

CONCENTRATION LENGTH

NOISE EQUIVALENT CONCENTRATION LENGTH

GAS CONTRAST

GAS SENSITIVITY MATRIX

FALSE ALARMS

Useful Figures of Merit for Selection of OGI Cameras

JONAS SANDSTEN, PHD, FLIR SYSTEMS

OCTOBER 21, 2020

Content

Useful Figures Of Merit (FOM):

- Concentration Length (CL)
- Noise Equivalent Differences (NETD and NECL)
- FLIR Systems use NECL as independent measure for OGI cameras
- Gas Contrast (GC)
- How we optimize the OGI cameras based on these Figures of Merit
- Show the gas sensitivity camera matrix
- The physics behind false positives in the field and how to interpret and minimize false alarms.

\$FLIR

Concentration Length

- CL is the path integrated Concentration Length of the gas
- Normally used in line of sight instruments, e.g. open path infrared gas detector
- Measure gas concentration multiplied with gas plume length, e.g. [ppm x m]

Noise Equivalent Concentration Length

- Measurement of Gas Sensitivity
- Depends on:

Recap from 2015

- $-\Delta T = T_B T_G$ [K]
- Gas plume depth [m]
- Gas concentration [ppm_v]
- Compare with Noise Equivalent Temperature Difference (NETD)

Carbonated water. One bubble ruptures. GF343 CO_2 camera image.

Noise Equivalent Differences

NETD	NECL
Noise Equivalent Temperature Difference	Noise Equivalent Concentration Length
$S(T + \Delta T^{NETD}) - S(T) = noise$ $\Delta T^{NETD} = \frac{noise}{\frac{dS(T)}{dT}}$	$S(CL + \Delta CL^{NECL}, \Delta T) - S(CL, \Delta T) = noise$ $\Delta CL^{NECL} = \frac{noise}{\frac{dS(CL, \Delta T)}{dCL}}$
Dependent on T	Dependent on $\Delta T = T_B - T_G$ and CL
Noise: temporal SD @ 30 °C	Noise: temporal SD @ 30 °C
Gain, $\frac{dS(T)}{dT}$, from calibration	$\frac{dS(CL,\Delta T)}{dCL}$ from curve fit to experimental data

FLIR

Outdoor wall Tb=39°C, Tg=17°C, $\Delta T = 22^{\circ}$, Methane flow = 10 liter/min, Wind 5-10 m/s, Rel. humidity = 23%, Distance = 1 m Low sensitivity camera: F# 1.1, 12.5 Hz, -40°C to 150°C GF320: F# 1.6, 15 Hz, 10°C to 60°C

Methane visualization

\$FLIR

INFLUENCERS OF

Gas Contrast

The gas contrast against the background is a fundamental function of the apparent temperature and the gas concentration path length. T, Delta T and CL

Gas contrast camera qualities :

- spectral range
- camera settings (temperature range)
- display

Environmental/user conditions:

- perception
- distance
- humidity
- wind
- visibility (snowstorm, rain, dust)

 ΔT exactly 0 -> no gas visualized

Gas Contrast Definition

Gas Contrast Optimized

GC = 0.575 at bandwidth = 0.2 μ m

\$FLIR

Four useful Figures of Merit (FOM)

NETD	NECL				
Noise Equivalent Temperature Difference	Noise Equivalent Concentration Length				
$S(T + T^{NETD}) - S(T) = noise$	$S(CL + CL^{NECL}) - S(CL) = noise$				
$T^{NETD} = \frac{noise}{\frac{dS(T)}{dT}}$	$CL^{NECL} = \frac{noise}{\frac{dS(CL)}{dCL}}$				
Alternative def.: $GC = \frac{T(CECL) - T(CL)}{T_{max}^{span} - T_{min}^{span}}$	$\frac{(=0)}{n}$				
Minimum Lab. Leak Rate Personal s	ubiective measure of minimum lab. leak rate seen				

Personal subjective measure of minimum lab. leak rate seen with a camera, can be used to fine tune the image processing.

The gas sensitivity camera matrix

Can I See "x" Compound with a FLIR GF Camera?

NOTE: This data is for reference only and should be confirmed by in-field testing or other means NOTE: Cameras gas detection sensitivity levels vary dependent on camera model

YES						
MAYBE (requires field testing)						
NO (or Assumed No)						
high	< 50 ppm x m	medium	< 150 ppm x m	low	< 250 ppm x m	

			Cooled Cameras					Uncooled Cameras	
Gas	Chemical Name	Chemical Formula	GF320/GFx320	GF343	GF346	GF304	GF306	GF77-LR	GF77-HR
Ammonia	Ammonia	NH ₃					high		high
Butane	Butane	C ₄ H ₁₀	high					low	
Carbon Dioxide	Carbon Dioxide	CO ₂		high					
Carbon Monoxide	Carbon Monoxide	СО			high				
Ethyl Alcohol	Ethanol	C ₂ H ₆ O	high			high		medium	medium
Ethylene	Ethylene	C ₂ H ₄	high				high		high
Hydrocarbons	Multiple	C _x H _x	high	Sandsten Jona	s:	low		medium	
Methane	Methane	CH ₄	high	NECL=13 ppmxm CL=130 ppmxm	1 1			medium	
Propane	Propane	C ₃ H ₈	high						
R22	Chlorodifluoromethane	CHCIF ₂	medium			medium		medium	
R134A	1,1,1,2-Tetrafluoroethane	$C_2H_2F_4$				high	medium	high	low
R410A	R-32 / 125 (50% / 50%)	50% CH ₂ F ₂ • 50% C ₂ HF ₅				high		high	low
Sulfur Dioxide	Sulfur Dioxide	SO ₂				medium		high	
Sulfur Hexafluoride	Sulfur Hexafluoride	SF ₆					high		high

Multiple Hydrocarbons: Methane 68.49%, Ethane 11.21%, Propane 10.41%, Isobutane 1%, Butane 3.68%, Isopentane 0.72%, Pentane 0.84%, (Hexanes Pus 0.46%)

The physics behind false positives in the field

Some of the false alarms encountered:

- Condensing and non-condensing water, steam
- Clouds low height, fast moving
- Supersonic jets
- Air convection and humidity variations against smooth surfaces
- Other hydrocarbons and spectrally interfering gases
- Exhaust gases
- Sun reflectance, much stronger in MWIR than LWIR
- Shadows of clouds
- Moving objects: birds, trucks, people, flags, swaying grass

Physics

- Interferences which are wavelength dependent
 - Slowly varying scattering with wavelength
 - Atmospheric disturbances/turbulence
- Faster reflectance and emissivity changes with wavelength
- MWIR vs LWIR & Planck's law \rightarrow Large exitance variations

Remedies

- Traditional image processing with background subtraction, mostly used with fixed mount OGI cameras:
 - In time, High Sensitivity Mode
 - Spatially, collect background images
- Choice of spectral bands optimized based on NECL and GC. Atmosphere and interfering gases can be included.
- Multispectral or hyperspectral detection
- Gas detection by constantly training AI
- Operators knowing which gas is leaking from the processing plant components e.g. valves, pack boxes

Conclusions

- We see that measured and simulated FOM's in combination are user friendly when selecting an OGI camera.
- We have NEDT, NECL and Gas Contrast in MATLAB and use them as powerful development tools.
- Depending on gas flow in motion pictures the concept gas contrast is important. Human perception is excellent in detecting optical flow in videos.
- We have looked at the gas sensitivity OGI camera matrix:

https://www.flir.com/instruments/optical-gas-imaging/what-gases-can-i-see-cooled-vs.-uncooled/

• False alarms in the field can be understood and reduced

Thanks!

