"	11		Back
1002	TI B-3 AR. 400	20	+	21.18	T	9		
1054	7 2 2 1/	22	0837		10280	14		Front
7027	1900	"	0838			1		Back
 	Type B 34"	22		12.43		44		Front
1024	1900	11	0840			11		Back
10-4	Type B 3/4"	18	0841			1		
	12		084		-	4		Loaded from
1002	11	"		3 17.49	_	5		Front + 51/05
1024	Type B 3/4"	122	0844		0 2010	x1 5	1	
	1900 1	11		13.04		11		

Mri Project No	o. 4701-08-03-04						• • • • • • • • • • • • • • • • • • • •	
Client/Source	FPA 18	DUrce	, 1	-		Run No.	1	Load Out
	Hot Mix	Aca	6014	_			<u> </u>	4 27 1998
 		115/	riaci	_	Deta	Recorded By:	<u>//3</u>	Murowchick
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	
ID		Name	Of	Tons	No	No.	Temp.	Comments
15.1/	T P2 3 4		Loading	Loaded	<u> </u>		in Truck	
1024	Type B3 3411	22	0847	13.00	199508	2		
11	7	"	0848	12.96	//	1		
1002	III 133 AK 4000		0849	21.12	07	2		
1024	Typ1 B3 3/4"	22	0851	21.33	15	2		
1024	TypeB3 3/4	22	0852	13.00	20042	,2		Front
11	l(u		13.13	11	"		Back
1034	Type B 314"		0854	11.59	10280	62		Front
	V	11	0855	12.84		"		Back
1024	Type B 3/4"	18		21.31	18	a		
1002	TI B3 AR-4000	70		20.44	44	ュ		
1024	Type B 3/4"	22	0859		121415	2		Front
f	"	*	0900	11.47	1,	"		Back
1024	Type B 3/4"	22	0901	13.00	1298	7		Front
te	11	"	0902	13.01	/1	"		Back
1002	III B3 ARYON	20	0902	13.05	374A	2		Tront
R	11	"	0903	11.05	"	"		Back
1024	Type B 3ry"	/8	0904	21.28	09	T		IZICK
1001	II B3 AR. YOU	20	0906	12.00		2		Front
r	d			11.19	"	"		Back
1024	Type B 31/11		0908		230524	2		Front
4	/1	и	0908	12.61	11	"		
1024	Thoe B 314"	22	_ (153-40			Back
′′	N .			12,24	12 7 40	1		Front
1002	TH B3 AR1000			21,28		7		Back
1024	Tipe 13 3/4"			_ 1	21			
1024	Type B 314"		^ ~	1		2		
11	"		المحسا	12.12		"		Front
1024	Bps 13 314"			73.50	27.			Bick
H	13 Px 12 14				1205	١		Front
		K	919	2.63	1/	<i>''</i>		Back

i Project No.	4701-08-03-04					· · · · · · · · · · · · · · · · · · ·		Load Out
ent/Source:		ce (Date: _	414	27,1998
	HOLMIN A	s pho	<u>Ut</u>		Data Re	corded By:	P3 1	Nurowchick
Dogwey de	Product Description	doL	Time	Actual	Truck	Silo	Mix	Comments
Product ID	Flodor Beauthan	Name	Of	Tons	No	No.	Temp.	
			Loading	Loaded			in Truck	
002	TI A-3 AR-4000	20	0921	12.35	303503	2		Front
//	"	ч	0923	12.09	п	٨		Back
100Y	Typs 12 3/4"	02	0920	12.77	2355	2		Frant
4	138 "	К	0927	12.77		11		Back
100+	TIT B-3 ARYOOD	38	0929	21.34	12	2		
1024	Typ1 B 314"	22	0931	13.00	2475	7		Front
10 9 4 1	1900	4	0932	12.71	4	4	<u> </u>	Back
	Tun B 3/4"	<i>a</i> 2		13.00	1001	2		Front
10-Y	131	11	- 7	14.74	11	/t		Back
1024	Type B 3/4"	18	0935	21.49	27	2		
1024	THE A-3 AR-4000		0937	1 - 1	 	2		Front
1002	11 B-3 7F-700	11	0938			"	<u> </u>	Back
11			+	12.00		2	 	Front
100x	TI B-3 AR-400	"		12.51	11	~		Back
/	7 7 3 "	<u> </u>				1 3	 	Front
1024	Typ1 B 34"	22	0944	13.00		12	 	Back
"	<i>"</i>	"		12.72		 		Front
1024	Typ: B 314"	22	0946	1.	1 4501	12	 	BACK
	"	//	0947	13.18		+		
1024	Typ1 B 314"	22	0951	12.65	23054		+	Front
11	И	"	0952			-		Back
1024	Type B 314"	22	 -				- -	Tront
11	J. //	"	0954			4		Back
1004	TI (3 AR 4000		0957	8.03	<u> </u>	1/		-
1024	"	10	095	B 2.24	10	12		
1002	TI B-3 AR-4000	20	1000			2	 	1
104	2 //	22	1003	13,00	100			Front
11	11	11	1004	13,00	9 3091	/ /		Back
1004	Type 13 3/4"	22	1005	- 12.8	6 2314	ر حور	-	
#	11	"	1006			11		

fri Project No. 4701-08-03-04 18ource Hot Mil As phalt Data Recorded By: **Product Product Description** Job Time Actual Truck Silo Mix Comments ID Name Tons No. Temp. Loading Loaded in Truck 1002 B-3 AC-4000 1007 2 Front 3094 11 BACK 1002 TIZ B-3 AC400, ≫ 1009 2004 11.69 12.44 1009 Back 13.00 19500 1955 Front 1011 Back 13,00 \$050 2 Front 1014 Back II B-3 AK-400 1002 20 1015 12.61 BOO Front 1016 Back 1024 ہد 1017 13.00 22106 Front 10:00 12.86 nack 3/4/1 אנס/ 2~ 12.79 1021 102806 " 1022 11.73 11 Back 3/4/1 102 21.25 22 1025 12.82 Front 121415 11 625 12,90 Back 1024 Frest 13.00 200/20 13.14 1027 RICK 1002 20 20.98 10 8.95 Filled From 1030 12.40 5 クユ 1300 1293 2 Font 13.10 Back 002 B-3 AR-4000 30 **W**2. בססו 20 1035 5 lBz0 B-3 Ax-100 1037 1024 2 1039 1301 330506 5 12.69

Driect No. 4	1701-08-03-04					Run No.	3-	Load Out
lient/Source:	EPA / Source	, (Date:	Ju/4	127, 1998 Nurowchick
	HOT MIX A		+		Data Re	corded By:	P5 11	Nurowchick
-					<u> </u>			
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	Comments
ID		Name	Of Loading	Tons Loaded	No	No.	Temp. in Truck	
1024	Type B 3/4"	22		12.80	2705	5		F 15.28
"	1962 13 19	"		12.48	11	11		3
024	Type B 314"	18		21.39	15	5		
1002	TTL B-3 AC-4000			21.38	21	5		
1024	Type B 314"	22	1049	13.00	17/7	Xá	PSM	Front
11	11	//	1050	12.76	11	11		Back
1002	TI B-3 A9-4000	20	1051	21.21	09	2		
1024	TUDE B 3/4"	18	1052	21.44	13	2	ļ	
1024	Type B 3/4"	22	1054	12.79	15540	<u> </u>		Front
1	J. 11	11	1054	12.73	"	//		Bede
1002	TI B-3AR-4000	20	1057	21.61		a	ļ	
1024	TYPIB 34"	22	1059	12.86	221515	<u>a</u>	<u> </u>	Front
U	,	1	1100	12.72	//	"	 	Back
1000	TII B-3 AC.4000		1101	20.87		2	-	
104	THE B 34"	18	1103	21,30		2		P 4
1024	Type B 34"	24	1107	12191	2475			Front
11	" "	"	1108	12.63		3	ļ	Beck
(00)	II B-3 AR1400	000	1109		_	2		
1024	TYPIB 34"	18	1110	11.50			<u> </u>	Front
4	"	1	1///	10.97		"		BACK
1024	Typ1 B 314"	22	11/3		1001	12		Front
11	J. "	11	1113	15.23		11		Back
1002	III B-3 AC-4000		11/8	12.00	. 1	1	 	Front
η	1	1	1118		_	"	-	Back
1024	Type B 34"	22	1121		יטב אבר.	1 //	+	Front
//		*	11:21	13.22				Back
1024	Type 13 34"	22	1122	13.00		2	-	
11) (1	10	1123	12.78	3 "	<u> </u>		
<u></u>	-	<u> </u>						

i	4701-08-03-04					Run No	3-	Load Out
Cilent/Source	<u></u>	'1 C				Dete	7	2-
1	Hot Mix L	sphil	F.	_	Date	Recorded By		1 1 1 2
		7		-		- Necologia By	· / , J.	Murowch
Product	Product Description	Job	Time	Actual	Truck	Silo	Mix	
ID.		Name	Of	Tons	No	No.	Temp.	Comments
1604	-T P 3 1	1100-	Loading	Loaded			in Truck	
7	Type B 34/1	191	1125	21.53	30350	2		
1024	Type B 3/1	22	1128	13.00	12305	12		Front
	, 1	11	1129	12.92	11	1		Back
					1000			7,3,0,0
1024	Typ1 B 314"	22	//3/	13.00	1951	2		Front
"	//	11	1133	12,73		"		Back
1024	Type B 3ry"	28	//33	12.00	3597	2		Front
11	"	"	1134	12.91	11	"		Back
1009	TIL C3 ARYOUT	17	1/35	12.00	3,2501	7		Front
"	11	11	1136	12.56		"		Back
1024	Type B 3/1	2032		13.00		2		Front
11	11	11	1/37	17.40	11	1		Back
1021	Type B 74"	22	1138	13.00	1020	2		Front
"	" "	//	1/39	13 H	"	"		Beck
1024	Type B 3/4"	22	1141	13.00	22/104	- a		
11		11	1141	12.67	11	文		Front
1024	Type B 3/4"	22	1142	13.00	1950	3		Back
11	11	1	1143	13.10	11	11 %		Back
100x	TI B3 Afrow	20	1 11		3094	2		4
11	"	11		1249	(1	11	 	Back
104	17P1B 34"	22		13.00	20/06	2		
11	(1	"	1148	12.96	10	1,		Front
1024	TYPEB 314"	22		13.00				Back Front
10	11	11	1150	2.46	"	11		
1002 7	I B3 ACY000	20			300	2		Back
11	11	11	4. 4. 7.	2.3/	//	11		Front
1004 1	I (3 AR1000	17			26	"		Back
1024 -	Pype B 314"				02800	1		
1	<i>J</i> * //			264	11	2		Yout
			- 5 5			11		BUK

FUR 7/28/90								
TME	CUSTOMER	TRUCK#	TONS	PRODUCT DESCRIPTION				
		(2000)	10)(10)EB	1024 Type B 3/4" M.M. AR-4000				
6:21 AM	Griffith Company	2475	25.49	1024 Type B 3/4" M.M. AR-4000				
6:27 AM	Griffith Company	1001	27.67	1024 Type B 3/4" M.M. AR-4000				
6:30 AM	Griffith Company	221505	25.66	1024 Type B 3/4 M.M. AR-4000				
6:34 AM	Griffith Company	102801	25.97	1024 Type B 3/4" M.M. AR-4000				
6:42 AM	Griffith Company	102806	24.39	1024 Type B 3/4" M.M. AR-4000				
6:46 AM	Griffith Company	195512	25.79	1024 Type B 3/4" M.M. AR-4000				
6:50 AM	Griffith Company	195508	25.96	1024 Type B 3/4" M.M. AR-4000				
6:53 AM	Griffith Company	121415	25.69	1024 Type B 3/4" M.M. AR-4000				
6:56 AM	Griffith Company	1298	26.24	1024 Type B 3/4" M.M. AR-4000				
7.22 AM	lvy Inc.	29	15.22	1002 III B3 AR-4000				
7:30 AM	Griffith Company	2475	25.68	1024 Type B 3/4" M.M. AR-4000				
7:36 AM	Griffith Company	1001	27.84	1024 Type B 3/4" M.M. AR-4000				
	Silverado Constructors	16	21.22	1066 Type B 3/8" AR-8000				
7:39 AM	Standard-Pacific Corp.	3246	24.23	1002 III B3 AR-4000				
7:42 AM	Griffith Company	2305	25.31	1024 Type B 3/4" M.M. AR-4000				
7:44 AM	Griffith Company	221505	25.52	1024 Type B 3/4" M.M. AR-4000				
7:46 AM	Hillcrest Contracting	13	21.16	1002 III B3 AR-4000				
7:48 AM		102801	25.99	1024 Type B 3/4" M.M. AR-4000				
7:50 AM	Griffith Company	2305	25.88	1024 Type B 3/4" M.M. AR-4000				
7:55 AM	Griffith Company	3419	23.15	1002 III B3 AR-4000				
7:57 AM	Standard-Pacific Corp.	103202	26.07	1024 Type B 3/4" M.M. AR-4000				
8:00 AM	Griffith Company	27	21.22	1066 Type B 3/8" AR-8000				
8:02 AM	Silverado Constructors	155403	25.49	1024 Type B 3/4" M.M. AR-4000				
8:05 AM	Griffith Company	201064	25.75	1024 Type B 3/4" M.M. AR-4000				
8:07 AM	Griffith Company	201004	25.43	1024 Type B 3/4" M.M. AR-4000				
8:10 AM	Griffith Company		24.44	1002 III B3 AR-4000				
8:11 AM	Standard-Pacific Corp.	303502	21.19	1010 III D AR-4000				
8:16 AM	Bostick Co., J B	12	24.37	1024 Type B 3/4" M.M. AR-4000				
8:18 AM	Griffith Company	102806	25.75	1024 Type B 3/4" M.M. AR-4000				
8:20 AM	Griffith Company	195512	21.2	1010 III D AR-4000				
8:23 AM	Bostick Co., J B	10		1024 Type B 3/4" M.M. AR-4000				
8:25 AM	Griffith Company	195508	25.88	1024 Type B 3/4" M.M. AR-4000				
8:27 AM	Griffith Company	121415	25.76	1004 III C3 AR-4000				
8:30 AM	Interstate Asphalt	7	19.95					
8:31 AM	Griffith Company	1298	26.02					
8:33 AM	Griffith Company	230506	25.15					
8:35 AM	Bostick Co., J B	11	21.32					
8:39 AM	Standard-Pacific Corp.	312505	23.88	D 0 (41) 14 14 AD 4000				
8:41 AM	Griffith Company	230506	25.59	1001 11 00 10 1000				
8:43 AM	Interstate Asphalt	15	21.21					
8:45 AM	Standard-Pacific Corp.	3061	24.17					
8:49 AM	Bostick Co., J B	9	21.65	2000				
8:51 AM	Griffith Company	2475	25.9	D 0/48 M AD 4000				
8:53 AM		1001	27.89					
8:57 AM	ID	8	21.13					
8:58 AM	1 5 C. Oam	3246	24.12	D 0/48 A4 AD 4000				
9:00 AM		2305	25.29	1 - 4 10 00 AD 4000				
		44	21.3	3 1004 III C3 AR-4000				
	I liferstate Aspiran			_ 4000				
9:01 AM 9:05 AM	The second second	3419	24.1					

ME	CUSTONIES		TONS	
			LOADED	PRODUCT DESCRIPTION
9:10 AM	Hillcrest Contracting	13	21.18	1002 III B3 AR-4000
9:14 AM	Griffith Company	221515	25.47	1024 Type B 3/4" M.M. AR-4000
9:17 AM	Griffith Company	2305	26.01	1024 Type B 3/4" M.M. AR-4000
9:19 AM	Standard-Pacific Corp.	303502	24.43	1002 III B3 AR-4000
9:20 AM	Standard-Pacific Corp.	3597	24.62	1002 III B3 AR-4000
9:24 AM	Griffith Company	102801	26.13	1024 Type B 3/4" M.M. AR-4000
9:27 AM	Interstate Asphalt	18	21.18	1004 III C3 AR-4000
9:29 AM	Griffith Company	221505	25.63	1024 Type B 3/4" M.M. AR-4000
9:31 AM	Standard-Pacific Corp.	312503	23.93	1002 III B3 AR-4000
9:33 AM	Bostick Co., J B	7	21.11	1010 III D AR-4000
9:35 AM	Griffith Company	103202	26.24	1024 Type B 3/4" M.M. AR-4000
9:37 AM	Griffith Company	155403	25.43	1024 Type B 3/4" M.M. AR-4000
9:39 AM	Standard-Pacific Corp.	312501	24.43	1002 III B3 AR-4000
9:41 AM	Interstate Asphalt	10	21.2	1004 III C3 AR-4000
9:49 AM	Griffith Company	201064	25.67	1024 Type B 3/4" M.M. AR-4000
9:51 AM	Griffith Company	201002	25.43	1024 Type B 3/4" M.M. AR-4000
9:53 AM	Standard-Pacific Corp.	3188	24.27	1002 III B3 AR-4000
9:55 AM	Bostick Co., J B	15	21.3	1010 III D AR-4000
9:57 AM	Griffith Company	102806	24.57	1024 Type B 3/4" M.M. AR-4000
9:59 AM	Griffith Company	195512	25.82	1024 Type B 3/4" M.M. AR-4000
10:01 AM	Interstate Asphalt	312505	23.82	1004 III C3 AR-4000
10:03 AM	Standard-Pacific Corp.	3419	24.02	1002 III B3 AR-4000
10:07 AM	Griffith Company	1717	25.84	1024 Type B 3/4" M.M. AR-4000
10:09 AM	Griffith Company	195508	25.97	1024 Type B 3/4" M.M. AR-4000
10:11 AM	Standard-Pacific Corp.	3106	23.27	1002 III B3 AR-4000
10:13 AM	Bostick Co., J B	12	21.13	1010 III D AR-4000
10:16 AM	Interstate Asphalt	3246	24.12	1004 III C3 AR-4000
10:18 AM	Griffith Company	121415	25.66	1024 Type B 3/4" M.M. AR-4000
10:26 AM	Standard-Pacific Corp.	3419	24.37	1002 III B3 AR-4000
10:28 AM	Griffith Company	1298	26.1	1024 Type B 3/4" M.M. AR-4000
10:36 AM	Interstate Asphalt	312503	23.93	1004 III C3 AR-4000
10:40 AM	Griffith Company	230506	25.62	1024 Type B 3/4" M.M. AR-4000
10:43 AM	Griffith Company	230506	25.09	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
10:44 AM	Silverado Constructors	16	21.23	1066 Type B 3/8" AR-8000
10:48 AM	Griffith Company	2475	25.73	1024 Type B 3/4" M.M. AR-4000
10:49 AM	Silverado Constructors	27	21.21	1066 Type B 3/8" AR-8000
10:52 AM	Griffith Company	1001	27.74	1024 Type B 2/4" MAA AD 4000
10:54 AM	Griffith Company	2305	25.51	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
10:57 AM	Interstate Asphalt	312501	24.73	1004 III C3 AR-4000
10:59 AM	Griffith Company	2305	25.91	
11:01 AM	Griffith Company	221515	25.47	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
11:03 AM	Griffith Company	102801	26.19	1024 Type B 3/4 IVI.IVI. AR-4000
11:06 AM	Bostick Co., J B	9	21.52	1024 Type B 3/4" M.M. AR-4000 1010 III D AR-4000
11:08 AM	Griffith Company	201002	25.46	1024 Type B 3/4" M.M. AR-4000
11:11 AM	Griffith Company	221505	25.62	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
11:13 AM	Interstate Asphalt	3188	24.23	1004 III C3 AR-4000
11:18 AM	Griffith Company	201064	25.82	1024 Type B 3/4" M.M. AR-4000
11:19 AM	Griffith Company	155403	25.6	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
11:20 AM	Griffith Company	102806	24.51	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
				1027 13PO D 3/7 IVI.IVI, AR-4000

11:23 AM Griffith Company 19 11:25 AM Bostick Co., J B 11:27 AM Griffith Company 19 11:29 AM Griffith Company 19 11:31 AM Interstate Asphalt		25.9 21.24 26.01 25.75 24.59 25.72 21.22 25.58	PROBLICT DESCRIPTION 1024 Type B 3/4" M.M. AR-4000 1010 III D AR-4000 1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000 1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000
11:25 AM Bostick Co., J B 11:27 AM Griffith Company 11:29 AM Griffith Company 11:31 AM Interstate Asphalt 11:33 AM Griffith Company 11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:38 AM Bostick Co., J B	95512 10 95508 1717 29 21415 13 2740 15	25.9 21.24 26.01 25.75 24.59 25.72 21.22 25.58	1024 Type B 3/4" M.M. AR-4000 1010 III D AR-4000 1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000 1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:25 AM Bostick Co., J B 11:27 AM Griffith Company 11:29 AM Griffith Company 11:31 AM Interstate Asphalt 11:33 AM Griffith Company 11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:39 AM Bostick Co., J B	10 95508 1717 29 21415 13 2740	21.24 26.01 25.75 24.59 25.72 21.22 25.58	1010 III D AR-4000 1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000 1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:27 AM Griffith Company 1:1:29 AM Griffith Company 1:1:31 AM Interstate Asphalt 11:33 AM Griffith Company 1:35 AM Hillcrest Contracting 11:38 AM Griffith Company 1:38 AM Griffith Company 1:39 AM Bostick Co., J B	95508 1717 29 21415 13 2740	26.01 25.75 24.59 25.72 21.22 25.58	1024 Type B 3/4" M.M. AR-4000 1024 Type B 3/4" M.M. AR-4000 1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:29 AM Griffith Company 11:31 AM Interstate Asphalt 11:33 AM Griffith Company 11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:39 AM Bostick Co., J B	1717 29 21415 13 2740 15	25.75 24.59 25.72 21.22 25.58	1024 Type B 3/4" M.M. AR-4000 1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:31 AM Interstate Asphalt 11:33 AM Griffith Company 1 11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:39 AM Bostick Co., J B	29 21415 13 2740 15	24.59 25.72 21.22 25.58	1004 III C3 AR-4000 1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:33 AM Griffith Company 1 11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:39 AM Bostick Co., J B	21415 13 2740 15	25.72 21.22 25.58	1024 Type B 3/4" M.M. AR-4000 1002 III B3 AR-4000
11:35 AM Hillcrest Contracting 11:38 AM Griffith Company 11:39 AM Bostick Co., J B	13 2740 15	21.22 25.58	1002 III B3 AR-4000
11:38 AM Griffith Company 11:39 AM Bostick Co., J B	2740 15	25.58	1002 NI DO7NY 1000
11:39 AM Bostick Co., J B	15		1024 Type B 3/4" M.M. AR-4000
			1010 III D AR-4000
	1298	21.22	1024 Type B 3/4" M.M. AR-4000
		26.13	1002 III B3 AR-4000
11:44 AM Standard-Pacific Corp.	3061	24.1	1002 III B3 AR-4000
11:50 AM Griffith Company	230506	25.68	1024 Type B 3/4" M.M. AR-4000
11:54 AM Interstate Asphalt 3	312505	24.08	1004 III C3 AR-4000
11:56 AM Bostick Co., J B	12	21.45	1010 III D AR-4000
11:58 AM Standard-Pacific Corp.	3419	24.48	1002 III B3 AR-4000
12:00 PM Griffith Company	230506	25.16	1024 Type B 3/4" M.M. AR-4000
12:04 PM Griffith Company	1001	27.72	1024 Type B 3/4" M.M. AR-4000
12:06 PM Standard-Pacific Corp.	3246	24.16	1002 III B3 AR-4000
12:08 PM Standard-Pacific Corp.	312503	24.04	1002 III B3 AR-4000
12:09 PM Southwest Contractors	9	20.14	1011 Class B 3/4" AR-4000
12:11 PM Griffith Company	2305	25.47	1024 Type B 3/4" M.M. AR-4000
12:13 PM Griffith Company	2475	25.7	1024 Type B 3/4" M.M. AR-4000
12:15 PM Interstate Asphalt	312501	24.56	1004 III C3 AR-4000
	2305	25.91	1024 Type B 3/4" M.M. AR-4000
	102801	26.23	1024 Type B 3/4" M.M. AR-4000
	221515	25.78	1024 Type B 3/4" M.M. AR-4000
12.20	201002	25.6	1024 Type B 3/4" M.M. AR-4000
12.24	16	21:09	1066 Type B 3/8" AR-8000
	15	21.23	1010 III D AR-4000
	3188	24.36	1002 III B3 AR-4000
	29	24.53	1004 III C3 AR-4000
12.12.11	3061	24.1	1002 III B3 AR-4000
, = 1, 1 = 1, 1 = 1	10	20.02	1011 Class B 3/4" AR-4000
12:52 PM Southwest Contractors	221505	25.65	1024 Type B 3/4" M.M. AR-4000
12:54 PM Griffith Company	155403	25.57	1024 Type B 3/4" M.M. AR-4000
12:56 PM Griffith Company	213501	24.32	1002 III B3 AR-4000
12:59 PM Standard-Pacific Corp.	13	21.33	1010 III D AR-4000
1:01 PM Bostick Co., J B	44	21.12	1000
1:02 PM Interstate Asphalt	195512	25.81	1024 Type B 3/4" M.M. AR-4000
1:05 PM Griffith Company		24.71	1002 III B3 AR-4000
1:08 PM Standard-Pacific Corp.	3419	25.79	= 5.44 AB 4000
1:12 PM Griffith Company	201064 102806	24.59	
1:15 PM Griffith Company		21.63	1040 111 D AD 4000
1:16 PM Bostick Co., J B	18	23.79	
1:20 PM Interstate Asphalt	312503	26.16	5 644N 54 55 AD 4000
1:21 PM Griffith Company	195508	25.10	
1:23 PM Griffith Company	121415		1545 111 5 45 4000
1:25 PM Bostick Co., J B	12	21.28	
1:29 PM Griffith Company	1717	25.57 25.64	
1:31 PM Griffith Company	2740	25.04	1024 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

XXXXX 77 77 23000	FOR 7/28/98									
HAR	CUSTOMER	TRUCK	LOADE							
1:33 PM	Griffith Company	1298	26.15							
1:35 PM	Bostick Co., J B	312501	24.65							
1:37 PM	Interstate Asphalt	15	21.42	1010 III D AR-4000						
1:39 PM	Griffith Company	230506		1004 III C3 AR-4000						
1:41 PM	Griffith Company	1001	25.62	1024 Type B 3/4" M.M. AR-4000						
1:44 PM	Griffith Company	2305	27.76 25.51	1024 Type B 3/4" M.M. AR-4000						
1:46 PM	Griffith Company	2305		1024 Type B 3/4" M.M. AR-4000						
1:49 PM	Bostick Co., J B	11	26	1024 Type B 3/4" M.M. AR-4000						
1:51 PM	Interstate Asphalt	3188		1010 III D AR-4000						
1:53 PM	Griffith Company	2475	24.23	1004 III C3 AR-4000						
1:55 PM	Griffith Company		25.92	1024 Type B 3/4" M.M. AR-4000						
2:07 PM	Griffith Company	102801	26.15	1024 Type B 3/4" M.M. AR-4000						
2:09 PM	Griffith Company	103202	26.14	1024 Type B 3/4" M.M. AR-4000						
2:11 PM	Bostick Co., J B	201002	25.61	1024 Type B 3/4" M.M. AR-4000						
2:14 PM	Silverado Constructors	312505	23.94	1010 III D AR-4000						
2:17 PM	Griffith Company	221505	25.63	1066 Type B 3/8" AR-8000						
2:18 PM	Griffith Company	155404	25.52	1024 Type B 3/4" M.M. AR-4000						
2:20 PM	Bostick Co., J B	201064	25.89	1024 Type B 3/4" M.M. AR-4000						
2:24 PM	Bostick Co., J B	3419	24.48	1010 III D AR-4000						
2:38 PM	Interstate Asphalt	29	23.68	1010 III D AR-4000						
2:42 PM	Bostick Co., J B	21	21.64	1004 III C3 AR-4000						
2:44 PM		44	21.63	1010 III D AR-4000						
2:48 PM	Interstate Asphalt Bostick Co., J B	18	21.47	1004 III C3 AR-4000						
2:58 PM		9	21.3	1010 III D AR-4000						
3:00 PM	Bostick Co., J B T. B. S. Contractors	12	21.32	1010 III D AR-4000						
3:17 PM		25	8	1010 III D AR-4000						
3:21 PM	Bostick Co., J B	312501	24.56	1010 III D AR-4000						
3:24 PM	Bostick Co., J B	11	21.22	1010 III D AR-4000						
3:26 PM	Silverade Constructors	27	21.18	1066 Type B 3/8" AR-8000						
3:32 PM	Silverado Constructors	16	21.19	1066 Type B 3/8" AR-8000						
5:26 PM	Bostick Co., J B	21	22.35	1010 III D AR-4000						
5:28 PM	Silverado Constructors	18	21.26	1024 Type B 3/4" M.M. AR-4000						
5:34 PM	Silverado Constructors	21	21.43	1024 Type B 3/4" M.M. AR-4000						
5:36 PM	Silverado Constructors	29	21.67	1024 Type B 3/4" M.M. AR-4000						
5:42 PM	Silverado Constructors	26	20.95	1024 Type B 3/4" M.M. AR-4000						
5:46 PM	Silverado Constructors	30	21.34	1024 Type B 3/4" M.M. AR-4000						
5:49 PM	Silverado Constructors	12	21.02	1024 Type B 3/4" M.M. AR-4000						
5:51 PM	Silverado Constructors	44	21.45	1024 Type B 3/4" M.M. AR-4000						
5:57 PM	Silverado Constructors	9	21.26	1024 Type B 3/4" M.M. AR-4000						
6:01 PM	Silverado Constructors	10	21.27	1024 Type B 3/4" M.M. AR-4000						
	Silverado Constructors	16	21.3	1024 Type B 3/4" M.M. AR-4000						
6:05 PM	Silverado Constructors	8	21.2	1024 Type B 3/4" M.M. AR-4000						
6:10 PM	Silverado Constructors	13	21.3	1024 Type B 3/4" M.M. AR-4000						
6:14 PM	Silverado Constructors	9	21.59	1024 Type B 3/4" M.M. AR-4000						
6:17 PM	Silverado Constructors	20	21.32	1024 Type B 3/4" M.M. AR-4000						
6:20 PM	Silverado Constructors	82	21.32	1024 Type B 3/4" M.M. AR-4000						
5:02 AM	Silverado Constructors	33	21.3	1024 Type B 3/4" M.M. AR-4000						
6:25 PM 6:31 PM	Silverado Constructors	22	21.5	1024 Type B 3/4" M.M. AR-4000						
031 PM	Silverado Constructors	23		10000 - 17 - 101.101. AR-4000						
6:35 PM	Silverado Constructors		20.8	1024 Type B 3/4" M.M. AR-4000						

			, 20,00	propuci
WINES OF	CUSTOMER	TEURISE		
			LOADED	
6:37 PM	Silverado Constructors	86	21.07	1024 Type B 3/4" M.M. AR-4000
6:40 PM	Silverado Constructors	18	21.14	1024 Type B 3/4" M.M. AR-4000
6:43 PM	Silverado Constructors	2	21.29	1024 Type B 3/4" M.M. AR-4000
6:47 PM	Silverado Constructors	89	21.3	1024 Type B 3/4" M.M. AR-4000
6:50 PM	Silverado Constructors	99	20.75	1024 Type B 3/4" M.M. AR-4000
7:09 PM	Silverado Constructors	21	21.24	1024 Type B 3/4" M.M. AR-4000
7:12 PM	Silverado Constructors	30	21.44	1024 Type B 3/4" M.M. AR-4000
7:15 PM	Silverado Constructors	82	21.22	1024 Type B 3/4" M.M. AR-4000
7:16 PM	Silverado Constructors	29	21.33	1024 Type B 3/4" M.M. AR-4000
7:19 PM	Silverado Constructors	26	21.01	1024 Type B 3/4" M.M. AR-4000
7:26 PM	Silverado Constructors	12	21.06	1024 Type B 3/4" M.M. AR-4000
7:35 PM	Silverado Constructors	9	21.31	1024 Type B 3/4" M.M. AR-4000
7:37 PM	Silverado Constructors	15	21.57	1024 Type B 3/4" M.M. AR-4000
7:39 PM	Silverado Constructors	44	21.46	1024 Type B 3/4" M.M. AR-4000
		<u> </u>		
		<u> </u>		
				<u> </u>
 				
	+			
		-		
				
ļ				
		_1		

The state of the s

APPENDIX B.6

SILO NO. 2 LOAD-IN RECORDS USED IN SED EMISSION CALCULATIONS

			Run No.	Summary Run	ns 1-5	
Client/Source	e: EPA Plant C		Date:	-		
	Hot Mix Asphalt	s	preadsheet work:	Derek Hawke:	S	-
	Test					
Date	Method	Total Tons *				
7/24/98	S-V-1-1	79.2		<u></u>		+
7/24/98	S-V-1-2	57.7				-
7/24/98	S-V-1-3	56.5			- 	
7/24/98	S-V-1-4	56.6				
7/24/98	S-MM5-1	802.2				
7/24/98	S-M315-1	336.7				
7/24/98	S-M18-1	745.4				
						
7/25/98	S-V-2-1	46.3			 -	
7/25/98	S-V-2-2	53.0				<u>- </u>
7/25/98	S-V-2-3	53.2			 	
7/25/98	S-V-2-4	46.3			 	<u> </u>
7/25/98	S-MM5-2	602.5				
7/25/98	S-M315-2	282.7	-		 	
7/25/98	S-M18-2	595.5			 	<u> </u>
					 	
7/27/98	S-V-3-1	41.9			 	
7/27/98	S-V-3-2	42.1			 	
7/27/98	S-V-3-3	47.1		· <u>.</u>		<u> </u>
7/27/98	S-V-3-4	64.2				
7/27/98	S-V-3-5	63.7		·····		
7/27/98	S-V-3-6	64.2				
7/27/98	S-MM5-3	1079.5				
7/27/98	S-M18-3	472.4				
						
7/28/98	S-MM5-4	881.0				<u> </u>
7/28/98	S-MM5-5	709.4				
7/28/98	S-M315-4	402.4				
					·	
						

⁷⁰

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Run No. 1-Load Out Date: 7/24/1998 Client/Source: EPA Plant C Spreadsheet work: Derek Hawkes Hot Mix Asphalt Load-In Load-out Time Tons* S-M18-1 S-M315-1 S-MM5-1 S-V-1 (1-4) Tons 7.15 1 7:20 1 7.25 1 7:21 7.35 1 1 7:22 7.45 1 7 7:23 7.55 1 1 7:24 7.65 1 1 7:25 7.74 1 1 7:26 1 7.84 1 1 7:27 7.94 1 1 1 7:28 8.04 1 1 1 7:29 8.01 1 1 1 7:30 7.98 1 1 1 7:31 7.96 1 1 1 7:32 21.45 7.93 1 1 1 7:33 7.90 1 1 1 7:34 7.87 1 1 1 7:35 7.84 1 1 7:36 7.82 1 1 7:37 7.79 1 1 7:38 7.76 1 7:39 7.73 1 1 7:40 7.71 1 1 21.34 7:41 7.68 1 1 7:42 7.65 1 1 7:43 7.62 1 1 7:44 7.59 1 1 21.39 7:45 7.57 1 1 20.10 7:46 7.54 1 1 7:47 1 7.51 1 21.04 7:48 7.48 1 1 7:49 7.45 1 1 7:50 1 7.43 1 7:51 7.40 1 1 21.19 7:52 7.37 1 1 7:53 7.34 1 1 7:54 7.31 1 1 7:55 7.29 1 1 21.12 7:56 7.26 1 1 7:57 7.23 1 1 7:58 7.20 1 1 21.27 7:59 7.18 1 1 8:00 7.16 1 1 8:01 7.15 1 1 21.12 8:02 7.13 1 1 8:03 7.12 1 1 8:04 7.10 1 1 <u>21.17</u> 8:05 7.09

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load Silofinb in tons are the calculated values used to estimate the total tons loaded per test period.

Run No. 1-Load Out Client/Source: EPA Plant C Date: 7/24/1998 Hot Mix Asphalt Spreadsheet work: Derek Hawkes Time Load-out Load-In S-V-1 (1-4) Tons S-MM5-1 S-M315-1 S-M18-1 Tons* 8:07 1 7.07 8:08 1 Ĩ 7.06 8:09 1 1 7.05 8:55 1 1 5.94 8:56 1 1 5.91 8:57 1 1 5.88 8:58 1 1 5.85 8:59 21.26 1 1 5.81 9:00 2 1 1 5.78 9:01 2 1 1 5.78 9:02 2 1 1 5.77 9:03 2 1 1 5.77 9:04 2 1 1 5.77 9:05 19.91 2 1 1 5.76 9:06 2 1 1 5.76 9:07 2 1 1 5.76 9:08 2 1 1 5.75 9:09 1 1 5.75 9:18 1 1 5.72 9:19 1 1 5.71 9:20 1 1 5.71 9:21 1 1 5.70 9:22 21.58 1 1 5.70 9:23 1 1 5.70 9:24 21.27 1 1 5.69 9:25 1 1 5.69 9:26 1 1 5.69 9:27 1 1 5.68 9:28 21.46 1 1 5.68 9:29 1 1 5.67 9:30 1 1 5.67 9:31 1 1 5.67 9:32 1 1 5.66 9:33 21.44 1 1 5.66 9:34 3 1 1 5.66 9:35 3 1 1 5.65 9:36 3 1 1 5.65 9:37 3 1 1 5.65 9:38 21.36 3 1 1 5.65 9:39 21.20 3 1 1 5.65 9:40 3 1 1 5.65 9:41 3 1 1 5.65 9:42 21.06 3 1 1 5.65 9:43 3 1 1 5.65 9:44 1 1 5.65 9:45 1 1 5.65 9:46

1

⁷²

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load 5.65 in tons are the calculated values used to estimate the total tons loaded per test period. Silofinb

				1-Load Out 7/24/1998		Ï
Client/Source:		Snr	readsheet work:			
,	Hot Mix Asphalt	Эрі	eadancet work.	<u> </u>	<u> </u>	
Time	Load-out					Load-In
Типо	Tons	S-V-1 (1-4)	S-MM5-1	S-M315-1	S-M18-1	Tons*
9:47			1		1	5.65
9:48	t		1		11	5.65
9:49	20.88		1		1	5.65_
9:50	21.34		1	<u> </u>	1	5.65
9:51			1		1	5.65
9:52	-		1		11	5.65
9:53	 		1		1	5.65
9:54 9:54			1		1	5.65
	21.53		1	 	1	5.65
9:55	21.00		1	 	1	5.65
9:56	 	<u> </u>	1		1	5.65
9:57	21.52	<u> </u>	1 1		1	5.65
9:58	21.04		 		1	5.65
9:59	21.29		1		1	5.65
10:00	21.29		 	 	1	5.65
10:01		<u> </u>	1-1-	 	1	5.65
10:02	21.60	<u> </u>	 		1 1	5.65
10:03	<u> </u>	ļ	1 1	 	1 1	5.65
10:04		4	1 1		1	5.65
10:05		4		 	1	5.65
10:06	21.27	4	11	- 	+ + -	5.66
10:07	21.22	4	1 1	 		5.66
10:08		4	11			5.66
10:09		4	1 1			5.67
10:10		4	11			5.67
10:11	21.44	4	11			5.67
10:12	<u> </u>	4	1		- 	5.68
10:13		4	1			5.68
10:14	21.06		1			5.68
10:15		<u> </u>	1		_	5.69
10:16			1			5.69
10:17			1			
11:41						5.61
11:42				11		5.61
11.43	21.17			11		5.61
11:44				11		5.61
11:45	20.12			1		5.61
11:46				1		5.61
11:47				11		5.61
11:48				1		5.61
11:49				1		5.61
11:50	21.34			1		5.61
11:51				11		5.61
11:52				11		5.61
11:53	21.06			1		5.61
11:54		-		1		5.61
11:55	21.15			11		5.61
11:56			_	1		5.61

<sup>11:56

*</sup> Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: EPA Plant C			. 1-Load Out		_
One in the court	Hot Mix Asphalt	•		7/24/1998		_
	Hot Wix Aspnait	Sp	readsheet work	Derek Hawkes		-
Time	Load-out	-				Load-In
··	Tons	S-V-1 (1-4)	S-MM5-1	S-M315-1	S-M18-1	Tons*
11:57	21.31			1		5.61
11:58				1		5.61
11:59				1		5.61
12:00				1		5.61
12:01				1		5.61
12:02	21.35			1	 	5.61
12:03				1		5.61
12:04	21.22			1		5.61
12:05	21.32			1		5.61
12:06				1		5.61
12:07				1		5.61
12:08				1		5.61
12:09				1		5.61
12:10	21.22			1		5.61
12:13				1		5.61
12:14				1		5.61
12:15	21.02			1 1		5.61
12:16				1		5.61
12:17	23.99			1		5.61
12:18				1		5.61
12:19	21.29			1 1		
12:20				1		5.61
12:21				1 1		5.61
12:22	21.00			1		5.61
12:23	21.52			1		5.61
12:24				1		5.61
12:25	21.47			1		5.61
12:26				1	 -	5.61
12:27				1		5.61
12:28				1		5.61
12:29				1		5.61
12:30	21.46			1		5.61
12:31				1		5.61
12:32				1		5.61
12:33		·		1		5.62
12:34				1 -		5.62
12:35				1		5.62
12:36	20.40			1		5.62
12:37	21.73			1		5.62
12:38	21.28			1		5.62
12:39		 -		1		5.62
12:40	21.16			1		5.62
12:41				1		5.62
12:42	21.39			1		5.62 5.62

⁷⁴

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

av 1/2	EDA Plant C			2-Load Out 7/25/1998		•
Client/Source:	Hot Mix Asphalt	Sp	readsheet work:	Derek Hawkes		
						Load-In
Time	Load-out Tons	S-V-2 (1-4)	S-MM5-2	S-M315-2	S-M18-2	Tons *
- 40	Tons	1	2		2	4.63
7:10	 	<u>'</u>	2		2	4.63
7:11			2		2	4.63
7:12	<u> </u>		2		2	4.63
7:13	<u> </u>	<u>_</u>	2	 	2	4.63
7:14	 	<u>-</u>	2	 	2	4.63
7:15	 	<u> </u>	2	 	2	4.64
7:16		 - 	2	<u> </u>	2	4.64
7:17		1	2		2	4.64
7:18		1	2	<u> </u>	2	4.64
7:19		 	2	 	2	4.64
7:20	20.00		2		2	4.64
7:21	22.00		1 2	 	2	4.64
7:22	02.07		2	1	2	4.64
7:23	23.87		2		2	4.64
7:24		 	2	 	2	4.65
7:25			2	-	2	4.65
7:26		 	2		2	4.65
7:27			2		2	4.65
7:28		 	1 2		2	4.65
7:29	21.21	 	2		2	4.65
7:30			2		1 2	4.65
7:31			2		2	4.65
7:32			$\frac{2}{2}$		2	4.65
7:33		 	2		2	4.66
7:34			$\frac{2}{2}$		2	4.66
7:35		 	2		2	4.66
7:36			2		2	4.66
7:37		 	$\frac{2}{2}$		2	4.66
7:38	22.00		1 2	_	2	4.66
7:39	24.42		$\frac{2}{2}$		2	4.66
7:40	24.43		2	- 	2	4.72
7:41			2		2	4.78
7:42	22.00		2		2	4.84
7:43	22.00		2	- 	2	4.90
7:44	23.24		2	- 	2	4.96
7:45	20.64	2	2		2	5.02
7:46		2	2		2	5.09
7:47		$\frac{2}{2}$	2		2	5.15
7:48		2	2		2	5.21
7:49		$\frac{1}{2}$	2		2	5.27
7:50	21.26	$\frac{2}{2}$	2		2	5.33
7:51		2	2		2	5.39
7:52		2	2		2	5.45
7:53		2	2		2	5.51
7:54		$\frac{2}{2}$	2		2	5.57
7:55 7:56		- 	2		2 e columns indica	5.63

Client/Source	e: EPA Plant C			. 2-Load Out : 7/25/1998		
	Hot Mix Asphal	- Sı	Date preadsheet work		· ·	-
			Productive Work	. Delek nawkes	· · · · · · · · · · · · · · · · · · ·	
Time	Load-out					Load-In
	Tons	S-V-2 (1-4)	S-MM5-2	S-M315-2	S-M18-2	Tons *
7:57			2		2	5.69
7:58			2		2	5.75
7:59	21.26		2		2	5.81
8:00			2		2	5.87
8:01			2		2	5.93
8:02			2		2	5.99
8:03			2		2	6.05
8:04			2		2	6.11
8:05			2		2	6.18
8:06			2		<u> </u>	6.24
8:07	21.05		2		<u> </u>	6.30
8:08			2			6.36
8:09			2			6.42
8:40			2		2	5.83
8:41			2		2	5.81
8:42			2		2	5.77
8:43			2		2	5.73
8:44			2		2	
8:45			2		2	5.69
8:46			2		2	5.65
8:47			2		2	5.61
8:48			2		2	5.57
8:49		3	2		2	5.53
8:50	22.00	3	2		2	5.50
8:51	24.47	3	2		2	5.46
8:52	21.18	3	2		2	5.42
8:53		3	2			5.38
8:54	 -	3	2		2	5.34
8:55		3	2		2	5.30
8:56	 	3	2		2	5.26
8:57		3	2		2	5.22
8:58	 	3			2	5.18
8:59	22.00		2 2		2	5.14
9:00	23.80				2	5.10
9:01	20.00		2		2	5.06
9:02			2		2	5.02
9:03			2		2	4.98
9:04			2		2	4.94
9:05			2		2	4.91
9:06			2		2	4.87
9:07			2		2	4.83
9:08			2		2	4.79
9:09			2		2	4.75
9:09	AE 67		2		2	4.71
9:10	45.67	4	2		2	4.67
9:12		4	2		2	4.63
		4	2		2	4.63
9:13		4	2		2	4.63

Run No. 2-Load Out Date: 7/25/1998 Client/Source: EPA Plant C Spreadsheet work: Derek Hawkes Hot Mix Asphalt Load-In Time Load-out Tons * S-M18-2 S-M315-2 S-MM5-2 S-V-2 (1-4) Tons 4.63 2 2 4 9:14 4.63 2 2 4 20.87 9:15 4.63 2 2 4 9:16 4.63 2 2 4 21.02 9:17 2 4.63 2 4 12.00 9:18 4.63 2 2 4 9:19 4.62 2 2 9:30 4.62 2 2 20.94 9:31 4.62 2 2 9:32 4.62 2 2 8.00 9:33 2 4.62 2 9:34 2 4.62 2 21.10 9:35 2 4.62 2 9:36 4.62 2 2 9:37 2 4.62 2 9:38 4.62 2 2 9:39 4.62 2 2 9:40 4.62 2 2 23.87 9:41 2 4.62 2 9:42 4.61 2 2 9:43 4.61 2 2 9:44 4.60 2 2 15.03 9:45 4.60 2 2 9:46 2 4.59 2 9:47 4.59 2 2 24.58 9:48 2 4.58 2 9:49 21.17 4.58 2 9:50 2 4.58 9:51 4.57 2 9:52 4.57 2 9:53 4.55 23.54 10:15 4.56 2 10:16 4.58 2 10:17 4.60 2 10:18 4.61 2 10:19 4.63 2 10:20 4.65 2 10:21 4.66 2 10:22 4.68 2 10:23 4.69 2 10:24 4.71 2 10:25 4.73 2 10:26 4.74 2 22.00 10:27 4.76 2 24.06 10:28 4.78 2 10:29 4.79 2 10:30 4.81

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: EPA Plant C			o. 2-Load Out e: 7/25/1998		_
	Hot Mix Asphalt	Sp		: Derek Hawkes		-
Time	Load-out					
	Tons	S-V-2 (1-4)	S-MM5-2	S-M315-2	S-M18-2	Load-In Tons *
10:32				2	0 11110 2	
10:33			· · · · · · · · · · · · · · · · · · ·	2	· · · · · · · · · · · · · · · · · · ·	4.83 4.84
10:34				2		4.86
10:35				2		4.87
10:36				2	· <u> </u>	4.89
10:37				2		4.09
10:38				2		4.92
10:39				$\frac{1}{2}$		4.92
10:40				2		
10:41				2		4.96 4.97
10:42				2		4.97
10:43				2		
10:44				2		4.95
10:47				2		4.94
10:48				2		4.91
10:49				2		4.90
10:50	20.80			2		4.89
10:51	 			2		4.88
10:52	20.87			2		4.87
10:53				2		4.86
10:54	20.91			2		4.86
10:55				2	-	4.85
10:56				2		4.84
10:57				2		4.83
10:58				2		4.82
10:59				2		4.81
11:00	20.91			2		4.80
11:01				2		4.79
11:02						4.78
11:03				2		4.77
11:04	21.07			2		4.76
11:05				2		4.75
11:06				$\frac{2}{2}$		4.74
11:07				2		4.73
11:08						4.72
11:09				2		4.71
11:10	21.13			2 2		4.70
11:11				2		4.69
11:12						4.49
11:13				2		4.30
11:14				2		4.10
11:15				2		3.91
11:16		·		2 2		3.71
		j j	1	4		3.52

⁷⁸

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

		·		3-Load Out		
Client/Source:	EPA Plant C			7/27/1998		
	Hot Mix Asphalt	Sp	readsheet work:	Derek Hawkes		
	l lood and l					Load-in
Time	Load-out Tons	S-V-3 (1-4)	S-MM5-3	S-M315-3	S-M18-3	Tons *
8:04	12.70		3			8.37
8:05	12:70		3			8.37
8:06	 		3			8.37
8:07	 		3			8.37
8:08			3			8.37
8:09	13.84		3			8.37
8:10	14.00		3			8.37
8:11	1-1.00		3			8.37
8:12	21.40		3			8.38
8:13	12.00		3			8.38
	12.25		3			8.38
8:14	12.20		3			8.38
8:15	25.76	1	3			8.38
8:16	25.70	1	3	<u> </u>		8.38
8:17	13.00	1	3	<u> </u>		8.38
8:18	_1	1	3			8.38
8:19	12.56	1	3			8.38
8:20	11.56		3		1	8.38
8:21	12.48		3			8.38
8:22	21.38	 	3	- 		8.39
8:23		<u> </u>	3	 		8.39
8:24	24.23	<u> </u>	3	 		8.39
8:25		<u></u>	$\frac{3}{3}$	+		8.39
8:26	25.71	<u> </u>	$\frac{3}{3}$			8.39
8:27	13.03		3		 	8.39
8:28	13.13		$\frac{3}{3}$			8.39
8:29		<u> </u>	3			8.39
8:30			$\frac{3}{3}$			8.39
8:31		2				8.40
8:32		2	3		_ 	8.40
8:33		2	3_			8.43
8:34		2	3			8.45
8:35		2	3			8.48
8:36			3		- 	8.51
8:37		<u> </u>	3			8.54
8:38			3_			8.57
8:39			3		_	8.60
8:40			3			8.62
8:41			3			8.65
8:42			3			8.68
8:43			3	_		8.71
8:44	12.80		3		- 	8.74
8:45	13.04		3		_	8.77
8:46			3			8.79
8:47	13.00		3		_	8.82
8:48	12.96		3_			8.85
8:49	21.12		3			8.88
8:50			3			ate sampling D

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load
* Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load
* Silofinb in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: FPA Plant C			2. 3-Load Out 2: 7/27/1998		
Client/Source: EPA Plant C Hot Mix Asphalt		_				
	Hot Wix Asphalt	Si	preadsheet work	: Derek Hawkes		-
Time	Load-out			1		
	Tons	S-V-3 (1-4)	S-MM5-3	S-M315-3	S-M18-3	Load-in
8:51	21.33		3	1 0 111010-0	3-1/110-3	Tons *
8:52	13.00		3	 		8.91
8:53	13.13		3			8.94
8:54	11.59		3			8.96
8:55	12.86		3	 		8.99
8:56	21.31		3	 	·	9.02
8:57			3	 		9.05
8:58	20.44		3	 -		9.08
8:59	13.14		3			9.09
9:00	11.47		3			9.11
9:01	13.00		3		. <u></u>	9.13
9:02	26.06		3			9.15
9:03	11.05		3			9.17
9:25			3			9.18
9:26	12.77		3			9.57
9:27	12.77		3			9.59
9:28			3			9.61
9:29	21.36		3			9.60
9:30	1		3			9.58
9:31	13.00		3			9.57
9:32	12.71		3			9.55
9:33	13.00		3			9.54
9:34	14.74		3			9.52
9:35	21.49		3			9.51
9:38	12.05	3				9.49
9:39	12	3				9.45
9:40	' '-	3				9.43
9:41		3				9.42
9:42		3				9.40
9:48		3				9.39
9:49			3			9.30
9:50			3			9.28
9:51	12.65		3			9.27
9:52	13.23		3			9.25
9:53	13.12		3			9.24
9:54	13.27		$\frac{3}{3}$			9.22
9:55	10.27	4	-3 -			9.21
9:56		4				9.19
9.57		4				9.18
9:58	21.26	4				9.16
9:59		4				9.16
10:00	21.07	4				9.16
10:01		4				9.16
10:02						9.15
10:03	13.00					9.15
10:04	13.08		 +			9.15
10:05	12.86					9.15
	ata taken from Dr.				1 -	9.15

80

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Silofinb

			Run No.	3-Load Out		
Client/Source: EPA Plant C						
	Hot Mix Asphalt	Spi	readsheet work:	Derek Hawkes		
						Load-In
Time	Load-out Tons	S-V-3 (1-4)	S-MM5-3	S-M315-3	S-M18-3	Tons *
10:06	12.92					9.14
	24.42		3			9.14
10:07	24.42		3			9.14
10:08	34.33		3			9.14
10:09	34.55		3			9.14
10:10	25.93		3			9.13
10:11 10:12	13.00		3			9.13
10:12	10.00		3			9.13
10:13	12.22		3			9.13
10:14	12.61		3			9.12
10:15	12.17		3			9.12
10:18	13.00		3			9.12
	13.00		3			9.12
10:18			3			9.12
10:19	12.86		3			9.11
10:20	12.79		3			9.11
10:21	11.73	5	3			9.11
10:22	21.25	5	3		3	9.11
10:23	12.82	5	3		3	9.10
10:24	12.90	5	3		3	9.10
10:25	13.00	 5	3		3	9.10
10:26	13.14	5	3		3	9.10
10:27	20.98	5	3		3	9.10
10:28	8.95	 	3		3	9.11
10:29	0.93		3		3	9.12
10:30	13.00	 	3		3	9.12
10:31	13.10	 	3		3	9.13
10:32	13.10		3		3	9.14
10:33 10:34			3		3	9.14
		6	3		3	9.15
10:35 10:36		6	3		3	9.16
10:36		6	3		3	9.16
	 	6	3		3	9.17
10:38 10:39		6	3		3	9.18
10:39	- 	6	3		3	9.18
10:40	- 	6	3		3	9.19
10:41			3		3	9.20
10:42			3		3	9.20
10:44			3		3	9.21
10:45			3		3	9.21
10:46			3		3	9.22
10:47			3		3	9.23
10:48			3		3	9.23
10:49	13.00		3		3	9.24
10:50	12.76				3	9.25
10:51	21.21				3	9.25 9.26
10:52	21.44				3 e columns indic	

^{*}Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Asphalt Plant C Load-In Data for Silo #2 Used in Silo Exhaust Duct Emission Calculations

Client/Source	e: EPA Plant C			3-Load Out		
O II CITI O COUTCE				7/27/1998		_
	Hot Mix Asphalt	Sp	readsheet work:	Derek Hawkes		- -
Time	Load-out					Load-In
	Tons	S-V-3 (1-4)	S-MM5-3	S-M315-3	S-M18-3	Tons *
11:40					3	
11:41	15.67				3	9.92
11:42	13.00				3	9.95
11:43	13.10				3	9.98
11:44	12.00		·		3	10.01
11:45	12.49				3	10.04
11:46	 		·		3	10.07
11:47	13.00		·····		3	10.09
11:48	12.96					10.12
11:49	13.00				3	10.15
11:50	12.46	-			3	10.18
11:51	24.81	· · · · · · · · · · · · · · · · · · ·			3	10.21
11:52						10.24
11:53					3	10.26
11:54	12.00				3 3	10.29
12:43						10.32
12:44					3	9.10
12:45					3	9.10
12:46					3	9.10
12:47					3 3	9.10
Total	2378.16		1079.5	0.0	3 472.4	9.10

⁸²

 ^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load
in tons are the calculated values used to estimate the total tons loaded per test period.

				4&5-Load Out	
Client/Source:	EPA Plant C			7/28/1998	
	Hot Mix Asphalt	Sp	readsheet work:	Derek Hawkes	
	L lood out			· · ·	Load-In
Time	Load-out Tons	S-MM5-4	S-MM5-5	S-M315-4	Tons *
6:49	1013			4	5.29
6:49	 			4	5.34
6:50				4	5.38
6:51	 			4	5.42
6:52	 		 	4	5.47
6:53	 			4	5.51
6:54	 		 	4	5.56
6:55				4	5.60
				4	5.64
6:56				4	5.69
6:57				4	5.73
6:58	- 			4	5.78
6:59				4	5.82
7:00			 	4	5.87
7:01	 			4	5.91
7:02		_ 		4	5.95
7:03				4	6.00
7:04				4	6.04
7:05				4	6.09
7:06			- 	+ 4 +	6.13
7:07				4	6.18
7:08				+ 4	6.22
7:09				4 4	6.26
7:10				4 4	6.31
7:11				4 4	6.35
7:12				4 4	6.40
7:13					6.44
7:14		<u> </u>		4	6.49
7:15				4	6.47
7:16		<u> </u>		4	6.45
7:17		<u> </u>		4 4	6.44
7:18					6.79
8:10				4	6.82
8:11				4	6.85
8:12				4	6.88
8:13				4	
8:14				4	6.91 6.94
8:15				4	6.98
8:16				4	
8:17				4	7.01
8:18				4	7.05
8:19				4	7.08
8:20				4	7.11
8:21				4	7.15
8:22				4	7.18
8:23				4	7.22
8:24				4	7.25
8:25				4	7.29

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: EPA Plant C			. 4&5-Load Out	
	Hot Mix Asphalt			7/28/1998	
	THOU INIX ASPITAN	3	Spreadsheet work	: Derek Hawkes	
Time	Load-out				
	Tons	S-MM5-4	S-MM5-5	S-M315-4	Load-In
8:26	 				Tons *
8:27			 	4 4	7.32
8:28			 	4	7.36
8:29			 	4	7.39
8:30				1 4	7.42
8:31			 	4	7.46
8:32			 	 	7.49
8:33	 		<u> </u>	4	7.53
8:34	 		 		7.56
8:35				4	7.60
8:36			 	4	7.63
8:37	 		 	4	7.67
8:38				4	7.70
8:39	 			4	7.74
9:13		4		4	7.77
9:14	 	4	 		7.92
9:15	 	4			7.92
9:16		4			7.92
9:17		4			7.89
9:18		4			7.86
9:19		4			7.83
9:20		4			7.81
9:21		4			7.78
9:22		4			7.75
9:23		4			7.73
9:24		4			7.70
9:25		4			7.67
9:26		4			7.64
9:27		4			7.62
9:28		4			7.59
9:29		4			7.56
9:30		4			7.54
9:31		4			7.51
9:32		4			7.48
9:33		4			7.46
9:34		4			7.43
9:35		4			7.50
9:36		4			7.56
9:37		4		<u></u>	7.63
10:26		4			7.70
10:27		4 +			7.18
10:28		4			7.19
10:29					7.21
10:30		4			7.23
10:31		4			7.25
10:32		4			7.26
10:33	 	4			7.28
	í	4	ļ	I -	7.20

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

84

				4&5-Load Out 7/28/1998		!
Client/Source:	Hot Mix Asphalt	Snr	eadsheet work:			
	Hot Wix Aspiral	Op.				
Time	Load-out			A:		Load-In
711110	Tons	S-MM5-4	S-MM5-5	S-M315-4		Tons *
10:34		4				7.32
10:35		4				7.33
10:36	1	4				7.35
10:37		4				7.37
10:38		4				7.39
10:39		4			<u> </u>	7.41
10:40		4			 	7.42 7.44
10:41		4				7.46
10:42	1	4	<u></u>		 	7.48
10:43		4			 	7.49
10:44		44			-	7.51
10:45		4			-	7.51
10:46		4		<u> </u>	-	7.51
10:47		4 .		<u> </u>	 	7.51
10:48		4			- 	7.51
10:49		4	<u> </u>	ļ <u> — </u>	 	7.50
10:50		4	 -			7.50
10:51	_	4			+	7.50
10:52		4		 		7.50
10:53		4				7.50
10:54		4	 			7.50
10:55		4				7.50
10:56		4				7.49
10:57		4				7.49
10:58 10:59		4				7.49
11:00		4				7.49
11:39		4	<u> </u>			7.63
11:40		4				7.63
11:41	_	4				7.64
11:42		4				7.65
11:43		4				7.65
11:44		4				7.66
11.45	1	4				7.67
11:46		4			.	7.66
11.47		4				7.66 7.66
11:48		4				7.66
12:33		4				7.48
12:34		4				7.47
12:35		4	<u> </u>		- 	7.45
12:36		4			_	7.43
12:37		4				7.43
12:38		4	<u> </u>			7.42
12:39		4				7.40
12:40		4				7.39
12:41		4 4				7.38

⁸⁵ * Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load
Silofinb in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: EPA Plant C			. 4&5-Load Out : 7/28/1998		
	Hot Mix Asphalt	s		: Derek Hawkes		
						
Time	Load-out					Load-In
	Tons	S-MM5-4	S-MM5-5	S-M315-4		Tons *
12:43		4				7.37
12:44		4			<u></u>	7.36
12:45		4				7.35
12:46		4				7.33
12:47		4				7.30
12:48	<u> </u>	4				7.28
12:49	 	4				7.26
12:50	-	4				7.24
12:51		4		,		7.22
12:52		4				7.19
12:53		4				7.17
12:54		4				7.15
12:55	<u> </u>	4				7.13
12:56		4				7.11
12:57	 	4				7.08
12:58	<u> </u>	4				7.06
12:59		4				7.04
13:00 13:01		4				7.02
13:02		4				7.00
13:02		4				5.61
13:04		4				6.97
13:05		4				6.95
13:06		4				6.93
13:07		4				6.91
13:08		4				6.89
13:09		4				6.86
13:10		4				6.84
13:11		4				6.82
13:12		4				6.80
13:13		4				6.77
13:14		4				6.75
13:15		4				6.73
13:16		4				6.71
13:17		4				6.69
13:18		4				6.72
13:19		4				6.76
13:20		4				6.79
13:21		4				6.83
13:22		4	·			6.87
13:58			5			6.90
13:59			5			7.90
14:00			5			7.91
14:01			5			7.93
4:02			5			7.94
4:03			5			7.95
4:04			5		<u>-</u>	7.96
						I

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

86

Run No. 4&5-Load Out Date: 7/28/1998 Client/Source: EPA Plant C Spreadsheet work: Derek Hawkes Hot Mix Asphalt Load-In Load-out Time Tons * S-M315-4 S-MM5-5 S-MM5-4 Tons 7.98 5 14:05 7.99 5 14:06 8.01 5 14:07 8.02 5 14:08 8.03 5 14:09 8.04 5 14:10 8.05 5 14:11 8.06 5 14:12 8.07 5 14:13 8.09 5 14:14 8.10 5 14:15 8.11 5 14:16 8.09 5 14:17 8.06 5 14:18 8.04 5 14:19 8.02 5 14:20 8.00 5 14:21 7.98 5 14:22 7.95 5 14:23 7.93 5 14:24 7.91 5 14:25 7.89 5 14:26 7.87 5 14:27 7.85 5 14:28 7.82 5 14:29 7.80 5 14:30 7.78 5 14:31 7.76 5 14:32 2.91 5 18:13 2.89 5 18:14 2.98 5 18:15 3.07 5 18:16 3.15 5 18:17 3.24 5 18:18 3.33 5 18:19 3.41 5 18:20 3.50 5 18:21 3.59 5 18:22 3.67 5 18:23 3.76 5 18:24 3.85 5 18:25 3.94 5 18:26 4.02 5 18:27 4.11 5 18:28 4.20 5 18:29 4.28 5 18:30 4.37

⁸⁷ * Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load 18:31 in tons are the calculated values used to estimate the total tons loaded per test period.

Client/Source	e: EPA Plant C			o. 4&5-Load Out e: 7/28/1998		
	Hot Mix Asphalt	Sı		k: Derek Hawkes		
		• 1	product Holl	. Derek nawkes		
Time	Load-out				Т	1 1
	Tons	S-MM5-4	S-MM5-5	S-M315-4		Load-Ir Tons *
18:32			5			
18:33			5			4.46
18:34			5		 	4.54
18:35			5	 -		4.63
18:36			5		 	4.72
18:37			5		l	4.81
18:40			5	 		4.89
18:41			5	 		5.15
18:42	 		5 .			5.24
18:43			5			5.33
18:44	 		<u>5</u>			5.41
18:45			<u>5</u>			5.50
18:46	 		5			5.50
18:47	 					5.50
18:48			5 5	<u></u>		5.50
18:49	 		5			5.50
18:50	 					5.51
18:51	 		5			5.51
18:52			5			5.51
18:53			5			5.51
18:54			5			5.51
18:55			5			5.51
18:56			5			5.51
18:57			5			5.51
18:58			5			5.51
18:59			5			5.51
19:00			5			5.51
19:01			5			5.50
19:02			5			5.50
19:03			5			5.50
19:04			5			5.50
19:04			5			5.50
19:06			5			5.50
19:07			5			5.50
19:08			5			5.49
19:09			5			5.49
19:10			5			5.49
19:11			5			5.49
19:12			5			5.49
			5			5.49
19:13			5			5.48
19:14			5			5.48
19:15			5			5.48
19:16			5			5.48
19:17			5			5.48
19:18			5			5.48
19:19			5			5.48
19:20			5			5.48

⁸⁸

^{*} Calculated from TPH Mix Rate Data taken from Production Records. Numbers in middle columns indicate sampling periods, Load in tons are the calculated values used to estimate the total tons loaded per test period.

Asphalt Plant C Load-In Data for Silo #2 Used in Silo Exhaust Duct Emission Calculations

			Run No. 4	&5-Load Out	
lient/Source:	FPA Plant C				
-	Hot Mix Asphalt	Spre			
					 Load-ln
Time	Load-out	S-MM5-4	S-MM5-5	S-M315-4	Tons *
	Tons	3-1411410-4	5		5.48
19:21			5		5.48
19:22			$\frac{-\frac{5}{5}}{-\frac{1}{5}}$		5.48
19:23			5		 5.48
19:24			5		 5.48
19:25			5		 5.48
19:26			5		 5.48
19:27					 5.48
19:28			5		 5.48
19:29			5		 5.48
19:30			5		 5.48
19:31	<u> </u>		5		 5.48
19:32			5		 5.48
19:33			5		5.48
19:34			5		 5.48
19:35			5		 5.48
19:36			5		 5.48
19:37			5		 5.48
19:38			5		 5.48
19:39			5		 5.48
19:40			5		 5.40
Total	 	881.0	709.4	402.4	 <u> </u>

	· /		
の 大学 の 大学 の 大学 の 大学 できます。 「 「 「 「 「 「			

		,		
,				

APPENDIX B.7

ASPHALT TEMPERATURES AT LOAD-OUT, 7/24/98 THROUGH 7/28/98

ASPHALT PLANT C IN LOS ANGELES, CA - ASPHALT TEMPERATURES AT LOAD-OUT Measurements recorded by Jessica Swift

Day 1			Temperature, F		Day 1	
Date	Time	Truck #	Temp. T	Temp, B	Temp. B adi.	†
7/24/98	7:25	89	308			Comments
7/24/98	7:31	99		320	327	
7/24/98	7:36	92	310	315	322	
7/24/98	11:12		311	309	316	
7/24/98		88	264	310	317	
7/24/98	11:15	89	312	318	325	
	11:20	12	311	312	319	
7/24/98	13:16	9	314	320		
7/24/98	13:20	13	308	310	327	
7/24/98	13:26	16	312		317	
Average				315	322	
			305.6	314.3	321,3	Temp. B adj. used in report

		Temperature, F				Day 2	
Day 2			T	Temp. T	Truck#	Time	Date
Comments	adj.	Temp. B ad	Temp. B		T-5	7:25	7/25/98
				319	27	7:33	7/25/98
		317	310	313		7:36	/25/98
		332	325	332	T-3		/25/98
		329	322	333	23	7:39	/25/98
		289	282	285	21	9:32	
			305	306	8	9:35	25/98
		312		314	9	9:37	/25/98
		320	313	320	16	11:48	25/98
		327	320		18	11:56	/25/98
		317	310	307		12:00	25/98
		299	292	292	27	12.00	verage
adj. used in report	Temp B a	315.8	308.8	312.1			71090

Day 3			Temperature,		2	
Date	Time	Truck #	Temp, T	Ta 0	7-2	Day 3
7/27/98	8:04	T-1	270	Temp. B	Temp. B adj.	Comments
7/27/98	8:09	16		269	276	
7/27/98	8:11		268	265	272	†
7/27/98	· · · · · · · · · · · · · · · · · · ·	CA1138	278	290	297	
	9:41	27	285	270	277	
7/27/98	9:45	T-1	284	285		
7/27/98	9:55	2305-2	294		292	
7/27/98	12:45	CA20119	283	300	307	
7/27/98	12:47	0-8		285	292	
7/27/98	12:51	CA21784	301	302	309	
verage	72.01	CA21784	300	292	299	
		<u> </u>	284.8	284.2		Temp. B adj. used in report

Day 4		i	Temperature, F	:		
Date	Time	Truck #	Temp, T	T D		Day 4
7/28/98	7:00	na		Temp. B	Temp B adj.	Comments
7/28/98	7:15		212	204	8	Instruments Calibrated in boiling water
7/28/98	7:30	na	212	205	7	Instruments Calibrated in boiling water
Average	7.50	na	212	205	7	lostniments Calibrated in boiling water
A CA			212.0	204.7	7.3	Instruments Calibrated in boiling water

Notes:

- 1. Temp T was taken with a PES thermocouple (TC).
- 2. Temp B was taken with a CAAP dial thermometer (dial).
- 3. Both instruments were inserted into the hot asphalt in the bed of the truck just after load-out.
- 4. The dial was usually inserted first. In some cases the dial reads higher than the TC. In these cases the TC was probably pulled out before reaching temperature.
- 5. Both instruments were calibrated on 7/28/98 in boiling water. Temp B adj. Represents adjusted values for Temp B.

		•	

*				
		· ·		
•				
	•			
	*			

APPENDIX B.8

MASS CHANGE RESULTS FROM ASTM TESTS PERFORMED ON ASPHALT CEMENT SAMPLES

ASPHALT PLANT C - RESULTS FROM ADVANCED ASPHALT TECHNOLOGIES

ASPHALI PLANT 0 - REGULTS Asphalt Plant C in Los Angeles, CA ** RESULTS ARE

1. ASTM D1754-94 - Effects of Heat and Air on Asphalt Materials (TFOT)

2. ASTM D2872-88 - Effects of Heat and Air on a Moving Film of Asphalt (RTFOT)

% MASS CHANGE

			Oven Ter	Temp. 325 F Ove		Oven Temp. 300 F		np. 350 F	
Sample Date	Sample Time	Day Number	Sample ID	TFOT*	RTFOT*	TFOT*	RTFOT*	TFOT [*]	RTFOT*
9/17/97	nav	Pretest	A1	-0.030	-0.094	na	na	-0.097	-0.185
5/14/98	nav	Pretest	A2	-0.222	-0.417	na	na	-0.477	-0.684
6/5/98	nav	Pretest	A3	-0.178	-0.366	na	na	na	na
6/21/98	nav	Pretest	A4	-0.214	-0.398	na	na	na	na
7/14/98	nav	Pretest	A5	-0.216	-0.383	na	na	na	na

				Oven Te	mp. 325 F	Oven Te	mp. 300 F	Oven Te	mp. 350 F
Sample	Sample	Day	Sample						
Date	Time	Number	_ ID	TFOT	RTFOT	TFOT	RTFOT	TFOT	RTFOT
7/24/98	7:21 AM	Day 1	AC1B	-0.175	-0.347	na	na	na	na
7/24/98	11:05 AM		AC1M	-0.178	-0.369	-0.100	-0.216	na	-0.686
7/24/98	12:54 PM	Day 1	AC1E	-0.196	-0.370	na	na	na	na
Average				-0.183	-0.362	-0.100	-0.216	na	-0.686

				Oven Ter	mp. 325 F	Oven Te	mp. 300 F	Oven Te	mp. 350 F
Sample	Sample	Day	Sample						T
Date	Time	Number	ID	TFOT	RTFOT	TFOT	RTFOT	TFOT	RTFOT
7/25/98	7:16 AM	Day 2	AC2B	-0.182	-0.313	na	na	na	na
7/25/98	9:18 AM	day 2	AC2M	-0.173	-0.311	0.090	-0.200	na	-0.611
7/25/98	11:18 AM	Day 2	AC2E	-0.186	-0.341	na	na	na	na
Average				-0.180	-0.322	-0.090	-0.200	па	-0.611

रु				Oven Te	mp. 325 F	Oven Te	mp. 300 F	Oven Te	mp. 350 F
Sample	Sample	Day	Sample		Ī		Γ		T
Date	Time	Number	_ ID	TFOT	RTFOT	TFOT	RTFOT	TFOT	RTFOT
7/27/98	7:28 AM	Day 3	AC3B	-0.146	-0.301	па	na	na	na
7/27/98	9:29 AM	Day 3	AC3M	-0.166	-0.286	na	-0.142	na	-0.498
7/27/98	12:24 PM	Day 3	AC3E	-0.150	-0.264	na	na	na	na
Average				-0.154	-0.284	na	-0.142	na	-0.498

				Oven Te	mp. 325 F	Oven Te	mp. 300 F	Oven Temp. 350	
Sample Date	Sample Time	Day Number	Sample ID	TFOT	RTFOT	TFOT	RTFOT	TFOT	RTFOT
7/28/98	7:41 AM	Day 4	AC4B	-0.141	-0.361	na	na	na	na
7/28/98	9:17 AM	Day 4	AC5B	-0.157	-0.292	па	-0.171	na	-0.510
7/28/98	1:51 PM	Day 4	AC6B	-0.095	-0.322	na	na	na	na
7/28/98	7:43 PM	Day 4	AC6E	-0.237	-0.408	na	na	na	na
Average				-0.158	-0.346	na	-0.171	na	-0.510

	Oven Ter	mp. 325 F	Oven Te	mp. 300 F	Oven Ter	np. 350 F
	TFOT	RTFOT	TFOT	RTFOT	TFOT	RTFOT
Overall Average	-0.169	-0.328	-0.095	-0.182	-0.477	-0.576

nav = not available

na = not applicable, i.e., analysis was not performed

MASS CHANGE, %

Client:		Project No.:	WO#384
Pacific Envi 560 herndon	ronmental Services, Inc. A Parkway, Suite 200 rginia 20170-5240	Description:	Mass Loss Study for Pacific Environmental
Report Dis		ix	
Sample No	.: AC496 & AC497	Date Received	i: 5/20/98
Sample De		" - AAT# AC496 Sept. 17 1997"	
		·	Technical Contact
	Technical Responsibility		Technical delitaet
Name	Technical Responsibility William Pennington	Name:	Kevin J. Knechtel
		Name: Title:	
Name Title: Signature:	William Pennington Binder Team Leader		Kevin J. Knechtel

Test Results		5/14/98	9/17/97	
Test	Method		Result AC497 / All	REULTS ARE
		AC496 / AAA	AC49//All American	ARE
Mass Change, using the Thin Film Oven Test (TFOT) at 325°F	ASTM D 1754	-0.222	-0.030	%
Mass Change, using the Rolling Thin Film Oven Test (RTFOT) at 325°F	ASTM D 2872	-0.417	-0.094	o/o CHANGE MASS BASUS
Mass Change, using the Thin Film Oven Test (TFOT) at 350°F	*ASTM D 1754	-0.477	-0.097	BASUS
Mass Change, using the Rolling Thin Film Oven Test (RTFOT) at 350°F	*ASTM D 2872	-0.684	-0.185	

*Note: Temperature of 350°F deviates from ASTM D1754 and ASTM D2872 standard test methods. An ASTM 13C thermometer was calibrated at 350°F, marked and used to conduct these non-standard tests. This was approved by Mr. Frank Phoenix.

A2 | A

TEST REPORT

Test Report No.: 03840003.DOC Report Date: 07/20/98 X	Original	page 1 of 1 Amended		
Client:	Project No.:	WO#384		
Pacific Environmental Services, Inc. 560 Herndon Parkway, Suite 200 Herndon Virginia 20170-5240	Description:	Mass Loss Study for Pacific Environmental		
Report Distribution: Mr. Frank Phoenix				
Sample No.: AC508, AC517, & AC564	Date Received	6/12/98, 6/29/98, and 7/16/98		
Sample Description:	, 6/5/98" - AAT# A			

6/21/98" -AAT# AC517

Technical Responsibility

7/14/98" -AAT# AC564

Technical Contact

Name William Pennington Name: Kevin J. Knechtel

Title: Binder Team Leader Title: Liboratory Manager

Signature: Signature: Signature: June 1 Mouth

Date: 7/25/9-3 Date: 7/20/15

Comments: - This a true record of test results obtained by Advanced Asphalt Technologies, L.P. in accordance with the test methods and procedures stipulated by AASHTO/ASTM.

Test Results

Test	Method		Test Result オ				
		AC508 All-American Asphalt, Sampled- 6/5/98	AC517 All-American Asphalt, Sampled- 6/21/98	AC564 All-American Asphalt, Sampled- 7/14/98			
Mass Change, using the Thin Film Oven Test (TFOT) at 325°F	ASTM D 1754	-0,178	-0.214	-0.216			
Mass Change, using the Rolling Thin Film Oven Test (RTFOT) at 325°F	ASTM D 2872	-0.366	-0.398	-0.383			
	_	A3	Ач	AS			
		* MASS CHANGE, %					

TEST REPORT

Test Report No.: 03840004.DOC page 1 of 2

Report Date: 09/28/98 Original X Amended

WO#384 Project No.: Client: Mass Loss Study for Pacific Description: Pacific Environmental Services, Inc. Environmental 560 Herndon Parkway, Suite 200 Herndon Virginia 20170-5240 Mr. Frank Phoenix **Report Distribution:** 8/18/98 Date Received: Sample No.: See Below "See Below Sample Description: Technical Contact Technical Responsibility ŧ Kevin J. Knechtel Name: Tim Clark • Name Title: Laboratory Manager Title: Laboratory Technician Signature: Signature: Date: Date: - This a true record of test results obtained by Advanced Asphalt Technologies, L.P. in Comments: accordance with the test methods and procedures stipulated by AASHTO/ASTM.

Test Results

		A Ch	of Aank	alt Cample	0/	
						Total
	Rolling T	<i>hin FilmO</i> v	ven Test	Inin	Film Uven	l est
	AS	ASTM D 1754		ASTM D 2872		72
AAT Sample	Ter	nperature	(F)	Temperature (F)		
ID#	300	325	350	300	325	350
AC587		-0.347			-0.176	
AC588	-0.216	-0.369	-0.686	-0,100	-0.178	-0.397
AC589		-0.370			-0.196	
AC590	<u> </u>	-0.313			-0.182	
AC591	-0.200	-0.311	-0.611	-0.090	-0.173	-0.343
AC592	18 18 3 14 3 15 15 15 15 15 15 15 15 15 15 15 15 15	-0.341			-0.186	
AC593	1	-0.301			-0.146	
AC594	-0.142	-0.286	-0,498	-0,075	-0.166	-0.331
AC595		-0.264			-0.150	
AC596		-0.351			-0.141	
AC597	-0.171	-0.292	-0.510	-0.075	-0.157	-0.351
AC598		-0.322			-0.095	
AC599		-0.408			-0.237	
	ID# AC587 AC588 AC589 AC590 AC591 AC592 AC593 AC594 AC595 AC596 AC597 AC598	Rolling 7 Rolling 7 AS AAT Sample ID# 300 AC587 AC588 -0.216 AC589 AC590 AC591 -0.200 AC592 AC593 AC594 -0.142 AC595 AC596 AC597 -0.171 AC598	Mass Chan Rolling Thin FilmOve ASTM D 17! AAT Sample Temperature ID# 300 325 AC587 -0.347 AC588 -0.216 -0.369 AC589 -0.370 AC590 -0.313 AC591 -0.200 -0.311 AC592 -0.341 AC593 -0.301 AC594 -0.142 -0.286 AC595 -0.264 AC596 -0.351 AC597 -0.171 -0.292 AC598 -0.322	Mass Change of Asph Rolling Thin FilmOven Test ASTM D 1754 Temperature (F) 300 325 350 AC587 -0.347 -0.347 AC588 -0.216 -0.369 -0.686 AC589 -0.370 -0.313 -0.611 AC591 -0.200 -0.311 -0.611 AC592 -0.341 -0.611 AC593 -0.301 -0.301 AC594 -0.142 -0.286 -0.498 AC595 -0.264 -0.351 AC596 -0.351 -0.510 AC597 -0.171 -0.292 -0.510 AC598 -0.322 -0.322	Mass Change of Asphalt Sample Rolling Thin FilmOven Test	Mass Change of Asphalt Samples, % Rolling Thin FilmOven Test Thin Film Oven ASTM D 1754 ASTM D 28 AAT Sample Temperature (F) Temperature ID# 300 325 350 300 325 AC587 -0.347 -0.176 AC588 -0.216 -0.369 -0.686 -0.100 -0.178 AC589 AC590 -0.313 -0.182 AC591 -0.200 -0.311 -0.611 -0.090 -0.173 AC592 -0.341 -0.611 -0.090 -0.173 AC593 -0.301 -0.146 AC594 -0.142 -0.286 -0.498 -0.075 -0.166 AC595 AC596 -0.351 -0.141 AC597 -0.171 -0.292 -0.510 -0.075 -0.157 AC598 -0.322 -0.095 -0.0

TEST REPORT

Test Report No.:

03840004.DOC

Report Date: 09/28/98 Original

X Amended

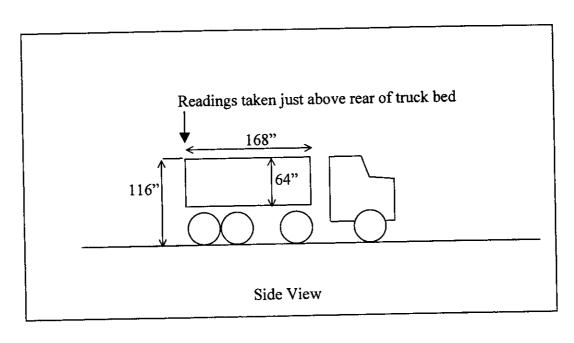
page 2 of 2

RAP Samples Test Results

		Asphalt	Moisture
PES Sample	AAT Sample	Content, %	Content, %
ID#	ID#	ASTM D 2172	·
RAB2B	FS481.1	4.67	1.90
RAB2E	FS482.1		2.25
RAB3B	FS483.1		2.61
RAB3M1	FS484.1		1.90
RAB3M2	FS485.1	5.13	2.52
RAB3M3	FS486.1		3.25
RAB3E	FS487.1		2.04
RAB4B	FS488.1		2.56
RAB5B	FS489.1	5.27	2.75
RAB6B	FS490.1		3.22
RAB6E	FS491.1		2.73

	•	

APPENDIX B.9


VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS DURING LOAD-OUT

VELOCITY OF AIR ACROSS TOP OF TRANSPORT TRUCKS DURING LOAD-OUT

Air velocity measurements were taken above seven transport trucks inside the tunnel during load-out from Silo No. 2. Measurements were taken using a hot wire anemometer at five regularly spaced spaced intervals just above the back end of the truck bed. In each case, a second truck was waiting at the entrance of the tunnel. The results are summarized in Table T.1 below. Refer to Figure 1 for the exact locations of the measuring points and numbering scheme.

TABLE T.1
AIR VELOCITY OVER TRUCKS SUMMARY

		Time		Velocity
Test	Point	of	Truck	Reading
Date	No.	Reading	No.	fpm
7/24/98	1	1209	29	60
	2	1209	29	52
	3	1209	29	59
	4	1213	16	271
	5	1213	16	220
7/24/98	1	1219	TP	71
	2	1219	TP	21
	3	1216	88	140
	4	1216	88	135
	5	1216	88	170
7/25/98	1	1209	21	104
	2	1209	21	135
	3	1211	7	136
	4	1211	7	123
	5	1211	7	72
7/25/98	1	1220	15	43
	2	1220	15	41
	3	1215	8	64
	4	1215	8	55
	5	1215	8	71

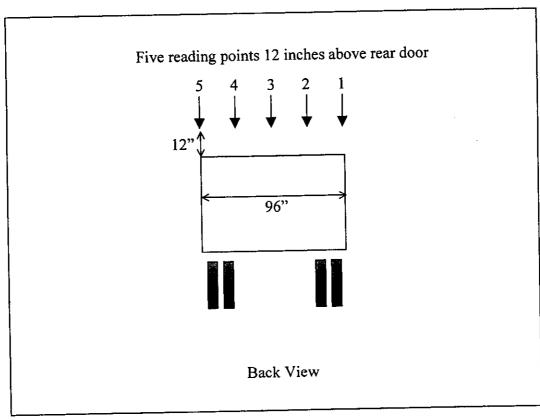


Figure 1 Velocity Measurement Locations and Dimensions for Transport Trucks

		•

APPENDIX B.10 METALS ANALYSIS OF PROCESS SAMPLES

TRIGING LIES

SAMPLE DATA

TERRANGUE MAVES

CASE NARRATIVE

Analysis of Samples for the Presence of Trace Metals

Methods

6010A 7470 Rev.1 (7/92)

Rev.0 (9/86)

Client:

Pacific Environmental Services

TLI Project Number:

46705A

Date:

September 23, 1998

This report should only be reproduced in full.

Any reproduction of this report requires permission from

Triangle Laboratories, Inc.

Rev. 25-Sep-96

Triangle Laboratories, Inc. 801 Capitola Drive P.O. Bo. Durham, NC 27713-4411 Researce 919-544-5729 Fax # 9

P.O. Box 13485 Research Triangle Park, NC 27709-3485 Fax # 919-544-5491

September 23, 1998 TLI Project #: 46705A

SHARING SELLINGS

Overview

Seven samples were analyzed for arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), and mercury (Hg). For all analyses (except Hg), the samples and associated QC samples were prepared by hotplate digestion following the guidelines of EPA SW-846 Method 3050A. The samples and associated QC samples for the analysis of Hg were prepared following the guidelines of EPA SW-846 Method 7471 Rev.0 (9/86). The samples were analyzed following the guidelines of EPA SW-846 Methods 6010A Rev. 1 (7/92), 7471 Rev. 0 (9/86). Results reported relate only to the items tested.

OC Remarks

The release of this set of data by Triangle Laboratories, Inc. was authorized by the Quality Control Chemist who has reviewed each sample data package individually following a series of inspections/reviews. When applicable, general deviations from acceptable QC requirements are identified below and comments are made on the effects of these deviations upon the validity and reliability of the results. Specific QC issues associated with this particular project are:

Sample Receipt:

Three aggregate samples, four liquid AC and three asphalt cement samples were received at 25 0 C on September 15, 1998 in good condition. These samples were received in a box instead of a cooler. Only seven samples were analyzed for this particular project.

Sample Preparation:

Laboratory documentation of the sample preparation is included in the data package.

Instrumentation:

Arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), concentrations were determined by Inductively Coupled Plasma Emission Spectroscopy (ICP).

The linear range for the instrument TJA 61E Trace Analyzer was based on four standards and a blank, which established a correlation coefficient value greater than or equal to 0.995. A calibration curve, based on a blank and one standard, is established for each analytical run, followed by a check high standard and an initial calibration verification (ICV). The check high standard does not deviate from the calibration curve by more than 5%. In addition, continuing calibration verifications (CCVs) are performed throughout the analytical run.

Triangle Laboratories, Inc. Case Narrative

September 23, 1998 TLI Project #: 46705A

A Reporting Detection Limit (RDL) is used instead of an Instrument Detection Limit (IDL). The spectrometer and atomic absorption instruments can achieve low detection limits between 0.2-8 ppb levels for many analytes. Triangle Labs is using RDL values of 1-10 times the IDL as detection limits for reporting purposes.

Data Review:

All analytes found in the method blank (MB) are detected at a level equal to or less than the respective Reporting Detection Limit (RDL) except Ni and Pb. The following guidelines may be used to assess analyte concentrations relative to the method blank: 1. Analyte quantitations should be considered valid if the level of blank contamination is less than five percent of the level detected in the field sample, 2. Analyte quantitations should be considered estimated if the analyte level in the sample is five to twenty times the level of the analyte in the blank, or 3. Analytes whose level in a sample is the same as or less than five times the level detected in the associated blank should be considered present likely due to laboratory contamination and not native to the sample. The sample results are based on dry weight.

A sampling date was not supplied by the client and the sampling to analysis holding times cannot be determined. All samples were analyzed within 7 days of sample receipt at Triangle Laboratories.

The pre-digestion spike duplicate (MSD) for Mn, Ni, and Pb for the sample RAP2B/AC demonstrated percent recoveries outside the QC criteria which may indicate significant matrix effects specific to these analytes in the native sample matrix. Please note that the pre-digestion spike (MS) and the post-digestion spike (PDS) met QC criteria for Mn, Ni, and Pb for sample RAP2B/AC.

The duplicate analyses for Ni for the sample AC1B demonstrated a RPD outside the QC criteria of 20.0 percent, which indicates the presence of a significant amount of interferents specific to this analyte in the native sample matrix.

QC requirements:

The analytical duplicates for analytes analyzed by ICP cannot be considered valid qualifiers if the concentrations of the analytes in the original and/or duplicate sample are not at least ten times the respective RDLs. The RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

For analytical duplicates which are valid qualifiers, the quality control RPD is ± 20.0 percent. If RPDs are outside this range, interferences are suspected.

Triangle Laboratories, Inc. Case Narrative

September 23, 1998 TLI Project #: 46705A

The serial dilution analyses for analytes analyzed by ICP cannot be considered valid qualifiers if the concentrations of the analytes in the serial dilution sample are less than ten times the respective RDLs. The serial dilution RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

For serial dilution analyses which are valid qualifiers, the quality control RPD is \pm 10.0 percent. If RPDs are outside this range, interferences are suspected.

The quality control range for percent recoveries of laboratory control spiked samples is 80-120.

The quality control range for percent recoveries of pre-digestion spiked samples analyzed by ICP is 80-120. If recoveries are outside this range, a matrix effect is suspected.

The quality control range for percent recoveries of post-digestion spiked samples analyzed by ICP is 75-125. If recoveries are outside this range, a matrix effect is suspected.

The quality control range for percent recoveries of spiked samples analyzed by CVAA is 75-125. If recoveries are outside this range, a matrix effect is suspected.

By our interpretation, the analytical data in this project are valid based on the guidelines of US EPA SW-846 Methods 6010A Rev.1(7/92) and 7471 (9/86). Any specific QC concerns or problems have been discussed in the QC REMARKS section with emphasis on their effect on the data. Should Pacific Environmental Services have any questions or comments regarding this data package, please feel free to contact Triangle Laboratories, Inc., at (919) 544-5729.

For Triangle Laboratories, Inc.,

Report Preparation

Brenda/H. Bell

Report Preparation Chemist

Quality Control

Darnella S. Edwards

Report Preparation Chemist

trooter-Edwards

The total number of pages in this data package is: 81.

STANDARD CONCENTRATIONS for the TJA 61E TRACE ANALYZER

Analyte	Units	High Std	ICV/CCV	ICSAB	RDL	Wavelength
Ag	1000	1000	500	5100	2.2	3280 T
As	ppb	1000	500	500	5	1890
Al	3 Televis	1000	\$00	3500000	510	36082
В	ppb	1000	-500	500	ea 1 7 ≥ 3	2496
Ba	1913	Te1000	5(00 4) 4	##500## <u>#</u>	4 5 2	4934
Be	ppb	1000	500	500	1	3130
Ca	** pph.**	1000	500	: :500000	**90 **	= 3179
Cd	ppb	1000	500	500	1	2265
Ce	ppb	1000	_500	500	*10	4186
Co	ppb	1000	500	500	2	2286
Cr	ы ррб	1000	500 #	500 👵	- 2	2677
Cu	ppb	1000	500	500	2	3247
Fe	е ррб	1000	500	200000	40-	2714
K	ppb	10000	5000	19000	220	7664
Li	ppb	1000	500	500 ***	1	6706
Mg	ppb	1000	500	500000	30	2790
Mn	-ppb	1000	≥ 500 %	500	2	-2576
Mo	ppb	1000	500	500	2	2020
Na	- ррб	10000	5000	5000	400	3302
Ni	ppb	1000	500	500	3_	2316
P *	ppb	* 1000	500	500	30	2149
Pb	ppb	1000	500	500	2	2203
Sb	ppb	1000	500	500	4	2068
Se	ppb	1000	500	500	3	1960
Sn -	ppb	1000	500	500	13	1899
Sr	ppb	1000	500	650	3	4215
Tì	* ppb	- 1000	500	500	8	3349
Tl	ppb	1000	500	500	5	1908
V	ppb -		500	-500	2	2924
Zn	ppb	1000	500	500	12	2062

Note: Use this reference page to review the raw data from the TJA 61E Trace Analyzer.

This page includes the standard concentrations for the check high standard, initial calibration verification (ICV), continuing calibration verification (CCV), and the interference check solution (ICSAB). In addition the reporting detection limit (RDL) and wavelength are reported for each analyte.

Revision Date: 05-May-98

ABBREVIATIONS

BH = Back Half

CCB = Continuing Calibration Blank

CCV = Continuing Calibration Verification

CHECK HS = Check High Standard

D = DUP = Analytical Duplicate (Prepared Duplicate)

DA = Duplicate Analysis

FH = Front Half

FV = Final Digestate Volume

ICB = Initial Calibration Blank

ICV = Initial Calibration Verification

ICSAB = Interference Check Solution (Solution AB)

I = Initial

F = Final

Solution AB contains common interferents in addition to the analyte of interest.

IDL = Instrument Detection Limit

L = Serial Dilution

LCS = Laboratory Control Spike Sample

MB = Method Blank

MPV = Mercury Preparation Volume

MS = Pre-digestion Spike

MSD = Pre-digestion Spike Duplicate

N/A = Not Applicable

N/Av = Not Available

N/V = Not Valid

PDS = Post-digestion Spike

%REC = Percent Recovery

RDL = Reporting Detection Limit

RPD = Relative Percent Difference

T = Analytical Triplicate (Prepared Triplicate; for Hg analysis by Method 7471 only)

TV = Total Sample Volume

< = Analyte concentration in the sample is less than the respective RDL

CALCULATIONS FOR SOLID SAMPLES

RESULTS FOR TRACE METALS (except mercury):

RESULT in mg/Kg = ug/L * mi FV * DF gram WT used * 1000

> mi FV = final volume in mi DF = Dilution Factor

RESULTS FOR MERCURY (Hg):

RESULT in mg/Kg = ug/L * MPV * DF gram WT used

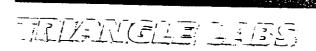
MPV = Mercury Preparation Volume = 0.1 L or 0.008 L DF = Dilution Factor

%REC (Percent Recovery) for MS/MSD and Hg spikes:

%REC = Spike sample results - original sample results * 100 true spike sample results

%REC (Percent Recovery) for PDS:

%REC = Spike sample conc. μg/L - original sample conc. μg/L * 100 spike conc. μg/L


%REC (Percent Recovery) for LCS/LCSD:

%REC = Spike sample conc. μg/L * 100 spike conc. μg/L

RPDs:

 $RPD = \frac{|Result 2 - Result 1|}{(Result 2 + Result 1)/2} * 100$

Rev. 10/10/95 .

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

American Association for Laboratory Accreditation. Accredidation pending. Certificate Number 0226-01. Accreditation for technical competence in Environmental Testing. (Including Waste Water, Sol/Haz Waste, Pulp/Paper, and Air Matrices) Parameters are AOX/TOX, and Dioxin/Furan. Method 1613 for Drinking Water Currently re-applying.

State of Alabama, Department of Environmental Management. Expires December 31, 1998. Laboratory I.D. # 40950. Dioxin in drinking water.

State of Alaska, Department of Environmental Conservation. Expires December 21, 1998. Certificate number OS-006-98. Dioxin in drinking water.

State of Arizona, Department of Health Services. Expires May 26, 1998. Certificate #AZ0423. Drinking Water for Dioxin, Dioxin in WW and S/H Waste. Currently appying for renewal.

State of Arkansas, Department of Pollution Control and Ecology. Expires February 19, 1999. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furan; AOX/TOX, Volatiles, Semi-volatiles, and Metals.

State of California, Department of Health Services. Expires August 31, 1999. Certificate #1922. Selected Metals in Waste Water; Volatiles, Semi-volatiles, and Dioxin/furan in WW and Sol/Haz Waste. Dioxin in drinking water.

State of Connecticut, Department of Health Services. Expires September 30, 1999. Registration #PH-0117. Dioxin in drinking water.

Delaware Health and Social Services. Expires December 31, 1998. Certificate #NC 140. Dioxin in drinking water.

Florida Department of Health and Rehabilitative Services. Expires June 30, 1998. Dioxin in SDW. Drinking Water ID HRS# 87424. Pending new certificate.

Triangle Laboratories, Inc.

À

Hawaii Department of Health. Expires March 1, 1999. Dioxin in drinking water. "Accepted" status for regulatory purposes.

Idaho Department of Health and Welfare. Expires December 31, 1998. Dioxin in drinking water.

State of Kansas, Department of Health and Environment. Expires January 31, 1999. Method 1613 for drinking water. ID #'s - Drinking water and/or pollution control - E-10215. Solid or Hazardous Waste - E-101209.

Commonwealth of Kentucky, Department for Environmental Protection. Expires December 31, 1998. ID#90060. Dioxin in drinking water.

Maryland Department of Health and Mental Hygiene. Expires September 30, 1998. Certification #235 Drinking water by Method 1613A. Currently applying for renewal.

State of Michigan, Department of Public Health. Expires June 30, 1999. Drinking water by Method 1613. Current certification is extended, based on New York certificate renewal.

Mississippi State Department of Health. No expiration date. Dioxin in drinking water.

Montana Department of Health and Environmental Services. Expires December 31, 1998. Dioxin in drinking water.

State of New Jersey, Department of Environmental Protection and Energy. Expires June 30, 1998. Extended until July 31, 1998 per letter dated May 29, 1998. ID #67851. BNAs and Volatiles. Dioxin in drinking water. Currently applying for renewal.

State of New Mexico, Environment Department. Still certified, awaiting information from A2LA Dioxin in drinking water.

New York State Department of Health. Received updated certificates. ID #11026. Environmental Analyses of potable water, non-potable Water, Solid and Hazardous Waste. Method 1613 in DW.

State of North Carolina, Department of Environment Health and Natural Resources Expires. August 31, 1998. Certificate # 37751. Dioxin in drinking water.

State of North Carolina, Department of Environment, Health, and Natural Resources, Division of Environmental Management. Expires December 31, 2000. Certificate # 485. Metals, pesticides & PCBs, semi-volatiles and volatiles; TCLP.

North Dakota State Department of Health and Consolidated Laboratories. Expires December 31, 1998. Certificate # R-076. Effective October 4, 1993. Dioxin in drinking water.

Oklahoma Department of Environmental Quality. Expires August 31, 1998. Laboratory #9612. Dioxin by 1613A, 8290 and 8280. Submitted renewal application 7/1.

State of South Carolina, Department of Health and Environmental Control. Expires June 30, 1998. Extended August 31, 1999. Certificate number #99040001 (drinking water). Expires August 31, 1999. Certificate number #99040002 (other parameters). Dioxin/Furans, BNA, Volatiles, and PCBs/pesticides under Clean Water Act, 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste.

State of Tennessee. Department of Environment and Conservation. Expires February 5, 1999. ID #02992. Method 1613 Drinking water only.

U.S. Department of Agriculture Soil Permit. Expires September 30, 2001. Permit No. S-3790. Under the authority of the Federal Plant Pest Act, permission is granted to receive foreign soil samples for use in laboratory analysis.

U.S. Army Corps of Engineers. Expires October 19, 1999. Validated to perform analyses for the Fort Belvoir, VA (Contract Number DACA31-97-D-0029), Vint Hill Farms Station, Vint Hill, VA (Contract Number DACA31-95-D-0083), and Selma Pressure Treating Superfund Site, Selma, CA (Contract number DACW45-94-D-0054).

U.S. EPA Region V. Expires November 14, 1999. Dioxin in drinking water.

U.S. EPA Region VIII, for the State of Wyoming. Expires November 12, 1998. Dioxin in drinking water.

State of Utah, Department of Health. Expires May 30,2000. Certificate Number E-166. Certification for the following parameters: Semi-Volatiles and Volatiles under RCRA; Volatiles under Clean Water Act; Dioxin/furans by Method 8280; Drinking water for Dioxin by Method 1613; Metals including Mercury and Microwave Digestion.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. Expires June 30, 1999. ID # 00341. Dioxin in drinking water.

State of Washington, Department of Ecology. Expires September 11, 1998. Lab Accreditation Number C067. Scope of Accreditation applies to water analyses for

Revised 8/3/96 des y:certific\certlist.mem Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans, BNA Extr (Semivolatile) Organics and Purgeable (Volatile) Organics.

State of Washington, Department of Health. Expires April 30, 1999. Dioxin in drinking water. Lab I.D. 129.

State of West Virginia, Department of Health. Expires December 31, 1998. Certificate No. 9923(C). Dioxin in drinking water.

State of Wisconsin, Department of Natural Resources. Expires August 31, 1998. Laboratory ID Number 999869530. Certification for the following categories of Organics: Purgeable, Base/Neutral, Acid, PCBs, and Dioxin. Expires November 14, 1999. Laboratory ID 999869530. Dioxin in drinking water.

PHARMACEUTICAL

Drug Enforcement Agency (DEA). Expires November 30, 1998. Registration number RT01195835. Controlled substance registration for schedules 1,2,3,3N,4,5.

N.C. Department of Human Resources. Expires October 31, 1998. Registration number NC-PT 0000 0031. North Carolina controlled substances registration. Application submitted for renewal.

Food & Drug Administration (FDA) Registration. Expires June 1998. ID #'s 001500 1053481. Annual registration of drug establishment.

<u>OTHER</u>

Clinical Laboratory Improvement Amendments (CLIA) Registration. Expires May 30, 1999. ID # 34D0705123. Department of Health & Human Services, Health Care Financing Administration.

U.S. EPA Large Quantity Hazardous Waste Generator. No expiration date. EPA ID #NCD982156879. Permit indicates that the laboratory is a large generator of hazardous waste.

North Carolina General License for Radiation Protection. No expiration date. No License. 032-875-OG. The general license applies only to radioactive material contained in devices which have been manufactured and labeled in accordance with specific requirements.

THENEFIE LIVES

DOCUMENT CONTROL

Triangle Laboratories, Inc.

801 Capitole Ortro Durham, NC 27713-4411 919-544-5729

P.O. Box 13485 Recently Triangle Perk, NC Fax 8 919-544-5491

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	AC1B	
TLI Sample ID:	218-12-1	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

A AMERICA	ା Conc. ୍ର	grams	grams	mL	Dilution	mg/Kg Result
Analyte	(ug/L)	Submitted	Used	Final Vol.	Factor	
As	-0.823	N/A	0.609	100	1	< 0.821
Be	-0.021	N/A	0.609	100	1	< 0.164
Cd	-0.192	N/A	0.609	100	1	< 0.164
Co	4.867	N/A	0.609	100	1	0.799
Cr	0.204	N/A	0.609	100	1	< 0.328
Mn	1.375	N/A	0.609	100	1	< 0.328
Ni	210.290	N/A	0.609	100	1	34.5
Pb	6.186	N/A	0.609	100	1	1.02
Sb	1.250	N/A	0.609	100	1	< 0.657
Se	5,179	N/A	0.609	100	1	0.850
						<u> </u>
	 					
		i				
			<u> </u>			
	<u> </u>		 			
	<u> </u>				<u> </u>	
	 					
						
	<u> </u>					
						
	 					
	 	<u> </u>				
<u> </u>					Ī	
	 			†		
	_1		1	1	<u> </u>	

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	ACIB	
TLI Sample ID:	218-12-1 D	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

	Conc.	a de la compa		A Company of the Company	1	
Analyte	(ug/L)	grams Submitted			Dilution	mg/Kg
As	-2.709	N/A	0.647	Final Vol.	Factor	Result
Be	-0.118	N/A	0.647	100	1	< 0.773
Cd	-0.206	N/A		100	1	< 0.155
Co	0.633	N/A	0.647 0.647	100	1	< 0.155
Cr	-0.359	N/A	0.647	100		< 0.309
Mn	0.731	N/A		100	1	< 0.309
Ni	49.276	N/A	0.647 0.647	100	1_	< 0.309
Pb	2.919	N/A		100	1	7.62
Sb	0.148	N/A	0.647 0.647	100	1	0.451
Se	0.983	N/A		100	1	< 0.618
	0.365	IVA	0.647	100	1	< 0.464
						
_						· .
						
			<u></u>			

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	AC2B	
TLI Sample ID:	218-12-2	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

Conc. (ug/L) -1.444 -0.110	N/A	grams Used 0.514	ુંmL Final Vol.	Dilution Factor	mg/Kg Result
-1.444 -0.110	N/A				
-0.110		u.514 I	100	1	< 0.973
	NA	0.514	100	1	< 0.195
-0.220	N/A	0.514	100	1	< 0.195
	N/A	0.514	100	1	1.56
				1	< 0.389
				1	0.865
				1	56.8
				1	0.604
					< 0.778
					1.01
3.190		0.01-		· · · · · · · · · · · · ·	
					<u> </u>
		<u> </u>			
				<u> </u>	
					:
				-	1
		<u> </u>			
		<u> </u>		_ -	
					
		<u> </u>			<u> </u>
		ļ	<u> </u>		
		 	<u> </u>		<u> </u>
			ļ		# FF
					ļ
		<u> </u>			<u> </u>
		<u> </u>	<u> </u>		
	8.019 1.034 4.448 291.857 3.106 -2.120 5.196	1.034 N/A 4.448 N/A 291.857 N/A 3.106 N/A -2.120 N/A	1.034 N/A 0.514 4.448 N/A 0.514 291.857 N/A 0.514 3.106 N/A 0.514 -2.120 N/A 0.514	1.034 N/A 0.514 100 4.448 N/A 0.514 100 291.857 N/A 0.514 100 3.106 N/A 0.514 100 -2.120 N/A 0.514 100	1.034 N/A 0.514 100 1 4.448 N/A 0.514 100 1 291.857 N/A 0.514 100 1 3.106 N/A 0.514 100 1 -2.120 N/A 0.514 100 1

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98

98 at 03:59 Pl

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP2B/AC	
TLI Sample ID:	218-12-3	
Date Received:	September 15, 1998	-
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

Analyte	Conc.: (ug/L)	grams Submitted	grams Used	mL Final Vol.	The company of the company	
As	1.245	N/A	0.576	100	Factor	Result &
Be	-0.167	N/A	0.576	100	1	< 0.868
Cd	0.238	N/A	0.576	100		< 0.174
Со	3.371	NA	0.576	100	1	< 0.174
Cr	1.630	N/A	0.576	100	1	0.585
Mn	52.992	N/A	0.576	100		< 0.347
Ni	234.393	N/A	0.576	100	1	9.20
Pb	31.007	N/A	0.576	100	<u></u>	40.7
Sb	0.594	N/A	0.576	100	<u> </u>	5.38
Se	3.746	N/A	0.576	100	<u>'</u> 1	< 0.694
				100		0.650
<u> </u>						
	 					
						
						
"						
				·		

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP2B/AC
TLI Sample ID:	218-12-3 L
Date Received:	September 15, 1998
Date Prepared:	September 21, 1998
Date Analyzed:	September 22, 1998
Matrix:	SOLID

. no-kvili jenskeče	Conc.	ୁ grams ୍ର	grams	∴ mL ¿.	Dilution	_mg/Kg
Analyte	(ug/L)	Submitted	Used 🕷		Factor	Result -
As	0.864	N/A	0.576	100	5	< 4.34
Be	-0.149	NA	0.576	100	5	< 0.868
Cd	0.054	N/A	0.576	100	5	< 0.868
Co	1.198	N/A	0.576	100	5	< 1.74
Cr	0.387	N/A	0.576	100	5	< 1.74
Mn	10.772	NA	0.576	100	5	9.35
Ni	47.382	N/A	0.576	100	5	41.1
Pb	6.109	N/A	0.576	100	5	5.30
Sb	0.165	N/A	0.576	100	5	< 3.47
Se	1.116	N/A	0.576	100	5	< 2.60
						1
						<u> </u>
	<u> </u>					
						
				ļ		
	T					
	 					
	 	<u> </u>				
			<u> </u>		·	
			†			
	<u> </u>					

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP2B/AC MS	
TLI Sample ID:	218-12-3 MS	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

	Conc.	grams	grams	mL	Dilution	terroritisman A Care role :
Analyte	Conc. (ug/L)	Submitted	Used ·	Final Vol →	Factor	mg/Kg Result
As	45.259	N/A	0.534	100	1	8.48
Be	45.643	N/A	0.534	100	1	8.55
Cd	45.860	N/A	0.534	100	1	8.59
Co	49.917	N/A	0.534	100	1	9.35
Cr	48.552	N/A	0.534	100	1	9.09
<u>M</u> n	95.805	N/A	0.534	100	1	<u>9.09</u> 17.9
Ni	262.042	N/A	0.534	100	1	49.1
Pb	75.086	N/A	0.534	100	1	14.1
Sb	46.222	N/A	0.534	100	1	8.66
Se	47.150	N/A	0.534	100	1	8.83
						0.83
			**		·	
				 		
						· · · · · · · · · · · · · · · · · · ·
						·
					·	
						
				-		
						
						
						
						
		 				
						
				<u> </u>		
						

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 04:55 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP2B/AC MSD	
TLI Sample ID:	218-12-3 MSD	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

	Conc.	grams	grams ु	· mL	Dilution	mg/Ka
Analyte	(ug/L)	Submitted	- Used	Final Vol.	Factor	Result
As	43,250	N/A	0.552	100	1	7.84
Be	46.674	NA	0.552	100	1	8.46
Cd	46.595	N/A	0.552	100	1_	8.44
Co	47.721	N/A	0.552	100	1	8.65
Cr	48.170	N/A	0.552	100	1	8.73
Mn	59.290	N/A	0.552	100	1	10.7
Ni	84.610	N/A	0.552	100	1	15.3
Pb	55.565	N/A	0.552	100	1	10.1
Sb	47.180	N/A	0.552	100	1	8.55
Se	43.921	N/A	0.552	100	11_	7.96
						<u> </u>
-						
	<u> </u>					
	†					
	 					
<u></u>						

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 04:55 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	AC3B	
TLI Sample ID:	218-12-5	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	·
Matrix:	SOLID	

Analyte	Conc. (ug/L)	grams Submitted	grams Used	mL Final Vol.	Dilution Factor	mg/Kg Besult
As	-3.235	N/A	0.504	100	1	
Be	-0.118	N/A	0.504	100	1	< 0.992 < 0.198
Cd	-0.288	NA	0.504	100		
Co	0.196	N/A	0.504	100	1	< 0.198
Cr	-0.602	N/A	0.504	100	1	< 0.397
Mn	1.017	NA	0.504	100	1	< 0.397
Ni	26.323	NA	0.504	100	1	< 0.397
Pb	2.282	N/A	0.504	100		5.22
Sb	1.523	N/A	0.504	100	1	0.453
Se	0.861	N/A	0.504	100	1	< 0.794
				100		< 0.595
						
						
						
						
						
						
						
		<u>l</u>				

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP3M2/AC
TLI Sample ID:	218-12-6
Date Received:	September 15, 1998
Date Prepared:	September 21, 1998
Date Analyzed:	September 22, 1998
Matrix:	SOLID

	· Conc	🖈 grams 🐇	grams 🚉	. mL	Dilution	mç	yKg
Analyte	(ug/L)	Submitted	grams - Üsed	mL Final Vol.	Factor		sult
As	-2.215	N/A	0.644	100	1	<	0.776
Be	-0.194	N/A	0.644	100	1	<	0.155
Cd	0.040	N/A	0.644	100	1_	<	0.155
Co	0.072	N/A	0.644	100	1_	<	0.311
Cr	-0.083	N/A	0.644	100	1_	<	0.311
Mn	13.105	N/A	0.644	100	1		2.03
Ni	39.449	N/A	0.644	100	1		6.13
Pb	14.295	N/A	0.644	100	1		2.22
Sb	0.085	N/A	0.644	100	1	<	0.621
Se	-0.075	N/A	0.644	100	1	<	0.466
·							
						<u> </u>	
						Ι	
						Ī	
							
							
<u></u>							
						1	
						1	
							
· · · · · · · · · · · · · · · · · · ·							
			<u> </u>				
	 		 	 	 	1	
	 	 		<u> </u>	 	 	
	<u> </u>	 _	 	- 	 	 	
		<u> </u>			 	+	
	<u> </u>	 	 	-	 	+	
l		<u> </u>		<u>. </u>	<u> </u>	<u> </u>	

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98 at 03:59 PM

5.5 gus - 5.5 gustania (1

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	AC4B
TLI Sample ID:	218-12-8
Date Received:	September 15, 1998
Date Prepared:	September 21, 1998
Date Analyzed:	September 22, 1998
Matrix:	SOLID

	Conc.	grams	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l residuates :		
Analyte	(ug/L)	Submitted	grams Used	mL	Dilution	mg/Kg
As	-2.262	N/A	0.528	Final Vol.	Factor	Result
Be	-0.209	N/A	0.528	100		< 0.947
Cd	-0.259	N/A	0.528	100	1	< 0.189
Co	0.208	N/A	0.528	100 100		< 0.189
Cr	-0.195	NA	0.528		1	< 0.379
Mn	1.354	N/A	0.528	100	1	< 0.379
Ni	46.037	N/A	0.528	100 100	1	< 0.379
Pb	1.640	N/A	0.528			8.72
Sb	0.630	N/A	0.528	100 100	1	< 0.379
Se	0.907	N/A	0.528	100	1	< 0.758
		1973	0.020	100	1	< 0.568
	· · · · · · · · · · · · · · · · · · ·					
						
						
		-				
				-		
					·	
					<u>_</u>	

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98 at 03:59 PM

Pacific Environmental Services

Project Number:

46705A

Sample Report

Client Sample ID:	RAP5B/AC	
TLI Sample ID:	218-12-9	
Date Received:	September 15, 1998	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

Analyte	Conc. (ug/L)	grams Submitted	grams Used	mL Final Vol.	Dilution Factor	mg/Kg Result
Arianyte	-3.079	N/A	0.532	100	1	< 0.940
Be	-0.209	N/A	0.532	100	1	< 0.188
Cd	-0.250	N/A	0.532	100	1	< 0.188
Co	-0.429	N/A	0.532	100	1	< 0.376
Cr	-0.315	N/A	0.532	100	1	< 0.376
Mn	8.609	N/A	0.532	100	1	1.62
Ni	13.783	N/A	0.532	100	1	2.59
Pb	5.878	N/A	0.532	100	1	1.10
Sb	1.454	N/A	0.532	100_	1	< 0.752
Se	0.699	N/A	0.532	100	1	< 0.564
		<u> </u>				
						<u> </u>
			<u> </u>		<u> </u>	<u> L.</u>

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-

23-Sep-98 at 03:59 PM

Project Number: 46705A

QA: Serial Dilution

Client Sample ID:	RAP2B/AC	RAP2B/AC
TLI Sample ID:	218-12-3	218-12-3 L
Date Prepared:	September 21, 1998	September 21, 1998
Date Analyzed:	September 22, 1998	September 22, 1998
Matrix:	SOLID	SOLID

	Native Sample		Serial Dilution		
Analyte	mg/Kg Result	ug/L Conc.	ing/Kg	ug/L Conc.	RPD
As	< 0.868			0.864	<rdl< td=""></rdl<>
Be	< 0.174			-0.149	<rdl< td=""></rdl<>
Cd	< 0.174			0.054	<rdl< td=""></rdl<>
Co	0.585		< 1.74	1.198	<rdl< td=""></rdl<>
Cr	< 0.347	1.630		0.387	<rdl< td=""></rdl<>
Mn	9.20	52.992	9.35	10.772	<rdl< td=""></rdl<>
Ni	40.7	234.393	41.1	47.382	0.978%
Pb	5.38	31.007	5.30	6.109	<rdl< td=""></rdl<>
Sb	< 0.694	0.594		0.165	<rdl< td=""></rdl<>
Se	0.650	3.746		1.116	<rdl< td=""></rdl<>
	·				
	·				

	·				

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713 Tele: (919) 544-5729 * Fax: (919) 544-5491

P 23-Sep-98

at

Pacific Environmental Services

Project Number:

46705A

QA: Duplicate

<u> </u>		1.040
Client Sample ID:	AC1B	AC1B
TLI Sample ID:	218-12-1	218-12-1 D
Date Prepared:	September 21, 1998	September 21, 1998
Date Analyzed:	September 22, 1998	September 22, 1998
Matrix:	SOLID	SOLID

	Sample			Duplicate			
i takan		ma/Ka	ug/L		mg/Kg	ug/L	RPD
Analyte			- Conc.			Conc.	DOI
As	<	0.821	-0.823		0.773	-2.709	<rdl< td=""></rdl<>
Be	<	0.164			0.155	-0.118	<rdl< td=""></rdl<>
Cd	<	0.164	-0.192		0.155	-0.206	<rdl< td=""></rdl<>
Co		0.799	4.867	<	0.309	0.633	<rdl< td=""></rdl<>
Cr	<	0.328	0.204	<	0.309	-0.359	<rdl< td=""></rdl<>
Mn	<	0.328	1.375	<	0.309	0.731	<rdl< td=""></rdl<>
Ni		34.5	210.290		7.62	49.276	128%
Pb		1.02	6.186		0.451	2.919	<rdl< td=""></rdl<>
Sb	<	0.657	1,250	<	0.618	0.148	<rdl< td=""></rdl<>
Se		0.850	5.179	<	0.464	0.983	<rdl< td=""></rdl<>
				<u> </u>			
				<u> </u>			
				L.			
				l	<u>·</u>		
				<u> </u>			
							<u></u>
	 						
	 						
	1						
	1						
	- 			T -			
	+						
	 						
	+		 				
	 		l	1			
	 		 	\top			

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713 Tele: (919) 544-5729 * Fax: (919) 544-5491 P 23-Sep-98

at

Project Number: 46705A

QA: Matrix Spikes (Pre-Digestion)

Client Sample ID:	RAP2B/AC MS	RAP2B/AC MSD
TLI Sample ID:	218-12-3 MS	218-12-3 MSD
Date Prepared:	September 21, 1998	September 21, 1998
Date Analyzed:	September 22, 1998	September 22, 1998
Matrix:	SOLID	SOLID

[Matrix Spike		Matrix Spike [Duplicate		era all Merce V
Analyte	Result mg/Kg	True Spike mg/Kg	% Recovery	Result	True Spike mg/Kg	% Recovery	RPD
As	8.48	9.37	91%		9.06	87%	7.84%
Be	8.55	9.37	91%	8.46	9.06	93%	1.06%
Cd	8.59	9.37	92%	8.44	9.06	93%	1.76%
Co	9.35	9.37	94%	8.65	9.06	89%	7.78%
Cr	9.09	9.36	97%	8.73	9.06	96%	4.04%
Mn	17.9	9.34	93%	10.7	9.02	17%	_50.3%
Ni	49.1	9.37	90%	15.3	9.04	-281%	105%
Pb	14.1	9.39	93%	10.1	9.09	52%	33.1%
Sb [8.66	9.37	92%	8.55	9.06	94%	1.28%
Se	8.83	9.36	87%	7.96	9.06	81%	.10.4%
					5.00	0179	,1U.4 %
					-		
	·						
							
							,
					· ·		
				· · · · · · · · · · · · · · · · · · ·			
						 -	
					·		×
							
					 -		
							#:
			· · · · · · · · · · · · · · · · · · ·				a)F
							,

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713 Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98

t 04:55 PM

Project Number: 46705A

QA: Matrix Spikes (Post-Digestion)

Client Sample ID:	RAP2B/AC PDS	
TLI Sample ID:	218-12-3 PDS	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	SOLID	

	Post-Digestion Spike		Post-Digestion Spike Duplicate				
a salah salah	or with the Late Company of the State of the State of	Control of the Contro	- %	Recovered	Spike	%	RPD
Analyte	Amount (ug/L)	Spike Amount (ug/L)	Recovery	Amount (ug/L)	Amount (ug/L)	Recovery	r Brendeline
As	48.71	50	97%				
Be	47.49	50	95%				
Cd	47.88	50	96%				
Co	52.03	50	97%				
Cr_	50.65	50	101%				
Mn	102.04	50	_98%				
Ni	284.51	50_	100%				
Pb	78.84	50	96%				
Sb	48.74	50_	97%				
Se	48.69	50	90%		ļ		
					ļ		
			<u> </u>				
					<u> </u>		
	<u> </u>						
					garaged a comment		
	 					<u></u>	
	 						
	 						
		1					
	 					<u> </u>	

Triangle Laboratories, Inc. 801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98

at

Project Number: 46705A

QA: Method Blank

TLI Sample ID:	46705A MB
Date Prepared:	September 21, 1998
Date Analyzed:	September 22, 1998
Matrix:	N/A

		Method Blank	
Analyte	Recovered :: Amount (ug/L)	Detection Limit (uo/L)	Pass or Fail
As	-2.84	5	Pass
Be	-0.18	1	Pass
Cd	-0.32	1	Pass
Co	-0.46	2	Pass
Cr	-0.33	2	Pass
Mn	0.55	2	Pass
Ni	-3.91	3	Fail
Pb	2.94	2	Fail
Sb	1.33	4	Pass
Se	0.22	3	Pass
		***	1 033
			
			•••

Triangle Laboratories, Inc. 801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 23-Sep-98

at

ana - Bananana,

Project Number: 46705A

QA: Lab Control Spikes

TLI Sample ID:	46705A LCS	
Date Prepared:	September 21, 1998	
Date Analyzed:	September 22, 1998	
Matrix:	N/A	

1	Lab Control Spike		Lab Control S	pike Duplicate			
Englistiksékeukó.	Recovered	Spike 🚚 📜	%	Recovered	Spike	%	RPD
Analyte	Amount (ug/L)	Amount (ug/L)	Recovery	Amount (ug/L)	Amount (ug/L)	Recovery	
As	42.38	50	85%				
Be	51.00	50	102%		<u> </u>		
Cd	47,41	50	95%				
Co	48.21	50	96%				
Cr_	48.52	50	97%				
Mn	48.62	50	97%				
Ni	45.02	50	90%				
Pb	49.59	50	99%				
Sb	49.26	50	99%				
Se	43.95	50	88%			_	
					<u> </u>		
					<u> </u>		

<u> </u>							
	 						
						<u> </u>	
	1						
L		<u> </u>					

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

23-Sep-98

at

Pacific Environmental Services

oject Number:

46705A

ample Report

te Received:	September 15, 1998
te Prepared:	September 22, 1998
te Analyzed:	September 22, 1998
TA FILE:	AB936
ıtrix:	SOLID

ANALYTE: Ha	
ug/L RDL: -0.2	
Analysis Method:	7471
Instrument: P E Zeema	an 5100
Spike Conc. (ug/L)	5

CVAA ANALYTE SUMMARY REPORT

Tib	ent Sample ID	TLI SAMPID	ug/L CONC	mi MPV	gram wt. USED	DIL		mg/Kg RESULT		Avg. RESULT	RPD	%REC
218 D 218-12-1 D 0.010 100 0.630 1 < 0.032 < 0.032						17.01011	 	ILOULI		NEGULI	HPU	%HEC
218 D 218-12-1 D 0.010 100 0.630 1 < 0.032 < 0.032	яв	218-12-1	-0.018	100	0.630	1 1	_	0.032				
28	ЯВD	218-12-1 D	0.010			1	ŀ		_	0.033		_
28 D 218-12-2 D -0.041 100 0.649 1 < 0.031 < 0.031							`	0.002	`	0.002	_	}
28BD			-0.028	100	0.647	1 1	<	0.031				
### P2B/AC D 218-12-3 D -0.028 100 0.674 1 < 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.031	2B D	218-12-2 D	-0.041	100	0.649	1	<	0.031	<	0.031		
### P2B/AC D 218-12-3 D -0.028 100 0.674 1 < 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.030 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.033 - 0.031	Denis]	ľ		İ						
218-12-5	· · · · -		I				<				-	
218-12-5 D	(P2B/AC D	218-12-3 D	-0.028	100	0.674	1	<	0.030	<	0.030		_
218-12-5 D	מכי	010.10.5	0040	400								
P3M2/AC 218-12-6				_		· ·						ي ري
P3M2/AC	200	210-12-50	-0.005	100	0.613	1	<	0.033	<	0.033		·
APSB/AC MS 218-12-8 D -0.044 100 0.653 1 < 0.031 < 0.031	\P3M2/AC	218-12-6	-0.049	100	0.655	4	_	0.021				
248 D 218-12-8 D -0.018 100 0.654 1 < 0.031	\P3M2/AC D								_	A 001		-
24B D 218-12-8 D -0.034 100 0.649 1 < 0.031 < 0.031				,	0.000	'	`	0.031	<	0.031	- ,	-
218-12-8 D	48	218-12-8	-0.018	100	0.654	1	~	0.031				
AP5B/AC D 218-12-9 D -0.039 100 0.654 1 < 0.031	:4B D	218-12-8 D	-0.034	100					<	0.031		_
APSB/AC D 218-12-9 D -0.052 100 0.649 1 < 0.031 < 0.031											-%-	
AP2B/AC MS		1			0.654	1	<	0.031				_
AP2B/AC MSD 218-12-3 MSD 4.330 100 0.610 1 0.710 - 8.92% 87% AP2B/AC MS True Spike MS 5 100 0.603 1 0.829	\P5B/AC D	218-12-9 D	-0.052	100	0.649	1]	<	0.031	<	0.031		
AP2B/AC MSD 218-12-3 MSD 4.330 100 0.610 1 0.710 - 8.92% 87% AP2B/AC MS True Spike MS 5 100 0.603 1 0.829				·								
AP2B/AC MSD 218-12-3 MSD 4.330 100 0.610 1 0.710 - 8.92% 87% AP2B/AC MS True Spike MS 5 100 0.603 1 0.829	ADOR/AC MS	019 10 2 MC	2015	100	0.000							
AP2B/AC MS	· –											
AP2B/AC MSD True Spike MSD 5 100 0.610 1 0.820	11 2D/AO 1010D	210-12-3 19130	4.330	100	0.610	1		0.710			8.92%	87%
AP2B/AC MSD True Spike MSD 5 100 0.610 1 0.820	\P2B/AC MS	True Spike MS	5	100	0.603			0.000				
ethod Blank	AP2B/AC MSD											
ethod Blank		• • • • • • • • • • • • • • • • • • • •			0.010	'		0.020				
ethod Blank						ļ						
S 46705A LCS 4.384 88%	∍thod Blank	1		-					٠.	**		
SD 467054 (SD 4646)	∍thod Blank D	46705A MBD	-0.003		-							
SD 467054 (SD 4646)	10			- 1								
84%				l		-				-		88%
	JOU	46705A LCSD	4.219	-	-	-		-		-		84%

iangle Laboratories, Inc.

Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

Sample Chain Of Custody Record

PLANT: US EPA HOT MIX ASPHALT PLANT C PROJECT NO.: \$508.001
RECOVERY PERSON: J. Swift SAMPLERS: N/A

		No.	Analytical Request	Comments
Sample	Sample	of Cont.		
ID	Name	1	Metals* using 7000 series (SW-846)	* 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
	Liquid AC, Run 1 Begin		Metals* using 7000 series (SW-846)	* 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
C2B AP2B/AC	Liquid AC, Run 2 Begin Recycled Asph, Run 2 Begin (Asphalt Cement)	1	Metals* using 6010/7000 series (SW-846)	* 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg * 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
AP2B/AGG	Recycled Asph, Run 2 Begin (Aggregate)	<u></u>	Metals* using 6010/7000 series (SW-846) Metals* using 7000 series (SW-846)	* 11-Sb. As. Be. Cd. Cr. Pb. Mn, Ni, Se, Co,& Hg
C3B	Liquid AC, Run 3 Begin Recycled Asph Run 3 Middle (Asphalt Cement)	1	Metals* using 6010/7000 series (SW-846)	* 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg * 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
RAP3M2/AGG	Recycled Asph Run 3 Middle (Aggregate)	1 1	Metals* using 6010/7000 series (SW-846) Metals* using 7000 series (SW-846)	1 11-Sb. As. Be. Cd. Cr. Pb. Mn. Ni, Se, Co,& Hg
RAP5B/AC	Liquid AC, Run 4 Begin Recycled Asph, Run 5 Begin (Asphalt Cement)	1	Metals* using 6010/7000 series (SW-846)	* 11-Sb, As, Be, Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
RAPSB /AGG	Recycled Asph, Run 5 Begin (Aggregate)	11	Metals* using 6010/7000 series (SW-846) Date Time Received by:	11-Sb, As, Be, Cd, Cr, Pb, Mil, Ni, Ce, Co, Cry
Selinguiched h				
Relinquisned by		·	Date Time Received for Lab by:	Don's 9-15-98 5:00,00

Quater 07/1070083

3

-TRIANGLE LABORATORIES, INC. -- LOG IN RECORD/CHAIN OF CUSTODY-Custody Seal : Absent Sample Seals: Absent Chain of Custody : Present TLI Project Number 46705 Container ...: Intact Book Client: PES03 - Pacific Environmental Services Sample Tags : Absent Sample Tag Numbers: Not Listed on Chain of Custody 218 SMO Forms : N/A Date Received 09/15/98 Page Box NO COOLANT Temp 25.0 C Carrier and Number MARSHALL CANNON 12 TO STORAGE! TO LAB EmR/H:CPM. TO STORAGE TO LABClient COC ID.....* TO STORAGE TO LAB TO STORAGE Location..... Date/Init | DISPOSED Date/Init | Date/Init | Date/Init | Date/Init Date/Init | Date/Init Date/Init Date/Init 218-12-1 AC1B LIQUID AC AC1B METALS LAB ı 218-12-2 AC2B LIQUID AC AC2B METALS LAB 1218-12-3 RAP2B/AC ASPIL CEMENT RAP2B/AC METALS LAB 1 218-12-4 RAP2B/AGG AGGREGATE RAP2B/AGG METALS LAB 218-12-5 AC3B LIQUID AC AC3B METALS LAB 1218-12-6 RAP3M2/AC ASPH. CEMENT RAP3M2/AC METALS LAB 218-12-7 RAP3M2/AGG AGGREGATE RAP3M2/AGG METALS LAB 218-12-8 AC4B LIQUID AC AC4B METALS LAB 1218-12-9 RAPSB/AC ASPH. CEMENT · RAPSB/AC METALS LAB 218-12-10 AGGREGATE 1. Receiving Remarks: SAMPLES REC'D IN BOX - NO COOLANT Archive Remarks: Form Revised 05/27/1997 -- Page 1 OF 1

			LABORATORII n Tracking (Management	Form					
: 46705A				Clie	nt: Pacific	Environmenta	l Services	(PES03)		
3050-A	Extraction Date Lot: 15010	ction Date: 9/11/20 DSP INO 141 1051 345: Used for digo shim								
Acids(): HIVE	Beltz/42	+- 	→ ''' <i>T</i> Ļ	אן עשבו	0 141 185	NOWO W	ca Tiv cigi	ייין עמכנן ו		
TLI / SAMPLE ID / CLIENT / SAMPLE ID	·//-	Final Volume ml	ا ا/ا ا	! / 	//	 // 	 // 	, // 		
TLI Blank TLI Bla	ink NA	W)	 	,	 	 	 +] } +		
218-12-1 AC	E1B 0.609	 	 	 	 	1 1	 	} 		
218-12-2 AC	28 0.514	 		 *'	! ! •		 +			
218-12-5 AG	C3B 504			[+	 		
218-12-8 A	сав <u>539</u>	 - 		 +	 	. -	1	 		
218-12-3 RAP2B	/AC 0.576		 	 	 	 	 	1 		
218-12-6 RAP3M2	/AC 0. WH	 	 				 	 		
218-12-9 RAP5E	1/AC 1.532	 	 	1	 	 -+	 - -			
LCS LAB CONTROL SE	PIKE NA	100	 +		 		 -+			
218-12-1 D AC1B DUPLIC	CATE 0.641	! {	 	 	 	 	1	 		
218-12-3 MS AC3B MATRIX SI	PIKE 10.53H	1	 	 		1		 		
218-12-3 MSD AC3B MATRIX SPIKE	DUP. 10.55A	 	 	 -		 		 		
 	1					 +	 	 		
nta: SOL ASL- IDMS OF I'L HAV	Soile 1	D J), 105 box: HN) 2 12 m	KOF DI	110,3m	Isof			

ſ

INORGANICS SPIKE LOG

DATE	PROJECT # SAMPLE IDs	ANALYTE	ORIGINAL STANDARD	ORIGINAL STANDARD CONC. (PPM)	SPIKE SAMPLE (µL) FINAL VOLUME (mL)	SPIKE SAMPLE		
16-98	46705B-LCS	*	3-62-1	*	1000	(PPB)	INITIALS	WITNESS
	218-12-10 MS		0 00 1		100	"	LOS	BIB
·	218-12-10 MS				 	<u>! </u>	1 1 1 1	2 1
1				!		<u> </u>	 	BIJB 9
21-68	46682105	*	3-62-1	1	1000/	*	८५	100
		P	3-65-2	1000	1000/100	100	6-21-51Y	se abil
ar.	•							DASA BIL
21/98	46705A LCS	*	3-62-1	*	100/100	*	DE.	BUB
	218-12-31US							1
	218-12-3 MSD	· · · · · · · · · · · · · · · · · · ·					XE 9/21/95	Kalaki k
	·							<u></u>
	.	•						
				1				
<u> </u>								
	•							
]					
		1						
				<u> </u>		-		
10					•	`		

Project # 40705#

* SEE SPIKE LOG

	,	Salking S	tendard i	Properation		SPIKING		
		- p3 -		from Spiking	•			
	Element	Standard	Oria, Std.	Spike(uL)	conc	Spike(uL)	conc	combined
Cate	E real real re	ID	(ppm)	Fvol(100mL)	(ppm)	FVol(100ml)	(ppb)	total
1/99	Ag	3-54-7	100	5000	5	1000	50	1
	Ao	3-60-8	100	5000	- 5	1000	50	<u> </u>
1/98	AU	3-54-7	100	5000	5	1000	50	Ţ
1/99	AJ	3-60-6	10000	950	95	1000	950	1000
1/99	<u> </u>	3-54-7	100	5000	5	1000	50	1
1 <i>1</i> 99 1/99	Ba	3-54-7	100	5000	5	1000	50	
1/99 1/99	Be	3-60-6	100	5000	5	1000	50	
	Ca	3-60-8	100	5000	5	1000	50	4
1/99 1/99	1	3-60-10	10000	950	95	1000	950_	1000
1/99 1/9 9	Cd	3-60-8	100	5000	5	1000	50	4
1 <i>/99</i> 1 <i>/</i> 99	Ç0	3-60-8	100	5000	5	1000	50_	4
1/99	Cr Cr	3-60-8	100	5000	5	1000	50_	4
1/99	Cu	3-60-8	100	5000	5	1000	50	
r /99	Fo	3-60-6	100	5000	5	1000	50	_}
n /99	Fe	3-60-9	10000	960	9 5	1000	980	1000
11/99	k	3-54-7	1000	5000	50 '	1000	500	-l ·
u 1 99	k	345-5	10000	1500	150	f 1000	1500	2000
n /99	Mg	3-80-8	100	5000	5	1000	50	
/1/99 /1/99	Mg	3-60-5	10000	950	95	t 0003	950	1000
1 9 9 1	Mn	3-60-6	100	5000	5	1000	50	4
/1/99 /1/99	MO	3-60-8	100	5000	5	1000	50	
tr 1∂@ L⊤\aa	Na	3547	100	5000	5	1000	50	
y1/99	Na Na	3-60-7	10000	1960	195	1000	1950	2000
N 1969	141	3-60-6	100	5000	5	1000	50	-1
V1/99	ЬР	3-80-8	100	5000	5	1000	50	
14 100	60	3-60-8	100	5000	5	1000	50	
V1/99	<u> </u>	3-60-8	100	5000	5	1000	50	-
3/1 /99	lin.	3-80-8	100.	5000	5	1000	50	
3/1/99	li i	3-80-8	100	5000	5	1000	50	
9/1,99 98) 1/18	V	3-60-8	100	5000	5	1000	50	
8/1/99	Zn	3-60-9	100	5000	5	1000	50	
8/1/99	7-	3-60-7	1000	1500	15	the above elen	150	500

Element Orig Std Spike(uL) conc. (ppm) Fvol(100m (ppb) (ppb) (ppm) Fvol(100m (ppb) (

Spiking Standard 3-62-1

EXP: 10/28/98

Spiked by: Distructur Educates 9/21/98

Postdigestion-

TRIANGLE LABORATORIES, INC. Transfer Chain-of-Custody Form Project 46705-A

Transfer From: IWL To: IA I

Initials.. Date..... Time...

MILES.ID..... TLI_No..... Cust.Id...... 46705-A -000 TLI Blank TLI Blank 46705-A -001 218-12-1 AC1B 46705-A -002 218-12-2 AC2B 46705-A -003 218-12-5 AC3B 46705-A -004 218-12-8 AC4B 46705-A -005 218-12-3 RAP2B/AC 46705-A -006 46705-A -007 218-12-6 218-12-9 RAP3M2/AC RAP5B/AC 46705-A -008 LCS LAB CONTROL SPIKE 218-12-1 D AC1B DUPLICATE
218-12-3 MS AC3B MATRIX SPIKE
218-12-3 MSD AC3B MATRIX SPIKE DUP. 46705-A -009 46705-A -010 46705-A -011

litional comments or instructions:

* SEE SPIKE LOG -

Project

}	Γ	Spiking S	tandard i	reparation		SPIKING		
		, ,				rom Spiking	Standard	•
EXP date	Element	Standard	Orig. Std.	Soike(uL)	conc	Spike(uL)	conc	combined
EXP GOIL) Franskir	10	(ppm)	Fvol(100mL)	(ppm)	FVol(100ml)	(ppb)	total
6/1/99	Ag	3-54-7	100	5000]	5	1000	50	1
8/1/99	Ac	3-60-8	100	5000	5	1000	50	1
6/1/99	AI	3-54-7	100	5000	5	1000	50	
8/1/9 9	Ai	3-60-6	10000	950	95	1000	950	1000
6/1/99	B	3-54-7	100	5000	5	1000	50	
6/1/33	Ba	3-54-7	100	5000	5	1000	50]
6/1/99	Be	3-60-6	100	5000	5	1000	50	
8/1/99	Ca	3-60-8	100	5000	5	1000	50	
	Ca .	3-60-10	10000	950	95	1000	950	1000
8/1/99 8/1/99	Eq.	3-60-8	100	5000	5	1000	50	
8/1/99	<u> </u>	3-60-8	100	5000	5	1000	50	
	Er .	3-60-8	100	5000	5	1000	50	
8/1/99 88/20	<u>E-</u>	3-60-8	100	5000	5	1000	50	1
8/1/9 3 8/1/39	F9	3-80-8	100	5000	5	1000	50	
9/1/99	Fe	3-60-9	10000	950	95	1000	950	1000
8/1/99 8/1/99	K	3-54-7	1000	5000	50	1000	500	
4/1/99	k	3-45-5	10000	1500	15G	1000	1500	2000
99 (166	Mg	3-80-8	100	5000	5	1000	50	
8/1/99	Mg	3-60-5	10000	950	95	1000	950	1000
8/1/33	Mn	3-60-6	100	5000	5	1000	50	
8/1/99	Mo	3-50-9	100	5000	5	1000	50	
661 US	Na	3.€4.7	100	5000	5	1000	50	
8/1/99	Ne Ve	3-80-9	1000C	1950	195	1000	1950	5000
661 UB	Ni Ni	3-60-6	100	5000	5	1000	50	
8/1/39	1 55	2.60-9	100	5000	5	;000	50	_
8/1/33	186	363-8	100	5000	5	1000	50	_
8/1/89	S-9	3-60-8	100	5000	5	1000	50	
6/1/99	li.	3-60-6	100	5000	5	1003	50	
671,29	<u></u>	3-80-8	100	5000	5	1000	50	_
E/1/99	<u> </u>	3-50-6	100	5000	5	1000	50	
6/1/99	Zn	3-20-8	100	5000	5	1000	-50	_
8/1/99	70	3-60-7	1000	1500	15	1000	150	200
0(1)33	1000uL (of the Spikin	g Standard	givee the lister	conc. of t	he above elem	ents.	

**Spike e	eperately		
Ejement	Orig Std	Spike(uL)	conc
	(maq)	Fvoi(100m	(ppb)
Au	1000	140	1400
Č3	1000	30	300
Li	1000	70	700
P	1000	100	1000
Pd	1000	160	1600
Pt	1000	300	3000
S	1000	350	3500
Ø	10000	50	5000
Sn	1000	50	200
S.	1000	5	50

Spiking Standard 3-62-2

EXP: 10/28/98

Spiked by:

Predigestion-

Postdigeation MA 9/23/98

	Ode	bort of the		50 IO	Sty cone	Sale vol	il Sylk		
100 ou	#	3 1	160	J.	86.	m/ml		That a	Withour 1
- 6/1/00 - 6/1/00	8/2/94	-1-61 363 51 110	+ -SC	3-62-2	100	10/10	190	met met	nest
6/1/99 8/1/99	8/5758	717-207 518 78340B	9	3-62-2	4	100/10	*	Muy	MA
6/1/90 6/1/90	8/5/98	46315 214-19-1998 46257	+	3-62-2	4	100/10	4	MH	my
5 64 km	8/5/98_	213-60-2115		3-62-2	4	100/10	+	mus	my
- 6/1/50 - 6/1/50	8/6/98	46190 A 2)2-92-106CP	S P	3-62-2	100	100/10	1000	Full	ful.
Su tes	8/11/28	46399 215-3-1700001 4642717	+	3-62-2	-1	190/10	_ t _	Med	ney
Den pe	8/17/98	215-31-3 POS	*	3-62-2	+	100/10	4	MLH	MUS
an pa	8/17/98	46427B 215-31-6 PM	世	3-62-2	4	100/10	_ +	mes	MA
641/88 641/88	8/18/98	215-23-1ABDMS		362-2	4	100/10	<u>k</u>	nkt	Mis
6/1/30 - 6/1/88	S/198	4630A -314-67-300CM		3-02-5	100	100/10	1000	May-	M
67/00	8/20/98	46394A	MS #	3-62-2	+-	100/10	. +	ment	M4.
6/1/00 6/1/00	820 98	46459 46459 46348	MS#	3-62-2	#	100/10	#	MEG	mit
00,1VB 80,1VB	8/20/28	214-52-12 MS		3-62-2	+ •	100 10	+	must	mot
8/1/00 8/1/00	8/20/98	215-77-2 12	 -	3-62-2	*	(00)	, 4	societ	- my
8/1/90 8/1/00	8/23/18	212-36-27 805	4	3-62-2	+	100/10	ع_	V1618	Bly
	5/24/98	21625-34 MY	ē	3-62-2	100	100/10	1000	DKH	pered
	8/26/98	216-1780 700 46513	4	3-62-5		100/10	4	mut	MES
	8/27/98	216-51-1 PMS 46552B	+	3-62-5	7	173/0	10	Men	net
ij	9/2/18	215-27-1 ANCO PO	-4	3-12-2	4	100/	<u> </u>	Mess	my
	9/13/18	465748 216 77-212621 PMS 216 77-17-2 PMS 465874	+	3-62-2	4	100	4	MERCH	wit
7,	9/13/98	465870 216-12-23 24.15 MS 216-12-23 24.15 MS 216-12-2524 POS 46629	-	3-62-2	4	100	5	neu	W.
-24	9/14/48	217-35-1000AX 46507B 316-12-4AB	+	3-655	*	115	+	nilit	mus
	9/15/98	4 92 5 B	+	3-12-21		100/	4	121661	ANG
	9/20/98	718-17-10 PM	+	3-62-2	+	100/10	(C)	med	my
		46705 A	. 1	3-68-54	, 60		C00.	Mut	my
· · · · · · · · · · · · · · · · · · ·	1/23/28	218-12-3 POS	+	3-62-5	*	/13	+	must	mis
	d the committee was a								
	- 88 -	· · · · · · · · · · · · · · · ·		-					
	· · · · · · · · · · · · · · · · · · ·		;.			-			

, 0.10

TRIBMALI 09/20/98 (14.00 0km 4

TATHREET 07, 13,78 (4,13 1/4 2 00.00

3.75

1016

105,000

163HS

/Acids(): #NO2/#CU Es	traction	Date:		mation			th	
TLI / SAMPLE ID / CLIENT / SAMPLE ID	Sample Wgt / Vo		•	malay	Triplick weight	weight	 //	-+ - //.
TLI Blank	NA	100)(G) . ¦	' + 	 -
218-12-1 AC1B	210) 		1.210	-210	6.63D	+ 	
218-12-2 ACZB	1,25	1	<u> </u>	1.216	1 .216 1 .217	- 649		+
218-12-5 AC3B	1.204		 	204	1203	101	•	+
AC4B	218			1 218	.218	.654		+
18-12-3 RAP2B/AC	1 1227 1 1225	1	1	. 228	225	, ७ <u>१</u> ० ,७७५	 	
18-12-6 RAP3M2/AC	1 218	<u> </u>		1.219	.218	.653 .653	 	
18-12-9 RAF5B/AC	1218	1	l	1.218	.218	.654	+ ا ا	
LAB CONTROL SPIKE		10%	 		 	 	 	•
8-12-1 D AC1B DUPLICATE	,20			,210	ا لايه.	1030		
8-12-3 MS AC3B MATRIX SPIKE	201	 		1201	ı	i	. l	·
8-12-3 MSD AC3B MATRIX SPIKE 'DUP.	<i>i</i> 204!	 		.2031	.203	الاالا		
1	ļ	1		i ;	1	1		~~~~~~

PAGE Q2

MERCURY SPIKE LOG

Hg

	•						····
حن	PROJECT#	ORIGINAL SPIKE	STANDARD # WORKING STANDARD PREPARED	SPIKE AMOUNT	SPIKE SAMPLE	15 1777	
18	SAMPLE IDS	CONC. (Hg)	-3-10-7	(mL) 5-	(PPB)	INITIALS	BIJB
4	218-12-4 MSD 410705A 1920						
	218-12-3 MS 218-12-3 MSD	4		V	1	DEGLOPS	solighs 19
<u>g</u>	46682 USD	alapm	3-20-7	5	5	CF.	380
	217-88-3 MSD		1	1		ch 9/22/97	DE 9/124
_							
							
					÷		
_		•		·			
_							
_ _			-				
-			•			·	
_					-		
=		·		-			

```
03amplar Report Tablar hApp2 - Web 09-03-73 03.10.14 PM - page .
le dame. MAGGE Autosampley Type: TYPE FGA
ple Rosibions. 175/195 GO Rosibions. 13/15 G Bets. 1
 Sa Station location is rack +1, pos. +1.
 Radre ---
√ 4 Type Usage
                    ceresces companyables
    Ada C. Aden Greene
                                  10 10
04 1
    อังตับไซ์ โปตกั
                   Jamples
    មុខអំពីស្រី (ស្រីស្រី)
មិនអំពីស្រី (ស្រីស្រី)
                   Camples
                                   ÷Š
                   Sambles
Sambles
    Carrous (10mm).
                                   48
                               48
    ไล่สังโซ (เอต์สัง
 Bangla Bata ---
i Type Prepare: Description
                           Method Aros Racká Startros
  -----
  90/981 46 46708A TRIBNELI .- I
 Presention Info ---
# Gosaka Gosaka41 Filal DillFactor
lambisa P.aba si.
.
 Now 101 Jampie Hade Selle Audeu Type
 . - - - . . .
         100 1 1000,000 1-82-5P
100 1 1000,000 1 1-82-7P
100 1 100 100,000 1 1-82-7P
100 1 100 100,000 1 1-82-6P
100 1 100 100,000 1 1-82-6P
  1 0000
1 00000
1 00000
         mult
   1 ...
  1 121,021
Fow Du. Damble Howe Set 4 #95ed Type
 - +a703- .ā
                           - iii-
                                     lamois
  1 467034 653
1 3 338-12-1
                           : -%- Samble
                            1 -88- Samble
  1 4 115-11-15
                           i -MA- Samble
  1 5 218-12-1
1 6 218-12-1
2 7 218-12-3 45
                            1 -WA- Samble
                            1 -NA- Samble
                           i -MA- Samtle
  i 8 018-12-3 MSD
                               -NA- Sample
     F 218-11-3 PGS
                               -ซูล์- อิลัติยาฮ์
  212-11-1
                            i the Islaid
  1 11 218-12-3
                               -AA- Saable
  i 11 115-11-9
                               -34- Jamola
    1.071179
1.071173
1.07174
                          i the Samous
                          . -แล้ง เริ่มพื้นไล้
...<del>-</del>4 - -21 2884:
148
```

nod: Th	IAMGL2 09/20/98	Sample Ha il:So Type: X	ma: 5701- Fi	∂(ANK lenama: 9	2378	Operator:
BI IR		Tvoa: X	٥٥	ira. Pacto)(;	1.00000
ΰ.,		Just. Smc	i. īv.:		6888. 12	1.1
ñ3	A c 3230	A13082	A51890	$\frac{5}{2475}$	Sa+Tu+	363130
. 3	55061	agest	count	วองกับ	ออินกิจิ	Jouni
Ē	.00005	17800.	+.QQQ77	.010á9	.50594	.00041
4	. 00005	.0001 1.22772	.00013	.00071	9	ij.
5	102.370	1.22772	17.055	8.57748	5.39032	.60515
		002105				
13	3600	16600	Journa	codno	count	วอยกับ
á	j	ccant 00055	7. 30000	000la	+.00000Z	.00235
ÿ	.50001	.00013	. Jûjo i +	7000	ù	.0060.
5	771.013	خېټق.ق	117.0-	3.10023	10.7227	.79395
71.5	7a2714	%_]oo4 CCUAC J.36373	416747	342730	332575	101000
is	36461	CCunt	COUNT	count	SQUES.	ของกับ
<u> </u>	. 00000	1.30373	.04775	. JAJ . E	.0001	,50003
٧	. 20002	. vā 5 i 1	.00055	10001	7	.00002
)	20,7757	1.01048	1,1200	11,1375	0.85047	<u> 15. Pa Pa</u>
äΞ	à	Millio Godai	: _::	1,00-1	1100-1	5520 6 3
0.3	Jā a Tā	Çüdhê	00un1	อิรินิคีวิ	Jages	10001
à	.304I 3	UC1II		. VV1 -	-, 30008	.)(()4g
	.000.00	.00515		500	.30011	.00010
,	44.444	10.0134	o.5i+o5	20.0700	47.7.	19.7071
11.5	laed"i	1960-1	3a13 ¹⁴	3,4213	713347	711908
15	Saunt	00 v fi 0	30c43	od da c	วอิปกิจิ	3ăunt
3	-,011-6	70407. 30003.	. 707.7			UVU 71
	.00056	,00015	.301:	, 3000 i	9000	. 30003
2	3.27272	5.82445	10.3001	1.4773.	34,0197	3.72763
àΞ	/_1514	Zňlićí	1.158.			
Ξ:	00%40	อ้วังกิจั	15611			
Ē	VÕÕ O	. 20002 1 .70024	.1151+			
	ŷ	. 00000	. vû			
;	1.10133	73.4837	0,.3407			

mod: TATANGLE Sample Hame: \$700 00arator: îi 3 Ag3280 A13082 As1890 8_2496 8a4934 3e3130 anuos fauos fauos fauos fauos fauos 15 .39409 .02017 .11883 .12576 .15761 .25563 86190. 5100. 2000. 65000. 85000. 71100. û .2992 7525, 54179, 55461, 55555, 71243 - 043177 062263 084186 062256 062677 065247 ŭΞ 10BC 16BC 16BC 16BC 16BC 16BC 15 28ad1, 19951, De601, 40290, 97429, Bo710. â 11100. 18000. 81000. 41500. 82000. . 90250 1,44850 .76833 .10495 .7537 .,9.235 1.41472 - 261714 | Kjee- Lle707 | 191770 | 162576 | 161820 35 Sount Sount Sount Sount Sount Sount 23 .000594 10.4515 10.7160 101907 è .00007 .41120 .45180 .000.7 .0008 .00002 1.10203 | 0.49971 | 4.212.0 | .72137 Ū .a5254 .la231 | RADDOC | RECORD | P_2144 | 12004; | 220041 | 361046 ŢΞ sauss saus saunt sauns sauns sauns 13 20071, 70001, 74100, 10000, 70440, 71661. Ē 00000, 06000, 07000, F1000, 18:00. 90110. ij 5.955. 14615. 96350. 20095. 68066. 0066.6 1960-1 1960-2 3h1399 8h4215 713347 711708 35 : 3 2000 2000 3000 2000 2000 2000 \$2557. 60457. 94781. \$1748. \$5594. ě .00102 ETCOC. 22000. T2500. 4100. 0000. 21200. - 1,2904 - 240461 - 540861 - 950260 - 541860 76 Jen Dient Dient 100013 .00100 .00101 .07955 1.77671 .00574

Gparatori OKA noo: TRIAMGLE Sample Name: 5705 Time: 09/25/98 12.05 Filanama: 92098 Type: Q Corr. Factor: 1,00000 a: 00NC Cust. Smpi. ID.: - Cust. ID.: 40705A 10., Ag3280 A13082 A31890 B_2496 Ba4934 Be3130 11.5 **000** 000 550 000 عود ანნ į. 997.3 350.7 971.0 990.5 985.9 985.b 3 9,222 6,411 3,612 2,767 4,744 +.075 .3004 .3013 .4757 .4733 .9498 .6475 3 JaS177 Ju2205 Je4186 Ju22266 Ju2677 ii 3 555 **55**5 ಎಐರ 355 000 15 כמכ 1000. 750.J įvūá. 1001, 193.0 NÎÛÛ. ä 5.697 5.0¥8 2.70e 5.3e0 5.380 5.127 ,272 .5552 .558. ----.3342 5094 as 3827;4 %_7664 (16707 Mg2770 TOLLE 662175 556 5.5 000 00a 00a ີ່: ວິພິນ 115.1 470.e 497.E 193.0 9.303 1914. Ė .3,74 1,447 4,347 13.4 , .-800 5.84 - پائ ..3.5 - #12016 | F_2149 | 2000-. | 2000k1 | 000068 Mâddyl ηŝ 18 **95**@ 550 **3**00 200 000 503 9,55e 998,6 995.1 998.7 **: ÷ Y .7174 .7372 .5900 . 3663 . 5305 ÷3.53 1760-1 1960-2 Shi899 Sh421E T13849 T1190E ā3 300 68 000 บันิด 900 900 500 999.8 981.8 1005. 397.5 373.7 321.5 ŝ F.714 5.087 4.047 2.910 34. -, ১5-. 55.1 .7735 .4240 .2373 . 383 .3161 3.5 วิจัน 000 **000** 000 5**5**5 γ, \bar{z} 987.4 987.4 980.1 Ho.0 1011. ÷ 4,298 3,398 56,28 7,444 0,862

od: T	FRIANGLE	Sample :	dame: ICV	7657		Operator.	568
Time:	99/23/58	12:14		čilanama:	72398		•
: 001	ic	īypa: ⊊		COIT. FAC	ior:	1.00000	
10.1		005€. S⊪	moi. 10.:		ÚWSE.	1.00000 10.: 46705A	
						1211 101921	
š	A93286	#1005Z	As1390	3_2496	āa4934	363130	
5	000	366	۵ <i>ڼ</i> ټ د	563	355	305	
	999 492.5 .4383	+02.5	497.1	400.5	495.5	300.3	
	. 4583	1.595	. 5252	1.597	. Voã5	.3522	
	.0891	.3015	.1258	.0425	9158	.0764	
3	0a0175 ppb 508.1	042265	ેટ≟ોઇ૦	00223b	0:2677	Su3247	
3	00 0	205	385	300	ووو	050	
	308.I	500.3	495.5	505.¥	503.4	439.0	
	13477	. 4707	1.060	. 220	.3653	.2982	
	.1045	.3731	.2775	.iiii	1157	. 3607	
ž	F&271+ 350	š_7ôc∓	010707	.1 0 1776	daleto	152026	
à	355	υρώ	3 05	566	apa	ခုနှင့်	
	307.→	÷.385	464.4	476.7	500.4	500.0	
	±.j₹7	.0153	. 557	37.37	7894	<u>.</u>	
	.3(.4_	. 1111	. 3567	. j -	. 3573	.1413	
5	4à359]	dillio	2_2149			30 <u>20</u> 03	
5	00a	J06	353	555	3.7.5	355	
	1.754	500.3	194,3	500.F	EVU. 3	499. <i>0</i>	
	. 5560	.430,	- 111		1.010	2.744	
	4,754 .0566 .6161	. 3859	1.44	. 1331	,3034	3499	
š]900-Y	1960-1	P52200	301160	30139 9	5:4015	
ż	302.3 1.712 .1301	300	556	366	000	350	
	301.1	49c.1	502.9	::::.:	30e.1	÷75	
	1.712		1.777	1.713	1.115	1+2·	
	. 1301	4-00	.332a	.0347	.5:5	. 225-	
:	1.0.	11.5%	1,1314	1.2101	1.1.5.		
-	435,3 435,3 1115a	ي تا ت	SCC	202	500		
	493.9	၌∂4.o	499,3	11111	1935.		
	.1.20	3.157	.2712	,4001	3.371		
	.0200	1020	.0940	.9731	100		

nod: TRIANGLE Sample Hame: ICB.000 Decrator: DKH

15	Ag3280	A13082	A51890	3_2496	844954	383130
.3	_			000		
ţ	.0878	-37.oi	1.230	-38.95	.1e57	3113
	.121			.1789	.0857	.0341
j	251.a	3.488	73.5	.4701	51.72	297
15	0a3.77	042263	J a 4136	002130		043147
;5	555	358	555	300		ئۆۈ
	1.634	. 1305	1.250	.30	,1471	-,3.1.
÷	.7275	.1001	1.900	.3909	, Jou	,2071
	44,31	42.27	75.37	78.14	145.1	+a.∃i
ìā	781714	A_700€	0.0 9.	442.730	45.257.2	
. 3	នុទ្ធនិ		555	05 <u>0</u>	386	\$3 \$
;	2.172	. 2333		3-1-	.1-15	.0393
	ŭ.3₹3	.0077	.91 ₀ 3	1.11	2.	ál-
	294,1	1.037	1.507	p23.3	14.11	11.71
ıΞ	%a00v0	311516	÷_2.÷	1100	1200-1	000000
. 3	Sea	353	ŷ0 0	990	Jūū	565
:	-,00მლ		1.615	-1.607	1.723	1,147
	.0529	, 52+5	$\overline{J},\overline{J}\overset{\perp}{+}\overline{L}$	1.365	1.11-	1.3.
•	384.1	įυ <u>.</u>	213.3	1.4	70.45	171,7
	1500-1					
. š	٥٥٥	OQG	ووو	50 0	000	aca .
:	11.350			-,1716	1154	1444
				.30+å		11114
•	oi.37	áv. i	77.12	747,3	055.0	3.300
٠.5	7,120-7			1-15-1		
	300	100	302		700 78, 74	
	11:3				_	
		. 8388	,0076		215	
	70.79	15.35	32.57	79. To	J.736	

hod: TRIANGEZ Sample Hame: TOSAS - Boarator: DXH Time. 09/25/98 12:27 Filanama: 92395 e: 00NC Type: 4 Corr. Factor: 1.00000 Gust. Smpl. 10.: Gust. 15.: 467354 ID.: Ag3080 A10082 As1890 3_0496 8a4904 8a5100 15 . . 500 น้ออ apa 000 doc 000 538.3 504000. 517.9 308.7 520.2 487.7 .3719 1115 2.72 .6802 .6605 .2754 .067i .2089 . 5252 .1357 1265 0565 0a3173 0d22o3 0a418o 0d223o 0r2o77 0d3247 ű5 300 33 555 355 350 **356** ومود 437.7 439000. 482.0 504,5 486.4 368.1 1.389 1.213 .7051 ,2509 1 1.17 .0801 .1885 40 ..43 .03.4 1414 .0021m. 0070gt 007033 4000g) 437080 ίΞ 13 51% 303 000 000 របំបំ .20300. (E.se 520.1 138360. 47..3 ÷ 477.1 1.175 .1.15 2...33 1117 .1E[4 .0446 4495 -480000 4800048 ALO149 C00040 000000 ₹. 301763 250 350 200 : 3 005 ენმ 335 5.000 307.5 401.0 2008.1 297 315.1 .900 1.552 J. 541 - J. 514 1.004 1.191 .2110 .1221 .3007 . 5017 . 3043 1960-1 1960-1 202203 Sel960 Smig99 874213 à S 000 13 565 000 ទីទីទីទី ជីជុំប 000 : 301.0 331.7 300.7 \$41.3 317,1 313.→ o.33-3.353 1.505 .3.84 2.360 .003 1 - -.3000 .1.11 .00-3 TUBBAR (\$11480) /2540: \$400.0 \$2000. ii تاثون 200 231.j ---. . . 113.2 45°,) 1 3,533 11.11 -... .___

Time: : GGNO	09/23/9 a ;	Oamble Mame: 46703A M8 12.50 Filename: 92358 Type: S Corr. Factor: Oust. Smol. TD.: Cust.				1.00060	
5	000 L-2.344 1.111	5e3130 ppo L1801 .0235 13.03	poo L3175 .1594	005 L4552 .2076	pob L-,3300 .4132	pob L.5528 .0306	
	500 1-3,906 .5374	Pb2203 pab 2.958 .7591 25.15	ppo L1.333 1.47	opo ⊾.2248 .3109			

 Od: TATANGI2
 Sample Name: #6703A LCS
 Operator: OKH

 Fime: 39/23/98
 12:55
 Filename: 72398

 : COMC
 Type: 5
 Corr. Factor: 1.00000

 ID.:
 Cust. Smol. 10.: Cust. ID.. #6703A

 48
 As1890
 8e3130
 0d2265
 Co2286
 0/2677
 MA2376

 48
 As1890
 8e3130
 0d2265
 Co2286
 0/2677
 MA2376

 48
 As1890
 8e3130
 0d2265
 Co2286
 0/2677
 MA2376

 49
 47.35
 47.41
 48.21
 40.31
 43.62

 42.33
 47.34
 48.21
 40.31
 43.62

 43
 2412
 3503
 1.096
 1.127
 1949

 45
 43.33
 43.24
 43.98
 43.99

 45
 43.469
 1.307
 8344
 43.89

 45
 44.499
 1.307
 8344
 43.89

 45
 45
 45.304
 1.399

:5146: 8: 30%	- 997 <u>23798</u> 0	i3:∂4 Typa: 3	ŕ	ilenama: Jorn. Paco	92398 On:	Coarator: 1.00000 0.: 46705A	588
ts s v	As1890 opa L+2.709 .9091 C3.35	ap¤ ⊆=.1179 .0198	ρρο ∟2037 .094	000 0.6326 .1763	000 L5392 .1381	500 730a .8477	
55 ē √	912316 320 47,23 .3468 1.721	2.919 2.919 .9703	ααα ⊾∔δ1 .2513	ρρο c.9831 .4989			

Time: : 00%0	39 /23/98 :	13.39 Typa: 3	7. 00	lename. 9 nv. Pacto	12378 91:	Operator: 0 1.00630 0.1 467032	zn kji
5	985 L-1.444 1.174	3e3130 pob 11103 .0282 25.33	005 L2198 .0945	900 8.919 .1934	aab L1.054 .18	pob 4.448 .0552	
Ė	000 251.7 1.371	252203 000 3.100 1.075 55.88	000 L-1.120 .9140	opo 3.196 1.032			

Time: 09/23/98 : COMC		Sample Hame, 218-12-5 MS 13:13 Filename: 92395 Type: 5 Corr. Factor: Cust. Smpl. ID.: Cust.			1.00000	ŭkh	
3	A31890 ppb 45.26 1.454 3.302	200 45.64 .0429	agg	p00 49.32 .4254	ррб 48.35 .2213	იიი 95.81 .1379	
	1.119	000 75.09 1.223		00 0 475 ,357€			

Asi890 8e3130 0d2265 0a2286 0r2a77 Mn237a 13 3 შით ცვი დეს მენ დ<u>ი</u>ნ 43.25 46.67 46.39 47.72 48.17 59.29 1.086 .2213 .2639 .2174 .1577 .3516 2.51 .4741 .5663 .4556 .2859 .593 ûS Mi231a Pb2203 Sb20a3 Sal9a0 13 ppo ppo ppò ppo 34.01 35.30 47.13 43.92 3 .9839 .8924 1,410 .7537 1.165 1.006 1.992 1.67

Tima: 09/23/98		13:27 Typa: 3	Samola Mama: Z18-12-3 PDS 13:27 Filanama: 92398 Typa: S Corr. Factor: Cust. Smpl. ID.: Cust.				BXB
l3	A51890	883130	0aZ263	002286	Sr2677	Mn2576	
	סממ						
	12 7:	17 A3	47 38	37, 33	50.55	107.0	
	.1753	.0488	.1306	.0645	.2102	. 1234	
٠	.339 a	.1028	. 2728	.1624	.415	.1209	
5	#1251o	202203	ანებინ	3a19d0			
	000						
-	284.3						
			1.752				
			3.070				

nod: TRIANGLI Time: 09/20/95 a: 00NC		13,32		filename:	92398		
ĪŪ		Cust. 3π	noi. IO		just.	10 46705A	
3.5 8	As1870 900 2.8688 .8893 24485	550 11.1450 10117	386 1.0343 .18	555 51.198 .1543	000 1.007]	365 16.77 3876	
18 8	3,231a aps 47,08 .e820 a8	000 0.10° .7472	355 0.1646 .5347	003 01.110 07823			

4.74.1

,58.T

200

101001

بَانِ بَال

ā.53.5

-5.

510581

فافاؤ 1408. <u>- 1</u>

115.5

711708

ن ن ن

4119.1

.57..

171.3

nod: Filma 3: 00 20.:	TRIAMGET E: 09/25/98 NC	Sampla 5 13:43 Typa: ¶ Cust. S	Нама: 101 	//CCV //lename: Corr. //ac	: 72578 :tor: :Cust.	üperator: 1.00000 10.: 46705A	ðΧñ
13	5-7700	A) 7/00	301306	2 2454	**.		
. 3	Ag0200 000 300.7 0.148 3075	UDD UTGAGT	H5107V	0_4+70	5 <u>8</u> 4754	560100	
3	339 7	טטע דרפים	עעק עעק	000	ρρο	000	
,	1 : : : 2	320.0	311.4 7 .e	+18.0 • cca	211.4	300.7	
)	3.140	2.02	U.+} ~~~	J.558	2.004	4.534	
*	•0107	1,00	.0/02	.0200	.5091	,7054	
3.5	Ca3179	0d2265	084186	002286	€r2677	Gu3247	
13	000	556	กิดิต	ana	ana	0.00	
3	505, 1	300.3	50i.∓	504,[361.7	512.9	
i	à.ìð÷	5,35	5.079	4.703	4.391	2.333	
)	\$95,1 6.18÷ 1.22°	1,194	1.315	.7747	.9745	.4549	
13	78171 -	1004	1.5707	#g2739	สักริรักร์	400000	
13	060	DDB	J00	003	356	350	
;	301.3	3.1.5	+37,5	313.0	390.0	505.0	
•	1, 1	. 955	1,241	3.5.2		5,254	
	360 301.5 3.417 4.377	.7155	00	51-	7.31	1-10-0	
îŝ	141711	411116	2,2147	2225		10110	
.3	ดีนี้ดี เคลื่อ	555	5 0 5	556	252	520	
:	4.381	499.5	33a,)	177,7	300.3	317.5	
ł	. [4 -]	4,733	0.00	1. 4v?	0.501	3.334	
1	381 4.381 .14-3	.5117	.7680	. 581	1.004	.3070	
13	198011 808 329.3 4.003	1900-0	202203	3 81 950	Ja1359	5r4[1]	
: 3	ئۇ <u>ن</u>	200	353	د کون	556	จิติจั	
1	329.3	313.1	500.3	522.0	500.0	508.7	
•	+. 1.3.	1.753	5.436	1,41	3,044	2.757	
	1720	.3371	1.336	.+633	i	542	
12	100 100 100 100 100 100 100 100 100 100	701702		4112.000	Jilāāi		
÷	. : :			يَّ لِوَ لَوْ	<u>561</u>		
-		-	- 5, 7		I.,		
	J 400	p.le.	3.746	5.494	33.1		
	2 12	1.241	.7511	1.13:	.7753		

od: TRIANGL2 Sample Name: 218-12-5 Sperator, DKH

	.3009	000 L1130 .0152	ppb L∼.2884 .1951	505 1.153a .1877	0/2677 000 1-16017 14074 68.05	505 11.017 .0432
5 3	lo.32 .762↑	905 2.232 .3718	\$02068 ppc 61.525 .4996 52.8	იიი ს.3609 .67 6 3		

Tima: 09/23/98		Sample Hame: 213-12-5 14:36 Filaname: Type: S Corr. Facti Cust. Smpl. ID.:			92398 or:	1.00000		
13 3 1	As1890 pob L-2.215 1.504 67.9	000 L1942 .0167	505 L.3464 .1343	рро L.0716 .0461	oob L+.082a .1522	000 13.10 .0683		
1 5 :	#12316 202 39.45 .2863 .7204	005 11,29	000 1.0851 1.019	500 10752 1.781				

mod: TRIANGLZ - Sample Name, 212-12-5 Operator: OKS 15 A51890 3e5130 0d2205 002286 0m2477 Mm2576 **356 696 8**1 đạo 390, ٥٥٥ לככ 1 L-2.262 L-.2094 L-.2586 L.2084 L-.1948 L1.354 .3932 .0051 .1338 .0819 .4039 .0417 17.38 2.497 **60**.26 39.3 205.9 3.08 vilaio 202203 502008 881760 ijΞ מפט מסס מסס פסס פני 40.04 01.040 0.0000 0.7069 .4814 1.843 .9154 .7423 .987 74.09 148.2 81.88

Time: 05/25/55		Samble Hame: 218-12-9 14.10 Filenade, 72098 Type: 5 Gov. Facco. Cust. Smol. ID Gust			72098 Cr.		
5	∆30 ⊾=5.977 .1783	000 17,200₹ .0040	333 17.1475 .3816	1,4233	365 54.565 .3764	ออธิ จึงองจิ เวลอริ	
	332 13.19 .3323		000 11.454 1.776	920 9.8790 1.151			

ಸಾರ್ವ.	-RIABEZ	Jamola	Nawê. IV	7007		10g; 100° , 30°
1.00	3972579	8 14:13		filanias.	. 30070	
ა. მმ	ΪĶ	- Pypa, 9	!	2011 - 20 2011 - 20	4.	
				,	1.11.	10467014
						23.1 22.32.
:4	5.45212	* * * * * * *	161777	0_1-	• • • .	
13	100			400.7 200.7		
:				,		110 177 1 4,107

•	-,	- ' '	_	2.1.2	** · · • •	4, 103
	. ù.		• ••		. T., -	· 1240
٠.			. 1	111113	6. 2377	5 55 59 5 44 5
-		· · -	:	تأتان	200	30 6
				200 302.2 4.233	300.	507.0
	J. J.J.	7.20		÷	7.717	7.35
	7.75	5.7.	3635	. å 451	7,743	755
: 3	7:1714	s504	:107 3 7	Mg2790	001175	157326
13	<u>ئۇۋ</u>	ក្សីប៉ូម៉ា	550	500	366	166
;	307.0	5.041	457.3	56.5	500 3	331 4
7	4 4-	3635		o,111	7 272	201.0
	7.13			9,111 1,121	u. 170	*.300 >*
ħΞ	%a3101	311316	7_3149	1110-1	2101-1	301165
ŝ	និង្គិត	CDD	505	מפק	CAG	ب ارة ال
:	4.657	- 1	.v)	437.7 3.001	↓=5.₹	507.a
•	.1513	4 753 1.027	3,363	5:	0.748	4.215
	3.51a	.6798	1.704	1.049	1.038	.5000
3	19/0-1	227.5	0,0-	3a:960	5 - 3 - 5 -	
.3	2 / 12 B - 2 3 / 3 A	1700."_	F92202	061 10V	ធ្មីន⊈ីឱឱ	57 4 115
.3		000	300	500 515.5 6.44	305	200
	222.0	ال . بد الا 	- 0.3	315.3	501.3	392.0
	9.420	v	0,112	ā.44	o.ů	3.402
	. 5535	150	1,225	1.006	1.535	.0755
i š	7:3047	111268	. [7]4	202902	31236	
3	 	100	353	50.5	656	
	477 3	**3.3		505.T	4933.	
	3.334		1 121	3.284	- W.	
	1875	1.2	e se de de Tombe	1.204	सम्बद्धाः उत्तर	
	9.20	1. "J"	1	1.707	.0195	

ua 500.0 50 0.0 50 ige 10.00 10.00 30	
	0.0 (.00
m 801397 804215 710049 711908 712914 102002 34	1351
	55
	56.
	43.
์ 1.อีริธี เปรียว 17525 1.469 17223 1.969 .วิ	763
194,1 198,7 495,1 491,1 491,8 197,4 49	337.
	311.
	517.
oro go Pasa - No	BOHEOK
ge 100.0 500.0 500.0 500.0 300.0 500.0	
ge 10.00 10.00 10.00 10.00 10.00	
- Sto 1 2 3 4 3 6 7	
a counce lime deluted morused morused morused w	076825
	-
186 37: 386	-
2 20001 15000	-
v 1254.010 .0000000	
.0 .3444424 .0000000	-
7.	-
7012 CG	
	-
229942 15000	-
129941 15000	-
229941 15000	-
129941 15000	-
229942 18000	-
229317 13000	
229317 13000	45173 350
129941 15000	- -
22941 15000	40179 100 1101 1034
229317 13000	- -
229317 13000	40177 300 2101 3034 5750
229317 15000	40179 900 9101 00034 0700
229317 15000	- - - - - - - - - - - - - - - - - - -
229317 15000	
229517 15000	40177 50 7101 5034 5751 7160 7160 7168 7076
229517 15000	43177 100 7101 1034 5751 7100 7108 7076
129917 13000	43179 300 9101 3034 3732 9196 9096 9000 9000
129942 15000	43177 98 9121 1034 9796 9796 9796
289942 15000	
129944	43173 50 7101 1034 5751 7100 7100 7100 7100 7100 7100 7100
129944	43173 50 7101 1034 5751 7160 7160 7160 7160 7160 7164 7164 7164 7164
129944	43173 50 7101 1034 5751 7100 7100 7100 7100 7100 7100 7100
129941 15000 7-	
129941 13000 7- 7- 7- 7- 7- 7- 7-	
129941 15000 7-	

10 n s						44 255	QC Pass
.ue		.0000	.0000				
, ye	1.500	10.00	2.000	2.000	2.000	40.00	220.0
26	Li6707	H = 3766	4-0577		\\ 4 755		
:m :13	010707 000	Mg2790	#n2576			M12315	
		000	องอ	503	ର ଇନ	000	Spb
ìē	.4457	-1.213	.0574	.4499		.0399	
3v	.3672	.078	.0510	. 2677	200	. 2909	5.489
ίĎ	513	55.79	87.23	59.49	392.8	729.8	80.65
	1.41						
	, 4 420	1.789	.0054		1137		
	.4416	4071	.0361		3477	- 1247	2,797
	.4341	-1.333	.0705	.1027	.0843	r. 1515	3.318
10 n 3	អសិរិធ្យារ	75 5	20 20	20 Pass			
	HOUNCER				Abo.1£că	€0 Pass	
.uč			.0000			.9600	. 0000
.ਹੁ≘		Sc. 30	2.000	2.556		5.000	30.00
ini.	1195-1	120343	ر د مین ارسان مین د	1900-1	, 5	F02235	Jel⊽où
. 3 3	p55	000	352	200	350		205 205
įe		1.433	.055a	2.331	1252	000 ⊤.24cJ	
1.	.903	1.070		6.791 - 6 4.727			0171
 /U		4.9.0 .uu			1.3741	,9201	7 .
70	41131	100.1	1459.	75.3.	351.3	374.3	131.3
	-1.500	407	- 7366	4.300	1.505	-1.167	1.344
	-4.500	J. 308	.7501	1.435	142i	71.10. .a789	
	-0,439	1.351	5193	1,400	-1.185		. Šioš
	4,74	1.331	7,9170	1.434	Tu. 909	0505	F. 3730
313	สนับสมัน	เบียกอังก	di rass	สมิบิทธิบิล	ลียี่ย์สอีย์จ	Ģū JāSS	40 Pásá
úđ			.0055			.0000	.0000
ių I			1,000			1.000	3.000
-			,			1.700	3.999
		G84715	11004	712703	1 1724	162001	3.1881
	993	000	ĴOĢ	366) 000	200	500
iĉ	.3.37	.1917	1001	ā8.88.		.5510	-55.75
17	+100	. N Io	.0209	1,-13	3730	.2933	-, j
٠.	30.37	11	Ji J	.0	323 -	95.47	4.711
					910.1	23.4.	*****
	,5761			Q10.41	.27.0	.2151	-31.56
	. 5736	.1430		48,57.	- 1551	1144	- fo . 31
	1.500	.14+5	.0015	97.377	1,4838	. pá 53	-55,51
	00 0	20. 2					
Ųí5	wu raas	⊎0 1355		JC Fail			NOCHECK
	.0000	. 5005	. 0000	.0000		.0000	
ýč	13.00	3.000	8.000	3.000	2.000	12.00	
Sta	1	3 1	5	4	3	_	-
				4 8078880		antear.	್ರವಾಗ ಕ್ರವಾಗ
	/	. Tug		40+9000	4010359	7010360	10:0360
	371.030				••		
	20000		••				
	731.6357	. 3000000					
	.5407837	. 3666666					
-0	.940:007	. 2020000	-•				*-
	228473	15000				••	
174							

vsis Report | QC Standard | Med 09-10-98 02:45:59 20 | page 1

อีจสาลปลา: อัฟฟ

igd: TATANGLE - Sample Mame: 108A8

Time: 09/23/98 14:09:24

iānī.

:: 00)	€0 Corr.	Pactor: 1					
13 (8 V	557.9	559100. 1485.	As1890 ppb 529.7 1.8 .3422	505 515.5 1.8	540.5 1.5	000 489.i 1.4	อธิจิ 437600. 1381.
	357.0 359.4 537.2	360300.	528.9 531.3 528.5	515.4	545.1	490.0	459200.
013 uē ₁ǧē	ADBACON		9 0 Pass 300.0 20.00		40 9488 500.0 20.00	500.ú	5000000
is a v	390 178.o 1.5	000 511.5 1.5	002236 003 480.8 1.4 .2781	556 485 & 1.7	398 373.5 0,7	000 133900. 131.	024 13.45 .37
	430.0 477,9	515.4 510.3	•	488.3 488.1	577.7 574.0	184500. 183500.	10.4c 15.54
5e	∰0 Pass 500.0 20.00	403R00M	90 Pasa 500.0 10.00	3 0 Pass 300.0 10.00	90 Pass 500.0 20.00	200000.	15.00
iii 5.5 8 ₹	ადნ იც?.5 2,4	566	471.1	535	56.0	M1231a ppo 460.1 1.6 3943	555 4087.9 7.8
	00 ⁷ .1 00 ⁷ .5 0 ⁷ 1.7	549300. 531200. 548300.		500.9 503.1 501.0	5,390	488.5 403.1 488.5	4049.J
07.5 UB 96		3000000.	3 0 Pass 500.0 20.00		X23+034	Q 0 Pass 500.0 20.00	500.0
A S	2265-1 900 497.3 1.3 .5961 494.3 300.1 495.1	2203+2 200 500.0 1.7 .3397 495.1 501.3	\$02068 000 523.7 2.0 .3855 523.3 524.3 527.2	500 389.3 3.9 .0037 392.3 308.3	556.1 2.9 .5151 556.7 556.9	Pb2203 DB0 499.1 2.1 .4228 496.9 501.0 495.4	500 507.3 5.2 .3050 507.3 507.5
	. NÜÜREGS 1 5	XC3NCOM	⊒C Pass	XCBROOM	WOOHECK	QC Pass	Q0 9ass

naiysi	s Recort	GC Sta	ngaru	ਜੋਵੋਹੈ ।	09-20-Fa 0	2:43:39 Am	oaga 1
Valua Range			500.0 20.00			500.0 00.00	
ilem Units Avge Süev %RSD	Sn1879 pop 517,9 1.1	\$r4215 000 554.a 1.4 .2700	306.1 306.1	711708 005 517.3 10.8 2.072	V_1924 Opc 491.3 1.2 .4847	7n2062 00D 451.7 2.7 .6003	512891 000 5475, 12,
#1 #2 #3	517.1 519.1 517.3	534.3 536.2 533.3		507.4 525.2 52a.7			5489.
Value	4 0 Pass 300.0 10.00	300.0	90 Pass 300.0 20.00	90 Pass 300.0 20.00	QC Pass 900.0 20.00	QC Pass 500.0 20.00	NOCHECK
	i *Counts / 371.036		3 :4870355 	4 NGTUS <u>25</u> 	3 %07USSS 	0 (0703E) 	7 A070880
4vga 30ev 3850	009241 740.0074 .4325200	15000 .0000000 .0000000				••	
# - CA F.	208718 208671	13060 13000 15036					

)C.	Sample ID	Veight	Dilution	•	
0 1 2 3 4 5 6 7 8 1	STD BLANK — STD1=0.2ug/L STD2=0.5ug/L STD3=1.0ug/L STD4=2.0ug/L STD4=2.0ug/L STD5=5.0ug/L ICV=4.0ug/L ICB CHECK LO 46705B MB 46705B MB 46705B LCS 46705B LCS 218-12-4	3		DE 9	
	218-12-4 D 218-12-4 MS 218-12-4 MS 218-12-4 MSD CCV1=6. Oug/L CCB 218-12-7 218-12-7 218-12-10 218-12-10 CCV2=6. Oug/L CCB 46705A MB 46705A MBD 46705A LCS		70-5,7 70-5,-	, 1985 1 1985	7/22/98 9/22/98
	46705A LCSD 218-12-1 218-12-1 218-12-3 218-12-3 218-12-3 218-12-3 MSD CC71=6.0mg/L CCB 218-12-2 218-12-2 0 218-12-5 0 218-12-5 0 218-12-5 0 218-12-8	3~	70-57	OSE.	9/22/98
	218-12-8 D 218-12-6 218-12-6 D 218-12-9 218-12-9 P CC72-6.0mg/L CCB	_3	70-517	QL.	9/22/98

at Pile: MG_.MEL ot: Ag Analyst: EDWARDS Data: Main+Suppl. Peak Storage: Jone : Calib. Curve)ARDS: SPEI 3-70-6.8 FIGH PURITY 3-70-5.7 MERT: 5100 Technique: MHS Version: 7.01 agth: 253.7 Peak Slit: 0.70 Low Type: AA Signal Measurement: Peak Height (5) ine: 30.0 Read Delay: 0.5 BOC Time: 2 Replicates: 1 rd Replicates: 1 Type: Air Flame Sensor: On : Flow: 10.0 L/min Fael Flow: 2.0 L/min ITION: ORS Conc Blank STD BLE d 1 STD 1 0.200 d 2 STD 2 0.500! d 3 STD 3 1.000 d 4 STD 4 2.000; 15 STD 5 5.000; i 6 STD 6 10.000; ation Units: ug/L Sample Units: mg/L ation Type: Linear Sheck Calculations: ence for Dupls: No Locations:

Locations:

Conc:

HG

ry for Spike: 90

nt File: HG_.NRL

Blement: Hg

Wavelength: 253.7

09/22/98 Pile: AB938.DAT

Time: 13:48 ID/Wt Pile: AB935.IDW 3lit: 0.70 L Lamp Correct: 0

ique: NES

Calib. Type: Linear

Energy: 74

k 1: STANDARDS: SPEX 3-70-6.8 c 2: QC: HIGH PURITY 3-70-5,7

Seq. Ho.: 00035 A/S Pos.: -- Date: 09/22/98

ate 1

Time: 14:32

rea (A-s): 0.011

Peak Height (A): -0.002

Corrected Pk Height (A): -0.002

tration (ug/L): -0.022

ero performed.

Seq. No.: 00036 A/S Pos.: -- Date: 09/22/9E

ite 1

Time: 14:33

ea (A-s): -0.031

Peak Height (A): -0.002

orrected Pk Height (A): -0.002

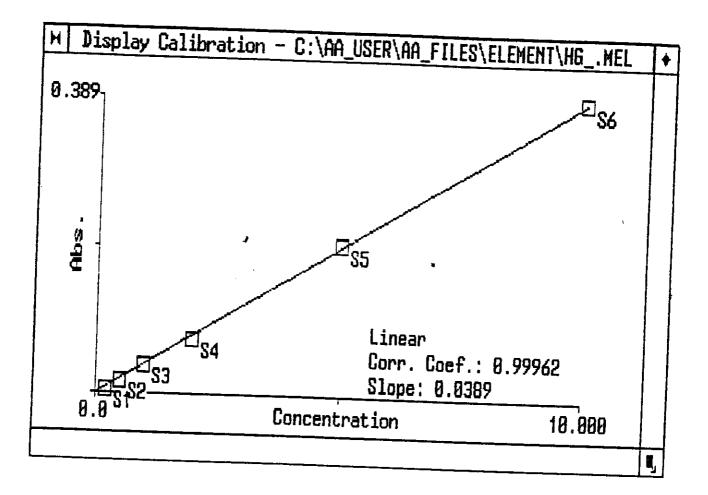
ration (ug/L): -0.025

to performed.

```
it File: EG_.MEL -
                      Element: Hg
                                                 Wavelength: 253.7
  09/22/98
                       Time: 14:34
                                                 Slit: 0.70 L
  File: AB936.DAT
                      ID/Wt File: AB936.IDW
                                                 Lasp Current: 0
  .que: NAS
                      Calib. Type: Linear
                                                 Baergy: 75
  : 1: STANDARDS: SPEX 3-70-6,8
  : 2: QC: HIGH PURITY 3-70-5,7
  ID: STD BLANK Seq. Ho.: 00037 A/S Pos.: -- Date: 09/22/98
  ate 1
                               Time: 14:35
  rea (A-s): -0.019
                              Peak Height (A): 0.000
  Corrected Pk Height (A): 0.000
 tration (ug/L ): 0.000
 ero performed.
 ID: STD1=0.2ug/L Seq. Ho.: 00038 A/S Pos.: -- Date: 09/22/98
 ite 1
                              Time: 14:35
 'ea (A-s): 0.056
                              Peak Height (A): 0.004
 Parrected Pk Height (A): 0.004
 ration (mg/L ): 0.058
 d number 1 applied. [0.200]
 tion coefficient: 1.00000
                             Slope: 0.0198
 D: STD2=0.5ug/L
                    Seq. No.: 00039 A/S Pos.: -- Date: 09/22/98
 abs. is greater than that of the largest standard.
 te 1
                             Time: 14:37
 ea (A-s): 0.259
                             Peak Height (A): 0.016
preceded Pk Height (A): 0.016
ration (ug/L ): 0.795
laumber 2 applied. [0.500]
tion coefficient: 0.94072
                            Slope: 0.0300
): STD3=1.0mg/L Seq. No.: 00040 A/S Pos.: -- Date: 09/22/98
.bs. is greater than that of the largest standard.
 e i
                          Time: 14:38
 a (A-s): 0.605
                            Peak Height (A): 0.036
rrected Pk Height (A): 0.036
ation (ug/L ): 1.189
 number 3 applied. [1.000]
ion coefficient: 0.98278
                           Slope: 0.0346
                  Seq. No.: 00041 A/S Pos.: -- Date: 09/22/98
: STD4=2.0ug/L
is, is greater than that of the largest standard.
1
                          Time: 14:39
1 (A-s): 1.235
                          Peak Height (A): 0.072
  180
```

Corrected Pk Height (A): 0.072 ntration (ug/L): 2.084 ard number 4 applied. [2.000] lation coefficient: 0.99658 Slope: 0.0357 Seq. No.: 00042 A/S Pos.: --ID: STD5=5.Ong/L Date: 09/22/98 abs. is greater than that of the largest standard. ate 1 rea (A-s): 3.140 Peak Height (A): 0.198 Corrected Pk Height (A): 0.198 tration (ug/L): 5.532 rd number 5 applied. [5.000] ation coefficient: 0.99820 Slope: 0.0389 !D: STD8=10.0mg/L Seg. No.: 00043 A/S Pos.: --Time: 14:41
Peak Height (A): 0.312

Dannie Roman abs. is greater than that of the largest standard. ite I 'ea (A-s): 5.382 orrected Pk Height (1): 0.312 ration (ng/L): 8.009 d preber 6 applied. [10.000] Lion coefficient: 0.99076 Slope: 0.0333 0: STD6=10.0ag/L Seq. No.: 00044 A/S Pos.: --Date: 09/22/98 abs. is greater than that of the largest standard. e 1 Time: 14:48 :a (A-s): 6.321 Peak Height (A): 0.389 prected Pk Height (A): 0.389 ation (ug/L): 11.673


Slope: 0.0389

number 6 applied. [10.000] ion coefficient: 0.99962

nt Pile: HG_.MEL - Blement: Hg Wavelength: 253.7 Time: 14:49 09/22/98 Slit: 0.70 L Pile: AB936.DAT ID/Rt File: AB936.IDW~ Lamp Current: 0 ique: NHS Calib. Type: Linear

Buergy: 75

t 1: STANDARDS: SPEX 3-70-6,8 k 2: QC: HIGH PURITY 3-70-5,7


```
;a 1
                        lime: 14:51
13 (A-s): 2.327
                         Peak Height (A): 0.141
presched Pk Height (A): 0.141
mation (ng/L ): 3.638
: ICB
               Seq. Ro.: 00046 A/S Pos.: -- Date: 09/22/98
e i
                        Time: 14:53
a (A-s): -0.118
                        Peak Height (A): -0.005
rrected Pk Meight (A): -0.305
ation (ug/L ): -0.124 .
 CRECA LO
              Seq. Mo.: 00047 A/S Pos.: -- Date: 99/22/98
: 1
                        Time: 14:54
. (A-s): 0.009
                        Peak Height (A): 0.003
rected Pk Height (A): 9.303
tion (ng/L ): 0.093
ネフィ
```

```
Wavelength: 253.7
File: EG_.MBL Rlement: Eg
/22/98 Time: 15:22
                          wavelength: Slit: 0.70 L
/22/98 Time: 15:22 Slit: 0.70 L
e: AB936.DAT ID/Wt File: AB936.IDW Lamp Current: 0
e: NHS Calib. Type: Linear Energy: 75
: STANDARDS: SPEI 3-70-6,8
: QC: RIGH PURITY 3-70-5.7
: 46705A MB Seq. No.: 00068 A/S Pos.: -- Date: 09/22/98
                      Time: 15:23
e 1
                      Peak Height (A): 0.002
a (A-s): 0.016
rrected Pk Height (A): 0.002
ation (ug/L ): 0.041
: 46705A MBD Seq. No.: 00069 A/S Pos.: -- Date: 09/22/98
                      Time: 15:24
a (A-s): 0.011
 e 1
                      Peak Height (A): -0.000
 rrected Pk Height (A): -0.000
 ation (ug/L ): -0.003
 : 46705A LCS Seq. No.: 00070 A/S Pos.: -- Date: 09/22/98
                       Time: 15:25
 e 1
                       Peak Height (A): 0.170
 a (A-s): 2.871
 rrected Pk Height (A): 0.170
 ation (ug/L ): 4.384
 ************************
 : 46705A LCSD Seq. No.: 00071 A/S Pos.: -- Date: 09/22/98
                        Time: 15:26
 .e 1
                        Peak Height (A): 0.164
 a (A-s): 2.853
 rrected Pk Height (A): 0.164
 ation (ug/L ): 4.219
 : 218-12-1 Seq. No.: 00072 A/S Pos.: -- Date: 09/22/98
                        Time: 15:27
 :e 1
                        Peak Height (A): -0.001
 a (A-s): -0.002
 rrected Pk Height (A): -0.001
 ation (ug/L ): -0.018
 Seq. No.: 00073 A/S Pos.: -- Date: 09/22/98
 ): 218-12-1 D
 ie I
                        Time: 15:28
                        Peak Height (A): 0.000
 a (A-s): 0.017
 prected Pk Height (A): 0.000
 ration (ug/L ): 0.010
  Seg. No.: 00074 A/S Pos.: -- Date: 09/22/98
 ): 218-12-3
```

```
:e 1
                          Time: 15:29
 38 (A-s): -0.024
                          Peak Height (A): -0.001
 prected Pk Height (A): -0.001
 *ation (ug/L ): -0.034
 ): 218-12-3 D
                  Seq. No.: 00075 A/S Pos.: -- Date: 09/22/98
 ie 1
                          Time: 15:30
 :a (A-s): -0.025
                          Peak Height (A): -0.001
 prrected Pk Height (A): -0.001
 ration (ug/L ): -0.028
 ): 218-12-3 MS Seq. Mo.: 00076 A/S Pos.: -- Date: 09/22/98
te 1
                          Time: 15:33
2a (A-s): 2.638
                          Peak Height (A): 0.152
orrected Pk Height (A): 0.152
:ation (ug/L ): 3.915
): 218-12-3 MSD Seq. No.: 00077 A/S Pos.: -- Date: 09/22/98
te [
                         Time: 15:34
ea (A-s): 2.740
                         Peak Height (A): 0.168
orrected Pk Height (A): 0.168
ration (ug/L ): 4.330
***
D: CCV1=6.Oug/L Seq. No.: 00078 A/S Pos.: -- Date: 09/22/98
te 1
                         Time: 15:35
ea (A-s): 3.431
                         Peak Height (A): 0.220
orrected Pk Height (A): 0.220
ration (ug/L ): 5.654
D: CCB
                Seq. No.: 00079 A/S Pos.: -- Date: 09/22/98
te 1
                         Time: 15:36
ea (A-s): -0.075
                         Peak Height (A): -0.003
orrected Pk Height (A): -0.003
ration (ug/L ): -0.065
D: 218-12-2
                 Seq. No.: 00080 A/S Pos.: -- Date: 09/22/98
te i
                         Time: 15:37
ea (A-s): -0.048
                         Peak Height (A): -0.001
orrected Pk Height (A): -0.001
ration (ug/L ): -0.028
**************************
D: 218-12-2 D
                 Seq. Ho.: 00081 A/S Pos.: -- Date: 09/22/98
te 1
                         Time: 15:41
ea (A-s): -0.049
                         Peak Height (A): -0.002
orrected Pk Height (A): -0.002
184
```

```
ation (ug/L ): -0.041
***********************************
: 218-12-5 Seq. No.: 00082 A/S Pos.: -- Date: 09/22/98
                     Time: 15:47
e 1
a (A-s): -0.040
                    Peak Height (A): -0.001
rrected Pk Height (A): -0.001
ation (ug/L ): -0.013
: 218-12-5 D Seq. Ro.: 00083 A/S Pos.: -- Date: 09/22/98
                     Time: 15:48
e 1
a (A-s): -0.036
                    Peak Height (A): -0.000
rrected Pk Height (A): -0.000
ation (ug/L ): -0.005
****************
: 218-12-8 Seq. Ro.: 00084 A/S Pos.: -- Date: 09/22/98
                    Time: 15:49
e 1
a (A-s): -0.037 Peak Height (A): -0.001
rrected Pk Height (A): -0.001
ation (ug/L ): -0.018
 ******************
: 218-12-8 D Seq. No.: 00085 A/S Pos.: -- Date: 09/22/98
                     Time: 15:50
e I
                      Peak Height (A): -0.001
 a (A-s): -0.050
 rrected Pk Height (A): -0.001
 ation (ug/L ): -0.034
 *******************
: 218-12-6 Seq. No.: 00086 A/S Pos.: -- Date: 09/22/98
                    Time: 15:51
.e l
 a (A-s): -0.064
                    Peak Height (A): -0.002
 rrected Pk Height (A): -0.002
 ation (ug/L ): -0.049
 :: 218-12-6 D Seq. Ho.: 00087 A/S Pos.: -- Date: 09/22/98
                     Time: 15:52
 ie 1
 a (A-s): -0.059 Peak Height (A): -0.002
 rrected Pk Height (A): -0.002
 ation (ug/L ): -0.044
 :: 218-12-9 Seq. No.: 00088 A/S Pos.: -- Date: 09/22/98
                      Time: 15:53
 ie 1
 a (A-s): -0.057
                     Peak Height (A): -0.002
 rrected Pk Height (A): -0.002
 ation (ug/L ): -0.039
```

ID: 218-12-9 D Seq. No.: 00089 A/S Pos.: -- Date: 09/22/98 icate 1 Time: 15:55 Area (A-s): -0.066 Peak Height (A): -0.002 k Corrected Pk Height (A): -0.002 entration (ug/L): -0.052 Ran Hank instant of CCU. icate 1 Time: 15:56 Area (A-s): -0.078 Peak Height (A): -0.003 k Corrected Pk Height (A): -0.003 entration (ug/L): -0.072 ******* ID: CCV2=8.Oug/L A/S Pos.: -Seq. 10.: 00091 icate 1 Time: 15:58 Area (A-s): 3-054 Peak Height (A): 0.179 k Corrected Pk Height (A): 0.179 entration (ug/t): 4.593 ID: CCV2=6.0ug/L Seq. Ho.: 00092 A/S Pos.: -- Date: 09/22/98 icate I Time: 16:02 Area (A-s): 3.080 Peak Reight (A): 0.194 k Corrected Pk Height (A): 0.194 entration (ug/L): 4.996 Seq. No.: 00093 A/S Pos.: -- Date: 09/22/98 icate 1 Time: 16:03 Area (A-s): -0.060 Peak Height (A): -0.002

ik Corrected Pk Height (A): -0.002
:entration (ug/L): -0.057

CASE NARRATIVE

Analysis of Samples for the Presence of Trace Metals

Methods

6010A

Rev.1 (7/92)

7000A Series 7470

Rev.1 (7/92)

Rev.0 (9/86)

Client:

Pacific Environmental Services

TLI Project Number:

46705B

Date:

September 23, 1998

This report should only be reproduced in full. Any reproduction of this report requires permission from Triangle Laboratories, Inc.

Rev. 25-Sep-96

September 23, 1998 TLI Project #: 46705B

as the with the

Overview

Three aggregate samples were analyzed for arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), and mercury (Hg). For all analyses (except Hg), the samples and associated QC samples were prepared by hotplate digestion following the guidelines of EPA SW-846 Method 3050A. The samples and associated QC samples for the analysis of Hg were prepared following the guidelines of EPA SW-846 Method 7471 Rev.0 (9/86). The samples were analyzed following the guidelines of EPA SW-846 Methods 6010A Rev. 1 (7/92), 7471 Rev. 0 (9/86), and 7000A Rev. 1 (7/92) series. Results reported relate only to the items tested.

OC Remarks

The release of this set of data by Triangle Laboratories, Inc. was authorized by the Quality Control Chemist who has reviewed each sample data package individually following a series of inspections/reviews. When applicable, general deviations from acceptable QC requirements are identified below and comments are made on the effects of these deviations upon the validity and reliability of the results. Specific QC issues associated with this particular project are:

Sample Receipt:

Three aggregate samples, four liquid AC and three asphalt cement samples were received at 25 0 C on September 15, 1998 in good condition. These samples were received in a box instead of a cooler.

Sample Preparation:

Laboratory documentation of the sample preparation is included in the data package.

Instrumentation:

Arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se), concentrations were determined by Inductively Coupled Plasma Emission Spectroscopy (ICP).

Beryllium (Be) concentrations for the front half samples were analyzed by Graphite Furnace Atomic Absorption (GFAA).

Mercury (Hg) concentrations were determined by Cold Vapor Atomic Absorption (CVAA).

The linear range for the instrument TJA 61E Trace Analyzer was based on four standards and a blank, which established a correlation coefficient value greater than or

Triangle Laboratories, Inc. Case Narrative

September 23, 1998 TLI Project #: 46705B

equal to 0.995. A calibration curve, based on a blank and one standard, is established for each analytical run, followed by a check high standard and an initial calibration verification (ICV). The check high standard does not deviate from the calibration curve by more than 5%. In addition, continuing calibration verifications (CCVs) are performed throughout the analytical run.

A Reporting Detection Limit (RDL) is used instead of an Instrument Detection Limit (IDL). The spectrometer and atomic absorption instruments can achieve low detection limits between 0.2-8 ppb levels for many analytes. Triangle Labs is using RDL values of 1-10 times the IDL as detection limits for reporting purposes.

Data Review:

All analytes found in the method blank (MB) are detected at a level equal to or less than the respective Reporting Detection Limit (RDL).

The sample results are based on dry weight.

A sampling date was not supplied by the client and the sampling to analysis holding times cannot be determined. All samples were analyzed within 7 days of sample receipt at Triangle Laboratories.

The pre-digestion spike (MS) and the pre-digestion spike duplicate (MSD) for Sb, also the pre-digestion spike duplicate (MSD) for Pb for the sample RAP5B/AGG demonstrated percent recoveries outside the QC criteria which may indicate significant matrix effects specific to these analytes in the native sample matrix. Please note that the post-digestion spike (PDS) met QC criteria for Sb and Pb for sample RAP5B/AGG. Also note the tresults for Sb in this sample should be considered biased low due to matrix interferences.

The recoveries for the matrix spike (MS), matrix spike duplicate (MSD), and post-digestion spike (PDS) are not reported for Mn and Pb for the sample RAP5B/AGG. The spike concentrations added were insignificant in comparison to the levels of these analytes present in the native sample.

The duplicate analyses for Cr and Ni for the sample RAP5B/AGG demonstrated RPDs outside the QC criteria of 20.0 percent, which indicates the presence of a significant amount of interferents specific to these analytes in the native sample matrix.

The post-digestion spike (PDS) for Be for sample RAP5B/AGG demonstrated a percent recovery outside the QC criteria of 80-120 percent, which indicates significant matrix effects specific to this analyte in the native sample matrix. The interference QC analysis is not reported (i.e. PDS, MS, MSD, and serial dilution) for this analyte since the Method of Standard Additions (MSA) was performed. The MSA results are

September 23, 1998 TLI Project #: 46705B

The post-digestion spike (PDS) for Be for sample RAP5B/AGG demonstrated a percent recovery outside the QC criteria of 80-120 percent, which indicates significant matrix effects specific to this analyte in the native sample matrix. The interference QC analysis is not reported (i.e. PDS, MS, MSD, and serial dilution) for this analyte since the Method of Standard Additions (MSA) was performed. The MSA results are reported if the correlation coefficient value is at least 0.995. The MSA results are reported for all samples.

QC requirements:

The analytical duplicates for analytes analyzed by GFAA cannot be considered valid qualifiers if the concentrations of the analytes in the original and/or duplicate sample are not at least five times the respective RDL. The RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

The analytical duplicates for analytes analyzed by ICP cannot be considered valid qualifiers if the concentrations of the analytes in the original and/or duplicate sample are not at least ten times the respective RDLs. The RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

For analytical duplicates which are valid qualifiers, the quality control RPD is ± 20.0 percent. If RPDs are outside this range, interferences are suspected.

The serial dilution analyses for analytes analyzed by GFAA cannot be considered valid qualifiers if the concentrations of the analytes in the serial dilution sample are not at least five times the respective RDLs. The serial dilution RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

The serial dilution analyses for analytes analyzed by ICP cannot be considered valid qualifiers if the concentrations of the analytes in the serial dilution sample are less than ten times the respective RDLs. The serial dilution RPDs for these analyses are indicated by "<RDL" in the Analyte Summary Reports.

For serial dilution analyses which are valid qualifiers, the quality control RPD is \pm 10.0 percent. If RPDs are outside this range, interferences are suspected.

The quality control range for percent recoveries of laboratory control spiked samples is 80-120.

The quality control range for percent recoveries of pre-digestion spiked samples analyzed by GFAA and ICP is 80-120. If recoveries are outside this range, a matrix effect is suspected.

Triangle Laboratories, Inc. Case Narrative

September 23, 1998 TLI Project #: 46705B

The quality control range for percent recoveries of post-digestion spiked samples analyzed by ICP is 75-125. If recoveries are outside this range, a matrix effect is suspected.

The quality control range for percent recoveries of spiked samples analyzed by CVAA is 75-125. If recoveries are outside this range, a matrix effect is suspected.

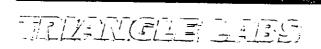
If the analyte concentrations analyzed by GFAA in the native samples are less than five times the respective RDLs, or if valid serial dilution analyses demonstrate RPDs outside the ten percent quality control range, the percent recoveries of post-digestion spiked samples is 85-115. If recoveries are outside this range, all matrix-related samples are analyzed by the Method of Standard Additions (MSA). The MSA analysis for each sample is reported only if the correlation coefficient value is at least 0.995.

By our interpretation, the analytical data in this project are valid based on the guidelines of US EPA SW-846 Methods 6010A Rev.1(7/92), 7000A Rev. 1 (7/92) series, and 7471 (9/86). Any specific QC concerns or problems have been discussed in the QC REMARKS section with emphasis on their effect on the data. Should Pacific Environmental Services have any questions or comments regarding this data package, please feel free to contact Triangle Laboratories, Inc., at (919) 544-5729.

For Triangle Laboratories, Inc.,

Report Preparation

Brenda H. Bell


Report Preparation Chemist

Ouality Control

Leslie D. Jones

Report Preparation Chemist

The total number of pages in this data package is: 95.

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

American Association for Laboratory Accreditation. Accredidation pending. Certificate Number 0226-01. Accreditation for technical competence in Environmental Testing. (Including Waste Water, Sol/Haz Waste, Pulp/Paper, and Air Matrices) Parameters are AOX/TOX, and Dioxin/Furan. Method 1613 for Drinking Water Currently re-applying..

State of Alabama, Department of Environmental Management. Expires December 31, 1998. Laboratory I.D. # 40950. Dioxin in drinking water.

State of Alaska, Department of Environmental Conservation. Expires December 21, 1998. Certificate number OS-006-98. Dioxin in drinking water.

State of Arizona, Department of Health Services. Expires May 26, 1998. Certificate #AZ0423. Drinking Water for Dioxin, Dioxin in WW and S/H Waste. Currently appying for renewal.

State of Arkansas, Department of Pollution Control and Ecology. Expires February 19, 1999. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furan; AOX/TOX, Volatiles, Semi-volatiles, and Metals.

State of California, Department of Health Services. Expires August 31, 1999. Certificate #1922. Selected Metals in Waste Water; Volatiles, Semi-volatiles, and Dioxin/furan in WW and Sol/Haz Waste. Dioxin in drinking water.

State of Connecticut, Department of Health Services. Expires September 30, 1999. Registration #PH-0117. Dioxin in drinking water.

Delaware Health and Social Services. Expires December 31, 1998. Certificate #NC 140. Dioxin in drinking water.

Florida Department of Health and Rehabilitative Services. Expires June 30, 1998. Dioxin in SDW. Drinking Water ID HRS# 87424. Pending new certificate.

Triangle Laboratories, Inc.

801 Capitola Drive Durham, NC 27713-4411 919-544-5729

P.O. Box 13485 Research Triangle Park,-NC-27709-3485 Fax # 919-544-5491

Revised 8/3/98 des

Hawaii Department of Health. Expires March 1, 1999. Dioxin in drinking water. "Accepted" status for regulatory purposes.

Idaho Department of Health and Welfare. Expires December 31, 1998. Dioxin in drinking water.

State of Kansas, Department of Health and Environment. Expires January 31, 1999. Method 1613 for drinking water. ID #'s - Drinking water and/or pollution control - E-10215. Solid or Hazardous Waste - E-101209.

Commonwealth of Kentucky, Department for Environmental Protection. Expires December 31, 1998. ID#90060. Dioxin in drinking water.

Maryland Department of Health and Mental Hygiene. Expires September 30, 1998. Certification #235 Drinking water by Method 1613A. Currently applying for renewal.

State of Michigan, Department of Public Health. Expires June 30, 1999. Drinking water by Method 1613. Current certification is extended, based on New York certificate renewal.

Mississippi State Department of Health. No expiration date. Dioxin in drinking water.

Montana Department of Health and Environmental Services. Expires December 31, 1998. Dioxin in drinking water.

State of New Jersey, Department of Environmental Protection and Energy. Expires June 30, 1998. Extended until July 31, 1998 per letter dated May 29, 1998. ID #67851. BNAs and Volatiles. Dioxin in drinking water. Currently applying for renewal.

State of New Mexico, Environment Department. Still certified, awaiting information from A2LA Dioxin in drinking water.

New York State Department of Health. Received updated certificates. ID #11026. Environmental Analyses of potable water, non-potable Water, Solid and Hazardous Waste. Method 1613 in DW.

State of North Carolina, Department of Environment Health and Natural Resources Expires. August 31, 1998. Certificate # 37751. Dioxin in drinking water.

State of North Carolina, Department of Environment, Health, and Natural Resources, Division of Environmental Management. Expires December 31, 2000. Certificate # 485. Metals, pesticides & PCBs, semi-volatiles and volatiles; TCLP.

North Dakota State Department of Health and Consolidated Laboratories. Expires December 31, 1998. Certificate # R-076. Effective October 4, 1993. Dioxin in drinking water.

Oklahoma Department of Environmental Quality. Expires August 31, 1998. Laboratory #9612. Dioxin by 1613A, 8290 and 8280. Submitted renewal application 7/1.

State of South Carolina, Department of Health and Environmental Control. Expires June 30, 1998. Extended August 31, 1999. Certificate number #99040001 (drinking water). Expires August 31, 1999. Certificate number #99040002 (other parameters). Dioxin/Furans, BNA, Volatiles, and PCBs/pesticides under Clean Water Act, 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste.

State of Tennessee. Department of Environment and Conservation. Expires February 5, 1999. ID #02992. Method 1613 Drinking water only.

U.S. Department of Agriculture Soil Permit. Expires September 30, 2001. Permit No. S-3790. Under the authority of the Federal Plant Pest Act, permission is granted to receive foreign soil samples for use in laboratory analysis.

U.S. Army Corps of Engineers. Expires October 19, 1999. Validated to perform analyses for the Fort Belvoir, VA (Contract Number DACA31-97-D-0029), Vint Hill Farms Station, Vint Hill, VA (Contract Number DACA31-95-D-0083), and Selma Pressure Treating Superfund Site, Selma, CA (Contract number DACW45-94-D-0054).

U.S. EPA Region V. Expires November 14, 1999. Dioxin in drinking water.

U.S. EPA Region VIII, for the State of Wyoming. Expires November 12, 1998. Dioxin in drinking water.

State of Utah, Department of Health. Expires May 30,2000. Certificate Number E-166. Certification for the following parameters: Semi-Volatiles and Volatiles under RCRA; Volatiles under Clean Water Act; Dioxin/furans by Method 8280; Drinking water for Dioxin by Method 1613; Metals including Mercury and Microwave Digestion.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. Expires June 30, 1999. ID # 00341. Dioxin in drinking water.

State of Washington, Department of Ecology. Expires September 11, 1998. Lab Accreditation Number C067. Scope of Accreditation applies to water analyses for

y:certific\certlist.mem

Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans, BNA Extr (Semivolatile) Organics and Purgeable (Volatile) Organics.

State of Washington, Department of Health. Expires April 30, 1999. Dioxin in drinking water. Lab I.D. 129.

State of West Virginia, Department of Health. Expires December 31, 1998. Certificate No. 9923(C). Dioxin in drinking water.

State of Wisconsin, Department of Natural Resources. Expires August 31, 1998. Laboratory ID Number 999869530. Certification for the following categories of Organics: Purgeable, Base/Neutral, Acid, PCBs, and Dioxin. Expires November 14, 1999. Laboratory ID 999869530. Dioxin in drinking water.

PHARMACEUTICAL

Drug Enforcement Agency (DEA). Expires November 30, 1998. Registration number RT01195835. Controlled substance registration for schedules 1,2,3,3N,4,5.

N.C. Department of Human Resources. Expires October 31, 1998. Registration number NC-PT 0000 0031. North Carolina controlled substances registration. Application submitted for renewal.

Food & Drug Administration (FDA) Registration. Expires June 1998. ID #'s 001500 1053481. Annual registration of drug establishment.

OTHER

Clinical Laboratory Improvement Amendments (CLIA) Registration. Expires May 30, 1999. ID # 34D0705123. Department of Health & Human Services, Health Care Financing Administration.

U.S. EPA Large Quantity Hazardous Waste Generator. No expiration date. EPA ID #NCD982156879. Permit indicates that the laboratory is a large generator of hazardous waste.

North Carolina General License for Radiation Protection. No expiration date. No License. 032-875-OG. The general license applies only to radioactive material contained in devices which have been manufactured and labeled in accordance with specific requirements.

THE LIVES

Triangle Laboratories, Inc. 801 Capitole Drive P.O. Box Durham, NC 27713-4611 919-544-5729

. 0.

11

5001 South Miami Boulevard, P.O. Box 12077
Research Triangle Park, North Carolina 27709-2077
(919) 941-0333 FAX: (919) 941-0234

Sample Chain Of Custody Record

PLANT: US EP.	PLANT: US EPA HOT MIX ASPHALT PLANT C	S	PROJECT NO.: S508.001 SAMPLERS: N/A	
RECOVERY PE	RECOVERY PERSON: J. SWIIL			
			Analytical Reduest	
			alythal they are:	Comments
Sample	Sample	jo		
QI QI	Name	Cont	(S)	*11-Sh As Be Cd Cr, Pb, Mn, Ni, Se, Co,& Hg
AC1B	Liquid AC, Run 1 Begin	1 Metals" using /	Metals" using 7000 selles (300-010)	* 11-Sh As Be Cd, Cr, Pb, Mn, Ni, Se, Co,& Hg
ACOR	l iquid AC. Run 2 Begin	1 Metals" using /	Matais" using / 0001 series (500-540)	*11-Sh As Re Cd Cr. Pb. Mn, Ni, Se, Co, & Hg
DADORIAL	Recycled Asph. Run 2 Begin (Asphalt Cement)	1 Metals* using 6	Metals* using 6010/7000 series (SVV-040)	* 11 Sh As Re Cd Cr Pb Mn. Ni Se, Co,& Hg
PAP2R/AGG	Recycled Asph. Run 2 Begin (Aggregate)	1, Metals* using 0	Metals* using 6010/7000 series (SVV-640)	* 11 Sh As Be Cd Cr. Pb. Mn, Ni, Se, Co. & Hg
AC3B	I intid AC. Run 3 Begin	1 Metals* using /	Metals* using 7000 series (SVV-640)	* 11 Sh As Re Cd Cr Pb Mn. Ni, Se, Co, & Hg
DODANO/A		1 Metals* using (Metals* using 6010//000 series (500-640)	+ 11 Sh As Be Cd Cr Pb Mn Ni Se, Co,8 119
CAP SING AS		1 Metals* using (Metals* using 6010/7000 series (SVV-640)	44 Ch As Be Cd Cr Ph Mn Ni Se Co.8 Ha
ACAB	I jouid AC Run 4 Beain	1 Metals* using	Metals* using 7000 series (SW-840)	A STATE OF CALCE OF MAN NI Se CO. 8 Ha
DADED IN		1 Metals* using (Metals* using 6010/7000 series (SW-845)	TI-SU, AS, BE, CU, CI, I SI, III SI CO & LIO
A DE LA CO	CAPSE (A.C. Decycled Asph. Run 5 Begin (Aggregate)	1 Metals* using t	Metals* tising 6010/7000 series (SW-846)	[11-50, As, be, cu, ci, ru, mii, m, cs, cri
SOL OCTIVAL		Date	Time Received by:	
Kelinduished by	./·	·		
MARSH	てのこてない ノンチェング			
-		Date	Time Received for Lab by:	
Relinquished by:) y :			1) 9-15-88 5 Chan
	-		1/2/11/11	

Queter 0711070083

-	. Custody See	40,4											
	19	: Present	Sample Seals: Angent Container: Intact		MOU	200	Tri	TLI Project Number Client: PES03 - Pac	umber 46705 - Pacific Environmental Services	ronmental Se	rvices	Book	
= -	<u>8</u>	Sample Tag Numbers: Not Listed on Chain of Custody SMO Forms: 11/A	of Custody				Date	Date Received	09/11/68	1	411/6	218	
-	Вох	1000 011	COOLANT Temp 25	25.0 C			Carr	Carrier and Runtur	-+-	- 8	deposition of		د کم ج
	Ŀ	Client Sample ID	Matrix	To LAB	To STORAGE	To LAB	To STORAGE	٤	"	2 "	10040000	71	== = ₇ ==
	_	Cilent COC ID	Location	Date/Init	Date/Init	Dat.e/Init	Date/Init				Date/Init	Date/Init	*==
	Z18-12-1	ACIB	LIQUID AC									-	7
•	216-12-2	AC2B AC2B	LIQUID AC METALS LAB	i									. # == =
	210-12-3	RAP2B/AC RAP2B/AC	ASPH. CEMENT METALS LAB	j. ——	 							-	- -
	216-12-4	RAP2B/AGG RAP2B/AGG	AGGREGATE METALS LAB										
	218-12-5	AC1B AC1B	LIQUID AC METALS LAB										* = 3 * a a
	211-12-6	RAP3M2/AC RAP3M2/AC	ASPH.CEMENT METALS LAB										
1	210-12-7	RAP3M2/AGG RAP3M2/AGG	AGGREGATE METALS LAB	†									-
	218-12-0	AC4B	LIQUID AC METALS LAB										=7==
•	218-12-9	RAP5D/AC RAP5B/AC	ASPH. CEMENT METALS LAB									-	
	210-12-10	RAPSB/AGG CK DOCK	METALS									-	
													17 for the
3.3				-									
								•			 		
	Receiving Remarks: Archive Remarks:	SAMPLES REC'D IN BOX - NO COOLANT	- NO COOLANT	•,			÷	-					_
112	10			Form Revis	leed 05/27/1997	997 Page 1 OF	1 OF 1	-					t siliy sp
•							,		•				

9/22/98 1:22

TRIANGLE LABORATORIES, INC. Percent Moisture/Solid Calculations Project: 46705-B

PRDPERC v4.01 Page: 1

Empty Wet Vial Dry Vial

Vial.Wt Weight... Weight... Entered.By..... Date.... Time... *Moist *Solid From....-To..... Weight...

<Results not entered>
<no FINAL results found>

13.5299 15.6302 15.6256 WALTERS 09/18/98 15:40:17
13.5299 15.6302 15.6215 DURHAM 09/18/98 07:19:28 0.4 99.6
13.5299 15.6302 0.0000 JONESL 09/17/98 14:11:48 9.6386-10.4418 10.0402

<Results not entered>
<no FINAL results found>

13.5185 15.6937 15.6852 WALTERS 09/18/98 15:40:18 13.5185 15.6937 15.6843 DURHAM 09/18/98 07:19:28 0.4 99.6 13.5185 15.6937 0.0000 JONESL 09/17/98 14:11:48 9.6386-10.4418 10.0402

<Results not entered>
<no FINAL results found>

13.4318 15.7760 15.7649 WALTERS 09/18/98 15:40:18
13.4318 15.7760 15.7627 DURHAM 09/18/98 07:19:29 0.6 99.4

13.4318 15.7760 0.0000 JONESL 09/17/98 14:11:48 9.6579-10.4628 10.0604

<no FINAL results found>

<no FINAL results found>

<no FINAL results found>

<no FINAL results found>

it Moisture/Solid Summary

LLES.ID... TLI.Number.. Client.Id.Number...... *Moist *Solid ExtrctWt DryWtEqu RPD..

-B -002 218-12-4 RAP2B/AGG 0.4 99.6 -B -004 218-12-7 RAP3M2/AGG 0.4 99.6 -B -006 218-12-10 RAP5B/AGG 0.6 99.4

nd of Report ***

TRIANGLE LABORATORIES, INC. Sample Preparation Tracking & Management Form t: 46705B Client: Pacific Environmental Services (PESO3) TLI 4 RAP5B/AGG 10.513 -----REV 07/26/93 (PSTMF 7)--200

INORGANICS SPIKE LOG

	_							
	PROJECT #	ANALYTE	ORIGINAL STANDARD	ORIGINAL STANDARD CONC. (PPM)	SPIKE SAMPLE (µL) FINAL VOLUME (mL)	SPIKE SAMPLE (PPB)	INITIALS	WITNESS
r∈ -98	SAMPLE IDS	*	3-62-1	*	1000	*	TDD	B145 9/10
/ 10	218-12-10 MS						1910	12 V
	218-12-10 MS				<u> </u>	-	L(L	BIJS 5
,		`				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		. ,	 					
· ·			1	<u> </u>	<u> </u>		<u> </u>	
	·						 	
			 					
		-						
								
			<u> </u>			-	·	
	•							
	:							
<u></u>								

* SEE SPIKE LOG

Propert # 46-105 B

		Spiking S	tenderd i	Preparation		SPIKING		•
. '	1					from Spiking	Standard	•
EXP date	Eiement	Standard	Orig. Std.	Spike(uL)	conc	Spike(uL)	conc	combined
		10	(ppm)	Fvol(100mL)	(ppm)	FVol(100ml)	(ppb)	total
6/1/99	Ng	3-54-7	100	5000	5	1000	50	1
8/1/99	Ao ·	3-80-8	100	5000	5	1000	50	1
6/1/99	A.I	3-54-7	100	5000	5	1000_	50	
6/1/99	Ai	3-60-6	10000	960	95	1000	950	1000
6/1/99	В	3-54-7	100	5000	5	1000	50	
6/1/99	Ba	3-64-7	100	5000	5	1000 -	50]
8/1/99	Ве	3-80-8	100	5000	5	1000	50	<u> </u>
8/1/99	Ca	3-60-8	100	5000	5	1000	50	
6/1/99	Ca	3-80-10	10000	950	95	1000	950	1000
8/1 /9 9	ব	3608	100	5000	5	1000	50	Ţ
8/1/99	Co	3-80-8	100	5000	5	1000	50	1
8/1/99	C:	3-60-6	100	5000	5	1000	50	1
, 6/1/99	Cu	3-80-8	100	5000	5	1000	50	
8/1/99	Fo	3-80-6	100	5000	5	1000	50	
66/1/8	Fe	3-60-9	10000	950	95	1000	953	1000
8/1/99	×	3-54-7	1000	5000	50 '	1000	500	
4/1/99	×	3-45-5	100007	1500	150	1000	1500	5000
8/1/99	Mg	3-80-8	100	5000	5	1000	50	
8/1/99	Mg	3-60-5	10000	950	95	1000	950	1000
8/1/99	Mn	3-60-6	100	5000	5	1000	50	
8/1/99	Мо	3-60-8	100	5000	5	1000	50	
6/1/99	Na	3-54-7	100	9000	5	1000	50	
8/1/99	Ne	3-60-3	10000	1950	195	1000	1960	5000
9/1/98	Ni.	3-60-6	100	5000	5	1000	50	1
8/1/99	ЪР	3-80-8	100	5000	5	1000	50	1
6/1/99	85	3-60-8	100	5000	5	1000	50	1
8/1/99	Po .	3-80-8	100	5000	5	1000	50	4
6/1/99	Ti.	3-60-6	100	5000	5	1000	50	1
8/1/99	n .	3-60-8	100	5000	5	1000	50	1
8/1 /99	V	3-60-8	100	5000	5	1000	50	
8/1/99	Zn	3-80-8	100	5000	5	1000	50	
8/1/99	Zπ	3-60-7	1000	1500	15	1000	150	200

Element Orig Std Spike(ut.) conc.
(ppm) Fvol(100m (ppb)

Au 1000 140 1400

Ce 1000 30 300

Li 1000 70 700

Spiking Standard 3-62-1

EXP: 10/28/98

spiked by: Healie D. Jones 9-16-98

1000ut, of the Spiking Standard gives the listed cond. of the above elements.

Postdigestion-

TRIANGLE LABORATORIES, INC. Transfer Chain-of-Custody Form Project 46705-B

Project 46705-1

To: IA

Initials..

Transfer From:

Date.....

Time...

Released by:

LDJ

9/17/98

1:50 P.M

Accepted by:

DKH

9/20/98

11:00

MILES.ID...... TLI_No..... Cust.Id.....

TLI Blank TLI Blank 46705-B -000 RAP2B/AGG 218-12-4 46705-B -002 RAP3M2/AGG 46705-B -004 218-12-7 RAP5B/AGG 218-12-10 46705-B -006 RAP5B/AGG 218-12-10DUP 46705-B -007 218-12-10 MS RAP5B/AGG 46705-B -008 RAP5B/AGG 218-12-10MSD 46705-B -009

46705-B -009 216-12-10MSD AM 52/MSC 46705-B -010 LCS LAB CONTROL SPIKE

-----XfrCOC (Rev 11/01/94)--+

ditional comments or instructions:

は記り最大	Ode		Army A	3-(2-2	Sp Cone	mL/ml	Sy. K. Sy. K. Pph	Tin timber	W.trest.
	8/2/98-	21323-21 PM		3-08-7	100	10/10	100	met met	My Met
	8/5/58	46346B	*	3-62-2	4	100/10	+	Mey	MA
7 1 1	8/5/98	46315 APBS 214-19-1 APBS 46257	4	3-62-2	4	100/10	4	MH	my
	8/5/98	213-60-2105	&	3-62-2	4	100/10	+	mu	and
4.41.04	8/6/98	46140 A 212-92-104CP	ς P	3-62-2 3-026-7	100	100/10	1000	FUP	ful
	8/11/28	312-3-14400 WG	+	3-62-2	-3	199/10	+	Ma	ney
15.0	8/17/98	215-31-3 PSS	*	3-62-2	- E -	100/10	4	MC4	MUS
* 11 m	8/17/98	46427B 215-31-6 MS 46417A	e	3-62-2	4	100/10	7	ms	MA
11 24 31	8/18/98	215-25-1250MS		3-62-5	_\ <u>\</u>	100/10	<u>k</u>	men	mes
,	8/198	46363A 214-67-318CM	\$	3-62-2	100	100/10	1000	mad	W.
	8/20/98	46394A	ms of	3-62-2	+-	100/10	+	men	W4.
	\$20 98	46489 215-13-1880	954	3-62-2	*	100/10	#	MO	mot
	8/20/98	314-2548 W	+-	3-C2-2	+	100 10	4	meet	- mot
	8/20/98	46473 215-77-2 M	+	3-62-2	•	100 [10	4	mus	my
	8/23/98	312-3C-2 POS	4	3-62-2	4	100/10	8	V4619	Pacy
	= 124198	716520 46250	P	3-62-2	100	100/10	1000	DKot	med
đ.	<i>छी</i> २६५४	216-178-1 PAS	4	3-62-2		100/10	4	mut	MES
	8/27/98	46513 216-81-1 PDS	+	3-62-2	7	170%	16	men	nest
	9/2/18	216-27-14-80 PM	حا	3-02-5	4	100/1	7	Mess	ms
	9/13/28	465748 216-71-21,21,21 PPS 216-77 -17, 10 POS	+	3-62-2	4	100/10	4	ment	mus
	9/13/98	216-12-23 24,18 MS	6	3-62-2	4	100	+	mu	
2	9/14/98	217-35-1080mX	<u>+</u>	3-622		100/10	+	nu	nect
1. dp. i	9/15/95	46507B	+	3-12-2	_ +	100/10	4	пин	Mes
ij	9/20/98	4005 B 218-12-10 PM	+	3-62-2	+	100/10	4	mos	MUS
-	9/21/98	17-88-19.17.1, 4 AX	Þ	3-68-58		140/10	1000_	mut	my
		· · · · · · · · · · · · · · · · · ·	ļ					· · · · · · · · · · · · · · · · · · ·	
		• · · · · · · · · · · · · · · · · · · ·							
					 _				: .a
Ē	88								•
		: !							

T.

* SEE SPIKE LOG

Project # 46705 B

if		Spiking S	tandard (Preparation		SPIKING		
- 1		•				from Spiking	Stendard	-
P date	lement	Standard	Orig. Std.	Spike(uL)	conc	Spike(uL)	conc	combined
- Jane		ID	(ppm)	Fvoi(100mL)	(ppm)	FVoi(100ms)	(ppb)	total
n 99	\g	3-54-7	100	5000	5	1000	50	-{
18	-x	3-60-8	100	5000	5	1000	50	1
	-	354-7	100	5000	5	1000	50	.[
	Al .	3-60-6	10000	950	95	1000	960	1000
	3	3547	100	5000	5	1000	50	_
	Ba	3-54-7	100	5000	5	1000	50_	_
n	Be	3-60-6	100	5000	5	1000	50_	
· · u		3-60-8	100	5000	5	1000	50	
	Ca Ca	3-60-10	10000	950	95	1000	950	1000
	<u> </u>	3-60-8	100	5000	5	1000	50	_
		3-60-6	100	5000	5	1000	50	
	<u>8</u>	3-60-8	100	5000	5	1000	50	
9/1/99 9/1/99	Cu	3-60-8	100	5000	5	1000	50	
8/1/39.	Fo	3-80-8	100	5000	5	1000	50	
	F. —	3-80-9	10000	950	95	1000	980	1000
6/1/59 6/1/59	-	354-7	1000	5000	50	1000	500	
4/1/99 1	k	3-45-5	10000	1500	150	1 1000	1500	2000
8/1/99 8/1/99	Mg	3-80-8	100	5000	5	1 1000	50	
• •	Ma	3-50-5	10000	950	35	1000	950	1000
8/1/39	Mn	3-60-8	100	5000	5	1000	50	
B/1/39	i——-	3-50-7	100	5000	5	1000	50	<u> </u>
8/1/59	Ma Na	354-7	100	5000	5	1000	50	
54 133 54 133	 	3-80-3	10000	1950	195	1000	1950	2000
8/1/99	Næ	3-60-8	100	5000	5	1000	50	
6/1/98	P5	3-60-8	100	5000	1 5	1000	50	
8/1/39	SF.	3638	100	5000	5	1003	50	
84,439	Se	3-80-8	100	5000	5	1000	50	
8/1/99 8/1/99	Ti	3-50-8	100	5000	5	1000	50	
	li	3-80-8	100	5000	5	1000	50	
8/1/99	(·	3-90-8	100	5000	1 5	1000	50	
8/1/99 8/1/99	20	3-30-8	100	5000	5	1000	.5C	
6/1/9 8 6/1/9 9	Zn	3-80-7	1000	1500	15	1000	150	200

**Spike seperately Element Orig Std Spike(uL) Fvoi(100m (ppb) (ppm)

Spiking Standard 3-62-2

EXP: 10/28/98

Spiked by:

Pradigestion-

Postdigestion- MUT 9/2098

			TRIAN	GLE LABORATO	RIES, INC.				
46705B		Sample P	reparat	ion Trackir	ng & Manageme		G Paringan		
DDSEAPHR.	 Inl					rent: Pacif;	c Environment	al Services	(PES03)
Acids(): #CL		traction Da	te: 9	ample Infolm 21/98 18010	ation	9-19-98	Hg		
TLI /	CLIENT	Sample Sample	L) Final	J '!//_	Duplica	te Triplica	i / /	Sample	
/ 	SAMPLE ID	g / / ml	ml	 +	1 Weight	g weighin	9,	(4)	-'' !
BD	TLI Blank	 	100	 				 	
18-12-4	RAP2B/AGG	0.295		[0.20	10.246	1	0.742	
18-12-7	RAP3M2/AGG	0.204	 	 	0.233	10.237	t I	0.674	
18-12-10	RAP5B/AGG	0.29		 	10.237	0.340	 	0.768	
.8-12-10DUP	RAP5B/AGG	0-393		 	10.265	0.370		0.828	
8-12-10 MB (B) 8-12-4 MS	Q-10-18 PARSH ACC	0.311		! !	0.316	0.201	1	0.634	i
8-12-4MSD	RAPZBIAGG	Ca04		 	0.347	0.310		0.661	+
עב	CONTROL SPIKE	 		! 	 			· · · · · · · · · · · · · · · · · · ·	
18-12-4 1	Dup RAFJBA G	0.235			0.290	0-299] 	C.814	+
18-12-7 [) wp RAPMING		100		+	C.219		0.754	+
8-712-	7	.243	 		1,241	.240	! !	721	!
18-12-	7.D	·24B	ا + د		: <i>:a</i> 4a	.243	+	. 128	·
			1		i [1 I	[
	 		 		* 	•== !	* 		
20 M	1 1 0-16	نا		il an	· •		·		
Dr Hol	or 1 Jan	<u> </u>	١	1170			<u> </u>		
d5mls	124 7	mixtu	NG 0	+ 1100	HUBU	pas Usec		150	
So HG	SL-1 ₁ Sp\1 sk- A 3.1	e log	١	11,92 F HCI] 			07/26/93	(PST

MERCURY SPIKE LOG

	·						
ح <u>ن</u> DATE	PROJECT # SAMPLE IDs	ORIGINAL SPIKE CONC. (Hg)	STANDARD # WORKING STANDARD PREPARED FROM	SPIKE AMOUNT (mL)	SPIKE SAMPLE (PPB)	INITIALS	WITNESS
9/8/94	46522 B 105	O-1 ppm	3-69-2	5	5	DE.	C ^L
	216-27-10ms 216-27-10msD	1,1	7		4	DE	9-9-21
-							હલ
9/9/98	46513 LESD	0-1 ppm	3-69-2	. 5	5	NS.	
	216-18-1 MS	V	. 🏏	• •	V	De	9-9-91
	100					(0)0	Rull
9/11/98	146518 180	O. I ppm	3-69-6		1 2	LY.	B11/98
	216-23-10 MS	1,		<u> </u>	<u> </u>	<u> </u>	4
	21/15	0.1	2 . 1 1	 <u> </u>	5	M	ck
9/14/98	4 (6629 850) 217-35-100 MS	0.1.ppm	3-109-1.	5		NEXT I	
	217-35 1CD NO						
	217-35-30 ms 217-35-30 msD 217-35-48 ms					1	J.
	217-35-48 MSD 217-35-54 CMS 217-35-54 CMS		1	1	,V:	DE 91 M/PS	9-14-48
•	217-35-54 CMSD		.*			DI HENR	
ilisht	4105748 4550	Olasm	3-69-8	5	5	000	UK
11/10	2176-79-23,22,21	P 1					
Star	216-79-8,14 MS					<u> </u>	
	46587A 45						V
-	214-92-25,26,16 216-92-25,26,115	1	4.	4	4	DEA RA	9-15-48
				<u> </u>		<u> </u>	
92198	467058 (30	O. I ppm	3-70-5	5	5	88	BU
	216-1000 (BD) 218-12-4 MSD	1	<u> </u>	<u> </u>	<u> </u>	1867	SN g/2
			<u> </u>				<u>'[]</u>

MERCURY SPIKE LOG

PROJECT # SAMPLE IDs	ORIGINAL SPIKE CONC. (Hg)	STANDARD # WORKING STANDARD PREPARED FROM	SPIKE AMOUNT (mL)	SPIKE SAMPLE (PPB)	INITIALS	
18 HU705B 450	C. Ippin	3-70-7	5-	[CXC /	WITNESS
4 218-12-4 MS	1			1)		BIJB
46705A 180						
218-12-3 MS 218-12-3 MSD	4		. \/-	V.	DEGINA	15 19/23/9
1/5				,		2 772)
8 46682 CSD 20-88-46-14 4ms	Olapm	3-20-1	5	5	CF.	380
212-88-41 MSA		, ,				
317-88-3 msp	<u> </u>		Ψ			DE 9/14
		· · · · · · · · · · · · · · · · · · ·				
		•		÷		
		•				
		·		_		
				•		

TRIGINGIE LEES

SAMPLE DATA

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP2B/AGG	
TLI Sample ID:	218-12-4	
Date Received:	September 15, 1998	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

de la companya de la	Conc.	Percent	grams	mL	Dilution	mg/Kg
Analyte	(ug/L)	Solid *	grams Used *	Final Vol.	Factor	Result
As	24.702	99.6	0.518	100	1	4.79
Be	1.100	99.6	0.518	100	1	< 0.969
Cd	3.220	99.6	0.518	100	1	0.624
Со	33.331	99.6	0.518	100	1	6.46
Cr	67.106	99.6	0.518	100	1	13.0
Mn	1352.786	99.6	0.518	100	1	262
Ni	45.310	99.6	0.518	100	1	8.78
Pb	106.235	99.6	0.518	100	1	20.6
Sb	0.767	99.6	0.518	100	1	< 0.775
Se	10.282	99.6	0.518	100	1	1.99
						·
						· · · · · · · · · · · · · · · · · · ·
						<u> </u>
						<u> </u>
						
					·	
						
				 		

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP3M2/AGG
TLI Sample ID:	218-12-7
Date Received:	September 15, 1998
Date Prepared:	September 16, 1998
Date Analyzed:	September 20-21, 1998
Matrix:	Aggregate

全位,更为这个	Conc.	্ব Percent	grams 🧞	mL	Dilution	mg/Kg
Analyte	(ug/L).	Solid 🐇	grams Used	Final Vol.	Factor	Result
As	20.869	99.6	0.512	100	1_	4.09
Be	1.100	99.6	0.512	100	1	< 0.98
Cd	3.431	99.6	0.512	100	1	0.673
Co	28.585	99.6	0.512	100	1	5.61
Cr	51.099	99.6	0.512	100	1	10.0
Mn	1237.938	99.6	0.512	100	1	243
Ni	45.859	99.6	0.512	100	1	8.99
Pb	113.184	99.6	0.512	100	1	22.2
Sb	-1.243	99.6	0.512	100	1	< 0.784
Se	12.937	99.6	0.512	100	1	2.54
		ļ		<u> </u>		
					<u> </u>	<u> </u>
			<u> </u>		 	
			 	 	 	
- <u></u>				 	 	
						
		<u> </u>		<u> </u>	 	
	<u> </u>	 	ļ	 	-	
				 		
	_					
		 	 			
			 	 	 	
						
						
		 	 		<u> </u>	
		 	+			
		 		- 	+	
				+		
			 	 		

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP5B/AGG	
TLI Sample ID:	218-12-10	
Date Received:	September 15, 1998	
Date Prepared:	September 16, 1998	*
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

Analyte	Conc. (ug/L)	Percent Solid	grams Used	mL Final Vol.	Dilution Factor	mg/Kg Result
As	33.548	99.4	0.521	100	1	6.48
Be	1.100	99.4	0.521	100	1	< 0.965
Cd	3.400	99.4	0.521	100	1	0.657
Со	36.858	99.4	0.521	100	1	7.12
Cr	64.161	99.4	0.521	100	1	12.4
Mn	1273.526	99.4	0.521	100	1	246
Ni	40.507	99.4	0.521	100	1	7.82
Pb	167.679	99.4	0.521	100	1	32.4
Sb	-0.516	, 99.4	0.521	100	1	< 0.772
Se	11.478	99.4	0.521	100	1	2.22
<u> </u>						
						
						
L		<u> </u>	<u> </u>			

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP5B/AGG	
TLI Sample ID:	218-12-10 L	
Date Received:	September 15, 1998	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

	Conc.	Percent	grams 🧬	, mL	Dilution	mg/Kg
Analyte	(ug/L)	Solid	grams Used	Final Vol.	Factor *	Result
As	6.616	99.4	0.521	100	5_	6.39
Be	N/A	99.4	0.521	100	5	N/A
Cd	0.844	99.4	0.521	100	5_	< 0.965
Co	7.552	99.4	0.521	100	5_	7.29
Cr	13.714	99.4	0.521	100	5_	13.2
Mn	262.057	99.4	0.521	100	5	253
Ni	8.552	99.4	0.521	100	5_	8.26
Pb _	33.681	99.4	0.521	100	5	32.5
Sb	0.427	99.4	0.521	100	5	< 3.86
Se	2.110	99.4	0.521	100	5	< 2.90
<u></u>						
				<u> </u>		
· · · · · · · · · · · · · · · · · · ·				<u> </u>		
				<u> </u>		<u> </u>
						<u> </u>
····						
						<u> </u>
	 					
	 				<u> </u>	
	 					
	+					
	 	1				
	 					
						1

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP5B/AGG	
TLI Sample ID:	218-12-10 D	
Date Received:	September 15, 1998	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

Analyte	Conc.	Percent	grams	mL	Dilution	mg/Kg
Analyte	(ug/L)	Solid	Used	Final Vol.	Factor	Result
As	28.651	99.4	0.513	100	1	5.62
Be	1.000	99.4	0.513	100	1	< 0.981
Cd	3.418	99.4	0.513	100	1	0.670
Co	39.240	99.4	0.513	100	1	7.70
Cr	101.407	99.4	0.513	100	1	19.9
Mn	1211.558	99.4	0.513	100	1	238
Ni	51.413	99.4	0.513	100	1	10.1
Pb	165.564	99.4	0.513	100	1	32.5
Sb	0.701	99.4	0.513	100	1	< 0.784
Se	11.620	99.4	0.513	100	1	2.28
1						
				<u> </u>		
						···
					······································	
						
						
		<u> </u>				

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP5B/AGG
TLI Sample ID:	218-12-10 MS
Date Received:	September 15, 1998
Date Prepared:	September 16, 1998
Date Analyzed:	September 20-21, 1998
Matrix:	Aggregate

	Conc.	Percent :	grams 👙	, mL	a Dilution	mg/Kg
Analyte	(ug/L)	Solid	Used	Final Vol.	Factor	Result
As	78.042	99.4	0.516	100	111	15.2
Be	N/A	99.4	0.516	100	1	N/A_
Cd	51.592	99.4	0.516	100	1_	10.1
Co	82.049	99.4	0.516	100	1	16.0
Cr _	110.244	99.4	0.516	100	1_	21.5
Mn	1295.977	99.4	0.516	100	11	253
Ni _	89.290	99.4	0.516	100	1	17.4
Pb	221.732	99.4	0.516	100	1	43.2
Sb	16.527	99.4	0.516	100	1	3.22
Se	55.014	99.4	0.516	100	1	10.7
<u>0e</u>	00.01.				<u> </u>	
	 					
	 					
	 		 			
		 	<u> </u>			
	 	 				
	 				\	
			 	 		
	 					
				+		
			 		-	-
		 	 			
			 	 	 	
		 	 	 	 	1
		<u> </u>	 	- 	+	
			 	 		
		 			 	
				 	 	+

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number:

46705B

Sample Report

Client Sample ID:	RAP5B/AGG	
TLI Sample ID:	218-12-10 MSD	
Date Received:	September 15, 1998	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

	Conc.	Percent	grams	mL	Dilution	mak a sala
Analyte	(ug/L)	Solid	Used	Final Vol.	Factor **	mg/Kg Result
As	85.967	99.4	0.572	100	1	15.1
Be	N/A	99.4	0.572	100	1	N/A
Cd	49.275	99.4	0.572	100	1	8.67
Co	81.726	99.4	0.572	100	1	14.4
Cr	109.101	99.4	0.572	100	1	19.2
Mn	1146.941	99.4	0.572	100	1	202
Ni	87.128	99.4	0.572	100	1	15.3
Pb	217.105	99.4	0.572	100	1	38.2
Sb	15.480	99.4	0.572	100	1	2.72
Se	55.212	99.4	0.572	100	1	9.71
						<u> </u>
				~~~~ <del> </del> ~		
				···· <del></del>		·
						·····
				·		
	7		·			
	·					
	·					

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, North Carolina 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98 at 01:45 PM

Pacific Environmental Services

Project Number: 46705B

OA: Serial Dilution

Ozz. Domai	DITUUTUL	
Client Sample ID:	RAP5B/AGG	RAP5B/AGG
TLI Sample ID:	218-12-10	218-12-10 L
Date Prepared:	September 16, 1998	September 16, 1998
Date Analyzed:	September 20-21, 1998	September 20-21, 1998
Matrix:	Aggregate	Aggregate
I Wiau in.	(	<del></del>

!	Native Sample		Serial Dilution		Committee of
	mg/Kg	ug/L Conc.	mg/Kg Result	ug/L Conc.	RPD
Analyte	Result	33.548	6.39	6.616	<rdl< td=""></rdl<>
As	6.48	1.100	N/A	N/A	<rdl< td=""></rdl<>
Be	< 0.965			0.844	<rdl< td=""></rdl<>
Cd	0,657	3.400	7.29	7.552	<rdl< td=""></rdl<>
Co	7.12	36.858	13.2	13.714	<rdl< td=""></rdl<>
Cr	12.4	64.161	253	262.057	2.81%
Mn	246	1273.526	8.26	8.552	<rdl< td=""></rdl<>
Ni	7.82	40.507	32.5	33.681	0.308%
Pb	32.4	167.679		0.427	<rdl< td=""></rdl<>
Sb	< 0.772	-0.516			<rdl< td=""></rdl<>
Se	2.22	11.478	< 2.90	2.110	KNUL
				<del></del>	
		<del>                                     </del>			
			<u> </u>		
	<u> </u>	<del> </del>			
		1			
		<del>                                     </del>			
ļ	· <del> </del>	<del></del>		**. ***	
<u> </u>		<del>                                     </del>			
		<del>                                     </del>			
		<del> </del>			
		<del> </del>			
		<del> </del>			
		<del> </del>			
		<del>                                     </del>		<del> </del>	
		<del> </del>	<del>                                     </del>	<del>                                     </del>	

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713 Tele: (919) 544-5729 * Fax: (919) 544-5491 P 08-Sep-98

at

01:46 PM

Client:

**Pacific Environmental Services** 

Project Number:

46705B

QA: Duplicate

	<u> </u>	
Client Sample ID:	RAP5B/AGG	RAP5B/AGG
TLI Sample ID:	218-12-10	218-12-10 D
Date Prepared:	September 16, 1998	September 16, 1998
Date Analyzed:	September 20-21, 1998	September 20-21, 1998
Matrix:	Aggregate	Aggregate

	Sample		Duplicate		· Property is
	mg/Kg	. ≱ ug/L		t ug/L	RPD
Analyte	Result	Conc.	mg/Kg Result	Conc.	
As	6.48	33.548	5.62	28.651	<rdl< td=""></rdl<>
Be	< 0.965	1,100		1.000	<rdl< td=""></rdl<>
Cd	0.657	3.400	0.67	3.418	<rdl< td=""></rdl<>
Co	7.12	36.858	7.70	39.240	7.83%
Cr	12.4	64.161	19.9	101.407	46.4%
<u>Mn</u>	246	1273,526	238	1211.558	3.31%
NiNi	7.82	40.507	10.1	51.413	25.4%
Pb	32.4	167.679	32.5	165.564	0.308%
Sb	< 0.772	-0.516		0.701	<rdl< td=""></rdl<>
Se	2.22	11.478	2.28	11.620	<rdl< td=""></rdl<>
				*********	***
					1
					***

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713

P 08-Sep-98

at

01:46 PM

Tele: (919) 544-5729 * Fax: (919) 544-5491

Client: Pacific Environmental Services

**Project Number:** 46705B

QA: Matrix Spikes (Pre-Digestion)

UA. Mauia o	pixes (110 Diguesti	/
Client Sample ID:	RAP5B/AGG MS	RAP5B/AGG MSD
	218-12-10 MS	218-12-10 MSD
TLI Sample ID:	September 16, 1998	September 16, 1998
Date Prepared:	September 20-21, 1998	September 20-21, 1998
Date Analyzed:	Aggregate	Aggregate
Matrix:	Agglegate	

Г	Matrix Spike		Matrix Spike D	uplicate		777	
Ng. Ngagar	Result	True Spike : mg/Kg	% Recovery	Result mg/Kg	True Spike mg/Kg	% Recovery	RPD
Analyte	mg/Kg	9.74	90%	15.1	8.78	98%	0.660%
As	15.2 N/A	N/A	N/A	N/A	N/A	N/A	N/A
Be	10.1	9.79	96%	8.67	8.80	91%	15.2%
Cd	16.0	9.75	91%	14.4	8 <u>.81</u>	83%	10.5%
<u>Co</u>	21.5	9.75	93%	19.2	8.80	77%	11.3%
<u>Cr</u>	21.5 253		Spike Low	202	8.81	Spike Low	22.4%
<u>Mn</u>	253 17.4	9.74	98%		8.78	85%	12.8%_
Ni	43.2	9.74	111%		8.80	66%	12.3%
Pb	3.22	9.74	25%		8.79	22%	16.8%
Sb	10.7	9.72	87%		8.79	85%	9.70%
Se_	10.7	3.72	<del> </del>				
			<del> </del>				
			<del> </del>				
					_		
		<u> </u>	<u> </u>				
			<del> </del>				
			<del> </del>				
			<del> </del>				
			-				
	<u></u>	<del></del>	<del> </del>				
<u> </u>			<del> </del>				
		<u> </u>	+				
		<u> </u>	<del></del>				
	<u> </u>	<del> </del>	<del></del>				
		<del></del>			<del> </del>		
			<del></del>				
L	<u> </u>			<u> </u>			

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713 Tele: (919) 544-5729 * Fax: (919) 544-5491 Printed:

08-Sep-98

at

01:46 PM

Client: Pacific Environmental Services

Project Number: 46705B

QA: Matrix Spikes (Post-Digestion)

Client Sample ID:	RAP5B/AGG PDS	
TLI Sample ID:	218-12-10 PDS	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	Aggregate	

	Post-Digestion Spike		Post-Digestion	Spike Duplicate			
in Prayer tal	Recovered	🚽 Spike 🐣 🤏	%	Recovered Amount (ug/L)	Spike"	** %	
Analyte	Amount (ug/L)	Amount (ug/L)	Recovery	Amount (ug/L)	Amount (ug/L)	Recovery	
As	79.82	50	93%				
Be	N/A	50	N/A		-		
Cd	51.44	50	96%				
Co	86.58	50	99%				
Cr	113.01	50	98%				
Mn	1309.49	50	Spike Low				
Ni	89.72	50	98%				, -a
Pb	216.00	50	97%				
Sb	47.78	50	96%				
Se	56.69	50	90%				
		·					
		<del></del>			-11 · • • • • • •		
							***

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98

at (

01:46 PM

220

Pacific Environmental Services Client:

**Project Number:** 46705B

# QA: Method Blank

TLI Sample ID:	46705B MB
Date Prepared:	September 16, 1998
Date Analyzed:	September 20-21, 1998
Matrix:	N/A

ſ			
and Filt	Recovered	Detection	Pass or
Analyte	Amount (ug/L)	Limit (ug/L)	Fail
As	-2.68	5	Pass
Be	0.0	5	Pass
Cd	-0.08	1	Pass
Co	-0.55	2	Pass
Cr	-0.22	2	Pass
Mn	0.49	2	Pass
Ni	-2.71	3	Pass
Pb	0.48	2	Pass
Sb	0.18	4	Pass
Se	-0.62	3	Pass
	0.02	•••	***
			4
	<u> </u>		<u>, ::</u>
			***
	<del> </del>		
	<del> </del>	<del></del>	
			***
	<del> </del>		
	<del></del>		
		<del></del>	

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed: 08-Sep-98

at

01:46 PM

Client: Pacific Environmental Services

Project Number: 46705B

## QA: Lab Control Spikes

TLI Sample ID:	46705B LCS	
Date Prepared:	September 16, 1998	
Date Analyzed:	September 20-21, 1998	
Matrix:	N/A	

		Lab Control Spike		Lab Control S	pike Duplicate	·	The second second
Analyte	Recovered Amount (ug/L)	Spike :: ***: Amount (ug/L)	% Recovery	Recovered > Amount (ug/L)	Spike ∜ Amount (ug/L)	% Recovery	RPD
As	44.49	50	89%			mack tood tony	D. N. 1944
Be	51.00	50	102%				
Cd	49.79	50	100%				
Co	50.46	50	101%				
Cr	51,15	50	102%				
Mn	51.36	50	103%				***
Ni	47.46	50	95%				
Pb	50.90	50	102%				
Sb	49.21	50	98%				
Se	45.15	50	90%				
							***
	,						
							***
							**-
	<u> </u>						

Triangle Laboratories, Inc.

801 Capitola Drive * Durham, NC 27713

Tele: (919) 544-5729 * Fax: (919) 544-5491

Printed:

08-Sep-98

at

01:46 PM

ent:

**Pacific Environmental Services** 

<u> ject Number:</u>

46705B

## ample Report

e Received:	September 15, 1998
e Prepared:	September 21, 1998
e Analyzed:	September 22, 1998
TA FILE:	AB
TATILLE.	Aggregate

ANALYTE: Hg	
ug/L RDL: 0.2	
Analysis Method:	7471
Instrument: P E Zeen	nan 5100
Spike Conc. (ug/L)	5

## CVAA ANALYTE SUMMARY REPORT

		ug/L	ml	gram wt.	Percent	DIL	mg/Kg	Avg.	222	0/1050
ent Sample ID	TLI SAMPID	CONC	MPV	USED	Solid	FACTOR	RESULT	RESULT	RPD	%REC
P2B/AGG P2B/AGG D	218-12-4 218-12-4 D	0.114 0.010	100 100	0.742 0.814	99.6% 99.6%	1	< 0.027 < 0.025	< 0.026		
P3M2/AGG P3M2/AGG D	218-12-7 218-12-7 D	0.253 0.302	100 100	0.674 0.754	99.6% 99.6%	1 1	0.038 0.040	<b>₹</b> 0.039		-
P5B/AGG P5B/AGG D	218-12-10 218-12-10 D	0.266 0.315	100 100	0.768 0.828	99.4% 99.4%	1 1	0.035 0.038	 0.037 کالاد		-
P2B/AGG MS P2B/AGG MSD	218-12-4 MS 218-12-4 MSD	4.286 4.271	100 100	0.634 0.661	99.6% 99.6%	1	0.679 0.649		 4.52%	86% 85%
P2B/AGG MS P2B/AGG MSD	True Spike MS True Spike MSD	5 5	100 100	0.634 0.661	99.6% 99.6%	1	0.792 0.759	-	-	
thod Blank thod Blank D	46705B MB 46705B MBD	0.039 0.021	-	 			-	<u>-</u>	-	
S SD	46705B LCS 46705B LCSD	4.596 4.962			 					92%

angle Laboratories, Inc. 1 Capitola Drive * Durham, North Carolina 27713 e: (919) 544-5729 * Fax: (919) 544-5491

11:10 AM Printed: 23-Sep-98

Sampler Report Table: HA600 Sun 09-20-98 01:17:17 PM

.e Name: HA600 Autosampler Type: TYPE TJA
ple Positions: 179/192 QC Positions: 13/19 # Sets: 2

se Station location is rack -1, pos. -1.

Racks ---

(∦.Typa	Usage	#Pos Left	Analyses/Pos
Aux. (L) Rack	STD/QC/BLANK	13	10
Sample (16mm)	Samples	35	1
Sample (16mm)	Samples	48	1
Sample (16mm)	Samples	48	1
Sample (16mm)	Samples	48	1

#### Sample Sets ---

*	Type	Prepare?	Description	Method	#Pos	Rack#	StartPos
•	,						
	Hormal	НO	465748	TRIANGL2	3	2	1
	Mormal	Na	467058'	TRIANGL2	10	2	4

Preparation Info ---

1 Uptaka Final Dil.Factor

Samples Prepared.

#### k #1

Row	Cal	Sample Name	\$ is≳	#Usad	Type	
1	i	STD3	-NA-	2	Standard 1-81-127	7
1	2	STD1-BLANK	-NA-	1	Standard	nku
1	3	ICSA8	-NA-	3	00 Standard 1-80-1412	• • •
1	4	CHECK LO	-NA-	1	QC Standard	9/20/98
1	5	ICY/CCV	-44-	3	90 Standard 1-81-13P	•
i	ó	103/008	-NA-	3	90 Standard	
; ‡	Not :	(san)			· -	

### x 42

Row	Cal	Sample Mame	Set #	#Usad	soyi	
1	1	465748 M8	1	-NA-	Sample	
1	2	4657+8 LCS	ì	-NA-	Samble	
i	3	216-79-3,14	i	-NA-	Samola	
1	4	467053 M8	2	-44-	Sample	
1	5	467053 LCS	2	-NA-	Sample	
1	ó	218-12-4	2	-NA-	Sample	
1	7	218-12-7	2	-NA-	Samola	
. 1	8	218-12-10	2	-NA-	Sample	
i	7	218-12-10 0	2	-88-	Sample	
ì	10	218-12-10 MS	2	-NA-	Sample	
İ	11	218-12-10 MSD	2	-NA-	Sample	
1	12	213-12-10 PDS	2	-NA-	Sample	
2	i	218-12-10 L	2	-NA-	Sample	
48	Not	Usad)				

14.						11.			والمواد والمارا والمارا	'
			•	. : 1		0.00	01.17.	.17 OM	page 2	
Sambler	_	T-Llas	HAZAA.		cun í	14-7(1-4)(	ULTIFE	11 71	Days A	
·Onmalar	Donnet	lante.	หผลบบ		Juli 1	// LU /U	42.2			

: #3				:	
	On Comple No.		Set #	#Used	Type
Row	Col Sample Na	#E			
48	Not Usad)			• •	·
<b>: #4</b>					
Row	Col Sample Na	ine	Set #	#Used	Туре
48	Not Used)				
¢ #5					
Row	Col Sample Na	ame	Set #	#Used	Type
48	Not Used)				

·					• •							T-ca.	Tali Tali Salah da Salah	
Sample Name		File	Method_	Nata	Time	n _h In	Tuna	Mada			•			
			To Total		11#6	Opio	iype	поце	}			ា នៃក្រុងដោលដែល ក្រុង		
				+:-									ر ده می است. مرکزی دمراه داری	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th
STD1-BLANK		92098	TRIANCI 2	09/20/98	10:00	•	χ	IR	•	•				12.0
STD1-BLANK		92098		09/20/98			X	IR					,	
STD3		92098		09/20/98			X	IR						
STD3		92098		09/20/98			â	CONC					-	2
CHECK LO		92098		09/20/98			ā	CONC				4 + 1 <del>- 1</del> + 1	<del>-</del> -	
ICV/CCV		92098		09/20/98			a	CONC						-
ICB/CCB		92098		09/20/98			0	CONC						
ICSA8		92098		09/20/98			ū	CONC						
465748 MB		92098		09/20/98	10:55		S	CONC				÷		
465748 LCS		92098		09/20/98			S	CONC				1 = <u>2</u> 4 - 41	State of the	
216-79-8,14	-	92098		09/20/98			-	CONC				*	• •	م سو
ICV/CCV		92098		09/20/98				CONC						
ICB/CC8		92098		09/20/98	11:18			CONC				•	• •	
ICSA8		92098		09/20/98				CONC						
46705'B MB		92098		09/20/98				CONC						
46705B LCS		92098	TRIANGL2		11:49			CONC						
218-12-4		92098	TRIANGL2		11:54			CONC						
: 218-12-7		92098	TRIANGL2		11:58			CONC						
218-12-10		92098	TRIANGLZ	'. '.	12:03			CONC						
1 218-12-10 0		92098	TRIANGL2		12:08			CONC	•					
218-12-10 MS		92098	TRIANGL2		12:12			CONC						
: 218-12-10 MSD		92098	TRIANGL2		12:17			CONC						
- 218-12-10 FDS		92098	TRIANGL2		12:22			CONC						
- 218-12-10 L		92098	TRIANGL2		12:26			CONC						
· ICV/CCV		92098	TRIANGL2		12:37			CONC						,
<del>/ 168/303</del>		72076	TATHIGUZ		14.41	_		CONC	15/4	Reanaly	(دع	mu	علعه	18
100/008		<u> </u>	TOTANCES		12:47			CONC	10/ IT-	rearous			٠ ,	~
1 108/008		92098	TRIANGL2	09/20/98	12:53			CONC						
' ICSAB		92098	TRIANGL2	09/20/98	12:58 (			CONC						

ıda	rdization	Rot.		Sun	09-20-98	0:14:15 AM	page 2
		***				عدا مديد داد د د د	
	070151				*.*		
	232454 232127	15000 15000	· •	- T.			· · · · ·
	797171	12000					
nod:	TRIANGL2	Stand	ard: STD3				•
īia	me: 09/2 <b>0</b> /	98 10:14:2	0		•		
en	Ag3280	A13082	As1890	8_2496	8a4934	Be3130	Ca3179
āe	.4081	.0212	.1212	.1263	.1658	.2378	.0178
ev	.0025	.0001	.0011	.0007	.0013	.0019	.0001
SD	.6176	.6666	.9435	.5841	.7831	.7937	.7758
•	.4110	.0214	.1225	.1271	.1672	.2400	.0179
	.4070	.0212	.1208	.1259	.1653	.2370	.0177
	.4063	.0211	.1203	.1259	.1648	.2365	.0177
en	Cd2265	Ca4186	Co2286	Cr2677	Cu3247	Fe2714	K_7664
āв	. 8988	.0935	.1060	.1281	.1746	.0036	17.19
ev ev	.0063	.0008	.0008	.0010	.0014	.0000	.02
SD	.7967	.8022	.7160	.7506	.7916	.6980	.1032
	.9062	.0944	.1069		.1761	.0036	17.17
	.3956	.0932	.1055	.1277	.1742	.0035	17.20
	.8947	.0930	.1056	.1274	.1734	.0036	17.19
en	Li6707	Mg2790	Mn2576	Mo2020	Na3302	Ni2316	P_2149
ās	11.63	.0200	.1215	.1238	.1945	. 33 <del>6</del> 5	.0345
ev	.02	.0002	.0008	.0007	.0007	.0031	.0002
SD	.1867	.8799	.701ó	.5886	.3382	.9198	.4668
	11.ó‡	.0202	.1224	.1247	.1949	.3401	.0346
	11.65	.0199	.1211	.1235	.1948	.3346	.0346
	ll.ái	.0199	.1209	.1234	.1937	. 5348	.0344
an a	2203-1	2203-2	Sb2063	1960-1	1960-2	Sn1879	Sr4215
ās	.2009	.1016	.1943	.5327	.3657	.1389	.7774
V5	.0008	.0005	.0009	.0016	.0046	.0016	.0069
50	. +244	.4856	.4529	.3024	1.250	.8729	. 3955
	.2018	.1021	.1958	.5330	.3710	.1907	.7851
	.2001	.1014	.1941	.5342	. 3629	.1883	.1753
	.2009	.1012	,1944	.5310	.3632	.1876	.7716
ខត	Ti3349	T11908	V_2924	<i>I</i> n2062	\$12881		
ÿ€	.9991	.0694	.0339	.1322	.4961		
ev ee	.0080	.0002	.0005	.0009	.0034		•
30	. 1939	. 2358	.7503	.6784	.6757		
	1.008	.0696	.0342	.1332	.4999		
	.9963	.0693	.0337	.1317	.4546		
	.9929	.0693	.0337	.1317	. 4937		
		2	,	4	-	,	_
tStd da	i *Counts	2 Time	3 Notused	4 Notused	5 Notused	6 NGTUSED	7 Notused
	. eealita	1782				4010250	שהומסכת
vlen	371.030						
je	231476	15000					
229	8						

od: TRIANGL2 Samole Name: STD3 Operator: OXH
Time: 09/20/98 10:18 Filaname: 92098
: CONC Type: Q Corr. Factor: 1.00000 Cust. Smol. ID.: Cust. ID.: 465748 ID.: Al3082 As1890 8_2496 8a4934 Be3130 Aq3280 σαα oob ppb ppb dag daa \$ 1000. 1001. 1001. 1007. 1000. 1000. .4782 6.558 5.219 7.177 .4574 4.07 .0478 .6554 .7176 .0457 .5183 .4069 Cu3247 Co2286 Cr2677 Cd2265 Ce4186 Ca3179 5 dqo 000 daa ágo לפס מֹמַמ ŝ 1000. 1003. 1004. 1002. 100á. 1003. .3264 7.63 7.431 1.358 8.416 7.103 .0326 .7604 .7453 .1354 .8392 .7062 Mg2790 Mn2576 Mo2020 Li6707 K_7664 Fe2714 dog dąą dad מממ maq 3 לכם 1006. **∍**1001. 1001. 9.944 794.4 1002. 6.38 5.928 10.04 5.677 12.83 .1019 .6342 . 5669 .5921 1.285 1.025 1.01 P_2149 2203-1 2203-2 Sb2068 N12316 ŝ Na3302 ממפ מֿמַמ opb opa 000 000 1003. 1003. 1006. 9.379 1006. 1009. 12.81 4.308 7.729 4,967 7.975 .0531 . 4296 .4923 .793 1.278 .768 .5883 Sr4215 Sa1960 Sn1399 Pb2203 1960-1 1960-2 daq daa מממ dag dog ספפ 994.4 1003. 1004. 1002. 1004. 1006. 7.885 .3735 11.19 10.ó 13.87 4.451 . 0376 .785ó 1.05á 1.115 .4426 1.384 \$12881 715349 Y_2924 In2062 T11908 3 696 1003. 000 daq 000 003 1004. 10030. 1010. 993.2 38.53 10.78 5.692 3.069 8.747

.8664 .5675 1.073 .3843

.3075

od: TRIANGL2 Sample Name: ICV/CCV Operator: DKH
Time: 09/20/98 11:09 Filename: 92098
: CONC Type: 9 Corr. Factor: 1.09000 Cust. Smpl. ID.: Cust. ID.: 465748 ID.: Al3082 As1890 8_2496 Ba4934 Be3130 Aq3280 ïS pob ppb ppb daa oob ppb 501.4 480.3 508.5 491.7 515.5 504.8 3.002 2.172 3.827 1.689 2.73 3.33 .4332 .7968 .5905 .3435 .5297 .6597 Ca3179 Cd2265 Ce4186 Co2286 Cr2677 Cu3247 15 :3 aab gpb dae מֹמַם daa aab 509.4 504.2 511.3 509.6 508.1 508.1 3.975 3.558 2.054 3.452 4.723 2.639 . .7804 .7003 .4075 .6752 .9268 .5193 Fe2714 K_7664 Li6707 Mg2790 Mn2576 Mo2020 15 ppa ts dac מסס ממם י dao מממ 509.6 5.033 491.9 501.8 -510.7 510.8 11.01 .0572 7,714 3,955 3.016 2.636 ) 2.279 1.136 1.563 .7882 .5907 .5162 Na3302 Ni2316 P_2149 2203-1 2203-2 Sb2068 115 מֿסָכ ts MCC ססס σάς daa ספפ 9 4.902 504.2 498.2 507.2 503.0 437.0 .0461 3.357 1.142 1.93 4.115 7.478 D .9398 .6658 .2292 .3805 1.535 .8182 25 1960-1 1960-2 Pb2203 Sa1760 Sn1899 Sr4215 dog daç ppb ppb oob 504.4 510.7 511.8 510.1 512.1 508.7 5 .9554 1.53 3.215 1.043 3.525 2,486 .2999 D .1863 .6375 .2042 .6884 .4886 312381 as . . 500 000 000 ססס doc 505.5 506.9 504.8 512.5 5007. 2.26 4.352 2.839 5.767 23.4 . 447 .9572 .5625 1.125 .4675

							178
iod: TF	RIANGL2	Sample Na	me: IC8/C	CB 🛫	·	Operator: (	λΛΠ
Time:	09/20/98	11:18	- Fi	lename: 9	2098		
:: CONC	;	Type: Q	Co	rr. Facto	r:	1.00000 1: 465748	
TD.:		Cust. Sac	1. ID.:		Cust. ID	.: 465748	
22					•		
15	Ag3280	A13082	As1890	B_2496	Ba4934	Be3130	
.5	nnh	pob	doa	ppb	ppb	ppb	
1	- 2385	-22.53	.0613	-16.44	.1139	.0092	
,	OTA	2 756	.2133	1.238	.0824	.0133	
,	409 A	12 23	347 7	7.533	72.36	144.1	
<b>,</b> ,,	400.7	Al3082 ppb -22.53 2.756 12.23					
	•	•				A 7017	
15	pab	dao	ppb	рръ	ppb	ppb	
3	5744	. 2456	1.260	.3539	.4401	.7999	
· .	1 118	2414	3.709	.84	.8711	. 4722	
,	194 6	98 3	294.5	237.4	197.9	59.04	
,	174.0	Cd2265 ppb .2456 .2414 98.3					
15	ře2714	K_7664 ppm .0240 .0339 141	Li6707	Mg2790	Mn2576	Mo2020	
1.5	daa	mag	aga	dqq	daq	מפס	
4	5.848	.0240	.1458	.0441	0851.ر	. 3948	
ī	12.76	.0339	.0352	6.488	.0604	.3089	
ì	219.3	141	24.12	14700	70.91	78.23	
,	110.0		•				
15	Na3302	Ni2316 ppb 0526 .2319	P_2149	2203-1	2203-2	Sb2068	
ts	oom	לקמ	oob	daq	ppb	ρορ	
3	-,1742	0526	.1157	-3.715	.4299	, 4829	
٧	.1916	.2319	5.769	1.457	1.466	1.179	
)	110	441	4984	39.23	341	244.1	
-							
MS	1960-1	1960-2	Pb2203	Sa1960	Sal899	Sr4215	
ĽS	onb	goo	daa	daq	daa	ррЬ	
6	- 5517	ppb 2 .1561	-,9504	0805	6453	.1060	
٧	4766	.6414	9324	.3362	.2999	.0276	
Ď	85 98	411	98.11	417.8	46.43	26.05	
V	u., , , ,	T & &					
MS	Ti3349	711908	V_2924	Zn2062	\$12 <b>8</b> 31		

opo

.1725

.1885

165.3

è

Ð

ppo

2.252

.3665

16.27

dag

.2472

.484

195.3

ppb

.JóJi

.564

155.3

000

-112.8 6.276

5.565

nod: TRIANGLZ Sample Name: ICSAB Operator: DXX ID.: Cust. Smol. ID.: Cust. ID.: 465748 . -Ag3280 Al3082 As1890 8_2496 8a4934 Be3130 15 pob ts. daa dog ppb ppb ppb 534.4 542.5 491.1 551.1 524500. 525.3 3 1.125 1147 2.42 ٧ 1.788 .7799 1.208 D .2042 .2187 .4608 .3346 .1437 .2461 Ca3179 Cd2265 Ce4186 Co2286 Cr2677 Cu3247 45 opb ppb ts dad ppb daa dag е 456700. 489.6 514.2 494.6 493.6 569.7 ٧ 1355 1.524 .609 1.583 1.903 1.15 .2967 D .3112 .1184 .3201 .3855 .2018 .Fe2714 K_7664 Li6707 Mg2790 Mg2576 Mg2020 ΩŞ opb ts mag оро dag dag dag 181600. 16.49 652.1 535200. 478.2 505.8 3 ٧ 458.2 .0588 1.761 1509 1.304 2.609 . 2523 .3567 .282 .2726 .5159 Đ 3008 Na3302 Ni2316 P_2149 2203-1 2203-2 Sb2068 ПS t5 Eigg σος σος άξη đạq đạq 5.890 465.5 9634.3 512.1 499.1 519.2 :e ٧ .0774 1.258 3.934 2.93 2.203 6.393 0 1.315 .2702 .9354 .5721 .4413 1.231 1960-1 1969-2 Pb2203 Sa1960 Sn1899 Sr4215 ροδ ορδ ορδ ορδ ορδ 543.1 503.4 548.6 524.5 533.5 ដែ ממם 559.5 E !V 2.774 1.731 .4998 1.349 2.953 .9446 . 4957 iĐ .3188 .0993 .2458 .563 .1771 Ti3349 T11908 V_2924 Zn2062 Si2881 :35 1.5 dag dag dag 200 dab 509.2 520.0 499.4 459.0 5441. ě 7.941 1.301 1.62 ١٧ .949 12.38

.1863 1.527 .2605 .353 .2276

30

CONC Type: S Corr. Factor: 1.00000 Cust. Smol. ID.: Cust. ID.: 467058

3 ·	As1890 ppb L-2.685 1.84 68.52	Be3130 ppb L0414 .0235 56.81	Cd2265 ppb L0825 .1113 134.9	Co2286 ppb L5500 .1459 26.52	Cr2677 ppb L2153 .0712 33.08	Mn2576 ppb L.4867 .0255 S.237	
5 S	Ni2316 opb L-2.712 .3233 11.92	Pb2203 opb L.4808 .6344 131.9	Sb2068 ppb L.1774 1.045 589.1	Se1960 ppb L6181 .4139 66.96			

Time a: CO		11:49 Type: S	-	Filename: Corr. Fac	92098 tor:	Operator: 1.00000 IO.: 467058	DKH
RS.	As1890	Be3130	Cd2265	Co2286	Cr2677	Nn2576	
ts	ppb	ppb	ppb	ppb	ppb	gpb	
3	44.49	48.90	49.79	50.46	51.15	51.36	
٧	.5318	.4577	. 2058	.3482	.4947	. 456	
D	1.195	.9361	.4133	.6902	.967	.8878	
MS	N12316	Pb2203	Sb2068	Se1960			
ts	ppb	ppb	dag	daa			
a .	47.46	50.90	49.21	45.15			
<b>V</b> 1.	.2881	. 5254	1.458	.8344			
D	607	1.032	2.963	1.848			

	•	-								
Time: 09/20/98		11:54 Typa: S	Sample Name: 218-12-4 Operator: DXH 11:54 - Filename: 92098 Type: S Corr. Factor: 1.00000							
ID.:		Cust. Sm	pl. ID.:		Cust. I	D.: 467058				
20			•		•					
85 55 3	As1890 ppb 24.70 1.716	8e3130 ppb L-5.554 .0108	3.220	ppb 33.33 .6402	67.11 .8321	1353. 1.578				
)	6.947		3.182		1.24	.1167				
RS	Ni2316	Pb2203	Sb2068	Se1960	•					
ts	dag	dqq	ppb	ppb						
3	45.31	106.2	L.7672	10.28						
v		1.45								
•	1 770	1.345	95 99	8.662						

Operator: DKH

••••		0030. OI	*D1. 1V	• *		
ms ts	As1890 ppb	8e3130 ppb	Cd2265 ppb	Ca2286	Cr2677 ppb	Mn2576 ppb
a	20.87	L-3.069	3.431	28.58	51.10	1238.
!V	.7198	.0347	.0292	.1445	.1288	9.61
:0	3.449	1.13	.8517	.5054	.2521	.7763
:as ts	Ni2316 ppb	Pb2203 ppb	Sb2068	Sel960 ppb		
įe	45.86	113.2	L-1.243	12.94		
!V	1.026	1.405	1.526	.5889		
30	2.237	1.241	122.7	4.552		

 hod:
 TRIANGL2
 Sample Name:
 218-12-1Q D
 Operator:
 DXH

 Time:
 09/20/98
 12:08
 Filename:
 92098

 e:
 CONC
 Type:
 S Corr. Factor:
 1.00000

 ID.:
 Cust.
 ID.:
 467058

 ms
 As1890
 Be3130
 Cd2265
 Co2286
 Cr2677
 Mn2576

 ts
 ppb
 ppb
 ppb
 ppb
 ppb

 a
 28.65
 L-5.684
 3.418
 39.24
 101.4
 1212.

V 1.411 .0046 .1694 .5381 1.117 9.884
D 4.926 .0809 4.954 1.371 1.101 .8158

ms Ni2316 Pb2203 Sb2068 Se1960
ts ppb ppb ppb ppb
e 51.41 165.6 L.7008 11.62
V .5722 2.617 2.71 1.22
D 1.113 1.581 386.7 10.5

Time:	RIANGL2 09/20/98 C	12:12 Type: S	- F	ilename: orr. Fact	92098 .or:	Operator: 1.00000 ID.: 467058	DKH
3 /	As1890 ppb 78.04 .9675 1.24	ppb 42.37 .0974	ppb 51.59 .116	ррb 82.05 .3057	ppb 110.2 .3505	ррб 1296. 2.983	
3	ppb 89.29 1.135	ppb 221.7 1.361	16.53	ppb 55.01 1.389			

nod: TRIANGL2 Time: 09/20/98 a: CONC		12:17 Type: S	- (	1.00000	DKH		
ID.:		Cust. Sa	opl. ID.:		Cust.	ID.: 467058	
					•		
NS .	As1890	8e3130	Cd2265	Co2286	Cr2677	Mn2576	
	ppb	ppb	ррь	ppb	ppb	ppb	
3	85.97	38.73	49.28	81.73	109.1	1147.	
٧	.5274	.0436	.1345	.1206	.1631	1.5	
9	.6135	.1124	. 273	.1476	.1495	.1308	
as	Ni2316	Pb2203	Sb2068	Se1960			
ts	ppb						
	87.13						
	.9933	.5385	.5629	1.69			
0	1.14	.248	3.636	3.062			

hod: Time: e: COM ID.:		12:22 Type: S	~ F	Operator: DK 1.00000 ID.: 46705B			
ns ts e v	ppb 79.32 .7798	41.31 .3126	Cd2265 ppb 51.44 .539 1.048	86.58 .5552	113.0 .1965	1309. 8.562	
ns ts e	Ni2316 ppb 89.72 .3259	216.0	Sb2068 ppb 47.78 1.497 3.134	56.69			

Operator: DKH

Cust. Smpl. ID.: Cust. ID.: 467058 ID.:

\$ .\$	As1890 ppb 6.616 .4493 6.792	8e3130 ppb L-1.146 .0104 .9124	Cd2265 ppb L.8441 .1333	Co2286 ppb 7.352 .2423 3.208	Cr2677 ppb 13.71 .0907 .6615	Mn2576 ppb 262.1 .9263
	0.772	.7124	13.0	3.200	.0015	. 3535

IS .3	Mi2316 ppb	P62203	Sb2068	Sal960 ppb
1	3.352	33.68	L.4273	L2.110
	. 6358	.8303	2.176	1.288
•	7.435	2.465	509.3	61.03

Time:	09/20/98	Sample Na 12:37 Type: Q	r Fi	llename: S oca Facta	92098 na :	Operator.	
ID.:		Cust. Sm	ol. [D.:		Cust. I	D.: 467058	
					• •		
	4 - 7505	A13082	A=1990	2 2494	Ra4934	Re3130	
135	AG3≥3V	ppb 546.1 8.308 1.521	noh	anh dan	oob	pob	
ts	900 274 )	ρμυ 544 !	SIT T	196.3	521.1	500.7	
e	204.1	3 40 1	4 025	2 783	2.03	2.019	
V D	4144	1 571	7347	5608	.3896	.4032	
ns.	Ca3179	Cd2265 ppb 518.4 2.159	Ca4186	052286	Cr2677	Cu3247	
ts	מפס	daa	ppb	ppb	σqα	dqq	
e	501.5	518.4	514.1	521.1	510.9	514.1	
¥	1.642	2.199	2.79	1.314	1.323	2.445	
Ď	.3274	2.179 .4242	.5427	.3481	. 259	.4755	
	4						
ā li	7a2714	X_7664	L16707	Mg2790	Mn2576	Ao2020	
i S	ومو	X_7664 ppm 5.042	oqq	ррБ	ppa	515 G	
ē	517.5	5.042 .0251	491.5	505.6	4.50گر	515.7	
V	2.513	0751	i a 4	4.401	1,40		
D	.4337	,4979	. 5812	.386∔	.2312	.3073	
	N - 7703	415711	0. 2149	2205-1	2203-2	S5206ā	
#15	Majáve	Mi2316	P_Z197	2 <u>7</u> 00 1	2200 1	20200	
tā	0 Dail	511	2013 900	509 Á	514 S	501.2	
e	4,710 3307	apb 511.1 2.886 .5647	0 752	2 676	1 769	1.954	
:V 0	. 4445	∠.850 .5647	1,951	5251	3321	3898	
U	-17	.3047	1.054	. 3431	,	•== .	
ៈវាន	1960-1	1960-2	Pb2203	Sa1960	Sn1359	Sr 4215	
ī.S	000	daa	pob	daq	ด์อด	ממפ	
is.	518.3	520.1	512.9	519.5	493.8	513.7	
٧	3.679	3.329	1.259	3.403	2.812	2.135	
10	.71	ppb 520.1 3.329 .64	.2455	.6\$5	. 5695	.4254	
:55	713349	711308	V_2914	Zn20o2	\$12881		
.13	000	000	36C	550	500		
5i	<b>3</b> 03.3	000 321.3 2.333	ālā.ā	459.0	4770.		
EV	1.571	2.533	1.945	2.127	22.46		
70	.17.0	. 485-	.5797	, <del>1</del> 26+	.4501		

iod: TRIANGL2 Sample Name: ICB/CCB Operator: DXH Time: 09/20/98 12:41 - Filename: 92098 Typa: ♀ :: CONC Corr. Factor: 1.00000 10.: Cust, Smpl. ID.: Cust. ID.: 467058 15 Ag3280 A13082 As1890 8_2496 3a4934 Re 7170 S ממפ ppb 00b___ <del>-000</del> ppb doo ì .0882 36.41 -.3899 -17.18 .2415 .3941 1 .1035 2.778 .3042 1.169 .0401 .0229 ) 117.4 7.631 78.02 6.805 5.811 16.61 Cu2247 Ca3179 Cd2265 Ca4186 NS. Co2286 Cr2677 daa :5 למם ppb dag daa apb 1.853 .3498 4.485 .4485 .5167 -.5675 1 .7785 .1049 1.457 .3857 .061 .1151 ) 42 29.98 32.48 74,66 13.6 20.27 15 ra2714 K_7664 Li6707 Mg2790 Mn2576 Mo2020 ts 200 ppm opo pob / ppb oob 2455.و 3 14.34-.0256 .1573 6/175 1.250 1.393 .0015 .0153 **X**.144 .001 1.001 ) 13.233.449 5.939 18.53 .4162 80.1 13 da3502 dizāla 2 2149 2203-1 2203-2 \$52063 dad is DOM وموه ממכ aga doc 3 -.1459 .0982 2.690 -3.044 -1.235 44.042 .lléã .246 2.124 į .6904 1.589 3.308 ) 80.03 251/.2 78.95 22.63 128.631.32 25 1960-i 1960-2 252203 Sa1960 5#1899 3r4215 dço 55 000 ממכ 305 500 505 3 -i **.**651 .3494 -1.835 -.3102 .2279 .1986 .3614 .9115 .3175 .5217 .2065 .0088 \$6.33 ) 90.89 49.57 168.2 90,54 4.412 1004) 111700 V_2914 7, 5 In2062 512851 13 500 ۵۵۵ asb 300 ენმ .5020 ŝ 36.544 1.411 .3763 -205.5 .0715 .7931 . i sā .4156 4.097 16.29 12.12 11.55

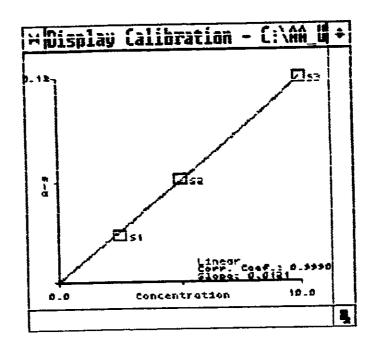
N/A. DVA 9/20/98

hod: Ta Time: e: CONC ID.:	09/20/98		Co	CB lename: 9 rr. Facto	2098 ir:	Operator: 1.00000 .: 467058						
ns ts e v	Ag3280 ppb .1229 .3266	A13082 ppb 35.49 3.035 8.551		B_2496 ppb -18.52 -864 4.666	8a4934 ppb .0863 -3147 17.03	3e3130 ppb .2995 .0159 5.312	<u></u>	$\supset$				
ns ts e v	265.8 Ca3177 ppb .3223 .2413 74.88	Cd2265 ppb .2408 .0786 32.65	Ce4186 ppb 1.824 .837 45.89	Co2286 ppb .3665 .2699 73.63	Cr2677 ppb .3373 .1929 57.2	Cu3247 opb 5527 .0395 7.277		/				
ms ts e v	Fe2714 ppb 4.911 1.871 38.1	X_7664 ppm 0368 .0069 18.75	L16707 ppb .0288 .0317 110.2	Mg2790 ppb 1.579 .8819 55.84	Mn2576 980 .0579 .0537 92.73	Ma2020 ppp .4054 .1595 39.34			•			
73 55 6 V	Na3302 ppm 1294 .052 40.18	Ni2316 pp0 4408 .1225 27.8	2_2149 ppb -3/230 4/546 140.7	2203-1 ppb -1.994 2.239 112.2	2203-1 ppo -2.056 1.481 72.06	302068 ppb 1.301 .4005 30.78						
ins ts je v	1960-1 ppb -1.109 .683a	1960-2 pg0	252203 apb g-2.035 .971 47.71	Sa1960 ppb .5240 .6313 124.3	Sm1899 ppb 2154 1.038 481.3	\$74215 200 .0810 .0166 20.53			1	2(1	UKAY	9/20/98
715 125 18 19 10	71/347 040 1270 130/37 26.54	711908 909 2.017 1.78 23.03	/_2924 050 1.220 .2788 	Zn296Z 500 .1281 .1348	812851 000 -114.3 111	) 						

od: Tia	TRIANGL2	Sample	Name: IC8	/008	annas	Operator: 1.00000 IO.: 467058	DKH
. 10	0. <i>3712017</i> 0 186	Tunne il	_	riishams. Pann Sool	74970 Fari	1 00000	
10		Type. W	1 75 .	COTT. FAL	.UI:	1.00000	
19.	·	5U50. 3	MDI. IV.:		GUSE.	10.: 46/058	
					. •		
٠ŝ	Ag3280	A13082	As1890	8_2495	8a4934	8a3130	
,3	000	dqq	dqq	opo	ppo	dad	
!	1080	46.36	.1051	-19.60	.0198	.3104	
ŧ	cpo 1080 .4232	2.011	.287	.5749	.0523	.0214	
;	391.7	4.338	273	2.933	264.3	6.905	
15	3a3179	Cd2265	Ca4186	Ca2286	Cr2677	Cu3247	
73	doa	doa	daa	לפס	dac	daa	
1	pob 1595 .4891	.1738	2.333	.0702	.3898	- 8187	
1	.4891	.0881	. 9066	1834	2203	0885	
)	306.7	50.69	38.87	261 1	50.05	10.81	
			33131		33743	13,01	
ì5	7a2714	K_7664	Li6707	Mg2790	Mn2576	do 2020	
5.5	350	oom	opo	oqa	000	000	
<u> </u>	906 2.138 5.871	0251	.0038	0972	0502	. 3396	
1	5.371	.0115	.3115	. 3233	.0545	.179	
ì	274.6	45.73	300	847.9	102.1	54.1	
îiS	Ma3302 pm 7.1363 .1066	NiZSio	P_2149	2203-1	2200-0	302063	
:3	<b>MQ</b> C	ממק	מממ	<i>ڏ</i> ۄۄ	ממפ	560	
ŝ	1.1505	.1476	2.096	-,3852	-1.567	. 2972	
•	0001.	.7035	1.806	1.368	1.057	.6293	
<b>ن</b>	78.1	476.7	36.16	156.8	76.21	211.8	
73	1760-1 000 6924 1.048	1960-2	Pb2203	Sa1960	Sn1899	Sr4215	
Ĺš	<b>333</b>	למכ	opb	ppb	dag	aab	
3	5924	.1942	-1.220	1010	.3133	.0133	
V	1.045	i.445	. 2444	1,214	.6112	.0117	
)	.31.4	742.3	20.04	1202	75.11	63.93	
ü 5	713349 883 .1886 .1911	711303	V_2924	Zn20a1	312031		
	053	355	dec	ن دُور تو ترکی	500		
÷	. 189ê	2.2.3	1.243	.2523	-121.5		
,	.1711	1,447	.1333	.577÷	2.939		
-		74.74	11.03	30.35	1,31:		

_			La. feeAl	ł		Sperator:	HXG
ខេត្តកំបត់: រំ	KIHNGLZ	Sample Ma	ahā: 160∺6 :=	ໂລກລອລເລີ	2098	Operator: 1.00000 0.: 467058	
un Time:	39/20/98	12:50	ω. - ''	islianc. 7	1070	00000 /	
Gae: CûN	ĉ	Typa: ¥	u u u	yri, rausi	n. - Aver II	1.09703 1 - 467852	
10 IU.:		ປີພຣະກ. ວິທີມີ	11. 19.1		- CU31. II	7,, 40/927	
** • • •	Ag328V ppo 549.4 .4726 .3876	A17397	441870	a 247o	3a4934	3a3130	
1633	ngosov	W12007	555	000	000	לסם	
10165	000 5.0	ETSAAA.	EDT Q	536 ó	547.7	437.7	
ivgs	347.4	1130VV.	2.206	2.606	.3116	1.511	
VSUE	.4945	314.7	1179	1957	.1482	.3098	
383D	21 Ov.	.0770	.4117	, 4031			
Stant	3a3179 ppb 446500. 1732 .3863	0d2265	Ca4186	002286	Cr2677	Cu3247	
initz	nah	506	566	gpb	ççb	909	
70.72	418500	199.4	522.8	504.0	494.4	574.2	
1046	1730	7 637	7.308	1.566	1.217	.9807	
SUCA NOCA	7347	1049	11)4	.3107	.2462	.1708	
VCne	. 4664	,4007	(1/4)				
-1	782712	3 7an+	: 16707	Na2770	an2576	Hō2929	
11083	782714 530 182300 498.3 ,2782	000	300	- 606	. 600	משכ	
JH1143	195756	16 as	37.7	530200	477.4	312.4	
7765	102309 102309	16.55	. 7	1598	1.192	2.323	
)	470.3 5777	7.7	2635	5015	2498	.551	
UGnë	,2794	.00.	, 2002				
F) 403	#40302 30# 3.970 .0872 1.461	WiC3io	P 2149	1205-1	2203-2	\$52063	
2177	565	36ô	_ 200	550	363	000	
January Salata	5 773	177 4	4027.7	322.7	508.8	527.3	
479¢	1970	1 :72	17 53	1.194	3.593	2.927	
35C)	1 441	2181	7 413	2475	1.709	.5548	
4700	1.791	,1401	2				
21aas	1960-1 000 - 366.3 .7919 .1378	1900-1	252005	Sa1960	Sa1399	5n4215	
55175	565	ووو	ōōō	paò	000	อัติ	
Alue	200.3	55∔.0	515.4	558.3	504.3	540.1	
Argo Firasi	.7919	1,652	3.23	1.295	5.651	.65.7	
5007	1578	2979	1.213	.2316	.7132	.1213	
>00							
Elans	713349 300 307.9 .9931	714508	,_1=71	<u> 1</u> 52962	512381		
A 1 3 3	300	300	<b>900</b>	ٽٽ <u>ٽ</u>	550		
avūč	307.9	530.3	311.1	447.E	5314.		
ivê.	575.1	5.000	,	3.250	3,101		
45.0	. 1	573	.27.2		.1301		

Loc. Concentration Solutions	
Calib. Blank / Diluent / ICB / CCB  1	


```
ment File: BE.GEL
ment: Be
                         Analyst: HULSTE
                         Peak Storage: 1 Repl./Sample
.nt Data: Main+Suppl.
nt: Calib. Curve
              Version: 7.30
                         Technique: HGA
STRUMENT: 4100 ZL
                        Slit: 0.70 Low
elength: 234.9 Peak
                        Signal Measurement: Feak Area
inal Type: Zeeman AA
                        Read Delay: 0.0
                                           BOC Time: 2
d Time: 3.0
iple Replicates: 2
                      Spike Replicates: Same as Sample
undard Replicates: 2
.IBRATION:
plutions | ID | Conc | Location| Volume | Diluent | Modifier |
                    sples |-----| 10 | 5 | 5 | t
luent Location: 0
odifier #1 Location: 40 Modifier #2 Location: alibration Units: ug/L Sample Units: ug/L
alibration Type: Linear
rnace Time/Temperature Program:
epiTemo Ramo Hold (Gas Flow(Read(Gas Tvoe)
1 1 110 1 25 1 250 1 | Norm |
jection Temp: 20 Pipette Speed: 85% Extraction System: On
QUENCE:
ep Action and Parameters
1 Pipet dilgent + modifier 1 + spike + sample/std
   Run HGA steps 1 to End
ECKS:
 valibration Type: Resloce
estions: None
nc. Above Calibration Action: Dilute & Reanalyze After 1 Rep
ternata Sample Volumes (uL): 5,2,1
 n Alternate Volume Blanks: No
 **RSD > 20.0 and Concentration > 0.2 then Retry 1 times
eck %RSD on: Samples + Standards + Soikes + QC Samples
 movery Measurements:
 uL of 10 ug/L Standard at Location 2 Gives 5.0 ug/L
 asure Recovery on Samples: 11,15
                         % Recovery Limits: 85 to 115
 d to QC Samples: Yes
```

```
A/S | QC Sample | Conc. Limits
                                           |After|Periodic|At |Count As|
|Calib| Check |End| Sample |
                    1 Lower
 Loc. I
         ID
                                 Upper
   4 ICV=3.0ug/L
                     2.7
                                 3.3
   @ ICB
                      -1.0
                                 1.0
   5 CCV=6.@ug/L
                     4.8
                                 7.≥
                                              Χ
                                                      Χ
                                                            X
   Ø CCB
                      -1.0
                                 1.0
                                              Х
                                                      X
                                                            Χ
n Periodic QC Samples: Every 10
t of Limit Action: Reslope and Rerun Samples
trix Check Calculations:
Difference for Dupls: No Locations:
Recovery for Spike: No
                           Locations:
                                                Conc:
```

Wavelength: 234.9 ment File: BE.GEL Element: Be e: 09/20/98 Time: 14:19 Slit: 0.70 L ID/Wt File: UNTITLED Lamp Current: 30 a File: EB331.DAT Energy: 60 Calib. Type: Linear hnique: HGA Date: 09/20/98 Sea. No.: 00001 A/S Pos.: 0 ID: STD BLANK dispensed: 5 from 0, 5 from 40, 10 from 0 Time: 14:21 plicate 1 Peak Height (A): 0.004 ık Area (A-s): 0.001 skgnound Pk Area (A-s): 0.005 Background Pk Height (A): 0.018 ink Corrected Pk Area (A-s): 0.001 mentration (ug/L ): 0.1 dispensed: 5 from 0, 5 from 40, 10 from 0 Time: 14:23 plicate 2 (Peak Stored) Peak Height (A): 0.204 ik Area (A-s): -0.000 skaround Pk Area (A-s): 0.005 Background Pk Height (A): 0.021 ank Corrected Pk Area (A-s): 0.000 scentration (ug/L ): 0.0 RSD(%): 80.01 an Cone (ug/L ): 0.1 SD: 0.05 so-zero performed. Date: 09/20/98 ID: STD1= 2.5ug/L Sec. No.: 00002 A/S Pos.: 1 dispensed: 10 from 0, 5 from 40, 5 from 1 Sea. No.: 00003 A/S Pos.: 0 Date: 09/20/98 ID: STD BLANK dispensed: 5 from 0. 5 from 40. 10 from 0 Time: 14:27 olicate 1 Peak Height (A): 0.003 ak Area (A-s): -0.000 n n ca (n s/. 0.000 packground Pk Height (A): 0.022 ank Corrected Pk Area (A-s): -0.000 ncentration (ug/L ): -0.0 dismamaed: 5 from 0. E from 40. 10 from 0 Time: 14:29 plicate & (Peak Stoned) Peak Height (A): 0.004 ak Area (A-s): -0.000 ckground Pk Area (A-s): 0.006 Background Pk Height (A): 0.023 ank Corrected Pk Area (A-s): -0.000 ncentration (ug/L ): -0.0 RSD(%): 31.65 an Conc (ug/L ): -0.0 SD: 0.01 to-zero performed. Seq. No.: 00004 A/S Pos.: 1 Date: 09/20/98 ID: STD1= 2.5ug/L dispensed: 10 from 0. 5 from 40, 5 from 1 Time: 14:31 plicate 1 Peak Height (A): 0.169 ak Area (A-s): 0.027 ckground Pk Area (A-s): 0.043 Background Pk Height (A): 0.219

```
ncentration (ug/L ): 2.7
 dispensed: 10 from 0. 5 from 40. 5 from 1
 plicate 2 (Peak Stored)
                                   Time: 14:34
 ak Area (A-s): 0.027
                                   Peak Height (A): 0.155
 ckground Pk Area (A-s): 0.042
                                   Background Pk Height (A): 0.213
 ank Corrected Pk Area (A-s): 0.028
 ncentration (ug/L ): 2.7
 an Conc
         (ug/L ):
                         2.7
                                   SD: 0.02
                                                         RSD(%): 0.75
 andard number 1 applied.
                         (2.5)
 rrelation coefficient: 1.00000
                                   Slope: 0.0110
ID: STD2= 5.0mg/L
                         Seg. No.: 00005
                                          A/S Pos.: 1
                                                          Date: 09/20/98
. dispensed: 5 from 0, 5 from 40, 10 from 1
plicate 1
                                   Time: 14:36
Hak Area (A-s): 0.059
                                   Peak Height (A): 0.338
ckground Pk Area (A-s): 0.080
                                   Background Pk Height (A): 0.382
.ank Corrected Pk Area (A-s): 0.059
mcentration (un/L ): 5,4
. dispensed: 5 from 0. 5 from 40. 10 from 1
(plicate 2 (Peak Stored)
                                   Time: 14:39
:ak Area (A-s): 0.063
                                   Peak Height (A): 0.403
ackground Pk Area (A-s): 0.083
                                   Background Pk Height (A): 0.450
.ank Corrected Pk Area (A-s): 0.063
incentration (ug/L ): 5.8
ean Conc
         (ug/L ):
                         5.6
                                   SD: 0.26
                                                         RSD(%): 4.69
;andard number 2 applied. [5.0]
orrelation coefficient: 0.99112
                                  Slope: 0.0120
ID: STD3= 10ug/L
                         Sea. No.: 000006
                                          A/S Pos.: 2
                                                         Date: 09/20/93
_ dispensed: 5 from ∅. 5 from 40, 10 from 2
policate 1
                                   Time: 14:41
eak Area /A-eta a. 121
                                   Peak Height (A): 0.708
ackground Pk Area (A-s): 0.146
                                   Background Pk Height (A): 0.745
lank Corrected Pk Area (A-s): 0.121
oncentration (ug/L ): 10.0
_ dispensed: 5 from ∅. 5 from 40. 10 from 2
eplicate 2 (Peak Stored)
                                   Time: 14:44
eak Area (A-s): 0.122
                                   Peak Height (A): 0.727
ackground Pk Area (A-s): 0.144
                                   Background Pk Height (A): 0.754
lank Corrected Pk Area (A-s): 0.122
oncentration (ug/L ): 10.1
ean Conc (ug/L ):
                        10.1
                                   SD: 0.08
                                                         RSD(%): 0.75
tandard number 3 applied.
                        [10.0]
orrelation coefficient: 0.99902
                                   Slope: 0.0121
```

ank Corrected Pk Area (A-s): 0.027



ment File: BE.GEL Element: Be Wavelength: 234.9 e: 09/20/98 Time: 15:08 a File: EB331.DAT ID/Wt File: EB331.IDW calib. Type: Linear Slit: 0.70 L Lamp Current: 30 :hnique: HGA Energy: 60 ID: ICV=3.@ug/L Sea. No.: 00007 A/S Pos.: 4 Date: 09/20/98 dispensed: 5 from 0. 5 from 40. 10 from 4 plicate 1 Time: 15:10 ik Area (A-s): 0.030 Peak Height (A): 0.176 :kground Pk Area (A-s): 0.044 Background Pk Height (A): 0.250 ank Corrected Pk Area (A-s): 0.030 icentration (ug/L ): 2.5 dispensed: 5 from 0, 5 from 40. 10 from 4 Blicate 2 (Peak Stored) Time: 15:12 ak Area (A-s): 0.037 Peak Height (A): 0.237 ckground Pk Area (A-s): 0.052 Background Pk Height (A): 0.296 ank Corrected Pk Area (A-s): 0.037 acentration (ug/L ): 3.1 an Conc (ug/L ): 2.8 SD: 0.42 RSD(%): 15.27 sample is within range 2.7 - 3.3 $\mathbf{v}$ ID: ICB Seq. No.: 00008 A/S Pos.: 0 Date: 09/20/98 dispensed: 5 from 0. 5 from 40. 10 from 0 plicate 1 Time: 15:15 ak Area (A-s): 0.000 Peak Height (A): 0.003 ckground Pk Area (A-s): 0.005 Background Pk Height (A): 0.026 ank Corrected Pk Area (A-s): 0.000 ncentration (ug/L ): 0.0 dispensed: 5 from 0, 5 from 40, 10 from 0 plicate 2 (Feak Stored) Time: 15:17 ak Area (A-s): 0.000 Peak Height (A): 0.003 ckpround Pk Area (A-s): 0.006 Background Fk Height (A): 0 032 anh Corrected Ak Area (A-s): 0.000 ncentration (agvi ): 0.0 an Conc (ug/L ): Ø.Ø SD: Ø.Ø1 RSD(%): 24.21 sample is within range -1.0 - 1.0 ID: CHECK LO Seq. No.: 00009 A/S Pos.: 6 Date: 09/20/98 dispensed: 5 from 0, 5 from 40, 10 from 6 plicate 1 Time: 15:20 ak Area (A-s): 0.012 Peak Height (A): 0.080 ckground Pk Area (A-s): 0.022 Background Pk Height (A): 0.127 ank Corrected Pk Area (A-s): 0.013 ncentration (ug/L ): 1.0 dispensed: 5 from 0, 5 from 40, 10 from 6

```
Time: 15:22
olicate 2 (Peak Stored)
                              Peak Height (A): 0.084
ak Area (A-s): 0.013
skground Pk Area (A-s): 0.021
                              Background Pk Height (A): 0.125
ank Corrected Pk Area (A-s): 0.013
ncentration (ug/L ): 1.1
                                                  RSD(%): 4.13
an Cone (ug/L ): 1.1
                             SD: 0.04
Seq. No.: 00010 A/S Pos.: 7 Date: 09/20/98
   ID: 46507B MB
dispensed: 5 from 0, 5 from 40, 10 from 7
                               Time: 15:25
olicate 1
                               Feak Height (A): 0.003
ak Area (A-s): -0.000
                              Background Pk Height (A): 0.028
ckground Pk Area (A-s): 0.005
ank Corrected Pk Area (A-s): 0.000
ncentration (ug/L ): 0.0
 dispensed: 3 from 0. 5 from 40. 10 from 7
                               Time: 15:27
plicate 2 (Peak Stored)
                              Peak Height (A): 0.005
ak Area (A-s): 0.001
ckground Pk Area (A-s): 0.005 Background Pk Height (A): 0.026
ank Corrected Pk Area (A-s): 0.001
ncentration (ug/L ): 0.1
                                                   RSD(%): 136.64
an Cone (ug/L ): Ø.Ø SD: Ø.Ø6
ID: 46507B LCS X10 Sec. No.: 00011 A/S Pos.: 8 Date: 09/20/98
 dispensed: 3 from 0, 5 from 40, 10 from 8
                               Time: 15:30
plicate 1
                              Peak Height (A): 0.400
 ak Area (A-s): 0.060
                              Background Pk Height (A): 0.430
ckground Pk Area (A-s): 0.080
 ank Corrected Pk Area (A-s): 0.060
 ncentration (uo/L ): 5.0
 dispensed: 5 from 0, 5 from 40. 10 from 3
                               Time: 15:32
 plicate 2 (Peak Stored)
                              Peak Height (A): 0.390
 ak Area (A-s): 0.063
                              Background Pk Height (A): 2.474
 ckground Pk Area (A-s): 0.084
 ank Corrected Pk Area (A-s): 0.064
 moentration (ug/L ): 5.3
 an Conc (ug/L ): 5.1 SD: 0.20
                                                   RSD(%): 3.82
 Seq. No.: 00012 A/S Pos.: 9 Date: 09/20/98
    ID: 218-12-4
 . dispensed: 5 from ଉ, 5 from 40. 10 from ୨
                               Time: 15:35
 plicate 1
                                Peak Height (A): 0.048
 ak Area (A-s): 0.025
                               Background Pk Height (A): Ø.183
 ckground Fk Area (A-s): 0.110
 ank Corrected Pk Area (A-s): 0.025
 moentration (ug/L ): 2.1
 . dispensed: 5 from 0, 5 from 40, 10 from 9
                               Time: 15:37
 plicate 2 (Peak Stored)
                               Peak Height (A): 0.052
 iak Area (A-s): 0.026
```

```
ckground Pk Area (A-s): 0.113
                               Background Pk Height (A): 0.197
 ank Corrected Pk Area (A-s): 0.026
 ncentration (ug/L ): 2.2
 an Conc (ug/L ): 2.1
                               SD: 0.07
                                                     RSD(%): 3.17
 ID: 218-12-7
                        Sea. No.: 00013 A/S Pos.: 10
                                                     Date: 09/20/98
 dispensed: 5 from 0. 5 from 40. 10 from 10
 plicate 1
                                Time: 15:40
 ak Area (A-s): 0.027
                                Peak Height (A): 0.061
 ckground Pk Area (A-s): Ø.121
                                Background Pk Height (A): 0.220
 ank Corrected Pk Area (A-s): 0.028
ncentration (uq/L ): 2.3
 dispensed: 5 from 0, 5 from 40, 10 from 10
 plicate 2 (Peak Stored)
                                Time: 15:42
 ak Area (A-s): 0.026
                                Peak Height (A): 0.055
ckpround Pk Area (A-s): 0.123
                               Background Pk Height (A): 0.226
 ank Corrected Pk Area (A-s): 0.026
ncentration (ug/L ): 2.2
an Cone (ug/L ): 2.2 SD: 0.09
                                                     RSD(%); 3.97
ID: 218-12-10
                       Sec. No.: 00014 A/S Pos.: 11 Date: 09/20/98
. dispensed: 5 from 0. 5 from 40. 10 from 11
olicate 1
                                Time: 15:44
ak Area (A-s): 0.025
                                Peak Height (A): 0.052
:ckground Pk Area (A-s): Ø.128
                               Background Pk Height (A): छ.231
ank Corrected Pk Area (A-s): 0.025
incentration (ug/L ): 2.0
. dispensed: 5 from 0. 5 from 40, 10 from 11
plicate 2 (Peak Stored)
                                Time: 15:47
:ak Area (A-s): 0.025
                               Peak Height (A): 0.052
ckground Pk Area (A-s): 0.130
                               Background Pk Height (A): 0.227
.ank Corrected Pk Area (A-s): 0.025
incentration (ug/L ): 2.0
tan Conc (ug/L ): ৪.৩
                            SD: Ø.B:
                                                     RSD(%): 0.29
ID: 218-12-10
                       Seq. No.: 00015
                                       A/S Pos.: 11 Date: 09/20/98
_ dispensed: 5 from 40, 5 from 2, 10 from 11
ample abs. is greater than that of the largest standard.
Policate 1
                                Time: 15:49
tak Area (A-s): 0.142
                                Peak Height (A): 0.324
ackground Pk Area (A-s): 0.268
                               Background Pk Height (A): 0.505
lank Corrected Pk Area (A-s): 0.142
uncentration (ug/L ): 11.7
_ dispensed: 5 from 40, 5 from 2, 10 from 11
ample abs. is greater than that of the largest standard.
eplicate 2 (Peak Stored)
                                Time: 15:52
eak Area (A-s): 0.148
                                Peak Height (A): 0.328
 256
```

```
Background Pk Height (A): 0.545
kground Pk Area (A-s): 0.275
mk Corrected Pk Area (A-s): 0.148
centration (ug/L ): 12.2
ple abs. is greater than that of the largest standard.
                                                   RSD(%): 3.17
in Conc (ug/L ): 12.0
                              SD: 0.38
overy is 198.6% (outside of specified limits)
Seq. No.: 00016 A/S Pos.: 12 Date: 09/20/98
   ID: 218-12-10 D
dispensed: 5 from 0, 5 from 40, 10 from 12
                               Time: 15:54
plicate 1
                              Peak Height (A): 0.044
ak Area (A-s): 0.024
okground Pk Area (A-s): 0.128 Background Pk Height (A): 0.230
ank Corrected Pk Area (A-s): 0.024
ncentration (ug/L ): 2.0
dispensed: 5 from Ø. 5 from 40. 10 from 12
olicate 2 (Peak Stored)
                               Time: 15:57
                              Peak Height (A): 0.045
skground Pk Area (A-s): Ø.130 Background Pk Height (A): Ø.233
ak Area (A-s): 0.023
ank Corrected Pk Area (A-s): 0.023
ncentration (ug/L ): 1.9
                                                    RSD(%): 2.40
                              SD: 0.25
                      2.0
an Cone (ug/L ):
ID: 218-12-10 MSX10 Sec. No.: 00017 A/S Pos.: 13 Date: 09/20/98
 dispensed: 5 from 0, 5 from 40, 10 from 13
                               Time: 15:59
olicate 1
                               Peak Height (A): 0.208
ak Area (A-s): 0.080
                               Background Pk Height (A): 0.312
ekground Pk Area (A-s): 0.127
ank Corrected Pk Area (A-s): 0.080
ncentration (ug/L ): 6.6
 dispensed: 5 from 0, 5 from 40, 10 from 13
                               Time: 16:02
 plicate 2 (Peak Stored)
                               Peak Heicht (9): 0.845
 ak Area (A-s): 0.081
                               Background Pk Height (9): 0.340
 okqrayad Ak Area (A-s): 0.129
 ank Corrected Wa Area (A-s): 0.081
 ncentration (ug/L ): 6.7
                                                    RSD(%): 0.84
                      6.6 SD: 0.06
 an Conc (ug/L ):
 Date: 09/20/98
                                       A/S Pos.: 14
                       Sea. No.: 00018
    ID: 218-12-10MSDX10
  dispensed: 5 from Ø. 5 from 40. 10 from 14
                                Time: 16:04
 plicate 1
                                Peak Height (A): 0.189
 ak Area (A-s): 0.076
 ckground Pk Area (A-s): Ø.122
                               Background Pk Height (A): 0.307
 ank Corrected Pk Area (A-s): 0.076
 ncentration (ug/L ): 6.3
 . dispensed: 5 from 0, 5 from 40, 10 from 14
                                Time: 16:06
 plicate 2 (Peak Stored)
```

```
ak Area (A-s): 0.075
                               Peak Height (A): Ø.196
 ckground Pk Area (A-s): 0.122 Background Pk Height (A): 0.289
 ank Corrected Pk Area (A-s): 0.076
 ncentration (uq/L ): 6.2
 an Conc (ug/L ):
                      6.2
                               SD: 0.01
                                                    RSD(%): Ø.18
 Seq. No.: 00019 A/S Pos.: 5 Date: 09/20/98
    ID: CCV=6.@ug/L
 dispensed: 5 from 0, 5 from 40. 10 from 5
 plicate 1
                               Time: 16:09
 ak Area (A-s): 0.074
                              Peak Height (A): 0.485
 ckground Pk Area (A-s): 0.099
                              Background Pk Height (A): 0.558
 ank Corrected Pk Area (A-s): 0.075
 ncentration (ug/L ): 6.2
 dispensed: 5 from 0. 5 from 40. 10 from 5
 plicate 2 (Peak Stored)
                               Time: 16:11
 ak Area (A-s): 0.074
                              Peak Height (A): 0.443
ckground Pk Area (A-s): 0.098 Background Pk Height (A): 0.510
 ank Corrected Pk Area (A-s): 0.074
 ncentration (ug/L ): 6.1
an Cone (ug/L ): 6.1 SD: 0.03
                                                  86D(%): Ø.41
sample is within range 4.8 - 7.2
. \\
    ID: CCB
                       Seq. No.: 00020 A/S Pos.: 0 Date: 09/20/98
. dispensed: 5 from 0. 5 from 40. 10 from 0
oblicate 1
                               Time: 16:14
ak Area (A-s): 0.001
                               Peak Height (A): 0.004
ickground Pk Area (A-s): 0.007
                              Background Pk Height (A): 0.033
ank Corrected Pk Area (A-s): 0.001
uncentration (up/L ): 0.1
. dispensed: 5 from 0, 5 from 40, 10 from 0
:plicate 2 (Peak Stored)
:ak Area (A-s): -0.000
                              Time: 16:16
                              Peak Height (A): 0.004
ackground Fk Area (A-s): 0.007
                               Backenound Pk Heicht (A): 0.028
work Connected Pk Area (A-s): -0.000
oncentration (ug/L ): -0.0
ean Conc (ug/L ): Ø.Ø SD: Ø.Ø5
                                                  RSD(%): 143.78
I sample is within range -1.0 - 1.0
Sec. No.: 00021 A/S Pos.: 15 Date: 09/20/98
   ID: 218-12-10 L
L dispensed: 5 from 0, 5 from 40, 10 from 15
eplicate 1
                               Time: 16:18
eak Area (A-s): 0.005
                              Peak Height (A): 0.011
ackground Pk Area (A-s): 0.036
                              Background Pk Height (A): 0.059
lank Corrected Pk Area (A-s): 0.005
oncentration (ug/L ): 0.4
```

```
dispensed: 5 from Ø, 5 from 40, 10 from 15
                                                                     Time: 16:21
olicate 2 (Peak Stored)
                                                                     Peak Height (A): 0.011
ak Area (A-s): 0.005
                                                                     Background Pk Height (A): 0.069
:kground Pk Area (A-s): 0.037
ank Corrected Pk Area (A-s): 0.005
mentration (ug/L ): Ø.4
                                                                                                                   RSD(%): Ø.66
                                                                      SD: 0.00
                                                 Ø. 4
                 (ug/L
an Con⊂
                                                               A/S Pos.: 15 Date: 09/20/98
                                                            No.: 00022
                                                   Seq.
       ID: 218-12-10 L
 dispensed: 5 from 40, 5 from /2, 10 from 15
                                                                      Time: 16:23
olicate 1
                                                                      Peak Height (A): 0.004
ak Area (A-s): 0.000
                                                                      Background Pk Height (A): 0.028
ekground Pk Area (A-s): 0.015
ank Corrected Pk Area (A-s/: 0.001
ncentration (ug/L ): 0.1
 dispensed: 5 from 40. 💋 from 2, 10 from 15
                                                                      Time: 16:25
olicate 2 (Feak Stores)
ak Area (A-s): 0.001
                                                                      Peak Height (A): 0.005
                                                                      Background Pk Height (A): 0.029
ckground Pk Area (A-s/: 0.016
ank Corrected Pk Are (A-s): 0.002
                                    1: 0.1
ncentration (up/L
                                                                                                                RSD(%): 60.35
                                                                       SD: 0.26
                                                  Ø. i
 an Conc (uq/L
                                  (outside of specified limits)
 covery is -5.9%
 warning and the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of t
                                                                                                                     Date: 09/20/98
                                                                                      A/S Pos.: 5
                                                    Seq. No.: 00023
         ID: CCV=6/@uq/L
   dispensed: 🗲 from 0. 5 from 40, 10 from 5
                                                                       Time: 16:28
 plicate 1
                                                                      Peak Heicht (A): 0.004
 ak Area (A/s): 0.000
                                                                       Background Pk Height (A): 0.005
 ckground #k Area (A-s): 0.001
 ank Corrycted Pk Area (A-s): 0.000
 ncentration (ug/L ): 0.0
   dispersed: 5 from Ø, 5 from 40, 10 from 5
                                                                       Time: 16:30
  olica#s R (Leek Stoned)
                                                                      Peak Height (A): 0.003
  ak Ar/ea (5-1): -0.000
                                                                       Background Pk Height (A): 0.004
  ckgr/bund Pk Area (A-s): 0.001
  ank/Corrected Pk Area (A-s): -0.000
  nc∮ntration (ug/L ): -0.0
                                                                                                                      RSD(%): 215.70
                                                             SD: 0.03
                                                   0.0
  an Conc (up/L ):
    sample is out of range 4.8 - 7.2
   Date: 09/20/98
                                                                                        A/S Pos.: 0
                                                      Seq. No.: 00024
          ID: CCB
    dispensed: 5 from 0, 5 from 40, 10 from 0
                                                                         Time: 16:33
  Alicate 1
                                                                         Peak Height (A): 0.006
  ak Area (A-s): 0.001
                                                                         Background Pk Height (A): 0.004
  ckground Pk Area (A-s): -0.000
   ank Corrected Pk Area (A s): 0.001
                                                                            MA mu 9/2/98
    259
```

```
ncentration (ug/L ): 0.1
  dispensed: 5 from 0, 5 from 40, 10 from 0
 plicate 2 (Peak Stored)
                                     Time: 16:35
 ak Area (A-s): 0.000
                                     Peak Height (A): 0.004
 ckground Pk Area (A-s): 0.001
                                     Background Pk Height (A): 0.004
 ank Corrected Pk Area (A-s): 0.000
 ncentration (un/L ): 0.0
 an Conc (ug/L ):
                          Ø. 1
                                     SD: 0.02
                                                            RSD(%): 30.82
: sample is within range -1.0 - 1.0
ID: STD BLANK
                                             A/S Pos. : Ø
                           Seq. No.: 00025
                                                             Date: 09/20/96
. dispensed: 5 from 0. 5 from 40, 10 from 0
eplicate 1
                                     Time/: 16:37
'ak Area (A-s): Ø.001
                                     Peak Height (A): 0.003
ickground Pk Area (A-s): 0.001
                                     Background Pk Height (A): 0.005
 ank Corrected Pk Area (A-s): 0.001
progration (up/L ): 0.1
. dispensed: 5 from 0. 5 from 40.
                                    from 0
plicate 2 (Peak Stored)
                                     Time: 16:40
:ak Area (A-s): -0.000
                                     Peak Height (A): 0.004
ackonound Pk Area. (A-s): 0.001
                                     Background Pk Height (A): 0.005
.ank Corrected Pk Area (A-s):/-0.000
oncentration (ug/L ): -0.0
ean Cone (ug/L ):
                          Ø. Ø
                                     SD: 0.06
                                                            RSD(%): 229.42
sto-zero performed.
     ID: 5.0 ug/L
                           Seq. No.: 00026
                                                             Date: 09/20/98
                                             A/S Pos.: 1
_ dispensed: 5 from∕0, 5 from 40, 10 from 1
∍plicate 1
                                    Time: 16:42
eak Area (A-s): -0.001
                                    Feak Height (A): 0.003
ackground Pk AreA (A-s): 0.002
                                    Background Pk Height (A): 0.005
lank Connected #k Area (A-s): -0.001
Thorntmation (Va/L ): -0.1
💶 dispensed: 🏂 from 0. 5 from 40. 10 from 1
eplicate 2 (Peak Stored)
                                    Time: 16:45
eak Area (A/s): -0.000
                                    Peak Height (A): 0.004
ackground Ak Area (A-s): 0.001
                                    Background Pk Height (A): 0.005
lank Corrected Pk Area (A-s): -0.000
oncentrat (on (ug/L ): -0.0
ean Conc/ (ug/L ):
                         -0.0
                                    SD: 0.02
                                                            RSD(%): 59.57
       I⊅: 5.0 ug/L
                           Sea. No.: 00027
                                           A/S Pos.: 1
                                                            Date: 09/20/99
L dispensed: 5 from 0. 5 from 40. 10 from 1
eplicate 1
                                    Time: 16:47
eak Area (A-s): 0.000
                                    Peak Height (A): 0.004
 260
```

NIA. MAX 9121/98

```
Background Fk Height (A): 0.005
skyround Pk Area (A-s): 0.001
ink Corrected Pk Area (A-s): -0.000
ocentration (ug/L ): -0.0
dispensed: 5 from 0, 5 from 40, 10 from 1
                                  Time: 16:49
plicate 2 (Peak Stored)
                                  Peak Height (A): 0.003
1k Area (A-s): -0.000
                                  Background Pk Height (A): 0.005
ekonound Pk Area (A-s): 0.001
ink Corrected Pk Area (A-s): -0.000
ncentration (ug/L ): -0.0
                                                         RSD(\%): 105.35
                                   SD- OF THE
an Cone (ug/L ): -0.0
slope abs. is greater than that of the largest standard.
                                               wannananananananananana
<sub>ย</sub>งงก็กรรรรรกจากกรรรมที่การกรรรกรรรกรรรมการกรรรมที่
                                                          Date: 09/20/95
                                           A/9 Pos.: 4
                         Sea. No.: 00028
    ID: ICV=3.0uc/L
dispensed: 5 from 0, 5 from 40, 10 from 4
                                   Time: 16/:52
olicate 1
                                   Peak Heright (A): 0.005
ak Area (A-s): 0.000
                                   Backgyound Pk Height (A): 0.004
ckground Pk Area (A-s): 0.001
ank Corrected Pk Area (A-s): 0.000
ncentration (ug/L ): 0.0
 dispensed: 5 from Ø, 5 from 40, 10 frøm 4
                                    ime: 16:54
plicate 2 (Peak Stored)
                                   'Deak Height (A): 0.003
ak Area (A-s): 0.000
                                   Background Pk Height (A): 0.004
ekonound Pk Area (A-s): 0.001
ank Corrected Pk Area (A-s): 0.000
ncentration (ud/L ): 0.0
                                                         RSD(%): 4.83
                                   3D: 0.00
                         0.0
an Sone (ug/L ):
 sample is out of range 2.7 7
Date: 09/20/98
                                           A/S Pos.: 0
                          Sea. No.: 00029
    ID: ICB
 dispensed: 5 from 0, 5/from 40, 10 from 0
                                   Time: 16:57
 plicate 1
                                   Peak Height (A): 0.703
 ak Area (A-s): 0.000
                                   Background Pk Height (A): 0.004
 ekground Pk Area (A-/): 0.001
 ank Corrected 2k Area (A-s): 0.000
 ncentration (ug/L/): 0.0
 dispensed: 5 fyom 0, 5 from 40, 10 from 0
                                    Time: 16:59
 plicate 2 (Peak Stored)
                                   Peak Height (A): 0.003
 ak Area (A-s)/ 0.000
                                   Background Pk Height (A): ଏ.ଏଏଓ
 ckground Pk Area (A-s): 0.001
 ank Corrected Pk Area (A-s): 0.000
 ncentration (ug/L ): 0.0
                                                          RSD(%): 138.35
                                   SD: 0.02
         (un/L
 an Conc
                                            891518 thm A14
  sample is within range -1.0 - 1.0
 Date: 09/21/98
                                            A/S Pos.: 5
                          Seq. No.: 00030
     ID: CCV=6.0ug/L
```

```
dispensed: සි from ම. සි from 40. 10 from ස
olicata 1
                               Time: 06:30
 uk Area (A-s): 0.035
                              Peak Height (A): 0.186
:kground Pk Area (A-s): 0.056
                              Background Pk Height (A): 0.285
ink Corrected Pk Area (A-s): 0.034
centration (ug/L ): 2.8
 dispensed: 5 from 0. 5 from 40. 10 from 5
licate 2 (Peak Stored)
                              Time: 06:33
sk Area (A-s): 0.061
                               Peak Height (A): 0.325
:kground Pk Area (A-s): 0.092
                              Background Pk Height (A): Ø.434
ank Corrected Pk Area (A-s): 0.061
icentration (ug/L ): 5.0
in Conc (ug/L ):
                  3.9
                              SD: 1.57
                                                   RSD(%): 39.71
ID: CCV=6.0ug/L
                      Seq. No.: 00031 A/S Pos.: 5 Date: 09/21/98
 dispensed: 5 from 0. 5 from 40, 10 from 5
ID: CCV=6.0ug/L Sec. No.: 00032 A/S Pos.: 5 Date: 09/21/98
dispensed: 5 from 0. 5 from 40. 10 from 5
olicate 1
                               Time: 07:06
ak Area (A-s): 0.060
                              Peak Height (A): 0.296
okground Pk Area (A-s): ଡ.୪୨୧
                              Background Pk Height (A): 0.380
ank Corrected Pk Area (A-s): 0.060
ncentration (ug/L ): 5.0
dispensed: 5 from 0, 5 from 40, 10 from 5
plicate 2 (Peak Stored)
                              Time: 07:09
ak Area (A-s): 0.063
                              Peak Height (A): Ø.344
ikground Pk Area (A-s): 0.093
                              Background Pk Heicht (A): 0.396
ank Corrected Pk Area (A-s): 0.063
ncentration (up/L ): 5.2
an Conc (ug/L ): 5.1 SD: 0.17
                                                 RSD(%): 3.29
sample is within range 4.8 - 7.2
ID: CCR
                      Sac. No. ' 000033 A/S Pos.: 0
                                                   Date: Ø9/21/94
dispensed: 5 from 0. 5 from 40. 10 from 0
plicate 1
                               Time: 27:11
ak Area (A-s): 0.001
                              Peak Height (A): 0.004
ckoround Pk Area (A-s): 0.009
                              Background Pk Height (A): 0.040
ank Corrected Pk Area (A-s): 0.001
ncentration (ug/L ): 0.1
dispensed: S from 0, 5 from 40, 10 from 0
plicate 2 (Peak Stored)
                              Time: 07:14
ak Area (A-s): 0.001
                              Peak Height (A): 0.004
ckground Pk Area (A-s): 0.008
                              Background Pk Height (A): 0.033
ank Corrected Pk Area (A-s): 0.001
ncentration (ug/L ): 0.1
an Cone (ug/L ):
                    0.1 SD: 0.02
                                                 RSD(%): 22.82
262
```

```
Sec. No.: 00034 A/S Pos.: 6 Date: 09/21/98
   ID: CHECK LO
dispensed: 3 from 0. 5 from 40. 10 from 6
                                Time: 07:16
plicate 1
                                Peak Height (♠): 0.062
ik Area (A-s): 0.011
                               Background PK Height (A): 0.116
:koround Pk Area (A-s): 0.026
ink Corrected Pk Area (A-s): 0.011
mentration (up/L ): 0.9
dispensed: 5 from 0, 5 from 40, 10 from 6
                                Time: 07:19
olicate 2 (Peak Stored)
                                Peak Height (A): 0.064
ik Area (A-s): 0.011
                                Backmyound Pk Height (A): 0.109
skground Pk Area (A-s): 0.025
ink Corrected Pk Area (A-s): 0.011
icentration (ug/L ): 0.9
                                                      RSD(%): 1.18
                                 SØ: 0.01
                       Ø. 9
an Conc (ug/L ):
                                 Date: 09/21/98
                                00035 A/S Pos.: 7
                       Sec. No. :
   ID: 465078 MB
dispensed: 5 from 0. 5 from 40. 1/0 from 7
                                Time: 27:21
olicate 1
                                 Peak Height (A): 0.003
ak Amea (A-s): 0.000
                                 Background Pk Height (A): 0.036
tkground Pk Area (A-s): 0.008
ank Corrected Pk Area (A-s): 0/000
scentration (uc/L ): 0.0
 dispensed: 5 from Ø. 5 from 40. 10 from 7
ckground Pk Area (A-s): 0/009
ank Corrected Pk Area (A-s): 0/009
acentration
                                Time: 07:24
                                Peak Height (A): 0.003
                                 Background Pk Height (4): 0.033
ank Corrected Pk Area (A/s): -0.000
ncentration (ug/L ): -4.0
                                                      RSD(%): 209.06
                                SD: 0.02
                     -0.0
an Conc (ug/L ):
Date: 09/21/98
                                        A/S Fol.: 8
                       Sea. No.: 00036
    TD: 465078 LCS X10
 dispensed: 5 from Ø, 5 from 40. 10 from 8
                                 Time: 07:26
 plicate 1
                                 Peak Height (A): 0.263
 ak Area (A-s): 0/.055
 ekground Pk Are (A-s): 0.083
                                Background Pk Height (A): 0.351
 ank Corrected #k Area (A-s): 0.054
 ncentration (y/g/L): 4.5
 dispensed: /s from 0, 5 from 40, 10 from 8
                                 Time: 07:29
 plicate 2 /Peak Stored)
                                 Peak Height (A): 0.279
 ak Area (A/s): 0.055
 ckground F/k Area (A-s): 0.083
                                Background Pk Height (A): 0.346
 ank Corrected Pk Area (A-s): 0.055
 ncentration (ug/L ): 4.5
                                                       RSD(%): 0.82
                                 SD: 0.04
                       4.5
 an Cone (ug/ :
  263
```

NIA. MM 9121196

```
ID: 218-12-4
                                                         Sea. No.: 00037
                                                                                            A/S Pos.: 9 Date: 09/21/9
 L dispensed: 5 from 0. 5 from 40, 10 from ?
 Replicate 1
                                                                             Time: 07:31
 Peak Area (A-s): 0.026
                                                                             Peak Height (A): 0.058
 lackground Pk Area (A-s): 0.135
                                                                           Background Py Height (A): 0.227
 Blank Corrected Pk Area (A-s): 0.025
 Concentration (ug/L ): 2.1
 L dispensed: 5 from 0, 5 from 40, 10 from 9
 Replicate 2 (Peak Stored)
                                                                             Time: 07:34
 3eak Area (A-s): 0.027
                                                                             Peak Height (A): 0.058
 Background Pk Area (A-s): 0.132
                                                                             Background Pk Height (A): 0.225
 Blank Corrected Pk Area (A-s): 0.027
 Concentration (ug/L ): 2.2
 Mean Conc (ug/L ):
                                                      2.3
                                                                             SD: 0.08
                                                                                                                           RSD(%): 3.75
 oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol{ol}}}}}}}}}}}}}}}}}}
                                                                 <u>,</u>
Зe
        ID: 213-12-7
                                                         Seg. No.: 00038
                                                                                            A/S Pos.: i@
                                                                                                                           Date: 09/21/9
uL dispensed: 5 from 0. 5 from 40. 10 from 10
Replicate i
                                                                            Time: 07:36
Deak Area (A-s): 0.025
                                                                           Peak Height (A): 0.054
dackground Pk Area (A-s): 0.136
                                                                          Background Pk Height (A): 0.226
Blank Corrected Pk Area (A-s): 0.025
Concentration (ug/L ):/2.1
uL dispensed: 5 from A. 5 from 40. 10 from 10
Reolicate 2 (Peak Stored)
                                                                           Time: 07:38
Peak Area (A-s): 0./026
                                                                          Psak Height (A): 0.054
Background Pk Area (A-s): 0.135

Blank Corrected Fk Area (A-s): 0.026

Background Pk Height (A): 0.222
Concentration (vo/L ): 2.1
Mean Conc (ug/L ):
                                            2.1
                                                                          SD: 0.02
                                                                                                                           RSD(%): 1.03
annon annon africa annon annon annon annon annon annon annon annon annon annon annon annon annon annon annon a
         ID: 3/13-12-10
                                                      Sea. No.: 00039
                                                                                           A/S Pos.: 11
                                                                                                                          - Date: 09/21/93
uL disper∕sed: 5 form 0. S from 40. j0 from ti
```

11A. MW-9/21/98

```
ment File: BEMSA.GEL
                             Analyst: BENNETT
ment: Be
                            Peak Storage: 1 Repl./Sample
nt Data: Main+Suppl.
nt: Calib. Curve
Version: 7.30
                            Technique: HGA
TRUMENT: 4100 ZL
                            Slit: 0.7 Low
elength: 234.9 Peak
                            Signal Measurement: Peak Area
mal Type: Zeeman AA
                             Read Delay: 0.0 BUC Time: 2
d Time: 3.0
ible Replicates: 2
                      Spike Replicates: Same as Sample
undard Replicates: 2
IBRATION:
                      | Conc || |Location||Volume||Diluent|| Modifier|
elutions | ID
                                .luent Location: Ø
difier #1 Location: 40 alibration Units: ug/L
                            Modifier #2 Location:
                            Sample Units: ug/L
alibration Type: Method of Add.
rnace Time/Temperature Program:
PolTemo Ramo Hold (Gas Flow(Read(Gas Type)
1 1 110 1 25 1 250 ! | Norm |
           20 | 250 |
                           | Norm |
2 1 130 1
3 11500 5 15 ! 250 | ! Norm !
4 12300 0 3 ! 0 ! *! Norm !
5 12500 1 5 | 250 ! ! Norm !
jection Temo: 20 Pipette Speed: 85% Extraction System: Off
QUENCE:
ep Action and Parameters
1 Pipet diluent + modifier 1 + spike + sample/std
    Run HGA steps 1 to End
   Extra washes: 1
ECKS:
ditions Oreparation: Automated
wiedic Autozeno Locatinon: Al' Samples
 %RSD > 20.0 and Concentration > 1.0 then Retry 1 times
eck %RSD on: Samples + Additions
trix Check Calculations:
Difference for Dupls: No Locations:
Recovery for Spike: No Locations: Conc:
```

ement File: BEMSA.GEL Element: Be Wavelength: 234.9 Time: 07:53 te: 09/21/98 Slit: 0.7 L ID/Wt File: EB331.1DW ca File: EB331.DAT Lamp Current: 30 Calib. Type: Method of Add. Energy: 64 chnique: HGA Seq. No.: 00040 A/S Pos.: 0 Date: 09/21/98 ID: STD BLANK dispensed: 10 from 0, 5 from 40. 10 from 0 olicate 1 Time: 07:55 ak Area (A-s): -0.000 ckground Pk Area (A-s): 0.015 Peak Height (A): ወ.ወው3 Background Pk Height (A): 0.051 ank Corrected Pk Area (A-s): -0.000 dispensed: 10 from 0, 5 from 40, 10 from 0 plicate 2 (Peak Stored) ak Onea (Q-c): -0.000 Time: 07:57 ak Area (A-s): -0.000 ak Area (A-s): -0.000 Peak Height (A): 0.003 ckground Pk Area (A-s): 0.011 Background Pk Height (A): 0.038 Peak Height (A): 0.003 ank Corrected Pk Area (A-s): 0.000 an Pk Area (A-s): 0.000 SD: 0.0002 RSD(%): 1620.91 to-zero performed. ID: 218-12-4 Sed. No.: 00041 A/S Pos.: 9 Date: 09/21/95 dispensed: 10 from 0. 5 from 40, 10 from 9 Time: 08:00 ak Area (A-s): 0.023 Peak Height (A): 0.045 ckground Pk Area (A-s): 0.129 Background Pk Height (A): ම.දම6 ank Corrected Pk Area (A-s): 0.023 dispensed: 10 from 0, 5 from 40, 10 from 9 olicate 2 (Peak Stored) Time: 08:03 ak Area (A-s): 0.024 Peak Height (A): 0.045 ckground Pk Area (A-s): 0.130 Background Pk Height (A): 0.215 ank Corrected Pk Area (A-s): 0.024 an Pk Area (A-s): 0.024 SD: 0.0006 RSD(% : 2.58 ID: 8701= 5 ug/L Seq. No.: 00042 9/5 Pos.: 9 Date: 09/21/98 . dispensed: 5 from 40, 10 from 1, 10 from 9 plicate 1 Time: 08:05 ak Area (A-s): 0.130 ank Corrected Pk Area (A-s): 0.131 . dispensed: 5 from 40, 10 from 1, 10 from 9 (Plicate 2 (Peak Stored) Time: 08:08 eak Area (A-s): 0.131 Peak Height (A): 0.299 (ckground Pk Area (A-s): 0.265 Background Pk Height (A): 0.509 .ank Corrected Pk Area (A-s): 0.131 an Pk Area (A-s): 0.131 SD: ଡ.ଡଡଡ୍3 RSD(%): Ø.≥7 : ID: STD2= 10 ug/L Seq. No.: 00043 A/S Pos.: 9 Date: 09/21/98 266

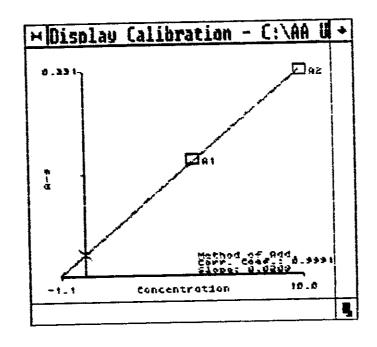
dispensed: 5 from 40. 10 from 2. 10 from 9 olicate 1 ak Area (A-s): 0.231 ekground Pk Area (A-s): 0.374 ank Corrected Pk Area (A-s): 0.231

Peak Height (A): 0.487 Background Pk Height (A): 0.679

dispensed: 5 from 40, 10 from 2, 10 from 9 Time: 08:14 olicate 2 (Peak Stored) Peak Height (A): 0.485 ak Area (A-s): 0.231 Background Pk Height (A): 0.667 ekground Pk Area (A-s): 0.376

ank Corrected Pk Area (A-s): 0.231

an Pk Area (A-s): 0.231


RSD(%): 0.08 SD: 0.0002

Date: Ø9/21/98 Seq. No.: 00041 A/S Pos.: 9 ID: 218-12-4

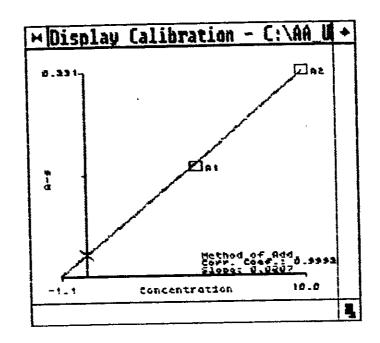
Time: 08:11

ncentration (ug/L ): 1.1

rrelation coefficient: 0.99911 Slope: 0.0209



A/S Pos.: Ø Date: Ø9/21/98 Sea. No.: 00044 ID: STD BLANK

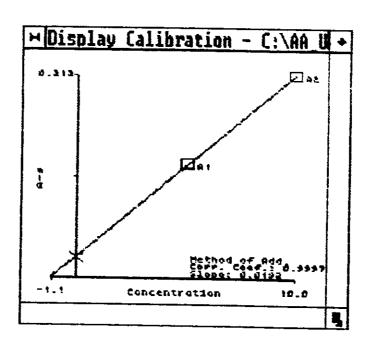

. dispensed: 10 from 0, 5 from 40, 10 from 0 Time: 08:17 olicate 1 Peak Height (A): 0.003 ak Area (A-s): 0.000 Background Pk Height (A): 0.033 ckground Pk Area (A-s): 0.009 ank Corrected Pk Area (A-s): 0.000

. dispensed: 10 from 0, 5 from 40, 10 from 0 Time: 08:19 plicate 2 (Peak Stored) Peak Height (A): 0.003 ak Area (A-s): -0.000 Background Pk Height (A): 0.024 ickground Pk Area (A-s): 0.008 ank Corrected Pk Area (A-s): 0.000

RSD(%): 59.59 SD: 0.0002 ଡ. ଉପଡ ian Pk Area (A-s):

267

```
ID: 218-12-7
                       Seq. No.: 00045
                                       A/S Pos.: 10 Date: 09/21/98
 dispensed: 10 from 0. 5 from 40. 10 from 10
olicate 1
                                Time: 08:22
:k Area (A-s): 0.023
                               Peak Height (A): 0.052
:kground Pk Area (A-s): 0.135
                               Background Pk Height (A): 0.230
ink Corrected Pk Area (A+s): 0.023
 dispensed: 10 from 0, 5 from 40. 10 from 10
)licate 2 (Peak Stored)
                                Time: 08:25
ik Area (A-s): 0.023
                                Peak Height (A): 0.048
:kground Pk Area (A-s): 0.138 Background Pk Height (A): 0.229
ink Corrected Pk Area (A-s): 0.023
in Pk Area (A-s): 0.023
                               SD: 0.0001
                                                   RSD(%): 0.49
   ID: STD1= 5 ug/L Seq. No.: 00046 A/S Pos.: 10 Date: 09/21/98
 dispensed: 5 from 40, 10 from 1, 10 from 10
olicate 1
                                Time: 08:28
ak Area (A-s): Ø.123
                                Peak Height (A): 0.282
:kground Pk Area (A-s): 0.266
                               Background Pk Height (A): 0.488
ank Corrected Pk Area (A-s): 0.123
dispensed: 5 from 40. 10 from 1. 10 from 10
plicate 2 (Peak Stored)
                                Time: 08:30
ak Area (A-s): Ø.125
                               Peak Height (A): 0.272
ak Hrea (H-s): 0.125 Peak Beight (H): 0.272 pkground Pk Area (A-s): 0.268 Background Pk Height (A): 0.486
ank Corrected Pk Area (A-s): 0.125
an Pk Area (A-s): 0.124 SD: 0.0012 RSD(%): 0.96
   ID: STD2= 10 ug/L Sec. No.: 00047 A/S Pos.: 10 Date: 09/21/98
dispensed: 5 from 40, 10 from 2, 10 from 10
olicate 1
                               Time: 08:33
ak Amea (A-s): 0.232
                               Peak Height (A): 0.533
okamow i Rk Area (A-5): 0.382
                              Background Pk Height (A): 0.706
ank Corrector 24 Area (A-s): 0.232
dispensed: 5 from 40. 10 from 2. 10 from 10
olicate 2 (Peak Stoned)
                               Time: Ø8:36
ak Area (A-s): 0.230
ank Connected Pk Area (A-s): 0.230
an Pk Area (A-s): Ø.231 SD: 0.0014
                                           RSD(%): 0.60
   ID: 218-12-7 Seq. No.: 00045 A/S Pos.: 10 Date: 09/21/98
ncentration (ug/L ): 1.1
rrelation coefficient: 0.99928 Slope: 0.0207
```




```
A/S Pos.: 0 Date: 09/21/98
                       Sec. No.: 20248
   ID: STD BLANK
dispensed: 10 from 0, 5 from 40. 10 from 0
                                Time: 28:39
olicate 1
                                Peak Height (A): 0.004
ak Area (A-s): 0.001
                                Background Pk Height (A): 0.020
akground Pk Area (A-s): 0.007
ank Corrected Pk Area (A-s): 0.001
dispensed: 10 from 0, 5 from 40, 10 from 0
                                Time: 08:42
plicate 2 (Peak Stored)
                                Peak Height (A): 0.003
ak Area (A-s): 0.001
                                Background Pk Height (A): 0.022
ckground Pk Area (A-s): 0.007
ank Corrected Pk Area (A-s): 0.001
                                                     RSD(%): 24.02
                               sp: 0.0002
                    0.001
an Pk Area (A-s):
rowsers merformed.
Seq. No.: 00049 A/S Pos.: 11 Date: 09/21/98
    ID: 218-12-10
 dispensed: 10 from 0, 5 from 40, 10 from 11
                                 Time: Ø8:44
olicate 1
                                 Peak Height (A): 0.038
ak Area (A-s): 0.021
                                Background Pk Height (A): 0.224
ckpround Pk Area (A-s): 0.138
ank Corrected Pk Area (A-s): 0.021
. dispensed: 10 from 0, 5 from 40. 10 from 11
                                 Time: 08:47
plicate 2 (Peak Stored)
                                 Peak Height (A): 0.042
ak Area (A-s): 0.022
                                 Background Pk Height (A): 0.228
ckground Pk Area (A-s): 0.139
ank Corrected Pk Area (A-s): 0.022
                                                      RSD(%): 3.01
                                SD: 0.0006
an Pk Area (A-s): 0.021
                       Seq. No.: 00050 A/S Pos.: 11 Date: 09/21/98
   ID: STD1= 5 ug/L
69
```

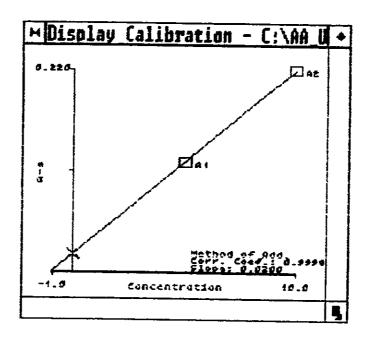
dispensed: 5 from 40. 10 from 1. 10 from 11 olicate 1 Time: 08:50 ak Area (A-s): 0.120 Peak Height (A): 0.238 ekground Pk Area (A-s): 0.267 Background Pk Height (A): 0.438 ank Corrected Pk Area (A-s): Ø.120 dispensed: 5 from 40, 10 from 1, 10 from 11 olicate 2 (Peak Stored) Time: 08:52 ak Area (A-s): 0.118 Peak Height (A): 0.241 ckground Pk Area (A-s): 0.265 Background Pk Height (A): 0.426 ank Corrected Pk Area (A-s): 0.118 an Pk Area (A-s): 0.119 SD: 0.0013 RSD(%): 1.11 ID: STD2= 10 ug/L Seq. No.: 00051 A/S Pos.: 11 Date: 09/21/98 dispensed: 5 from 40. 10 from 2. 10 from 11 plicate 1 Time: 08:55 ak Area (A-s): 0.209 Peak Height (A): Ø.455 okground Pk Area (A-s): 0.366 Background Pk Height (A): 0.625 ank Corrected Pk Area (A-s): 0.209 dispensed: 5 from 40, 10 from 2, 10 from 11 plicate 2 (Peak Stored) Time: 08:58 ak Area (A-s): 0.216 Peak Height (A): 0.448 skaround Pk Area (A-s): 0.373 Background Pk Height (A): 0.607 ank Corrected Pk Area (A-s): 0.216 an Pk Area (A-s): 0.212 SD: 0.0049 RSD(%): 2.33 ID: 218-12-10

Seq. No.: 00049 A/S Pos.: 11 Date: 09/21/98 ncentration (ug/L ): 1.1

rrelation coefficient: 0.99972 Slope: 0.0192



```
Sec. No.: 00052 A/S Pos.: 0 Date: 09/21/98
  ID: STD BLANK
dispensed: 10 from 0, 5 from 40, 10 from 0
                                 Time: 09:01
                                Peak Height (A): 0.004
k Area (A-s): 0.001
kground Pk Area (A-s): 0.007
                               Background Pk Height (A): 0.019
nk Corrected Pk Area (A-s): 0.000
dispensed: 10 from 0, 5 from 40, 10 from 0
                                 Time: 09:04
)licate 2 (Peak Stored)
                                Peak Height (A): 0.003
k Area (A-s): 0.000
                                Background Pk Height (A): 0.018
:kground Pk Area (A-s): 0.006
ink Corrected Pk Area (A-s): -0.000
                                                      RSD(%): 629.97
                           SD: 0.0003
m Pk Area (A-s): -0.000
o-zero performed.
A/S Pos.: 12
                                                       Date: 09/21/98
                        Sea. No.: 00053
   ID: 218-12-10 D
dispensed: 10 from 0, 5 from 40. 10 from 12
                                 Time: 09:06
olicate 1
rk Area (A-s): Ø.020 Peak Height (A): Ø.036
rkground Pk Area (A-s): Ø.141 Background Pk Height (A): Ø.230
ink Corrected Pk Area (A-s): 0.019
dispensed: 10 from \emptyset. 5 from 4\emptyset, 1\emptyset from 1\mathbb{Z}
plicate 2 (Peak Stored)
                                 Time: 29:29
                                 Peak Height (A): 0.036
RR Area (A-s): 0.020 Peak Height (A): 0.036
Reground Pk Area (A-s): 0.142 Background Pk Height (A): 0.217
ank Corrected Pk Area (A-s): 0.019
                                                       RSD(%): 0.59
                                 SD: 0.0001
in Pk Area (A-s): 0.019
   ID: STD1= 5 ug/L Seq. No.: 00054 A/S Pos.: 12 Date: 09/21/98
 dispensed: 5 from 40, 10 from 1, 10 from 12
                                 Time: 09:12
olicate 1
                                 Peak Height (A): 0.234
ik Area (A-s': 0.118
 Themsimd St. Amea (Ame): 0.860
                                 Background Pk Height (A): 0.422
ink Corrected Pk Area (2-s): 2.117
 dispensed: 5 from 40. 10 from 1, 10 from 12
                                  Time: 09:15
olicate 2 (Peak Stored)
                                 Peak Height (A): 0.241
ak Area (A-s): 0.120
                             Background Pk Height (A): 0.434
ekgnound Pk Area (A-s): 0.274
ank Corrected Pk Area (A-s): 0.119
                                                       RSD(%): 1.40
                            SD: 0.0017
 an Pk Area (A-s): 0.118
    ID: STD2= 10 ug/L Sec. No.: 00055 A/S Pos.: 12 Date: 09/21/98
 dispensed: 5 from 40. 10 from 2. 10 from 12
                                  Time: 09:17
 alicate 1
                                 Peak Height (A): 0.435
 ak Area (A-s): 0.212
 ckground Pk Area (A-s): 0.378 Background Pk Height (A): 0.616
 ank Corrected Pk Area (A-s): 0.211
```


L dispensed: 5 from 40, 10 from 2, 10 from 12 eplicate 2 (Peak Stored) Time: 09:20 eak Area (A-s): 0.229 Peak Height (A): 0.447 ackground Pk Area (A-s): 0.394 Background Pk Height (A): 0.611 lank Corrected Pk Area (A-s): 0.228

ean Pk Area (A-s): 0.220 SD: 0.0120 RSD(%): 5.43

e ID: 218-12-10 D Seq. No.: 00053 A/S Pos.: 12 Date: 09/21/98

oncentration (ug/L ): 1.0

orrelation coefficient: 0.99985 Slope: 0.0200



ht File: AB936.IDW Volume: 100 mL Analyst: D.STREETER-EDWARDS Mominal Weight: 1.0 g

Dilution Sample ID Weight STD BLANK -STD1=0.2mg/L 3-70-8 DE 9/20/98 -3-70-57 DE 9/20/98 STD2=0.Sug/L STD3=1.0ug/L STD4=2.0ug/L STD5=5.0ag/L STD6=10.0mg/L ICV=4.0ug/L ICB CHECK LO 46705B NB 46705B MBD 46705B LCS 46705B LCSD 218-12-4 218-12-4 0 218-12-4 MS 218-12-4 MSD 218-12-4 KSD --- 3-70-5,7 PSE 9/22/98 218-12-7 218-12-7 P 218-12-10 218-12-10 0  $\frac{210-12-19}{0092=6.00g/L}$  -3-70-5,7 000 9/22/9846705A NB 46705A NBD 46705A LCS 46705A LCSD 218-12-1 218-12-1 D 218-12-3 218-12-3 0 3-70-57 De 9/22/98 218-12-3 MS 218-12-3 MSD CCV1=6.0mg/L CCB 218-12-2 218-12-2 D 218-12-5 218-12-5 D 218-12-8 218-12-8 D 218-12-6 218-12-5 D -3-70-517 De 9/22/98 218-12-9 218-12-9 D CCV2=6.0mg/L CCB

273

: 2DS: SPEX 3-70-6.8 3H PURITY 3-70-5.7

3MT: 5100 Technique: NHS Version: 7.01 gth: 253.7 Peak Slit: 0.70 Low

Type: AA Signal Measurement: Peak Height (5)

me: 30.0 Read Delay: 0.5 BOC Time: 2 deplicates: 1

i Replicates: 1

gpe: Air Plane Sensor: On Flow: 10.0 L/min Fuel Flow: 2.0 L/min : 9011 ons | ID | Conc | Blank |STD BLE i 1 | STD 1 | i 2 | STD 2 0.200; ( 0.500) 1 3 | STD 3 1.000; 1 4 | STD 4 2.000; 1 5 | STD 5 5.000; 1 6 STD 6 10.000 ation Units: ug/L Sample Units: mg/L

Check Calculations:

ation Type: Linear

rence for Dupls: No Locations:

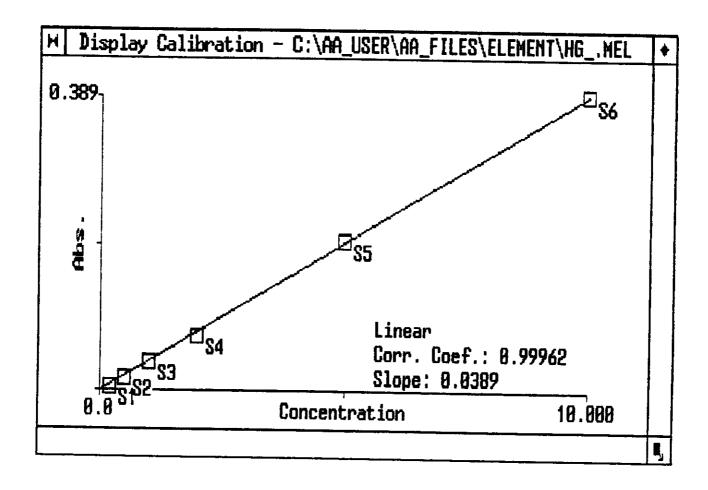
ery for Spike: No Locations: Conc:

```
File: HG_.MEL Blement: Hg Wavelength: 253.

/22/98 Time: 13:48 Slit: 0.70 L

e: AB936.DAT ID/Wt File: AB936.IDW Lamp Current: 0

e: MHS Calib. Type: Linear Energy: 74
                                                 Wavelength: 253.7
: STANDARDS: SPEX 3-70-6,8
: QC: HIGH PURITY 3-70-5,7
                  Seq. No.: 00035 A/S Pos.: -- Date: 09/22/98
                              Time: 14:32
.e 1
                              Peak Height (A): -0.002
a (A-s): 0.011
rrected Pk Height (A): -0.002
ation (ug/L ): -0.022
o performed.
': Seq. 00036 Seq. No.: 00036 A/S Pos.: -- Date: 09/22/98
                              Time: 14:33
ie 1
a (A-s): -0.031
                              Peak Height (A): -0.002
 rrected Pk Height (A): -0.002
 ation (ug/L ): -0.025
 o performed.
```


```
File: HG_.WEL | Blement: Hg
                                             Wavelength: 253.7
  /22/98
                  Time: 14:34
                                              Slit: 0.70 L
  e: AB936.DAT
               ID/Wt File: AB936.IDW
Calib. Type: Linear
                                            Lamp Current: 0
  .e: NHS
                                            Energy: 75
  : STANDARDS: SPEX 3-70-6,8
 :: QC: HIGH PURITY 3-70-5,7
 : STD BLANK Seq. Mo.: 00037 A/S Pos.: -- Date: 09/22/98
 :e 1
                            Time: 14:35
 a (A-s): -0.019
                            Peak Height (A): 0.000
 rrected Pk Height (A): 0.000
 ation (ng/L ): 0.000
 o performed.
 1: STD1=0.2mg/L Seq. Ho.: 00038 A/S Pos.: -- Date: 09/22/98
 ie 1
                            Time: 14:36
 a (A-s): 0.056
                            Peak Height (A): 0.004
 Prected Pk Height (A): 0.004
 'ation (ug/L ): 0.058
 number 1 applied. [0.200]
 ion coefficient: 1.00000
                            Slope: 0.0196
 ): STD2=0.5ug/L Seq. Ro.: 00039 A/S Pos.: -- Date: 09/22/98
 abs. is greater than that of the largest standard.
 :e 1
                           Time: 14:37
 ea (A-s): 0.259
                            Peak Height (A): 0.016
prected Pk Height (A): 0.016
ration (ug/L ): 0.795
i number 2 applied. [0.500]
tion coefficient: 0.94072
                           Slope: 0.0300
): STD3=1.0ng/L
                   Seq. No.: 00040 A/S Pos.: -- Date: 09/22/98
abs. is greater than that of the largest standard.
te 1
                           Time: 14:38
ea (A-s): 0.605
                           Peak Reight (A): 0.036
preced Pk Height (A): 0.036
:ation (ug/L ): 1.189
i number 3 applied. [1.000]
tion coefficient: 0.98278
                           Slope: 0.0346
): STD4=2.0ug/L
                  Seq. No.: 00041 A/S Pox.: -- Date: 09/22/98
abs. is greater than that of the largest standard.
te 1
                          Time: 14:39
ea (A-s): 1.235
                           Peak Height (A): 0.072
276
```

orrected Pk Height (A): 0.072 ration (ug/L ): 2.084 d number 4 applied. [2.000] tion coefficient: 0.99658 Slope: 0.0357 Seq. No.: 00042 A/S Pos.: --D: STD5=5.0ng/L abs. is greater than that of the largest standard. Time: 14:40 ite 1 Peak Height (A): 0.198 ·ea (A-s): 3.140 Corrected Pk Height (A): 0.198 :ration (ug/L ): 5.532 ed number 5 applied. [5.000] Slope: 0.0389 tion coefficient: 0.99820 Somple the row used A/S Pos.: --D: 8798=10.0ug/L Seq. No.: 00043 abs. is greater than that of the largest standard. Time: 14:41 ite 1 Peak Height (A): 0.312 rea (A-s): 5.382 Corrected Pk Height (A): 0.312 tration (ug/4/1: 8.009 ed parther 6 applied. [10.000] Stion coefficient: 0.99078 Slope: 0.0333 A/S Pos.: -- Date: 09/22/98 Seq. No.: 00044 [D: STD6=10.0ug/L abs. is greater than that of the largest standard. Time: 14:48 Peak Height (A): 0.389 :ea (A-s): 6.321 Corrected Pk Height (A): 0.389 tration (ug/L ): 11.673

Slope: 0.0389

rd number 6 applied. [10.000] ation coefficient: 0.99962 Pile: HG_.MBL Blement: Hg Havelength: 253.7
3/22/98 Time: 14:49 Slit: 0.70 L
le: AB936.DAT ID/Mt File: AB936.IDW Lamp Current: 0
1e: MHS Calib. Type: Linear Energy: 75

1: STANDARDS: SPEX 3-70-6,8 2: QC: HIGH PURITY 3-70-5,7



```
D: ICV=4.0mg/L Seq. No.: 00045 A/S Pos.: -- Date: 09/22/98
te 1
                              Time: 14:51
ea (A-s): 2.327
                              Peak Height (A): 0.141
orrected Pk Height (A): 0.141
ration (ug/L ): 3.638
D: ICB
                  Seq. No.: 00046 A/S Pos.: -- Date: 09/22/98
te 1
                              Time: 14:53
ea (A-s): -0.118
                              Peak Height (A): -0.005
orrected Pk Height (A): -0.005
ration (ug/L ): -0.124
D: CHECK LO
                    Seq. Ho.: 00047 A/S Pos.: -- Date: 09/22/98
278
te l
                             Time: 14:54
ea (A-s): 0.009
                             Peak Height (A): 0.003
orrected Pk Height (A): 0.003
matine Indif 1. A day
```

```
Wavelength: 253.7
                  Element: Hg
File: MG_.MBL
                                          Slit: 0.70 L
                 Time: 14:55
9/22/98
                                         Lamp Current: 0
                ID/Wt File: AB936.IDW
le: AB936.DAT
                                           Baergy: 75
                 Calib. Type: Linear
ae: NUS
1: STANDARDS: SPEX 3-70-6,8
2: QC: HIGH PURITY 3-70-5,7
D: 46705B MB Seq. No.: 00048 A/S Pos.: -- Date: 09/22/98
te 1
                          Time: 14:56
                          Peak Height (A): 0.002
ea (A-s): 0.027
orrected Pk Height (A): 0.002
ration (ug/L ): 0.039
                Seq. No.: 00049 A/S Pos.: -- Date: 09/22/98
D: 467058 NBD
                           Time: 14:56
te 1
                           Peak Height (A): 0.001
ea (A-s): 0.017
 orrected Pk Height (A): 0.001
 ration (ug/L ): 0.021
                 Sea. No.: 00050
                                               Sample not used.
PSE 9/20/08
 te 1
                           Peak Height (A): 0.32
 ea (A-s): 5.107
 orrected Pk Reight TAT: 0.323
 eation 148/1 1. 8.314
 ***********************
                 Seq. No.: 00051 A/S Pos.: -- Date: 09/22/98
 D: 46705B LCS
                            Time: 15:02
 te 1
                            Peak Height (A): 0.179
 en (A-s): 2.978
 orrected Pk Height (A): 0.179
 ration (ug/L ): 4.596
 *******************************
 D: 46705B LCSD Seq. No.: 00052 A/S Pos.: -- Date: 09/22/98
                            Time: 15:03
 te 1
                            Peak Height (A): 0.193
  ea (A-s): 3.020
  orrected Pk Height (A): 0.193
  ration (ng/L ): 4.962
  ****************************
                 Seq. No.: 00053 A/S Pos.: -- Date: 09/22/98
  D: 218-12-4
                            Time: 15:04
  te 1
                            Peak Height (A): 0.004
  ea (A-s): 0.079
  orrected Pk Height (A): 0.004
  ration (ug/L ): 0.114
  *************************
                  Seq. No.: 00054 A/S Pos.: -- Date: 09/22/98
  D: 218-12-4 D
```

```
;e 1
                               Time: 15:05
  3a (A-s): 0.012
                               Peak Height (A): 0.000
  prrected Pk Height (A): 0.000
  'ation (ug/L ): 0.010
  ): 218-12-4 MS
                      Seq. No.: 00055
                                     A/S Pos.: -- Date: 09/22/98
  te 1
                               Time: 15:06
  ≥a (A-s): 2.838
                               Peak Height (A): 0.167
  prrected Pk Height (A): 0.167
  :ation (ug/L ): 4.286
  ): 219-12-4 MSD
                    Seq. No.: 00056
                                     A/S Pos.: -- Date: 09/22/98
  te 1
                              Time: 15:07
  ea (A-s): 2.783
                              Peak Height (A): 0.168
  prrected Pk Height (A): 0.166
  mation (ug/L ): 4.271
 ): CCV1=6.0ug/L Seq. No.: 00057 A/S Pos.: -- Date: 09/22/98
 te 1
                              Time: 15:08
 ea (A-s): 3.500
                              Peak Height (A): 0.221
 orrected Pk Height (A): 0.221
 ration (ug/L ): 5.690
 D: CCB
                   Seq. No.: 00058 A/S Pos.: -- Date: 09/22/98
 te 1
                              Time: 15:09
 ea (A-s): 0.002
                              Peak Height (A): -0.000
 prrected Pk Height (A): -0.000
 ration (ug/L ): -0.008
                  Seq. No.: 00059
                                     A/S Pos.: --
 te 1
                             Time: 15:09
ea (A-s): 0.131
                             Peak Height (A):
orrected Pk Height (A): 0.021
ration (ug/L ): 0.532
D: 218-12-7 D
te i
                             Time: 15:10
ea (A-8); 8.178
                             Peak Height (A): 0.009
orrected Pk Height (A): 0.009
ration (ug/L ): 0.225
D: 218-12-10
                    Seq. No.: 00061 A/S Pos.: -- Date: 09/22/98
te I
                             Time: 15:12
ea (A-s): 0.190
                             Peak Height (A): 0.010
orrected Pk Height (A): 0.010
-80
```

entration (ug/L ): 0.266 ID: 218-12-10 D Seq. No.: 00062 A/S Pos.: -- Date: 09/22/98 Time: 15:14 icate 1 Peak Height (A): 0.012 Area (A-s): 0.210 k Corrected Pk Height (A): 0.012 entration (ug/L ): 0.315 *********************************** Seq. No.: 00063 A/S Pos.: -- Date: 09/22/98 Time: 15:15 icate 1 Peak Height (A): 0.010 Area (A-s): 0.182 k Corrected Pk Height (A): 0.010 entration (ug/L ): 0.253 ID: 218-12-7 D Seq. No.: 00064 A/S Pos.: -- Date: 09/22/98 Time: 15:16 icate 1 Peak Height (A): 0.012 : Area (A-s): 0.196 ik Corrected Pk Height (A): 0.012 :entration (ug/L ): 0.302 - 19. CCV2=5.Uug/L Seq. No.: 00055 A/S Pos.: Time: 15:11 licate 1 Peak Height (A): 0.293 t Area (A-s): 4.925 ik Corrected Pk Height (A): 0.293 :entration (1871 ): 7.640 ID: CCV2=6.Oug/L Seq. No.: 00066 A/S Pos.: -- Date: 09/22/98 Time: 15:21 licate 1 Peak Height (A): 0.216 c Area (A-s): 3.551 nk Corrected Dr Height (A): 0.216 centration (ug/L ): 5.554 Seq. Ho.: 00067 A/S Pos.: -- Date: 09/22/98 ID: CCB

Time: 15:22

Peak Height (A): -0.001

licate 1

k Area (A-s): 0.008

nk Corrected Pk Height (A): -0.001 centration (ug/L ): -0.015

TECHNICAL REPORT DATA  Please read instructions on the reverse before completing			
1. REPORT NO. EPA-454/R-00-025B	2.	3. RECIPIENT'S ACCESSION NO.	
4. TITLE AND SUBTITLE Final Report Hot Mix Asphalt Plants, Truck Loading and Silo Filling, Manual Methods Testing, Asphalt Plant C, Los Angeles, California Volume 2 of 8		5. REPORT DATE May 2000	
		6. PERFORMING ORGANIZATION CODE	
7. AUTHOR(S) Frank J. Phoenix		8. PERFORMING ORGANIZATION REPORT NO.	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Pacific Environmental Services, Inc. Post Office Box 12077 Research Triangle Park, North Carolina 27709-2077		10. PROGRAM ELEMENT NO.	
		11. CONTRACT/GRANT NO. 68-D-98004	
12. SPONSORING AGENCY NAME AND ADDRESS U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions, Monitoring and Analysis Division Research Triangle Park, North Carolina 27711		13. TYPE OF REPORT AND PERIOD COVERED Final	
		14. SPONSORING AGENCY CODE EPA/200/04	

## 15. SUPPLEMENTARY NOTES

## 16. ABSTRACT

The United States Environmental Protection Agency (EPA) Office of Air Quality Planning and Standards (OAQPS) is investigating hot mix asphalt plants to identify and quantify particulate matter (PM), methylene chloride extractable matter (MCEM), and organic hazardous air pollutant (HAP) emissions during asphalt concrete loading operations. In support of this investigation, the OAQPS issued Pacific Environmental Services, Inc. (PES) a series of work assignments to conduct emissions testing at a hot mix asphalt plant during load-out operations.

The primary objective of the emissions testing was to characterize the uncontrolled emissions of PM, MCEM, polynuclear aromatic hydrocarbons (PAHs), semi-volatile organic hazardous air pollutants (SVOHAPS), and volatile organic hazardous air pollutants (VOHAPS) from a hox mix production plant during loading operations. An asphalt plant south of Los Angeles, California was selected by EPA as the host facility. Testing was performed over five consecutive days beginning on July 24, 1998. Testing was performed under two conditions. Under normal operations, testing was performed to characterize load-out emissions from the tunnel exhaust and load-in emissions from the asphalt concrete storage silo. Under background conditions, testing was performed to characterize emissions from the combustion of diesel fuel in transport trucks.

The entire report consists of eight volumes totaling 4,234 pages, Vol. 1 (388 pages), Vol. 2 (308 pages), Vol. 3 (573 pages), Vol. 4 (694 pages), Vol. 5 (606 pages), Vol. 6 (564 pages), Vol. 7 (570 pages), and Vol. 8 (531 pages).

17. KEY WORDS AND DOCUMENT ANALYSIS		
a. DESCRIPTIONS	b.IDENTIFIERS/OPEN ENDED TERMS	c. COASTI Field/Group
Hazardous Air Pollutants Methylene Chloride Extractable Matter Particulate Matter Polynuclear Aromatic Hydrocarbons Semi-volatile Organic Hazardous Air Pollutants Volatile Organic Hazardous Air Pollutants		
18. DISTRIBUTION STATEMENT Unlimited	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES Vol. 2 - 308
	20. SECURITY CLASS (This page) Unclassified	22. PRICE