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Appendix A

A.1 Background

The AP-42 emissions factors examined are based on the average, or the mean, of the
supporting emissions data. As any statistic the emissions factors are subject to several
sources of variation such as measurement error and non-representati veness of the
available data. See Frey and Li (2003) for more detail with respect to sources of
variability and uncertainty in the AP-42 emissions factors. The objective of this task
focuses on devel oping uncertainty ratios for arange of probability levels. Even though
this approach did not directly address all variability and uncertainty issues, it accounts for
some fraction of the sampling error by adjusting for the number of tests used to produce
the AP-42 Emissions Factors. Simulation techniques used in this approach allows to
account for the uncertainty due to measurement error, since several simulations of the
data are used to calculated different values of the EF.

This approach focuses on the basic idea that the emissions factor is a statistic, usually an
average, and that the uncertainty associated with emissions factors used to represent
emissions from asingle or limited number of sources may be expressed/explained as a
population parameter, which will be referred to as the Target Statistic; examples of
Target Statistics are the 5th percentile, the median, and the 99th percentile. This
statement leads to the following equation:

EFtarget satisic — EFuncertainty ratio X (EF) (1)

where EF denotes the emissions factor based on n tests, and EFuncertainty raio denotes the
uncertainty ratio value for an emissions factor based on n tests, Solving Equation (1) for
EFuncertainty ratio results in the following equation:

EF,

target statistic EE

EF - uncertainty ratio (2)

If values for the Target Statistics were known, then Equation (2) can be used to estimate
the uncertainty ratio.

A.2 Methodology

A first step in characterizing the uncertainty ratio consisted of applying exploratory data
analysis techniques to obtain measures of skewness, centrality, and spread of the data.

A second step required the specification of a parametric probability distribution for the
data. Parametric probability distributions are determined by afinite number of
parameters which can be estimated as functions of the data. Parametric distributions
make it possible to obtain interpolations (prediction within the limits of the data) and
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extrapolations (prediction outside the limits of the data), which will allow the generation
of many values that otherwise would not be observed.

Goodness of fit tests are used to assess how well amodel fits the data. One of the most
popular goodness of fit testsis the Komogorov-Smirnov test. The Kolgomorov-Smirnov
Goodness of fit test (KStest) is used to assess the fit of the parametric distribution to the
data; in other words, the KS-test is used to decide if a sample comes from a population
with a specific distribution. The KS test has the advantage of making no assumptions
about the distribution of data. The KStest is based on the empirical distribution function

(ECDF). Given n ordered datapoints Y,,...,Y, , the ECDF isdefined as En = % where

n(i) is the number of pointslessthan Y, , and the Y, values are ordered from smallest to

the largest value. Lillifors (1969, 1967) and Pierce (1982) showed that when the
parameters of the distribution are estimated from the sample, the KS test provides non-
correct p-values. Corrections for the KS tests are available for the normal and exponential
distribution (Stephens, 1976,1970, 1974; Dallal and Wilkinson, 1986; Iman 1982 and
Finkelsen and Schafer, 1971) but not for the Gamma distribution. Cheng and Stephens
(1986) proposed a goodness of fit test based on the Moran’s statistic. The proposed
goodness of fit test has the same asymptotic distribution when the parameters are
estimated from the sample as when the parameters are known. The test is based on the
spacing of the data and provides reliable statistics for small sample sizes. The Moran’'s
statistic has the form:

M
M =>"log(X; - X;;)where X; =F(Y)), Y,,...,Y, arethe ordered data points, F isthe
i=1

ECDF defined above, and M=n+1.

Once a parametric distribution was determined for the data, the parameters of the
distribution were estimated using the ms functionin Splus. The function ms
maximizes the likelihood function using the Newton-Raphson algorithm. The ms
function requires the user to provide initial values for the parameters. The Newton-
Raphson algorithm is an iterative procedure that can be used to cal culate maximum
likelihood estimators (MLES), which are the maximum of the likelihood function. Based
on theinitial values, the Newton-Raphson algorithm will search for a maximum using
information from the first and second derivatives, which must be provided by the user.
Initial values for the parameters were obtained using the maximum likelihood and Taylor
approximations or the method of moments approach.

The Weibull, Gamma, and Log-normal distributions were considered. The distribution,
likelihood, gradient, Hessian and initial values calculations are shown in Section A.3.

After the parameters of the probability distribution that best fit the data were obtained, a
numerical method known as the Monte Carlo approach was used to generate 10,000
possible outcomes from the selected parametric distribution. The 10,000 simulations are
referred to from now on as the hypothetical distribution. From the hypothetical
distribution it is possible to obtain the mean, which is estimated by the AP-42 emissions
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factor, and any population Earameter or Target Statistic, such as the 1% percentile, 5™
percentile, median, and 99" percentile.

It was of interest to obtain EFyncertainty raio fOr AP-42 emissions factors based on the
following number of tests, (n), 1, 3, 5, 10, 15, 20, and 25. For each specific number of
tests (n), 10,000 samples of size equal to n were drawn with replacement, and the mean
was calculated for each sample.

The 10,000 means of size n produced a distribution of emissions factors based on n tests.
Figure A-1 showsin the first row the distribution of 10,000 emissions factors (means)
based on 3 tests.

The next step towards the characterization of the EFyncertainty raio CONSisted of substituting
each of the 10,000 emissions factor values based on a specific number of testsin
Equation (2). This step resulted in acollection of distributions of EFyncertainty ratio, ONE for
each Target Statistic of interest and specified number of tests, n. The second row of
Figure A-1 shows three EFyncertainty ratio 3 (UNcertainty ratio based on n = 3 tests)
distributions corresponding to the following Target Statistics for carbon monoxide from
Wood Residue Combustion: mean, 10th percentile, and 90th percentile, respectively.
The three EFyncertainty raiio 3 distributions are highly skewed, suggesting the mean of the
EFuncertainty ratio 1S affected by the extreme values.

EF Distribution ’
n =3 -
10,000 samples - I
- ‘_I‘ — .-f— ‘

10,000 calculations:
EFuncertainty ratio = Target Statistic/EF

: d o |
- . —
Uncertainty ratio: :

ﬂUnEu:ertZIint;/ ratio:
Target statistic = 90th percentile

Target statistic = Mean '

Uncertainty ratio:
Target statistic = 10th percentile

Figure A-1. Distribution of 10,000 Emissions Factors Based on Three Tests and
EFuncertainty ratio for Selected Target Statistics for Carbon Monoxide.
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By selecting the Median of the distribution of EFyncertainty raio t0 adjust the Target Statistic
equal to the Mean, it is safe to conclude that 50 percent of all possible adjusted emissions
factors are less than or equal to the value M edian(EFncertainty raiio)* EF; while the
remaining 50 percent of all possible adjusted emissions factors are greater than or equal
to the value Median(EFuncertainty ratio) * EF. Furthermore, the values 95th

percentil &(EFuncertainty raiio)* EF and 5th percentil e(EFuncertanty ratio)* EF can be interpreted as
Monte Carlo Upper and Lower Confidence Limits for the (EFuncertainty raio)* EF, which is
estimating the Target Statistic. These Monte Carlo Upper and Lower Confidence Limits
provide upper and lower bounds for the EF based on n tests.

A.3 Density, Log-likelihood, Gradient, Hessian and I nitial Valuesfor
Probability Distributions Considered

A.3.1 Weibull Distribution

omms {3 <

2. Log-likelihood:
X

log(f (x))= 'og[(%j(gj e } =10g(7) - 10g(8) + (7~ Dlog(x) - (¥~ log(B) —;—Z

3. Partial Derivatives (gradient):
V4
op B B’

-l (s

4. Hessian matrix components:
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5.

Initial valuesfor the NR-approach: Theinitial values were obtained using a method
of moments approach. For the Weibull, the non-central moments are defined as:

M= IBF(:H'EJ
4

My = ﬂz F(1+EJ

v
which lead to the following equation system:
X:ﬁr(lﬁ'l]:%:ﬂ

Y I‘(1+ J
v

L e

F(1+2] X F(1+2J
2 _ g2 /4 S Y 4

=8 =X |—5-"1>5= 5
X
1“{1+ 1) F(1+ 1}
/4 v
Using the following Taylor approximation (Abramowitz et al., 1968):

ba  L(z+a) 1+ (a=b)(a+b-1)
" T(z+b) 27

the following approximations are obtained

S S
v) g \r Y\r v ), 1(3—7):27 +3-y

=1+—

2 2 2
FE1+1J AN 2y
v
and
1 (0_1J(0+1_1j 11(1 272 -1
: ~1+~ 7 5 Y :1_5_(__1J:72;2+7
F(1+j Y\Y 4
v

A-7



Appendix A

then
2y°+3-y
s 2 4=
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the positive values from the above equation is selected as an initial value for gamma

R R
&

A.3.2 Gamma Distribution

1. Density: f(x)=/1—x””le’ix
[(a)
2. Log-likelihood:

o

log(f (x))= Iog(% x“‘le‘“j =alog(4)-log(T'(a))+ (-1 log(x)— Ax

3. Partial Derivatives (Gradient):

i— |og(ﬂ/)_m

e @) +log(x)

Using the asymptotic approximation for @) =y (o) =log(ex) — 1
INea 2x
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4. Initial valuesfor the NR-approach:

2

S
a=—, f=—
X
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A.3.4 Lognormal Distribution

s )

27X’ o’

1. Density: f(x)=

2. Log-likelihood:

2
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3. Partial Derivatives (Gradient):
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o (In(x)-u)P 1

do? 2(0-2)2 20°

4. Hessian matrix components:
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5. Initial valuesfor the NR-approach:

The first and second moments of the lognormal are:

’

y7a :exp[,u+§0 jzx:,u+§a = log(X)

’

u, =expl2u+20°)

s? = exp(2u + 20%)- X
s° exp(2u +202)-x* _ exp(2u + 202)_1
X2 x?  expl2u+0?)
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1 (s
= u=log(X)-—logl — +1
2 X
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