NOx Emission Reduction: Technology Solutions for Small Biogas Projects

Pacific Southwest Organic Residuals Symposium September 15, 2010

Marco Lemes
Energy Research & Development Dept.
Sacramento Municipal Utility District (SMUD)

Outline

- SMUD's GHG Reductions and Renewable Energy Programs
- Local Biomass Program
- Dairy Digester Incentive Program
- Existing dairy manure projects
- Air Emissions Permitting in Sacramento
- Potential technical solutions
- New local dairy digester projects

SMUD's GHG Reduction and Renewable Energy Programs

- SMUD's strategic directive: Board is committed to environmental leadership through community engagement, continuous improvement in pollution prevention, carbon emissions reduction, energy efficiency, and resource conservation
- GHG reduction goal: 10% of 1990 levels by 2050
 - Energy Efficiency
 - Renewable Energy
- Renewable Energy Programs
 - RPS
 - Greenergy
- Renewable energy goals
 - 23.9% by 2010
 - 37%+ by 2020

SMUD'S Local Biomass Program

- Problem wastes used as resources in local waste-to-energy projects
 - Sustainable fuel supply
 - Mature or commercial-ready technologies
 - Dairy manure, grease, food, landfills, MSW, fuel-loaded forests
- Promote global and local environmental benefits
 - Reduce GHG emissions
 - Divert waste from landfills
 - Encourage alternative waste disposal methods
 - Reduce groundwater contamination
- Bring local economic benefits
 - Promote the creation of local jobs
 - Source of steady income to local business through electricity sales
- Utilize existing infrastructure where possible
 - Wastewater treatment plants
 - Landfills

Biomass Resources & Conversion Technologies

Local Resources:

- Animal manure
- Food waste
- Grease waste
- MSW
- Urban and forest wood
- Sludge

Conversion technologies

- Anaerobic Digestion
- Gasification
- Pyrolysis
- Combustion (wood waste only)

SMUD'S Dairy Digester Incentive Program

Then

- Provided grants to help dairies build digesters
 - 13% capital cost incentive to match 25% USDA Rural Development grant
- Paid for 50% of the USDA grant application cost
- Helped with permitting, interconnection, and obtaining grants
- Offered net metering crediting all the farm meters at retail rates
- Signed PPAs for surplus electricity

SMUD'S Dairy Digester Incentive Program

Now

- Maintaining interest in promoting and facilitating local dairy digester project development
- Reducing involvement with project implementation
- Adapting to new business model in which developers finance, permit, build, own and operate projects
- Partnering with farmers and/or project developers to submit grant proposals
- Managing compliance with grant disbursement requirements
- Providing some assistance with permitting and interconnection
- Offering FIT rates for PPAs

Dairy Manure Digesters

Existing Dairy Manure Projects

Cal-Denier Dairy

- Start-up: July 2008
- ~ 500 cows
- 65 kW genset
- Potential to generate ~ 450,000 kWh/year

Tollenaar Holsteins Dairy

- Operational in April 2009
- ~ 1,100 cows
- 212 kW genset (originally 450 kW)
- Potential to generate ~1,400,000 kWh/year
- Generated 735,742 kWh between April 2009 March 2010, enough energy to power ~ 80 single family homes in Sacramento

Cal-Denier Dairy

- Cal-Denier Dairy
 - ~ 500 cows
 - 65 kW genset

Tollenaar Holsteins Dairy

- Tollenaar Holsteins Dairy
 - ~ 1,100 cows
 - 212 kW genset

Location of Existing Projects

SMAQMD: Proposed Revision of Rule 202

- Sacramento Metropolitan Air Quality Management District (SMAQMD) to amend its Rule 202, New Source Review, to bring NSR program up to date with state and federal laws.
 Bottom line: air emissions rules will be stricter than today
 - Decrease the BACT applicability threshold from 10 lb/day to zero of any non-attainment pollutant (e.g. ozone) or its precursors (e.g. NOx), requiring BACT for all new or modified equipment that will increase emissions.
- Tollenaar and Denier permitted at 54 ppm for NOx
- SMAQMD targeted BACT for NOx = 9 ppm

SMUD's Innovative Clean Air Technology (ICAT) Project

- Objective: Demonstrate an integrated emission control process for NOx removal on the engine exhaust and sulfur (H2S) removal in the biogas at Tollenaar Holsteins Dairy
- Partners: SMUD (prime), Cha Corporation, Applied Filter Technology, Gerling Applied Engineering, CARB (ICAT Program Funding)
- NOx reduction (target 5 ppm or less)
 - Activated carbon & silica gel bed used to absorb NOx in the exhaust
 - Microwave technology regenerates the carbon media for reuse and decomposes NOx molecules
- H2S reduction (target 10 ppm or less)
 - Liquid contact tower containing iron chloride solution
 - Peroxide reacts with H2S to form elemental sulfur and water
 - $H₂S + H₂O₂ \rightarrow S + 2H₂O$

Media Adsorption with Microwave Regeneration and Oxidation Reactor System Media

Detail of Mixed Media

Overall System Diagram

HCCI Project

- Biogas fueled Homogeneous Charge Compression Ignition (HCCI) power generation system for distributed generation
- MEI and UCB researchers are developing a Scaled up HCCI system based on the existing 30 kW HCCI LFG system
- Objective: Demonstrate an HCCI engine using dairy manure digester biogas at a dairy farm in the Sacramento County
- Partners: Makel Engineering, SMUD, CEC's Public Interest Energy Research (PIER)
- Technology potential
 - NOx reduction target 5 ppm or less
- Status
 - Scale up design from demonstrated 30 kW engine to a 200 kW Cummins (or two 100 kW Caterpillars – lower cost engine block) under way
 - Equipment expected to arrive at Tollenaar's by early 2011

HCCI and Biogas

To control HCCI combustion timing, active thermal conditioning of the inlet charge is required

ENGINE

*GM CONCEPT

HCCI FLAMELESS IGNITION

- The intake charge for methane base biogas needs to be ~ 180oC to ignite in HCCI mode
- This is a complex function of:
 - Compression ratio
 - Boost pressure
 - Cylinder geometry
 - Block temperature
- Low temperature exhaust
 - Low NOx formation

Key Previous Project Results

- Working under a PIER CEC grant, MEI demonstrated a 30 kW landfill gas fueled HCCI engine
- This project established the viability of converting conventional, off-the-shelf compression ignition engines to HCCI operation, while achieving CARB 2007 standards
- Developed a prototype six cylinder HCCI engine/genset using combination of stock diesel engine components and custom intake/exhaust system
- Demonstrated attended operation of system at an active California landfill site currently flaring LFG
- Achieved over 500 hrs of operating time with LFG
 - Operating efficiency 35%
 - Variation in efficiency of approximately 5% (i.e. 33% to 37%)
 - NOx emissions on the order of 5 PPM (0.07 lb/MW-hr)
 - Post test inspection of engine indicated no significant change in critical components (cylinders, pistons, etc.)

HCCI Scale Up Project

- Under a separate PIER-RESCO program, MEI is currently developing a "scaled up version" of the previously demonstrated 30 kW unit
 - Capable of achieving California ARB 2007 targets for combustion of biogas
 - Targeting 200kW of electrical power output

CAT 3406 engine block

System components for the scaled up HCCI system

HCCI Efficiency and NOx with LFG

EFFICIENCY (%)	NOx (ppm)-(lb/MW-hr)*	
37-39	8-14	(.1017)
33-37	4-8	(.0510)
31-33	2-4	(.0305)

Site Integration

Potential Projects

•Largest 15 out of 43 dairies in the Sacramento County could support a manure digester

☆− 1200

A - 1196

C - 1075

B - 953

★ – 837

C – 745

D - 728

E - 693

F - 589

G - 563

H - 520

1 - 468

J - 468

K - 451

L - 399

CRED Projects

- Award from DOE's Community Renewable Energy Deployment program (CRED), under American Recovery and Reinvestment Act (ARRA) - \$5,000,000
- 5 projects
 - Solar Highways
 - County Wastewater Treatment Plant Co-Digestion of Fats,
 Oils & Grease Waste and other liquid wastes
 - Garden Highway Foods Anaerobic Digester
 - Warmerdam Dairy
 - New Hope Dairy

CRED Diary Digester Projects

- Warmerdam Dairy
 - 700 kW dairy digester project using an internal combustion engine with SCR
- New Hope Dairy
 - 500 kW dairy digester project using novel low emissions IC engine

CRED Project Locations

Q&A

Thank you!

Marco Lemes

916-732-5871

mlemes@smud.org

