Chapter 7 Changes

Location	Text	Change
7.1-1	Figure 7.1-21. Ladder- slotted guidepole combination with ladder sleeve	Added '-slotted' to provide clarification
7.1-3	Use of the terminology "routine emissions" to refer to standing and working losses applies only for the purposes of this document, and not for any other air quality purposes such as New Source Review (NSR) permitting." 2	Added the word 'to' and deleted stray question mark at end of sentence
7.1-14	Tanks are sometimes equipped with a ladder- slotted guidepole combination, in which one or both legs of the ladder is a slotted pipe that serves as a guidepole for purposes such as level gauging and sampling. A ladder- slotted guidepole combination is shown in Figure 7.1-21 with a ladder sleeve to reduce emissions.	The paragraph initially read "Tanks are sometimes equipped with a ladder/guidepole combination, in which one or both legs of the ladder is a slotted pipe that serves as a guidepole for purposes such as level gauging and sampling. A ladder/guidepole combination is shown in Figure 7.1-21 with a ladder sleeve to reduce emissions." The '/' was removed and '-slotted' was added to provide clarification
7.1-21	D _E should be used in place of D in Equation 1-4 for calculating the standing loss (or in Equation 1-3, if calculating the tank vapor space volume). One-half of the effective height, H _E , should be used as the vapor space outage, H _{VO} , in these equations. This method yields only a very approximate value for emissions from horizontal storage tanks. For underground horizontal tanks, assume that no breathing or standing losses occur (LS = 0) because the insulating nature of the earth limits the diurnal temperature change. No modifications to the working loss equation are necessary for either aboveground or underground horizontal tanks. However, standing losses from underground gasoline tanks, which can experience relatively fast vapor growth after the ingestion of air and dilution of the headspace, are addressed in Section 5.2 of AP-42.	Added the following sentence to the paragraph: "However, standing losses from underground gasoline tanks, which can experience relatively fast vapor growth after the ingestion of air and dilution of the headspace, are addressed in Section 5.2 of AP- 42."
7.1-24	ASTM D 5191 may be used as an alternative method for determining Reid vapor pressure for petroleum products, however, it should not be used for crude oils.	Added the phrase "however, it should not be used for crude oils" to the end of the sentence

7.1-28	For horizontal tanks, use D_E (Equation 1-	Corrected 'Equation 1-4' to
	1 4) in place of D in Equation 1-37	'Equation 1-14' and removed the
	HLX = maximum liquid height, ft	duplicative 'the'
	If the maximum liquid height is unknown,	
	for vertical tanks use one foot less than	
	the shell height and for horizontal tanks use $(\pi/4)$ D where D is the diameter of a	
	vertical cross-section of the the horizontal	
	tank	
7.1-29	Use of gross throughput to approximate	Added the phrase "However, use
	the sum of increases in liquid level will	of gross throughput is still allowed,
	significantly overstate emissions if	since it is clearly a conservative
	pumping in and pumping out take place at	estimate of emissions."
	the same time. However, use of gross	
	throughput is still allowed, since it is clearly a conservative estimate of	
	emissions.	
7.1-40	K _s = standing idle saturation factor,	Added 'standing idle' to provide
	dimensionless, calculated from Equation	clarification
	1-21.	
7.1-41	The term with the highest amount of	Added 'standing idle saturation'
	uncertainty is the saturation of the vapor	and 'vented vapor' to provide clarification
	beneath the landed floating roof. The standing idle saturation factor, K _s , is	ciantication
	estimated with the same method used to	
	calculate the vented vapor saturation	
	factor for fixed roof tanks in Equation 1-	
	21. In order to establish limits on the	
	value of KS, the estimated factor is	
	assumed to be less than or equal to the	
	filling saturation factor (S). (For more information see Filling Losses.)	
7.1-45	This equation should be used to	Sentence was changed from 'This
/.1 40	estimate accounts for both the arrival	equation should be used to
	losses, then used again to estimate	estimate arrival losses, then used
	generation losses The main concern	again to estimate generation
	with this component and the generated	losses. The main concern with this
	component of the filling loss. This	equation is the estimation of the
	equation is the estimation of the	saturation factor. All other
	saturation factor. All other components are based on the displaced	components are based on the ideal gas laws' to 'This equation
	volume times the ideal gas laws. vapor	accounts for both the arrival
	density, modified by a saturation factor.	component and the generated
		component of the filling loss. This
		equation is based on the
		displaced volume times the ideal
		vapor density, modified by a
7 1 45	In that the landed flacting reaf in an	saturation factor.'
7.1-45	In that the landed floating roof in an internal or domed external floating roof	Removed the 'or'
	Internal of domed external livating roof	

	tank- or is shielded from wind by the fixed			
7.1-46	For external floating roof tanks with a liquid heel, the amount of vapor lost during filling will be less than the amount for internal or domed external floating roof tanks because of wind effects. The "arrival" component will have been partially flushed out of the tank by the wind, so the preceding equation requires evaluation of the filling saturation correction factor for wind, C_{sf} . The basic premise of the correction factor is that the vapors expelled by wind action will not be present in the vapor space when the tank is refilled, so the amount of saturation is lowered.	eel, the amount of vapor lost filling will be less than the amount rnal or domed external floating roof ecause of wind effects. The ' component will have been ' flushed out of the tank by the o the preceding equation requires tion of the filling saturation ion factor for wind, C_{sf} . The basic e of the correction factor is that the expelled by wind action will not be t in the vapor space when the tank ed, so the amount of saturation is		
7.1-46	The equation for the filling saturation correction factor can be simplified based on other equations contained in this section as shown in Equation 3-20 and Equation 3-21.	The words 'filling' and 'correction' ed were added to provide clarification		
7.1-86	Figure 7.1-21. Ladder -slotted guidepole combination with ladder sleeve	The '-slotted' was added to provide clarification		
7.1-91	S-BS	The 'S _B ' was changed to 's' to stay consistent with the chapter		
7.1-139	^a Reference 14. Data for this table are 20- year averages for the years 1991 through 2010, prepared by the National Renewable Energy Laboratory and compiled in the National Solar Radiation Database. Only Class I sites are summarized in this table, but similar meteorological data for several hundred Class II sites may be obtained from this reference. Similar historical averages of meteorological data from nearby National Weather Service sites or site-specific data may also be used. <i>NOTE: The current</i> <i>table reflects the hourly average</i> <i>minimum and maximum ambient</i> <i>temperatures while this table in the</i> <i>previous version of Chapter 7</i> <i>contained the average daily minimum</i> <i>and maximum ambient temperatures.</i> T_{AX} = hourly average <i>daily</i> -maximum ambient temperature T_{AN} = hourly average <i>daily</i> -minimum ambient temperature	The following note was added to clarify the data used in the table: "NOTE: The current table reflects the hourly average minimum and maximum ambient temperatures while this table in the previous version of Chapter 7 contained the average daily minimum and maximum ambient temperatures" and the word 'hourly' was added and 'daily' removed from the descriptions of the temperature data to provide correction/clarification		

7.1-166	$K_S = \frac{1}{2}$	1 L + 0.053 (0.901 = 0.899		Numbers were corrected in the equation and in following steps
7.1-173	= 610 57	2 lb/yr of VOC er	nitted from tank	Number was corrected
7.1-199	<u>cleaning</u> of the va the conti each day volatile n	e total losses for t event. The total l por space purge nued ventilation e of forced ventila naterial remained missions are sum	oss is the sum emissions and emissions for tion while in the tank.	Total was corrected
		L _P	L _{CV}	
	Day 1	37	410	
	Day 2	0	360	
	Day 3	49	190	
	Total	67 86	960	