
Spiking Report 2006 WeState Carbon Performance Demonstration Test

Prepared By: Engineered Spiking Solutions, Inc. 1200 Hwy 146 South, Suite 170 LaPorte, TX 77571

Excellence through Combustion Chemistry

TABLE OF CONTENTS

SPIKING REPORT

1.0	Introduct	on and Background	1
2.0	Spiking N	lethods and Operating & QA Procedures	3
3.0	Spiking F	Rate Results	7
4.0	QA/QC F	lesults & Discussion	12
5.0	Conclusion	ons	13
		LIST OF TABLES	
Table	e 1 Sumn	nary of the 2006 WeStates PDT Spiking Requirements	1
Table	e 2 Spikir	g Rate Results for TC #1, Run #1	8
Table	e 3 Spikir	g Rate Results for TC #1, Run #2	9
Table	e 4 Spikir	g Rate Results for TC #1, Run #3	10
Table	e 5 Sumn	nary of Spiking Rate Results	11
		LIST OF FIGURES	
Figu	e 1 Scher	natic Diagram: <i>ESS'</i> Spiking Procedure	4
		LIST OF ATTACHMENTS	
Attac	hment I	Spiking Plan: Spiking Materials, Species, Rates, & Durations, and Anticipated Test Schedule	
Attac	hment II	Documentation of Spiking Material Compositions	
Attac	hment III	Demonstration of Field Spiking Rate Measurement Accuracy	
Attac	hment IV	ESS Log Sheets (Field Data) and Spiking Rate Calculations	
Attac	hment V	The Effect of Measurement Uncertainty on Uncertainty in Field Spiking Rate Results	

į

SPIKING REPORT

1.0 Introduction and Background

Background: WeStates Carbon (WeStates) owns and operates an activated carbon re-generation facility located in Parker, AZ. Because wastes, which meet the 40 CFR 261 (RCRA) definition of hazardous waste are managed in this unit, it is subject to the RCRA Regulations (40 CFR 260 through 271). Since this activated carbon re-generation unit does not meet the RCRA (40 CFR 260.10) definitions of an incinerator, a boiler, or an industrial furnace, it is regulated as a (40 CFR 264, Subpart X) Miscellaneous Unit, and is also being held to the HWC MACT requirements found at 40 CFR 63, Subparts A and EEE. This Performance Demonstration Test (PDT) was planned and executed to demonstrate that the unit operates in compliance with all applicable (HWC MACT) Environmental Performance Standards.

Test Project Team: To conduct the PDT in compliance with all applicable regulations, methods, protocols, guidance, & policies, WeStates retained:

- 1. Focus Environmental, Inc (Focus) to: (a) plan, (b) manage, and (c) report the results of the test,
- 2. AIRTECH Environmental Services, Inc (AIRTECH) for stack gas sampling services, and
- 3. Engineered Spiking Solutions, Inc. (ESS) for spiking services.

Test Structure, Schedule, & Spiking Requirements: The 2006 WeStates PDT entailed a single, triplicate-run Test Condition (TC) spiking four (4) materials with eight (8) distinct spiking species:

- Mono-Chlorobenzene (MCB),
- 2. Perchloroethylene (Perc),
- 3. Organics Solution [A solution of four organic compounds, Methylene Chloride (CH2Cl2), Ethylene Glycol, Toluene, and Naphthalene], &
- 4. Metals (Pb & Cr^{III}) Solution [A dilute Aqueous solution of Pb (NO₃)₂ & Cr (NO₃)₃•9H₂O].

Table 1 provides a summary of WeStates' Spiking Requirements for this test.

Table 1 Summary of the 2006 WeStates PDT Spiking Requirements:

			Targ	et Spiking Rate	s, Lb M or S/F	-lr	
	Test Date →	4/27/2	2006	4/27/2	006	4/28/2	:006
	TC # 1, Run # →	Run	#1	Run	#2	Run	#3
Spiking Materials ¹ , M Ψ	Spiking Species¹, S ♥	Lb M/Hr	Lb S/Hr	Lb M/Hr	Lb S/Hr	Lb M/Hr	Lb S/Hr
MCB	MCB	35	35	35	35	35	35
Perc	Perc	35	35	35	35	35	35
Organics Solution		41		41		0	
	CH ₂ CI ₂		8		8		
	Ethylene Glycol		8		8		
	Toluene		17		17		
	Naphthalene	-	8	<u> </u>	8		•
Metals Solution		20		20		20	T
	Pb		0.10		0.10		0.10
	Cr ^{III}		0.35		0.35		0.35

^{1.} Spiking Material (M) refers to the material which is actually spiked, i.e., a metal solution, a TiO₂ and/or metal dispersion, and/or a POHC or a solution of two or more POHCs. Spiking Species (S) refers to that portion of the Spiking Material which is of specific interest in meeting the test objectives, i.e., elemental metal(s), ash, POHC(s), Cl⁻, etc.

ESS Spiking Project Scope: ESS provided the following services in satisfaction of these spiking requirements:

- 1. All necessary spiking equipment, tools, and supplies,
- 2. All spiking materials,
- 3. On-site spiking, and off-site project management, coordination & support services, and
- 4. This PDT Spiking Report.

ESS utilized four spiking systems [e. g., for: (1) MCB, (2) Perc, (3) Organics Solution, & (4) Metals Solution] to satisfy the PDT spiking requirements defined in Table 1, above. The on-site aspects of this project were completed during a March, 2006 mobilization.

Spiking Report Organization:

- Section 2.0 Provides a Description of the Spiking Methods and Operational & QA Procedures **ESS** used to meet these spiking requirements;
- Section 3.0 Provides the Species/Material Spiking Rate Results in both Absolute (Lb/Hr) and Relative (% of target) Terms, based on two methods of measuring field spiking rates:
 - 1. The Weight Loss vs. Time Method, and
 - 2. The Mass Flow Meter Method;
- Section 4.0 Provides QA/QC Results and a Discussion of these Results in the context of this project; and
- Section 5.0 Provides Conclusions related to these QA/QC & Spiking Rate Results.

Spiking Report Attachments:

Attachment I provides the Spiking Plan for the test. The plan identifies the:

- 1. Spiking species (and spiking materials),
- The anticipated spiking rate(s) and duration(s),
- The number and types of spiking pumps, weigh scales, and mass flow meters (MFMs) to be used,
- 4. The Test Manager's Spiking Orders to **ESS**. (This is an ISO 9001:2000 QMS related document, which **ESS**: (a) prepares for each spiking project based on our understanding of the client's spiking requirements and (b) requests that the client's test manager review & approve the document as a means of demonstrating a common understanding of the spiking scope), and
- 5. Details concerning some of the preparatory efforts (including Work Instructions, Check Lists, Worksheets, & Other Project Preparation Documentation) which *ESS* uses to ensure that the defined spiking requirements are consistently met.

Attachment II documents the composition of the spiking materials used during this project.

Attachment III provides a demonstration that the field spiking rate measurement equipment used during this project is accurate as provided in Attachment III documentation of the accuracy of the weighing systems used during the on-site portion of this project. Specifically, **ESS** completed (& documented) three separate verifications of the weigh scale calibrations using NIST traceable weight standards:

- 1. At ESS' shop prior to mobilization (all scales including spares),
- 2. At the test site prior to beginning the PDT (for scales selected for use during the test), and
- 3. At the test site after completing the PDT (for scales used during the test).

Attachment IV provides:

- The completed Test Manager's Spiking Orders to ESS and other spiking related information (IV.A),
- 2. Stack sampling start and stop times (IV.B), and
- Spiking Log Sheets (field data), spiking rate calculations, and results (IV.C).

Attachment V contains two recently published papers¹, which discuss the effect of measurement uncertainty on the uncertainty in spiking rate results. The first paper (2004 IT3 Paper 103) documents why the method, which **ESS** has developed for demonstrating the composition of spiking material composition² is at least two (2) orders of magnitude more accurate than the most commonly used method³ in the spiking industry.

The second paper (2004 IT3 Paper 102) provides a comprehensive comparison of:

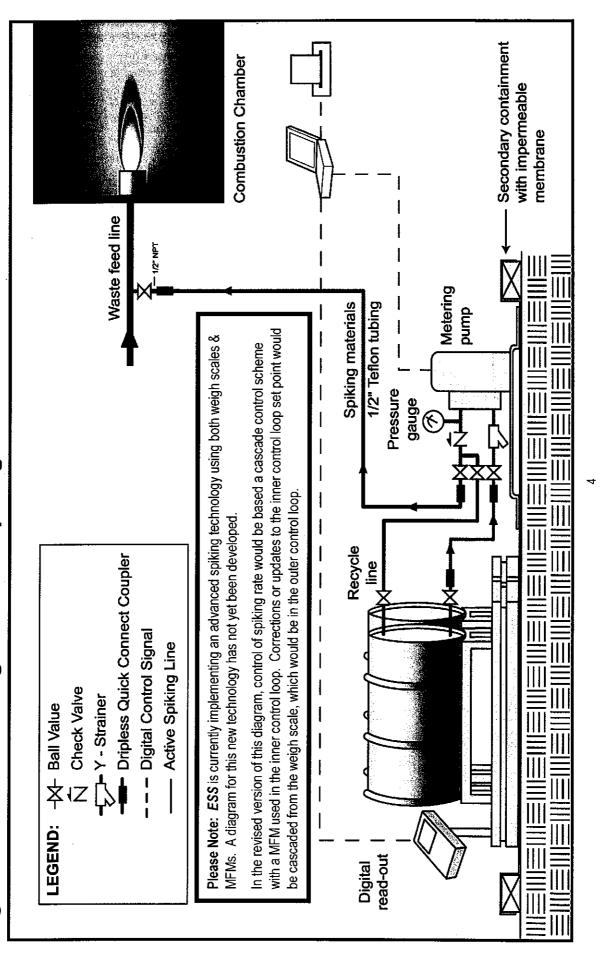
- 1. The measurement uncertainty associated with the two primary methods of measuring and controlling spiking rate [Weight Loss vs. Time & Mass Flow Meters (MFMs)],
- 2. A summary description of the underlying technology of each measurement method,
- 3. The resulting operational attributes of each method, and
- 4. The combined measurement uncertainty accruing from: (a) compositional uncertainty, and (b) spiking rate measurement uncertainty. This paper will be discussed further at the beginning of Section 2.0.
- 1. Proceedings of the 2004 International Incineration and Thermal Treatment Technology (2004 IT3) Conference (Papers 103 & 102).
- The Laboratory Standard Method, i.e., Prepare the spiking material with the same care & attention to accuracy as you would in preparing a "laboratory standard" for calibrating a sensitive analytical instrument.
- 3. Sample & Analyze Method, i.e., one would take a sample of the finished spiking material and analyze it using analytical methods approved by the environmental agency to which the spiking report would ultimately be submitted.

2.0 Spiking Method and Operation & QA Procedures

Comparison of Spiking Methods: Historically, two methods to measure and control spiking rate have been used: (1) Weight Loss vs. Time (based on mass measurement technology) and Mass Flow Meter (based on technology which measures mass flow using Coriolis Effects). From the early 1980s until early 2004, ESS (& staff members) used the Weight Loss vs. Time⁴ Method exclusively (See Figure 1). However, for reasons outlined below (and discussed more thoroughly in the previously referenced 2004 IT3 Paper 102), ESS is currently field implementing a spiking system based on the best attributes of both methods.

The **Weight Loss vs. Time Method**⁴ of measuring & controlling spiking rate provides a quick, efficient, and tangible demonstration of accuracy using NIST traceable weight standards⁵. This is due to the mass measurement nature of this technology, e.g., if one places a certified weight standard on the scale, the measured or indicated weight promptly appears on the weight indicator. One can easily obtain a straight forward, quick, and definitive comparison of the "indicated" weight to the "known" weight over the entire operating weight range of interest. *ESS* utilizes this approach to demonstrate the accuracy of our spiking rate results with NIST traceability⁵. We believe that demonstrating the accuracy of ones spiking rate data (with traceability to a nationally recognized standard) is essential in the Trial Burn and PDT context in which spiking occurs.

Conversely, it is very difficult to demonstrate the accuracy of **Mass Flow Meters** (MFMs with comparable measurement uncertainty), because of the rate (mass/time, as opposed to mass) measurement basis of the technology. However, the direct and instantaneous measurement of rate provided by MFMs offers an inherent spiking rate control advantage through a feedback control system. Thus, spiking rate can be controlled to a uniform target level &/or the spiking rate can be changed and quickly brought to a new target during, for example, a Trial Burn in which runs at different spiking rates are required.


The ESS Spiking Technology: Because of these complimentary characteristics, ESS has developed spiking technology that incorporates (and benefits from) both methods:

- 1. MFM provides an instantaneous measurement of spiking rate to ESS computer based feedback control system, and
- The Weigh Scale provides spiking rate results with demonstrated accuracy to NIST Standards. Corrections to the control system spiking rate set point are cascaded from the weighing system to the control system, as needed.

Spiking rate data produced by this dual technology system provides both tight control to the client's target spiking rate and spiking rate results, which are demonstratably accurate based on NIST Traceable Standards.

- 4. With the Weight Loss vs. Time Method (as implemented by ESS), a container of spiking material is placed on a highly accurate weigh scale (appropriately sized and calibrated for the test specific weight range), and connected with SS, drip-less, quick-connect fittings to the metering pump, which is similarly connected to the waste feed line. When spiking material is pumped out of the container and into the waste feed line, the mass on the weigh scale will drop. ESS' computer based control & data acquisition system: (a) records the weight & time at a rate of 1 data set/second, (b) compares the actual rate to the target-spiking rate, and (c) adjusts the spiking rate, as needed.
- 5. ESS verifies the calibration of each scale with ESS' NIST traceable weight standards three separate times for each spiking project: (a) at ESS' shop prior to mobilizing to the test site, (b) at the test site immediately before testing, and (c) at the test site immediately after testing. ESS' 50 lb field standards are certified annually by the State of Texas for a maximum absolute uncertainty of ± 0.008 lb (approx. ± 0.016% RU) of NIST Primary Standards. ESS' standards were last Certified on 8/11/2005 as documented in Attachment III.C. Typically, the measurement uncertainty of ESS' weigh scales is approximately ±0.01% to ±0.02% of the scale's upper calibration weight, or in terms of the typical 0 to 650 Lb calibration range, ±0.065 to ±0.13 lb. As a result, measurement uncertainty with the weigh scale technology is typically < 0.1% of the material spiked during a given run.</p>

Figure 1 Schematic Diagram: ESS' Spiking Procedure

QA Program: There are many factors beyond field spiking rate measurement, which can adversely affect the quality/defensibility of the overall spiking rate results. **ESS** has invested a substantial effort to identify and address a wide range of preparation and operational concerns through a comprehensive, ISO 9001:2000 Certified Quality Management System (ISO QMS⁶).

ESS' QMS addresses all aspects of ESS' products and services delivery system with emphasis on the two most mission-critical phases of ESS' Products & Services Delivery System:

- Off-site preparation measures prior to mobilizing to the test site, and.
- 2. On-site setup & spiking measures immediately prior to, during, & immediately after testing. Selected aspects of **ESS'** QMS are described below.

ESS has developed a number of QA measures to help ensure that client spiking requirements are consistently met. The single most significant measure is based on the observation that all spiking projects can be subdivided into approximately 40 work functions. Each project would require a different subset of these work functions as well as different, project-specific materials, quantities, rates, etc.

While these work functions are individually relatively simple and routine, they must:

- 1. In aggregate, address all planning, scheduling, execution, & documentation steps associated with meeting the spiking requirements of any given spiking project (i.e., be comprehensive and accurate), and
- Be consistently completed with strict adherence to prescribed protocols and project-specific details (i.e., completed without error).

In an effort to minimize the possibility of errors & omissions during any given spiking project, **ESS** has developed a generic (40+ page) Project Planning, Documenting, & Execution Template (Project Plan Template), which is designed to address all spiking projects, and includes: Protocols & Work Instructions⁸ (e.g., SOPs), Work Sheets⁸, and numerous Check Lists⁹ & Log Sheets and Reports¹⁰.

In the initial phase of every spiking project, **ESS** revises this generic template by:

- 1. Inserting project-specific details into those sections of the template (work functions) which are applicable to that project, and
- Deleting from the template (or marking as "NA") those sections which are not applicable.

These changes result in the project-specific Project Planning, Execution, & Documentation Package (Project Plan) for that project.

The Project Plan addresses:

- Preparation at ESS' shop prior to mobilizing to the test site including:
 - A. Spiking materials preparation,
 - B. Operability & accuracy verification of all equipment selected for a given spiking project at ESS' shop prior to mobilization,
 - C. Identification and completion of all "special" project specific equipment, procedures, materials, training, medical requirements, &/or other special pre-mobilization preparation, &
 - D. Project materials, tools, equipment, supplies, etc. checklists, and equipment trailer & truck safety checklists Operability & accuracy verification of all equipment? selected for a given spiking project at *ESS*' shop prior to mobilization.
- 6. ESS' Quality Manual, Rev 1, June 30, 2005.
- 7. Examples include: (a) weighing out a quantity of spiking material, dispersant, &/or carrier/solvent, (b) mixing a solution of soluble metal salt in an aqueous solution, (c) preparing a dispersion, (d) calibrating or verifying the calibration of a measurement instrument with NIST Traceable Standards, (e) documenting weight &/or rate data, (f) assembling equipment, tools, supplies, etc. for transport to the test site, (g) assembling the equipment into spiking systems at the test site, (h) testing operability of spiking equipment/systems prior to mobilization and at the test site, (i) preparing spiking materials (which are almost always hazardous materials under US DOT & IATA requirements) for common carrier transport, etc.
- 8. Protocols & Work Instructions (e.g., SOPs), and Work Sheets include: (a) Materials Prep Instructions, (b) Raw Material Weights, & Materials Preparation Work Sheet, (c) Multiple-Packet Preparation Instructions, (d) Equipment Operability Verification & Pre-Mobilization Instructions, (e) Transition Fitting Installation & Use Instructions, (f) Field-Scale Set-Up, Adjustment & Calibration Verification Reports, (g)(i) Pb/Cr^{II} Solution & (ii) Organic Solution Preparation & Composition Calculation Instructions & Work Sheets.
- 9. Check Lists include: (a) Project Plan Component Transmittal & Acceptance Check List, (b) Overall Project Preparation Check List, (c) Materials Preparation Component Check List, (d) Direct Ship Materials Check List, (e) Materials Preparation Check List, (f) Equipment Operability Verification Check List, (g) Materials Release for Shipment Check List, (h) Multiple-Packet Preparation Check List, (i) Multiple-Packet Information Check List, (j) Pre-Travel Project Preparation Equipment Operations and Maintenance Check List, (k) Pre-Travel Safety Check List, (l) Spiking Plan Transmittal & Acceptance Check List, (m) Overall Test Execution Check List, and (n) Field-Scale Set-Up, Adjustment & Calibration Verification Check List.
- 10. Log Sheets and Reports include: (a) Shop Scale Calibration & Calibration Verification Reports, (b) Laboratory Scale Calibration & Calibration Verification Reports, (c) Pre-Mobilization, Equipment Operability (@ Test Conditions) Verification & Certification Log Sheets, (d) Tentative & Final Product Release for Shipping Log Sheets, (e) Daily Activity Log Sheets, (f) Pre-Mob and Pre-Test & Post-Test Field Scale Calibration & Calibration Verification Reports, (g) Equipment Operation & Maintenance Log Sheets, (h) Equipment Adjustment Log Sheets, and (i) Spiking Rate Data Log Sheets, (ii) 1st Sheet.

- Mobilizing to the test site;
- 3. Equipment set-up and operability & accuracy verification at the test-site (including pre-test and post-test scale & MFM calibration verifications);
- 4. Spiking during the test;
- 5. Documentation of all QA steps & spiking rate results, &
- 6. Equipment Decontamination and Demobilizing.

The Project Plan Provides Standard Log Sheets, Worksheets, Check Lists, Instructions, etc. for:

- Spiking Materials Preparation, which include QA requirements, formal product release protocols, and DOT shipping requirements,
- 2. Pre-Mobilization, Pre-Test, & Post-Test Weigh Scale and MFM Calibration Verifications,
- 3. Pre-Travel Project & Safety Check Lists,
- 4. On-Site preparation of aqueous solutions,
- 5. Spiking Data Collection, and
- 6. Daily Spiking Operations.

ESS provides all personnel with all necessary:

- 1. Detailed, project-specific information,
- 2. The spiking materials, methods, & equipment,
- 3. Training for every plausible health & safety related exposure,
- 4. Training on all spiking functions for which they are responsible, and
- 5. Feedback from detailed project assessments following every project.

To help ensure that all client spiking requirements are safely & consistently met.

Additionally, "lessons learned" during each project assessment are used to further improve the Generic Template, Equipment Fleet, Methods, Training, etc.

3.0 Spiking Rate Results

Determining Spiking Rate: ESS used two methods to measure and control spiking rate during this PDT project:

- 1. The Weight Loss vs. Time Method, and
- The MFM Method.

Weight Loss vs. Time Method: With the Weight Loss vs. Time Method, ESS calculates the average spiking rate utilizing weight loss data:

- 1. When spiking and stack sampling have both occurred,
- 2. During the port change in the middle of each run if spiking continued during the port change,
- 3. During brief interruptions (typically, <20 30 minutes) of stack sampling if spiking continued during the interruptions, and
- 4. During brief spiking interruptions (typically, <20 30 minutes), if stack sampling continued during the interruptions.

Not included in these calculations are periods:

- 1. Prior to the beginning of stack sampling,
- 2. After stack sampling on a given run is completed,
- During port changes and/or other brief stack sampling interruptions when spiking was not occurring, or
- 4. During longer interruptions (typically, >20 30 minutes) of either the sampling or spiking functions.

A review of the **ESS** Spiking Log Sheets in Attachment IV.C will further clarify these procedures.

MFM Method: The spiking rate with the MFM Method was calculated as the average spiking rate over the same period(s) as described above.

Spiking Rate Results: Tables 2, 3, & 4 provide the Average, Absolute (Lb/Hr) and Relative (% of Target) Spiking Rate Results for TC #1, Runs #1, #2, & #3, respectively, based on both methods of measuring field spiking rate. Table 5 provides a summary of the spiking rate results from Tables 2, 3, & 4.

Inspection of these tables indicates two consistent findings:

- The spiking rate results are very close to corresponding targets.
- 2. The two spiking rate measurement methods agree within very close tolerances. This is not surprising, since the MFMs were calibrated to the mated weigh scale (after the scale had been calibrated with NIST Traceable Standards).

Table 2 Average, Absolute & Relative Spiking Rate Results for TC #1, Run #1 Based on: 1. The Weight Loss vs. Time, & 2. The MFM Methods of Measuring Field-Spiking Rates

						}							2	
							1. Spiking	 Spiking Rate by Weight Loss vs. Time 	eight Los	s vs. Time	2. St	Spiking Rate by Mass Flow Meter	y Mass Flor	w Meter
TC#/		Spiking1:		Corrections ² for:	1S ² for.		Absolut	Absolute Spiking Rate		Relative SR5		Absolute Spiking Rate	Rate	Relative SR5
Run #	Run # Species1, S	Material ¹ , M	Concentration ²	Purity ²	Stoichiometry ² (Specie) ² Lb M/Min ³ Lb S/Min ⁴ Lb S/Hr ⁴	(Specie) ²	Lb M/Min ³	Lb S/Min ⁴	Lb S/Hr4	% Target	Lb M/Min ³	Lb M/Min3Lb S/Min⁴ Lb S/Hr⁴	Lb S/Hr⁴	% Target
TC#1:										>				
Run #1	MCB	MCB	1.0000	0.999976	1.0000	0.999976	0.5802	0.5802	34.81	99.46	0.5803	0.5803	34.82	99.48
Run #1	Perc	Perc	1.0000	0.99974	1.0000	0.99974	0.5876	0.5872	35.24	100.7	0.5842	0.5840	35.04	100.1
Run #1	Organics Solution:	Solution:												
Run #1		Methylene Chloride	0.1951	0.9999	1.0000	0.1951	0.6873	0.1341	8.046	100.6	0.6812	0.1329	7.974	99.68
Run #1		Ethylene Glycol	0.1951	0.9998	1.0000	0.1951	0.6873	0.1341	8.046	100.6	0.6812	0.1329	7.974	99.68
Run #1		Toluene	0.4146	0.9999	1.0000	0.4144	0.6873	0.2848	17.09	100.5	0.6812	0.2823	16.94	99.63
Run #1		Naphthalene	0.1951	0.9993	1.0000	0.1950	0.6873	0.1340	8.041	100.5	0.6812	0.1328	7.970	99.63
		į		!										
Run #1	Metals Solution:	ution:			i						ļ.			
Run #1		Pb	0.007989	1.0000	0.6256	0.004998	0.3350	0.001674 0.1005	0.1005	100.5	0.3305	0.3305 0.001652 0.09911	0.09911	99.11
Run #1		S	0.134842	1.0008	0.1299	0.01753	0.3350	0.005867 0.3520	0.3520	100.6	0.3305	0.3305 0.005788 0.34726	0.34726	99.20
														2111

- 1. Spiking Material (M) refers to the material, which is actually spiked, i.e., a metal solution, a TiO2 and/or metal dispersion, and/or a POHC. Spiking Species (S) refers to the portion of the Spiking Material, which is of specific interest in meeting the test objectives, i.e., the elemental metal(s), ash, POHC(s), CI, etc.
- aqueous solution, etc. Purity refers to the assay, or purity of the POHC or metal compound, for example, used to make up the solution to the desired concentration. Stoichiometry refers to the stoichiometric content of the specie of weight of TiO2 present in the dispersion assuming 100% purity (i.e., no correction for moisture content) and enter that mass fraction in the Concentration column for Ash. A similar process would apply for a metal compound in an Concentration refers to the correction for the concentration of the compound of interest in the Spiking Material assuming compound has 100% purity. If we consider for example TiO₂ in a TiO₂ Dispersion, we would divide the net interest in the compound, for example the Or content in Perc or the elemental metal content in a metal compound (ESS uses the Merck Index as our primary source of Stoichiometry Correction).

(Specie) indicates the specie concentration (usually expressed as Lb Speciel Lb Material, or mass fraction) and is defined as the mathematical product of the three previously described corrections: (Specie) = Concentration x Purity x Stoichiometry. (Specie) is used as an overall correction factor to convert the Spiking Material spiking rate, which is determined from field spiking rate measurements to the corresponding Spiking Specie spiking rate, which is of interest to our clients and their corresponding regulatory agency representative(s).

Usually, all four of the "correction" terms are expressed as mass fractions. However, Concentration and (Specie) will occasionally be expressed as g S/Lb Material or similar units appropriate for a specific test circumstance.

- Spiking Material (M) spiking rate without (Specie) correction. Calculated from the Spiking Log Sheets in Attachment IV.C.
- 4. Spiking Specie (S) spiking rate, i.e., after (Specie) correction.
- 5. Relative Spiking Rate Expressed as a percent of the corresponding Target Spiking Rate (See Table 1).

									5			The first state of the control of th	יייים ביייים	ig indices
							1. Spiking	1. Spiking Rate by Weight Loss vs. Time	eight Loss	vs. Time	2. Sp	2. Spiking Rate by Mass Flow Meter	y Mass Flo	w Meter
/# OL		Spiking ¹ :		Correction	ons ² for:		Absolui	Absolute Spiking Rate	ate F	Relative SR5		Absolute Spiking Rate	Rate	Relative SR5
Run #	Species ¹ , S	S Material ¹ , M	Concentration ² Purity ²		Stoichiometry ² (Specie) ² Lb M/Min ³ Lb S/Min ⁴ Lb S/Hr ⁴	(Specie) ²	Lb M/Min ³	Lb S/Min4		% Target		PHYS 4 1 POINTS 4 1 EUNIM 4 1	1 h S/Hr4	% Tarriet
TC#1:										100			5	10 P
Run #2	MCB	MCB	1.0000	0.999976	1.0000	0.999976	0.5842	0.5842	35.05	100.1	0.5842	0.5842	35.05	100.1
												!!		
Run #2	Perc	Perc	1.0000	0.99974	1.0000	0.99974	0.5861	0.5859	35.16	100.4	0.5838	0.5836	35 02	1001
Run #2	Organics Solution:	Solution:												9
Run #2		Methylene Chloride	0.1951	0.9999	1.0000	0.1951	0.6825	0.1332	7.989	99.87	0.6814	0 1329	7 976	99 71
Run #2		Ethylene Glycol	0.1951	0.9998	1.0000	0.1951	0.6825	0.1332	7.989	99.87	0.6814	0 1329	7 976	99.71
Run #2		Toluene	0.4146	0.9999	1.0000	0.4144	0.6825	0.2828	16.97	99.82	0.6814	0.2823	16.94	99.66
Run #2		Naphthalene	0.1951	0.9993	1.0000	0.1950	0.6825	0.1331	7.985	99.81	0.6814	0.1329	7.972	99.65
Run #2	Metals Solution:	lution:												
Run #2		Pb	0.007989	1.0000	0.6256	0.004998	0.3360	0.001679 0.1008	0.1008	100.8	0.3358	0.3358 0.001678	0.1007	100.7
Run #2		الیا	0.134842	1.0008	0.1299	0.01753	0.3360	0.005890 0.3534	0.3534	101.0	0.3358		0.3532	100 9
Footnotes												12222	7,335)

Spiking Material (M) refers to the material, which is actually spiked, i.e., a metal solution, a TiO2 and/or metal dispersion, and/or a POHC. Spiking Species (S) refers to the portion of the Spiking Material, which is of specific interest in meeting the test objectives, i.e., the elemental metal(s), ash, POHC(s), CI, etc. ÷

aqueous solution, etc. Purity refers to the assay, or purity of the POHC or metal compound, for example, used to make up the solution to the desired concentration. Stoichiometry refers to the stoichiometric content of the specie of weight of TiO2 present in the dispersion assuming 100% purity (i.e., no correction for moisture content) and enter that mass fraction in the Concentration column for Ash. A similar process would apply for a metal compound in an Concentration refers to the correction for the concentration of the compound of interest in the Spiking Material assuming compound has 100% purity. If we consider for example TiO₂ in a TiO₂ Dispersion, we would divide the net interest in the compound, for example the CI- content in Perc or the elemental metal content in a metal compound (ESS uses the Merck Index as our primary source of Stoichiometry Correction). ٧i

(Specie) indicates the specie concentration (usually expressed as Lb Specie/Lb Material, or mass fraction) and is defined as the mathematical product of the three previously described corrections: (Specie) are correction factor to convert the Spiking Material spiking rate, which is determined from field spiking rate measurements to the corresponding Spiking Specie spiking rate, which is of interest to our clients and their corresponding regulatory agency representative(s).

Usually, all four of the "correction" terms are expressed as mass fractions. However, Concentration and (Specie) will occasionally be expressed as g S/Lb Material or similar units appropriate for a specific test circumstance.

- Spiking Material (M) spiking rate without (Specie) correction. Calculated from the Spiking Log Sheets in Attachment IV.C. က
- Spiking Specie (S) spiking rate, i.e., after (Specie) correction.
- 5. Relative Spiking Rate Expressed as a percent of the corresponding Target Spiking Rate (See Table 1).

Table 4 Average, Absolute & Relative Spiking Rate Results for TC #1. Run #3 Based on: 1. The Weight Loss vs. Time, & 2. The MFM Methods of Measuring Field-Spiking Bates

		The Weight Cost of the Weight Cost of the Weight Cost vs. The Weig	2001	2000	7 1 1 1 1 1 1 1	ט טממע טוי		AGIL EUSS V	. ווווני, מ	Z. IIIE IVITIVI	Neglions of	Measully	rield-opin	ig Kales
,							1. Spiking	1. Spiking Rate by Weight Loss vs. Time	feight Loss	vs. Time	2. Sp	2. Spiking Rate by Mass Flow Meter	y Mass Flo	w Meter
		Spiking ¹ :		Correctio	ions ² for:		Absolui	Absolute Spiking Rate		Relative SR5		Absolute Spiking Rate	Rate	Relative SR5
Run #	Run # Species1, Si	Material¹, M	Concentration ² Purity ²	Purity ²	Stoichiometry ² (Specie) ² Lb M/Min ³ Lb S/Min ⁴ Lb S/Hr ⁴	(Specie) ²	Lb M/Min ³	Lb S/Min⁴	Lb S/Hr4	% Target	Lb M/Min ³	Lb M/Min3 Lb S/Min4 Lb S/Hr4	Lb S/Hr4	% Target
TC#1:														
Run #3	MCB	MCB	1.0000	0.999976	1.0000	92666.0	0.5867	0.5867	35.20	100.6	0.5841	0.5841	35.05	100.1
Run #3	Perc	Perc	1.0000	0.99974	1.0000	0.99974	0.5830	0.5828	34.97	99.92	0.5809	0.5807	34.84	99.56
Run #3	Organics Solution:	Solution:								-				
Run #3		Methylene Chloride	0.1951	0.9999	1.0000	0.1951	0.6838	0.1334	8.005	100.1	0.6788	0.1324	7.946	99.33
Run #3		Ethylene Glycol	0.1951	8666.0	1.0000	0.1951	0.6838	0.1334	8.005	100.1	0.6788	0.1324	7.946	99.33
Run #3	į	Toluene	0.4146	6666.0	1.0000	0.4144	0.6838	0.2834	17.00	100.0	0.6788	0.2813	16.88	99.28
Run #3		Naphthalene	0.1951	0.9993	1.0000	0.1950	0.6838	0.1333	8.000	100.0	0.6788	0.1324	7.942	99.27
Run #3	Metals Solution	lution:												
Run #3		Pb	0.007989	1.0000	0.6256	0.004998	0.3320	0.001659 0.09957	0.09957	99.56	0.3313	0.001656	0.09935	99.35
Run #3		ll-O	0.134842	1.0008	0.1299	0.01753	0.3320	0.005820 0.34919	0.34919	99.77	0.3313	0.005808	0.34846	99.56
Footpotes														

1. Spiking Material (M) refers to the material, which is actually spiked, i.e., a metal solution, a TiO2 and/or metal dispersion, and/or a POHC. Spiking Species (S) refers to the portion of the Spiking Material, which is of specific interest in meeting the test objectives, i.e., the elemental metal(s), ash, POHC(s), CI, etc.

aqueous solution, etc. Purity refers to the assay, or purity of the POHC or metal compound, for example, used to make up the solution to the desired concentration. Stoichiometry refers to the stoichiometric content of the specie of weight of TiOs present in the dispersion assuming 100% purity (i.e., no correction for moisture content) and enter that mass fraction in the Concentration column for Ash. A similar process would apply for a metal compound in an Concentration refers to the correction for the concentration of the compound of interest in the Spiking Material assuming compound has 100% purity. If we consider for example TiO₂ in a TiO₂ Dispersion, we would divide the net interest in the compound, for example the CI content in Perc or the elemental metal content in a metal compound (ESS uses the Merck Index as our primary source of Stoichiometry Correction).

(Specie) indicates the specie concentration (usually expressed as Lb Specie/Lb Material, or mass fraction) and is defined as the mathematical product of the three previously described corrections: (Specie) = Concentration x Purity x Stoichiometry. (Specie) is used as an overall correction factor to convert the Spiking Material spiking rate, which is determined from field spiking rate measurements to the corresponding Spiking Specie spiking rate, which is of interest to our clients and their corresponding regulatory agency representative(s).

Usually, all four of the "correction" terms are expressed as mass fractions. However, Concentration and (Specie) will occasionally be expressed as g S/Lb Material or similar units appropriate for a specific test circumstance.

- Spiking Material (M) spiking rate without (Specie) correction. Calculated from the Spiking Log Sheets in Attachment IV.C.
- Spiking Specie (S) spiking rate, i.e., after (Specie) correction.
- 5. Relative Spiking Rate Expressed as a percent of the corresponding Target Spiking Rate (See Table 1).

Spiking	Target									Ave ₂ /Ave ₁
Specie,	Spiking Rate,	1. W	eight Loss	vs. Time N	1ethod	2	Mass Flov	v Meter Me	thod	x 100%,
S	Lb S/Hr	Run #1	Run #2	Run #3	Average ₁	Run #1	Run #2	Run #3	Average₂	%
MCB	35	99.46	100.1	99.99	99.85	98.57	100.1	100.1	99.59	99.74
Perc	35	100.7	100.4	99.92	100.3	99.85	99.83	100.0	99.89	99.59
CH ₂ Cl ₂	8	100.6	100.2	100.1	100.3	99.68	100.1	100.0	99.93	99.63
Ethyl Glycol	8	100.6	100.2	100.1	100.3	99.68	100.1	100.0	99.93	99.63
Toluene	17	100.5	100.1	100.1	100.2	99.63	100.1	99.95	99.89	99.69
Naphthalene	8	100.6	100.1	100.1	100.3	99.63	100.1	99.95	99.89	99.59
Pb	010	100.5	100.8	99.86	100.4	99.11	100.7	99.95	99.92	99.52
Cr ^{III}	0.35	100.6	100.9	99,97	100.5	99.20	100.8	100.1	100.0	99.50
	Average =	100.4	100.4	100.0	100.3	99.42	100.2	100.0	99.87	99.61

4.0 QA/QC Results and Discussion

Quality Infrastructure: As a part of **ESS'** ISO 9001:2000 Quality Management System (**QMS**) and as a means of ensuring that client spiking requirements are met or exceeded on every spiking project, **ESS** has developed an extensive and fully integrated quality infrastructure, which includes:

- A comprehensive, project-specific Project Plan for each spiking project,
- Ongoing classroom & OJT training;
- 3. The most extensive fleet of highly accurate & reliable equipment in the spiking industry including: (a) materials preparation equipment, (b) metering pumps, (c) weigh scales, (d) MFMs, (e) computer based spiking rate control & data acquisition equipment, (f) extremely flexible, steam-heated, organic HAP vaporizers, and other spiking equipment plus both general & specialized tools, supplies, & support systems; and
- 4. Conducting a thorough, critical assessment of each spiking project:
 - A. To evaluate the adequacy of ESS' quality infrastructure to consistently meet or exceed all client spiking requirements,
 - B. To confirm adherence of ESS efforts to the QMS requirements, and
 - C. To identify & implement refinements to the quality infrastructure based on actual project results11.

QA/QC Assessment Results: All applicable aspects of ESS' QMS System and Project Plan were implemented for this project including the post-project (pre-report) QA/QC assessment with the following findings:

- Each applicable aspect of the Project Plan was initiated by the ESS Project Manager (PM) & implemented by the Field Services
 Manager (FSM) &/or PM. Many of the pages of this documentation package contain useful information concerning the details of
 project planning, preparation, & execution and are provided in appropriate sections of Attachments I, II, III, & IV for convenient
 reference and project documentation reasons.
- 2. Spiking materials were prepared to tight compositional tolerances and consistent with the client's requirements. Manufactures' CoAs and related QA documentations are provided in Attachment II for all eight spiking species. **ESS** prepared Certificates of Composition (CoCs) for the Metals & Organics Solutions based on this information and included them in Attachment II.
- ESS utilized two methods for measuring & controlling field-spiking rates during this project: (a) the Weight Loss vs. Time Method, &
 (b) the MFM Method. In both cases, all measurements were taken with equipment for which calibrations were recently verified with NIST traceable standards.
- 4. The equipment required to successfully meet the on-site spiking requirements was: (a) selected, (b) operability verified before mobilization to the test site, (c) set-up & tested at the test site prior to beginning the test, and (d) met all client spiking requirements.
- ESS' personal were fully trained, equipped, and able to meet all project requirements.
- 6. All **ESS** activities related to the satisfaction of client's spiking requirements for this project were completed without work related illness, accident, reportable incident, property loss, or mishap of any kind.
- 7. All client defined spiking requirements were fully satisfied.
- No significant omission or deficiency in ESS' Quality Infrastructure was observed.

^{11.} During the 32* months since ESS formally implemented the first component of our QMS, ESS has made at least one improvement to the Quality Infrastructure as a result of the lessons learned from each spiking project completed.

5.0 Conclusions:

- As part of its ISO 9001:2000 Quality Management System, ESS has developed thorough, rigorous, and effective procedures
 for planning, preparing for, executing, documenting, and reporting the results of every spiking project. These procedures
 were consistently implemented during the execution of each phase of the March 2006 WeStates Parker, AZ PDT Project.
- 2. In the preparation of this report, ESS conducted a thorough assessment of every aspect of ESS' efforts, which led to the successful completion of the on-site spiking activities and report preparation described herein. This "audit" included review of the:
 - (a) Spiking materials preparation,
 - (b) Other pre-mobilization preparations,
 - (c) Equipment selection, testing, and test performance,
 - (d) Demonstrating field spiking rate accuracy through:
 - 1. Measuring device calibration & calibration verification results,
 - 2. Certification (with NIST traceability) of measurement device calibration standards, and
 - 3. All of the calculation steps necessary to produce the spiking rate results.
- The spiking results reported herein have passed every QA/QC test.
- 4. As a result of the findings from this review, ESS believes the spiking rate results presented in Section 3.0 to be true, accurate, and representative of the spiking activities which occurred during the March 2006 WeStates Parker, AZ PDT Project.

WR (Bill) Schofield, PhD, PE	Date
ESS Project Manager	

ATTACHMENTS

Attachment I

Original Spiking Plan, Preparatory Work Instructions, & Check Lists:

- A. Spiking Plan: Spiking Species, Materials, Rates, & Durations, and Schedule;
- B. Test Manager Spiking Orders to ESS; and
- C. Preparatory Check Lists, Work Instructions, Worksheets, & Other Project Preparation Documentation.

Attachment I Original Spiking Plan, Preparatory Work Instructions, & Check Lists:

A. Spiking Plan: (1) Spiking Species, Materials, Rates, & Durations, & (2) Test Schedule;

M C Caibing Dian	M. C. Criting Dlan. Snitting Spacioe Materiale Rates and Durations	ale Rates and Dir	rations			
IV.C. Spiring r lai	י שומווון סליכיון	מוס, וימיכים, מוומ במ				
digas paidis	Spiking	Spiking Rate, Lb/Hr	ate, Lb/Hr	Primp Assignment1	Spiking Duration4,	Quantity of Specie/Mat Regred4/
appede Silvido	Material	As Specie	As Mat'l		Hrs	Lb S/Lb M/ # Drums M Provided ² ,
POHCs:						
MCB	MCB	35	35	Neptune 11 gph #3	32	1,120/1500/3-500 [Net] Lb Drums
C2CI4	C ₂ C _k	35	35	LMI 4 gph #10	32	1120/1400/2-700 [Net] Lb Drums
Metals:						And Angelia and An
9	Pb/Cr ^{III} Solution	۲.	20	LMI 4 gph #7	32	3.2/640/1-640 [Net] Lb Drum
F0	Pb/Crll Solution	.35	20	LMI 4 gph #7	32	11.2/640/1-640 [Net] Lb Drum
Organic Mixture:						i de la desta de l
\ \ \	Organic Mixture		41	Neptune 18 gph #4	32	1312Lb-2 @ 451[Net] Lb Drum1@ 410 [Net] Lb Drum
Toluene		17			32	
CH2Cl2		80			32	
Naphthalene		8			32	
Et Glycol		8			32	
Footnotes: 1.	ESS will provide two (2) pumps I one (1) 't1 gph VS Neptune, & one equipment is provided by ESS for enhanced reliability at no charge! Spiking durations based on 12 Hrs on Test Days #1 & #2.	s [one (1) 11 gph VS Ne for enhanced reliability of Hrs on Test Days #1 &	sptune, & one (1) 18 gpi at no charge]. #2.	h Vs Nepune pumps [including two spart	pumps (one for each size pu	one (1) 18 gph Vs Nepune pumps [including two spare pumps (one for each size pump used)], and four (2) weigh scales with two spares. Spare [ige].

Table 3 Project [Project Definition: Project Schedule, Labor & Travel Requirements, and Cost Detail								
Ι.			Ĭ.	TRAVEL & LIVING COSTS:	Costs:				
TEST		Truck Mileage	leage	a	Days of Travel & Living Expenses	el & Living I	Expenses		TECH LABOR
DAY SETUP = 0	PROJECT RELATED ACTIVITY:	W Eq. Trailer	W/O Eq. Trailer	Eq. Trailer	Meals	Hotel	C Phone	Misc	Man- Hours
4	ASSEMBLE EQ. TOOLS, & SUPPLIES, TEST EQUIPMENT, & PACK FOR TRANSPORT	RT 0	99	0	0	0	0	1	9
ج.	TRAVEL	550	0	1	1	0	ļ	1	6
-2	TRAVEL	200	0	ļ	***	-	1	1	6
-1	TRAVEL	200	0	ļ	1	1	1	1	6
0	Eq Setup & Testing & Prep PB & CRIII SOLUTIONS	10	10	ļ	2	1	1	1	16*
-	TESTING: RUN#1	0	20	1	1	1	1	1	10
2	TESTING: RUN#2	0	20	1	1	Į	1	1	10
<u>س</u>	Testing: Run#3	0	20	1	1	l	1	1	10
4	CONTINGENCY TEST DAY, DECON EQ, DISASSEMBLE & PACK, & TRAVEL	900	10	-	2	1	1	1	23*
3	TRAVEL	200	0	1		-	-		თ
9	TRAVEL	929	0		1	1	1		6
7	RE-STOCK EQUIP INTO INVENTORY	0	0	1	0	0	0	-	4
* LOCAL ARRANGEN	*1 OCAL ARBANGEMENTS HAVE BEEN MADE FOR ASSISTANCE DURING EQUIPMENT SET-UP & TAKE	ET-UP & TAKE-DOWN PERIODS.							

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Attachment | Original Spiking Plan, Preparatory Work Instructions, & Check Lists:

B. Test Manager Spiking Orders to ESS; and

Sı	al Spiking Orders ¹ : piking:	Spiking Rat	e, Lb/Hr	Pump	Spiking	Specie/Mat'l Reqr'ed/
Specie	Material	As Specie	As Mat'l	Type/Size	Duration, Hrs	Mat'l Provided, Lb/Lb/# Drums
20110						
POHCs: MCB	MCB	35	35	Neptune #3	32	1,120/1500/3-500 [Net] Lb Drums
C ₂ Cl ₄	C ₂ Cl ₄	35	35	LMI #10	32	1120/1400/2-700 [Net] Lb Drums
Metals:	02014				·	
Pb	Pb/Cr ^{III} Solution	.1	20	LMI #7	32	3.2/640/1-640 [Net] Lb Drum
Cr ^{III}	Pb/Crlll Solution	.35	20	LMI #7	32	11.2/640/1-640 [Net] Lb Drum
Organic Mixtu	re:	r	,			40401 to O 45401-11 to December 440 Month to December
	Organic Mixture	47	41	Neptune #4	32 32	1312Lb-2 @ 451[Net] Lb Drum1@ 410 [Net] Lb Drum
Toluene		17 8	 		32	
CH ₂ Cl ₂ Naphthalene		8			32	
Et Glycol		8	 		32	
Section II Re Revision 1:	Client/Test Manag	ers ² :				Date: /200
Section II Re Revision 1: Approved by Revision 2:	vised Spiking Orde	ers ² :				Date: / /200
Section II Re Revision 1: Approved by Revision 2:	vised Spiking Orde	ers ² :				
Section II Re Revision 1: Approved by Revision 2: Approved by Revision 3:	vised Spiking Orde	er:				Date: / /200
Section II Re Revision 1: Approved by Revision 2: Approved by Revision 3:	vised Spiking Orde Client/Test Manag	er:	ents ³ :			Date: / /200 Date: / /200
Section II Re Revision 1: Approved by Revision 2: Approved by Revision 3:	vised Spiking Orde Client/Test Manag Client/Test Manag	er:	ents ³ :			Date: / /200 Date: / /200

Section II is provided for field revisions to the Spiking Orders by the Client/Test Manager, as needed. Please document the required changes, and initial/date the new orders.

3. Please provide a critique of ESS' performance on this test, offer suggestions for improving the value of our products and services to you, and/or (if warranted) identify aspect(s) of our products and services with which you are pleased.

Attachment I

Original Spiking Plan, Preparatory Work Instructions, & Check Lists:

C. Preparatory Check Lists, Work Instructions, Worksheets, & Other Project Preparation Documentation.

Project Plan: Phase III.A. General Project, C. Equipment, & E. Pre-Travel Preparations: Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

Project Prep Plan Cor	nponents by Pha	se/Sub-Phase:			Appl/Att'ed?	Accepted?
Project Phase III.A.	Overall Phase	III SOP & Checklist			· ·	
Project Phase III.B.	Materials Prep	paration Instruction Pack	age			1
Project Phase III.C.	Equipment Pr			<u> </u>	<u> </u>	V
Project Phase III.D.	Product Relea	se & Prepare for Shippir	ng Package		✓	V_
Project Phase III.E.	Pre-Travel Ch	ecklists			✓	<u> </u>
Project Phase IV.	Spiking Plan				✓	<u> </u>
Special Test Specific C	onditions &/or Red	uirements:				<u> </u>
Other Information (spec				000		<u></u>
Prep & Approved by I		Date:	Accepted by ESS F	SS: KXN	Date: 3/	13/200

III.A. Overall Phase III Preparation SOP & Checklist:	Done?
Materials Purchase &/or Prep:	
Carefully review the "Direct Ship" List & Materials Prep Package (III.B, B.1 thru B.6).	
Co-ordinate w ESS PM & Spiking Coordinator (SC) for timely delivery of: (1) "Direct Ship" Materials to the Test Site, (2) Full QA Doc Package (CoA, Shipping Pagers, & Invoice with matching Lot #s) to ESS, & (3) Notification of the client's on-site representative that the materials are being shipped w ETA.	V
Compare the quantity of each raw material required with the corresponding Raw Materials Inventory Sheet. Płace orders for raw materials [as necessary] using the spiking materials Purchase Order Preparation SOP [With full QA Doc Package, as applicable].	
When all required raw materials, equipment, & manpower are available, prepare these materials using applicable SOPs, forms, &/or work sheets (III.B.3 thru B.6). Record all weights and document completion of each procedure step.	レ
Provide all the materials prep information to the PM and review this QA Package together. If the materials, as prepared, will meet all client requirements, the PM will tentatively release the materials for shipment and will provide information for preparing the materials for shipment (III.D. & D.1). Otherwise further plans will be prepared jointly to modify the materials so that they will meet the client's requirements. Make such revisions and review the results with the PM.	
After the material has been tentatively released, prepare the materials for shipment to the test site in accordance with the materials labeling & shipping instructions (III.D.2, 3, & 4). Review preparations with PM & get final product release.	V
Coordinate client notifications & shipping with the ESS SC, as appropriate.	
Equipment Prep:	
Carefully review the Equipment Prep (III.C) and Spiking Plan (IV) Packages provided herein.	
Verify Operability of Assigned Equipment (e.g., verify that each pump, weigh scale, mass flow meter, and computer equipment assigned to this project including spares is operational and is capable of performing the assigned function under the project specific material, through-put, and back pressure conditions).	/
Assemble & load all required equipment, supplies, tools, documentation, etc. for transport to the test site.	
Co-ordinate identification & satisfaction of any special requirements with the ESS PM & SC:	
Off-site safety training & documentation.	
Special medical monitoring &/or drug screens.	
Special equipment such as EP/IS classified equipment. Bring Pressure Feed System.	
Unusual operating, safety, test conditions, etc.	
Pre-Travel Checklist:	
Complete the final project prep checklist (III.E.1).	~
Complete the Truck & Trailer Inspection & the Pre-Travel Safety Inspection Checklist (III.E.2).	
Preparations Were Completed per these Mat'ls & Equip Prep Instructions & SOPs:	

III.B. Checklist: Project Plan, Materials Prep (Component:			Applicable?	Accepted?
III.B.1 "Direct Ship" Materials List				· · · ·	
III.B.2 Materials Prep Instructions & Checklist				✓	
III.B.3 Materials Prep Instructions, Raw Mater				✓	V
III.B.4 Multi-Packet Materials Prep Instruction				NA	NH
III.B.5 Applicable Weigh Scale Calibration Ve	rification Log Sheets			✓	
III.B.6 DM & Dispersion Prep SOP & Workship				NA	WA
III.B.1 "Direct Ship" Materials List (Get MSDSs	from Spiking Mat'ls Tech Inf	fo Files & Review.)	Required?	Ordered?	Received?
1.					
2.					
3.					
				1	
Prepared & Approved by ESS PM:	Date:	Accepted by ESS FSS:	280	Date: 3	1120

Project Plan: Phase III.A. General Project, C. Equipment, & E. Pre-Travel Preparations:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

III.C. Equipment Operability Verific	ation Information Transmi	ttal & Acceptance Form:		
Project Plan Component:	<u> </u>		Attach	ned? Accepted?
III.C.1. Equip Operability Verification SOP			✓	
11.C.2. Equip Operability Verification Test	Conditions, Checklist, & Certific	cation Form	✓	<i>' V</i> ,
IV.F. Project Equip Assignments (includ				
Prepped/Approved by PM:	Date:	Accepted by FSS:	KDW	Date: 3/4

III.C.1. Equipment Operability Verification & Pre-Mobilization Preparation SOP

The purpose of this SOP is to confirm that: (1) Each piece of equipment assigned to this project is in good operating condition, (2) the pumps have the capability to perform the the assigned spiking function with the project specific spiking material and at the project specific spiking rate & back pressure. IThis verification is especially critical for pumps in dispersion duty], and (3) the assigned equipment when combined into a spiking system performs as intended.

Scale Check-Out: All testing, including equipment testing begins with NIST Traceable Standards.

Verify the operability and calibration of each assigned weigh scale & its mated indicator by calibrating the scale/indicator to the maximum weight expected to be seen during this project (III.C.2) using our standard field scale calibration procedure, and ESS' NIST traceable standards.

Then verify the calibration using the weight build up & break down procedure & Logsheet (IV.K.3).

If the scale & indicator set is found to be out of calibration, recalibrate it using ESS Field Scale Calibration SOP including the Corner Test Procedure (IV.I) & Logsheet 3.

Document the results on the Equipment Operability Checklist & SOP (III.C.2).

If after appropriate calibration, & adjustment, a given scale (& associated indicator) fails to perform to ESS' standards (within ± 0.1 Lb for 90+% of the 50 Lb increment calibration verification readings), then! (see footnote 1 below).

Pump Assignments & Operability Verification: The spiking pumps selected for & assigned to this project are identified in Section IV.F of the Spiking Plan. These pumps were selected because:

- The pump materials of construction are chemically compatible with the spiking material,
- The pump has the capacity to:
 - Deliver the assigned spiking material (liquid or dispersion),
 - At the assigned spiking rate (Lb M/Hr)
 - Against the existing the back pressure.

However, ESS has found that the only method to be certain that a spiking pump will perform as intended is to verify its operability at the project specific test conditions prior to mobilizing to the test site.

Follow the following steps to confirm that each pump identified in III.C.2 is completely functional and actually delivers the flow specified against the back pressure specified.

- Set-Up and operate ESS' Dynamic Test Stand as follows:
- Test Material:
 - Use water as the pumping fluid for pumps assigned to aqueous solution or organic liquid duty, or aì
 - Use the actual dispersion for pumps assigned to dispersion duty.
- Test Conditions:
 - Adjust the test stand back pressure setting to match the specified (III.C.2) back pressure value. Back Pressure: a)
 - Capacity: Adjust the pump rate setting until the specified (target) spiking rate value is achieved.
- Document the results on the Equipment Operability Verification Checklist (III.C.2). 4.
- Notify the ESS PM if any equipment does not achieve the required thru-put &/or pressure levels.

Mass Flow Meter Check-Out:

- Verify that each assigned mass flow meter (MFM) is operational and its accuracy is verified against one or both of the following two methods:
 - Weigh scale (with NIST Traceable calibrations) based weight gain vs. time method, or
 - Comparison to our factory calibrated and frequently verified [via method a above] reference MFM.
- Document the results of these tests on the Equipment Operability Checklist & SOP (III.C.2).

Special Supplies/Equipment/Tools: Based on the Spiking Plan provided to you [plus discussions with the ESS PM & the client's representative, as _needed], prepare_a checklist-of_any special-hardware/supplies/equipment/tools²-[e.g., valves, check valves, pressure gauges, tubing; quick connects, spare parts, spill kit supplies, PPE, tools, supplies, etc.] required to successfully meet the clients spiking requirements. Use this checklist to place orders for any items not instock, assemble for packing in the ESS equipment trailer, and confirmation that each item has actually been packed &/or loaded into the ESS equipment trailer for transport to the test site.

If problems occur with any aspect of these preparatory efforts which you can not address, notify the PM.

If any equipment fails to meet ESS' accuracy & operational reliability requirements, then that equipment:

Must be removed from the active equipment fleet, al

b) A RED warning tag attached to it, and

That scale/indicator set will not be used for client projects [not readmitted to the active equipment fleet] until it has been validated to be accurate & operationally c) reliable

ESS maintains large array of tote bins in which all standard equipment, tools, supplies, etc. are stored and transported. This check list refers to special items beyond what we take on all ESS projects.

Project Plan: Phase III.A. General Project, C. Equipment, & E. Pre-Travel Preparations:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

III.C.2. Equipment Operability Verification Checklist & Certification

· · · · · · · · · · · · · · · · · · ·	Calibrate	Verified	Standards	Come	r Test		Count	#∆=±().X Lb		Cert'ed1
Weigh Scale (ID#)	To, Lb	1	Used	Req'd, ✓	Adj'ed, ✓	0.0	0.1	0.2	0,3	>0.3	'
1. F-1	500	/	ESS#								
2. F-2	600	V	ESS#							ļ	1
3. F-3	600		ESS#							<u> </u>	
4. F-4	800		ESS#								<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
5. F-5*	600	1	ESS#								V
6. F-6*	800		ESS#								

Equipment Identification:	F	Project Specific Conditions					
	Mai	i'l for	Ρ,	Rate,	Tested	Passed 🗸	Cert'ed
Pump Capacity/Capability/Name (ID#)	For Actual Test:	For Verifying Op:	psig	Lb/Min	✓		
1. Neptune 11 gph #3	/	420			V		V
2. Neptune 18 gph #4		(1)			1	-	-
3. LMI#7		1.			1	1	
4. LMI#10	V	i.					-
5. Neptune #5		4 .			\cup	, ~	
6. LMI #8 Footnote: 1. EP = Explosion Proof &/or Intrinsically Safe.		ł,			1		

	Operability Verit	fication1 Method Us	Tested	Meas Uncertainty	Cert'ed	
MFM Size (ID#)	Wt Change vs. Time	Ref MFM	Mat'l	✓	Demo'ed, ±%	/
1. MFM10-1	✓		H ₂ O	<i>\(\sigma_1 \)</i>		1
2. MFM10-2	→		H ₂ O			
3. MFM10-3	✓		H ₂ O			
4. MFM10-4	✓		H ₂ O			
5. MFM10-5*	✓		H ₂ O		·	V
6.			H ₂ O	×		X

Spike Manager ©	TC Setups?	Controls?	Data Logging?	Overall System	Cert'ed ✓
System#1					
System#2	NA				
* Designated Spare		0			
Certified By ESS FSS:	Sunt	-Den		Date: 3/3/12000	·

Project Plan: Phase III.A. General Project, C. Equipment, & E. Pre-Travel Preparations:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

III.E.	1. Pre-Travel Project Prep (PPE, Tools, Supplies, & Equipment) Checklist	Done?
Verify	y that the following project related items are packed &/or have been addressed:	
1.	All PPE required for the project: • ESS Standard PPE: hard hat, safety glasses, leather gloves, steel toes boots, chemical gloves, tyvek suite, face shield, steel toe rubber boots, half face respirator and both PM & Organic Vapor Canisters; and • Project specific PPE, & Medical Monitoring, if any.	1
2.	All pumps assigned for this job including spares have been tested, & loaded with spare parts kits.	
3.	Assigned scales including spares with their mated indicators have been tested, & loaded with spare parts kits and weight standards.	
4.	Assigned Micro Motion Meters including spares & repair kits.	
5.	Camile System with Laptop PC & memory stick. Verify that Spike Manager © TC set-ups and Camile/Laptop hardware have been checked.	
6.	Extension cords, ground fault protectors, and equipment grounding cabling w clamps.	
7.	Drumstands, hoses including spares, drum bung feed & recycle fittings, Tee fitting for tandem scale configuration if needed, chairs and folding table, tarps/tent, tool box, spill pads, magnetic ESS identification signs, and 5 to 10 gallons of MSO.	
8.	If dispersion will be used: (a) dispersion suction & discharge hoses, (b) dedicated dispersion pumps, (c) dispersion pressure feed assembly & air compressor, and (d) dispersion mixer motor & blades,.	1
9.	Special project specific equipment.	
10.	Job specific documentation has been loaded along with SOPs, Spiking Orders, Spiking Plan, Log Sheets, DOT Documentation Kit, ESS IQ plus Operation Manual, memory stick for backup data files, clipboards, calculator, and test clock.	/

II.E.Z.	Pre-Travel Safety Inspection Checklist:	Done?
	rel Tow Vehicle Checklist: Inspect/check and correct as needed:	
l. Fl	uid levels are within safe operating range.	
	indshield and side windows are clean.	
3. Ti	re pressure (per owner's manual) and tire condition/tread depth.	
	ghts (Head lights, tum signals, brake lights, and reverse lights).	- V/
	owing ball for proper size and tightly secured to hitch.	
	eceiver hitch for unusual wear and hitch pin installation.	
	rel ESS Equipment Trailer Checklist: Inspect/check and correct as needed:	
1. Ti	re pressure (per owner's manual) and tire condition/tread depth.	
	heel lug nuts for tightness.	
3. C	oupler/ball for: (a) wear/condition, (b) proper seat, and (c) snug coupler/ball lock.	
4. S	afety chains for wear/condition and securely fastened to tow vehicle.	1 1 1 1
5. B	reakaway battery charge (Pull switch pin & check light).	
6. E	ven load distribution.	7
7. Lo	pad secured to E-Tracks (in floor) &/or D-Rings (along the walls).	\checkmark
8. D	oors secured.	
	ghts (Turn signals and brake lights).	V/
10. W	theel bearings (Grease before traveling and at 1,000 mile intervals). Ation of Checklist Completion:	V.

Attachment II

Spiking Material Composition Information:

- A. Mono-Chlorobenzene (MCB) & Perchloroethylene (Perc)
- B. Solution QA Information:
 - Verification of Weigh Scale Calibration, &
 - 2. Mass of Raw Material Used in Organic & Metal Solutions;
- C. Organic Solution:
 - Dichloromethane,
 - 2. Ethylene Glycol,
 - 3. Toluene &
 - 4. Naphthalene; and
- D. Metals Solution:
 - 1. Lead Nitrate [Pb (NO₃)₂] &
 - 2. Chromium Nitrate [Cr (NO₃)₃·9H₂O].

Attachment II Spiking Material Composition Information:

A. Mono-Chlorobenzene (MCB) & Perchloroethylene (Perc)

MAR-20-2006 13:43 FROM:

TO:Univar Houston

NRRGINDUSTRIES INC.

CERTIFICATE OF ANALYSIS NOTICE OF SHIPMENT

03/15/2006 02:36 P.M.

UNIVAR USA INC SHIP TO 777 BRISBANE

HOUSTON TX 77061

DATE ISSUED

BY MARK J. SINCLAIR

CUSTOMER QUALITY ASSURANCE DEPT

(304-455-6701)

FAX: 713-644-1139

	210897-5	HSG1233	NO.		CUSTOMÉR PRODUCT CODE
TRUCK	FREIGHT	TOTAL WEIGHTS	S (Bulk Only, Billing Shov		I PRI LING
18396	PPD	GROSS	TARE	NET	BILLING
PRIJØØ1	PRIME IN	CORPORATEI) .	<u> </u>	

This is to certify that the products shipped below by PPG Industries, Inc. meet or exceed all analysis standards.

PRODUCT DESCRIPTION:

MONOCHLOROBENZENE (500 LB DRUM)

501900

239870

LOT NUMBER:

A136

QUANTITY:

1.6

PROPERTY

MCB

H 20

APHA COLOR

PROPERTY

UNIT OF

AS IS

MEASURE

%WT 0.0046 %WT

99,9976

RESULT

PPG SPECIFICATIONS MINIKUM MAKIMUM

PPG SPECIFICATIONS

99.90

0.0200 30

PRODUCT DESCRIPTION: CAU SODA PELS (50 LB BAG)

LOT NUMBER:

A296

QUANTITY:

600

10

UNIT OF MEASURE %WT

%WT AS IS 98.88 %WT AS IS 76.88 0.47

96.0 74.4

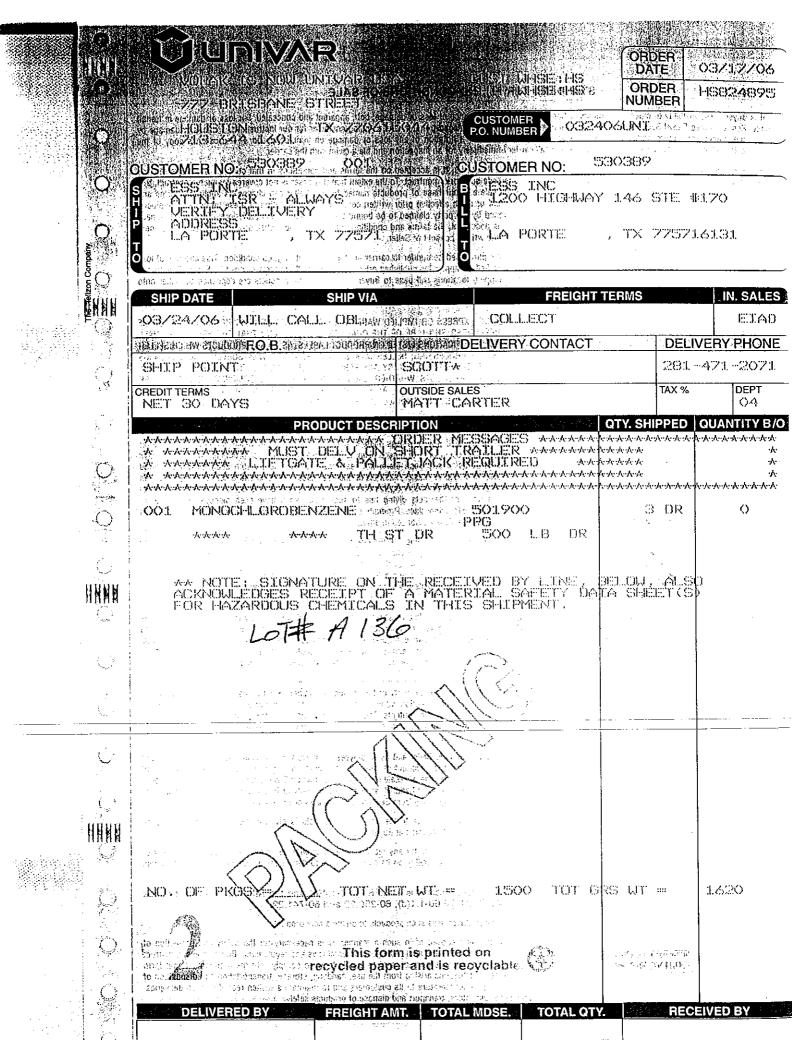
HINIMUM

1.60 2.20

MAXIMUM

NACL FE

NAOH


NA 20

NA 2CO3

%WT PPM 0.00

RESULT

15

Certificate 1983685

The Dow Chemical Company

Page

أأران والمرافينة فيتشيش والرارا

Date: 05/14/2004

Certificate of Analysis

Quality Assurance

CHEMCENTRAL SOUTHWEST LP

Fax:

11235 FM529

HOUSTON

TX 77007-0000

UNITED STATES

Cust P.O.: 216193

Material:

Dlvy Note: 68695647 10

Cust Mtl:

PERCHLOROETHYLENE INDUSTRIAL

Spec:

00059009-s

Vehicle:

662

Ship from: THE DOW CHEMICAL COMPANY

PLAQUEMINE

LA UNITED STATES

This material meets the requirements of the specification.

Parkey		Results	Limits		
Feature	Units	T1030514	Minimum	Maximum	
Water					
Color, Pt-Co	ppm	14		30	
•	-	5		15	
Non Volatile Residue	ppm	3		10	
Alkalinity (as NaOH)	ppm	20	15	30	
Perchloroethylene	8	99.974	99.900		

Typical Properties:

Specific Gravity, 25/25: 1.618 - 1.622

Source of Data:

Non Volatile Residue (results based on quarterly analysis)

Lot No. 3605260420-6

Plant Quality Coordinator

For inquiries please contact Customer Service or local sales. English: 800-232-2436 French: 800-565-1255

P.O. BOX 34325 SEATTLE, WA 98124-1325 ORIGINAL

www.univarusa.com

UNIVAR PHOENIX 50 SOUTH 45TH AVENUE PHOENIX AZ 85043-3907 602-272-3272

Page 1 OF 1

6.1.1868 1 MB 0.326 69234S11.XRX 588315 ESS INC. STE# 170 1200 HIGHWAY 146 LA PORTE TX 77571-6156 **CUST. NO./SHIP TO**

588315 001 ESS INC. C/O WESTATES

2523 MUTAHAR ATTN: MONTE MCCUE PARKER AZ 85344

Hardhadddadadadhdlandbbbbb	ndriteletiittiit			-	
		PPD & ADD SPEC	AL	POB DELIVERED	
INVOICENO. INV. DATE ORDER NO. CUSTOMER P.O. NUMBER		WAREHOUSE LOCATION		ON TIME DELIVERY	F. 17.00
PX-920481 01/27/06 678851 012606UNI SHIP DATE TAX EXEMPT NO. SALES REP.		LA GARFIELD SALES DEPARTMENT		ENGLUND EQUIPM ENTERED BY	
01/27/06 PX UNASSIGNE	D	INDUSTRIAL CHEM		CANDY FITZGERA	
PRODUCT DESCRIPTION	TAX	QUANTITY ORDERED	SHIPPED B.O.	BILLING QTY/ UNIT PRICE	EXTENDED AMOUNT
318120 PERCHLOROETHYLENE	Υ	2.00	2.00	1400.00 1.0100	1414.00
700 LB DR UNIVAR TECH LIQ NUSTL DR		DR	DR	LB	
600973 FUEL SURCHARGE	Y	1.00	1.00	1.00	35.00
1 EA EA TRANSPORTATION ONLY SPEL CHG		EA	£.A	35.ŌŎŎŎ	
644207 UNIVAR PACKAGE DELIVERY	Y	1.00	1.00	0.000 FA	0.00
TI EA EA CHARGE		FA	FA	FA FA	
			MERCHANDI SPECIAL (SALES)HG:	1414.00 35,00 117,37
TERMS: NET 30			INVOICE TO		1566.37
i ERM 2.1 MET 201			114 0 1,7 1 1,2 1, 1 1,7 1		
		1			!
					•
\$					
	I I	f :			
		1			
	ļ			1	

PARTICULAR PURPOSE OR MERCHANTABILITY , BUYER ASSUMES ALL RISK OR LIABILITY RESULTING FROM USE OF SUCH GOODS, UNIVAR USA INC'S LIABILITY FOR NONCOMFORMING GOODS IS EXCLUSIVELY LIMITED AT UNIVAR USA INC'S LIABILITY FOR NONCOMFORMING GOODS IS EXCLUSIVELY LIMITED AT UNIVAR USA INC'S OPTION, TO THE GOOD'S PURCHASE PRICE OR REPLACEMENT OF THE GOODS, UNIVAR USA INC'S LIABILITY FOR NONCOMFORMING DAMAGES.

trayer warves not claims for shortlage of reasonably discoverable defect unless made in writing within 30 days after learning the goods. Buyer warves all other claims unless made in writing within 30 days after learning the basis of the claims for 120 days after receiving the goods, whichever occurs first. Except to the extent resulting from Univer USA inc. is negligence. Buyer shall indemnity defend and hold Univer USA inc. harmings from univer USA inc. is negligence. Buyer shall indemnity defend and hold Univer USA inc. harmings from university of the first state of the firs

Days of all happing are and dispose of the goods as necessary for the safety and protection of porcine, properly and environment, and in continuous continuous and approximation of porcine and approximations of second of south data received. Buyer shall any subject tions who, in the new yong over the process of the goods safety.

Taxes have not been included unless specifically itemized on the invoice. Buyer shall pay all laxes or other charges related to the goods. The factors of this invoice are not modified by any Buyer purchase order or one

Attachment II

Spiking Material Composition Information:

- B. Solution QA Information:
 - 1. Verification of Weigh Scale Calibration, &
 - 2. Mass of Raw Material Used in Organic & Metal Solutions;

Project Plan: Phase III.B. Spiking Materials Preparations:

Project ID: 2006 Westate Parker, AZ CPT. Date Prepared: 3/08/2006

III B 5 (d) ESS Scale C	alibration & Calibration Ver	ification Report			
ESS Scale #: L-3 (15 Lb)	A	modion report		1 FH	
4 - 1 - 1 (10 LU)	Place in large plastic sample bottle	o for transport to Montato	or on cite preparation of	f Ph/Solution	
Application: weigh out Pb	riace in large plastic sample bottle	so for transport to westate i	Calibration Verification	Tate: 7 /LOONO Co	·
Calibration Verification: Da		- Doudstier I k	+ Test Weight, Lb	- Indicated Weight, L	b = Deviation, Lb
+ Test Weight, Lb	- Indicated Weight, Lb	= Deviation, Lb			b - Deviauon, Lo
Linearity Check Before: ✓			Linearity Check After:	- 270	
0.000	0.000	0.000	0.000	0.000	0,200
7.5000	7.500	0.200	<u> </u>	7.80	0.000
15.000	157,200	0,000	15,000	15,000	0,000
7.500	7.500	0.000	7.500	7.500	0.000
0.000	0.000	0.000	0.000	0.000	0.000
Span Check Before: If Ap	plicable		Span Check After:		
			<u>-</u> -		
Calibration Verification Be	fore: ✓	<u> </u>	Calibration Verification	n After: ✓	
Cioo 3	5000	0000	51000	5.00	చి.లంచ
10,000	10,000	0.000	1000	10.000	0,000
15,000	15,000	0,000	15,000	15,000	0,000
10,000	10,000	0-000	15 100	10.000	0200
5,000	5,000	0.000	45000	6.000	000
Notes, Comments, Data for					
Notes, Comments, Data II	or the record.				······································
					-
					
					
					
					
					<u> </u>
		_			
					
				 	
		, 			Date: 51/02006
ESS Technician:	Scott West	·			Date. 71/4200

nop meigii oc	ale #: S- 1		Calibrate & Verify	Calibration to: Lbs	
pplication: 1.	Weigh containers @ Lilly price	or to CPT.			
2	Set weigh head up for comp	uter logging of weight data.			
re-Test Calibr	ation Verification: Date: 3 / d	1200 6	Post-Test Calibra	tion Verification: Date:タタ	
est Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb	Test Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb
uild Up in 50 L	b Increments:		Build Up in 50 Lb	Increments:	
0.0	0.0	ن. ت	0.0	0.0	0.5
50.0	54.0	٥.٥	50.0	50,0	0.0
100.0	100.0	0.0	100.0	100.0	2/2
150.0	150.0	0.0	150.0	150.0	010
200.0	700.0	0.0	200.0	700.0	₽.⊃
250.0	244.9	-D. I	250.0	250.0	5.0
300.0	300.0	00	300.0	299.9	ا ه -
350.0	7.49.9	-0.1	350.0	350.0	0.0
400.0	299.9	- J. i	400.0	350.0 399.9	- 0.1
450.0	450.0	S (3	450.0	449.9	rod
500.0	499.9	-0.1	500.0	499.9	-01
Break Down in	50 Lb Increments:	· ·	Break Down in 50	Lb Increments:	

				-	
		I .		 	
			į.		
500.0	41901 G		500.0	499.9	200
500.0 450.0	4901.9	-0.1	500.0 450.0	499.9	~0.1
450.0	449.9	ا د د د	450.0	29014	-0.
450.0 400.0	449.9 349.9	ا تی د	450.0 400.0	29014	-0.1
450.0 400.0 350.0	449.9 319.9 350.0	20.1 20.1	450.0 400.0 350.0	149.9 199.4 319.9	-0.1 -0.1
450.0 400.0 350.0 300.0	1/49.9 3/19.9 350:0 299.9	20.1 20.0 20.0	450.0 400.0 350.0 300.0	149,9 1949,9 300,0	-0.1 -0.1 -0.0
450.0 400.0 350.0 300.0 250.0	149.9 319.9 350.0 299.9 249.9	- 0.1 - 0.3 - 0.1	450.0 400.0 350.0	149.9 199.4 319.9	-0.1 -0.1
450.0 400.0 350.0 300.0 250.0 200.0	149.9 319.9 350.0 299.9 249.9	- 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0	149.9 199.4 3 19.9 3 00.0 250.0 199.9	-0.1 -0.1 -0.1 0.0 0.1
450.0 400.0 350.0 300.0 250.0 200.0 150.0	149.9 319.9 350.0 299.9 249.9	- 0.1 - 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0	149.9 199.4 3 19.9 3 00.0 250.0 199.9	-0.1 -0.1 -0.1 0.0 0.1
450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0	149.9 399.9 350.0 249.4 249.9 193.9 119.9	- 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0	149.9 199.4 3 19.9 3 00.0 250.0 199.9	-0.1 -0.1 -0.1 0.0 0.1 -0.1
450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0	149.9 319.9 350.0 299.9 249.9 199.9 199.9	- 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0	149,9 349,9 300,0 250,0 140,9 140,9 100,0 50.0	-0.1 -0.1 -0.1 0.0 0.1 -0.1 0.0
450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0	149.9 319.9 357.0 299.9 249.9 199.9 199.9 49.9	- 0.1 - 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0	149.9 199.4 3 19.9 3 00.0 250.0 199.9	-0.1 -0.1 -0.1 0.0 0.1 -0.1
450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0	149.9 319.9 350.0 299.9 249.9 199.9 199.9	- 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0	149,9 349,9 300,0 250,0 140,9 140,9 100,0 50.0	-0.1 -0.1 -0.1 0.0 0.1 -0.1 0.0
450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0 0.0	149.9 319.9 357.0 299.9 249.9 199.9 199.9 49.9	- 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1	450.0 400.0 350.0 300.0 250.0 200.0 150.0 100.0 50.0	149,9 349,9 300,0 250,0 140,9 140,9 100,0 50.0	-0.1 -0.1 -0.1 0.0 0.1 -0.1 0.0

view. Coordinate shipping with the PM and SC.

Project ID: 2006 Westate Parker, AZ CPT, Date Prepared: 3/08/2006

سنسد		·					_					
Citi D A		#	0.00		_							
	Materials Prepara	tion instructions	& Checklist:					 _				—-
	Description:										· · · · · · · · · · · · · · · · · · ·	——
General	Prep Instructions:	·							-			
		 			l anoi	<u> </u>	Deser	Notes, Comn	anata 9/o	instruction		\longrightarrow
	s/Instructions/Worksh		cable ? =	Ľ	Att?	Get	Done?	Notes, Comit	nents, avoi	Instruction	5.	
	eview all Mat'ls Prep in	nformation for this p	roject.	!	<u> </u>	√		0 (11000	C	Teek Ciloo	0 Daad	
	SDS(s)			1	<u> </u>	V		Get MSDSs	trom Maci	rech Files	x Kead.	
	aterials Prep Instruction			✓	✓	<u> </u>	4)/4	See attache	d datailad	inetruction		
4. Mu	ılti-Packet Mat'ls Prep	Instructions (III.B.4)	NA ✓	NA	/	NA	See attache	u uetaneu	mstruction	19.	
	ale Calibration & Cali		л (III.B.5)	1 —		•	. IIA	 				
	M & Dispersion Prep S			NA ✓	NA	-	NIA					
	nipping Instructions (III	I.D)		-	⊢	7	/					
	l of Lading (w go by)	-1.9./or oo hu		1	 -	7	./					
9.00	ontainer Shipping Lab	el &/or go by		1	├	7	√	-				
	ontainer Warning Lab	U		1	├	/	~	Ground Drum	s During N	lixina Proces	58	
	ner (ID)	0-1- 20 2-1	Assested by:	ــــــــــــــــــــــــــــــــــــــ	Dat	<u>.</u>	_	Completed p		480	Date: 3	11/24
Approv	ed by: NPS	Date: 3 2 2004	Accepted by.		Dai	e.		Completed p	CI OOI .	7100	T Date. 5	
		C D D	i-1 Walaba - 0 Dean 1	Mode	hoot					·		
III.B.3.			riał Weights, & Prep \ CH2Cl2		Naphth			ET Glycol		T		
	Raw Mat'l =	Toluene	05-01-0117	╂┷╾╵	0314		+	05-02-0280				
Batch	Lot # = Purity =	HS026870341 0.9999	0.9999	╆	0.99			0.9998				
Or Drum	Use Scale # =	S-1 (1000 Lb)	S-1 (1000 Lb)	S-1	(1000		S-	1 (1000 Lb)	L- (1	.b)	L- (Lb)	
#	Calibrated on =	1 1	1 1	 	1			1 1	i 1		1 1	
	Sub-batch =			1		•				A*	B*	C.
	Target Wt (Lb) =	187.00	88.00		88.			88.00		•	•	<u> </u>
1	Actual Wt (Lb) =	187	88.00		₽ŏ	12	5	88.00			_	ļļ
	Δ (Lb) =	0.00	0.00			. <i>9</i> -e	<u> </u>	0.00			 	
	Target Wt (Lb) =	187.00	88.00		88,	00		88.00			 	
2	Actual Wt (Lb) =	187,00	81.00	┿		.00		44.0		- 		╀
	∆ (Lb) =	6,00	0.00	╁		· OC	' -	80.00			+	
,	Target Wt (Lb) =	170.00	80.00	1	80.	00	,—	90.0			- 	
3	Actual Wt (Lb) = Δ (Lb) =	0.00	0.00	+		20		0.00			 	
	Δ (Ευ) -	<u> </u>	<i>v. 50</i>	+				77,0			1	
		PS	CAM Sole	1	211		╅					
1		PENON2	C1 (Non) 9/40									
	Target Wt (Lb) =	3.5/7	57.28P					•				ļ
	Actual Wt (Lb) =	3.515	59.280	<u>. </u>				·				-
L	∆ (Lb) =	0002	€.00				_				+	┿
	Target Wt (Lb) =			-							 	
	Actual Wt (Lb) =			-		-			-		+	+
	Δ (Lb) =	1 11 11 12	ience as long as the total	Lugiah	of all	aub ba	loboo ma	stobae the total au	antity indica	ated	<u> </u>	
Please	e Note: Batches may be	subdivided for convert	ience as long as the total	i weigi	i Ui ali	suu-va	iches me	atories trie total qu	anny more	100.		
[W D 4	Tr. W. D. shat Materia	ala Dran Instructio	ns: See attached d	otaile	d inct	ructio	ne			-		√?
	Multi-Packet Materia							ealed packets.				╅
1. Prep	are individually la	ndeled, consecutively i	numbered, pre-weighted th ESS' NIST traceable s	landar	rde hefr	re ear	h wark r	lay & record line re	esults in the	attached ES	S Scale	1
L Cal	ibration & Calibration Ve	rification Report (III.B.	4)									_
3. Plac	e the appropriate quantil	ty of material into the p	packet. Determine the ne	et weig	ht of ea	ach pa	ket and	record that exact	weight on t	ne label and t	he Packet	
We	ight Log Sheet in the so	ace adjacent to the pa	cket #.									
4. Initia	I & date each Packet We	eight Lo Sheet and Ca	llibration Verification Log	Sheet	daily to	o certif	the acc	curecy/of the log.				
5. Kee	p the packets in numeric	al order and bundle th	em in convenient sized b	ratches	s. Pac	k the b	atchesti	nto ge fitainer	(s) in revers	se numerical o	order. Mark k & too if	1
	containers from #1 to # icated in the instructions		ner Shipping Label-(front)	and tr	nee Ma	ız ıvlat		y watering Labels	per contain	ier (nont, bac	κ, α τορ, ιι	1
6 Plac	e the Site Contact Inform	nation Package (III D.4	1.a) on kop of the packets	s inside	of Co	ntainer	#1. Sec	curely fasten the c	ontainer lid(s). Assemble	e the	1
cor	6. Place the Site Contact Information Package (III.D.4.a) on top of the packets inside of Container #1. Securely fasten the container lid(s). Assemble the containers in a tight group just inside the shop door with Container #1 in front. Place the Transporters Information Package on top of Container #1 in clear											

Report any non-conformity to the ESS PM immediately.

By way of my signature, I am confirming that I: (a) have reviewed the available quality information on this product. (b) believe that it meets all client specifications and requirements, and (c) am tentatively releasing it for shipment to the customer subject only to a final review of the preparations for shipping

By way of my signature, I am confirming that I: (a) have reviewed the available quality information on this product, (b) believe that it meets all client specifications and requirements, and (c) have prepared the materials for shipment as described above and the applicable attachments.

By way of my signature, I am confirming that I: (a) have reviewed the available quality information on this product including its preparation for shipment, (b) believe that it meets all client specifications and requirements, and (c) am formally releasing it for shipment to the customer.

All and Burney Burney Company			
III.D.1. I entative ' Product Kelease for Snipment:			
Product ID:	Type & # Containers:	Location:	Located?
Tentative Product Release by:	Date:		
1. These spiking materials (products) are approved for shipment with respect to quantity & composition. Final release is subject only to confirmation of proper shipping preparations (Per III.D.)	n. Final release is subject only to confirmation of proper shipping prepara	rations (Per III.D).	

Attachment II

Spiking Material Composition Information:

- C. Organic Solution:
 - 1. Dichloromethane,
 - 2. Ethylene Glycol,
 - 3. Toluene &
 - 4. Naphthalene;

ESS Certification of Composition for WeStates Organic Solution

Spiking Material:	Organic Solution
Spiking Application:	POHC Spiking Source for Westate PDT
Production Date:	3/10/2006
Quantity Produced:	1312 Lb Net Weight Solution
Compositions:	$[CH_2Cl_2] = 0.1951,$
	[Ethylene Glycol] = 0.0.1951,
	[Toluene] = 0.4144, &
	[Naphthalene] = 0.1950.
Glycol, Toluene, & Na quantity of each ingre	on available to me concerning the manufactures' CoAs for CH ₂ Cl ₂ , Ethylene aphthalene and the procedures and equipment <i>ESS</i> used to establish the edient used to make the final solution, I certify that the CH ₂ Cl ₂ , Ethylene phthalene concentrations provided above are true and accurate to the best pelief.
Signed:	
	II) Schofield, PhD, PE Date
•	ject Manager

40. P. Adriah (Adrian Bara) 19. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	的機能				
olect Plan; Phase III.B: Spiking Materials Preparations olect ID: 2006 Westate Parker,AZ/CPT, Date Prepared, 3/	08/2006	数制度	E SK		
NAME OF THE PROPERTY OF THE PR	种型版件	3 16	NAME OF		
II.B.2. Materials Preparation Instructions & Checklist:	dia i diada	in their	17.44	经业场地位	· · · · · · · · · · · · · · · · · · ·
Material Description: Seneral Prep Instructions:	·	7	<u> </u>	AFAFOL SA	
			<u>. 127</u>		タルスト できる というなどをおり、登録を設めてはません。 - アンファインを必要がある。
		Auga I	Cal	Done?	Notes, Comments, &/or instructions:
D SOPs/Instructions/Worksheets: Applicable ? =	- *	Att?	Get	Dollar	Notes, Comments, and instructions.
Review all Mat'ls Prep information for this project.	V		√	V	O (1000) (I/ III Tech Files & Dood
2. MSDS(s)			✓	_ -	Get MSDSs from Mat'l Tech Files & Read.
Materials Prep Instructions, Raw Mat'l Weights (III.B.3)		$oldsymbol{oldsymbol{lambda}}$			
Multi-Packet Mat'ls Prep Instructions (III.B.4)	NA	NA		MA	See attached detailed instructions.
5. Scale Calibration & Calib. Verification Report (III.B.5)	√	✓	✓		
6. DM & Dispersion Prep SOP (III.B.6)	NA	NA		NIA	
7. Shipping Instructions (III.D)	1		✓		
8. Bill of Lading (w go by)	7		V		
9. Container Shipping Label &/or go by	1		1		
10, Container Warning Label	1		V	√	
11. Other (ID)	1./		1	1.7	Ground Drums During Mixing Process

	Raw Mat'i =	Toluene	CH ₂ Cl ₂	Naphthalene	ET Glycol				
Batch Or Drum #	Lot # =	HS026870341	05-01-0117	031411	05-02-0280	•			
	Purity =	0.9999	0.9999	0.9993	0.9998				
	Use Scale # =	S-1 (1000 Lb)	S-1 (1000 Lb)	S-1 (1000 Lb)	S-1 (1000 Lb)	L- (Lb)		L. (Lb)	
	Calibrated on =	1 1	1 1		1 1	1 1		11	
- [Sub-batch =						Α*	B*	C.
Ī	Target Wt (Lb) =	187.00	88.00	88.00	88.00 H-00	•	· ·	*	•
1 [Actual Wt (Lb) =	187	88.00	PSO					<u> </u>
- [Δ (Lb) =	0.00	0.00	0.00	0.00				
	Target Wt (Lb) =	187.00	88.00	88,00 \$0.00	88.00				
2 [Actual Wt (Lb) =	187.00	\$1,00		49,00				
[Δ (Lb) =	6.00	0.00	0.00	000				! —
	Target Wt (Lb) =	170.00	80.00	80.00	80.00				ļ. —
3 [Actual Wt (Lb) =	170.0	20.0	1000	90.0				
	∆ (Lb) =	0.00	0.00	0.00	0.00				ļ
								-	
		(PENELS)	C1 (No)29/40						
	Target Wt (Lb) =	3.5/7	57.280		*				
•	Actual Wt (Lb) =	3.515	59.280						
	Δ (Lb) =	0000	9.00						
	Target Wt (Lb) =				•				ļ
	Actual Wt (Lb) =				<u> </u>				<u> </u>
	∆ (Lb) =							<u>[</u>	1

III.B.4. Multi-Packet Materials Prep Instructions: See attached detailed instructions.	<u>√?</u>
1. Prepare individually labeled, consecutively numbered, pre-weighted (Lb/g ± Lb/g), heat-sealed packets.	<u> </u>
2. Verify the catibration on the Calibration Verification Verification Report (III.B.4)	
3. Place the appropriate quantity of material into the packet. Determine the net weight of each packet and record that exact weight on the label and the Packet Weight Log Sheet in the space adjacent to the packet #.]
4. Initial & date each Packet Weight Lo Sheet and Calibration Verification Log Sheet daily to certify the accuracy of the log.	
 Keep the packets in numerical order and bundle them in convenient sized batches. Pack the batches into the containers from #1 to # . Attach one Container Shipping Label (front) and three Haz Mat Container Watting Labels per container (front, back, & top, if indicated in the instructions). 	
6. Place the Site Contact Information Package (III.D.4.a) on top of the packets inside of Container #1. Securely fasten the container lid(s). Assemble the containers in a tight group just inside the shop door with Container #1 in front. Place the Transporters Information Package on top of Container #1in clear view. Coordinate shipping with the PM and SC.	

●iHouston = ● Dallas/Fort Worth : ● Shreveport/Longview ● Arkansa

4704 Shank Road, Pearland TX 77581

Phone:

281-485-5377

Toll Free: Fax: 1-800-622-3990 281-485-6129

CERTIFICATE OF ANALYSIS

O CH2012 COA

Date of Shipment:	4/21/2005	Product:	Methylene Chloride	•
Customer:	AMPAC Chemical	_Batch Number:	05-01-0117	•
Bill of Lading:	241579	Quantity:	1 drum	-
INSPECTION:		TEST METHOD:	ANALYSIS:	er Profes
Weight, Lbs / Gal @	60°F	D1250-80	11.01	• ¼ -
Refractive Index @ 2	25°C	; ;	1.4215	•
Specific Gravity @ 6	60° F	D-1298-80	1.32	
Purity, Wt. %	,		99.99	CH2Cl2
NVR, ppm			<10	
Water, ppm			<22	
Acidity (as HCL), pp	m		None Detected	
Appearance		·	Clear	
Color, Pt-Co.			3	
Distillation Range °C				
D.P.		A BAR H		

Date Approved:

Approved by:

4704 Shank Road, Pearland TX 77581
Phone: 281-485-5377
Toll Free: 1-800-622-3990

Fax:

281-485-6129

EALUENE BURCOC

CERTIFICATE OF ANALYSIS

Date of Shipment:	4/21/2005	Product:	Ethylene Glycol			
Customer: AMPAC Chemical		_Batch Number:	05-02-0280			
Bill of Lading:	241579	_Quantity:	1 drum			
INSPECTION:		TEST METHOD:	ANALYSIS:			
in the state of th						
WT in Pounds/Galle	on		9.31			
Refractive Index			1.4303			
Specific Gravity @	60° F	D-1298-80	1.118			
Purity, Wt. %			99.98	Enter City		
Acidity, Wt. %			<0.002	_		
Water, Wt. %			< 0.04	_		
Color			5			
Appearance			Clear and Free			
Distillation, @°C		D-86-78	N. Carlotte			
IBP			>196			
DP			<199			

Approved by:

Date Approved: 4-21-05

IS MEMUHAN VED, subject to the data; porty described being in a lood throughout this contra- on the poule to said destination	TOO TO A	y or due sale con large Large corpore to each		
**************************************		Free Co	SERVICE/COST IS COURSE.	0F 2076
VED sub		ificat	ons and lawfully filed tentis in effect on the date of Issue of this Bill of Lading 111	NG NO.
4138 UM	HEMICAL VKRSITY BO N, TX 71005	ΝÜĹ		
	(0 -2 680)		J SEABROOK, TX 77586 O OUR SALES ORDER NO. OUR SALES ORDER NO. 24	
	ENNITS AND SERVICES		DESCRIPTION/AND/QLASSIFIC/AT/DYAND	Welder
	590	* 1,	500 % DRUM DICHLOROMETHANS & COUNTRY SON	We find the same of the same o
			METRYLEAL CHICKIDE	le Rage
1 (510	‡ .	516 # DRUM NOT REGULATED 510 ENTYLENE GLYCOL (58 G-LIOR) Gud	is Page:
المحمد ا		¥:	Total Weights:	
	1 1277 0	21	larMat Guidebook page or appropriate MSDS - Verified and Loaded by:	
Placare	s offered_	_	CXState:Endaysements:	
		1 :		
Time I	0:		Time Out: Received by:	
Time I		+iri	MRNIP A	(7/4/h)
RT, CHARC MPAU CHI	ESTO: MICAL CON SITY BOUL	1P#	MENT. CH2C12 & ETHPLENE MY.INC. CHALL OF CUSTOM	E GLYBC
RT, CHARC MPAU CHI	COA WITH S ESTO: MICAL COM SITY BOUL EXAS 71003	1P#	MENT. CH2C12 & ETHPLENE MY.INC. CHALL OF CUSTOM	
RT, CHARC MPAU CHI H38 UNIVER	COA WITH S ESTO: MICAL COM SITY BOUL EXAS 71003	1P#	MENT. CH2Cl2 & ETHPLENE MY, INC. CHAIN OF CUSTODY	
RT, CHARC MPAU CHI H38 UNIVER	COA WITH S ESTO: MICAL COM SITY BOUL EXAS 71003	1P#	MENT. CH2C12 & ETHPLENE MY, INC. CHAIN OF CUSTODY COT #3 CROSS CHECK	
RT. CHARC MPAU CHI H38 UNIVE H0USTON,T TTENTION	COA WITH S ESTO: MICAL CON SITY BOUL EXAS TIOUS	ſ₽ <i>ŧ</i>	MENT. CH2C12 & ETHPLENE MY, INC. CHAIN OF CUSTODY COT #3 CROSS CHECK	- BETWEN
INTHE	EVENTES EVENTES The above-named labeled, and	nP.4 V	MENT. CH2CI2 & ETHYLENE MY, INC. CHAIN OF CUSTODY COT#S CROSS CHECK (SAS (ATTACHEO) & INVOINT MY CHEMICAL EMERGENCIES OLGERING ROOMS ATTACHEONS	BETWEEN CE (ATTACHED).
INTHE INTHE IN THE	EVENTE EVENTE	ed no population of the	MENT. CHOUS ENTHUENE NY, INC. CHAIN OF CUSTODY COTHS CROSS CHECK COAS (ATTACHTED) & INVOLV MY CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE AND CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE AND CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE CHAIN OF CUSTODY NY CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE CHAIN OF CUSTODY NUMBER OF CONGERNING PRODUCTS INTERSTIDE Number of empty drums returned to the plant of Transportation. The bill of lading, if this shipment is to be delivered to the consignee without recourse.	BETWEN SE (MITACHED).
INTHE INTHE INTHE IN CHARC MPAU CHI SUNIVE COSTON, I THENTION TO Certify that ged, marked a applicable reg It to Section 7 o consignor, the corresponding to the carrier shall with Sayman New York The Carrier shall The Carrier	ESTO: MICAL COMMICAL COMMICAL COMMICAL COMMICAL COMMICAL COMMICAN SONIA EVENTO SONIA The above name of labeled, and labeled, and labeled, and lateled, and late	ed no population of the	MENT. CHOUS ENTHUENE NY, INC. CHAIN OF CUSTODY COTHS CROSS CHECK COAS (ATTACHTED) & INVOLV MY CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE AND CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE AND CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE CHAIN OF CUSTODY NY CHEMICAL EMERGENCIES CONGERNING PRODUCTS INTERSTIDE CHAIN OF CUSTODY NUMBER OF CONGERNING PRODUCTS INTERSTIDE Number of empty drums returned to the plant of Transportation. The bill of lading, if this shipment is to be delivered to the consignee without recourse.	PETWEN CE (ATTACHED) -
INTHE INTHE INTHE IN CHARC MPAU CHI SUNIVE COSTON, I THENTION TO Certify that ged, marked a applicable reg It to Section 7 o consignor, the comer shall with Sayman N	EVENTE EVENTE	ed no population of the	MENT. CH2CI2 & ETHPLENE MY, INC. CHAIN OF CUSTODY CHAIN OF CUSTODY CHAIN OF CUSTODY CHAIN OF CUSTODY WYGHEMICAUSEMERGENCIES CONSERVING PRODUCES INTERSCRIPT COAS (ATTACHTED) & INDOV MYGHEMICAUSEMERGENCIES CONSERVING PRODUCES INTERSCRIPT ACCIDENTAL STATEMENT OF CUSTODY Number of empty drums returned to the plant of transportation according the bill of lading, if this shipment is to be delivered to the consignee without recourse shipping statement. Shipment. Shipment.	PRETWEED LE (MITACHED) ABGERATEIONE

AUnivar USA (1.5% P.O. Box 4579 Houston, Texas 77210-4579 1777 Brisbane Street Houston, Texas 77061-5044 Phone (713) 641-9454 Fax (713) 644-8369

AMALVSIS RESULTS

CERTIFICATE OF ANALYSIS

PRODUCT: TOLUENE PRODUCT CODE: 368900

MANUFACTURER: TAUBER

てきず ちきゅうりゅうさいん

LOT NUMBER/PACKAGE/DATE: HS026870341 55 GL DRUM 02/17/2006

TEST DESCRIPTION	ANALYSIS RESULTS
COLOR, SAYBOLT	+30
COLOR, PT CO	3
APPEARANCE@ 65-78	
DEG F	CLEAR & FREE
RELATIVE DENSITY	
15.56/15.56 DEG C	0.8717
API GRAVITY @ 60 DEG F	30.8
DISITILLATION RANGE	0.9
IBP	110.1
DRY POINT	111.0
COPPER CORROSION	PASS (1A)
ACID WASH COLOR	. •
ACID LAYER	0
OIL LAYER	NO DISCOLORATION
ACIDITY	PASS(NO FREE ACID)
TOLUENE CONTENT, WT.%	99.99
BENZENE,WT.%	0.006
ETHYLBENZENE,WT%	0.025
XYLENE,WT.%	0.017
C 8 AROMATICS,WT%	0.042
NON AROMATICS, WT%	0.042
VOL%	0.059
WATER CONTENT, PPM WT.	138
SULFUR CONTENT,WT	< 1.0
SULFUR DIOXIDE &	
HYDROGEN SULFIDE	FREE
1,4 DIOXANE, PPM WT.	Ĵuj (j. 17. − < 5 ,,,,),,
NITRATION GRADE QUALITY	COMPLIES
and the state of t	and the state of t

Recochem Inc

Attention

Michael Yared

: Tulstar Products Inc. (Dr.T.Nature) : Refined Naphthalene Crystals : 031351, 031411

Bill of Lad. # : RD9878

Product Lot#

Cust. P.O.#: 23-182

CERTIFICATE ÓF ANALYSIS

PROPERTY	TEST RESULT	SPECIFICATION	TEST METHOD
Lot 031351	* *		
Cryst./Solid. Pt.("C w/c) :	80.11	79.8 min.	N-QI-4.10-01-000
Color (APHA)	8	50 max.	N-QI-4.10-03-000
GC Analysis (%w/w)			
Naphthalene	99.93	99.0 mín.	N-QI-4.10-02-000
Thionaphthene	0.07	0.50 max.	N-QI-4.10-02-000
Lot 031411			
Cryst./Solid. Pt.(°C w/c)	: 60.10	79.8 min.	N-QI-4.10-01-000
Color (APHA)	16	50 max.	N-Q[-4.10-03-000
GC Analysis (%w/w)			
Naphthalerie	99.93	99.0 min.	N-QI-4.10-02-000
Thionaphthene	0.07	0.50 max.	N-QI-4.10-02-000

Attachment II

Spiking Material Composition Information:

- D. Metals Solution:
 - 1. Lead Nitrate [Pb (NO₃)₂] &
 - 2. Chromium Nitrate [Cr (NO₃)₃·9H₂O

ESS Certification of Composition for WeStates Pb/CR^{III} Solution

Spiking Material:	Pb/CR ^Ⅲ Solution
Spiking Application:	Spiking Source of Pb/CR ^{III} (SVM) for 2006 WeStates PDT
Production Date:	3/26/2006
Quantity Produced:	440.0 Lb Net Weight Solution
Composition:	[Pb] = 0.004998 [Cr] = 0.01753
(NO ₃) ₃ ·9H ₂ O and the ingredient used to mal true and accurate to the Signed:	ion available to me concerning the manufactures' CoAs for Pb(NO ₃) ₂ & Cr procedures and equipment ESS used to establish the quantity of each ke the final solution, I certify that the Pb concentrations provided above are e best of my knowledge and belief.
•	II) Schofield, PhD, PE Date ject Manager

Project Plan: Phase IV.J. Solute Specific Solution Preparation & QA Procedures: Project ID: 2006 Westate MB #3. Date Prepared: 2/1/2006

IV.J.2 Pb Solution Preparation, Data Collection, & Composition Calculation SOP, & Worksheet

Pert	inent Background Project and Technical Information:
1.	The Specified Lead (Pb):
	A. Spiking rate = <u>0.1 Lb Pb/Hr</u> , and
	B. Spiking duration = 22 <u>Hrs</u> .
	C. Thus, the total quantity of Pb required is <u>2.2 Lb Pb</u> .
2.	ESS has provided the lead as Lead Nitrate, Pb(NO ₃) ₂ , which will be used by ESS' Tech to prepare an aqueous solution on-site
3.	Technical Data for Pb(NO ₃) ₂ :
٥.	
	B. Solubility: (1) One part Pb(NO ₃) ₂ is soluble in 2 parts cold H ₂ O, & (2) Solubility increases with increasing temperature (Merck Index); &
	C. The specific production lot ² of Pb(NO ₃) ₂ * which was used for this project (Loba Chemie Lot #V0580031) has a 100.0 wt% purity ² (Loba CoA, Also, see the footnot
	below for an explanation of the * symbol as used herein).
4.	With this information, we can calculate the quantities of lead nitrate needed as follows:
•	A. Spiking Rate: 0.1 Lb Pb/Hr = 0.1598 Lb Pb(NO ₃) ₂ */Hr, and
	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
_	
	Mobilization Preparation:
5.	Modify ESS' On-Site Pb Solution Prep SOP based on the project specific requirements.
6.	Assemble, load, and transport all standard equipment/supplies required for this project plus:
	A. Prepare an appropriate shipping container w 3.517 Lb Pb(NO ₃) ₂ * labeled w "Pb(NO ₃) ₂ *", the actual net weight, the date weighed, and your initials, and ship the
	container to the test site.
	B. One large, clean, plastic laboratory funnel,
	C. A copy of this procedure, and
	D. Arrange for a suitable Pb solution prep drum (i.e., lined steel or heavy-duty plastic, closed-top) to be available on-site.
On-S	Site Solution Preparation:
7.	Preparation:
٠.	
	B. Retrieve the Pb(NO ₃) ₂ * Solution Drum.
	C. Retrieve PPE, i.e., latex gloves, tyvex smock, apron, or suit, and face shield.
	D. Retrieve the Pb(NO ₃) ₂ * container.
	E. Record the exact net weight of Pb(NO ₃) ₂ * from the container label here: 3.515 Lb Pb(NO ₃) ₂ *.
	F. Verify weigh scale calibration, if this has not already been done.
Mat	as Solis Prop. Procedures must be completed within secondary containment
NOR	e: Solu Prep Procedure must be completed within secondary containment. Weigh the empty drum, and record the drum tare weight here:
ŏ.	weigh the empty drum, and record the drum tare weight here:
9.	Add approximately 100 Lb of water to the empty drum.
10.	After donning PPE (See above), carefully add water to the Pb(NO ₃)* container until it is approximately ½ full. Tightly secure the lid, and thoroughly mix the
	contents.
11	Using the funnel, carefully pour the Pb(NO ₃) ₂ * solution from the container into the 100 Lb of water in the solution drum. Repeat as necessary to ensure
11.	that all of the Pb(NO ₃) ₂ * is dissolved. Rinse the container and funnel thoroughly with water, pouring all of the rinse water into the solution drum.
	and the state of t
12.	
13.	Agitate the Pb(NO ₃)2* solution in the drum with the folding prop mixer to ensure that the solution is thoroughly mixed and of uniform composition. Wipe up any water fro
	the outside of the drum and the top & sides of the scale.
Calc	culation of the Solution Spiking Rate:
1/	Weigh the drum and Pb(NO₂). *solution, to get: 4/77. L bb (gross weight of solution plus drum.
14.	Weight the drain and Full Moda? Solution, to get. 27 - 20 gioss weight to solution but of interest and intere
15.	Subtract the drum tare weight (from above.) from this (gross) weight, to get:
16.	To get the weight of Pb now in the solution, multiply the exact weight of the Pb(NO ₃) ₂ * (from above) as follows: 3.775 Lb Pb(NO ₃) ₂ * X (0.6256 Lb Pb/1.0 L
	Pb(NO ₃) ₂) X (1.0 Lb Pb(NO ₃) ₂ /1.0 Lb Pb(NO ₃) ₂ *=), to get: 2 , 1940 LbPb.
17	Divide the weight of Pb (g Pb from by the net weight of solution (from general) to get the Pb concentration in the solution:
	D. bo418 LbPb/Lb Solution.
40	Charles to the Constitution of the district the terms of the Delite form the A.A.A. but the existing account of the Constitution of the Constituti
18.	Calculate the target solution spiking rate by dividing the target Pb spiking rate of 0.1 Lb Pb/Hr (from Step 1.A.) by the solution concentration (i.e., Lb Pb/Lb Solu, from
), to: 2001 Lb Solu/Hr (should be very close to 20.0 Lb Solu/Hr).
19.	Divide the hourly spiking rate by 60 Min/Hr to get the "target pounds of solution per minute" spiking rate: 0. 3335 Lb Solu/Min (Should be very close
	0.3330 Lb Solu/Min).
04	Checks:
20.	Complete a careful QA/QC check on each step above, and call the ESS PM (@ the ESS office or 713-452-5714) for a joint review of all figures, and calculations. Please
	signify that the QA/QC Check was satisfactorily completed with your initials:
	ESS Tech/PM:
	FSFC PLD
4	The DEAN State and in this test has an estudionist of 4,000 M. The use of the combal tights showing formula DMAIO Stiritizates the second state of 4,000 M.
1	The Pb(NO ₃),* to be used in this test has an actual purity of 1.000 %. The use of the symbol * in the chemical formula Pb(NO ₃),* indicates the actual [less than 100%]
	purity] spiking material.

Project Plan: Phase IV.J. Solute Specific Solution Preparation & QA Procedures:

Project ID: 2006 Westate MB #3. Date Prepared: 2/1/2006

IV.J.4 Crill Solution Preparation, Data Collection, & Composition Calculation SOP, & Worksheet

- The Specified Chromium (Criti): 1.
 - Spiking rate = 0.35 Lb Crll/Hr.
 - Spiking duration = 22 Hrs, and
 - Thus, the total quantity of Crill required is = 22 Hr x 0.35Lb Cri/Hr = 7.7 Lb Cr
- ESS is providing the Crlii as Chromium Nitrate (III), Cr(NO₃)₃•9H₂O.
- Technical Data for Cr(NO₃)₃•9H₂O:
 - Pure Cr(NO₃)₃•9H₂O is 12.99 wt% Cr (Merck Index);
 - Solubility Data: Cr(NO₃)_{3*}9H₂O is: (1) "soluble" (Merck Index & Perry's), (2) "very soluble" (CRC Handbook), and (3) 208 g of Cr(NO₃)_{3*}9H₂O is soluble in 100ml H₂O (Lange's Handbook); and
 - The specific production lot of Cr(NO₃)₃•9H₂O* from which we were supplied for this project has a 100.08 wt% purity* (ProChem CoA, Also, see the footnote below for an explanation of the * symbol as used herein).
- With this information, we can calculate the:
 - $Cr(NO_3)_3 \cdot 9H_2O^*$ spiking rate = (0.35 Lb $Cr(Hr)(1.0 \text{ Lb } Cr(NO_3)_3 \cdot 9H_2O/0.1299 \text{ Lb } Cr)(1.0 \text{ Lb } Cr(NO_3)_3 \cdot 9H_2O^*/100.08 \text{ Lb } Cr(NO_3)_3 \cdot 9H_2O) = 2.697 \text{ Lb } Cr(NO_3)_3 \cdot 9H_2O^*/100.08 \text{ Lb } Cr(NO_3)_3 \cdot 9H_2O^*$ /Hr; and
 - Quantity of $Cr(NO_3)_3*9H_2O*$ required = 59.32 Lb $Cr(NO_3)_3*9H_2O*/22$ Hrs.

Required Pre-Mobilization Preparation:

- Modify the general ESS On-Site Metal Solution Prep SOP for the project specific Crill requirements.
- Assemble, load, and transport all standard equipment/supplies required for this project plus:
 - Prepare an appropriate shipping container w 59.32 Lb Cr(NO₃)_{3*}9H₂O* labeled w *Cr(NO₃)_{3*}9H₂O**, the actual net weight, the date weighed, and your initials, and ship the container to the test site.
 - One large, clean, plastic laboratory funnel,
 - A copy of this procedure, and
 - Arrange a suitable Cril Solution Prep Drum (i.e., fined steel or heavy-duty plastic, closed-top) to be available on-site.

On-Site Solution Preparation:

- Preparation:
 - Prepare secondary containment.
 - В. Retrieve the Cr Solution Prep Drum.
 - Retrieve PPE, i.e., latex gloves, tyvex smock, apron, or suit, and face shield.
 - Retrieve the Cr(NO₃)₃•9H₂O* container. Đ.
 - Record the exact weight of Cr(NO₃)₃·9H₂O* from its container label here 59.32 b.
 - Verify weigh scale calibration, if this has not already been done.

NOTE: Sol Prep Procedure Management must be completed within secondary containment.

- Weigh the empty drum, and record that weight here 37, 2 Lb (tare weight).
- Add approximately 100 Lb of water to the empty drum.
- After donning PPE (See See above), carefully add water to the Cr(NO₃)₃•9H₂O* container until it is approximately ¾ full. Tightly secure the lid, and thoroughly mix the contents.
- Using the funnel, carefully pour the Cr(NO₃)₃•9H₂O* solution from the container into the 100 Lb of water in the drum. Repeat Mark 100 Lb of water in the drum. all of the salt is dissolved. Rinse the container and funnel thoroughly with water pouring all of the rinse water into the solution drum.
- Add water to the solution drum until the net weight of the solution is approximately 440Lb.
- Agitate the Cr(NO₃)₃·9H₂O* solution with the folding prop mixer to ensure that the solution is thoroughly mixed and of uniform composition. Wipe up any water from the outside of the drum and the top & sides of the scale.

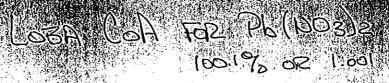
Calculation of the Solution Spiking Rate:

- Divide the weight of Cr^{III} (from No. 17) by the net weight of solution (from State II) to get Lb Cr/Lb solution.

 Lb Cr/Lb solution.

 Lb solution/Hr (This number should be very calculate the hourly spiking rate by dividing 0.35lb Cr^{III}/Hr by the solution concentration (from State II) to get:
- 19. Divide the hourly spiking rate by 60 Min/Hr to get the target spiking rate, and record the result here: 0.3238 b solution/Min.

Complete a careful QA/QC check on each step above, and call the ESS PM (@ the ESS office or 713-542-5714) for a joint review of all figures, and calculations. Please signify that the QA/QC Check was satisfactorily completed with your initials: ESS Tech/PM:


2-35 POK

^{*} The symbol * in the chemical formula Cr(NO₃)₃•9H2O* indicates the actual 100.08 % purity Chromium Nitrate which will be used on this test.

Sone fail Prep Instructions Worksheets: Applicable ? =	Material Description: ************************************	5 X 1993	100		4 10 0	
D SORs/Instructions/Worksheets: Applicable? =	General Prep Instructions:	的實驗	299	15877		
D SORs/Instructions/Worksheets: Applicable? =	AND AND A STATE OF THE STATE OF	1.44	4.4	14.18	程等进位	
#1 Review all Mat'ls Prep Information for this project. #2 MSDS(s) 3 Materials Prep Instructions, Raw Mat'l Weights (III.B.3) 4 Multi-Packet Mat'ls Prep Instructions (III.B.4) 5 Scale Calibration & Calib. Verification Report (III.B.5) 6 DM & Dispersion Prep SOP (III.B.6) 7 Shipping Instructions (III.D) 8 Bill of Lading (w go by) 9 Container Shipping Label &/or go by 10. Container Warning Label		· •	Att?	Get	Done?	Notes, Comments, &/or instructions:
3. Materials Prep Instructions, Raw Mai'l Weights (III.B.3) 4. Multi-Packet Mai'ls Prep Instructions (III.B.4) 5. Scale Calibration & Calib. Verification Report (III.B.5) 6. DM & Dispersion Prep SOP (III.B.6) 7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label		€:	****	*		多数的数据 的。
3. Materials Prep Instructions, Raw Mat'l Weights (III.B.3) 4. Multi-Packet Mat'ls Prep Instructions (III.B.4) 5. Scale Calibration & Calib. Verification Report (III.B.5) 6. DM & Dispersion Prep SOP (III.B.6) 7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label		1	3 .3.5	V	1	Get MSDSs from Mat'l Tech Files & Read.
4. Multi-Packet Mat'ls Prep Instructions (III.B.4) 5. Scale Calibration & Calib. Verification Report (III.B.5) 6. DM & Dispersion Prep SOP (III.B.6) 7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label	3 Materials Prep Instructions Raw Mat'l Weights (III.B.3)	1	√.	V		
5. Scale Calibration & Calib. Verification Report (III.B.5) 6. DM & Dispersion Prep SOP (III.B.6) 7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label		NA	NA	13	NA	See attached detailed instructions.
6. DM & Dispersion Prep SOP (III.B.6) 7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label	5 Scale Calibration & Calib Verification Report (III.8.5)			V		<u> </u>
7. Shipping Instructions (III.D) 8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label	6 DM & Dispersion Pren SOP (III B 6)	NA	NA	71	NIA	
8. Bill of Lading (w go by) 9. Container Shipping Label &/or go by 10. Container Warning Label	7 Shinning Instructions (III D)	1		7		
9. Container Shipping Label &/or go by 10. Container Warning Label Container Warning Label		√		1		
10. Container Warning Label		1		V		
1 / 1 / 1 / Cround Drume Ditring Mixing Mixi		7	7.3	1	√	
		7		1	1	Ground Drums During Mixing Process

1	Raw Mat'l =	Toluene	ial Weights, & Prep W CH₂Cl₂	Naphthalene	ET Glycol				
 	Lot#=	HS026870341	05-01-0117	031411	05-02-0280				
Batch -	Purity =	0.9999	0,9999	0.9993	0,9998				
r Drum #	Use Scale # =	S-1 (1000 Lb)	S-1 (1000 Lb)	S-1 (1000 Lb)	S-1 (1000 Lb)	L- (Lb)		L- (Lb)	
*	Calibrated on =	17	Î I	1.1	11	. 1 1		B*	C*
<u> </u>	Sub-batch =	-7.1		and the second				B	I − C −
	Target Wt (Lb) =	187.00	88.00	88.00	88.00	•	<u> </u>		}
1	Actual Wt (Lb) =	187	88.00	1500	8000				├─
· . [∆ (Lb) =	0.00	0.00	0.00	0.00				├ ─
	Target Wt (Lb) =	187.00	88.00	88,00	88.00				
2	Actual Wt (Lb) =	187,00	90,00		49.00			· · · · ·	╁
	Δ (Lb) =	6.00	0,00	0.00	000				┼
	Target Wt (Lb) =	170.00	80.00	80.00	80.00			 	}
3	Actual Wt (Lb) =	170.0	80.0	8000	900			 -	╁──
ľ	∆ (Lb) =	0.00	0.00	000	0.00				┼
						<u> </u>		 	+-
·							├	}	+-
[Pb	C1 (1/2) 9/40		 	<u> </u>		 	+
	Target Wt (Lb) =	35/7	57.230		ļ		 		+-
~ .	Actual Wt (Lb) =	3.515	59.280		<u> </u>	 	 		+
ļ	∆ (Lb) =	0000	9.00	1	ļ	 	-	 	
· .	Target Wt (Lb) =				<u> </u>	<u> </u>	 	╂—~	+
	Actual Wt (Lb) =		<u> </u>		 	 		+	╅─
V.	∆ (Ùb) =		nience as long as the total	1	<u> </u>		<u> </u>		_l

III.B.4. Multi-Packet Materials Prep Instructions: See attached detailed instructions.	√?
1. 5. It is the bold consequitively symboled pre-uninhed (h/n + 1 h/n) heat-sealed packets.	
2. Verify the calibration on the weigh scale daily with ESS' NIST traceable standards before each work day & record the results in the attached ESS Scale	ļ
3. Place the appropriate quantity of material into the packet. Determine the net weight of each packet and record that exact weight on the laber and the nacket. Weight Los Sheet in the space adjacent to the packet #.	
4. Latiful 8 date and Booket Meight Lo Sheet and Calibration Verification Log Sheet daily to certify the accuracy of the log.	
5. Keep the packets in numerical order and bundle them in convenient sized batches. Pack the batches that batches the batches in numerical order and bundle them in convenient sized batches. Pack the batches that batches the batches the batches that batches the batches th	
indicated in the instructions). 6. Place the Site Contact Information Package (III.D.4.a) on top of the packets inside of Container #1. Securely fasten the container lid(s). Assemble the containers in a tight group just inside the shop door with Container #1 in front. Place the Transporters Information Package on top of Container #1 in clear view. Coordinate shipping with the PM and SC.	

Ref: LOBA/COA/V

August 19, 2004

CERTIFICATE OF ANALYSIS

 Product Name
 :
 LEAD NITRATE PURE

 Code no
 :
 4377

 Batch no
 V0580

 Mol. Formula
 :
 Pb(NO₃)₂

 Mol. Weight
 :
 331.21

Sr. No	Tests	Tests Specification			
1	Description	White crystalline powder	White crystalline powder		
2	Assay (min)	99%	100.1%		
3	Chloride (Cl)	< 0.005%	< 0.005%		
4 .	Copper (Cu)	< 0.001%	< 0.001%		
5	Iron (Fe)	< 0.001%	< 0.001%		

This above product complies as per the specification of LOBA CHEMIE.

For LOBA CHEMIE PVT. LTD.

Note: This is document has been produced electronically and it is valid without signature.

THE PARTY OF THE P		
		59d):

	PAGRING			213	
Hopefic and the second second		10 (0 t) EXEMP	(0, 1)u B3	Equator's a	
A CHEMIE PAIN LIED 2 80 BABU GENU ROAD BAY = 400 002		(DE)	09//09//2004		
	COLORS	Buyer's PRO/	Order 10 Chate 178704 DC: 10	1/09/2004	
CHAIC CE MORE	LOTACIS INDOOR L	STONY OF THE	eference(s)		# (A)
J.W. 3.00					.`
Consignee ENGINEERED SPIKING S 1200 HWY 146 SOUTH SUITE 170	OLUTIONS, INC(ESS)	Buyer	If other than consig	nee)	
LAPORTE, TX 77571 US	A				
		Country INDI	of Origin of Goods A	Country of I U.S.A.	final Distination
Pre-Carriage by	Place of receipt by Pre-Carrier J.N.P.T. (INDIA)	Terms (of Delivery and Payme	nt	
Vessel/Flight No.	Port of Loading J.N.P.T.(INDIA)		· · · · · · · · · · · · · · · · · · ·		
Port of Discharge HOUSTON	Final Destination HOUSTON			en e	
rk & Nos./ No. ontainer No. of	& Kind Despcription Packages of Goods		Quantity	Nett Wt. (Kgs.)	Gross Wt. (Kgs.)
ENGINEERED SPIKING SOLUTIONS, INC. (ESS) LAPORTE, HOUSTON USA					
DRUM NO.1TO20	BATCH N	o [
SODIUM DICHROMATE (I	OIHYDRATE) V16950	41	20x25KG	500.000	540.000
DRUM NO.21TO28		\$- u -u '=	† = * * * * * * * * * * * * * * * * * * *	·	
CHROMIUM (III) OXIDI	GREEN V16970	41	8 x25K G	200.000	216.000
DRUM NO.29TO40					
LEAD NITRATE PURE	V05800	31	12x25KG	300.000	312.000
DRUM NO.41TO48					
LEAD MONOXIDE (LITHA	ARGE) V10260	41 grade y	8x25KG	200.000	208.000
TOTAL NET WEIGHT	: 1,200.000 KGS. : 1,276.000 KGS.				
		То	tal Weight	1200.000	1276.000
Declaration :		6.0	FOR LOBA CHE Signature	ME PRIVATE	LTO.
We declare that th	is Invoice shows the described and that p	actua arti=		& Date	Ф

Arr II A(2), 3/13

(OA

Cerificate of Analysis

Product name: Chromium (III) Nitrate Hydrate, 99+%

Chemical Formula: Cr(NO3)3.XH2O

LOT#1031390

Quantity: 100 lbs.

CAS#: 13548-38-4

FEYFRESSED BY ESS AS (r(NO3)3.9H20

<u>Specifications</u>	,	<u>Results</u>	
Chromium	0.010% max 0.05% max 0.01% max	13.0% .0.001% .0.001% 0.001% .0.004%	

PORZITY = 0.1300 0.1299 : 100% = 100.08%

0.1299 IS MASS FRACTION Cr

828 Roosevelt Rd. • Rockford, IL 61109 • (815) 398-1788 • Fax (815) 398-1810

PROCHEM, INC. 826 ROOSEVELT RD. ROCKFORD, IL 61109-2025 (815) 398-1788

INVOICE: ATT 1 A(2), 5/13

Invoice #: 00013999

Bill To:

Engineered Spiking Solutions 1200 Hwy. 146 S. Street 170 LaPorte, TX 77571 Ship To:

Eli Lily & Company 1650 Lilly Road Lafayette, IN 4790) Attn: Miguel Gonzales

	ESPERSON	YOUR ORDER NO.	SHIP VIA	COL	PPD	SHIP DATE		TERMS	DATE	PG
		1600	OVERNITE	X		9/14/05	2%	10 Net 30	9/14/05	1
QTY. ———	ITEM NO.		DESCRIPTION			PRICE	UNIT	DISC %	EXTENDED PRICE	TX
100	1476	Chromi Hydrate	um Nitrate, 99 e, Lot #1031390	+%,			LB			
- ·t.		I · · · ·			<u> </u>			EIGHT S TAX OUNT	00.00 0.00 0.00 00.00 0.00	
							BALANC É		0.00	

Attachment III Documentation of Accuracy of the Field Spiking Rate Measuring Equipment Used during this Project:

- A. Pre-Mob, Pre-Test, and Post-Test Calibration Verification Reports, and
- B. Current Certification of Weight Standards with NIST Traceability.

Attachment III Documentation of Accuracy of the Field Spiking Rate Measuring Equipment Used during this Project:

A. Pre-Mob, Pre-Test, and Post-Test Calibration Verification Reports,

Project Plan: Phase III.B. Spiking Materials Preparations: Project ID: 2006 Westate Parker,AZ CPT. Date Prepared: 3/08/2006

hop Weigh Sc	ale #: P · (Calibrate & Verify	Calibration to: S&D Lbs	
pplication:	DKWOO				
re-Test Calibra	ation Verification: Date 3 1/1	/200 😉	Post-Test Calibra	ation Verification: Date 3 117	
est Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb	Test Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb
uild Up in 50 L	b Increments:	······································	Build Up in 50 Lb	Increments:	
0.0	010	0.0	0.0		
50.0	50.0	0.0	50.0	`	
100.0	10000	0,0	100.0		
150.0	199.9	-0,1	150.0		
200.0	199.9	701	200.0		
250.0	744.9	-01	250.0		
300.0	299.9	_ ~ 0 ./	300.0		
350.0		0.0	350.0	.,	
400.0	455		400.0		
450.0	47.9	+0.1	450.0		
500.0	499,4	-01	500.0		
					
		<u> </u>			
reak Down in 5	50 Lb Increments:		Break Down in 50) Lb Increments:	
				ļ	
		,			
500.0	499.9	-01	500.0		
450.0	449.9	201	450.0		
400.0	344.7	~ O, 1	400.0		
350.0	349.9	20.1	350.0		
300.0	79/7.9	00,1	300.0	-	
250.0	7999	-0.1	250.0		
200.0		-0,1	200.0		
150.0	149.9	-0.1,	150.0		
100.0	40,4	-0.	100.0	<u> </u>	
50.0	VO1. 9	-0.1	50.0	 	
0.0	-0.1	-0.1	0.0	<u> </u>	
ccuracy Asses	ssment & Comments:				·· · · · · · · · · · · · · · · · · · ·
					
					

Project Plan: Phase III.B. Spiking Materials Preparations: Project ID: 2006 Westate Parker,AZ CPT. Date Prepared: 3/08/2006

op Weigh Sc	ale#: (-2		Calibrate & Verify	Calibration to: Lbs	
oplication:	Chop				
re-Test Calibra	tion Verification: Date 3//1	/200 👝	Post-Test Calibra	tion Verification: Date: / /	
est Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb	Test Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb
uild Up in 50 Ll	ncrements:	<u> </u>	Build Up in 50 Lb	Increments:	
0.0	0.0	<u> </u>	0.0		
50.0	50,0		50.0		
100.0	100		100.0		
150.0	10000		150.0		
200.0	200.0		200.0		
250.0	250.1		250.0		
300.0	3000		300.0		
350.0	350.1		350.0		
400.0	400.1		400.0		
450.0	450.1		450.0		
500.0	580.1		500.0		
	-				
Prock Down in F	50 Lb Increments:		Break Down in 50) I b Increments:	
oleak Down III c	O LO INCIENTENTO.		Broak Botti II. C.		
				<u> </u>	
					
				· · -	
	·				
		<u> </u>			
			500.0		
500.0	_ 520./		450.0	 	-
450.0	43.1		400.0		
400.0	400.0	 	350.0		
350.0	350 .0		300.0		
300.0	300.1	 	250.0	 	
250.0	200	<u> </u>	200.0		
200.0	700			 	
150.0	1501		150.0		
100.0	100.0		100.0		
50.0	<u> </u>		50.0		
0.0	٥.٥		0.0	1	
Accuracy Asses	ssment & Comments:				
		etwal			

re-Test Calibratio	n Verification: Date: 3//3 - Indicated Wt, Lb	200 C = Difference, ± 0.? Lb	Test Load, Lb	ation Verification: Date: / //	200
re-Test Calibratio est Load, Lb uild Up in 50 Lb lr 0.0 50.0 100.0 150.0 200.0	on Verification: Date: 31/3 - Indicated Wt, Lb increments:		Test Load, Lb		200
est Load, Lb	- Indicated Wt, Lb norements:		Test Load, Lb		700
0.0 50.0 100.0 150.0 200.0	ncrements:	= Difference, ± 0.? Lb			
50.0 100.0 150.0 200.0	ح.ق			- Indicated Wt, Lb	= Difference, ± 0.? Lb
50.0 100.0 150.0 200.0			Build Up in 50 Lt	Increments:	
100.0 150.0 200.0			0.0		
150.0 200.0			50.0		
200.0	1000.0		100.0		
	150.0		150.0		
250.0	202.0		200.0		·
	230,0		250.0		
300.0	300.0		300.0		
350.0	350.0		350.0		
400.0	4000		400.0		
450.0	4000		450.0		
500.0	500.1		500.0	· · · · · · · · · · · · · · · · · · ·	
550,D	99.0				
(2000	400.1	<u> </u>			
6561U	605D11				
700.0	100.0				
7700	750,1		<u> </u>		
1000	P00.0			-	
	l b la secondar	<u> </u>	Break Down in 5	O L b Ingromonte:	
Break Down in 50 l	Lb increments:		DIEGK DOWN III J	T Co molements.	
1-0	Ame o				
100.0	ADV.O				
7500	750.1	<u> </u>			
200	700.				
ano	650.1				
cgo	550,1				
500.0	520.1		500.0	+	
450.0	450.1		450.0	-	
400.0	400,0		400.0		
350.0	3500	-	350.0		-
300.0	300 O		300.0		
250.0	250.0		250.0	 	
200.0	7000		200.0		
150.0	2000 (Se, S		150.0	1	
100.0	100.0		100.0		
50.0	50,0		50.0	· ····	
0.0	0.0		0.0		
	nent & Comments:	1			
ACCUIACY MOSESSII	ion a commons.				
 					
	0				

Project Plan: Phase III.B. Spiking Materials Preparations: Project ID: 2006 Westate Parker,AZ CPT. Date Prepared: 3/08/2006

op Weigh Sc	ale#: F-5		Calibrate & Verify	Calibration to: Co Lbs	
plication	Frendo			450	
	<u> </u>		r		
	ation Verification: Date:3/7			ation Venfication: Date: / /	
est Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb	Test Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb
uild Up in 50 Ll	b Increments:		Build Up in 50 Lt	Increments:	
0.0	0.0		0.0		
50.0	499		50.0		
100.0	999		100.0		
150.0	1500		150.0		
200.0	149.9		200.0		
250.0	28.0		250.0		
300.0	30-10		300.0		
350.0	750.S 199,91		350.0		
400.0	<i>349,4</i>		400.0		
450.0	450,0		450.0		···-
500.0	5000		500.0		
1	<u></u>	<u> </u>			<u>l</u>
3reak Down in 5	50 Lb Increments:	,	Break Down in 50	0 Lb Increments:	
	·····				
500.0	6000		500.0		
450.0	449.9		450.0		
400.0	390.9		400.0		
350.0	2 90 ,0		350.0		
300.0	300.0		300.0		
250.0	2478		250.0		
200.0	21/38 11/39 1500		200.0		
150.0	180.0		150.0		
100.0	7002		100.0		
50.0	300		50.0		
0.0	0.0	<u> </u>	0.0	<u></u>	
ccuracy Asses	sment & Comments:				
				<u>.</u>	
SS Technician	1 1 1 1	theol		Date: 31/ >	200 /

op Weigh S	cale #: F-		Calibrate & Verify	Calibration to: Calibration	<u> </u>		
plication: .	MCB						
e-Test Calib	ration Verification: Date: 5 27	12006	Post-Test Calibration Verification: Date \$ 1200 6				
st Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb	Test Load, Lb - Indicated Wt, Lb = Difference, ± 0.? Lb				
ild Up in 50	Lb Increments:		Build Up in 50 Lb Increments:				
0.0	8.0	0.0	0.0	0,0	0.0		
50.0	500	w·0	50.0		0.0		
100.0	11000	0.0	100.0	50,D 100.0	0.0		
150.0	1500	Ø 10	150.0	150.0	0.0		
200.0	700.0	0.0	200.0	2000	6.3		
250.0	249.9	-0.1	250.0	2500	0.0		
300.0	299,9	0,1	300.0	3000	0,0		
350.0	349.9	-6,1	350.0	355.0	0.0		
400.0	399.9	-0.1	400.0	400.0	0,0		
450.0	2/500	6.0	450.0	450.1	Dil		
500.0	5000	0.0	500.0	500.1	0.1		
-							
		-					
eak Down in	50 Lb Increments:	<u> </u>	Break Down in 5	0.1 h Increments:	7		
Cuk Dominin	l l	1	Broak Boilling	C ED INGIGINANS:			
	ļ			· · · · · · · · · · · · · · · · · · ·			
							
			1				
		<u> </u>					
		<u> </u>		 			
500.0	5000	6.5	500.0	550./	0./		
450.0	4919	ا .ن ۔	450.0	450.1	0,1		
400.0	3999	-0,1	400.0	400.0	0.0		
350.0	349.9	-0,1	350.0	350.0	٥٠٠		
300.0	2999	201	300.0	$\perp 300.0$	0.0		
250.0	249.9	- 61	250.0	750	0.0		
200.0	199.9	-0.1	200.0	1000	0.0		
150.0	149.9	-01	150.0	153.0	0.0		
100.0	99.9	-0.1	100.0	1000	0.0		
100.0	49.9	-0.1	50.0	70.0	0,0		
50.0	1 / (' ',	-01	0.0	00	0.0		
50.0	<i>ا مور</i> ا		<u> </u>				
50.0 0.0	ssment & Comments:						
50.0 0.0	ssment & Comments:		•	· · · · · · · · · · · · · · · · · · ·			
50.0 0.0	ssment & Comments:						

est Load, Lb						
Post-Test Calibration Post-Test Coad, Lb -1	_					
Sest Load, Lb		ation Verification: Date 3/200				
Suild Up in 50 Lb Increments: Build Up in 50 Lb Increments	<u> </u>					
Street Down in 50 Lb Increments: Break Down in 50 Lb	LD	100000000000000000000000000000000000000				
50.0 50.0 100.0 100.0 150.0 100.0 150.0						
100.0						
150.0		1000	2.2			
200.0 250.0 250.0 250.0 250.0 300.0 350.0 350.0 350.0 400.0 450.0 500.0 500.0 350.		1000	2.0			
250.0 250.0 300.0 350.0 350.0 350.0 400.0 450.0 500.0 250.0 250.0 250.0 250.0 350.0		200.1	2.1			
300.0 350.0 350.0 350.0 350.0 400.0 450.0 450.0 500.0 See So		250.0	2.D			
350.0 400.0 450.0 500.0		3000				
Streak Down in 50 Lb Increments: Break Down in 50 Lb		333.0	D. D			
Solution		3500	0.0			
500.0 500.0		4350	0.0			
Since Sinc		5000	0.0			
500.0		3000	<u> </u>			
500.0						
500.0		- 	·			
500.0						
500.0						
500.0						
500.0						
500.0						
500.0		0 Lb Increments:				
450.0 450.0 400.0 400.0 350.0 350.0 300.0 350.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 150.0 50.0 50.0 50.0 50.0 50.0 50.0 0.0 0.0						
450.0 450.0 400.0 400.0 350.0 350.0 300.0 350.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 150.0 50.0 50.0 50.0 50.0 50.0 50.0 0.0 0.0		 				
450.0 450.0 400.0 400.0 350.0 350.0 300.0 350.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 150.0 50.0 50.0 50.0 50.0 0.0 50.0 0.0 0.0		 				
450.0 450.0 400.0 400.0 350.0 350.0 300.0 350.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 150.0 50.0 50.0 50.0 50.0 0.0 50.0 0.0 0.0						
450.0 450.0 400.0 400.0 350.0 350.0 300.0 250.0 250.0 200.0 150.0 100.0 250.0		 				
450.0 400.0 400.0 350.0 350.0 300.0 250.0						
450.0 400.0 400.0 350.0 350.0 300.0 250.0						
450.0 400.0 400.0 350.0 350.0 300.0 250.0						
450.0 450.0 400.0 400.0 350.0 350.0 300.0 350.0 250.0 300.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 100.0 50.0 50.0 0.0 0.0 0.0 0.0		5000	0.0			
400.0 400.0 350.0 350.0 300.0 350.0 250.0 300.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 100.0 50.0 50.0 0.0 0.0 0.0 0.0		4500	0.0			
350.0 350.0 300.0 300.0 250.0 250.0 200.0 250.0 150.0 150.0 100.0 100.0 50.0 50.0 0.0 50.0 0.0 0.0		4001	0.1			
300.0 300.0 250.0 250.0 200.0 250.0 150.0 200.0 150.0 150.0 100.0 100.0 50.0 50.0 0.0 0.0 0.0 0.0		3382	20.00			
150.0 150.0 100.0 150.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0)	300,0	0.0			
150.0 150.0 100.0 150.0 50.0 50.0 0.0 50.0 0.0 50.0 0.0 0.0		250,0	DA			
150.0 150.0 100.0 100.0 50.0 50.0 0.0 50.0 0.0 0.0		200.1	011			
100.0 100.0 50.0 50.0 0.0 50.0 0.0 50.0 0.0 0.0		1500	0.0			
50.0 50.0 50.0 50.0 0.0 0.0		1000	0.0			
0.0 8.2 6.0 0.0	_	500	0.0			
0.0		ගුව	0,0			
• • • • • • • • • • • • • • • • • • •						
Accuracy Assessment & Comments:						
·						

hop Weigh Sca	le#:(₽-3		Calibrate & Verify (Calibration to: POCLbs	
pplication:		<u> </u>			•
	F 64: 52				
re-Test Calibrat	ion Verification: Date: 527	1 200 🛩	Post-Test Calibrat	ion Verification: Date 🕱 🕱	2004
est Load, Lb	- Indicated Wt. Lb	= Difference, ± 0.? Lb	Test Load, Lb	- Indicated Wt, Lb	= Difference, ± 0.? Lb
uild Up in 50 Lb	Increments:		Build Up in 50 Lb l	ncrements:	
0.0	D.0		0.0	6.6	
50.0	50.0		50.0	52.0	
100.0	100.0		100.0	1001	·
150.0	1500		150.0	1900	
200.0	200.0		200.0	2000	
250.0	250.0		250.0	250.0	
300.0	300.0		300.0	300,1	
350.0	350.1		350.0	330.0	
400.0	400.1		400.0	402.1	
450.0	450.0		450.0	4501	
500.0	500.0		500.0	500.1	
350,0	5501	<u> </u>	1500	530.1	
(0000	(000.1		6,00	600.2	
(250.0	6301		650,0	60D.1	
700.0	700.1		100.0	700.1	
750.0	750.1		710.0	755.1	
Aco.o	800.l		POO. 5	Proil	
POUD	FDD. (Ace.O	Pco.1	
7500	750,(750.0	750.1	
1000			700	7001	
600	700.1 6 50.1		6500	651.1	
1000	6001			600.1	
5500	2501		600.0	550, I	
500.0	400.l		500.0	5001	
450.0	491		450.0	450,1	
400.0	400.1		400.0	400,1	
350.0	380.0		350.0	3,70.0	
300.0	300.0		300.0	350.0 300.1	
250.0	2500		250.0	758.0	
200.0	2000		200.0	7/20.0	
150.0	150.0	ļ	150.0	150.1	
100.0	100.0		100.0	100.1	
50.0	49.9		50.0	50.1	
0.0	0.0		0.0	0.1	
ccuracy Assessi	ment & Comments:				
					
				·-	

opication:	Pb/Com Salue	Pina		Calibration to: 500 bs			
opilication.	POPEL SELL	~ / C	<u> </u>				
re-Test Calibr	ation Verification: Date: 3 / 24	1200 C	Post-Test Calibra	ation Ventication: Date 35/20	06		
est Load, Lb		= Difference, ± 0.? Lb	Test Load, Lb - Indicated Wt, Lb = Difference, ± 0.? Lb				
	_b Increments:	<u> </u>	Build Up in 50 Lb	Increments:			
0.0	6.0	T	0.0	6.3			
50.0	50,0		50.0	500			
100.0	100.3		100.0	100,0			
150.0	188.1		150.0	150.0			
200.0	200.0		200.0	199.9			
250.0	250,0		250.0	2500			
300.0	300.0		300.0	3000			
350.0	35%,0		350.0	240,9			
400.0	400.0		400.0	799.9			
450.0	4799		450.0	4/50.0			
500.0	449.9		500.0	500.0			
	<i>'</i>						
reak Down in	50 Lb Increments:		Break Down in 50) Lb Increments:	- · · · · · · · · · · · · · · · · · · ·		
500.0	500.0		500.0	500.0			
450.0	450.0		450.0	447.9			
400.0	299, 9 249, 9		400.0	3999			
350.0	249.4		350.0	350.0			
300.0	<u> </u>		300.0	3000			
250.0	250,0	ļ	250.0	2500			
200.0	700.0		200.0	750.0			
150.0			150.0		_		
100.0	100,0		100.0	1000			
50.0	90,0		50.0	80,0			
0.0	<i>ල, </i>	<u> </u>	0.0	වෘර			
ccuracy Asses	ssment & Comments:						
			· · ·				

Attachment III Documentation of Accuracy of the Field Spiking Rate Measuring Equipment Used during this Project:

B. Current Certification of Weight Standards with NIST Traceability.

TEXAS DEPARTMENT OF AGRICULTURE SUSAN COMBS, COMMISSIONER REGULATORY DIVISION CONSUMER PROGRAM METROLOGY LABORATORY

Test No: G000001191

REPORT OF TEST

ENGINEERING SPIKING SOLUTIONS

1200 Hwy. 146 South, Ste. 170

La Porte, Texas 77571

Test Date: 08/11/2005

Phone Number: 281-471-2071

County: Harris

Region: 3

Total Pounds Sealed:

Weights Sealed

Weights Rejected

Measures Sealed: Measures Rejected:

1250,00000

25

0

This is to certify that the physical standards described below were on this day compared to the standards of the State of Texas which are directly traceable to standards of the National Institute of Standards and Technology.

test description	# sealed	# rejected	test_description	# sea'ed	# rejected
50 lbs.	25	0			<u> </u>

*See attachment

Metrologist

TEXAS DEPARTMENT OF AGRICULTURE

TDA C279E

SUSAN COMBS, COMMISSIONER

TEXAS METROLOGY LABORATORY CERTIFICATE OF CALIBRATION

For

Test Completed 08/11/2005

Cast Iron Test Weights

Test Number G-000001191

Submitted by

Engineered Spiking Solutions 1200 Highway 146 South, Suite 170 La Porte, Texas 77571

The standards described below have been compared to the standards of the State of Texas (N.I.S.T. Test # 40093, 251996) and were found to have the following mass corrections:

Femperature Range: 15°C - 30°C

Humidity Range: 30% - 60%

State Standards Cal Date:

12/2004

State Standards Cal Due Date: 12/2005

SOP Used: Mod. Sub., SOP-8

		As Found	As Left	Expanded		
Nominal		Mass Correction	Mass Correction	Uncertainty	Tolerance	Tolerance
Value	Serial / ID #	(Milligram)	(Milligram)	(Milligram)	Class	(Milligram)
50 LB	ESS7	1527.000000	457.000000	157	F	2300
50 LB	ESS16	4227.000000	327.000000	157	F	2300
50 LB	ESS24	4387.000000	567.000000	157	F	2300
50 LB	ESS19	6417.000000	557.000000	157	F	2300
50 LB	ESS25	3697.000000	487.000000	157	F	2300
50 LB	ESS22	3757.000000	347.000000	157	F	2300
50 LB	ESS20	1297.000000	537.000000	157	F	2300
50 LB	ESS18	2767.000000		157	F	2300
30 LB	ESS13	6497.000000	537.000000	157	F	2300
50 LB	ESS23	3767.000000	517.000000	157	F	2300
50 LB	ESS9	1497.000000		157	F	2300
50 LB	ESS5	2787.000000	357.000000	157	F	2300
50 LB	ESS10	2097.000000	357.000000	157	F	2300
50 LB	ESS1	1857.000000	347.000000	157	F	2300
50 LB	ESS11	3337.000000	387.000000	157	F	2300
50 LB	ESS17	2587.000000		157	F	2300
50 LB	ESS15	2217.000000		157	F	2300
50 LB	ESS3	3117.000000		157	F	2300
50 LB	ESS12	5330.000000		157	F	2300
50 LB	ESS2	1767.000000		157	F	2300
50 LB	ESS14	1757.000000		157	F	2300
50 LB	ESS8	<u>3337.00</u> 0000			F	
50 LB	ESS21	5067:000000		157	F	2300
50 LB	ESS6	1727.000000		157	F	2300
50 LB	ESS4	6737.000000	427.000000	157	F	2300

The effect of air bouyancy has been considered negligible.

The expanded uncertainty given here is in compliance with NIST Technical Note 1297 ("Guidelines for Evaluating and Expressing the Uncertaity of NIST Measurement Results") with a coverage factor of two, representing a 95% confidence level. This report is not to be used to claim product endorsement by the Texas Department of Agriculture or any agency of the U.S. Government. This document shall not be reproduced, except in full, without the written approval of the Texas Department of ^ riculture Metrology Laboratory.

Laboratory Metrologist

S:\Giddings Metrology Lab\Spreadsheet Programs\SOP-8.doc

Attachment IV

Field Spiking Data

- A. Executed Test Manager Spiking Orders to ESS and other operations logs,
- B. Stack Sampling Start/Stop Times, and
- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 1. Test Condition #1, Run #1:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution,
 - 2. Test Condition #1, Run #2:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution, and
 - 3. Test Condition #1, Run #3:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Attachment IV Field Spiking Data

A. Executed Test Manager Spiking Orders to ESS and other operations logs

Spiking:		Spiking Rate, Lb/Hr		Pump	Spiking	Specie/Mat'l Regr'ed/	
Specie	Material	As Specie As Mat'l		Type/Size	Duration, Hrs	Mat'l Provided, Lb/Lb/# Drums	
POHCs:					 ,		
MCB	MCB	35	35	Neptune #3	32	1,120/1500/3-500 [Net] Lb Drums	
C ₂ Cl ₄	C ₂ Cl ₄	35	35	LMI#10	32	1120/1400/2-700 [Net] Lb Drums	
Metals:		·····					
Pb	Pb/Crlll Solution	.1	20	LMI #7	32	3.2/640/1-640 [Net] Lb Drum	
Ci _{tii}	Pb/Crlll Solution	.35	20	LMI#7	32	11.2/640/1-640 [Net] Lb Drum	
Organic Mixtu	re: Organic Mixture	1	41	Neptune #4	32	13101 h 2 @ 451[Not] I h Drim1@ 410 [Not] I h Drim	
Toluene	Organic Wixture	. 17	71	першіе #4	32	1312Lb-2 @ 451[Net] Lb Drum1@ 410 [Net] Lb Drum	
CH ₂ Cl ₂		8	 		32		
Naphthalene		8		 	32		
Et Glycol		8			32		
	rised Spiking Orde						
Revision 1: Approved by	Client/Test Manag					Date: / /200	
Revision 1: Approved by						Date: / /200	
Revision 1: Approved by Revision 2:		er:				Date: / /200	
Revision 1: Approved by Revision 2:	Client/Test Manag	er:					
Approved by Revision 2: Approved by Revision 3:	Client/Test Manag	er:					
Approved by Revision 2: Approved by Revision 3: Approved by	Client/Test Manag	er:	ents³:			Date: / /200	
Approved by Revision 2: Approved by Revision 3: Approved by	Client/Test Manage Client/Test Manage	er:	ents ³ :			Date: / /200	

Please document the required changes, and initial/date the new orders.

3. Please provide a critique of ESS' performance on this test, offer suggestions for improving the value of our products and services to you, and/or (if warranted) identify aspect(s) of our products and services with which you are pleased.

in SOP: Project P′ hase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Exe Project ID: مرا5 Westate Miniburn #3. Date Prepared: 1/26/2006

IV. Spiking Plan Transmittal Checklist:	ttal Checklist:		
Spiking Plan Component:		Applicable & Att'ed?	Received & Accepted?
Gen Info Re:	A. Test ID & Site Contact Information.	<i>></i>	\
Phase IV Proj Exec.	B. Overall Test Execution SOP & Checklist.	<i>/</i>	`
Spiking Plan:	C. Spiking Mat'ls, Species, Rates, & Durations, plus Quantities of Mat'ls & Equip Required.	<i>,</i>	7
	D. Test Schedule.	,	7
	E. Spiking Orders.	>	}-
	F. Pump Assignments.	\	`
	G. (1) Terms & Conditions, and (2) Support Requirements.	<i>*</i>	•
	H. Project Rate Schedule	^	
	1. Field Scale Set-Up, Adjustment, Calibration, and Calibration Verification SOP & Checklist.	^	\ \
	J. On-Site Solution Preparation SOPs, and & Documentation Worksheets:	•	>
	(1) Pb, ChilSolution	,	7
	K. Other Project Execution Related Log Sheets, Checklists, & Worksheets:	•	/
		<i>*</i>	
	(2) ESS Field Scale Comer Test Report	<i>></i>	`
	(3) Pre- & Post-Test Calib. Verification Report	<i>^</i>	/
	(4) Eq Operation & Maintenance	<i>^</i>	7
	(5) Spiking Log Sheets:	*	7
	(a) 1st Sheet per run	<i>></i>	//
	(b) 2 nd Sheets per run	>	7
Prepared & Approved by:	Date: Received & Accepted by:	Date: 3/16	070%
Footnotes:			

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

ESS 1200 Hwy 146 South Suite 170, LaPorte, Texas 77571 (281) 471-2071 Fax (281) 471-2180 <u>BSPE@ESSpiking.com</u>

Project Plan: Phase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Execution SOP:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

1. Test Type:	CPT	
2. Test Dates	Week of 3/27/2006 (Mob on 24th & Spike on 28th through 31st)	
3. Test Location	Parker, Az @ US Filter (See maps, etc.)	
4. Contact Name &#</td><td>Drew Boyard (928) 669-5758</td><td></td></tr><tr><td>5. Other Information</td><td></td><td></td></tr></tbody></table>		

/.B. Project Phase IV: Test Execution SOP & Checklist	
st Day = -1: Travel to the Test Site:	✓.
Safely drive to the test site obeying all traffic laws and applicable DOT requirements including the DOT Time Log/limits. Stop for coffee/coke &/or rest, as needed. Plan to arrive in the vicinity of the test facility on the day prior to the equipment set-up day to get a good nights rest.	V
st Day = 0 (Mob or Equipment Set-Up Day):	
Arrive at the gate early wearing PPE and ESS logo apparel, as appropriate. Place magnetic ESS signs on truck doors. Check in at the gate. Receive any site provided safety or other training.	V
Make contact with the client representative & clarify any uncertainties about the test schedule, spiking rates, management of contaminated materials, & establish the method of communications.	r
Check into the unit control room, obtain required permits, and synchronize Spike Manager © clock.	-
Locate all spiking materials; confirm lot numbers, drum counts, condition of containers, etc. When there are multiple drums of a given material (say N drums), mark each drum numerically from 1 to N and then use the drums in numerical order.	1
Confirm availability of: (a) required utilities, (b) a flat, level, hard surfaced work area, and (c) reasonable access to the spiking injection point.	L
Ask for fork lift or other assistance, as needed, to off load equipment and relocate to the spiking area. Use ESS' dolly &/or hand truck, &/or request assistance from operator/test manager, as needed, to protect your back from stains.	L
Set-up secondary containment (if not already available). Lay down impermeable barrier to protect the work surface from possible contamination, even if secondary containment is available. Only open spiking material containers when the containers are inside the secondary containment area.	L
Set-up and verify calibration of weigh scales. Set-up the spiking pumps, MFMs, drums on the drum dollies, and make connections from the drum, through the pump and to the injection point. Prime the pump in recirculation mode. Verify Spike Manager © operability.	L
After obtaining agreement with the site operations, test operability of the complete spiking system by pumping all spiking materials into the injection point using Spike Manager © with the most demanding project specific TC. Thoroughly document the equipment assignments.	٠
Thoroughly agitate all dispersion drums.	
When all necessary preparations have been satisfactorily completed, review all Log Sheet documentation for clarity, completeness, and accuracy.	2
If the Client's Spiking Orders to ESS have not already been signed, have the Test Manager review & approve the spiking rates, durations, etc. with revisions if appropriate. Please keep the ESS PM informed of any revisions as soon as reasonably practical after they are made.	4
Check out with the test manager, from the control room (closing out any safety permits), and at the gate. Remove the magnetic ESS signs from the truck doors.	L
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM if problems have surfaced, especially if you need assistance.	V

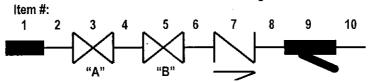
Project Plan: Phase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Execution SOP:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

Arrive at or before the set start time each day. Wear all appropriate PPE and ESS logo apparel as appropriate. Put ESS signs on truck doors. Check in at the gate. At the unit control room confirm clock synchronization delity, check in and obtain all required work permits. Observe all client safety/operational requirements. Quickly weight that all equipment remains in working order. Thoroughly agitate all dispersion drums. Ministain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Obtain & record the same stack feeling start & stop times as the Test Manager. Stary outside and in the spiking area whenever a run is in progress or is about to start. Decoment the spiking material drum # being used on each spiking area whenever a run is in progress or is about to start. Decoment the spiking area & all lines for leeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking area & all lines for leeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking area & all lines for leeks/drips, and clean any indication of even a minor leak immediately. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double cleak all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm file aschadule & least plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, aspecially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment & tra	Each Test Day (Test Day = 1, 2,): Spiking	√?
At the unit control room confirm clock synchronization daily, check in and obtain all required work permits. Observe all client safety/operational requirements. Quickly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Obtain & record the same stack feeling start & stop times as the Test Manager. Stary outside and in the spiking area sate Test Manager. Stay outside and in the spiking area whenever an un is in progress or is about to start. Document the spiking naterial drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work rare neat, clean, & orderly. Frequently insopret the spiking area & all lines for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Doublo chock all valves. Inspect for leaks, drips, atc. and clean them up immediately. Confirm the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day. After all lesting is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment more more any evide	Arrive at or before the set start time each day. Wear all appropriate PPE and ESS logo apparel as appropriate. Put ESS signs on tr	uck
Outckly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Othain & record the same stack testing start & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [e.g., 00.00 to 24.00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all ilines for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Confirm the schedule & test plan for the next day. Remove the ESS signs from the truck. Call in a status report to file ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &for PM as needed if problems and equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment withing should be th	doors. Check in at the gate.	
Quickly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Ordan in record the same stack testing start & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run mumbering system as the Test Manager. Stavutiside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all times for leeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, detes, signatures, etc. Police up the spiking area before leaving the area. Double chock all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm tho schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage		ient 🗾
Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Othain & record the same stack testing start & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all times for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or unit you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for complateness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & tost plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as noeded if problems have surfaced decontaminate & pack equipment, & travel. Check in as usual. Load the equipment, tools, etc. Into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wring, & weigh cells. Police up the spiking work area thoroughly. Leave		— —
Record the spiking data – if manually, no less often than I data point!\() Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double chock all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the Schedule & lost plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the £SS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, ospecially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, look, set. into the ESS equipment trailler taki		
Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time (e.g., 00:00 to 24:00 Hours). Use the same Test Condition & Run numbering system as the Test Manager. Stat	scheduled to begin. Obtain & record the same stack testing start & stop times as the Test Manager.	
Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS edifice daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailler taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS sho	Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [6 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at beginning of each run. Record any changes in equipment assignments.	the
To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedules & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & noses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Provide a control to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which	Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leaks/drips, and clean any indication of e	ven
After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Doublo check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance.	To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other stacks.	you sure
Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS sipns from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, pro	After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up	the V
Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS sipps from the truck. Drive back to the ESS simp with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a b	Confirm the schedule & test plan for the next day.	1/
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Tost Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & s		"
Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PN	l as
Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	needed if problems have surfaced, especially if you need assistance.	
Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.		√?
Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through	the
wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, elect	rical
Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files		
Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files	Police up the spiking work area thoroughly. Leave your work area clean and orderly.	$ \nu $
Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files	Collect any potentially contaminated items and dispose of them per client's directions.	
Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		:e &
Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		—}—
Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		1.
Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		10
Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files	Drive back to the ESS shon with care to observe defensive driving practices. DOT hour limits	
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		
needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		ı as
Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		,
Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files	Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or sche	dule
spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		
	spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, prob	
	File all equipment log sheets into their respective quipment specific files	
		21/-200

ESS Standard Operating Procedure: Tie-In of ESS' Spiking Material Delivery Line to Owner's Process

Purpose: The interface of **ESS'** equipment and our client's process is a sensitive step with potential operational, safety, and liability concerns. The purpose of this SOP is to define the physical interface between **ESS'** and our client's (owner's) process equipment and the respective responsibilities for safety managing the injection of **ESS'** spiking materials into the owner's process line.


Process Tie-In Fitting: ESS has prepared this SOP and a Process Tie-In Fitting [as described in the table & sketch below] to provide:

- 1. A clear line of demarcation between the parties' areas of responsibility and control.
- 2. A clearly defined, convenient, and safe means of: (a) connecting **ESS'** spiking material delivery line to, (b) controlling the spiking material flow into, and (c) disconnecting the delivery line from the owner's process line.

The Process Tie-In Fitting is made up of five (5) ½" nipples NPT E/E, two (2) ball valves, one (1) check valve, one (1) Y-strainer, and one (1) quick-connect, dripless coupler assembled in the following order:

Item #	Description:	Controlled by:
1	quick-connect, dripless coupler	ESS
2	½" threaded nipple	ESS
3	ball valve "A"	ESS
4	½" threaded nipple	Interface
5	ball valve "B"	Owner
6	½" threaded nipple	Owner
7	check valve	Owner
8	½" threaded nipple	Owner
9	Y-strainer	Owner
10	½" threaded nipple	Owner

Sketch of Process Tie-In Fitting

Procedure:

Provides this SOP to Owner. Provides Process Tie-In Fitting to Owner. Installs Process Tie-In Fitting at agreed injection point in owner's process¹. Connects spiking material delivery line to quick connect coupler. Opens Valve "B".	Pre-Mob Mob Day Mob Day Mob Day Mob Day Mob Day
r Installs Process Tie-In Fitting at agreed injection point in owner's process¹. Connects spiking material delivery line to quick connect coupler. r Opens Valve "B".	Mob Day Mob Day
Connects spiking material delivery line to quick connect coupler. r Opens Valve "B".	Mob Day
r Opens Valve "B".	
	Mob Day
May close valve "B" when spiking is discontinued &/or when necessary for safety.	Thru-out Test
Opens valve "A" after starting spiking pump & closes valve "A" prior to stopping pump.	Thru-out Test
Flushes delivery line & Process Tie-In Fitting. Disconnects delivery line from fitting.	Demob Day
r Disconnects the Process Tie-In Fitting from the process & returns it to ESS.	Demob Day
	Flushes delivery line & Process Tie-In Fitting. Disconnects delivery line from fitting.

Attachment IV

Field Spiking Data

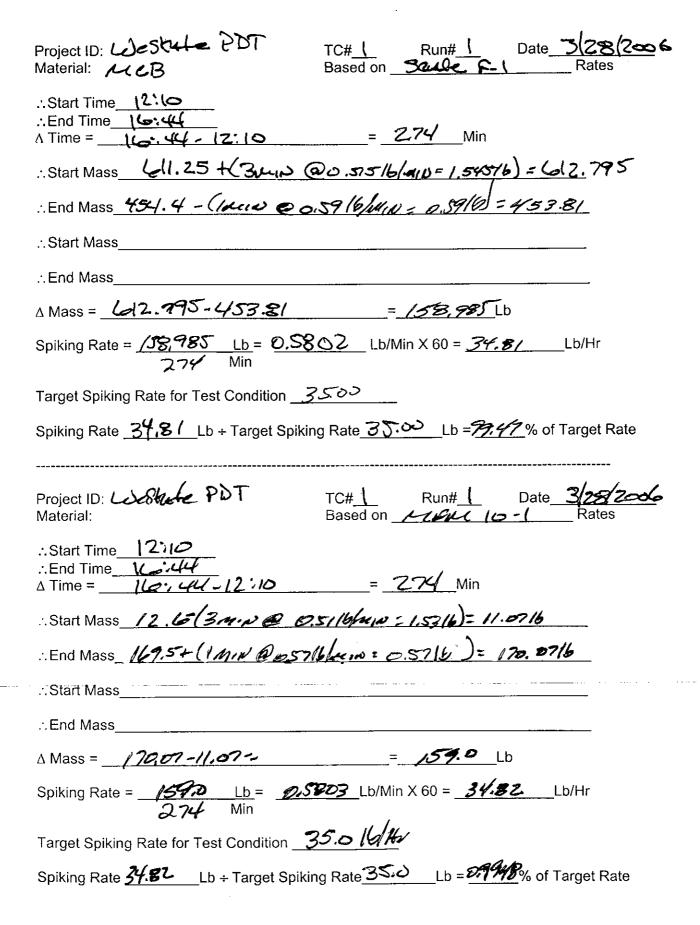
B. Stack Sampling Start/Stop Times, & Run Durations

TC #/	Test	Sampling Sta	art/Stop Time:	s, & Run D	urations
Run#	Date	Start	End	Run Dura	ation, Min
TC #1/					
Run #1	3/28/2006	12:10	16:44	2	74
Run #2	3/29/2006	11:15	17:00	3	45
Run #3a	3/30/2006	11:50	12:39	49	318
Run #3b	3/30/2006	15:30	19:59	269	310

Attachment IV Field Spiking Data

- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 1. Test Condition #1, Run #1:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

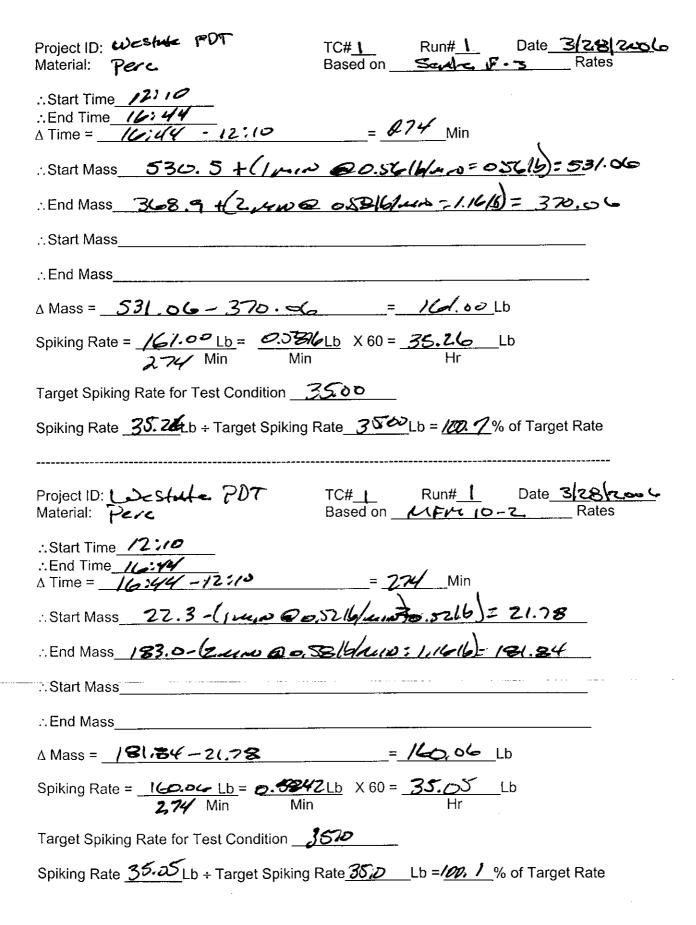
Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006


Data ID Date: 3/2/3200/ Equipment ID: Spiking Mi Spiking Data File Name: 10/10/10/10/10/10/10/10/10/10/10/10/10/1	Data ID Date: 3 1292006 TC#: / Run#: /	TC#: /	Rin#	11/ 1-2-1-1-1	9/1	Ú			C 10 10 10 10 10 10 10 10 10 10 10 10 10	
ID: ta File Nam				Spiking Material (10)	J): 11/1/C				raje i oi	T
ta File Nam	Spiking Manage	ar©#: ∠	Pump ID	LM#	Neptuńe# 3	Moyno#	.	Weigh Scale #: F-	/ MEW#/O~/	
	ne: 163 4	JEIN		Weather Conditions:	S: 54	1/2/2				_
				0.	133	ļ			PARKET .	
Spiking Rate Data:	ate Data:			Spiking	Spiking Rate Calculations:	ıs:		725	مراع: او مراع: او	_
Time (T),	Mass (M),		Short-Term Average			Cum Run Average	Average	326		
00:00	<u>.</u>	ΔMi	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave₁ = ∑ ∆	$\Sigma \Delta M' \Sigma \Delta T_i $	Comments/Observations	
15:40	221.56									\neg
'n	721.60									T
29:08	218 5									
04:11	7/6.15	2.2	7267	0.37.5						\neg
12.8	211.15	5.5	Coperin	0.50						
イボー	205 200	7	43/0/	0.565						
25.20		7/2/	ź	0.8x						T
200	57.0	12.2		0.5816						
13.01	1063 V	7.50	1411	0.570						
0	5 457	7.7	⊢	0.575						- 7
57:	9,	12.21	-	550						Т
.36	232.€	1	(3pm	58						П
325	4.829	9.5	(6.CC12)	6,58				0.4		Т
100	6/64	5	Buteren	6.53				7.5		Ţ
: 13	611.25	215	9410	0.57				3. 7/		Т
:23	6051 YO	5.85	10 un	0,5355				6/3		Т
.23	2.645	2:2	round	5.27	12.50	23000	O S	74.1		丁
S	593.9	80	MOMIN	550	18:50	3340	0.56	29.		" T
753	500.2		$\overline{\lambda}$	25.0	627.0	4300	0.56	25%		Ţ
3:03	58.4	5.8		0,0	79.90	5341101	6.6	11/2		Ť
113	576.6	3.6		0150	35.79	633510	0.57	11/20		-
£21	570.0	23	10mm	6.63	211:49	73 MIL	0.57	52.8		Т
.33	6 3	1011	cural.	0.04	47,449	Marie	5	34.		Т
143	\(\frac{1}{2}\)	1 8	Whol	0.50	53 63	93MM	2.50	138		П
2,53	27.7	M	Somol	65.0	39.59	103 MIN	D.58	016		
1.03	50% 0	r.s	NONGI	0.59	62:49	113410	0.7X	Mes		T
21.2	1.100	4.00	518/01	8. c	100	153412	0.00	dail		$\neg \top$
1.23	435.4	いい	wings	650	76.99	132110	3 0	2		Т
133	2.62	5.9	ioun	850	85.58	103 110	00,00	9	2	Т
143	333. S	a.	ser sex	D152 a	58.68	C. S. S. Come	850	1000	2	Т
king Technic	Spiking Technician Signature:		1000	21011			-	Date: v	2007	

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec in: Phase IV.K. Field Spiking Log Sheets: Project iu: 2006 Westate CPT. Date Prepared: 3/8/2006

Data ID Date: 3 28/2006 TC#: (Run#:	2006	TC#: 6	Run#: (Spiking Material (ID):		MCR	Bage ≥ of ≥
Spiking Rate Data:			Spikin	Spiking Rate Calculations:			STWT 12:10
me (T) Mass (M),		Short-Term Average	verage		Cum Run Average	Average	16:49
00:00 TP	ΔMi	ΔΤι	Rate = ∆M/∆T	Σ¦ΔΜ	$\Sigma_i \Delta T_i$	Run Ave, = $\sum_i \Delta M_i / \sum_i \Delta T_i$	Comments/Observations
1.83 572.7	S 18	IONIN	85.0	88 40	153MW	0.58	(058)
1183 517.9	200	lowing	200	24.18	163 mm	820	870
5.03 512.0	6-5	court	65.0	1000,38	123 Am	G 58	111.7
5.30 500.3	5.0	1 oven	47.0	100.08	123 per	6.53	1234
138 320 .S.	5.0	Jones	622	111.05	561	810	124.2
32 HAN 18:5	•			87211	203	25.3	134.9
CAS 424.95	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ø, SP	123.63	243	85.0	140.01
5.83 449.10	3/12	10un	0.585	129.53	202	Ø. 03	146.5
. C. 477.3	X	10un	\$. % \$000	135.13	233	0.50	1,523
1162 521.	ハン	10mm	0,57	110.83	243	\$7.0	022
23 11 8	W.	3201	6,50	14.103	275	0.578	162.8
2 1/10	1/1	(10 1/10)	\$.V.	2 23/	したれ	25.0	1195
11/2/17	V	John	100	1000	200	0.578	250
	1		0				0 111
7 4 7 7 0 6 7	·	201.00	1				
							The state of the s
						- inter-	- And Angelog and a second a second and a second a second and a second a second and
			0				
		•					

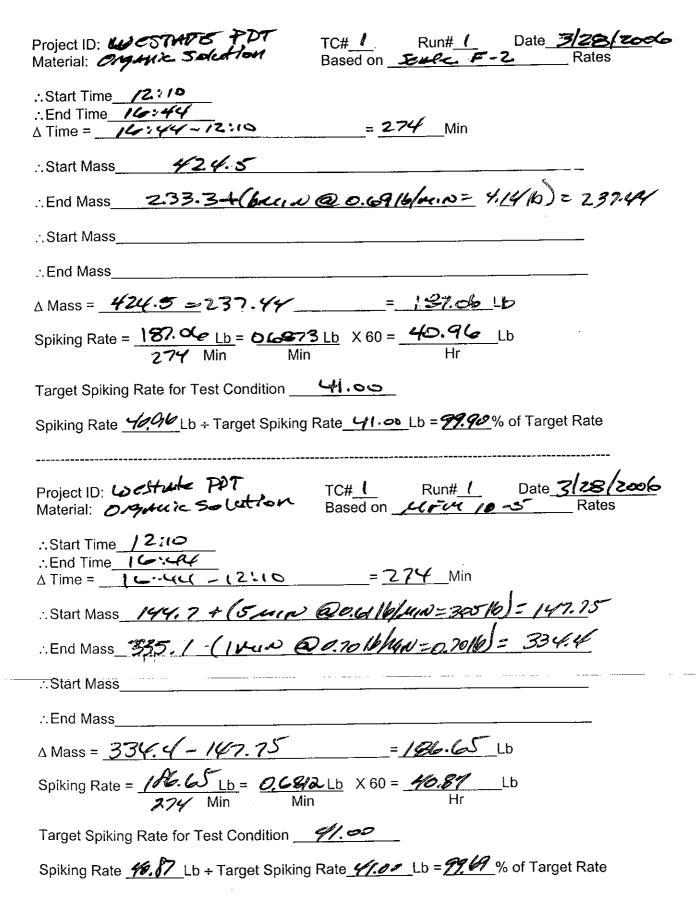

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Spiking Material (ID):	Spiking Material (ID): Fuc. Moyno# — Weigh Scale #: F- LIM# Neptune# Moyno# — Weigh Scale #: F- LIM# Spiking Rate Calculations: Cum Run Average S7 Spiking Rate Calculations: S7 S	The nutritication Sheet (14 sheet)	Page 1 of 2	2-0/世			•	<i>,</i>	ations																									
Sepiking Material (ID):	Spiking Material (ID):	Spiking Log & Run Identification Sheet (1 st sheet)	Pag	3				-										10.1	12.1	223	22.9	33.6	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27.0	2004	425	Seil	73.9	12.3	600	2/2	11:2	16211	
Spiking Material (ID): Ψνετ LMI# Neptune# Veather Conditions: Spiking Rate Calculations: Average Rate = ΔΜι/ΔΤ; Σ,ΔΜι O. SP O.	Spiking Material (ID):	Date 2 Date 2 Early Spiking Material (ID): Flace Fla						Average	Run Ave; = $\Sigma \Delta M_i/\Sigma_i \Delta T$	و برایات درون											-	0.57	0,575	000	0.57	6.57	0.SJ	0.78	9 .5%	0.5%	نالحا	20.0	6.575	
Spiking M Weather We	Spiking M Weather We	Date: 7 Date: 7 Run#: Spiking Log & Run Identification Sheet (1st sheet) Date: 7 Date: 7 Spiking Manager © #: 7 Pump ID — LM# Weather (1st per India) Date: 7 Mean ID — LM# Spiking Manager © #: 7 Pump ID — LM# Weather (1st per India) Date: 7 Mean ID — LM# Spiking Rate Data:	٠		JANK.		ulations:	Cum Run A														7 21 MIL	1 1/2/2	3/2/2/2	2 61411	7 7141A	7 Huga	77 9141N	10/410	17/10/4:10	NOW 181 12	5/2/2/15	14/411	
Spiking M Weather We	Spiking M Weather We	Date: 7 Date: 7 Run#: Spiking Log & Run Identification Sheet (1st sheet) Date: 7 Date: 7 Spiking Manager © #: 7 Pump ID — LM# Weather (1st per India		12		N	Spiking Rate Calcı) t					11.9	12.7	2.40	35.0	198	46.9	52.8	58.4	1	6.5	7/2/6	6%.0	
Short-Ter Short-	1. Run Identification Sheet (1st shee 2006 TC#: Run#: Pump II Short-Ter	Spiking Log & Run Identification Sheet (1st share) Date: 2 72,2006 TC#: Runtant		١		1		m Average	Rate₁ = ΔN	(j 0	, ©.			4	$\overline{}$				-	$\overline{}$	_		Ľ	\downarrow	7	_	3	-	1			+	
	1. Run Identification 2006 1006 1007 1007 1007 1007 1007 1007 1	Spiking Log & Run Identification The Time (T), Mass (M), Mass (M)	n Sheet (1st shee	14	1	0		Short-Ter		- 1	v	\vdash	2	8	3	No.	7/7/		5	1		10 MIR	Jadie C	100/12	JONER		(Dull	IOM!	e Parin	10MI			1000	

Projection: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

	Page of 2	STATE 12:10	Stap 16:4%		*	108.4	(14,0	(19.5)	126.4	12.3	(380	W2.5	149.1	54.7	160,7	11.67.2	1,23.5	1,80,1	1.83.0	A Fig				a de la companya de l		- Industry				- ALLEGO TO THE STATE OF THE ST			Date: 3 (25/200 🕏
	2		Average	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.57	6.57	0.57	0.00	0,58	850		0.30	Ø. 38	C. S.S.	5750	5850	6.3877												The state of the s			
	al (ID): Yere		Cum Run Average	$\Sigma_i \Delta T_i$		15/1411	16/41	17/14/18	18/12/2	1914	8	21/18	221K13	7年 ルー	アンシン	25/20	260	168							ACADON .		:	100			i		
	Spiking Material (ID):	Spiking Rate Calculations		WV′Z	10.12	19:30	12.26	12:16	104.67	110.47	16.27		127.47	~ 55€)	139.37	16,37	187.97	15927															
ch run)	Run#: /	Spiking	srage	Rate _i = $\Delta M_i/\Delta T_i$		5.50	5	0.55	69		0,50	8 7 8	0,56	0.60	24	30,00	20,0	19.0	52.4					,									Hend
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	TC#: 1		Short-Term Average	ΔT_i		James	(comm	Moster po	lamin	lantin	16,44,40	10,200/	10 Len	(O2210)	10/8/12	10/20	anoi	134.1	3115													1	ACOR
enbesqns 8 p	1 200 %			ΔM		5%	2,5	5.6	6.9	6.0	S W	9	5.6	00	100	1	シック	62	2.4														ignature:
iking Log (2 ⁿ	Date: 3 12 8 1200	Spiking Rate Data:	Mass (M),	P	150.0	44.4	1.00	433.3	Me.Y.	420. U	414.1	159.2	4.3.6	2000	301.	384.7	378.2	30.00	2100														ESS Spiking Technician Signature:
IV.K.5.b St	Data ID	Spiking	Time (T)	00:00		12011	15/1	15,01	11:51	12:31	15:57	1125	15151	16:01	11011	10:011	18:01	15:01	1														ESS Spiking

Spiking Material (ID): Control	Moyno# Weigh Scale #: F- 2 Cum Run Average Synth F E: Σ _i ΔT ₁ Run Ave; = Σ _i ΔM _i / Σ _i ΔT ₁ Comments/ Σ _i ΔT ₁ Run Ave; = Σ _i ΔM _i / Σ _i ΔT ₁ Comments/ Comments/ Com
Spiking Ranee O 1.00	Cum Run Average Shuke F. F. Z. MFM#J Σι.ΔΤι C. Z. Z. Z. Shuke F. Z. Z. Shuke F. Z. Z. Z. Σι.ΔΤι Z. Z
Date File Name: December Conditions: December Conditions: December Conditions: December Conditions: Spiking Rate Calculations: Spiking Rate Calculations: Cum Run Average Outlood Lb	Cum Run Average \$74 ΣίΔΤι Run Avei = ΣίΔΜι ΣίΔΤι Βίστη (1) Βίστη (1) Βίστη (2)
Spiking Rate Data: Spiking Rate Data: Spiking Rate Calculations: Substitute Communication States Communi	Cum Run Average \$70. Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i C _i Σ
Spiking Rate Data: Short-Term Average Spiking Rate Calculations: 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Run Average	Cum Run Average ΣιΔΤι ΣιΔΤι Run Avei = ΣιΔΜι/ ΣιΔΤι Διστική Δ
Spiking Rate Data: Spiking Rate Calculations: Spiking Rate Calculations: 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 S.Mi ΔTi D.C. D.C. D.C. D.C. 00:00 S.Mi S.Mi D.C. D.C. D.C. D.C. 00:00 S.Mi D.C. D.C. D.C. D.C. D.C. 00:00 S.Mi D.C. D.C. D.C. D.C. D.C. 10:00 S.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C.	Cum Run Average 700 Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Cum Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 700 Cum Run Average 700 </td
Time (T), Mass (M), Lb Short-Term Average Cum Run Average 00:00 Lb ΔMi ΔTi Rate:= ΔMi/ΔTi Σ:ΔTi Run Average 09:00 State: ΔMi ΔTi Rate:= ΔMi/ΔTi Σ:ΔTi Run Average 09:00 State: Mi Cot Cot Cot Cot 09:00 State: Mi Cot Cot Cot Cot 09:00 Mi State: Cot Cot Cot Cot 00:00 Mi State: Cot Cot Cot Cot 10:00 Mi State: Cot Cot Cot Cot 10:00 Mi Cot Cot Cot Cot Cot	Cum Run Average 3C / V Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i
0000 Lb	Σ.ΔTi Run Ave; = Σ.ΔMil Σ.ΔTi 2.27 (2.12) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13) 2.27 (2.13)
(1) 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	204.0 0.67 (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0)
19.5.2 24.5. 3.4 64.1. 0.6.7 0	
19:18 54. 4 (1911) 0.67 09:28 55. 6 (19. 20. 0.07) 10:39 497. 5 (19. 0.07) 10:39 498. 4 (19. 20. 0.07) 10:39 498. 4 (19. 20. 0.07) 10:39 498. 4 (19. 10. 0.08) 10:39 498. 4 (19. 10. 0.08) 10:39 498. 5 (19. 10. 0.08) 10:39 498. 5 (19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	12.00 12.100
99:28 55.8 9.16 1001.0 5.00 0.074 10:39 497.9 126.1 27 0.074 10:39 497.9 126.1 200.0 0.00 10:59 475.6 141 204.0 0.00 10:59 475.6 141 204.0 0.00 10:59 475.6 141 204.0 0.00 10:50 476.5 100 441 0.00 10:50 476.5 100 441 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.0 0.07 104.0 0.00 10:50 391.	12:30 0:27 0:27 0:23 0:23 0:23 0:23 0:23 0:23 0:23 0:23
10:25 49:5 40: 21 0.074 10:39 49: 40: 40: 40: 0.07 10:59 475.6 14.1 204.2 0.05 11:39 475.6 14.1 204.2 0.05 11:39 475.7 6.1 14.1 0.05 12:30 475.7 6.2 104.1 0.05 12:30 475.7 6.2 104.1 0.05 12:30 475.7 6.2 104.1 0.05 12:30 475.7 6.2 104.1 0.05 12:30 475.7 6.2 104.1 0.05 12:30 475.7 6.3 104.1 0.05 12:40 475.7 6.3 104.1 0.05 12:4	12.30 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.6
10:25 491.5 20.1 394.2 0.00) 10:39 407.9 4.8 144.2 0.70 10:59 473.6 141. 204.2 0.70 11:20 458.4 14. 204.2 0.70 11:20 478.7 14. 204.2 0.00 11:30 478.5 16.0 44.2 0.00 12:30 411.1 6.3 104.1 0.00 12:30 411.1 6.3 10	(Liox
12:39 49:19 9:25 44.12 0:70 11:20 473:6 44.1 204.12 0:05 11:20 473:5 11.1 14.4.2 0:45 12:39 473:5 12.14.2 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:7 100.12 100.12 12:50 39:0 6.7 100.12 0:45 13:30 39:0 6.8 100.12 100.12 13:30 39:0 7.0 100.12 100.	(Liox
1:20 473.6 14, 2040 0.705 1:20 458.4 55, 340 0.005 1:20 4745 12.10 0.005 12:30 4745 100 0.005	(2.50 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.6
11:20 458.3 44.7 244.2 0.13 11:33 450.4 45.5 154.2 0.65 12:34 430.5 11.1 104.2 0.65 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:50 474.5 100.0 0.063 12:50 474.5 100.0 0.063 12:50 476.5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.50 12.15 12.15 12.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0
11:33 450.4 3.5 13412 065 11:49 430.5 11.1 14412 0.19 12:39 430.5 12.4 0.13 12:20 4745 120 9412 0.165 12:30 4745 120 9412 0.165 12:30 4745 120 9412 0.167 12:30 4745 120 12412 0.167 12:30 391.0 6.7 12412 0.167 13:30 377.0 5.8 12412 0.168 47.5 20412 13:30 370.2 5.8 12412 0.168 47.5 20412 13:30 370.2 6.9 12412 0.168 13:30 370.2 6.9 12412 0.168	12.50 12.15 12.15 12.15 12.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
12:30 474.3 11.1 164.12 0 10.9 12:30 474.5 120 94.12 0.05 12:20 474.5 120 94.12 0.05 12:30 474.5 120 94.12 0.05 12:30 474.5 120 94.12 0.05 12:30 474.5 120 94.12 0.05 12:30 474.5 120 120.12 120.12 120.12 12:30 474.5 120 120.12 120.12 120.12 12:30 391.0 6.7 120.12 120.12 120.12 13:30 377.0 5.8 124.12 0.05 13:30 370.2 12.8 124.12 0.07 13:30 370.2 12.8 124.12 0.07 13:30 370.2 12.8 124.12 0.07 13:30 370.2 12.8 124.12 0.07 13:30 370.2 12.8 124.12 124.12	12.105 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
12:30 470.5 (e.o. 944) 8:448 12:10 4745 (e.o. 944) 8:448 12:30 4/1.1 6.3 10412 0.67 20.1 20412 12:50 4014 6.3 10412 0.67 20.1 20412 12:50 39:0 6.3 10412 0.67 38.5 50412 13:10 38:8 72 10412 0.68 47:5 104112 13:10 37:0 6.8 10412 0.68 47:5 104112 13:20 370.2 6.9 10412 0.68 54:3 104112 13:30 370.2 6.9 10412 0.68 54:3 104112 13:30 370.2 6.9 10412 0.68 54:3 104112	12:15 12:15 12:15 0:07 0:0
12:10 4745 (60 944) 8:446 12:20 4/14 605 104112 0.65 12:30 4/14 607 104112 0.67 12:50 391:0 6.7 104112 0.67 13:10 391:0 6.7 104112 0.63 13:10 391:0 6.9 104112 0.69 13:10 371:0 6.8 104112 0.69 13:10 371:0 6.9 104112 0.69 13:10 370:1 6.9 104112 0.69 13:10 370:1 6.9 104112 0.69 14:10 370:1 6.9 104112 0.69	0.67 (2.30 0.67 (2.30 0.67 (2.50
12:30 4/18:0 6.5 104112 0.65 13.4 20412 12:30 4/11.1 604 104112 0.67 12.5 20412 12:50 391.0 6.7 10412 0.67 12.5 30412 12:50 391.0 6.7 10412 0.7 10412 13:10 391.0 6.7 10412 0.7 10412 13:10 371.0 10.8 10412 0.07 10412 13:10 371.0 10.8 10412 0.1 10412 13:10 371.0 10.8 10412 0.1 10412 13:10 371.0 10.8 10412 0.1 10412 13:10 371.0 10412 0.1 10412 0.1 10412 13:10 371.0 10412 0.1 10412 13:10 371.0 10412 0.1 104	0.67 (2:30
12:30 111:4 609 10412 0.69 13.4 20412 12:50 20412 12:50 20412 12:50 391:0 6.7 10412 0.67 120 391:0 6.7 10412 0.67 120 391:0 6.7 10412 0.72 40.7 10412 13:10 37:0 37:0 10412 0.69 47:5 104112 13:10 37:0 10412 0.09 54:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112	0.67 (2:30
12:50 391:0 6.7 10412 0.67 70, 301 30410 12:50 391:0 6.7 10412 0.67 38.5 50410 13:10 39:8 72 10412 0.72 46.7 (40.7) 13:10 37:0 6.8 10412 0.69 47:5 104110 13:30 37:0 6.8 10412 0.69 47:5 104110 13:30 370.7 6.8 10412 0.69 61:4 50410 13:30 370.7 6.9 10412 0.71 61:4 50410 13:30 370.7 6.9 10412 0.71 61:4 50410	0.67 (2:50
12:50 391:0 6.7 10m1d 0.67 26.8 (Jeun) 13:100 391:0 6.7 10m1n 0.27 38.5 554:0 13:100 371:0 6.8 10m1n 0.68 47:5 10m1n 13:200 371:0 6.8 10m1n 0.68 47:5 10m1n 13:200 370:1 6.8 10m1n 0.68 54:3 10m1n 13:200 370:1 6.9 10m1n 0.09 (51:4 5m1n) 13:200 370:1 6.9 10m1n 0.09 (51:4 5m1n) 14:200 370:1 6.9 10m1n 0.09 (51:4 5m1n)	72.50
3130 391.0 6.7 1041.0 0.07 385 5041.0 13:10 371.0 6.8 1041.0 0.08 47.5 1041.0 13:30 370.2 6.8 1041.0 0.08 54.3 1041.0 13:30 370.2 6.9 1041.0 0.08 54.3 1041.0 13:30 370.2 6.9 1041.0 0.01 10.00	(2:00
13:15 383.8 72 104112 0.72 40.7 GOMIN 13:20 37:0 5.8 104112 0.68 47.5 104112 13:30 370.2 6.8 104112 0.88 54.3 104112 13:30 340.1 6.9 104112 0.71 (61.4 50411) 13:50 550.2 6.9 104112 0.09 (68.3 1004112)	12/2
13:30 371.0 6.8 10 MIN 0.68 47.5 10 MIN 13:30 370.2 6.8 10 MIN 0.88 54.3 60 MIN 13:30 34.3 60 MIN 13:30 34.3 10 MIN 13:30 340.3 10	
13:30 370.7 6.8 104114 0.00 54.3 604114 13:30 36.1 7.1 104114 0.07 61.4 80411 13:50 350.2 6.9 104114 0.09	7 65.20
13:50 3/8:1 1.1 PUIN 0:109 (21.4 SOUTH) 13:50 \$50.2 6.9 PUIN 0:69 (20.11)	18/30 05/8/
13:50 350.2 6.4 10411 0.69 (28.3 102412)	04:80
Wing 349.2 6.4 1000 0.100 0.100 0.100	MIN 0.682 [3
1000 0 10 10 10 10 10 10 10 10 10 10 10	3/8
14:10 3026 10:1 184:10 6:01 181. 7 1 Cale	21.9 /20 W D. 683 /P.10 229.0
14:30 435.8 16.8 10414 0.69 SB.7 1304W	88.7 1304M 5, 483 14:20 23.9
14:30 129.0 6.8 1040 0108 955 1404mlo	955 Hann 0.682 14:30 242.7
28	
53	
ESS Spiking Technician Signature:	Date: 3 /2 6 /2000


)*s

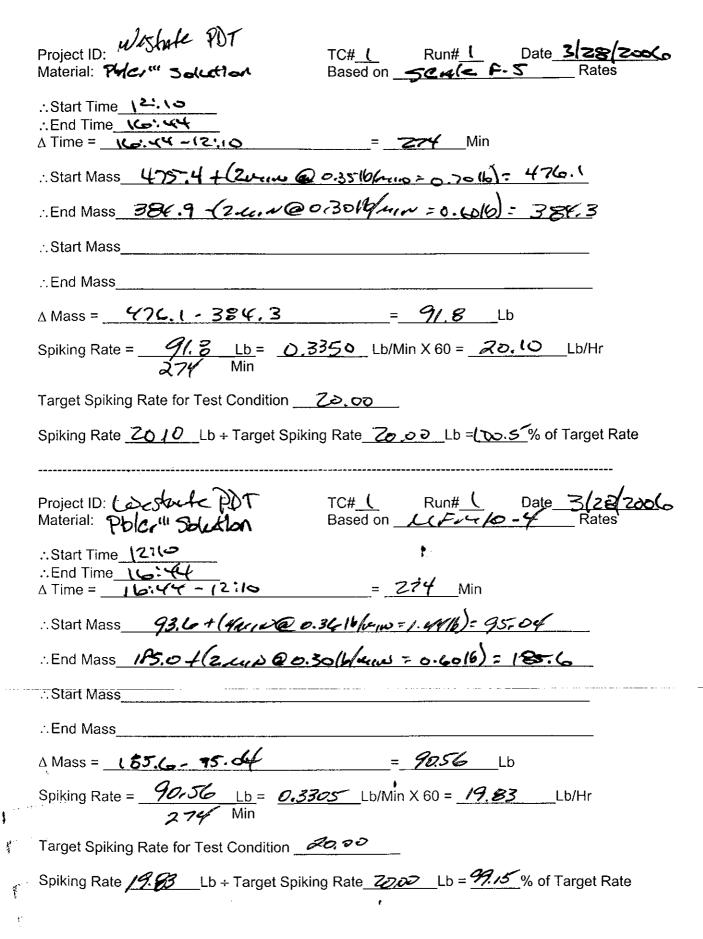
Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT, Date Prepared: 3/8/2006

IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	nd & subsedn	ent sheets for e	each run)			ŀ		
Data ID Date: 3 (2006)	,500 %	* #51	Run#: /	Spiking Material (ID):	ial (ID):	organic Solut	Tor	Page Z of Z
] ອ			Spikin	Spiking Rate Calculations	tions:		START	12:10
Time (T) Mass (M),		Short-Term Average	verage		Cum	Cum Run Average	570	メナ:9/
	ΔM	ΔTi	Rate = ∆M/∆T	Σ¦ΔΜ	$1\nabla^{!}\mathcal{I}$	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		Comments/Observations
C. 274.0				95.5	140	0.682		242.7
HINO 322.1	6.4	10 per -	60.0	107:4	951	6,687		249.5
i -	6.0	10,000	6.67	1.601	001	0.08		2,72,2
	6.0	Jane 1	D.C.	116.0	04/	0.00		463.3
1.10 SOL.	6.9	(A. N.)	0	6.221	æ/	0.08		1.0.1
6.742 07:51	ø	10,411	80.0	129.7	961	0.68		276.9
15,30 200.1	6.0	101.10	19,0	1360	200	0.68		2534
24	0.0	Core in	200	1434	210	89.0	0491	29as
	80	10 xxx	٠, ا	150.2	720	69.0	\s\s\	1.46
201	3	3/2/0/	30	451	230	0.00	/6:00	204(.2
1600000	3	Corol	9	S. 60	042	0.6825	/6:/0	3/1.1
16:70 2534	0	10/10/		1.70.00	827	2.6825		317.9
1 1000 00:01	7.50	VILLA	6	177.4	260	6.6823		324.7
16:16 74- 7	ja	1011	3	0 70°	270	0.0025	のすい」	331.6
П		1000	0,0	- 10:	ROY	61810	30:00	
10:00 257. 2	5		9	7:161	9			
							-	
		ļ						
			China Contraction				2000	
ESS Spiking Technician Signature:	ignature:		BUNKE				Date: 5/08/2000	
		3		,	:	-	The second has a second second	trooties (troo ei to lle) goodene te

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use, It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

ESS 1200 Hwy 146 South, Suite 170, LaPorte, Texas 77571 (281) 471-2071 Fax (281) 474-2180 BSPE@ESSpiking.com

Run Average	n ID Date: 3 pment ID:									
### Spiking Rate Calculations: 1.2 MV U. Be Data: ###		Spiking Manager		Kun#:	Spiking Material (It	Ž		1	'	MFM#W-4
Data: C. 3333 (Matrix) ab Data: Com Run Average Spiking Rate Calculations: Mass (M) AM AT Rate: ΔMMAT ΣΔM ΣΔT Run Average ST Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont.	Data Eile Mam		1		Weather Conditions	-	i			
Mass (M)	200					1				
Mass (M)			1		1	* * *				
Mass (M)	Sniking R	٦,			j	Rate Calculations	,,	-	4	01:2
Ub		Mass (M)		Short-Term A				ı Average	۵.	7
7 514.2 6 5.4 1.0 2.3 5.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00:00	_	ΔMi	ΔΤ	Rate _i = $\Delta M_i/\Delta T_i$	Σ _i ΔMi	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma_i \Delta M_i$		s/Observations
\$\frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}}{\pi_{	13/1/10							111		
	40.45									
20 27 6 27 6 24 10 2 3 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10	34:10	501.0	4/		2002					
2 22.6 2 4 24.10 0.33 4	7:20	3775	35	_	1			-		
77 574 2 9 4 2/4 10 0.33 6 78 19 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 3 2 2 44 10 0.33 6 78 19 3 2 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	29:30	533.6	4	(Sain)	39					
7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59:52	524 2	7	_1	3					
1 20 1 2 2 1 13 4 10 0 2 3 2 1 14 4 10 0 2 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 3 14 10 0 2 3 3 3 14 10 0 2 3 14 10 0 2 3 1	62:0	1.700	2.1	20/1/2						
10 50 9 20 20 20 20 20 20 20	14:0	۸. ۲	7	14/2/10	' 1					
1.35 496.1 5.1 134.10 0.13 1.35 496.1 5.1 134.10 0.13 1.35 496.1 5.1 134.10 0.13 1.37 496.2 5.1 134.10 0.13 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.3 104.10 0.35 1.37 496.2 5.3 104.10 0.35 1.37 496.2 5.3 104.10 0.35 1.38 496.2 5.3 104.10 0.35 1.	10:1	- 1	0	Soule	্ৰ					
35 400 3 13 4 m 0 .2 3 15 15 10 43 15 15 15 15 15 15 15 1	27:1	493.2	7	3777	Ö					
12. 47. 2. 2. 1041. 0. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1:35	490.1	1/2	13/2/2	0					
10 475.4 3 4 9 4 124.10 0.38 4.00 1.22 4.10 1.	, s',	463.8	2.3	19412	•		į		70.61	201
1	2:03	4.80	60	12000	ગુ				(2:3)	
12. 477, 2. 5.2 1041, 0.32 4.4 2241, 0.33 (2.35 1/2.2	2:12	かぶんか	2	(J) 24	Ø.28			,,,	9/3/	11.7
132 496.3 3 5 1041.0 0.35 4.41.0 0.35 1.32 1.32 1.32 1.32 1.33 1.32 1.33 1.32 1.33 1.33	22:2				6.32	┪	- 1	-	31	, i
17. 47.0 3.6 1040 0.35 11.2 32410 0.35 11.0. 19. 40.0 4.0 3.0 10410 0.34 15.0 12.0.0 0.35 110. 19. 47.0 3.0 10410 0.34 22.0 12.0 0.35 110. 13. 44.0 3.0 10410 0.30 22.0 12.0 0.33 15.0 16.0. 13. 44.5 3.0 10410 0.30 37.0 102410 0.33 15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	72:2	44.8.7		(JOHN)	5.35	+	44	\$33	7	7,1
45.0 3.4 (alun) 0.35 (22.1 (22.4) 0.35 (33.1) (23.2 (13.4) 45.0 (3.4) 0.35 (33.1) (33.	27.2	6.5%	3.8	(OKW)	5.35	1, 2	- 1	55.0		0.0
45.0 3.4 (eduto e.34 '9.1 5240 e.36 (5.2 116.) 45.0 3.0 (eduto e.39 25.0 7240 e.39 (5.2 119.) 45.1 2.9 (eduto e.39 25.0 7240 e.39 (5.2 119.) 45.1 3.0 (eduto e.39 25.0 7240 e.39 (5.2 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e22 15.) 45.1 3.0 (eduto e.3) 40.1 (e2400 e.3) 31.0 (e22 15.)	25:0	0	レン	10mm	27.0	15:2 6	12/2/2	0.87%	7	20.0
451, 250 10410 5.30 22.1 67410 6.35 152.1 153.2	3.02	5	3.4	Colair	0.34	10.1	22418	0.70	200	N 0
45/1 219 (0M1) 0.29 25.0 min 0.34 (5.22 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	4.12	454.0	3.0	Ourin		22.1	224.00	3	7	
448.2 2.4 (0411) 0.29 21.9 (2411) 0.337 (3.52 12 44.51 7. (0411) 0.3 31.0 (32411) 0.337 (3.52 12 44.51 7. (0411) 0.3 31.0 (32411) 0.33 (4.02 13 476.0 3.0 (0411) 0.3 31.0 (32411) 0.3 33 (4.02 13 476.0 3.0 (0411) 0.3 31.0 (42.41) 0.3 33 (4.02 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (4.02 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13 476.0 3.0 (0411) 0.3 31 (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13) (42.41) 0.3 33 (42.52 13)	3:22	4.51.1	8'2	10/11/01		25.0	12.20	0.52	17.5	7.7
445, 7.1 (0,410) 6.31 31.0 (42410) 6.53 (4.52 12) 15.2 (4.52 12) 24.0 (02410) 6.53 (4.52 12) 15.2 (4.52 12) 25.3 (4.52 12) 25.	7:32	2.00%	2.5	Como		27.9	restra	0.37	15:36	
434.0 3.0 1041.0 0.30 34.0 1024.1 0.55 1452 150. 434.0 3.0 1041.0 0.30 40.1 1124.1 6.33 14.02 150. 474.0 3.0 1041.0 0.30 40.1 1224.1 0.328 14.12 150. 474.0 3.0 1041.0 0.30 40.1 1224.1 0.333 14.12 150. 474.0 3.0 1041.0 0.35 49.6 1324.1 0.333 14.12 150.	25.5	445.1	7.1	mos	0.31	0	42412	0.337	1375	
494.0 3.0 124.0 0.30 46.1 1224.0 6.328 14.12 15.1 496.0 3.0 124.0 5.35 46.1 1224.0 5.338 14.12 15.1 497.5 5.5 104.0 5.35 47.4 1424.0 5.33 14.12 15.1 497.5 14.1	3,52	18612.1	Ç	1 anno	0,30	37.0 1	DIMIN	0.555	1257	2.6
436.0 3.0 10412 0.30 40.1 122412 0.328 14:12 15: 437.5 5.5 10412 0.35 47.6 1324.0 0.33 14:22 15:	2015	0.05/2	3	lower	0.31	37.1 1	112/11	M.	5/ 20%/	2
49 5 8.5 10M, 0.35 43.6 1324. 0.353 14:22 14:	27.12	36	3.0	\	5.30	40.1	122x12	0.52	19.76	74.1
1 47.0 5.8 10MM 0.28 47 4 142MM 0.355 14:00 17	4322	2000	-	•	5:35	48.6	7	-+	157.50	7.7
	1.32	1.97	3.0	Lomos	N	2 %	grand	5.55.0	22:21	4-14
7		*				,				
					7				7000 0 10 C :0400	200


The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

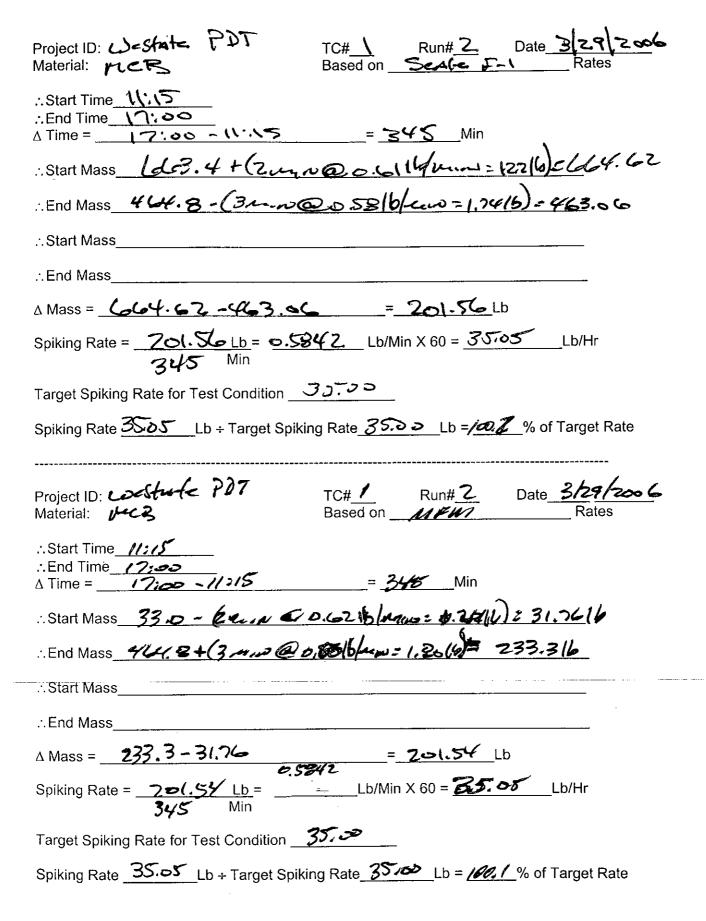
Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

The state of the s

Page 7 of Z		アナ・・ ラー およい	Comments/Observations			190.2	151.5	2:25/	198.5	2 /61.8	/ (SEO)		. 171.	1.7.5. 2	179.	2 /82.3	2 /85:0	:7 186.5			Light of the state							a de la company					Date: 3 / 28200 6
			\dashv		188	18:52	20.51	71151	15:22	75:30	, ×, ×,	Sis/	20.30/	16.712	インジャ	15.5	16:4	16:4				-							a de la companya de l				Date: 3 /
le Solution		Average	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.334	0.333	6.337	0.335	0.333	0.333	728.0	5-374	0-335	0.335	0.337	0.837	2.29€			Lab Marting Co.													
al (ID): 756,	ons:	Cum Run Average	$\Sigma_i \Delta T_i$		156.40	142	1702	102	192	202	212	222	252	242	252	2016	222																
Spiking Material (ID):	Spiking Rate Calculations		$\Sigma_i \Delta M_i$	47.4	SSA	Š	37.16	0.	64.2	6.00	2.0	24.2	77.7	8.2	0.58	J.	3.3	L.							ŕ	`							
Run#:	Spiking	erage	Rate₁ = ΔMi/ΔT₁		0.35	0,32	0.37	6.34	0.32	のぶん	25,00	6,33	6.35	Cr. 35	38	ر ا ا	0,40	0.30														,	EMENT
Data ID Date: 3.720/2006 TC#: Run#:		Short-Term Average	ΔTi			Mound	╗	3		(ourse)	_	-	10pen	(sun)	price	520)	520	5 16.10														0	1
200 6			ΔMi			3.2	2.9	3.0	3.6	カ.6	3.2			がい	υ, 10	ą lu	Q		+														anature:
Date: 3/2006	Spiking Rate Data:	Mass (M),	- P	<u>۱</u> ۰۱	42.3	1.22.1	410.7	11:51	411.9	5.00%	405.3	402.0	238.K	35.0	2.12	200	20%	3424															ESS Spiking Technician Signature:
Data ID	Spiking F	Time (T)	00:00		14201	1000	15:02	12712	12:57	78/37	15:42	1575 E	16:07	16:12	16:22	11:3	16:50	15,00									-			†			ESS Spiking

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Attachment IV Field Spiking Data


- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 2. Test Condition #1 Run #2:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Spiking Rate Data: Spiking Rate Claculations: Spiking Rate Claculation:	IV.K.5	a Spiking Le	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	tification She	eet (1st sheet)							_,
Spiking Rate Data:	Data IC	Date:	2000	#51	Run#: 2	Spiking Material (II		Move Move		ob Scale #: F.		 -
Spiking Rate Data: Spiking Rate Calculations: Sp	Spiking	Data File Nam	Johning Manage		22	Weather Condition:	1 1	III III III III III III III III III II				1
Spiking Rate Date: Spiking Rate Calculations: Spiking Rate Calculat	Notes:											
Spiking Rate Data: Spiking Rate Calculations: Spiking Rate Data: Spiking Rate Data: Cum Run Average STO			h	101	2	1:						_
Time (T), Mass (M), AM ATT Rate = AMATT, SLAM, SLAT, Run Aver 35 AV 2000 LD AM ATT Rate = AMATT, SLAM, SLAT, Run Aver 35 AV 37 AV 3		Spiking R	ŀ	t			Rate Calculatic	nns:		١.	Sad . 2 /.	
DOUGO	<u> </u>	Time (T),	Mass (M),		Short-Term A				Average	•	7:00	
10 10 10 10 10 10 10 10		00:00	<u>.</u>	ΔMi	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	$\Sigma_{i}\Delta M_{i}$	$\Sigma_i \Delta T_i$	11		s/Observations	
	-	4:24	27.61									
	1	37.6	713.2	6.3	19un	€2.5€						
	2 16	2016	127.1	100	20min	•						
	-	22:0	672.7	14.4	22.00	0						_
	4	0:37	2.13	5.2						7.5		_
	5	44:0	0.189	77	10000	25.0				15.4		-
	9	13:0	1500	27.2	March	5.5				20.6		_
	7	10:1	15.83	γ, γ,	12 acos	563				268		
1.79 (25.12) 2.1 (24.00) 6.40 (2.12) (2.14.00) 6.59	8	111	12.4	ì	Sister!	150		2min	-	23.0		_
1.37 1.37 1.44 0.44 1.31 2.14 0.134 1.31 1.46 1.6 1.44 0.41 1.72 2.14 0.534 1.31 1.46 1.6 1.44 0.62 2.32 2.34 0.534 1.31 1.31 1.31 1.34 0.53 1.32 1.34 0.53 1.31 1.31 1.31 1.34 0.53 1.32 1.32 1.33 1.32 1.34 1.35 1.34 0.53 1.35 1.35 1.35 1.34 1.34 1.34 1.34 0.53 1.35 1.35 1.35 1.34 1.34 1.34 1.34 0.53 1.35 1.35 1.35 1.34 1.34 1.34 1.34 0.55 1.35 1.35 1.35 1.34 1.34 1.34 1.34 0.55 1.35 1.35 1.35 1.35 1.35 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	6	64.1	1,55.7	4.7	12410		9.42	1441	610	41.2		_
1.77 646-9 4.6 1-41.20 0.53 22.52 22.52 22.41.20 0.53 12.41.20 0.53 0.5	10	1.52	アババ	2.7	prod		13.12	2 hear	2650	44.5		_
1.57 44.6 5.3 64.1 6.53 25.2 4241 25.5 42.4 25.5 25.4	1	12:1	6-16-9	110	Journal	OHIC	17.72	Berein	0,554	2,4/2		_
13.97 13.57 15.20 15.2	12	1.5.1	141.10	んじ	100.0	55.0	25.52	4241	55.0	24.1		-
13 12 12 12 12 12 12 12	13	10.6	137.17	1.6	MAIN	25.0	29.22	52 win	ارك	0/2)		_
13.87 1011.2 10.41.2 0.154 17.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 19.42 19.4	4	2517	2.88	2.0	loses	20.0	24.5%	Caren	0.57	12.2		
13:57 10 16-9	15	12.87	(022.8	t	CORCE	20.0	41.82	Tean	۲,	33.4		-
4 6 6 6 5 6 6 6 5 5 5	16		10/16.9	4.0	blocal	65.0	47.72	A24.12	M	16.1		-
(3:57 605.1 5.5 10411 61.55 57.51 102 0.583 (3:07 59.6 5.5 105.4 6.55 62.2 110 0.58 115.4 57 57.1 105.4 105.4 105.2 10		27.50	500.0	5	10141	Ø. 6 7	54.02	26	V)	S S		_
(3:07 599.6 5.5 15元 6.55 2 108 0.55 13.7 34.0 5.6 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	1	15:60	120S.1	γ.	loan	5,25	59.52	70/		070		т
13:17 等から 5:4 1mm 6.56 20:02 122 0.55 15:17 20:02 20:05 20	61	20.00	3.665	13	345/	8.5d	2020	162	B	27.5		_
5: 47 578.2 いい 0. 65 72. 628 15. 41 578.2 15. 41 578.2 12. 0. 588 15. 41 578.2 12. 0. 588 18. 57 588	07	17:17	0.4	3,6	1001	A. 56	12.62	21		103:0		Т
15:47 578.2 (2.4 12と のにて 第1.52 152 の.5室を 15:47 575 1 (2.4 12と のに子 第7.52 152 0.5写 14:57 32.7 6.1 10ル の.53 108.22 182 6.57 14:17 551 5.3 10ル の.53 113.52 182 6.57 94:37 551 5.3 10ル の.53 113.52 (92 6.57	21		3	ورنع	350		22.62	<u>ر</u>		101.10		-7
5: 47 575 12.4 12.4 0.62 75.2 5.2 0.58 1.5:57 5.6 5.4 0.58 1.5:57 5.5 5.	22		38		•					•		Т
13:57 56.9 co.マ ion •・63 9582 (52 0.59 14:57 56.4 [5.1] con •・63 108.22 [52 6.59 14:57 55]	23	3:40	1225	12:21	181	29.0		155	0.886	11.0		
44:57 至2.7 6.1 60ル 5.5、 100.42 172 6.59 14:17 551 1 5.5 10ル 8.5 3 108.22 1 第2 6.5 3 10ル 8.5 3 118.5 2 1 第2 6.5 3 10ル 8.5 5plking Technician Signature:	24	いいいか		70.3	10/2	59.0	9582	(6.2 ²	Ö.S	Mill		-
14:17 5564 (e.3 10ル こころ 108:22 (寄2 6.59 6) 14:27 551 (寄2 6.59 6) 14:27 551 (寄2 6.59 6) 14:27 551 (寄2 6.59 6) 15:57 (お2	25	40.07		į	(042	7 07.0	26.10)	172	6-59	7335		Т
94127 551.1 5.3 1011 0.53 118.52 192 0.59 Spliking Technician Signature:	92	14:12	556.66		10m	J	108.22	183	0.79	159.00		Т
S Spiking Technician Signature:	27	14:27	1.155	١, ٠	noi	کا	113.52	261	6.59	1.6%		т
S Spiking Technician Signature:	78											T
LIGHT	29											Ţ
	ESS S	piking Technici	ian Signature:		A last	The state of				Date: 3/29/12	00	7

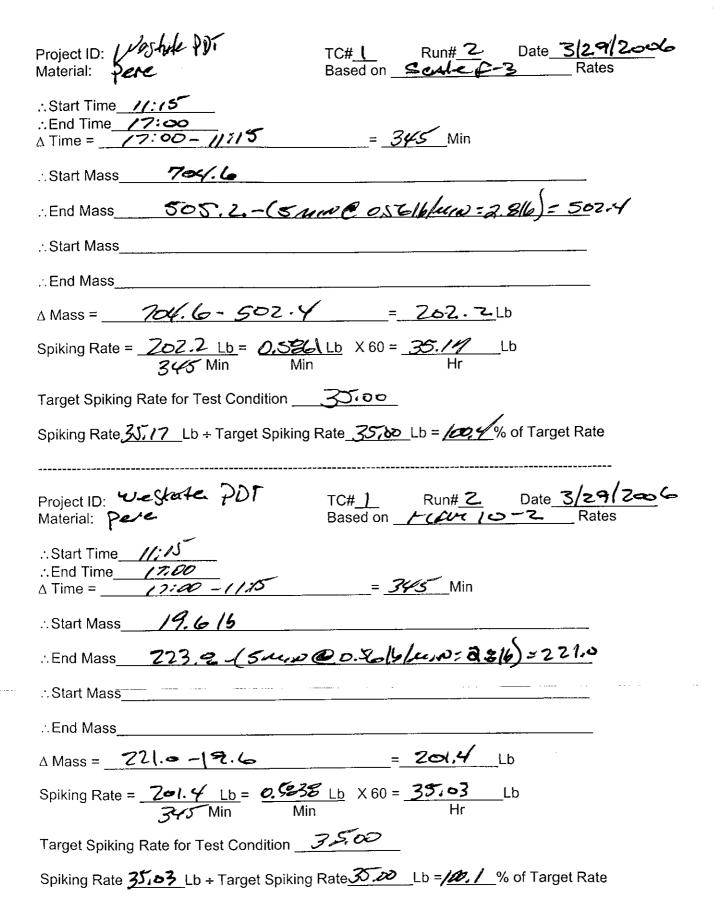
Proje (an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

Class Date 2 st 200 C TC# (Run# 27 Spining Material III), ALG LC	/				2000000			
Spiking Rate Calculations: Short-Term Average A T. Rate = AMAAT	Date: 3 29	/200	1C#: (1	Spiking Mater	ial (ID): 🖊	213	Page 2 of 2
ATI Rate = AMAT DAM DAT Run Average Short-Term Average ATI Run Average ATI	Rate Data:			Spikin	g Rate Calculat	ions:		
Ali	Mass (M),		Short-Term A	erage		Cum Run	ı Average	Stap 17:00
2 (o'min) 0.53 (1882 922 0.588 10 min) 0.53 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.58 (ΓÞ	ΔMi	$\Delta T_{\rm i}$	ΔM	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave = $\sum_i \Delta M_i / \sum_i \Delta T_i$	Comments/Observations
2 10 mm 0.53 1/6.82 2000 0.588 4 10 mm 0.56 1/4.2 2.22 0.588 4 10 mm 0.57 1/6.72 2.32 0.586 10 mm 0.57 1/6.72 0.586 10 mm	551.12				25:E11	761		
6 Control of State 21 2 0 187 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ŋ	5/3	10000	5.53	118.82	202	6.588	150.4
2 10 mm 0 - 57 1/2 12 22	540.2	5.6	lowere	0.56	124.42	212	0.537	344.0
2 10 m/b 2 32 1 252 2 25 2 25 2 25 2 25 2 25 2 2	34.5	5.7	chro/	25-0	130.12	222	6.586	(1.4.7
2 10-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ :	5,4	Stron-	なべ	125.52	232	6. 52¢	11.27.1
1 0 0 0 0 0 0 0 0 0	K.	7	JOHAN /	۲,	185.72	262	185.0	1,72.3
2 (ortho 0.53 2 (ortho 0.53 2 (ortho 0.58) 2 (ortho 0.58) 2 (ortho 0.58) 2 (ortho 0.58) 3 (ortho 0.58) 6 (ortho 0.59) 6 (ortho 0.59) 7 (ortho 0.59) 8 (22 202 0.58) 8 (22 202 0.58) 9 (ortho 0.59) 9 (ortho 0.59)	и 🥆	10/0	Mar/01	A	146.62	282	85.0	2:16:
3 1000 01.38 1512 2.72 0.581 3 1000 01.38 1512 2.72 0.581 2 1000 01.38 1512 0.583 3 1000 01.38 1512 0.583 1000 01.39 1512 0.583 3 1000 01.39 1512 0.583 3 1000 01.39 1512 0.584 3 1000 01.39		18	John Colon	55,0		102		194.0
7 (comp or 38 // 292 0.581 2 10-40 0.62 // 202 0.583 3 0-40 0.62 // 202 0.583 10-40 0.62 // 202 0.583 3 0-40 0.62 // 202 0.583 3 0-40 0.62 // 202 0.583 4 0-40 0.62 // 202 0.583 5 0-40 0.62 // 202 0.583 6 0-40 0.62 // 202 0.683 6 0-40 0.62 // 202 0.683 7 0-40 0.62 // 2	200	3	corre	X . (12.22	200	195.0	
2 10 mm a 62 (25.2 292 a 293 a 294 a	V	4	(mryo)	γ.	16017	190	S. S. S.	1,0<1,7
3 10-4 5 8 1/6 2 30 2 0 5 3 4 5 0 5 5 5 4 5 0 5 5 5 4 5 0 5 5 5 5	191	6.2	3/2/21	1	15.20	202	200	2.00
3 1044 5.61 192.21 312 0.534 3 1044 0.57 173.72 322 0.534 3 1044 0.57 173.92 322 3 1044 0.57 173.92 322 3 1044 0.57 173.92 3 1044 0.57 173.92	100/	100	がない		11/1/2	125.7		に、このこ
7 1044 5.0 188,22 372 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 2.52		0	(m)	07.0) () (100	0,7/4
252 252 252 253 2 2 2 2 2 2 2 2 2 2 2 2	7:21	وَ	101010	9	186.66	1/10	0	25.50
7 1040 6.57 92.90 332 0.534 8 6040 0.58 342 8 6040 0.58 342 1 252 0.58 3 242 0.58 3 400 0.58 1 252 0.58 1 242 0.58 1 2	4000	ĵ.	lome	9	22,58	371	0.386	&: L)2
252 352 252 352	un	んじ	JOHNO	٠	20.00	1337	0,584	2258
232	1/100	ない	wind	σ.		275		73(.5
	ı٧	s L	SIN C'	7		272		127 00
	. P	•						
								- A TOTAL
						ļ		
						ļ		
					70.00			
	!							
Proceeding to the second								
The second second			0	/				
				1000				10000

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Proje ian: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

			Kuil#.	Spiking Material (IU)	٠):	Are.			Layer U.
Equipment ID:	Spiking Manager © #:	31.©#: ∡	■ Ol dmud	- LM#	Neptune#	Moyno#	l	Weigh Scale #: F-	MFW# 60 X
Spiking Data Fife Name:	me: Felc	121	RZ	Weather Conditions:	S:	:			
Notes:									
			38191	Med B.	543				
Spiking 1	Spiking Rate Data:				Spiking Rate Calcutations:	ns:		خر	١٤٠١
Time (T),	Mass (M),		Short-Term Averag	e		Cum Run Average	Average	Stal	17:00
00:00	9	ΔM	ΔT_i	Rate = $\Delta M/\Delta T_i$	$\Sigma_{i}\Delta M_{i}$	$\Sigma_i \Delta T_i$	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		Comments/Observations
521,50	272.0	•							
24:43	2502	43.60	2 Saum	67.0					
\	76.7	71.5	Zaula 1	0.575					
3.7607	133.7	/3	_1	67.0			-		
35:01	727.7	1	(over	00).00					
10:45	1721.1	63	•	65.00					ļ
S	1716	5,7	Λ	5.S				17	
11305	2011	6:0	1 care in	05.9				14.0	
11:18	24.60	いだ	(OKI)	0.50				10.0	
111.25	199,0	2	18pm	5.76	الم	10,000	B.56	22.5	
10 11:30	642.8	7	10xxx	9	11.6	20 410	0.59	2.2	
24:11. 11		5:8	(DAU)	0,58	17.60	30.60 X	0.59	27.2	
12/11 53	- 286		mol	P 2. 0	22 5	S	0.5007	73.	
13 12 VO X	624.8	62	lound	9	24.8	33/2C	65.0	74.4	
14 13 115	2 811	1	Miller	5.36	35.4	CAMIN	5.75	55.0	
15 10 OS	663.5	5.7	(MING)	2.0	1:1/3	B. Com	6.5 2 7	600	
16 12 335	1.001	9	311/01	3	123	あるよう	585° Q	640.B	
	27.3	1.2	1001	Ò	8.00 0	€ 0,	650	20	
18 /2 01	685.6	P	10:40	0.57	33.5	80/	65.0	780	
19 1.05	0360	ながら	なのと	587	137	01/	65.Q	73.7	
3	カカン	ر 10	3	5,5%	j j	202	85S. 9	2.56	
21 12 : 7	8861	1	د	ي مرو	2.2	-30	0. SB&	B. 14.3	
22 1.35 . C.	1000								
23 17:40		11:4	Saw	6,5	300	150	かるいつ	7:00/	
24 3.55	<u>0</u>	را	102	. S.	28.5	03)	285.0	1/1:00	
25 194:0S		30	اسلا C :	S-5-0	99	170	255	117.5	
26 (4': 15		5.7	200	2.5.2	104.7	100	0, 98	123.3	
27 14:25	2 hos	1.0	1011	Ø.	110.1	061	W.573	129.4	
			•				•		
29			0	9					
1									•


The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec.: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

A CONTRACTOR OF THE PROPERTY O

Page ₹ of €	ţ.	74		7.67	625,4		200	153.5	27.6	25.5	77	(F. 4)	200	Sirk)	0.00	700.7	707.0,	70.0	2.8.2	25.00										Date: 3/27/2006	#10 V HELD (1 m)
46		Average	Run Ave; = $\sum_i \Delta M_i / \sum_i \Delta T_i$		0.50	0.500	0,585	0.386	O. 586	0.086	į	0 000	0.086	0.007		0.587	0.5889	C 888	0 187								- -				
		Cum Run Average	$\Sigma_i \Delta T_i$	190	200	26	270	250	270	250	00	170	200	210	4	2(0	320	S. C.	300	S. C.											
Soiking Material (ID):	Spiking Rate Calculations		$\Sigma_i \Delta M_i$	de0/1	117.3	(23. \	128.)	348	10.0	1960		1200	191.3	1700.4		2'781	900	94.0	130.00												
ach run)	4	rage	Rate₁= ΔM/ΔTi		0.65	25 C	0.10	0.60	0,00	I.		09.0	8 28	o'co!		65.0	3006	VV	9	Iľ,	0.0						***			July	۱ ۱
nt sheets for ear	4	Short-Term Average	ΔΤί		2000/	(our	1001	10th	(erec	1000	200)	200	1000	(Outell	SINO	SIMOI	10 Mil	15/10	2/2/	7	25.01										ď
& subsequer	1		ΔMi		Sist	80	S. (6)	ė	300	0.0	6.0	j	N,X	1.01		11.63	7007	9	J		2.6									anafino.	yliaiuic.
N.K.5.b Spiking Log (2nd & subsequent sheets for each run)	Spiking Rate Data:	(M) seM		2.765 3	1881	200	5110.3	588.2	1.78	188	557.5	5.60	T-	52/6		3	200	0	10.00	・	1000									O aciciados T	ESS Spiking recrimician Signature.
IV.K.5.b	Spiking	Time (T)	00:00	41114	18	3	1.33	į	シグ	75.25	ない	3	18.88	11:05	7/7/		7	10.0	19/9/		12307									1	ESS OUR

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) the express written permission of ESS.

Proje. an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

を で い 製、。

≥	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	og & Run Iden	tification Sh	eet (1st sheet)			,			
Dat	Data ID Date: 3	3124200	1 ₹	Run#: 2	Spiking Material (ID)	6/1/9	Walthe	1730	- 1	Page 1 of
굨	Equipment ID:	Spiking Manager © #:	∋r © #:	Pump ID	LM#	Neptune#	€ / Moyno#	-	Weigh Scale #. F-	M-MEG C
Š	Spiking Data File Name:	ne: OrgAnic	110. 941	18	Weather Conditions:	3	dre			
Notes:	es:		į							
			11 1/2	10/160	0.683	N				
	Spiking Rate Data:	ate Data:	•			Spiking Rate Calculations:	ons:		180035	7:15
	Time (T),	Mass (M),		Short-Term Aver	age		Cum Run Average	Average	366	17:40
	00:00	(9	ΔMi	ΔT_i	Rate; = $\Delta M_i/\Delta T_i$	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave = $\Sigma \Delta M / \Sigma \Delta T_i$		Comments/Observations
0	05:40	5.605								
-	Odlule.		15.9	22acm	0.72				0.11	
2	10.97	183.2.	6561	20.41	6,4			-	20.0	
ო	146:00	11/1/10	15:4	224	Č.		55		12.4	
4	10:24	458.9	1.0	10vec	65.0)			4	
Ŋ	lo: stal	252.0	6.0	W.W.al	0,09				55.H	
ဖ	10:54	441.9	1:1	104/14	12.0				63.3	
7	10:01	8.104	2.60	1000	0				8	
∞	11:11	U	60	1 Shew	00,00				27.6	
တ	11:24	423.9	7	(But and	0.65	5.85	grin	0.65	841	
9	11:84	217.2	0.0	PONCH	0.67	100.25	James!	3	90.0	
#	11:54	400,00	1.4	Maral	W.0	19.95	29 min	0.687	2.5	
12	30 .//	40%	e	Now!			39.201		104.9	
3	4:04	397.2	3.0	10:01	9.0	135.SI	MANN	0.664	11.1	
4	12:14	211.0	2	1001	5.62	5086	59.71H	900	17.2	
15	17:34	1000	6	-	99.0	€ 5.37	Con my	300	123.7	
16	ć	200.0	8 V	5		525	Topland	5/5/0	131.5	
17	Mr. C	200	88 Ú	10,00	500	28.17	64	5.09	1400	
3	27.50	0	6.0	10 series	069	CAR. 25	66	65.5	147.1	
19	13.00	~	BO	Ben	9	クバック	601	0.60	153.9	
20	13:14	240.4	55	2007	6.67	182.25	6//	63.0	100/	
21	57.21	36,5	(29	10/4	60.00	82.63	127	0.0	(62:50)	
22	65:81	438.4							122.8	
23	13:44	37.0	73.7	2002	0.675	102.7	749	600	41.7	
74	45.57	320.2	0	woi	0.08	100.57	e S	• 1	167.9	
22	10.00	713.2	7.0	1001	0.75	116,55	169	0.689	194.17	
56	14:10	38.0	6.3	200	5.00	1122.85	129	0.686	7	
27	41.94	300.7	6.2	10,00	0.02	129.05	6001	0.683	2.7.08	
28										
29				4	0					
ES	ESS Spiking Technician Signature:	ian Signature:	3	1- MIN 10 10 16					Date: 3 1 4 9 1200	200 (
				5					•	

Project (19: 2006 Westate CPT, Date Prepared: 3/8/2006

Spiking Rate Data: ime (T) Mass (M),			Spinish Matchail (10).	a (iD).	110000000000000000000000000000000000000		rage Cor C
M),		Spikin	Spiking Rate Calculations:	ions:		6	
	Short-Term Average	/erage		Cum Rur	Cum Run Average	res T	
Lb AM	ΔTi	Rate = $\Delta M/\Delta T_i$	$\Sigma_i \Delta M_i$	$\Sigma_i \Delta T_i$	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$	Comments/Observations	
320.7			12905	\$		7 77 6	
8 6.9	com	0.00	135.95	18	0.683	7.14.	i.
	1000	60,00	142.25	707	8.00	2000	
	100	60,0	11.17	219	0.683	2200	
12/6	1000	0.71	18.00	229	7200	6550	
601 crop	mal	69:00	16375	239		24.8	
	mi	69.0	17.55	4	6.625	2007	
200	10%	20.00		259		255.8	
2000	1001	0.60	121.12	26.9	28.084	262.6	
1000		272	19/1/9	27.9	0,6086	2.6.5	
+			2/00/	SAIC	1	2010.60	
1	110	j O	11000	1990	4	19.000	
	37.70	11	7.010	240	9657	なってい	
14	40/200	j,	いいい	0,0		2000	
1,0	2/3/0	6	000			200	
100	15/20	0.00	0000	178	0,688	85.6	
11/2	10/01	95,0	231.68	299	0.68/5	2023	
	10/2/1	200	56.62	343	6000		
		1					
							į
,	j						
		ļ					
						2007	
				_			1
	ت						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	JACA 10.10				Date 2 09/200	

Project ID: Westufic PDT TC# Run# 2 Date 3/29/2006 Material: Drythic Solution: Based on Scale P-Z Rates
∴Start Time 17:30 ∴End Time 17:30 Δ Time = 17:30 - 11:15 = 345 Min
: Start Mass 430,44 (1min 60,69 Holemoz 06914 = 429,71
:End Mass 194- (Lunia @ 0.69/6/m, 2 4,14/6); 194.26
∴Start Mass
∴End Mass
Δ Mass = 429.71 - 194.76 = 235.45 Lb
Spiking Rate = 235.45 Lb = 6525 Lb/Min X 60 = 60.75 Lb/Hr
Target Spiking Rate for Test Condition
Spiking Rate 46.93 Lb + Target Spiking Rate 41.0 Lb 9797 % of Target Rate
Project ID: Latestate PDT TC# 1 Run#2 Date 3/29/2006 Material: 6 gmic 5 Lation Based on Mrn 10-9 Rates
∴Start Time //5/5 ∴End Time /7:00 ∆ Time =/7:00 - //:/5 =
: Start Mass 77. 6 + (124, 20 0.70 16/20=0, 7016 = 75.3
: End Mass 39,3+ (Gune 0.68/1/20,0= 4.08/6)=313.38
∴Start Mass
∴End Mass
Δ Mass = <u>313.33 -78.3</u> = <u>235.08</u> Lb
Spiking Rate = 235.08
Target Spiking Rate for Test Condition 41.0
Spiking Rate 488 Lb + Target Spiking Rate 41.5 Lb = 0.997% of Target Rate

Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

N V E a Saiking	Page Plum Idoné	ification She	of (4st choot)					
Data ID Date: MC 200 C TC#: Num#: 2	7 002/12/	#31	Run# 1	Spiking Material (ID)		tes solut	utton	Page 1 of 2
Equipment ID:	Spiking Manager © #:	r⊚# 7	Ol dund	LMI#			1	Weigh Scale #: F- 💉 MFMがる 🌣
Spiking Data File Name:	me:	4512	K	Weather Conditions:	24,AC 1 :	Į		
Notes:)			Line and the second sec
	1.0%	16/14	٥	0.5533	tolour	5		
Spiking	Spiking Rate Data:			Spiking	18	ns:		+
Time (T)	Mass (M).		Short-Term Average			Cum Run Average	Average	Ser. 17:00
00:00	97	ΔMi	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	ΣιΔMi	$\Sigma_i \Delta T_i$	Run Ave = $\Sigma \Delta M / \Sigma \Delta T$	Comments/Observations
40:00	28.80							
ä	1	5:5	20xm	520				5.0
2 10:04	1 1	+	10/2/02	~		}		601
3 10526	6.235	5.6	224cm	0.25				٠,
4 10336	28/10	×	(march	* 0				21.3
	363.6	4.3	150010	0.43				25.4
6 10:50	247.0	3.6	10 MM	250				27.
711:00	383.5	325	(concer-	0.35				22.7
3 / 1/1/8	384.8	CE.	home,	0,20		Jain		36.5
9 11:26	-225.S		124.0	n	10%	tour	Sign	20.6
10 11 . 36	533.2		Brown	62.0	197	21 MIN	03591	
11 11 1	330.2		10,com	550	9.47	grand	6.32	46.0
12 // 1/0	Π.	l	lound	0.34	13.32	affered	. 226	44.5
	223.3	かが	mosol	6.35	16.87	Steed	0,33	2.25
1	8.9 5		Como	380	2067	Collecto	0-338	5.02
15 60 00	256	7	Sinol	0.39	14.57	71410	25.0	100.4
000	┥,	V.	Sinol	9.40	18.87	Placer	8. 3. Y	104.7
9	-	(v)	10/20	0.50	37.37	15	6.35	(48.4
0	٠l٠	1	Come	0.50	36.95	101	0.54	7/.1
19 12 26	1 .	٠. د د د	ino	6.57	37.67	///	B. 239	28.80
*	204.7	3	100	82.0	12.47	121	0.334	75.5
20.00	2010	N	20	6-3	ムパシカ	181	6.33(<i>b.</i> 0
-	202							んない
\v	2000	6.2	3.00	6.30	1967)S/	0.328	855.7
Ġ	Ň		75	0.37	1201	9	0.328	000
のいた。	300	١.	20	26.0	50.07	121	6-327	- 1
	2001 C	ių.	300	0.3 C	161165	g (0.3260	95.3
27 10:26	2006	7	no	12-51	62.57	(4)	0327	48.11
								Service Control of the Control of th
59			//	0				2001
ESS Sniking Technician Signature:	ician Signature:		100	They	-	;		Date: 3/2 9/200
								Hothius (had all an and so shown a sold be some and

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Proje .an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

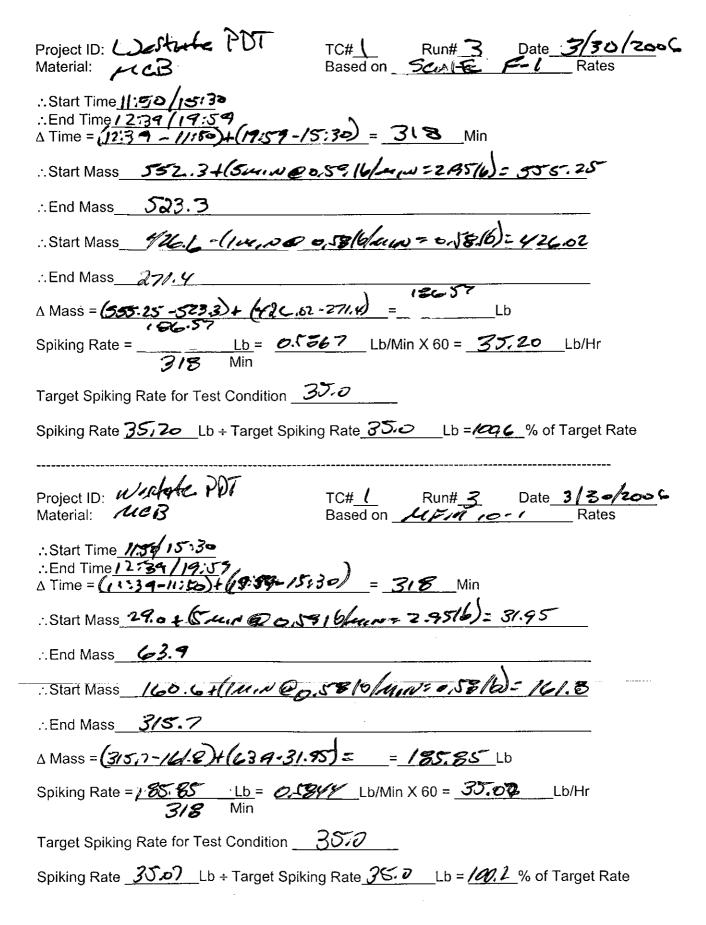
	Page 2 of 2			ations																										
	<i>u</i>			Comments/Observations		(02:3	b	104.3	113.0	160	120,4	124.5	128.2	126.1	1.60.1	178.0	1.50	, , 6, ,	148.0	156,0	154.5								1	Date: 7 7/200 C
	16/10, Solution		Cum Run Average	Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.323	6.324	0.230	6,325	0.327	0.329		0.334	0.336	0.337		0,054	0, 3,400	0.334	0-3307	0.3338									
	Spiking Material (ID):	Spiking Rate Calculations:	Cum Rui	$\Sigma_i \Delta M_i$ $\Sigma_i \Delta T_i$	161 2500)	102 1001	(80) 211	71.87 221	15527 231	78.97 241	82.77 251	2001	9057 271	74.67 281	48.77 291	2	105.67 311	155 155	110.57 331	112,77 3551	122 1184111									
ach run)	Run#: 7	Spiking	erage	Rate = $\Delta M/\Delta T_i$		3.5	DE 30	36.0	25.0	16.0	5000		0.38	0.41	0.67		0.00	C,3 (81.Q	27.0	157.C)							,	West
ent sheets for e	\ #21		Short-Term Average	ΔTi		(orig	1001	1000	70	mal	10/01	(con	lon	104	10 /2		2000	1000	700	100	1								0	Sora
(2nd & subsequ	Date. 3 12 9/200 C),	ΔMi		3.5		2000	3.00		2 2 2	0%0	38	(A) (A)	- % 0		000			3	7777 477									n Signature:
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	Data ID Date:3 /2	1 ຫ	Time (T) Mass (M),	00:00	7:122 02:01	1126 28:121	-c2 94:11	14.35 1120	N:06 2103.	1516 257.4	15:20 200.0	١,	15:40-248.2	15:50 24L	16:26 246.	1010 23	1626 233.	1636 7300	1.80	5 22	ich									ESS Spiking Technician Signature:

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Project ID: Weshite PDT TC# L Run# Z Date 3/29/2006 Material: Phlanii Solution Based on Sale F-5 Rates
∴Start Time (1:15 ∴End Time 17:00 ∆ Time = 17:00 - (1:15 = 345 Min
: Start Mass 339.8 + (1 Mario @ 0.37/6/20 = 0.37/6)= 340.17
: End Mass 226.0 + (4m, 20 000 16/100 = 1.76/16) = 224.24
∴ Start Mass
∴End Mass
Δ Mass = 340.17-224.24 = 115.93 Lb
Spiking Rate =
Target Spiking Rate for Test Condition
Spiking Rate 20.16 Lb ÷ Target Spiking Rate 20.69 Lb = 100.8 % of Target Rate
Project ID: Salate PDT TC# Run# 2 Date 3/29/2006 Material: Pbk." Solution Based on Misur 10.4 Rates
∴Start Time 1(:15 ∴End Time 17:50 ∆ Time = 17:50 -(1:55 = 3 \(\) = 3 \(\) Min
: Start Mass 34.3 - (1 min @ 0.26 15/20 = 0.3616) = 35.94
End Mass 150.0+(4 mu @ 0.45/b) mu = 1.816) = 15/1.8
::Start Mass
End Mass
Δ Mass = 157.8 - 35.9 = 115.86 Lb
Spiking Rate = 1/5,86 Lb = 0.3358 Lb/Min X 60 = 20.15 Lb/Hr 345 Min
Target Spiking Rate for Test Condition
Spiking Rate 30, U Lb + Target Spiking Rate 2000 Lb = 1,00,7% of Target Rate

Attachment IV Field Spiking Data

- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 3. Test Condition #1, Run #3:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.


Projec ...: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

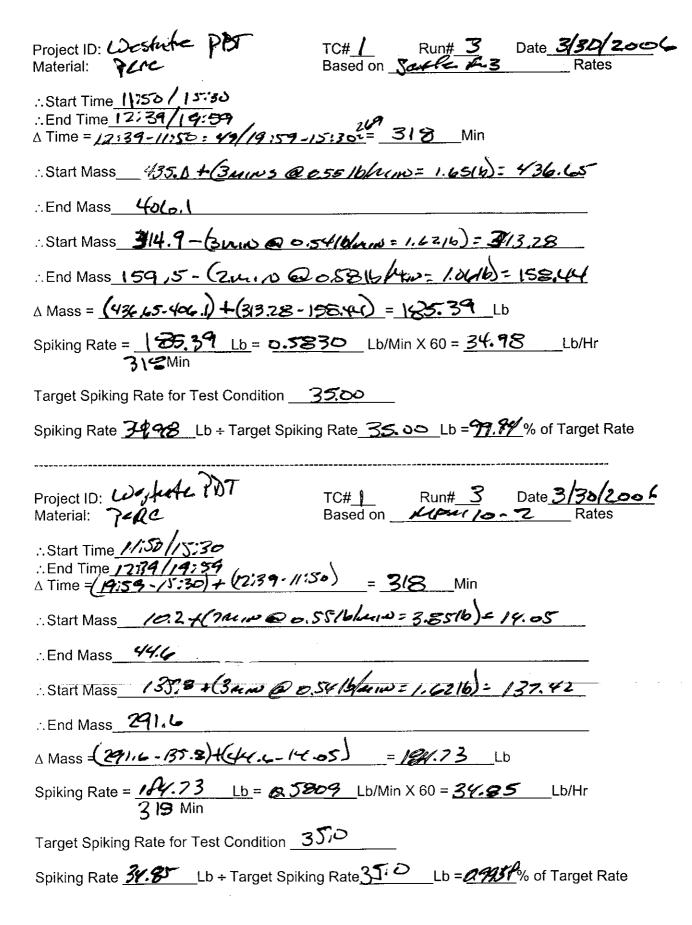
Spiking Material (ID)	LMI# - Neptune#	Weather Conditions:		3 lothers	Spiking Rate Calculations:	rage Cum Run Average	Rate _i = $\Delta M_i/\Delta T_i$ $\Sigma_i \Delta M_i$ $\Sigma_i \Delta T_i$		0.476	0.60	0.59	15.0	854 2.55 5.44.0 6.59	19410	1.555 W. 25 25 W. J. O.594	20,00	0.50 31.95 49MIN 00.65	0	٦١٤	2012 58412 CLES	1 65 110	MM 82 6	05 2 5437 88 Mil 0,617	25 57.97 98 Aus 6.	0.54 61. 1/1 100 that 0.600	1.17 JOSE 1	0,58 \$2.97 138 mm 6,00	100% CON 150 200 100 100 100 100 100 100 100 100 10	15 14 47 1-8-1 0.79	0,76 106.01 179 niv 0.599	2 65.0 my 38 12.211 20	0 27 11.67 178 W. 0. 17
1 1	N					ᇤ	١Ţ			-			4							Ļ		Wind So.	Dix 0.0	the D. O.	111	37	Jerry O	100	1.20	min 0.	5 min 0.5	12.00
1 1	#				culations:	ว						!	6							+	27 65	22 66	37 88	12 95	0 10	120	97 138	1,000	1001	201 CO	381 42	107 178
		ions:		3	ng Rate Calo								2,53		14.0	0 0	7. 3.			8	1.2.0	48.	3	, v	30,00	7%	2		200	100	77.77	1,00
Spiking Materia	↓ FM#	Weather Condit		74/01 EE.		verage	Rate _i = $\Delta M_i/\Delta T$			0.57	0.50	650	239	-	1555	í	S. 0	r	1 50		\$5.0	€5.€	200	40	0,00	120	0,5%	o i		0/20	270	100
it (1st sheet) Run#: 3	Pump ID			82.0		Short-Term Average	ΔTi		25000	21 July	Simol	100810	WINGI		22Mal	Dore 12	344100	i	30.66	To de for	minnal	10min	10/110	logues	2000	0.000	2010	27201	10000	corring	res.	Courtes
fication Shee		26123					ΔMi		149	77.6	10/	2.0			11.9		17.1			6	29	5,7	الأ	16	8.4 10.00	たっと	1 11	10 kg	zis		10	22
IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet) Data ID Date: 2/3/02200 TC#: Run#: 5	Spiking Manager © #:	. 110g		28/6/14	te Data:	Mass (M),	q-	1.800	18.2	27.0	101	225	552.3	2410	576.4	629.00	5.23. 5	230.6	42/.0	660	4.2.4	409.2	463.C	•	20,000	18, S	375.0	3.69.2	261.5	281.9	3,5,7	2500
IV.K.5.a Spiking Log Data ID Date: 2/3	Equipment ID: S	Spiking Data File Name:	Notes:	, v	Spiking Rate Data:	Time (T),	00:00	020	0.77	1:00	12.0	11	1:55	2:01	L		الح	<u>,</u>	27.	6.70	15:49	15:59	60:01	16:19	10:20	カノバカ	10	7:5	40:0	17:39	17:49	7:57

Projec.n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

Date: 5/2000				The last	N Care	ignature:	ESS Spiking Technician Signature:	ESS Spikir
					0			
				- Angelo				
		į						
1000								
					,			•
315.1	25.2	N N	18081	450	MINOI	2.7	371.4	19:59
310.0	0.00	303	1,00.87	52	'some	57	277	14/4
23.80	0.70	593	1.8.17	0.50	10/11/01	20	287 8	45.61
790.5	520	7 000	12 27	1	10111	7.7	1800	17.79
292.8	18:0	270	163.67	イング	10411	200	294 3	19.19
7.87.0	650	266	1000	0.80	10.414	iv	0.000	19:00
12/2	17.649	400	17.00	0.19	0.0001	201	3/1/2	10,01
200.00	0.54	23%	140,57	6.3	10min		312.4	18:30
165.9	11/10	228		6 20	10,77100	2.3	373.2	18.29
Ň	650	218	124.87	150	10.01	2.0	38.1	14:19
252.2		208	123,00				334.9	60:01
Comments/Observations	Run Ave, = $\Sigma_i \Delta M_i \Sigma_i \Delta T_i$	$\Sigma_i \Delta T_i$	S.AMi	Rate = $\Delta M/\Delta T$	ΔΤ.	ΔMi	<u>.</u> -9	00:00
956 1959	Average	Cum Run Average		/erage	Short-Term Average		Mass (M),	Time (T)
			Spiking Rate Calculations:	Spikin			Spiking Rate Data:	Spiking
Page 2 of 2	Mod		Spiking Material (ID):	Run#: ⋝	1C#: {	2002	Date: 3/3-12006	Data ID
	State of the state			ach run)	IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	& subsequi	piking Log (2nd	IV.K.5.b S

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec .n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

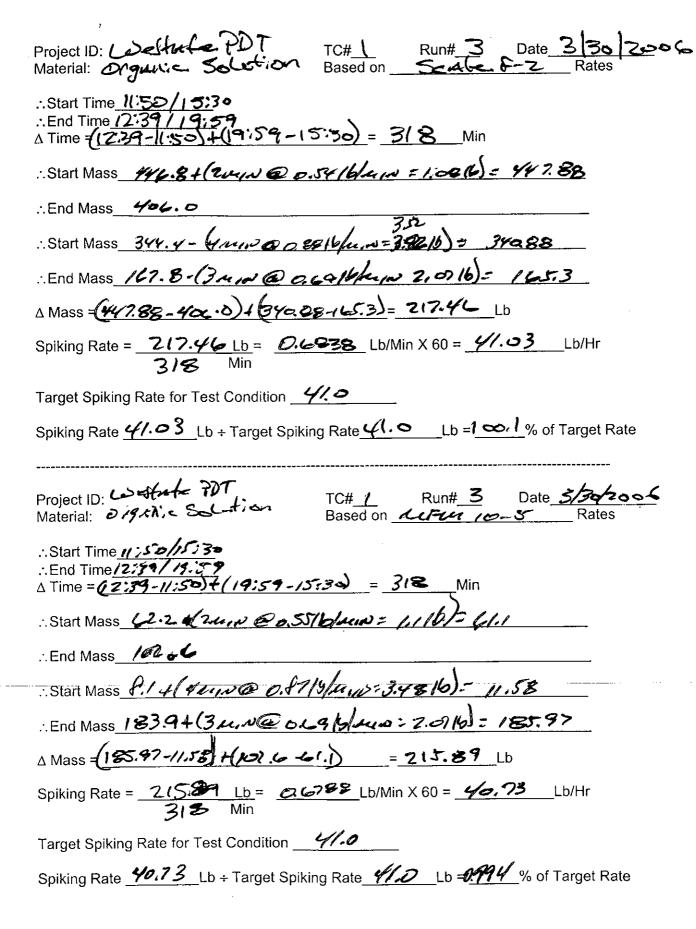

Equipment ID: Spiking Ma Spiking Data File Name: PA Notes:			D	Spiking Material (ID):	76/6	.1		- 1	►age I of
e Name:	Spiking Manager © #:	.⊕#: Z	. Pump ID	- LM#	Neptune#	#ooyno#	1	Weigh Scale #: F- 📝	NFM MFM MFM MFM MFM MFM MFM MFM MFM MFM
	Perc	7610	2	Weather Conditions:	3 1000 Cal	ながらん			
	1	35 (6/14)		0.383	16/41.10	٥			
Spiking Rate Data:	1	ľ			1.79	ins:		STANT	11:50
Time (T), N	Mass (M),		Short-Term Averac	e		Cum Run Average	Average	270	まさっているだけ
	, , , ,	ΔMi	ΔΤ,	Rate _i = $\Delta M_i/\Delta T_i$	ΣΔM	$\Sigma_{i}\Delta T_{i}$	Run Ave; = $\Sigma \Delta M / \Sigma \Delta T$;	2000	Comments/Observations
4 11:01	4403								
		121	25	0.60%					
1,03	463.3	11.9	20	S					
4	454.4	6.9	0/	65.0					
	110.1	11:2	20	9				3.6	
3	140.5	£65	m0/					10.2	
83 5	15.0	2:5	wal	8.83	1.65	37.75	25.0	1/2/1	2000
7	6.92								
3	73.7	11.9	2000	0.59.5	13.55	2344	0.584	22.7	
7	7/7				j	.67	1 - 2 - 2	14/12	
	1	17			50.75	44	0.663	27.00	
N (327.5							1001	
100	321.1	,		600				2.7.7	
16	וין	100		V	30.10	200	2000	11/2	
7,7	400	4 %		() ()	000	12	200	147.5	
1,5	2000	7	10%	0.50	46.03	2/2	0.605	£3.53	
10		v	194	i v	51,33	g	265.0	1.75	
(1.0)	160	10.70	10/2	6.83	57.03	96	65.0	14.4.5	
22 2	11/2	9	5.130	. O	6263	99/	O.59	70°2	-
27 78	\$ 50	1	10/1	0.54	168.03	377	6. ST6	05:00	
67 3	70.	5.5	201	287		126		18(.7	
1	1647	1	3401	0,50	29.13	136	0.552	1262	
10	25.9	80 V	3	0,58	\$6.03 \$	146	Ø. √S	192.3	
01.	* ×.5	100	1001	5.53	9213	150	0 500	198.2	
27 2	47.3	80/	2001	60.50	25 76	166	6.581	203.4	
27 72	8-7	2:2	10.01	0.57	102.73	120	0.520	2001.7	
61	30,75	7.88	Som	0.57	107.03	- 2	0.100	2(5.5	
2	30.0	28	10m	M		196		726.3	
200	2211	10.3	4 755	043	130.13	206	0.583	27.5	

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec in: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

	Page Zof Z			ons																									
			5723 (4,54	Comments/Observation	227.5	7.55.7	2.39.2	245,0	251.0	282.8	262.6	7.0%	274.1	20.00	265.0	201.6	297.3									A Company			Date: 5150/2006
	ere		Average	Run Ave; = $\sum_i \Delta M_i / \sum_i \Delta T_i$	5.3.0	6050	5650	0.5736	0.5738	0.5-832	25,50	0 6434	0.5737	0.5855	0.5034	05823	75850												
	Spiking Material (ID):	ulations:	Cum Run Average	$\Sigma_{\Delta \Gamma_i}$	3 206	3 216	M3 226	3 236	3 246	13 25tm	3 26de	2 276	3 286	290	13 366	33 370	3 226												:
	Spiking Ma	Spiking Rate Calculations:		$\Sigma_i \Delta M_i$	1001	1/1/10	131.0	127.2	142.6	149.4	155.7	141.0	1	172.7	178.5	ž.	10,0.) All
ach run)	Run#:V		erage	Rate _i = $\Delta M_i/\Delta T_i$		0.79		6.53	0.50	0.50	ď	D-5-0	00,7,0	0.53	6-510	833	87.0								- Add displaying			0	Cord ME
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	10#3.1		Short-Term Average	ΔT_i		15,00	10111	101611	lourie	10.4W	10 Min	10.001.	ionin	COMIN	comme	piwoi	piwoi				- Company								9
& subseque	2002			ΔMi		8:0	7	4.0	5,0	1	K-1 A	5,8		5.4	3 4	5.8	en k												gnature:
iking Log (2 nd	Date: 3 13012006	Spiking Rate Data:	Mass (M),	q	233.7	2(7.8	2120	206.	2005	194.4	189.6	1,521	177.0	120.1	6.37		753.5												ESS Spiking Technician Signature:
IV.K.5.b Sp	Data ID [Ď	Time (T)		11501	11:1R	14:27	18:37	14:47	1857	19:00	1711	19:27	19:37	14:47	19:61	0												ESS Spiking

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.


Projec ,n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

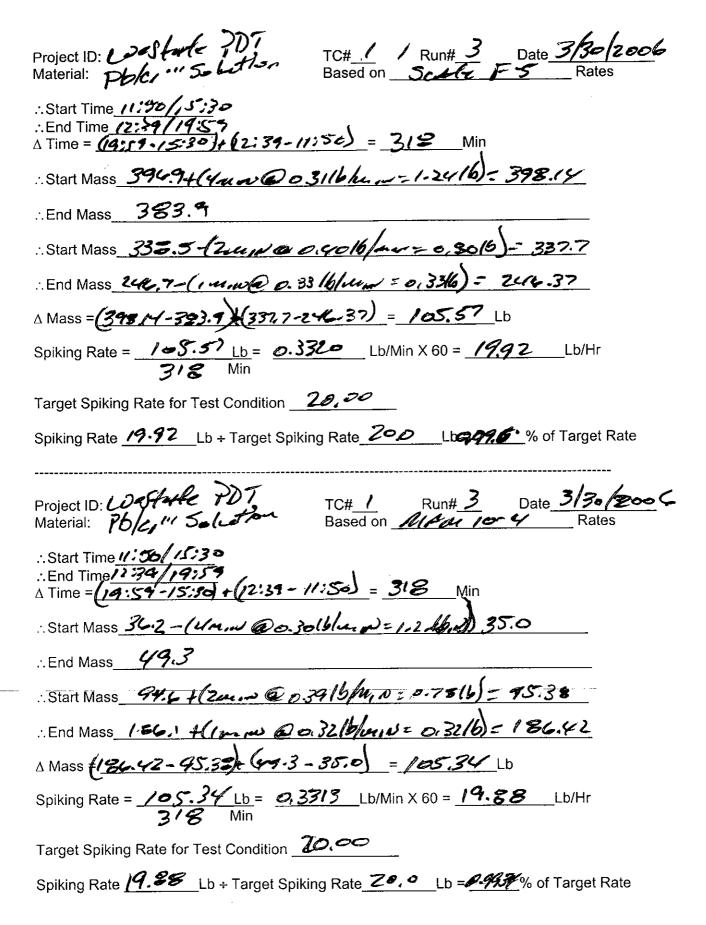
L										_
≥	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	og & Run Ident	fication Shee	t (1st sheet)				h		_
റ്	Data ID Date: 9	Date: 442006	► #21	Run#:	Spiking Material (ID)		rainic S	chetou	Page	_
យ	int ID:	Spiking Manager © #:	r@#:	Ol duny	##]	Neptune#	Moyno#	-	Weigh Scale #: F- 2 MFM# /2	_
တြ	le Nar	BE: Overwise	Wise Te	183	Weather Conditions:		161			_
ĺž	Notes:									-
			, , ,			•				-
			A 191 /A		11 .80.0	When				_
L_	Spiking Rate Data:	ate Data:	•		Spiking	Spiking Rate Calculations	ns:		START 11:50	
	Time (T),	Mass (M),		Short-Term Average			Cum Run Average	Average	il.	
		` 	ΔMi	ΔTi	Rate = $\Delta M_i/\Delta T_i$	Σ¦ΔM;	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$	Comments/Observations	_
0	10.	1 25 ×				.4				_
~		1.66/2	12:51	25	0628				15.6	_
7		AB. 3	12.8		0.64				24.9	-
က	11:12	473.1	2.7	0/	21.0				アジャ	-
4	11:32	459.1	141	20	0.70				7.6%	•
3	11:42	45.7	6.9	10 14.11	650				55.27	_
9	11.52	8.9%	1.5	Juno/	25.0	301	Zurin	2.00	2.2	•
1	17:06			V			4		20.00	-
8	8	434.6	12.2	JOHN	10.0	13.28	22peil	0.003	74,4	-
ი 2	/					•				_
2	وا // 36 ا	do				11:25	48.11J	0.85		-
Ë	10.11	300						· ·	100C	_
12	2 1/6	١.٨	11	12.00	000					
13	15:21	41111	η 00						O.	_
4	15.26	2356		John Comment	088	278	Comin	6.56	(2.3)	
5	12:47	28.2	4	10,500	5.82	8001	1600	8.655	22.1	_
19	12	2000	Ι.	Sixal	25.0	59.76	75/	0.70	275	_
7	7 110:06	2.0.3	1.1	701	20	1246	PS		33.2	
82	10	2/3.8	0.57	50,	55.6	2000	78/	57.0	3.00°	
49	9/1/2:2/0	308.7	5.60	10	€.50°	74.55	105	0.00	41.3	
8	0/1/0.26	202.6	,	101	ه. کرد	1218	115	0.6-96	480	_
7	1	297.0	3	から	0.50		121		2008	
22	2 110:510	291.5	1	3	0,83	37.58	735	0.675	0118	
23	~	265.2	6.0	300	6.62	97.55	145	575,0	60,3	-
77	10.10	27/2	1	140	0.00	103.95	155/	200	73.60	_
25	17	4200	1001	10.01	200	110.35	165	0.06	, č	7
82	76/4/19	205.7	L.	1014	0.67	50 211	175	0.063	0,00	
27	10.01	1583	72	1001	27.0	124.45	188	0.672	435	
82	8/1/2	25.1.	9.0	1041	0,00	13005	195	5.697	lev.,	~~
83	010:11 6	SME	7.4	wall	120	138 45	205	0.675	(0).5	1
Ú	ESS Spiking Technician Signature.	ian Signature:		1-14001	MILL				Date: 3 / 30 1200 6	_
	× -	<u>.</u>				-		-	trooping (trooping and lie) concerns and the reserved to the	

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec. 4n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

19:59	Page of 2	11:00	が、など、	┪	107.5	7.5%	14.00	(78.5	135,80	149.4	169.1	166.6	163.4	170.5	(7/-(1834	1,00,0													Date: 3 / 59200 6
	rainic Solution		Cum Run Average	Run Ave = $\Sigma_i \Delta M/\Sigma_i \Delta T_i$	0.675	0.676	0,674	0.68	0.6806	0.W09	11/00/1	O. Last?	0000	0.622	0.080	0,082	25830													
	1		Cum Run	$\Sigma_i \Delta T_i$	Bost	215	225	235	26/5	2557	Zhas	275	201	295	300	218	732 V													
	Spiking Material (ID):	Spiking Rate Calculations:		$\Sigma_i \Delta M_i$	5hBE1	25:53/	150.65	159 85	16.75	173 65	1.A. 65	147.55	199.55	1201.23	708.15	SUM	-10166	0.12												
ich run)	Run#:	Spikin	erage	Rate₁ = ΔM/ΔT₁		0.71	6,73	0,70	69.0	67.0	06,0	0.69	0.08	0.03	6.69		10,00	00%				200-07					AATT .		0	UNI
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	10#. /		Short-Term Average	ΔT_i		1000	10Mm	10/11/01	louin	what	(como)	WMIN	1011,2	almo!	chimol	Carrio	(0)111-1	1011101												Modell
& subseque	200 €	•		ΨV		7.1	7.3	2.0	6,0	5.11	00	6.9	40	6.9	6.4	1.7	10/	9												ignature:
ikina Loa (2 nd	Date: 3/30 /200 6	Spiking Rate Data:	Mass (M),	` 	S. M.B.	2	2399	222.9	616.0	209.1	1.00	1.95.2	15431	18/18/	124.6	16.7 G		100							į			i		ESS Spiking Technician Signature:
IVK 5.b Sp	Data ID	0	Time (T)	00:00	1000		10.26	18:310	10/4/10	10.50	19:00	19:16	13:16	13.46	19:46	12:21	010									,				ESS Spiking

Projec. n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006


					_	$\Sigma_i \Delta T_i$ Run Ave _i = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$ Comments/Observations	120	6.2	23.0	197	35.6	36.7	20	7	49.3			386	90.5	00.00	0.00	1,2,8	, , N	300	3(.5	35-7	2000	1	N. N.	17.	120%
Spiking Material (ID): Pb/c Selection Moyno# Moyno#					Į	Run Avei =										1	1 1	Ţ	\dagger	1	1 0		1	+		1	+	+		7	7
Spiking Material (ID): 75/6. S LMI# Neptune#					Cum Run A	17						0,3/	200	0,537	8.2.8					000	2,22.2	5.527	\$25.00	0.522	0,336	0340	0.3463	0.25	0.10	0.532	0.335
Spiking Material (ID):			1	ž		Σiζ						dien		Jelan 12	Jano	2				Chall	3000	dorein	101 100	2000	137416	14741	157 412	16 141	1111111	67 C 7 10/10	Fer with
	ıs:		to free in	Spiking Rate Calculations		$\Sigma_i \Delta M_i$						1.24		2/0	14.34				2.5	1000	1000	Sili	75.55	1000	1000	50.00	17.65	10/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	3/3/	3.13	100.00
Run#: 3	Weather Conditions:		0.3333 /6		erage	Rate _i = $\Delta M_i/\Delta T_i$	6670	J S	420	0.38	4-35	0,31		0,31	17. O			0.41	0,40	0.35	0/50	1	5,35	950	0 t UN	0.39	1/20	0.36	50,50	27.70	0.42
51 i)	>		0		Short-Term Average	ΔTi	0.47.0	1000	97.10	20mles	1000.0	DOMINE		700007	0 44.4			sprol	rinol	Comis	Minol	3/1/0	Kans	isalina	3 3 3	21270	KONTON	winds	3,20	10111	Nous
TC#: /	,7210		The last			ΔMi	100	0,0	2.1	87		172		69		j		11/4	.	<i>y</i>	い い い	N	3.6	3.6	100	2.9	177			0	3,8
Date: 3 spiking Manager © #:	266		16/5	te Data:	Mass (M),	q _T	467.3		110.3	165.5	1/20.0	24.0	202.1	200	2000	ייו	1/2/	10.00	374.5	3310	277.5	JI	515.7	اء	200.00	201.4	397.5	27.1	210.00	いかい	しかはい
Data ID Date: 3 200		1]		Spiking Rate Data:	Time (T),	00:00	16:13	2000	11.14	1.54	11:34	15:11	13:61	17:10	12:30		100	X	15.38	80:51	3	200	15.03	5:38	16.50	17:08	17:18	17:28	11.30	11/10	17:00

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec .n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

1 11	rayezu		ations																	Ì						·			
		END 19:59	Comments/Observa	1521	15.4.60	1000	1103.6	1300	11.4.9	1,001	174.2	SK,	18:18	186.1	189.3						in the state of th								Date: 31 24200
410 9	1111 - 111 (101)	Average	Run Ave = $\Sigma_i \Delta M_i \Sigma_i \Delta T_i$	CN 338	0.46	2.33	0.223	0.356	0.332	0.337	0,533	5.132	0.532	0.332	0.132				ie i	- International Control of the Contr									
Non-state of the state of the s	Spiking Material (IU):	Cum Run Average		14 30) 4W	12000	11 axi dula	100 PM	14 J. 11/2	ay 2/1/2/20	WINLLE 31	44 287112V	14 39.Che	74 307 MIN	4 317 UN	My 3 DIMM														
	Spiking		Rate _i = $\Delta M_i/\Delta T_i$ $\Sigma_i \Delta M_i$	I ⊈	0.12	100	2000	N.	25.	0.32 192.	0,32 25	S2 91.	2.33 101	1.05 1.0K	108.														mat
ets for ea		Short-Term Average	ΔT _i Rate		<u> </u>	1	0 0000	ion Cine	(O11, N O.		2775	CO (NIW) CO		IOMIN O.				_										0	A BUST
og (2nd & subseque	Date: 5 / 5c / 200 C	; (M),	p QMi	5	i	1/20 M/	2000	6.3 23	5.0 3.7	7. P 23	1.57	1.3 1 1.2	10 2 3	5516	25 32														ician Signature:
IV.K.5.b Spiking	Sniking Rate Data:	Time (T) Mass (M),		18:01 Md	1 7	10 W 10 10 10 10 10 10 10 10 10 10 10 10 10	10 4 10 A	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10:01	19:14 35	Mr. July	14 78 AC.	1649 21	16.50 34	_	. "													ESS Spiking Technician Signature:

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Attachment IV

Field Spiking Data

- A. Executed Test Manager Spiking Orders to ESS and other operations logs,
- B. Stack Sampling Start/Stop Times, and
- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 1. Test Condition #1, Run #1:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution,
 - 2. Test Condition #1, Run #2:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution, and
 - 3. Test Condition #1, Run #3:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Attachment IV Field Spiking Data

A. Executed Test Manager Spiking Orders to ESS and other operations logs

St	al Spiking Orders ¹ piking:	Spiking Rat	e, Lb/Hr	D	Califolia a	Specie/Mat'l Regr'ed/
Specie	Material	As Specie	As Mat'l	Pump Type/Size	Spiking Duration, Hrs	Mat'l Provided, Lb/Lb/# Drums
POHCs:					 ,	
MCB	MCB	35	35	Neptune #3	32	1,120/1500/3-500 [Net] Lb Drums
C ₂ Cl ₄	C ₂ Cl ₄	35	35	LMI #10	32	1120/1400/2-700 [Net] Lb Drums
Metals:						
Pb	Pb/Crlll Solution	.1	20	LMI #7	32	3.2/640/1-640 [Net] Lb Drum
Ci _{tii}	Pb/Crlll Solution	.35	20	LMI#7	32	11.2/640/1-640 [Net] Lb Drum
Organic Mixtu	re: Organic Mixture	1	41	Neptune #4	32	13101 h 2 @ 451[Not] I h Drim1@ 410 [Not] I h Drim
Toluene	Organic Wixture	. 17	71	першіе тч	32	1312Lb-2 @ 451[Net] Lb Drum1@ 410 [Net] Lb Drum
CH ₂ Cl ₂		8			32	
Naphthalene		8			32	
Et Glycol		8			32	
	rised Spiking Orde	rs ² :				
Revision 1: Approved by	vised Spiking Orde					Date: / /200
Revision 1: Approved by						Date: / /200
Revision 1: Approved by Revision 2:		er:				Date: / /200
Revision 1: Approved by Revision 2:	Client/Test Manag	er:				
Approved by Revision 2: Approved by Revision 3:	Client/Test Manag	er:				
Approved by Revision 2: Approved by Revision 3: Approved by	Client/Test Manag	er:	nts³:			Date: / /200
Approved by Revision 2: Approved by Revision 3:	Client/Test Manage Client/Test Manage	er:	ents³:			Date: / /200

Please document the required changes, and initial/date the new orders.

3. Please provide a critique of ESS' performance on this test, offer suggestions for improving the value of our products and services to you, and/or (if warranted) identify aspect(s) of our products and services with which you are pleased.

in SOP: Project P′ hase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Exe Project ID: مرا5 Westate Miniburn #3. Date Prepared: 1/26/2006

IV. Spiking Plan Transmittal Checklist:	ttal Checklist:		
Spiking Plan Component:		Applicable & Att'ed?	Received & Accepted?
Gen Info Re:	A. Test ID & Site Contact Information.	<i>^</i>	\
Phase IV Proj Exec.	B. Overall Test Execution SOP & Checklist.	<i>/</i>	`
Spiking Plan:	C. Spiking Mat'ls, Species, Rates, & Durations, plus Quantities of Mat'ls & Equip Required.	<i>^</i>	7
	D. Test Schedule.	<i>*</i>	7
	E. Spiking Orders.	,	}-
	F. Pump Assignments.	^	`
	G. (1) Terms & Conditions, and (2) Support Requirements.	<i>></i>	•
	H. Project Rate Schedule	→	
	1. Field Scale Set-Up, Adjustment, Calibration, and Calibration Verification SOP & Checklist.	^	`
	J. On-Site Solution Preparation SOPs, and & Documentation Worksheets:	^	>
-	(1) Pb, ChilSolution	,	7
	K. Other Project Execution Related Log Sheets, Checklists, & Worksheets:	^	/
		*	
	(2) ESS Field Scale Comer Test Report	•	`
	(3) Pre- & Post-Test Calib. Verification Report	^	/
	(4) Eq Operation & Maintenance	>	7
	(5) Spiking Log Sheets:	*	7
	(a) 1st Sheet per run	<i>></i>	//
	(b) 2 nd Sheets per run	>	7
Prepared & Approved by:	Date: Received & Accepted by:	Date: 3/16	070%
Footnotes:			

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

ESS 1200 Hwy 146 South Suite 170, LaPorte, Texas 77571 (281) 471-2071 Fax (281) 471-2180 <u>BSPE@ESSpiking.com</u>

Project Plan: Phase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Execution SOP:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

1. Test Type:	CPT	
2. Test Dates	Week of 3/27/2006 (Mob on 24th & Spike on 28th through 31st)	
3. Test Location	Parker, Az @ US Filter (See maps, etc.)	
4. Contact Name &#</td><td>Drew Boyard (928) 669-5758</td><td></td></tr><tr><td>5. Other Information</td><td></td><td></td></tr></tbody></table>		

/.B. Project Phase IV: Test Execution SOP & Checklist	
st Day = -1: Travel to the Test Site:	✓.
Safely drive to the test site obeying all traffic laws and applicable DOT requirements including the DOT Time Log/limits. Stop for coffee/coke &/or rest, as needed. Plan to arrive in the vicinity of the test facility on the day prior to the equipment set-up day to get a good nights rest.	V
st Day = 0 (Mob or Equipment Set-Up Day):	
Arrive at the gate early wearing PPE and ESS logo apparel, as appropriate. Place magnetic ESS signs on truck doors. Check in at the gate. Receive any site provided safety or other training.	V
Make contact with the client representative & clarify any uncertainties about the test schedule, spiking rates, management of contaminated materials, & establish the method of communications.	r
Check into the unit control room, obtain required permits, and synchronize Spike Manager © clock.	-
Locate all spiking materials; confirm lot numbers, drum counts, condition of containers, etc. When there are multiple drums of a given material (say N drums), mark each drum numerically from 1 to N and then use the drums in numerical order.	1
Confirm availability of: (a) required utilities, (b) a flat, level, hard surfaced work area, and (c) reasonable access to the spiking injection point.	L
Ask for fork lift or other assistance, as needed, to off load equipment and relocate to the spiking area. Use ESS' dolly &/or hand truck, &/or request assistance from operator/test manager, as needed, to protect your back from stains.	L
Set-up secondary containment (if not already available). Lay down impermeable barrier to protect the work surface from possible contamination, even if secondary containment is available. Only open spiking material containers when the containers are inside the secondary containment area.	L
Set-up and verify calibration of weigh scales. Set-up the spiking pumps, MFMs, drums on the drum dollies, and make connections from the drum, through the pump and to the injection point. Prime the pump in recirculation mode. Verify Spike Manager © operability.	L
After obtaining agreement with the site operations, test operability of the complete spiking system by pumping all spiking materials into the injection point using Spike Manager © with the most demanding project specific TC. Thoroughly document the equipment assignments.	L
Thoroughly agitate all dispersion drums.	_
When all necessary preparations have been satisfactorily completed, review all Log Sheet documentation for clarity, completeness, and accuracy.	2
If the Client's Spiking Orders to ESS have not already been signed, have the Test Manager review & approve the spiking rates, durations, etc. with revisions if appropriate. Please keep the ESS PM informed of any revisions as soon as reasonably practical after they are made.	4
Check out with the test manager, from the control room (closing out any safety permits), and at the gate. Remove the magnetic <i>ESS</i> signs from the truck doors.	٧
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM if problems have surfaced, especially if you need assistance.	V

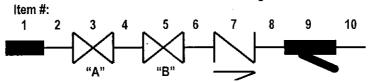
Project Plan: Phase IV. Spiking Plan Transmittal Checklist, A. Contact Info, & B. Proj Execution SOP:

Project ID: 2006 Westate CPT. Date Prepared: 3/13/2006

Arrive at or before the set start time each day. Wear all appropriate PPE and ESS logo apparel as appropriate. Put ESS signs on truck doors. Check in at the gate. At the unit control room confirm clock synchronization daily, check in and obtain all required work permits. Observe all client setely/poperational requirements. Quickly wrift that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Obtain & record the same stack feeling and that stop times as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Prequently inspect the spiking area & all lines for looks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the 4ay, review all tog sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the ESS signs from the truck. Coll in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed in poblems have surfaced, aspecially I you need assistance. Demob Day: After all testing is completed, decontaminate & pack eq	Each Test Day (Test Day = 1, 2,): Spiking	₹?
At the unit control room confirm clock synchronization daily, check in and obtain all required work permits. Observe all client safely/operational requirements. Quickly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Obtain & record the same stack testing start & stop times as the Test Manager. Stary outside and in the spiking area should be spiking area at un is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work rare neat, clean, & orderly. Frequently inspect the spiking area & all lines for loaks/drips, and clean any indication of even a minor loak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Doublo chock all valves. Inspect for leaks, drips, atc. and clean them up immediately. Confirm the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, aspecially if you need assistance. Demob Day. After all lesting is completed, decontaminate & pack equipment, & travel. Check in as usual. Throoughly deconfaminate all equipment burning MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment not memore any evidence of leakedgibled spiking paterial. Load t	Arrive at or before the set start time each day. Wear all appropriate PPE and ESS logo apparel as appropriate. Put ESS signs or	1 truck
Safety/operational requirements. Quickly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Obtain & record the same stack testing staft & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leaks/dirps, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking or 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Doubte check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Confirm the schedule & test plan for the next day. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &for PM as needed if problems have surfaced, decontaminated and adjusted to the purpose it directions. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contamin	doors. Check in at the gate.	
Quickly verify that all equipment remains in working order. Thoroughly agitate all dispersion drums. Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Othatin & record the same stack testing start & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours). Use the same Test Condition & Run mumbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, detes, signatures, etc. Police up the spiking area before leaving the area. Double chock all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced disepase an ended forms and dispose of them per clearly dispiking material. Load the equipment, tools, etc, into the ESS equipment trailer taking special care to avoid d		client
Maintain close contact with the test manager. Start spiking sufficiently early that the unit will be conditioned before stack sampling is scheduled to begin. Othain & record the same stack testing start & stop times as the Test Manager. Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all times for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or unit you see the least sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double-check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & tost plain for the next day. Confirm the schedule & tost plain for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced decontaminate & pack equipment to avoid damage to the electronic equipment, electrical wiring, & weight cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentialt		———
scheduled to begin. Obtain & record the same stack testing stark & stop times as the Test Manager. Record the spiking data – if manually, no less often than I data point!\() Minutes per spiking system. Record all times military time [e.g., 00:00 to 24:00 Hours]. Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area neat, clean, & orderly. Frequently inspect the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment at the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment to removed the spiking material and the electronic equipment maintenance, as needed if problems have surfaced, ospecially if you need assistance. Demob Day: After all testing is completed, deconfaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Lead the equipment, tools, etc. Into the ESS equipment trailler taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. Dits application, spiking tate, line back pressure, Identify any equipment maintenance & suppli		
Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time (e.g., 00:00 to 24:00 Hours). Use the same Test Condition & Run numbering system as the Test Manager. Stoutised and in the spiking area whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system at the beginning of each run. Record any changes in equipment assignments. Keep your work area nead, clean, & orderly. Frequently inspect the spiking area & all lines for loeks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the leat sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for backs, drips, etc. and clean them up immediately. Confirm the schedule & tost plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, sepacially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment maintenance & sup	scheduled to begin. Obtain & record the same stack testing start & stop times as the Test Manager.	
Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leaks/drips, and clean any indication of even a minor leak immediately. To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS edifice daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS sign	Record the spiking data – if manually, no less often than 1 data point/10 Minutes per spiking system. Record all times military time 00:00 to 24:00 Hours). Use the same Test Condition & Run numbering system as the Test Manager. Stay outside and in the spiking whenever a run is in progress or is about to start. Document the spiking material drum # being used on each spiking system beginning of each run. Record any changes in equipment assignments.	at the
To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or until you see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other sure method. After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Double check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Provide a complete spiking by spiking and the control room (closing out all work permits), & gate. Request that the Test Manager, the control room (closing out all work permits), & gate. Restock the equipment to the ESS office daily. Leave voice mail message if no problems	Keep your work area neat, clean, & orderly. Frequently inspect the spiking area & all lines for leaks/drips, and clean any indication of	of even
After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police up the spiking area before leaving the area. Doublo check all valves. Inspect for leaks, drips, etc. and clean them up immediately. Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance.	To insure that we cover the entire sampling period, continue spiking for 5 or 10 minutes after the declared sampling stop time or ur see the last sampling probe has been removed from the stack, or you are able to confirm that all sampling has finished by some other	ntil you er sure
Confirm the schedule & test plan for the next day. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problem	After all spiking has been completed for the day, review all log sheets for completeness, accuracy, dates, signatures, etc. Police	up the
Remove the ESS signs from the truck. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS sipns from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a bri	Confirm the schedule & test plan for the next day.	ν
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record now each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work pemits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & su		
Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or	PM as
Demob Day: After all testing is completed, decontaminate & pack equipment, & travel. Check in as usual. Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	needed if problems have surfaced, especially if you need assistance.	
Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through the pumps & hoses. Wipe down all equipment to remove any evidence of leaked/spilled spiking material. Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.		√2
Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, electrical wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions.	Thoroughly decontaminate all equipment by pumping MSO (for organics & dispersions) and water (for aqueous solutions) through	gh the
wiring, & weigh cells. Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Aujupment specific files	Load the equipment, tools, etc. into the ESS equipment trailer taking special care to avoid damage to the electronic equipment, ele	ectrical
Police up the spiking work area thoroughly. Leave your work area clean and orderly. Collect any potentially contaminated items and dispose of them per client's directions. Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs #1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files		
Record how each piece of equipment performed. ID its application, spiking rate, line back pressure, Identify any equipment maintenance & supplies restocking required. Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files	Police up the spiking work area thoroughly. Leave your work area clean and orderly.	\(\nu \)
Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files	Collect any potentially contaminated items and dispose of them per client's directions.	
Request that the Test Manager critique ESS' performance before leaving the site. Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files		ance &
Check out with the Test Manager, the control room (closing out all work permits), & gate. Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective Auipment specific files		
Remove the ESS signs from the truck. Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		1.
Drive back to the ESS shop with care to observe defensive driving practices, DOT hour limits. Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		10
Stop for rest, coffee, and sleep, as needed/required. Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files	Drive back to the FSS shon with care to observe defensive driving practices. DOT hour limits	
Call in a status report to the ESS office daily. Leave voice mail message if no problems have surfaced. Contact the SC &/or PM as needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		ーーレン
needed if problems have surfaced, especially if you need assistance. Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		PM as
Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or schedule equipment maintenance, as needed. Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		40
Provide a complete spiking log package to the ESS PM with the pages in order (e.g., TC #1, Runs #1,#2, & #3, TC #2, Runs # 1, etc.) by spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files	Re-stock the equipment at the ESS shop. Let the SC know about any supplies which need to be ordered. Complete &/or sc	hedule
spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, problems ideas, & suggestions. File all equipment log sheets into their respective equipment specific files		
	spiking material (i.e., all MCB sheets together & in order, all Cal Verification Logs together & in order) with a briefing of events, p	
	File all equipment log sheets into their respective quipment specific files	
		3/21/-20

ESS Standard Operating Procedure: Tie-In of ESS' Spiking Material Delivery Line to Owner's Process

Purpose: The interface of **ESS'** equipment and our client's process is a sensitive step with potential operational, safety, and liability concerns. The purpose of this SOP is to define the physical interface between **ESS'** and our client's (owner's) process equipment and the respective responsibilities for safety managing the injection of **ESS'** spiking materials into the owner's process line.


Process Tie-In Fitting: ESS has prepared this SOP and a Process Tie-In Fitting [as described in the table & sketch below] to provide:

- 1. A clear line of demarcation between the parties' areas of responsibility and control.
- 2. A clearly defined, convenient, and safe means of: (a) connecting **ESS'** spiking material delivery line to, (b) controlling the spiking material flow into, and (c) disconnecting the delivery line from the owner's process line.

The Process Tie-In Fitting is made up of five (5) ½" nipples NPT E/E, two (2) ball valves, one (1) check valve, one (1) Y-strainer, and one (1) quick-connect, dripless coupler assembled in the following order:

Item #	Description:	Controlled by:
1	quick-connect, dripless coupler	ESS
2	½" threaded nipple	ESS
3	ball valve "A"	ESS
4	½" threaded nipple	Interface
5	ball valve "B"	Owner
6	½" threaded nipple	Owner
7	check valve	Owner
8	½" threaded nipple	Owner
9	Y-strainer	Owner
10	½" threaded nipple	Owner

Sketch of Process Tie-In Fitting

Procedure:

Provides this SOP to Owner. Provides Process Tie-In Fitting to Owner. Installs Process Tie-In Fitting at agreed injection point in owner's process¹. Connects spiking material delivery line to quick connect coupler. Opens Valve "B".	Pre-Mob Mob Day Mob Day Mob Day Mob Day Mob Day
r Installs Process Tie-In Fitting at agreed injection point in owner's process¹. Connects spiking material delivery line to quick connect coupler. r Opens Valve "B".	Mob Day Mob Day
Connects spiking material delivery line to quick connect coupler. r Opens Valve "B".	Mob Day
r Opens Valve "B".	
	Mob Day
May close valve "B" when spiking is discontinued &/or when necessary for safety.	Thru-out Test
Opens valve "A" after starting spiking pump & closes valve "A" prior to stopping pump.	Thru-out Test
Flushes delivery line & Process Tie-In Fitting. Disconnects delivery line from fitting.	Demob Day
r Disconnects the Process Tie-In Fitting from the process & returns it to ESS.	Demob Day
	Flushes delivery line & Process Tie-In Fitting. Disconnects delivery line from fitting.

Attachment IV

Field Spiking Data

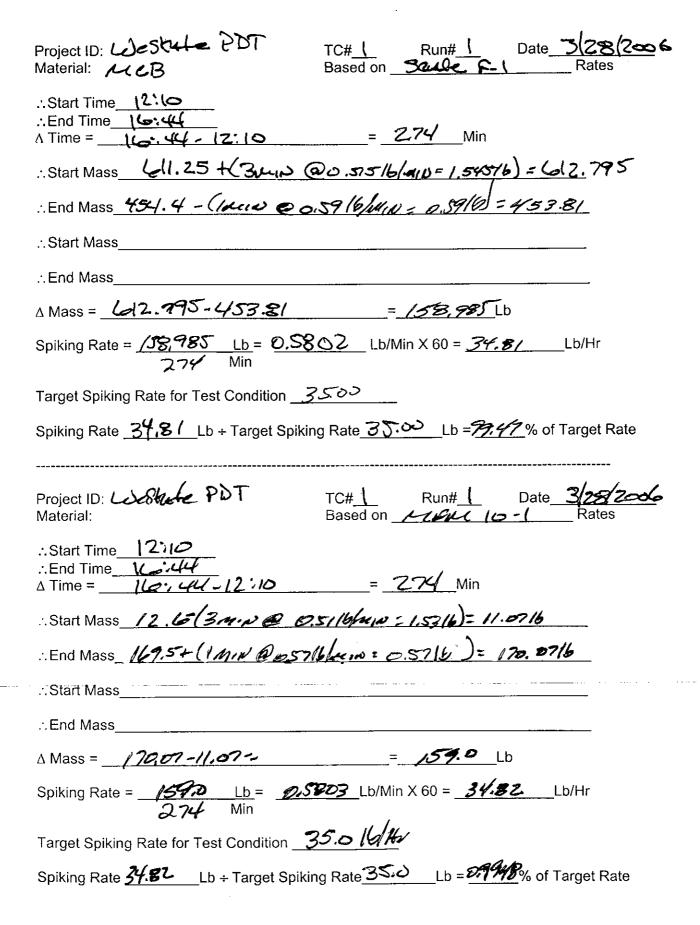
B. Stack Sampling Start/Stop Times, & Run Durations

TC #/	Test	Sampling Sta	art/Stop Time:	s, & Run D	urations
Run#	Date	Start	End	Run Dura	ation, Min
TC #1/					
Run #1	3/28/2006	12:10	16:44	2	74
Run #2	3/29/2006	11:15	17:00	3	45
Run #3a	3/30/2006	11:50	12:39	49	318
Run #3b	3/30/2006	15:30	19:59	269	310

Attachment IV Field Spiking Data

- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 1. Test Condition #1, Run #1:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

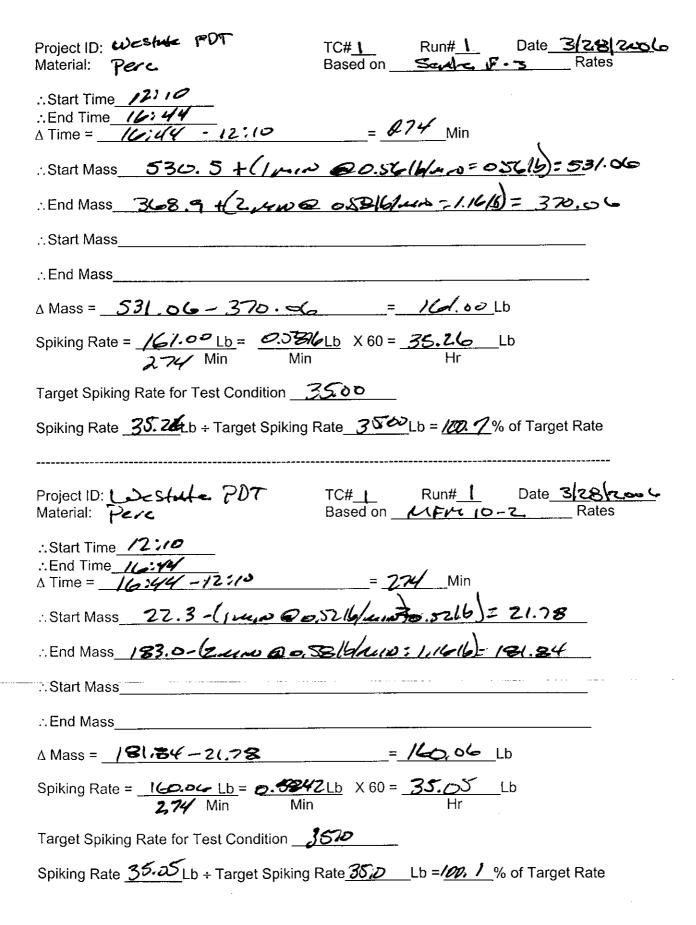

Data ID Date: 3/2/3200/ Equipment ID: Spiking Mi Spiking Data File Name: 10/10/10/10/10/10/10/10/10/10/10/10/10/1	Data ID Date: 3 1292006 TC#: / Run#: /	TC#: /	Rin#	11/ 1-2-1-1-1	9/1	Ú			C 10 10 10 10 10 10 10 10 10 10 10 10 10	
ID: ta File Nam				Spiking Material (10)	J): 11/1/C				raje i oi	T
ta File Nam	Spiking Manage	ar©#: ∠	Pump ID	LM#	Neptuńe# 3	Moyno#	.	Weigh Scale #: F-	/ MEM#/O-/	
	ne: 163 4	JEIN		Weather Conditions:	S: 54	1/2/2				_
				0.	133	ļ			PARKET .	
Spiking Rate Data:	ate Data:			Spiking	Spiking Rate Calculations:	ıs:		725	مراع: او مراع: او	_
Time (T),	Mass (M),		Short-Term Average			Cum Run Average	Average	326		
00:00	<u>.</u>	ΔMi	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave₁ = ∑ ∆	$\Sigma \Delta M' \Sigma \Delta T_i $	Comments/Observations	
15:40	221.56									\neg
'n	721.60									T
29:08	218 5									
04:11	7/6.15	2.2	7267	0.37.5						\neg
12.8	211.15	5.5	Colecia	0.50						
イボー	205 200	1	43/0/	0.565						
25.20		7/2/	ź	0.8x						T
200	57.0	12.2		0.5816						
13.01	1063 V	7.50	1411	0.570						
0	5 457	7.7	⊢	0.575						- 7
57:	9,	12.21	-	550						Т
.36	232.€	1	(3prin	58						П
325	4.829	9.5	(6.CC12)	6,58				0.4		Т
100	6/64	5	Buteren	6.53				7.5		Ţ
: 13	611.25	215	9410	0.57				3. 7/		T
:23	6051 YO	5.85	10 un	0,5355				6/3		Т
.23	2.645	2:2	round	5.27	12.50	23000	O S	74.1		丁
S	593.9	80	MOMIN	550	18:50	3340	0.56	29.		" T
753	500.2		$\overline{\lambda}$	25.0	627.0	4300	0.56	25%		Ţ
3:03	58.7	5.8		0,0	79.90	5341101	6.0	11/2		Ť
113	576.6	3.6		0150	35.79	43 3710	0.57	11/16		-
£21	570.0	23	10mm	6.63	211:49	73 MIL	0.57	52.8		Т
:33	6 30	1011	cural.	0.04	47,449	Marie	5	34.		Т
143	\(\frac{1}{2}\)	1 8	Whol	0.50	53 63	93MM	2.50	138		П
2,53	27.7	M	Somol	65.0	39.59	103 MIN	D.58	016		
1.03	50% 0	r.s	NONGI	0.59	62:49	113410	0.7X	Mes		T
21.2	11/25	4.	518/01	8. c	100	153412	0.00	dail		$\neg \top$
1.23	435.4	いい	Sinci	650	76.99	132110	3 0	2		Т
133	2.62	5.9	ioun	850	85.58	103 110	00,00	9	2	Т
143	333. S	a.	ser sex	D152 a	58.68	C. S. S. Come	850	1000	2	Т
king Technic	Spiking Technician Signature:		1000	21011			-	Date: v	2007	

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec in: Phase IV.K. Field Spiking Log Sheets: Project iu: 2006 Westate CPT. Date Prepared: 3/8/2006

Data ID Date: 3 28/2006 TC#: (Run#:	2006	TC#: 6	Run#: (Spiking Material (ID):		MCR	Bage ≥ of ≥
Spiking Rate Data:			Spikin	Spiking Rate Calculations:			STWT 12:10
me (T) Mass (M),		Short-Term Average	verage		Cum Run Average	Average	16:49
00:00 TP	ΔMi	ΔΤι	Rate = ∆M/∆T	Σ¦ΔΜ	$\Sigma_i \Delta T_i$	Run Ave, = $\sum_i \Delta M_i / \sum_i \Delta T_i$	Comments/Observations
1.83 572.7	S 18	IONIN	85.0	88 40	153MW	0.58	(058)
1183 517.9	200	lowing	200	24.18	163 mm	820	870
5.03 512.0	6-5	court	65.0	1000,38	123 Am	G 58	111.7
5.30 500.3	5.0	1 oven	47.0	100.08	123 per	6.53	1234
138 320 .S.	5.0	Jonin	550	111.05	561	810	124.2
23. HAY 18:5	•			87211	203	25.3	134.9
CAS 424.95	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Ø, SP	123.63	243	85.0	140.01
5.83 449.10	3/12	10un	0.585	129.53	202	Ø. 03	146.5
. C. 477.3	X	10un	\$. % \$000	135.13	233	0.50	1,523
1162 521	ハン	10mm	0,57	110.83	243	\$7.0	022
23 11 8	W.	3201	6,50	14.103	275	0.578	162.8
2 1/10	1/1	(10 1/10)	\$.V.	2 23/	したい	25.0	1195
11/2/17	V	John	2	1000	200	0.578	250
	1		0				0 111
7 4 7 7 0 6 7	·	201.00	1				
							The state of the s
						- inter-	- And Angelog and a second a second and a second a second and a second a second and
			0				
		•					

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.



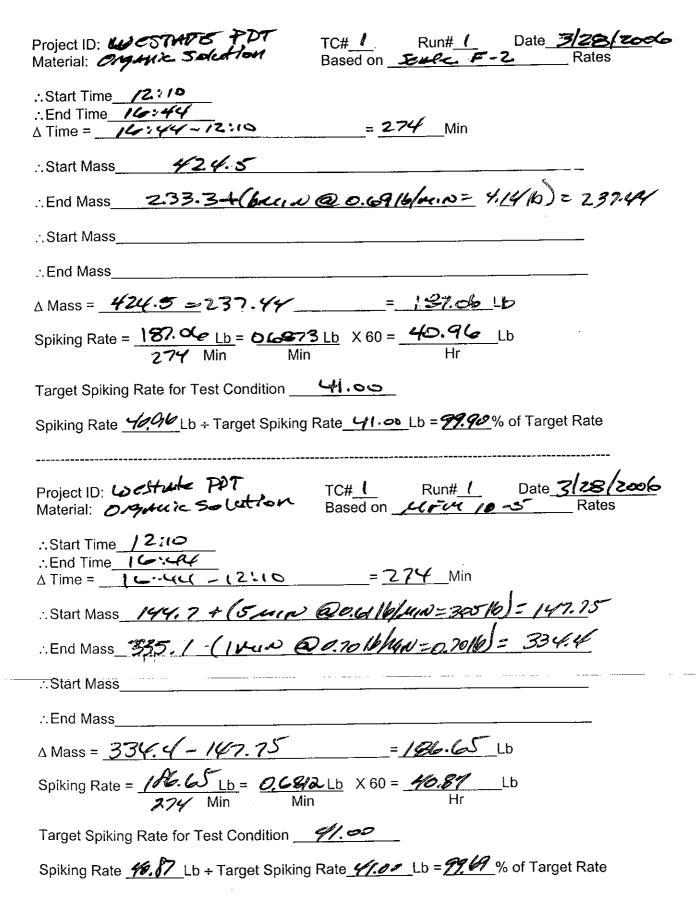
Data ID Date: 2									
1		1 #51	Run#:	Spiking Material (ID)	\$ 400			- 1	Page 1 of &
Equipment ID:	Spiking Manager © #:	9r©#: ∡	Pump ID	LM#	Neptune#	Moyno#	\	Weigh Scale #: F- 3	MF/雄/ ///- -7
Spiking Data File Name:	ame:	124 x21	141	Weather Conditions:	3	dough			
Notes:									
	25/14/	1	Š	X83316 14	3,				
Spiking	2		2	5	piking Rate Calculations:	ns:		1 TANGE	0:2
	Mass (M),		Short-Term Average			Cum Run Average	Average	•	10:49
00:00	(9 7	ΔM	ΔTi	Rate = $\Delta M_i/\Delta T_i$	ΣίΔMi	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma \Delta M_i /\Sigma_i \Delta T_i$		Comments/Observations
0	4.69.4								
103	133.0						- Line and the second s		
2 09:04	634.2	7	male	6.667				*	
3 09:19	0 627	S. 1.00	(seeln)	Ŋ					
4 68.29	2. 237	8/5	lopered	e. 58					
5 07:50	0000	15.2	SINN	45.0					
0 10:26	16	16.8	30mm	97.0					
7 10:40	6.245	8.3	14/410	65.0					
8 11:00	571.4	N.S.	Gone	5.275					
17:11 6		12.1	2/1410	0.576					
10 11:34	457.7	9.c	(30ru)	6.5.60					
11 11:50	542.7	7	16-11/21	A. 576				100/	
12 12:02	535.7	6	(nate	820				12.1	
13 /21/1	53- 5	2.5		0,577				223	
14 /2:21	528 3		(mma)	0,10				22.9	
15 12:31	1.415	5.8	10 Mil	6.5.0	11.977	21218	0.57	33.6	
16 13:41	5/3.3	5.3	(Buton	8.28	13.22	27.60	0,573	29.4	
151211	597.50	50	(OMI)	0 (S	23.57	512/2	0,575	45.7	
18 13:01	501.6	63	(paria)	500	29.47	57-110	000	57.0	
19 13:11	0.01007	5.60	Journ	oto	35.07	GIAIL	0.57	Sol	
20 13:21	1.063	2,6	louin	250	40.67	21412	0.57	625	
21 1.3 271	1) After	1:3	(mun)	0.38	16.5	Muca	0.S	1801	
22 1.37.41	2.A.s	ma	JOHIN	0.64	52.87	912610	0.78	73.9	1000
23 1/3:57	972.6	2.6	wind	0.56	58.40	10/410	0.58	12.3	
24 14:01	466 4	5.5	wind	0.57	64.17	10 4.0	0.5%	620	
19	401.2	5.7	IOMIN	0.37	18.87	19/4/10	8	1/2	
26 /4:21	4550	5.8	laura	023	25:67	13/20,0	5.28	47.5	
27 14×31	0.057	2,4	BUNDI	0250	41.07	19/21/21	ø.575	105.1	
288	•								
								1000 00 io	700
ESS Spiking Technician Signature:	Nonature.		7	1000					

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projection: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

	Page of 2	STATE 12:10	Stap 16:4%		*	108.4	(14,0	(19.5)	126.4	12.3	(380	W2.5	149.1	54.7	160,7	11.67.2	1,23.5	1,80,1	1.83.0	A Fig				a de la companya de l		- Industry				- ALLEGO TO THE STATE OF THE ST			Date: 3 (25/200 🕏
	2		Average	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.57	6.57	0.57	0.00	0,58	850		0.30	Ø. 38	C. S.S.	5750	5850	6.3877												The state of the s			
	al (ID): Yere		Cum Run Average	$\Sigma_i \Delta T_i$		15/1411	16/41	17/14/18	18/12/2	1914	8	21/18	221K13	7年 ルー	アンシン	25/20	260	168							ACADON .		:	100			i		
	Spiking Material (ID):	Spiking Rate Calculations		WV′Z	10.18	19:30	12.26	12:16	104.67	110.47	16.27		127.47	~ 55€)	139.37	16,37	157.97	15927															
ch run)	Run#: /	Spiking	srage	Rate _i = $\Delta M_i/\Delta T_i$		5.50	5	0.55			0,50	8 7 8	0,56	0.60	24	0,56	20,0	19.0	52.4					,									Hend
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	TC#: 1		Short-Term Average	ΔT_{i}		James	(comm	Moster po	lame	lantin	16,44,40	10,200/	10 Len	(O2210)	10/8/12	10/20	anoi	134.1	3115													1	ACOR
enbesqns 8 p	1 200 %			ΔM		5%	2,5	5.6	6.9	6.0) W	9	5.6	00	100	1	シック	62	2.4														ignature:
iking Log (2 ⁿ	Date: 3 12 8 1200	Spiking Rate Data:	Mass (M),	P	150.0	44.4	1.00	433.3	Me.Y.	420. ul	414.1	159.2	4.3.6	2000	301.	384.7	378.2	30.00	2100														ESS Spiking Technician Signature:
IV.K.5.b St	Data ID	Spiking	Time (T)	00:00		12011	15/1	15,01	11:51	12:31	15:57	1125	15151	16:01	11011	10:011	18:01	15:01	1														ESS Spiking

Spiking Material (ID):	Moyno# Weigh Scale #: F- 2 Cum Run Average Synth F E: Σ _i ΔT ₁ Run Ave; = Σ _i ΔM _i / Σ _i ΔT ₁ Comments/ Σ _i ΔT ₁ Run Ave; = Σ _i ΔM _i / Σ _i ΔT ₁ Comments/ Comments/ Com
Spiking Ranee O 1.00	Cum Run Average Shuke F. F. Z. MFM#J Σι.ΔΤι C. Z. Z. Z. Shuke F. Z. Z. Shuke F. Z. Z. Σι.ΔΤι Z. Z
Date File Name: December Conditions: December Conditions: December Conditions: December Conditions: Spiking Rate Calculations: Spiking Rate Calculations: Cum Run Average Outlood Lb	Cum Run Average \$74 ΣίΔΤι Run Avei = ΣίΔΜι ΣίΔΤι Βίστη (1) Βίστη (1) Βίστη (2)
Spiking Rate Data: Spiking Rate Data: Spiking Rate Calculations: Substitute Communication States Communi	Cum Run Average \$70. Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Σ _i ΔT _i C _i Σ
Spiking Rate Data: Short-Term Average Spiking Rate Calculations: 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Rate= ΔM/ΔTi Σ.ΔM Σ.ΔTi Run Average 00:00 Lb ΔM ΔTi Run Average	Cum Run Average ΣίΔΤι Run Avei = ΣίΔΜίν ΣίΔΤι ΣίΔΤι Run Average
Spiking Rate Data: Spiking Rate Calculations: Spiking Rate Calculations: 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 Lb ΔMi ΔTi Rate = ΔM/ΔTi Σ.ΔTi Run Average 00:00 S.Mi ΔTi D.C. D.C. D.C. D.C. 00:00 S.Mi S.Mi D.C. D.C. D.C. D.C. 00:00 S.Mi D.C. D.C. D.C. D.C. D.C. 00:00 S.Mi D.C. D.C. D.C. D.C. D.C. 10:00 S.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C. D.C. D.C. 10:00 M.Mi D.C. D.C. D.C.	Cum Run Average 700 Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Cum Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 700 Cum Run Average 700 </td
Time (T), Mass (M), Lb Short-Term Average Cum Run Average 00:00 Lb ΔMi ΔTi Rate:= ΔMi/ΔTi Σ:ΔTi Run Average 09:00 State: ΔMi ΔTi Rate:= ΔMi/ΔTi Σ:ΔTi Run Average 09:00 State: Mi Cot Cot Cot Cot 09:00 State: Mi Cot Cot Cot Cot 09:00 Mi State: Cot Cot Cot Cot 00:00 Mi State: Cot Cot Cot Cot 10:00 Mi State: Cot Cot Cot Cot 10:00 Mi Cot Cot Cot Cot Cot	Cum Run Average 3C / V Σ _i ΔT _i Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔT _i 10 / V Come Run Ave _i = Σ _i ΔM _i / Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i 10 / V Come Run Ave _i = Σ _i ΔM _i
0000 Lb	Σ.ΔTi Run Ave; = Σ.ΔMil Σ.ΔTi 2.27.
(1) 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	204.0 0.67 (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0) (2.30 200.0)
19.5.2 24.5. 3.4 64.1. 0.6.7 0	
19:18 54. 4 (1911) 0.67 09:28 55. 6 (19. 20. 0.07) 10:39 497. 5 (19. 0.07) 10:39 498. 4 (19. 20. 0.07) 10:39 498. 4 (19. 20. 0.07) 10:39 498. 4 (19. 10. 0.08) 10:39 498. 4 (19. 10. 0.08) 10:39 498. 5 (19. 10. 0.08) 10:39 498. 5 (19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	12.00 12.100
99:28 55.8 9.16 1001.0 5.00 0.074 10:39 497.9 126.1 27 0.074 10:39 497.9 126.1 200.0 0.00 10:59 475.6 141 204.0 0.00 10:59 475.6 141 204.0 0.00 10:59 475.6 141 204.0 0.00 10:50 475.6 141 204.0 0.00 10:50 475.6 100 100 10:50 475.6 100 100 10:50 475.6 100 100 10:50 475.6 100 100 10:50 391.0 0.07 10	12:30 0:27 0:27 0:23 0:23 0:23 0:23 0:23 0:23 0:23 0:23
10:25 49:5 40: 21 0.074 10:39 49: 40: 40: 40: 0.07 10:59 49: 40: 40: 40: 40: 40: 40: 40: 40: 40: 40	(Liax (Lia) (Liax (Lia)
10:25 491.5 20.1 394.2 0.00) 10:39 407.9 4.8 144.2 0.70 10:59 473.6 141. 204.2 0.70 11:20 458.4 14. 204.2 0.70 11:20 478.7 14. 204.2 0.00 11:30 478.5 100 4.00 12:30 411.1 6.3 104.1 0.	(Liox
12:39 49:19 9:25 44.12 0:70 11:20 473:6 44.1 204.12 0:05 11:20 473:5 11.1 14.4.2 0:45 12:39 473:5 12.14.2 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:5 100.12 0:45 12:30 474:7 100.12 100.12 12:50 39:0 6.7 100.12 0:45 13:30 39:0 6.8 100.12 100.12 13:30 39:0 70.12 10	(Liox
1:20 473.6 14, 2040 0.705 1:20 458.4 55, 340 0.005 1:20 4745 12.00 0.005 12:30 4745 100 0.005	(2.50 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.6
11:20 458.3 44.7 244.2 0.13 11:33 450.4 45.5 154.2 0.65 12:34 430.5 11.1 104.2 0.65 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:30 474.5 100.0 0.063 12:50 474.5 100.0 0.063 12:50 474.5 100.0 0.063 12:50 476.5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12.50 12.15 12.15 12.15 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0
11:33 450.4 3.5 13412 065 11:49 430.5 11.1 14412 0.19 12:39 430.5 12.4 0.13 12:20 4745 120 9412 0.165 12:30 4745 120 9412 0.165 12:30 4745 120 9412 0.167 12:30 4745 120 12412 0.167 12:30 391.0 6.7 12412 0.167 13:30 377.0 5.8 12412 0.168 47.5 20412 13:30 370.2 5.8 12412 0.168 47.5 20412 13:30 370.2 6.9 12412 0.168 13:30 370.2 6.9 12412 0.168	12.50 12.15 12.15 12.15 12.15 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
12:30 474.3 11.1 164.12 0 10.0 12:30 474.5 1 10.0 12.14 0.05 12:30 474.5 1 10.0 0.05 12:30 474.5 1 10.0 0.05 12:30 474.5 10.0 0.05 12:30 474.5 10.0 0.05 12:30 391.0 0.07 10.0 20.0 13:30 377.0 5.8 10.0 0.05 13:30 370.0 5.8 10.0 0.0 13:30 370.0 5.8 10.0 0.0 13:30 370.0 0.0 13:3	12.105 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
12:30 470.5 (e.o. 944) 8:448 12:10 4745 (e.o. 944) 8:448 12:30 4/1.1 6.3 10412 0.67 20.1 20412 12:50 4014 6.3 10412 0.67 20.1 20412 12:50 39:0 6.3 10412 0.67 38.5 50412 13:10 38:8 72 10412 0.68 47:5 104112 13:10 37:0 6.8 10412 0.68 47:5 104112 13:20 370.2 6.9 10412 0.68 54:3 104112 13:30 370.2 6.9 10412 0.68 54:3 104112 13:30 370.2 6.9 10412 0.68 54:3 104112	12:15 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
12:10 4745 (60 944) 8:446 12:20 4/14 605 104112 0.65 12:30 4/14 607 104112 0.67 12:50 391:0 6.7 104112 0.67 13:10 391:0 6.7 104112 0.63 13:10 391:0 6.9 104112 0.69 13:10 371:0 6.8 104112 0.69 13:10 371:0 6.9 104112 0.69 13:10 370:1 6.9 104112 0.69 13:10 370:1 6.9 104112 0.69 13:10 370:1 6.9 104112 0.69	0.67 (2.30 0.67 (2.30 0.67 (2.50
12:30 4/18:0 6.5 104112 0.65 13.4 20412 12:30 4/11.1 604 104112 0.67 12:30 12:4 20412 12:50 391.0 6.07 10412 0.07 12:50 391.0 6.7 10412 0.7 10412 13:10 391.0 6.09 47:5 104112 13:10 376.0 10412 0.07 19:10	0.67 (2:30
12:30 111:4 609 10412 0.69 13.4 20412 12:50 20412 12:50 20412 12:50 391:0 6.7 10412 0.67 120 391:0 6.7 10412 0.67 120 391:0 6.7 10412 0.72 40.7 10412 13:10 37:0 37:0 10412 0.69 47:5 104112 13:10 37:0 10412 0.09 54:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112 13:10 37:0 10412 0.09 64:3 104112	0.67 (2:30
12:50 391:0 6.7 10412 0.67 70, 301 30410 12:50 391:0 6.7 10412 0.67 38.5 50412 13:10 39:8 72 10412 0.72 46.7 (4012) 13:10 37:0 6.8 10412 0.69 47:5 104112 13:30 37:0 6.8 10412 0.69 47:5 104112 13:30 37:0 16.9 10412 0.18 54:3 104112 13:30 37:0 16.9 10412 0.18 54:3 104112 13:30 37:0 16.9 10412 0.19	0.67 (2:50
12:50 391:0 6.7 10m1d 0.67 26.8 (Jeun) 13:100 391:0 6.7 10m1n 0.27 38.5 554:0 13:100 371:0 6.8 10m1n 0.68 47:5 10m1n 13:200 371:0 6.8 10m1n 0.68 47:5 10m1n 13:200 370:1 6.8 10m1n 0.68 54:3 10m1n 13:200 370:1 6.9 10m1n 0.09 (51:4 5m1n) 13:200 370:1 6.9 10m1n 0.09 (51:4 5m1n) 14:200 370:1 6.9 10m1n 0.09 (51:4 5m1n)	72.50
3130 391.0 6.7 1041.0 0.07 385 5041.0 13:10 371.0 6.8 1041.0 0.08 47.5 1041.0 13:30 370.2 6.8 1041.0 0.08 54.3 1041.0 13:30 370.2 6.9 1041.0 0.08 54.3 1041.0 13:30 370.2 6.9 1041.0 0.01 10.00	(2:00
13:15 383.8 72 104112 0.72 40.7 GOMIN 13:20 37:0 5.8 104112 0.68 47.5 104112 13:30 370.2 6.8 104112 0.88 54.3 104112 13:30 340.1 6.9 104112 0.71 (61.4 50411) 13:50 550.2 6.9 104112 0.09 (68.3 1004112)	12/2
13:30 371.0 6.8 10 MIN 0.68 47.5 10 MIN 13:30 370.2 6.8 10 MIN 0.88 54.3 60 MIN 13:30 34.3 60 MIN 13:30 34.3 10 MIN 13:30 340.3 10	
13:30 370.7 6.8 104114 0.00 54.3 604114 13:30 36.1 7.1 104114 0.07 61.4 80411 13:50 350.2 6.9 104114 0.09	7 65.20
13:50 3/8:1 1.1 PUIN 0:109 (21.4 SOUTH) 13:50 \$50.2 6.9 PUIN 0:69 (20.11)	18/30 06/8/
13:50 350.2 6.4 10411 0.69 (28.3 102412)	04:80
Wing 349.2 6.4 1000 0.100 0.100 0.100 0.100	MIN 0.682 [3
1000 0 10 10 10 10 10 10 10 10 10 10 10	3/8
14:10 3026 10:1 184:10 6:01 181. 7 1 Cale	21.9 /20 W D. 683 /P.10 229.0
14:30 435.8 16.8 10414 0.69 SB.7 1304W	88.7 1304M 5, 483 14:20 23.9
14:30 129.0 6.8 1040 0108 955 1404mlo	955 Hann 0.682 14:30 242.7
28	
53	
ESS Spiking Technician Signature:	Date: 3 /2 6 /2000


)*s

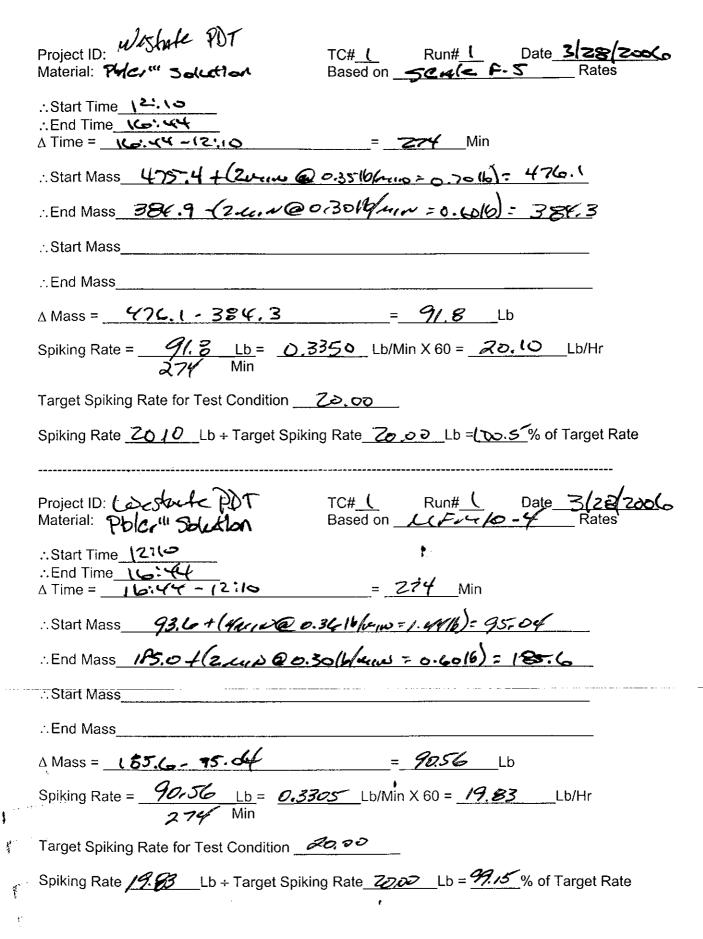
Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT, Date Prepared: 3/8/2006

IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	nd & subsedn	ent sheets for e	each run)			ŀ		
Data ID Date: 3 (2006)	,500 %	* #51	Run#: /	Spiking Material (ID):	ial (ID):	organic Solut	Tor	Page Z of Z
] ອ			Spikin	Spiking Rate Calculations	tions:		START	12:10
Time (T) Mass (M),		Short-Term Average	verage		Cum	Cum Run Average	570	メナ:9/
	ΔM	ΔTi	Rate = ∆M/∆T	Σ¦ΔΜ	$1\nabla^{!}\mathcal{I}$	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		Comments/Observations
C. 274.0				95.5	140	0.682		242.7
HINO 322.1	6.4	10/10/	60.0	107:4	951	6,687		249.5
i -	6.0	1000	6.67	1.601	001	0.08		2,72,2
	6.0	Jane 1	D.C.	116.0	04/	0.00		463.3
1.10 SOL.	6.9	(A. X.)	0	6.221	æ/	0.08		1.0.1
6.742 07:51	ø	10,411	80.0	129.7	961	0.68		276.9
15,30 200.1	6.0	101.10	19,0	1360	200	0.68		2534
142	0.0	Core in	200	1434	210	89.0	0491	29as
	80	10 xxx	٠, ا	150.2	720	69.0	\s\s\	1.46
201	3	3/2/0/	30	451	230	0.00	/6:00	204(.2
1600000	3	Corol	9	S. 60	042	0.6825	/6:/0	3/1.1
16:70 2534	0	10/10/		1.70.00	827	2.6825		317.9
1 1000 00:01	7.50	VILLA	6	177.4	260	6.6823		324.7
16:16 742 2	ja	1011	3	0 70°	270	0.0025	のすい」	331.6
П		1000	0,0	- 10:	ROY	61810	30:00	
10:00 257. 2	5		9	7:161	9			
		ļ						
			China Contraction				2000	
ESS Spiking Technician Signature:	ignature:		BUNKE				Date: 5/08/2000	
		3		,	:	-	The second has a second second	trooties (troo ei to lle) goodere te

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use, It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

ESS 1200 Hwy 146 South, Suite 170, LaPorte, Texas 77571 (281) 471-2071 Fax (281) 474-2180 BSPE@ESSpiking.com

Run Average	n ID Date: 3 pment ID:									
### Spiking Rate Calculations: 1.2 MV U. Be Data: ###	-	Spiking Manager		Kun#:	Spiking Material (It	Ž		1	'	MFM#W-4
Data: C. 3333 (Matrix) ab Data: Com Run Average Spiking Rate Calculations: Mass (M) AM AT Rate: ΔMMAT ΣΔM ΣΔT Run Average ST Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont. Cont.	Data Eile Mam		1		Weather Conditions	-	i			
Mass (M)						1				
Mass (M)			1		1	* * *				
Mass (M)	Sniking R	٦,			j	Rate Calculations	,,	-	4	01:2
Ub		Mass (M)		Short-Term A				ı Average	۵.	7
7 514.2 6 5.4 1.0 2.3 5.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	00:00	<u>a</u>	ΔMi	ΔΤ	Rate _i = $\Delta M_i/\Delta T_i$	Σ _i ΔMi	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma \Delta Mi$		s/Observations
\$\frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}}{\pi_{\text{col}}} \frac{\pi_{\text{col}}}{\pi_{	13/1/10							111		
	40.45									
20 27 6 27 6 24 10 2 3 5 6 10 10 10 10 10 10 10 10 10 10 10 10 10	34:10	501.0	4/		2002					
2 22.6 2 4 24.10 0.33 4	7:20	3775	35	_	1			-		
77 574 2 9 4 2/4 10 0.33 6 78 19 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 2 2 2 44 10 0.33 6 78 19 3 2 2 44 10 0.33 6 78 19 3 2 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 2 44 10 0.33 6 78 19 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	29:30	533.6	4	(Sain)	39					
7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59:52	524 2	7	_1	3					
1 20 1 2 2 1 13 4 10 0 2 3 2 1 14 4 10 0 2 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 1 13 4 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 2 14 10 0 2 3 3 3 14 10 0 2 3 3 3 14 10 0 2 3 14 10 0 2 3 1	62:0	1.700	2.1	1000						
10 50 9 20 20 20 20 20 20 20	14:0	۸. ۲	7	14/2/10	' 1					
1.35 496.1 5.1 134.10 0.13 1.35 496.1 5.1 134.10 0.13 1.35 496.1 5.1 134.10 0.13 1.37 496.2 5.1 134.10 0.13 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.37 496.2 5.2 104.10 0.35 1.38 496.2 5.2 104.10 0.35 1.38 496.2 5.3 104.10 0.35 1.	10:1	- 1	0	DOKIE	্ৰ					
35 400 3 13 4 m 0 .2 3 15 15 10 43 15 15 15 15 15 15 15 1	27:1	493.2	7	3777	Ö					
12. 47. 2. 2. 1041. 0. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1:35	490.1	1/2	13/2/2	0					
10 475.4 3 4 9 4 124.10 0.38 4.00 1.22 4.10 1.	, s',	463.8	2.3	19412	•		į		70.61	201
1	2:03	4.80	60	12000	ગુ				(2:3)	
12. 477, 2. 5.2 1041, 0.32 4.4 2241, 0.33 (2.35 1/2.2	2:12	かぶんか	2	(J) 24	Ø.28			,,,	9/3/	11.7
132 496.3 3 5 1041.2 0.35 44.2 0.35 11.2 3241.2 0.35 12.46 106.35 11.3 3241.2 0.35 12.46 106.35 11.3 3241.2 0.35 12.46 106.35 11.3 32.41.2 0.35 12.46 106.35 11.3 32.41.2 0.35 12.46 106.35 11.3 32.41.2 0.35 12.46 106.35 11.3 32.4 106.35 11.3 32.4 106.35 11.3 446.1 3.0 1041.2 0.30 24.6 12.41.2 0.35 11.3 12.2 12.3 12.3 12.3 12.3 12.3 12.3	22:2				6.32	┪	- 1	-	31	, i
17. 47.0 3.6 1040 0.35 11.2 32410 0.35 11.0. 19. 40.0 4.0 3.0 10410 0.34 15.0 12.0.0 0.35 110. 19. 47.0 3.0 10410 0.34 22.0 12.0 0.35 110. 13. 44.0 3.0 10410 0.30 22.0 12.0 0.33 15.0 16.0. 13. 44.5 3.0 10410 0.30 37.0 102410 0.33 15.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	72:2	44.8.7		(JOHN)	5.35	+	44	\$33	7	7,1
45.0 3.4 (0410) 0.35 (22.1 (024.1) 0.35 (13.1) (13.	27.2	6.5%	3.8	(OKW)	5.35	1, 2	- 1	55.0		0.0
45.0 3.4 (eduto e.34 '9.1 5240 e.36 (5.2 116.) 45.0 3.0 (eduto e.39 25.0 7240 e.39 (5.2 119.) 45.1 2.9 (eduto e.29 25.0 7240 e.39 (5.2 119.) 45.1 3.0 (eduto e.39 25.0 7240 e.39 (5.2 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e.39 12.) 45.1 3.0 (eduto e.3) 31.0 (e2400 e.3) 31.0 (e22 15.) 45.1 3.0 (eduto e.3) 40.1 (e2400 e.3) 31.0 (e22 15.)	25:0	0	レン	10mm	27.0	15:2 6	12/2/2	0.87%	7	20.0
451, 250 10410 5.30 22.1 67410 6.35 152.1 153.1	3.02	5	3.4	Colair	0.34	10.1	22418	0.70	200	N 0
45/1 219 (0M1) 0.29 25.0 min 0.34 (5.22 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	4.12	454.0	3.0	Ourin		22.1	224.00	3	7	
448.1 2.4 (0411) 0.29 21.9 (2411) 0.337 (3.52 12.44) 4.51 2.44) 0.30 34.0 (32411) 0.333 (3.52 12.44) 0.30 34.0 (32412) 0.333 (3.52 12.44) 0.30 34.0 (32412) 0.333 (3.52 12.44) 0.30 34.0 (32412) 0.323 (3.52 12.44) 0.30 34.0 (32412) 0.323 (3.52 12.44) 0.30 3.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44) 0.30 3.30 (3.52 12.44	3:22	4.51.1	8'2	10/11/01		25.0	12.20	0.52	17.5	7.7
445, 7.1 (0,410) 6.31 31.0 (42410) 6.53 (4.52 12) 15.42 124, 6.33 (4.52 12) 15.43 (4.52 12) 15	7:32	2.00%	2.5	Como		27.9	restra	0.37	15:36	
434.0 3.0 1041.0 0.30 34.0 1024.1 0.55 1452 150. 434.0 3.0 1041.0 0.30 40.1 1124.1 6.33 14.02 150. 474.0 3.0 1041.0 0.30 40.1 1224.1 0.328 14.12 150. 474.0 3.0 1041.0 0.30 40.1 1224.1 0.333 14.12 150. 474.0 3.0 1041.0 0.35 49.6 1324.1 0.333 14.12 150.	25.5	445.1	7.1	mos	0.31	0	42412	0.337	1375	
494.0 3.0 124.0 0.30 40.1 1224.0 5.328 14.02 15.1 496.0 5.328 14.02 15.1 15.4.0 5.328 14.02 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.	3,52	18612.1	Ç	(anno	0,30	37.0 1	DIMIN	0.555	1257	2.6
436.0 3.0 10412 0.30 40.1 122412 0.328 14:12 15: 437.5 5.5 10412 0.35 49.4 142412 0.33 14:22 14:	2015	0.05/2	3	lower	0.31	37.1 1	112/11	M.	5/ 20%/	2
49 5 8.5 10M, 0.35 43.6 1324. 0.353 14:22 14:	27.12	36	3.0	\	5.30	40.1	122x12	0.52	19.76	74.1
1 47.0 5.8 10MM 0.28 47 4 142MM 0.355 14:00 17	4322	2000	-	•	5:35	48.6	7	-+	157.50	7.7
	1.32	1.97	3.0	Lomos	N	3 %	grand	5.55.0	22:21	4-14
7		*				,				
					200				7000 0 10 C :0400	200


The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

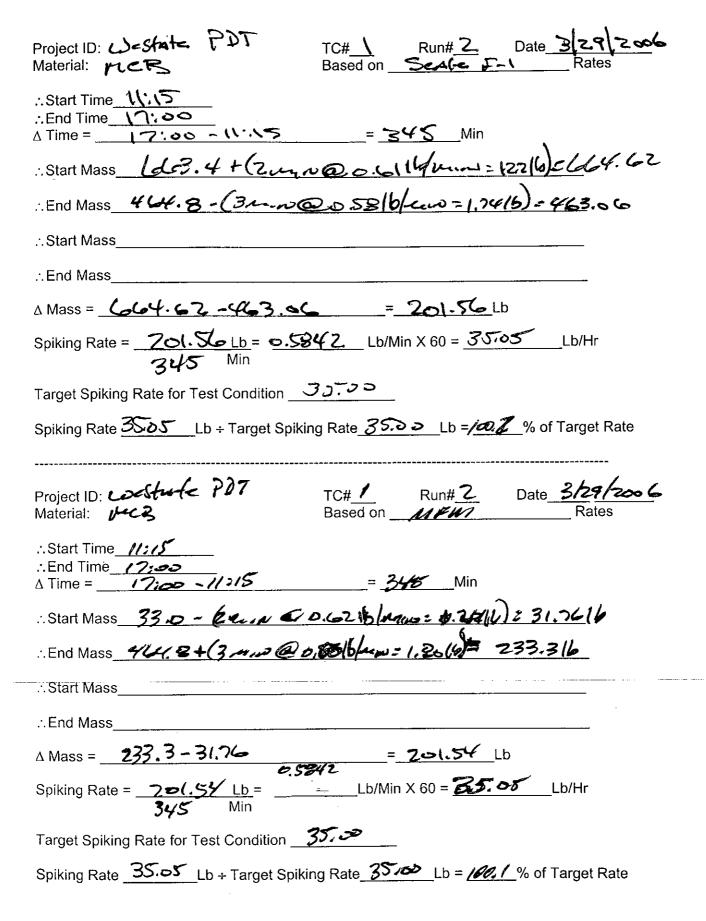
Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

The state of the s

Page 7 of Z		アナ・・ ラー およい	Comments/Observations			190.2	151.5	2:25/	198.5	2 /61.8	/ (SEO)		. 171.	1.7.5. 2	179.	2 /82.3	2 /85:0	:7 186.5			Light of the state							a de la company					Date: 3 / 28200 6
			\dashv		188	18:52	20.51	71151	15:22	75:30	, ×, ×,	Sis/	20.30/	16.712	インジャ	15.5	16:4	16:4				-							a de la companya de l				Date: 3 /
le Solution		Average	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.334	0.333	6.337	0.335	0.333	0.333	728.0	5-374	0-335	0.335	0.337	0.837	2.29€			Lab Market													
al (ID): 756,	ons:	Cum Run Average	$\Sigma_i \Delta T_i$		156.40	142	1702	102	192	202	212	222	252	242	252	2016	222																
Spiking Material (ID):	Spiking Rate Calculations		$\Sigma_i \Delta M_i$	47.4	SSA	Š	37.16	0.	64.2	6.00	4.0	24.2	77.7	8.2	0.58	J.	3.3	L.							ŕ	`							
Run#:	Spiking	erage	Rate₁ = ΔMi/ΔT₁		0.35	0,32	0.37	6.34	0.32	のぶん	25,00	6,33	6.35	Cr. 35	38	ر د د	0,40	0.30														,	EMENT
Data ID Date: 3.720/2006 TC#: Run#:		Short-Term Average	ΔTi			Mound	╗	3		(ourse)	_	-	10pen	(sun)	price	520)	520	5 16.10														0	1
200 6			ΔMi			3.2	2.9	3.0	3.6	カ.6	3.2			がい	υ, 10	ą lu	Q		+														anature:
Date: 3/2006	Spiking Rate Data:	Mass (M),	- P	<u>۱</u> ۰۱	42.3	1.22.1	410.7	11:51	411.9	5.00%	405.3	402.0	238.K	35.0	2.12	200	20%	3424															ESS Spiking Technician Signature:
Data ID	Spiking F	Time (T)	00:00		14201	(C)/	15:02	12712	12:57	78/37	15:42	1575 E	16:07	16:12	16:22	11:3	16:50	15,00									-			†			ESS Spiking

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Attachment IV Field Spiking Data


- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 2. Test Condition #1 Run #2:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Spiking Rate Data: Spiking Rate Claculations: Spiking Rate Claculation:	IV.K.5	a Spiking Le	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	tification She	eet (1st sheet)							_,
Spiking Rate Data:	Data IC	Date:	2000	#51	Run#: 2	Spiking Material (II		Move Move		ob Scale #: F.		 -
Spiking Rate Data: Spiking Rate Calculations: Sp	Spiking	Data File Nam	Johning Manage		22	Weather Condition:	1 1	III III III III III III III III III II				1 1
Spiking Rate Date: Spiking Rate Calculations: Spiking Rate Calculat	Notes:											
Spiking Rate Data: Spiking Rate Calculations: Spiking Rate Data: Spiking Rate Data: Cum Run Average STO			h	101	2	1:						_
Time (T), Mass (M), AM ATT Rate = AMATT, SLAM, SLAT, Run Aver 35 AV 2000 LD AM ATT Rate = AMATT, SLAM, SLAT, Run Aver 35 AV 37 AV 3		Spiking R	ŀ	t			Rate Calculatic	nns:		١.	Sad . 2 /.	
DOUGO	<u> </u>	Time (T),	Mass (M),		Short-Term A				Average	•	7:00	
10 10 10 10 10 10 10 10		00:00	<u>.</u>	ΔMi	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	$\Sigma_{i}\Delta M_{i}$	$\Sigma_i \Delta T_i$	11		s/Observations	
	-	4:24	27.61									
	1	372.6	713.2	6.3	19un	€2.5€						
	2 16	2016	127.1	100	20ain	•						
	-	22:0	672.7	14.4	22.00	0						_
	4	0:37	2.13	5.2						7.5		_
	5	44:0	0.189	77	10000	25.0				15.4		-
	9	13:0	1500	27.2	March	5.5				20.6		_
	7	10:1	15.83	γ, ~	12 acos	563				268		
1.79 (25.12) 2.1 (24.14) 6.48 (9.42) (4.12) (4.14) 6.15 (1.12) (1.14) 6.15 (1.	8	111	12.4	ì	Sister!	150		2min	-	23.0		_
1.37 1.37 1.44 0.44 1.31 2.14 0.134 1.31 1.46 1.6 1.44 0.41 1.72 2.14 0.534 1.31 1.46 1.6 1.44 0.62 2.3 2.3 2.44 0.534 1.31 1.46 1.46 0.44 0.62 1.46 0.53 1.31 1.46 1.46 1.46 0.62 1.46 0.53 1.32 1.46 1.46 1.46 0.62 1.46 0.53 1.32 1.46 1.46 1.46 0.62 1.46 0.53 1.32 1.34 1.46 1.46 1.46 1.46 1.46 1.46 1.34 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.34 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.35 1.46	6	64.1	1,55.7	4.7	12410		9.42	1441	610	41.2		_
1.77 646-9 4.6 1-41.2 041.2 17.21 324.1 0.554 1.57 441.1 5.3 1-41.2 0.53 22.31 424.2 0.53 1.57 42.2 62.2 0-41.2 0.53 42.2 42.2 42.2 1.57 610.6 6.3 1-41.2 0.53 42.2 42.2 42.2 42.2 1.57 60.6 6.3 1-41.2 0.53 42.2 42.2 42.2 42.2 1.57 60.6 6.3 1-41.2 0.53 64.2 10.2 0.53 1.57 60.5 5.4 1-41.2 0.55 65.2 10.2 0.55 1.57 60.5 5.4 1-41.2 0.55 65.2 10.2 0.55 1.57 60.5 1-41.2 0.55 1-41.2 0.55 1.57 60.5 1-41.2 0.55 1-41.2 1-5.3 1.57 60.5 1-41.2 0.55 1-5.3 1.57 60.5 1-41.2 0.55 1-5.3 1.57 60.5 1-41.2 0.55 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.3 1.57 60.5 1-5.2 1-5.2 1-5.2 1.57 60.5 1-5.2 1-5.2 1.57 60.5 1-5.2 1-5.2 1.57 60.5 1-5.2 1-5.2	10	1.52	アババ	2.7	prod		13.12	2 hear	2650	44.5		_
1.57 44.6 5.3 64.4 5.53 25.25 4244 6.55 42.4 6.55	1	12:1	6-16-9	110	Journal	OHIC	17.72	Berein	0,554	2,4/2		_
13.97 13.57 15.20 15.2	12	1.5.1	141.10	んじ	100.0	55.0	25.52	4241	55.0	24.1		-
13 12 12 12 12 12 12 12	13	10.6	137.4	1.6	MAIN	0.67	29.22	52 win	ارك	0/2)		_
13.87 1011.2 10.41.2 0.154 17.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 18.47 19.41.2 0.58 19.42 19.4	4	2817	2.88	2.0	loses	20.0	24.5%	Caren	0.57	12.2		
13:57 10 16-9	15	12.87	(022.8	t	CORCE	20.0	41.82	Tean	۲,	33.4		-
4 6 6 6 5 6 6 6 5 5 5	16		10/16.9	4.0	blocal	65.0	47.72	A24.12	M	16.1		-
(3:57 605.1 5.5 10411 61.55 57.51 102 0.583 (3:07 59.6 5.5 105.4 6.55 62.2 110 0.58 115.4 57 57.1 105.4 105.4 105.2 10		27.50	500.0	5	10141	Ø. 6	54.02	26	V)	S S		_
(3:07 599.6 5.5 15元 6.55 2 108 0.55 13.7 34.0 5.6 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 0.55 2 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	1	12:50	120S.1	γ.	loan	5,25	59.52	70/		070		т
13:17 等から 5:4 1mm 6.56 20:02 122 0.55 15:17 20:02 20:05 20	61	20.00	3.665	13	345/	8.5d	2020	162	9	27.5		_
5: 47 578.2 いい	07	17:17	0.4	3,6	1001	A. 56	12.62	21		103:0		Т
15:47 578.2 (2.4 12と のにて 第1.52 152 の.5室を 15:47 575 1 (2.4 12と のに子 第7.52 152 0.5写 14:57 32.7 6.1 10ル の.53 108.22 182 6.57 14:17 551 5.3 10ル の.53 113.52 182 6.57 94:37 551 5.3 10ル の.53 113.52 (92 6.57	21		3	ورنع	350		22.62	<u>ر</u>		101.10		-7
5: 47 575 12.4 12.4 0.62 75.2 5.2 0.58 1.5:57 5.6 5.4 0.58 1.5:57 5.5 5.	22		38		•					•		Т
13:57 56.9 co.マ ion •・63 9582 (52 0.59 14:57 56.4 [5.1] con •・63 108.22 [52 6.59 14:57 55]	23	3:40	1225	12:21	181	29.0		155	0.886	11.0		
44:57 至2.7 6.1 60ル 5.5、 100.42 172 5.39 14:17 551 6.59 6.59 6.59 100.22 1第5 100.22 1第5 6.59 6.59 100.22 15.51 1第51 1 6.59 6.59 6.59 6.59 6.59 6.59 6.59 6.59	24	いいいい		70.3	10/2	59.0	9582	(6.2 ²	Ö.S	Mill		-
14:17 5564 (e.3 10ル こころ 108:22 (寄2 6.57) 44:27 551・1 5.3 10ル の.53 118.52 (寄2 6.57) 18.52 は 14.52 に 6.59 と 18.55 に 14.52 に 14.52 に 14.55 に	25	40.07		į	(042	7 03.0	26.10)	172	6-59	7335		Т
94127 551.1 5.3 1011 0.53 118.52 192 0.59 S Spiking Technician Signature:	92	14:12	556.66		10m	J	108.22	282	0.79	159.00		Т
S Spiking Technician Signature:	27	14:27	1.155	١, ٠	noi	کا	113.52	261	6.59	1.6%		т
S Spiking Technician Signature:	78											T
LIGHT	29											Ţ
	ESS S	piking Technici	ian Signature:		A last	The state of				Date: 3/29/12	00	7

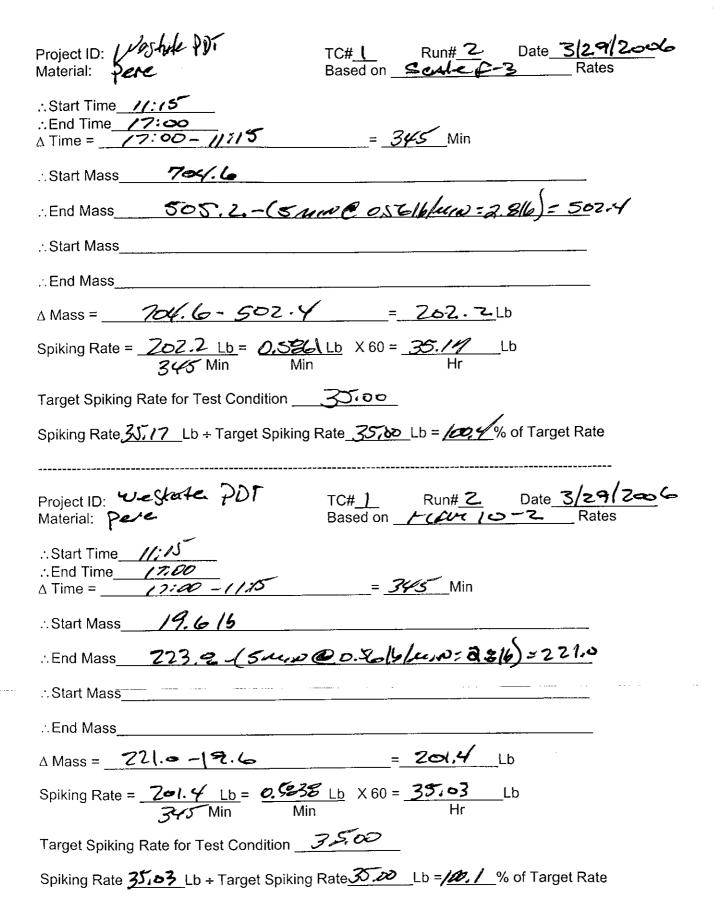
Proje (an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

Class Date 2 st 200 C TC# (Run# 27 Spining Material III), ALG LC	/				2000000			
Spiking Rate Calculations: Short-Term Average A T. Rate = AMAAT	Date: 3 29	/200	1C#: (1	Spiking Mater	ial (ID): 🖊	613	Page 2 of 2
ATI Rate = AMAT DAM DAT Run Average Short-Term Average ATI Run Average ATI	Rate Data:			Spikin	g Rate Calculat	ions:		
Ali	Mass (M),		Short-Term A	erage		Cum Run	ı Average	Stap 17:00
2 (o'min) 0.53 (1882 922 0.588 10 min) 0.53 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.54 (1882 922 0.588 10 min) 0.58 (ГÞ	ΔMi	$\Delta T_{\rm i}$	ΔM	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave = $\sum_i \Delta M_i / \sum_i \Delta T_i$	Comments/Observations
2 10 mm 0.53 1/6.82 2000 0.588 4 10 mm 0.56 1/4.2 2.22 0.588 4 10 mm 0.57 1/6.72 2.32 0.586 10 mm 0.57 1/6.72 0.586 10 mm	551.12				25.E11	761		
6 Control of State 21 2 0 187 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ŋ	5/3	10000	5.53	118.82	202	6.588	150.4
2 10 mm 0 - 57 1/2 12 22	540.2	5.6	lowere	0.56	124.42	212	0.537	344.0
2 10 m/b 2 32 1 252 2 25 2 25 2 25 2 25 2 25 2 2	34.5	5.7	chro/	25-0	130.12	222	6.586	(1.4.7
2 10-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ :	5,4	Stron-	なべ	125.52	232	6. 52¢	11.27.1
1 0 0 0 0 0 0 0 0 0	K.	7	JOHAN /	۲,	185.72	262	185.0	1,72.3
2 (ortho 0.53 2 (ortho 0.53 2 (ortho 0.58) 2 (ortho 0.58) 2 (ortho 0.58) 2 (ortho 0.58) 3 (ortho 0.58) 6 (ortho 0.59) 6 (ortho 0.59) 7 (ortho 0.59) 8 (22 202 0.58) 8 (22 202 0.58) 9 (ortho 0.59) 9 (ortho 0.59)	и 🥆	10/0	Mar/01	A	146.62	282	85.0	2:16:
3 1000 01.38 1512 2.72 0.38 1 3 1000 01.38 1512 2.72 0.38 1 2 1000 01.38 1512 0.38 1 3 1000 01.38 1512 0.38 1 5 1000 01.30 1512 0.38 1 6 1000 01.30 1 6 1000 01.		18	John Colon	55,0		102		194.0
7 (comp or 38 // 292 0.581 2 10-40 0.42 // 292 0.581 3 0-40 0.42 // 292 0.583 10-40 0.50 // 292 0.583 3 0-40 0.50 // 292 0.583 3 0-40 0.50 // 292 0.583 4 0-40 0.50 // 292 0.583 5 0-40 0.50 // 292 0.583 6 0-40 0.50 // 292 0.583 6 0-40 0.50 // 292 0.583 7 0-40 0.50 // 292 0.50 // 2	200	3	corre	3	12.22	200	195.0	
2 10 mm a 62 (25.2 292 a 293 a 294 a	V	4	(mryo)	γ.	16017	190	S. S. S.	1,0<1,7
3 10-4 5 8 1/6 2 30 2 0 5 3 4 5 0 5 5 5 4 5 0 5 5 5 4 5 0 5 5 5 5	191	6.2	3/2/21	1	15.20	202	200	2.00
3 1044 5.61 192.21 312 0.534 3 1044 0.57 173.72 322 0.534 3 1044 0.57 173.92 322 3 1044 0.57 173.92 322 3 1044 0.57 173.92 3 1044 0.57 173.92	100/	100	がない		11/1/2	125.7		に、このこ
7 1044 5.0 188,22 372 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 322 0.554 3 1044 0.5.57 198,22 2.52		0	(m)	07.0) () (100	0,7/4
252 252 252 253 2 2 2 2 2 2 2 2 2 2 2 2	7:21	وَ	101010	9	186.66	1/10	0	25.50
7 1040 6.57 92.90 332 0.534 8 6040 0.58 342 8 6040 0.58 342 1 252 0.58 3 242 0.58 3 400 0.58 1 252 0.58 1 242 0.58 1 2	4000	ĵ.	lome	9	22,58	371	0.386	&: L)2
252 352 252 352	un	んじ	JOHNO	٠	20.00	1337	0,584	2258
232	1/100	ない	wind	σ.		275		73(.5
	ı٧	s L	SIN C'	7		272		127 00
	. P	•						
						ļ		
						ļ		
					7.47			
	!							
Proceeding the second								
The second second			0	/				
				1000				10000-10-11

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Proje ian: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

			Kuil#.	Spiking Material (IU)	٠):	Are.			Layer U.
Equipment ID:	Spiking Manager © #:	31.©#: ∡	■ Ol dmud	- LM#	Neptune#	Moyno#	l	Weigh Scale #: F-	MFW# 60 X
Spiking Data Fife Name:	me: Felc	121	RZ	Weather Conditions:	S:	:			
Notes:									
			38191	Med B.	543				
Spiking 1	Spiking Rate Data:				Spiking Rate Calcutations:	ns:		خر	١٤٠١
Time (T),	Mass (M),		Short-Term Averag	e		Cum Run Average	Average	Stal	17:00
00:00	9	ΔM	ΔT_i	Rate = $\Delta M/\Delta T_1$	$\Sigma_{i}\Delta M_{i}$	$\Sigma_i \Delta T_i$	Run Ave = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		Comments/Observations
521,50	272.0	•							
24:43	2502	43.60	2 Saum	67.0					
\	75.7	71.5	Zaula 1	0.575					
3.7607	133.7	/3	_1	67.0			-		
35:01	727.7	1	(over	00).00					
10:45	1721.1	63	•	65.00					ļ
S	1716	5,7	Λ	5.S				17	
11305	2011	6:0	1 care in	05.9				14.0	
11:18	24.60	いだ	(OKI)	0.50				10.0	
111.25	199,0	2	18pm	5.76	الم	10,000	B.56	22.5	
10 11:30	642.8	7	10 pes	9	11.6	20 410	0.59	2.2	
24:11. 11		5:8	(DAU)	0,58	17.60	30.60 X	0.59	27.2	
12/11 53	- 286		mol	P 2. 0	22 5	S	0.5007	73.	
13 12 VO X	626.8	62	lound	9	24.8	53/2C	65.0	74.4	
14 13 115	2 811	1	Mille	5.36	35.4	CAMIN	5.75	55.0	
15 10 OS	663.5	5.7	(MING)	2.0	1:1/3	B. Com	6.5 2 7	600	1
16 12 335	1.001	9	311/01	000	123	かんん	585° Q	640.B	
	27.3	1.2	1001	Ò	8.00 0	€ 0,	650	20	
18 /2 01	685.6	P	10:40	0.57	33.5	80/	65.0	780	
19 1.05	0380	ながら	なのと	587	137	01/	65.Q	73.7	
3	カカン	<i>\</i> ⁄	3	5,5%	j j	202	85S. 9	2.56	
21 12 : 7	8861	1	د	ي مرو	2.2	-30	0. SB&	B. 14.3	
22 1.35 . C.	1000								
23 17:40		11:4	Saw	6,5	300	150	かるいつ	7:00/	
24 3.55	<u>0</u>	را	102	. S.	28.5	03)	285.0	1/1:00	
25 194:0S		30	اسلا C :	S-5-0	99	170	555	117.5	
26 (4': 15		5.7	20/01	2.5.2	104.7	100	0, 98	123.3	
27 14:25	2 hos	1.0	1011	Ø.	110.1	061	W.573	129.4	
			•				•		
29			0	9 0					
1									•


The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec. ...n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

A CONTRACTOR OF THE PROPERTY O

Page ₹ of €	ţ.	74		7.67	625,4		200	153.5	27.6	25.5	77	(F. 4)	200	Sirk)	0.00	700.7	707.0,	70.0	2.8.2	25.00										Date: 3/29/2006	#10 V HELD (1 m)
46		Average	Run Ave; = $\sum_i \Delta M_i / \sum_i \Delta T_i$		0.50	0.300	0,585	0.386	O. 586	0.086	į	0 000	0.086	0.007		0.587	0.5889	C 888	0 187								- -				
		Cum Run Average	$\Sigma_i \Delta T_i$	190	200	26	270	250	270	250	00	170	200	210	4	2(0	320	S. C.	300	S. C.											
Soiking Material (ID):	Spiking Rate Calculations		$\Sigma_i \Delta M_i$	de0/1	117.3	(23. \	128.)	348	10.0	1960		1200	191.3	1700.4		2'781	900	94.0	130.00												
ach run)	4	rage	Rate₁= ΔM/ΔTi		0.65	25 C	0.10	0.60	0,00	I.		09.0	8 28	o'co!		65.0	3006	VV	9	Iľ,	0.0						***			July	۱ ۱
nt sheets for ear	4	Short-Term Average	ΔΤί		2000/	(our	1001	10th	(erec	1000	200)	200	1000	(Outell	SINO	SIMOI	10 Mil	15/10	2/2/	7	25.01										ď
& subsequer	1		ΔMi		Sist	80	S. (6)	ė	300	0.0	6.0	j	N,X	1.01		11.63	7007	9	J		2.6									anafino.	yliaiuic.
N.K.5.b Spiking Log (2nd & subsequent sheets for each run)	Spiking Rate Data:	(M) seM		2.765 3	1881	200	5110.3	588.2	1.78	188	557.5	5.60	T-	52/6		3		0	10.00	・	1000									O aciciados T	ESS Spiking recrimician Signature.
IV.K.5.b	Spiking	Time (T)	00:00	41114	18	3	1.33	į	シグ	75.25	ない	3	18.88	11:05	7/7/		7	10.0	19/9/		12307									1	ESS OUR

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) the express written permission of ESS.

Proje. an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

を で い 製、。

≥	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	og & Run Iden	tification Sh	eet (1st sheet)			,			
Dat	Data ID Date: 3	3124200	1 ₹	Run#: 2	Spiking Material (ID)	6/1/9	Walthe	1730	- 1	Page 1 of
굨	Equipment ID:	Spiking Manager © #:	∋r © #:	Pump ID	LM#	Neptune#	€ / Moyno#	-	Weigh Scale #. F-	M-MEG C
Š	Spiking Data File Name:	ne: OrgAnic	110. 941	18	Weather Conditions:	3	dre			
Notes:	es:		į							
			11 1/2	10/160	0.683	N				
	Spiking Rate Data:	ate Data:	•			Spiking Rate Calculations:	ons:		180035	7:15
	Time (T),	Mass (M),		Short-Term Aver	age		Cum Run Average	Average	366	17:40
	00:00	(9	ΔMi	ΔT_i	Rate; = $\Delta M_i/\Delta T_i$	$\Sigma_i \Delta M_i$	$\Sigma_{i}\Delta T_{i}$	Run Ave = $\Sigma \Delta M / \Sigma \Delta T_i$		Comments/Observations
0	05:40	5.605								
-	Odlule.		15.9	22acm	0.72				0.11	
2	10.97	183.2.	6561	20.41	6,4			-	20.0	
ო	146:00	11/1/10	15:4	224	Č.		55		12.4	
4	10:24	458.9	1.0	10vec	65.0)			4	
Ŋ	lo: stal	252.0	6.0	W.W.al	0,09				55.H	
ဖ	10:54	441.9	1:1	104/14	12.0				63.3	
7	10:01	8.104	2.60	10/10	0				8	
∞	11:11	U	60	1 Shew	00,00				27.6	
တ	11:24	423.9	7	(But and	0.65	5.85	grin	0.65	841	
9	11:84	217.2	0.0	PONCH	0.67	100.25	James!	3	90.0	
#	11:54	400,00	1.4	Maral	W.0	19.95	29 min	0.687	2.5	
12	30 .//	40%	e	Now!			39.201		104.9	
3	4:04	397.2	3.0	10:01	9.0	135.SI	MANN	0.664	11.1	
4	12:14	211.0	2	1001	5.62	5086	59.71H	900	17.2	
15	17:34	1000	6)	-	99.0	€ 5.37	Con my	300	123.7	
16	ć	200.0	8 V	5		525	Topland	5/5/0	131.5	
17	Mr. C	200	88 Ú	10,00	500	28.17	64	5.09	1400	
3	27.50	0	6.0	10 series	069	CAR. 25	66	65.5	147.1	
19	13.00	~	BO	Ben	9	クバック	601	0.60	153.9	
20	13:14	240.4	55	2007	6.67	182.25	6/1	63.0	100/	
21	57.21	36,5	(29	10/4	60.00	82.63	127	0.0	(62:50)	
22	65:81	438.4							122.8	
23	13:44	37.0	73.7	2007	0.675	102.7	749	600	41.7	
74	45.57	320.2	0	woi	0.08	100.57	es.	• 1	167.9	
22	10.00	713.2	7.0	1001	0.75	116,55	169	0.689	194.17	
56	14:10	38.0	6.3	200	5.00	1122.85	129	0.686	7	
27	41.94	300.7	6.2	10,00	0.02	129.05	6001	0.683	2.7.08	
28										
29				4	0					
ES	ESS Spiking Technician Signature:	ian Signature:	3	1- MIN 10 10 16					Date: 3 1 4 9 1200	200 (
				5					•	

Project (19: 2006 Westate CPT, Date Prepared: 3/8/2006

	,	* 5	Sulf.	College Waterian (10).	G (10):	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Lage
Spiking Rate Data:			Spikin	Spiking Rate Calculations:	ions:		6	
Mass (M),		Short-Term Average	/erage		Cum Rur	Cum Run Average	res T	
	ΔMi	ΔTi	Rate = $\Delta M/\Delta T_i$	Σ _i ΔMi	$\Sigma_i \Delta T_i$	Run Ave = $\sum_i \Delta M_i \sum_i \Delta T_i$	Comments/Observations	
320.7				139.08	\$		1 1000	
_	6.0	Comp	0.60	135,72	12	0.665	021.1	
	n'a	1000	6,61	14/100	י ק י י	60.0	2000	
		100	0,0	100	770	100.0	7250	
6	111	100	0.7	200	1/10	6.00%	3000	
100	S, a	10/01	0.0	1600	631		0.1.0	
7	000	12/21	0.64	170.00	111	0.00	3000	
<u>ر</u>	2.6	10ur	0.74		23%		0,2,0	
7	いら	1001	0.50	104.25	269	~	200.40	
0.860	20	140	0.72	54761	27.9	0,(0860	2.6.5	
+	11	9	5	10015	200	1	276.6	
٠ ١		3770	j	1111	290		790.4	
C	111	17.75	100	21010	250	9 646	かんちん	
1	0	407		がら	a ic		287.7	
7	7.0	2/3/20		水ルル	100	00,0	200	
0	1	2770	0.0	10.50	200		١.	į
7	5.60	10/10	9,50	231.03	25.7	0,000	201,2	
1	8	10/1/01	60	237.95	347	0.8800	7.0	
/								
-								
+								
+								
+								
+								
+								
-								
			-					
							10.00	
-								
-	į					-		
-		۵						
		<u> </u>	0,01				1 of 1000 Coates	

Project ID: Westufic PDT TC# Run# 2 Date 3/29/2006 Material: Drythic Solution: Based on Scale P-Z Rates
∴Start Time 17:30 ∴End Time 17:30 Δ Time = 17:30 - 11:15 = 345 Min
: Start Mass 430,44 (1min 60,69 Holamoz 06914 = 429,71
:End Mass 194- (Lunia @ 0.69/6/m, 2 4,14/6); 194.26
∴Start Mass
∴End Mass
Δ Mass = 429.71-194.76 = 235.45 Lb
Spiking Rate = 235.45 Lb = 2525 Lb/Min X 60 = 40.75 Lb/Hr
Target Spiking Rate for Test Condition
Spiking Rate 4.5 Lb + Target Spiking Rate 41.0 Lb 9991% of Target Rate
Project ID: Latestate PDT TC# 1 Run#2 Date 3/29/2006 Material: 6 gmic 5 Lation Based on Mrn 10-9 Rates
∴Start Time //:/5 ∴End Time //:/5 = 348 Min
: Start Mass 77. 6 + (124, 20 0.70 16/20=0,7016 = 75.3
: End Mass 39,3+ (Gune 0.68/1/20,0= 4.08/6)=313.38
∴Start Mass
∴End Mass
Δ Mass = <u>313.33 -78.3</u> = <u>235.08</u> Lb
Spiking Rate = 235.08
Target Spiking Rate for Test Condition
Spiking Rate 48 Lb + Target Spiking Rate 44.5 Lb =0.997% of Target Rate

Proje an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

N V E a Saiking	Page Plum Idoné	ification She	of (4st choot)					
Data ID Date: MC 200 C TC#: Num#: 2	7 002/12/	#31	Run# 1	Spiking Material (ID)		tes solut	utton	Page 1 of 2
Equipment ID:	Spiking Manager © #:	r⊚# 7	Ol dund	LMI#			1	Weigh Scale #: F- 💉 MFMがる 🌣
Spiking Data File Name:	me:	4512	K	Weather Conditions:	24,AC 1 :	Į		
Notes:)			Line and the second sec
	1.0%	16/14	٥	0.5533	tolour	5		
Spiking	Spiking Rate Data:			Spiking	18	ns:		+
Time (T)	Mass (M).		Short-Term Average			Cum Run Average	Average	Ser. 17:00
00:00	97	ΔMi	ΔT,	Rate _i = $\Delta M_i/\Delta T_i$	ΣιΔMi	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$	Comments/Observations
40:00	28.80							
ä	1	5:5	20xm	520				5.0
2 10:04	1 1	+	10/2/02	~		}		601
3 10526	6.235	5.6	224cm	0.25				٠,
4 10336	28/19	×	(march	* 0				21.3
	363.6	4.3	150010	0.43				25.4
6 10:50	247.0	3.6	10 MM	250				27.
711:00	383.5	325	(concer-	0.35				22.7
3 / 1/1/8	384.8	CE.	home,	0,20		Jain		36.5
9 11:26	-225.S		124.0	n	10%	tour	Sign	20.6
10 11 . 36	533.2		Brown	62.0	197	21 MIN	03591	
11 11 1	330.2		10 run	550	9.47	grand	6.32	46.0
12 // 1/0	Π.	l	lound	0.34	13.32	affered	. 226	44.5
	223.3	なが	mosol	6.35	16.87	Steed	0,33	2.25
Ì	8.9 5		Como	380	2067	Collecto	0-338	5.02
15 60 00	256	7	Sinol	0.39	14.57	71410	25.0	100.4
000	┥,	V.	Sinol	9.40	18.87	Placer	8. 3. Y	104.7
9	-	(v)	10/20	0.50	37.37	15	6.35	(48.4
6	٠l٠	1	Come	0.50	36.95	101	0.54	7/.1
19 12 26	1 .	٠. د د د	ino	6.57	37.67	///	B. 239	25.80
*	204.7	3	100	82.0	12.47	121	0.334	75.5
20.00	2010	N	20	6-3	ムパシカ	181	6.33(<i>b.</i> 0
-	202							んない
\v	2000	6.2	3.00	6.30	1967)S/	0.328	855.7
Ġ	Ň		75	0.37	1201	9	0.328	000
のいた。	300	١.	20	26.0	50.07	121	6-327	- 1
	2001 C	ių.	300	0.3 C	161165	g (0.3260	95.3
27 10:26	2006	7	no	12-51	62.57	(4)	0327	48.11
								Service Control of the Control of th
59			//	0				2001
ESS Sniking Technician Signature:	ician Signature:		100	They	-	;		Date: 3/2 9/200
								Hothius (had all an and so shown a sold be some and

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Proje .an: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

	Page 2 of 2			ations																										
	<i>u</i>			Comments/Observations		(02:3	b	104.3	113.0	160	120,4	124.5	128.2	126.1	1.60.1	178.0	1.50	, , 6, ,	148.0	156,0	154.5								1	Date: 7 7/200 C
	16/10, Solution		Cum Run Average	Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$		0.323	6.324	0.230	6,325	0.327	0.329		0.334	0,336	0.337		0,054	0, 3,400	0.334	0-3307	0.3338									
	Spiking Material (ID):	Spiking Rate Calculations:	Cum Rui	$\Sigma_i \Delta M_i$ $\Sigma_i \Delta T_i$	161 2500)	102 1001	1200	71.87 221	15527 231	78.97 241	82.77 251	2001	9057 271	74.67 281	48.77 291	2	105.67 311	125 12:501	110.57 331	112,77 3551	122 1184111									
ach run)	Run#: 7	Spiking	erage	Rate = $\Delta M/\Delta T_i$		3.5	DE 30	36.0	25.0	16.0	5000		0.38	0.41	0.67		0.00	C,3 (81.Q	27.0	157.C)							,	West
ent sheets for e	\ #21		Short-Term Average	ΔTi		(orig	1001	1000	70	mal	10/01	(con	lon	104	10 /2		2000	1000	700	7	1								0	Sora
(2nd & subsequ	Date. 3 12 9/200 C),	ΔMi		3.5		2000	3.00		2 2 2	0%0	38	(A) (A)	- % 0		000			3	7777 477									n Signature:
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	Data ID Date:3 /2	1 ຫ	Time (T) Mass (M),	00:00	7:122 02:01	1126 28:121	-c2 94:11	14:30 1/20	N:06 2103.	1516 257.4	15:20 200.0	١,	15:40-248.2	15:50 24L	16:26 246.	1010 23	1626 233.	1636 7300	1.80	5 22	ich									ESS Spiking Technician Signature:

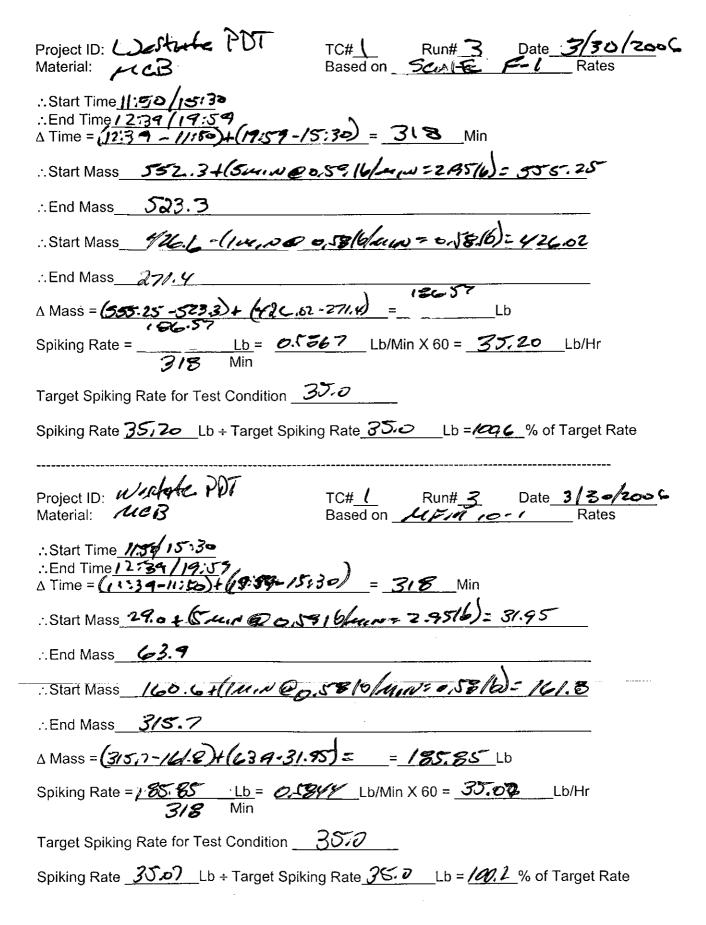
The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Project ID: Weshite PDT TC# L Run# Z Date 3/29/2006 Material: Phlanii Solution Based on Sale F-5 Rates
∴Start Time (1:15 ∴End Time 17:00 ∆ Time = 17:00 - (1:15 = 345 Min
: Start Mass 339.8 + (1 Mario @ 0.37/6/20 = 0.37/6)= 340.17
: End Mass 226.0 + (4m, 20 000 16/100 = 1.76/16) = 224.24
∴ Start Mass
∴End Mass
Δ Mass = 340.17-224.24 = 115.93 Lb
Spiking Rate =
Target Spiking Rate for Test Condition
Spiking Rate 20.16 Lb ÷ Target Spiking Rate 20.69 Lb = 100.8 % of Target Rate
Project ID: Salate PDT TC# Run# 2 Date 3/29/2006 Material: Pbk." Solution Based on Misur 10.4 Rates
∴Start Time 1(:15 ∴End Time 17:50 ∆ Time = 17:00 -(1:55 = 3 \(\) = 3 \(\) Min
: Start Mass 34.3 - (1 min @ 0.26 15/20 = 0.3616) = 35.94
End Mass 150.0+(4 mu @ 0.45/b) mu = 1.816) = 15/1.8
::Start Mass
End Mass
Δ Mass = 157.8 - 35.9 = 115.86 Lb
Spiking Rate = 1/5.86 Lb = 0.3358 Lb/Min X 60 = 20.15 Lb/Hr 345 Min
Target Spiking Rate for Test Condition 20, 00
Spiking Rate 30, U Lb + Target Spiking Rate 2000 Lb = 1,00,7% of Target Rate

Attachment IV Field Spiking Data

- C. Field Spiking Log Sheets (Field Data) and Spiking Rate Calculations for:
 - 3. Test Condition #1, Run #3:
 - (a) Mono-Chlorobenzene,
 - (b) Perchloroethylene,
 - (c) Organics Solution, &
 - (d) Metals Solution.

Projec ...: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006


Z.K.	5.a Spiking L	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	ification Shee	t (1st sheet)				i		
Data ID	ID Date: 3/	3/30/200 (2	/ 1C#: /	Run#: 3	Spiking Material (ID)	1): 160	8			Page 1 of 2
Equip	Equipment ID:	Spiking Manager © #:	/	Ol dmnd	► LMI#	Neptune#	Moyno#	•	Weigh Scale #: F- 🖊	MFM# 6 1
Spikin	Spiking Data File Name:	ne: 1100	76123		Weather Conditions:	5:				
Notes:										
		20/6/16		0 18:	W17/1/01/22					
	Spiking R	٦				Spiking Rate Calculations	ns:		Size 11	320
<u> </u>	Time (T),	Mass (M),		Short-Term Average			Cum Run Average	Average	575/000	ATVO JA . F
-	00:00	् न	ΔM	ΔTi	Rate _i = $\Delta M_i/\Delta T_i$	Σ _i ΔM _i	$\Sigma_i \Delta T_i$	Run Ave; = $\sum_i \Delta M_i / \sum_i \Delta T_i$	S S S S S S S S S S S S S S S S S S S	omments/Observations
0	02:04	608.6								- Laboratoria
-	10:46	298.7	6/51	25.600	26,0					
2	11:06	5-78-3	12.4	Cheere	6.57					
က	17:0	575.9	17:3	apreses	09.0				11.3	
4	11:35	J.4.1	871	Journ	0.59				23.1	
5	11:11	5525	8.9	Mon	65'0				29.0	
9	SS ://	552.3	6	NINGI	200	2,53	5,440	6.54	34.9	
7 [12:09	5410			•		194111			
8	12:15	576.4	11.9	wire	21.5.55	14.25	Buch	0.53%	248	
6	12:35	525.8		Jours 12						
1 0	12,39	523, 3		344100	55.0	2(.95	yare,	0.65	63.3	
Ξ	2000	30.6	0							
15	15720	437.0	4	34.0	9, U.S.				10.2	
13	15:27	126.6	7:4	9410	6700				160.6	
14	62:51	420.8	5.8	Farter on	Ort 8	132.17	585.12	0.62	164.4	
5	15.49		200	minal	\$5.0	1.3.07	(-5 MW	0.63	172.3	
16	15:34	409.2	6,2	000001	€S.€	11.84	WW 36	23.0	1720	
17	10:08	5 × 5	٤	LONGI		18.30	11/28	6,617	1836	
2	61.7/	240.0	7	Come	350	57.97	98. Mes	6.6	159.3	
19	14:22	2.20%	10.	2000	85.0	12:50	10 true	8000	195.1	
20	16:39	3.5	5.7	10/11	6.57	11.47	118720	Ø. 600)	200,8	
51	マインロー	8 /02 %	2	or in a	450	177.17	129 AM	D. 100	200.S	
22	11:50	275.0	5.8	10/20,00	0.58	82.97	このイデ	0,00	212.2	
R	2:5	269.2	04 Kg	Lowerry	250	88.77	196 luc	25.53	219.0	
24	17:19	365.4	Sin	iomi	o N	5%5J	158 pue	0. 1900	23.2	
52	62:61	327,5	8.9	Journ	255	100.47	1.08/11/20	6.35	22.9.6	
56	17:39	251.9	5,6	colling	2/20	1000	17901.3	0.559	235 2	
27	10:48	45.7		WINO	2796	112.27	188 nn	0.597	21. 1	
78	17:59	340.3			6 KY	117.67	(98 pur	0.574	256.00	
53	60.3)	334.9		10 din	2,57	133.00	205111	1.33/	354.2	
ESS	ESS Spiking Technician Signature:	an Signature:	1100	Correct Market	1				Date: 7 / 3 0 /200 6	و
	\ \ \ \ \))								

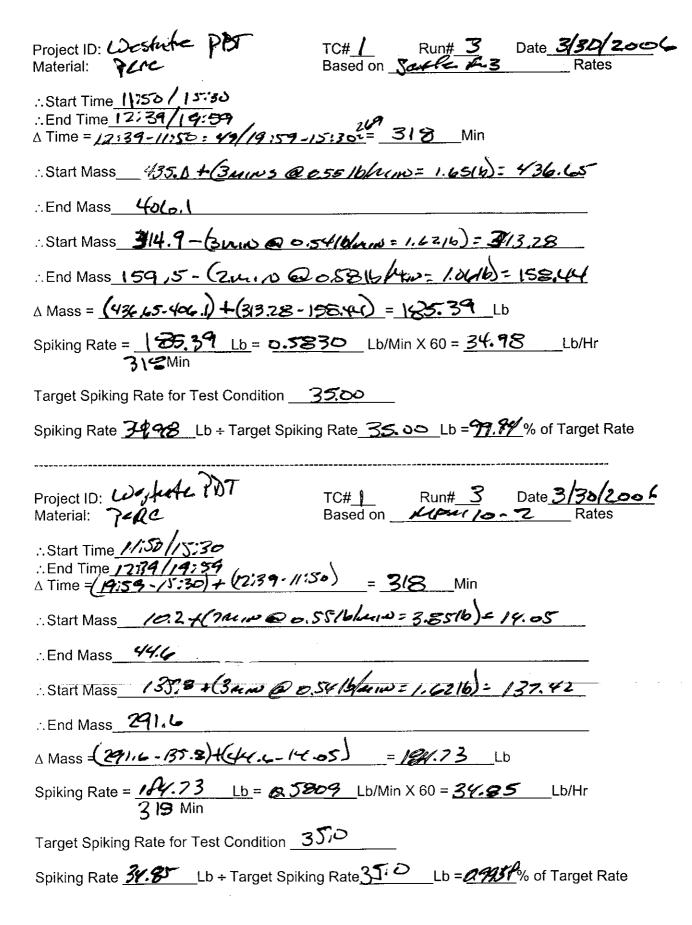
The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec.n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

Date: 5/2000				The last	N Care	ignature:	ESS Spiking Technician Signature:	ESS Spikir
					0			
				- Angelo				
		į						
1000								
					,			•
315.1	25.2	N N	18081	450	MINOI	2.7	371.4	19:59
310.0	0.00	200	1,00.87	52	'some	57	277	14/4
23.80	0.70	593	1.8.17	0.50	10/11/01	20	287 8	45.61
790.5	520	7 000	12 27	1	10111	7.7	1800	17.79
292.8	18:0	270	163.67	イング	10411	200	294 3	19.19
7.87.0	650	266	1000	0.80	10.414	viv	0.000	19:00
12/2	17.649	400	17.00	0.19	0.0001	201	3/1/2	10,01
200.00	0.54	23%	140,57	6.3	10min		312.4	18:30
165.9	11/10	228		6 2 6	10,77100	2.2	373.2	18.29
Ň	650	218	124.87	150	10.01	2.0	38.1	14:19
252.2		208	123,00				334.9	60:01
Comments/Observations	Run Ave, = $\Sigma_i \Delta M_i \Sigma_i \Delta T_i$	$\Sigma_i \Delta T_i$	S.AMi	Rate = $\Delta M/\Delta T$	ΔΤ.	ΔMi	<u>.</u> -9	00:00
956 1959	Average	Cum Run Average		/erage	Short-Term Average		Mass (M),	Time (T)
			Spiking Rate Calculations:	Spikin			Spiking Rate Data:	Spiking
Page 2 of 2	Mod		Spiking Material (ID):	Run#: ⋝	1C#: {	2002	Date: 3/3-12006	Data ID
	State of the state			ach run)	IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	& subsequi	piking Log (2nd	IV.K.5.b S

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec .n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006


Spiking W Spik		Pere	Neptune# Moyno# - Weigh Scale #: F- 3 MFM#10.7	litons: Landerstand		3 (6/40.1)		Cum Run Average	$\Sigma_i \Delta M_i$ $\Sigma_i \Delta T_i$ Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$ Comments/Observations					3.6	1	1.65 3x10 0.05 15.6	10 50 02 11 11 1000		30.15 49 6.623 44.6		(29.6		3.78 74 ESC M.2	17 689 14	46.07 76 0.605 153.8	51,33 86 0.596	16%	(263 los 0.39 no.2	(8.03 116 0.546 05.0	(26	79.13 136 0.562 1967		gais 156 05% 198.2	9653 166 0581 2034	2/1/2	107.03 186 0.500 215.5	196	2000
1 Log & Run Identification Sheet (1st shee 21 2000 L TC# 1 Run# Spiking Manager © #: 2 Pump III Name: 25 Pump III Nam		Spiking Material (ID):		Weather Conditions:		383 16/Le.	Spiking Rate Calculati	<u>o</u>	= ΔM _i /ΔT _i		J	0.575	, J	0. S.L.S.		50.85	- Ka C 10 EC	C:: ()	╁		1	25	٢. چېر	£3	6.54 46.03 ·	0.53 51.33			0.50	ري/	5.62	0.58 84.63	3	1 58 96 53	1021	0.57 10%	1 2 C	1 0 is 3 100.13 5
m /1 Z O	Log & Run Identification Sheet (1st shee	21 2200 TC#: 1 Run#:	nager@#: 7	Desc 70.03	a American	191	_	Mass (M).	Lb YM	Ce	1212	.3 11.9	63. 1	11.12	5 46	5.0 5.3	5.9		-	V	7.9	9 6	1 45 5	2 6 3 1	1854	5.3	5.7	_	275,8 5,4 10m	70.1 5.7 7	0	8.4 5.88		47.3 58	416 5.7 1	1 32 8 25	1 85 0.088	1222 7 63 A low

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

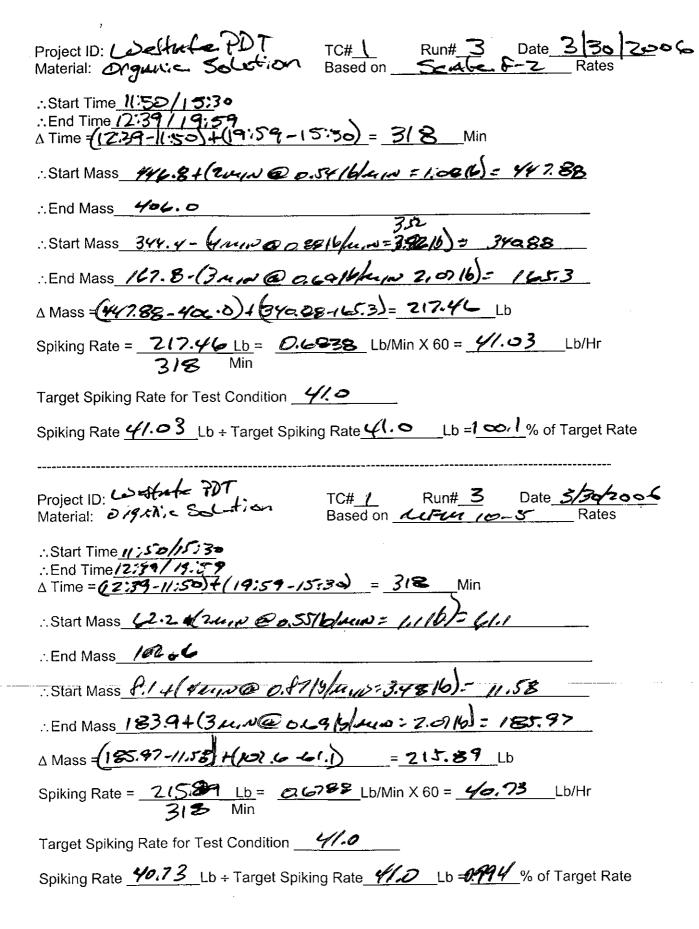
Projec in: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

	Page Zof Z			ons																										
			5723 (4,54	Comments/Observation	227.5	7,55.	2,4.6	2627	225.0	7.86.8	262.60	707	274.1	20.00	205.0	341.6	5.795					A STATE OF THE STA		11.00		With the second			 Doctor Con 1200	Date: 31/C/1200/20
	ere		Average	Run Ave = $\sum_i \Delta M_i / \sum_i \Delta T_i$	0.583	6 543	0.5055	0.5850	0.5738	0.3832	D.5335	05436	03.37.39	0.5855	0.5034	52850	15 XX 27								1					
	Spiking Material (ID):	ulations:	Cum Run Average	$\Sigma_i \Delta T_i$	3 206	23 216	2 226	3 236	3 246	63 256	2 266	2 276	2 28C	290	13 366	33 210	3 226	7	3					- Constant			****			
	Spiking Ma	Spiking Rate Calculations:		$\Sigma_i \Delta M_i$	1991	1/1/0	131.0	177.7	1476	1491	155.7	1010	1	172.7	17P. 5	. X	100													2
ach run)	Run#:V		erage	Rate₁= ΔMi/ΔTi	,	0.79		6.79		Ų	7	J-5-0	0//0	0.53	150	65 ×	0, 0				i i Mala									1000
IV.K.5.b Spiking Log (2nd & subsequent sheets for each run)	10#3.1		Short-Term Average	ΔΤ,		15,00	16.01.0	101611	loure	10 MM	10411	10.001.	100110	COMIN	consider	10001	10.00													
& subseque	2002			ΔMi		V.9	7	20	5,0	28	X1.4	S. &		5.4	3 4	00	1 1 1 1 1 1 1 1 1 1	7												gnature:
iking Log (2 nd	Date: 3 13012006	Spiking Rate Data:	Mass (M),	q q	233.7	2(7.8	20,0	K	2002	194.4	15/5/6	1821.4	177.0	120.1	6.37		インン													ESS Spiking Technician Signature:
IV.K.5.b Sp	Data ID [Ď	Time (T)		10:11	111	14:27		14.5%	1857	19:00	11.1	19:27	19:37	10:01	12:0	10	3												ESS Spiking

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec ,n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

L										_
≥	IV.K.5.a Spiking Log & Run Identification Sheet (1st sheet)	og & Run Ident	fication Shee	t (1st sheet)				h		_
റ്	Data ID Date: 9	Date: 442006	^ #51	Run#:	Spiking Material (ID)		rainic S	chetou	Page	_
យ	int ID:	Spiking Manager © #:	r@#:	Ol duny	##]	Neptune#	Moyno#	-	Weigh Scale #: F- 2 MFM# /2	_
တြ	le Nar	BE: Overwise	Mile TE	183	Weather Conditions:		161			_
ĺž	Notes:									-
			, , ,			•				-
			A 191 1/A		11 .80.0	When				_
L_	Spiking Rate Data:	ate Data:	•		Spiking	Spiking Rate Calculations	ns:		START 11:50	
	Time (T),	Mass (M),	:	Short-Term Average	verage		Cum Run Average	Average	di	
		` 	ΔMi	ΔTi	Rate: = $\Delta M_i/\Delta T_i$	Σ¦ΔM;	$\Sigma_i \Delta T_i$	Run Ave; = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$	Comments/Observations	_
0	10.	1 25 ×				.4				_
~	Ľ	1.66/2	15.7	25	0628				15.6	_
7		AB. 3	12.8		0.64				24.9	-
က	11:12	473.1	27	0/	21.0				かいか	-
4	11:32	459.1	m	20	0.70				7.6%	•
3	1	45.7	6.7	10 14.11	650				55.07	_
9	11.52	8.9%	1.15	Juno/	25.0	301	Zurid	2.00	62.2	•
1	17:06			V			4		20.00	-
8	8	434.6	2:21	JOHN	10.0	13.28	22peil	0.003	74,4	_
ი 2	/					•				_
2	وا // 36 ا	do				11:25	42010	0.85		-
Ë	10.11	300						· ·	100C	_
12	2 1/6	١.٨	1.7	12.00	000					
13	15:21	41111	00 00						O.	_
4	15.26	2356		John Comment	088	278	Comin	6.56	8.3	
5	12:47	28.2	4	10,500	5.82	8001	1600	8.655	22.1	_
19	12	2000	Ι.	Sixal	25.0	59.76	75/	0.70	275	_
7	7 110:06	2.0.3	6	701	20	1246	PS		33.2	
82	10	2/3.8	15.00	50,	55.6	2000	78/	57.0	36.7	
49	9/1/2:2/0	308.7	5,60	10	€.50°	74.55	105	0.00	41.3	
8	0/1/0.26	202.6	,	101	ه. کرد	1218	115	0.6-36	490	_
7	1	297.0	300	から	0.50		121		3000	
22	2 110:510	291.5	1.	3	0,83	37.58	735	0.675	0118	
23		265.2	6.3	300	6.62	97.55	145	500,0	60,3	-
77	10.10	27/2	1	140	0.00	103.95	155/	200	73.60	_
25	17	4200	1001	10.01	200	110.35	165	0.06	, č	7
82	76/4/19	205.7	L.	1014	0.67	50 211	175	0.063	04.00	
27	10.01	1583	72	1001	27.0	124.45	188	0.672	435	
82	8/1/2	25.1.	0.0	1041	0,00	13005	195	5.697	lev.,	~~
83	010:11 6	SME	7.4	wall	120	138 45	205	0.675	(0).5	1
Ú	ESS Spiking Technician Signature:	ian Signature:		1-14001	MILL				Date: 3 / 30 1200 6	_
	× -	<u>.</u>				-			#10 define (#1000 of the III) concerns to the concerns to	


The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

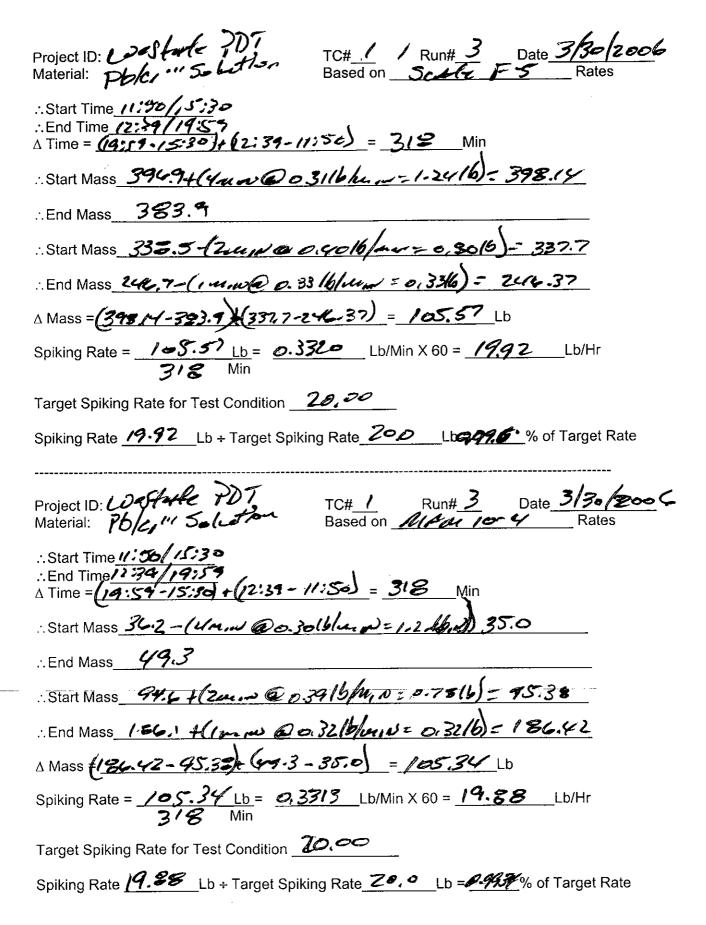
Projec. 4n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

19:59	Page of 2	11:00	が、など、	┪	107.5	7.5%	16.00	(78.5	135,80	149.4	169.1	166.6	163.4	170.5	(7/-(1834	1,00,0													Date: 3 / 59200 6
	rainic Solution		Cum Run Average	Run Ave = $\Sigma_i \Delta M/\Sigma_i \Delta T_i$	0.675	0.676	0,674	0.68	0.6806	0.0MO9	11/00/1	O. Last?	0000	0.622	0.080	0,082	25830													
	1		Cum Run	$\Sigma_i \Delta T_i$	Bos	215	225	235	26/5	2557	Zhas	275	201	295	300	218	732 V													
	Spiking Material (ID):	Spiking Rate Calculations:		$\Sigma_i \Delta M_i$	5hBE1	25:53/	150.65	159 85	16.75	173 65	1.A. 65	147.55	199.55	1201.23	708.15	SUM	-10166	0.12												
ich run)	Run#:	Spikin	erage	Rate₁ = ΔM/ΔT₁		0.71	6,73	0,70	69.0	67.0	06,0	0.69	0.08	0.03	6.69		10,00	000				200-07					AATT .		0	UNI
IV.K.5 b Spiking Log (2nd & subsequent sheets for each run)	10#. /		Short-Term Average	ΔT_i		1000	10Mm	10/11/01	louin	wind	(como)	WMIN	1011,2	almo!	chimol	Carrio	(0)111-1	101110												Modell
& subseque	200 €	•		ΨV		7.1	7.3	2.0	6,0	5.11	00	6.9	40	6.9	6.4	1.7	10/	9												ignature:
ikina Loa (2 nd	Date: 3/30 /200 6	Spiking Rate Data:	Mass (M),	` 	S. M.B.	2	2399	222.9	616.0	209.1	1.00	1.95.2	15431	18/18/	124.6	16.7 G		100							į			i		ESS Spiking Technician Signature:
IVK 5.b Sp	Data ID	0	Time (T)	00:00	1000		10.26	18:310	10/4/10	10.50	19:00	19:16	13:16	13.46	19:46	12:21	010									,				ESS Spiking

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Rev 2, 10/14/2004

Projec. n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006


					_	$\Sigma_i \Delta T_i$ Run Ave _i = $\Sigma_i \Delta M_i / \Sigma_i \Delta T_i$ Comments/Observations	120	6.2	23.0	197	35.6	36.7	20	7	49.3			386	90.5	00.00	0.00	371	, , N	300	3(.5	35-7	2000	1	N. N.	17.	120%
Spiking Material (ID): Pb/c Selection Moyno# Moyno#					Į	Run Avei =										1	1 1	Ţ	\dagger	1	1 0		1	+		1	+	+		7	7
Spiking Material (ID): 75/6. S LMI# Neptune#					Cum Run A	17						0,3/	200	0,537	8.2.8					000	5.25.7	5.527	\$25.00	0.522	0,336	0340	0.3463	0.25	0.10	0.532	0.335
Spiking Material (ID):			1	ž		Σiγ						dien		Jelan 12	Jano	2				Chall	3000	dorein	101 100	2000	137416	14741	157 400	16 141	1111111	67 C 7 10/10	Fer with
	ıs:		to free in	Spiking Rate Calculations		$\Sigma_i \Delta M_i$						1.24		2/0	14.34				2.5	1000	1000	Sili	75.55	1000	1000	50.00	17.65	10/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	3/3/	3.13	100.00
Run#: 3	Weather Conditions:		0.3333 /6		erage	Rate _i = $\Delta M_i/\Delta T_i$	6670	J S	420	0.38	4-35	0,31		0,31	17. O			0.41	0,40	0.35	0/50	1	5,35	950	0 t UN	0.39	1/20	0.36	50,50	777	0.42
51 i)	>		0		Short-Term Average	ΔTi	0.47.0	1000	97.10	20mles	1000.0	DOMINE		700007	0 44.4			sprol	rinol	Comis	Minol	3/1/0	Kans	isalina	3 3 3	21270	KONTON	winds	3,20	10111	Nous
TC#: /	,7210		The			ΔMi	100	0,0	2.1	87		172		69		j		11/4	.	<i>y</i>	い い い	N	3.6	3.6	100	2.9	177			0	3,8
Date: 3 spiking Manager © #:	266		16/5	te Data:	Mass (M),	(a)	467.3		110.3	165.5	1/20.0	24.0	202.1	200	2000	ייו	1/2/	10.00	374.5	3310	277.5	JI	515.7	اء	200.00	201.4	397.5	27.1	210.00	いかい	しかはい
Data ID Date: 3 200		1]		Spiking Rate Data:	Time (T),	00:00	16:13	2000	11.14	1.54	11:34	15:11	13:61	17:10	12:30		100	X	15.38	80:51	3	200	15.03	5:38	16.50	17:08	17:18	17:28	11.30	11/10	17:00

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

Projec .n: Phase IV.K. Field Spiking Log Sheets: Project ID: 2006 Westate CPT. Date Prepared: 3/8/2006

1 11	rayezu		ations																	Ì						·			
		END 19:59	Comments/Observa	1521	15.4.60	1000	1103.6	1300	11.4.9	1,001	174.2	SK,	18:18	186.1	189.3						in the state of th								Date: 31 24200
410 9	1111 - 111 (101)	Average	Run Ave, = $\Sigma_i \Delta M_i \Sigma_i \Delta T_i$	CN 338	0.46	2.33	0.223	0.356	0.332	0.337	0,533	5.132	0.532	0.332	0.132				ie i	- International Control of the Contr									
Non-state of the state of the s	Spiking Material (IU):	Cum Run Average		14 30) 4W	12000	11 axi dula	100 PM	14 J. 11/2	ay 2/1/2/20	WINLLE 31	44 287111V	14 39.Che	74 307 MIN	4 317 UN	My 3 DIMM														
	Spiking		Rate _i = $\Delta M_i/\Delta T_i$ $\Sigma_i \Delta M_i$	I ≴	0.12	100	2000	N.	25.	0.32 192.	0,32 25	S2 91.	2.33 101	1.05 1.0K	108.														Mark
ets for ea		Short-Term Average	ΔT _i Rate		<u> </u>	1	0 0000	ion Cine	(O11, N O.		2775	CO (MILLO)		10MW O.				_										0	A BUST
og (2nd & subseque	Date: 5 / 5c / 200 C	; (M),	p QMi	5	i	1/20 M/	2000	6.3 23	5.0 3.7	7. P 23	1.57	1.3 1 1.2	10 2 3	5516	25 32														ician Signature:
IV.K.5.b Spiking	Sniking Rate Data:	Time (T) Mass (M),		18:01 Md	1 7	The William	10 4 10 A	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10:01	19:14 35	Mr. July	14 78 AC.	1649 21	16.50 34	_	. "													ESS Spiking Technician Signature:

The information contained in this document is confidential and proprietary to ESS. It is provided to the user for specified and limited use. It may not be reproduced, exhibited, transferred, or used for any other purpose (all or in part) without the express written permission of ESS.

- A. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Material Composition and Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #103, Phoenix, AZ, May, 2004
- B. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Field Spiking Rate and Overall Specie Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #102, Phoenix, AZ, May, 2004

- A. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Material Composition and Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #103, Phoenix, AZ, May, 2004
- B. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Field Spiking Rate and Overall Specie Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #102, Phoenix, AZ, May, 2004

Attachment V. Effect of Measurement Uncertainty on Spiking Rate Uncertainty

A. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Material Composition and Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #103, Phoenix, AZ, May, 2004

THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING MATERIAL COMPOSITION AND SPIKING RATE UNCERTAINTIES

Bill Schofield, PhD, PE Engineered Spiking Solutions, Inc. LaPorte, Texas 77571

Anthony R. Eicher Focus Environmental, Inc. Knoxville, Tennessee 37923

Sean O'Brien TRC Environmental Corporation Houston, Texas 77043

ABSTRACT

It is not unusual for an agency, a client, or even a supplier of spiking materials to assert without justification that the only way to "know" the composition of a spiking material is through sampling and analysis of that spiking material. While this approach [which will be identified herein as the sample and analyze method] offers the advantage of determining composition independently of the spiking material supplier, it suffers the disadvantage of large measurement uncertainties resulting from inherent limitations in the analytical methods employed. However, there is another, fundamentally different, approach which is based on long standing principles of analytical chemistry and provides spiking material compositions with significantly smaller uncertainties. Conceptually, this approach is analogous to an analytical chemist preparing a laboratory standard for calibrating a sensitive analytical instrument. This approach, which will be identified herein as the laboratory standard method for preparing spiking materials, provides very accurate spiking specie concentrations.

Estimates of compositional uncertainty with the *laboratory standard method* developed herein are based on: (1) the test-specific details of a Case Study (e.g., a 2003 TB conducted at a private, US based HWC Unit), and (2) a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties to produce the largest cumulative compositional uncertainty. Conversely, the assumption was made that no blatant operator mistakes were made since: (1) all measurements affecting composition were straight forward weight measurements using non-interpretive digital indicators, (2) the material preparation procedures were simple, and clear, (3) the documentation and record keeping procedures used were thorough, comprehensive, and consistently followed; and (4) the preparation procedure had built-in cross checks which included the utilization of two independent measurement observers and data recorders for most measurements. The premises on which the uncertainty analysis is based are explicitly identified, and rationales provided for their validity in the HWC Spiking context. Also, due to the small magnitude of all first-order uncertainties, second order uncertainties were ignored. Using first-order uncertainties developed for the case study example, the validity of this assumption was demonstrated.

The compositional uncertainty with the laboratory standard method is smaller (e.g., on the order of \pm 0.1%) than is possible with the sample and analyze method using commercially available analytical methods. Depending on the method, matrix, and specie, the measurement uncertainty with commercially available analytical methods could vary from \pm 5% up to \pm 50%, assuming no uncertainty associated with sample collection and preparation.

This paper: (1) describes the spiking material preparation procedures used, (2) develops the apparent concentration of each spiking specie using the *laboratory standard method*, (3) describes the calculation procedures used to estimate uncertainty and presents the resulting estimates of uncertainty of spiking specie concentrations, (4) presents the impact of compositional uncertainty on spiking rate uncertainty, (5) estimates measurement uncertainty for the analytical methods most likely used to analyze spiking material composition in a HWC testing context, (6) presents the resulting impact on spiking rate, (7) presents a comparison of the composition and spiking rate uncertainties based on the *laboratory standard method* to those based on the *sample and analyze method*, and (8) proposes an approach for verifying spiking material composition independently of the material preparation firm should that be required in a regulatorily sensitive circumstance.

INTRODUCTION AND BACKGROUND

It is not unusual for an agency, a client, or even a supplier of spiking materials to assert that the only way to "know" the composition of a spiking material (e.g., a metal solution, an organic solution, a dispersion, and/or a "neat" POHC) is through sampling and analysis of that spiking material. While this approach [which will be identified herein as the sample and analyze method] offers the advantage of determining composition independently of the spiking material supplier, it suffers the disadvantage of large measurement uncertainties resulting from inherent limitations in the analytical methods employed. However, there is another, fundamentally different, approach which is based on long standing principles of analytical chemistry and provides spiking material compositions with significantly smaller uncertainties.

Conceptually, this approach is analogous to an analytical chemist preparing a laboratory standard for calibrating a sensitive analytical instrument and requires that one:

- 1. Know, with as much accuracy as possible, the purity of each reagent used in the preparation of a laboratory standard; especially as it relates to the chemical specie to be analyzed;
- 2. Use highly accurate, and carefully maintained measuring devices which are calibrated prior to use with NIST traceable standards; and
- 3. Maintain careful records for each step in the preparation of the laboratory standard.

This approach, which will be identified herein as the *laboratory standard method* for preparing spiking materials, provides very accurate spiking specie concentrations. The concentration uncertainty with this approach is smaller (e.g., on the order of \pm 0.1%) than is possible with commercially available analytical methods (i.e., which, depending on the method, matrix, and specie could vary from \pm 5% up to \pm 50% without consideration of possible sample collection and preparation uncertainties).

Large concentration uncertainties are especially likely in spiking applications in which the use of SW846 and similar "low [analyte concentration] level" methods is required. As a result of large dilutions, these methods are generally not suitable for obtaining highly accurate analyses of the high analyte concentrations frequently encountered with spiking materials. Further, the *laboratory standard method* is expected to have smaller uncertainties than commercially available analytical methods which have been designed for analysis of samples with high analyte concentrations, due to the very large magnitude of the uncertainty advantage compared to low level methods, and since all of the analytical method uncertainties remain with high level methods except those associated with sample dilutions.

Estimates of compositional uncertainty with the *laboratory standard method* developed herein are based on: (1) the test-specific details of a Case Study (e.g., a 2003 TB conducted at a private, US based HWC

Unit), and (2) a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties to produce the largest possible cumulative compositional uncertainty. Conversely, due to fact that: (1) all measurements are made with an absolute measurement method [based on the most fundamental parameter, e.g., gravity = mass, paraphrased from Reference (4)], (2) the use of non-interpretive digital indicators for all measurements, (3) the simplicity and clarity of the material preparation procedures used, (4) the use of thorough record keeping for each procedural step and measurement, (5) the experience and training of the personnel weighing the ingredients and preparing the finished spiking materials, and (6) built-in procedural cross checks including the utilization of two independent measurement observers and data recorders for most measurements; blatant operator mistakes are assumed to not be present. Also, due to the small magnitude of all first-order uncertainties, second order uncertainties were ignored.

Please note that a significant number of calculations are made in this uncertainty analysis. To avoid rounding errors and to retain the integrity of the uncertainty estimates developed herein, a relatively large number of significant figures are carried through the calculations and presented in the tables. The authors are not claiming the accuracy &/or precision in these figures that would normally be implied by the standard significant figures rules.

Engineered Spiking Solutions, Inc. (ESS) was retained to provide spiking materials as well as all necessary spiking equipment, and services for a Trial Burn (TB) which was conducted on a confidential, non-commercial, HWC Unit during 2003. The spiking materials used were: (1) a TiO₂ Dispersion (@ a nominal 25wt% Total Ash), and (2) a Naphthalene in Toluene Solution (@ a nominal 27wt% Naphthalene). The laboratory standard method was used in the case study with excellent results.

This paper: (1) describes the spiking material preparation procedures used, (2) develops the apparent concentration of each spiking specie using the *laboratory standard method*, (3) describes the calculation procedures used to estimate uncertainty and presents the resulting estimates of uncertainty of spiking specie concentrations, (4) presents the impact of compositional uncertainty on spiking rate uncertainty, (5) estimates measurement uncertainty for the analytical methods most likely used to analyze spiking material composition in a HWC testing context, (6) presents the resulting impact on spiking rate, (7) presents a comparison of the composition and spiking rate uncertainties based on the *laboratory standard method* to those based on the *sample and analyze method*, and (8) proposes an approach for verifying spiking material composition independently of the material preparation firm should that be required in a regulatorily sensitive circumstance.

Description of the "Case Study" Trial Burn

The Case Study TB consisted of two Test Conditions (TC) which were defined as follows: (1) TC #1: Maximum Waste Feed, and (2) TC #2: Minimum Temperature (DRE). The spiking materials consisted of a 27% Naphthalene in Toluene Solution [Nap Sol] and a 25% TiO₂ Dispersion. The testing/spiking schedule is summarized as follows:

Test Condition	Date	Spikin	g With:
	Conducted	Nap Sol	Dispersion
TC #1	2003	✓	✓
TC #2	2003	✓	

The spiking function for this TB involved three spiking speciesⁱ (e.g., Total Ash, Naphthalene, and Toluene) which were contained in two spiking materialsⁱ (e.g., TiO₂ Dispersion and Naphthalene in

Toluene Solution). The dispersion was used as an ash surrogate with ash contributions from both the TiO₂ (primary) and the proprietary dispersing agent (secondary). The Naphthalene in Toluene Solution spiking material contained both POHCs, e.g., Naphthalene and Toluene.

Conceptual Basis for the Laboratory Standard Method to Demonstrating Spiking Material Composition

The *laboratory standard method* for preparing and demonstrating the composition of spiking materials is analogous in concept to the approach employed by analytical chemists to prepare a laboratory standard for use in calibrating sensitive analytical instruments:

- 1. Make every effort to know, with as much accuracy as possible, the purity of each ingredient used in the preparation of a spiking material; especially as it relates to the specie being spiked, e.g. Naphthalene, Toluene, or Total Ash.
- 2. Have and carefully maintain a range (e.g., 1 Lb, 10 Lb, 50 Lb, 300 Lb, and 1,000 Lb) of highly accurate (Measurement Uncertainty = ± 0.01% of Full Scale Capacity, or better) weigh scales for accurately determining the quantity of each ingredient used. Use the most accurate (smallest) scale practical for a given application. Calibrate each scale with NIST traceable weight standards prior to each use.
- 3. Carefully record every spiking materials preparation step to facilitate documentation of the resulting spiking material composition, and QA audits.

Premises [with Supporting Rationales] on which this Uncertainty Analysis Was Based

The following premises were used as a basis for the Uncertainty Analysis provided herein. A rationale which demonstrates the validity of each premise in the HWC Testing/Spiking context is also provided:

1. **Premise:** No Chemical reactions will occur between the raw materials used to prepare a spiking material.

Rationale: The two spiking materials used in the Case Study Trial Burn (e.g., Naphthalene in a Toluene solution, & TiO₂ in a mineral oil based dispersion) are typical of spiking materials in general, in that they well known in terms of chemistry and have been successfully used many times over a period of more than a decade. Naphthalene does not react chemically with toluene. Similarly TiO₂ and the proprietary dispersing agent are both chemically inert and furthermore would revert back to the same ash producing Ti & Si oxides in the combustion chamber if chemical reactions were to occur. Other systems, such as metal nitrates in an aqueous solution, will produce a weak nitric acid which could very well react with an unlined steel drum, will require special containers (lined or plastic drums) to ensure that such reactions do not occur.

2. Premise: Precipitation of spiking species out of solutions will not occur.

Rationale: The solubility of the vast majority of spiking species (Naphthalene in Toluene, and metal salts in aqueous solutions) is well known (Merck Index, Perry's, etc.), and have been successfully used many times over a period of more than a decade. Solutions are never prepared at ≥90% of saturation (where cost has an impact, such as a Naphthalene in Toluene solution) and usually <50% of saturation (where there

is essentially no cost impact, such as aqueous solutions). Whenever there is any uncertainty, metal salts are not combined into the same solution as a means of ensuring that common ion and similar solubility effects do not bring composition in doubt.

3. Premise:

Vapor Losses will have negligible impact on composition, or can be easily corrected

Rationale:

All solutions are prepared in closed top drums which are kept sealed except when solute is added and mixed. Almost all spiking material solutions are aqueous solutions prepared at concentrations which are far from saturation. Thus, mixing times and associated vapor losses from the closed top drums are modest. For solutions prepared with higher vapor pressure solvents (e.g., Toluene), the quantity of vapor losses can be determined (by weight loss) and, if necessary, corrections made.

Measurement Uncertainty with Weight Measurements

All spiking material quantity measurements [which could affect the composition of the spiking materials discussed in this paper] were made using two weigh scales: (1) a 50 Lb bench scale, Model #: CQ25R33 manufactured by Ohaus Corporation, and (2) a 1,000 Lb floor scale, Model: Survivor FB2424-1000 manufactured by Rice Lake Weighing Systems. Selected (accuracy related) specifications for both of these scales are provided in Table I.

Table I Weighing Equipment Specifications

Specification	Units	Weigh Scale Manufacturer		
Specification	Ollits	Ohaus	Rice Lake	
Capacity @ Full Scale (FS)	Lb (Kg)	50 (25)	1,000 (500)	
Divisions (d)/FS		·	<u> </u>	
NTEP ²	d/FS	5,000	5,000	
Non-NTEP ²	d/FS	10,000	10,000	
.b/Division (%FS/d)				
NTEP ²	Lb/d (%FS/d)	0.01 (0.01%)	0.02 (0.02%)	
Non-NTEP ²	Lb/d (%FS/d)	0.005 (0.005%)	0.01 (0.01%)	
	,			
Non-Linearity	0.03% FS	NA NA	0.03% FS	
Hysterises	0.02% FS	NA	0.02% FS	

- Footnotes: 1. The number of divisions/FS is an indication of scale sensitivity. For example, a division is the smallest weight increment discernable by the weighing system according to a given set of accuracy, calibration frequency, and environmental condition requirements.
 - 2. NTEP is a quasi governmental organization established to regulate weights and measures used for commercial purposes. NTEP certified equipment has a conservative classification to properly reflect how measuring equipment may be used in commerce [i.e., infrequently calibrated, handled roughly, operated in a wide range of environmental conditions] while still providing acceptable accuracy. For the purposes of weighing ingredients for spiking materials with very frequent equipment maintenance & calibrations, and in controlled conditions of temperatures and humidity, the Non-NTEP division count is generally considered to be representative of scale accuracy. This observation has been confirmed by extensive pre-use and post-used calibration verifications with NIST traceable standards which consistently demonstrated deviations from the standards of \leq 0.01% or equivalently d/FS \geq 10,000.

PREPARATION OF SPIKING MATERIALS: TiO2 DISPERSION

This section provides: (1) a description of the TiO₂ Dispersion preparation procedure, (2) the calculation procedure for determining Total Ash concentration and the calculated results, (3) the calculation procedure for estimating uncertainty in the apparent Total Ash concentration and the calculated results, and (4) the Certification of Composition for the TiO₂ Dispersion.

TiO₂ Dispersion Preparation Procedure (Summarized)

- 1. Setup and calibrate the 50 Lb ± 0.01 Lb, and 1,000 Lb ± 0.1 Lb weigh scales using NIST Traceable Weight Standards;
- 2. Add Mineral Seal Oil (MSO) to the Dispersion Matrix (DM) blend tank. Weigh each drum before and after the MSO transfer with the 1,000 Lb weigh scale. Record the drum gross and tare weights;
- 3. Weigh out the dispersion agent (DA) in four (4) batches on the 50 Lb \pm 0.01 Lb weigh scale. Record the tare and gross weights;
- 4. Slowly add the dispersion agent to the blend tank and mix with maximum shear;
- 5. Weigh out the activator in five (5) batches on the 50 Lb \pm 0.01 Lb weigh scale. Record the tare and gross weights;
- 6. Slowly add the activator to the blend tank and mix with maximum shear until the dispersing system is fully developed;
- 7. Drum off the DM per the Drum Weight Schedule provided. Weigh each numbered DM drum (Drum # 1-6 for the TiO₂ Dispersion) before and after adding DM and record the tare and gross weights;
- 8. Prepare six (6) batches (numbered 1-6) of TiO₂ for addition to the corresponding six (6) numbered drums of the TiO₂ Dispersion being prepared. Determine the quantity of TiO₂ in each batch on the basis of 0.3228 Lb TiO₂/Lb DM in the corresponding DM drum. Prepare each batch of TiO₂ in three sub-batches, (numbered as 1A, 1B, 1C; 2A, 2B,.....6B, 6C), record each tare and gross weight;
- 9. Slowly add each TiO2 sub-batch to the corresponding drum of DM and shear thoroughly; and
- 10. Tightly seal, label and prepare each drum for shipment to the test site.

Calculation of Dispersion Matrix (DM) Composition

The DM composition data (e.g., the weights developed in procedure steps 2, 3, & 5 above) were compiled and summarized in Table II. Table II provides the DM composition information on weight (Lb), and weight percent (wt%) bases with corresponding uncertainty estimates. The term "indicated" as used herein refers to the apparent weight or weight percent of a substance as "indicated" on the digital readout devices [indicators] employed in this work.

Table II Combosition of Distiersion Water	Table II	Composition	of Dispersion Matrix
---	----------	-------------	----------------------

	DM ¹ #1 Composition By:									
Constituent1		Weight, Lb			Weight Per Cent,	Wt%				
	Target	Indicated	Uncertainty ²	Target	Indicated	Uncertainty				
MSO ¹	4,862.00	4,832.70	± 2.60 ²	94.16	94.12	± 0.0506				
DA ¹	146.64	146.94	$\pm 0.08^{2}$	2.84	2.8618	± 0.0016				
Activator	154.91	154.98	$\pm 0.10^{2}$	3.00	3.0183	± 0.0019				
Total	5,163.55	5,134.62	± 2.78	100.00	100.00	± 0.0541				

Footnotes

- 1. DM = Dispersion Matrix, MSO = Mineral Seal Oil, & DA = Dispersing Agent.
- 2. Basis: A. Obtaining the total MSO weight involved a total of 26 individual weight measurements (e.g., gross and tare weights for 13 drums), each with an estimated measurement uncertainty of ± 0.1 Lb/weight measurement.
 - B. Obtaining the total DA weight involved a total of 8 individual weight measurements (i.e., tare and gross weights for four batches of DA), each with an estimated measurement uncertainty of ± 0.01 Lb/weight measurement.
 - C. Obtaining the total Activator weight involved a total of 10 individual weight measurements (i.e., tare and gross weights for five batches of activator), each with an uncertainty of ± 0.01 Lb/weight measurement.
 - D. Each weight measurement is assumed to have measurement uncertainties in the direction which would produce the largest cumulative positive or negative uncertainty.

Calculation of the Total Ash Drum Concentrations

The TiO_2 Dispersion composition data from procedure steps 7 & 8 above, and Table II are summarized in Table III. Additionally, measured values for ash concentration (mass fraction ash) in the TiO_2 and the dispersion agent were provided by their respective manufacturers. These values were used to calculate the total ash content (expressed as Lb ash/Drum, and wt% ash) for each drum of finished TiO_2 Dispersion.

Estimated Uncertainty in Total Ash Concentration

The uncertainty in the total ash concentration (wt%) in a given drum is comprised of four primary components of uncertainty which were estimated as follows:

- 1. The measurement uncertainty in determining the net weight of Dispersion Matrix (DM) per drum: This measurement uncertainty is estimated as the sum of the uncertainties in the two [tare and gross] weight measurements obtained in preparation procedure (step 7 above) and is calculated as follows:
 - **DM** Uncertainty = 2 [weigh measurements] $x \pm 0.1$ Lb DM [the uncertainty associated with each measurement].

Thus, the net weight of the DM present in Drum #1, for example, [see Table III, column (4)], is estimated to be:

• **DM/Drum** = $283.97 \text{ Lb} \pm 0.2 \text{ Lb DM/Drum}$.

	Indicated	DM Wt	, Lb/Dr		N	let Weigh	it, Lb/Drum			
Drum #	Weight TiO2 Disp	Тан4	T		TiO ₂		DA		Total Ash	Total Ash, Wt %
	Lb/Dr	Target	Indicated	Target	Indicated	Ash ²	Indicated	Ash ³		
$(1)^1$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
2	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
3	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
4	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴

91.92

91.47

91.65

Table III TiO2 Dispersion, Total Ash Concentration

Footnotes:

5

6

Ave

The bracketed numbers, i.e. (1), (2) ... (11), in this row signify the Column numbers which are used in the calculation explanations to the right.

283.9

283.9

283.9

284.8

283.4

283.97

91.92

91.47

91.65

- 2. The TiO2 is 98.7 wt% ash based on manufacturer's CoA.
- 3. The DA is 52.96 wt% ash based on manufacturer's CoA.
- 4. These values range from 25.2283% for Drums #1, 2, 3, & 4; to 25.2309% for Drum #5; and 25.2301% for Drum #6, for an average of 25.2290 wt % and a range of -0.0007 wt % to + 0.0019 wt %
- 5. Mass fraction of DA in DM from Table II.

376.72

374.87

375.62

Information Sources:

90.73

90.28

90.46

Values provided in Columns (4) and (6) are based on measured weights.
 Values provided in Columns (3) and (5) are targets provided in the detailed dispersion preparation SOP.

4.32

4.30

4.303

95.05

94.58

94.77

25.234

 25.23^4

25.23

Calculations:

- 1. Weight TiO₂ Disp (Column 2) = Columns (4) + (6)
- 2. "Ash" content of TiO_2 (Column 7) = Column (6) x 0.987².

8.15

8.11

8.12

- 3. DA content (Column 8) = Column (4) $\times 0.0286^{\circ}$
- Ash content of DA (Column 9) = Column (8) x 0.5296³.
 Total Ash (Column 10) = Columns (7) + (9).
- 6. Total Ash, wt % (Column 11) = Column (10) + Column (2) x 100%.
- 2. The measurement uncertainty in the ash contribution from TiO₂: This uncertainty is estimated as the sum of:
 - (a) the weight measurement uncertainty in the quantity of TiO₂ added to each drum is estimated as follows:
 - \pm Ash (Lb ash/Drum) = [two weight measurements per TiO₂ sub-batch] x 3 [three sub-batches/drum] x \pm 0.01 Lb [the uncertainty per weight measurement] x 0.987 [the mass fraction of TiO₂ which is ash] = \pm 0.0592 Lb ash/Drum), and
 - (b) the uncertainty in the Lb ash/drum due to uncertainty in the % ash in TiO_2 measurement. This uncertainty is estimated to be $98.7\% \pm 0.1\%$ ash (or 0.987 ± 0.001 expressed as a mass fraction) in the ash content measurement times 91.65 Lb $TiO_2/Drum$ [from Table III, column (6)], or:

```
\pm Ash (Lb ash/Drum) = (91.65 Lb TiO<sub>2</sub>/Drum) x (\pm 0.001 Lb ash/Lb TiO<sub>2</sub>) = \pm 0.09165 Lb ash/Drum.
```

The total estimated uncertainty in the mass of ash per drum from the TiO_2 is then \pm 0.1509 Lb ash/Drum (e.g., \pm 0.0592 Lb ash/Drum \pm 0.09165 Lb ash/Drum = \pm 0.1509 Lb ash/Drum).

Note: Consistent with the assumption that second-order uncertainties can be ignored, these two first-order uncertainties are simply added. The validity of this assumption is demonstrated below.

3. The measurement uncertainty in the weight of TiO₂ per drum: Following the logic [and the TiO₂ related math] of step 2(a) above, the weight measurement uncertainty in the quantity of TiO₂ added to each drum is estimated as follows:

```
± TiO<sub>2</sub> (Lb ash/Drum) = 2 [two weight measurements per TiO<sub>2</sub> sub-batch]
x 3 [three sub-batches/drum]
x ± 0.01 Lb [the uncertainty per weight measurement]
```

Then, following the format of step 1 above:

```
TiO_2/Drum = 91.65 Lb \pm 0.06 Lb TiO_2/Drum.
```

- 4. The uncertainty in the ash contribution from the dispersing agent: Following the logic of step 2 above, this uncertainty is estimated as the sum of:
 - (a) the uncertainty in the DA content per drum (± 0.08 Lb DA [from the fourth column from the left in Table II] divided by the number of DM drums produced in this DM lot [19 drums]) x (0.5296 Lb ash/Lb DA), or:

```
\pm Ash (Lb ash/Drum) = (\pm 0.08 Lb DA/19 Drums) x (0.5296 Lb ash/Lb DA) = \pm 0.0022 Lb ash/Drum, and
```

(b) the uncertainty in the weight loss on ignition measurement which was estimated at 52.96 $\% \pm 0.1$ % (or 0.5296 \pm 0.001 expressed as a mass fraction) times 8.12 Lb DA/Drum [From Table III, column (8)]), or:

```
\pm Ash (Lb ash/Drum) = (\pm 0.001 Lb ash/Lb DA) x (8.12 Lb DA/Drum) = \pm 0.00812 Lb ash/Drum.
```

The total ash contribution from DA is \pm 0.0103 Lb ash/Drum (\pm 0.0022 Lb \pm 0.00812 Lb ash/Drum).

Uncertainty in the Total Ash Content per Drum:

The uncertainty in the total ash content per drum is then:

```
Ash Content Uncertainty from TiO_2 = \pm 0.1509 Lb ash/Drum

Ash Content Uncertainty from DA = \pm 0.0103 Lb ash/Drum

Total Ash Content Uncertainty = \pm 0.1612 Lb ash/Drum
```

The uncertainty in ash concentration (expressed on a wt% basis) is estimated as follows (Drum #1 is used as an example):

```
Uncertainty in wt% Ash = \frac{\pm 0.1612 \text{ Lb ash/Drum x } 100\%}{(283.97 \pm 0.2 \text{ Lb DM/Drum}) + (91.65 \pm 0.06 \text{ Lb TiO}_2/\text{Drum})}
```

Note that wt% uncertainty is maximized when the DM weight is assumed to be the indicated weight minus the measurement uncertainty. [The smaller DM weight will minimize the denominator which in turn maximizes the wt% uncertainty.] Therefore, the maximum:

Positive Uncertainty in wt% Ash $= \frac{+ 0.1612 \text{ Lb ash X } 100\%}{(283.77 \text{Lb} + 91.71^{ii} \text{ Lb})} = + 0.0429 \text{ wt % ash.}$ Negative Uncertainty in wt% Ash $= \frac{-0.1612 \text{ Lb ash X } 100\%}{(283.77 \text{Lb} + 91.59^{iii} \text{ Lb})} = - 0.0429 \text{ wt % ash.}$

Thus, the TiO_2 Dispersion is $25.23\% \pm 0.0429\%$ which was revised upward to $25.23\% \pm 0.045\%$ to compensate for the minor drum to drum ash concentration difference described in Table III, footnote 4.

Certification of Composition for the TiO2 Dispersion:

Based on this information, a Certification of Composition (CoC) for the TiO₂ Dispersion was prepared (See Fig. 1 for a highly abbreviated version of the TiO₂ Dispersion CoC).

Fig. 1 CERTIFICATE OF COMPOSITION: TiO2 DISPERSION (Highly Abbreviated Format) Product: TiO, DISPERSION Composition: Total Ash: 25.23 wt %1 CERTIFICATION OF COMPOSITION: I hereby certify that the composition information provided above and in the footnote is true and accurate to the best of my knowledge and belief. Signed: W.R. (Bill) Schofield, PhD, PE Date ESS Project Manager Footnotes: Based on an analysis of: (a) the measurement uncertainty of weigh scales used to produce this material, (b) the raw material composition information provided by the manufacturers, and (c) the procedures which ESS used to produce this material; I have concluded that the composition of this TiO_2 dispersion is $25.23\% \pm 0.045$ wt% ash.

Demonstrating the Validity of the Assumption that Second-Order Uncertainties Can Be Ignored

This analysis of measurement uncertainty is partially based on the assumption that second-order uncertainties can be ignored. Using the first-order uncertainties calculated above, we can demonstrate the validity of this assumption. For example, we demonstrated above that the uncertainty in the quantity of ash from TiO_2 : (1) due to weight measurement uncertainties was \pm 0.0592 Lb ash/Drum, and (2) due to ash concentration measurement uncertainty was \pm 0.09165 Lb ash/Drum. We will now calculate the second-order ash content uncertainty due to both TiO_2 weight measurement uncertainty and ash concentration uncertainty as follows:

```
± Ash (Lb ash/Drum) = [(± 0.0592 Lb ash/Drum)/(0.987 Lb ash/Lb TiO<sub>2</sub>)] x (± 0.001 Lb Ash/Lb TiO<sub>2</sub>)
= [± 0.0600 Lb TiO<sub>2</sub>/Drum] x (± 0.001 Lb Ash/Lb TiO<sub>2</sub>)
= ± 0.00006 Lb Ash/Drum
```

Obviously, an uncertainty of 6 parts in 100,000 parts is not significant even in the HWC Testing context. Similarly insignificant results would occur with other second-order uncertainties, simply due to the very small first-order uncertainties present.

PREPARATION OF SPIKING MATERIALS: NAPHTHALENE IN TOLUENE SOLUTION

This section provides: (1) a description of the Naphthalene in Toluene Solution preparation procedure, (2) the calculation procedure for determining Naphthalene and Toluene Concentrations and the calculated results, (3) the calculation procedure for estimating uncertainties in the apparent Naphthalene and Toluene Concentrations and the calculated results, and (4) the Certification of Composition for the Naphthalene in Toluene Solution.

Naphthalene in Toluene Solution Preparation Procedure (Summarized):

- 1. Setup and Calibrate the 50.00 Lb \pm 0.01 Lb, and 1,000.0 Lb \pm 0.1 Lb weigh scales using NIST Traceable Weight Standards;
- 2. Number fourteen (14) closed top "DOT" drums as Drum #1 through Drum #14;
- 3. Prepare fourteen (14) numbered batches (numbered I through 14) of 100.71 Lb of Naphthalene Flake. Weigh each batch on the 50.00 Lb bench scale as four sub-batches in sealed containers which are numbered as 1A, 1B, 1C, and 1D; through 14A, 14B, 14C, and 14D. Weigh each container before (tare weight) and after (gross weight) adding the Naphthalene and record the weights;
- 4. Weigh each drum and record the tare weight;
- 5. Add each Naphthalene sub-batch to the corresponding numbered closed top drum;
- 6. Weigh each drum after adding the Naphthalene and record the weight;
- 7. Add 272.3 Lb of Toluene to each drum and record the weight;
- 8. Mix the Naphthalene and Toluene contents of each drum thoroughly; and
- 9. Tightly seal, label and prepare each drum for shipment to the test site.

Calculation of Naphthalene Concentrations:

Table IV below provides the measured or indicated weights of each batch of Naphthalene, and the Toluene added to each drum; the estimated measurement uncertainty associated with each weigh scale reading (indication of weight); the Naphthalene purity (per the Manufacturer's Certificate of Analysis for the lot of Naphthalene used); and the calculated apparent or indicated Naphthalene concentration (wt%, assuming all weight measurements are accurate), as well as the cumulative Naphthalene concentrations uncertainty (based on the cumulative uncertainties assuming that each measurement was made with the maximum [error] measurement uncertainty and with the direction of each measurement uncertainty [error] which would result in largest increased or decreased concentrations, respectively, e.g., which would result in the maximum cumulative uncertainty).

Table IV Composition of Naphthalene in Toluene Solution by Drum

Nap Batch # & Drum #	Indicated Nap Weight, Lb/Batch	Scale Uncertainty ¹ , ± Lb	Indicated Toluene Weight, Lb/Drum	Scale Uncertainty ¹ , ± Lb	Nap Purity Correction, Mass Fraction	Wt ^o	% Naphthale	ene
	Dividaten	<u> </u>	LIJ/DI din		Fraction	Indicated	Min ²	Max ²
1	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
2	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
3	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
4	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
5	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26,989
6	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
7	100.71	± 0.01	272.5	± 0.1	0.9985	26.944	26,914	26.974
8	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
9	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
10	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26,989
11	100.71	± 0.01	272,3	± 0.1	0.9985	26.96	26.929	26,989
12	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
13	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
14	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
Average	100.71	± 0.01	272.31	± 0.1	0.9985	26,958	26.928	26.988

Footnotes:

- 1. Estimated measurement uncertainty for a single weight measurement on the weigh scale used.
- 2. The following assumptions were made in estimating the maximum Naphthalene concentration for a given drum:
 - All four Naphthalene tare Weights were assumed to be smaller by the scale measurement uncertainty,
 - All four Naphthalene gross weights were assumed larger,
 - The Toluene tare weight (drum + Naphthalene) was assumed larger, and
 - The Toluene gross weight was assumed smaller.

In Toto, these worst case assumptions result in the Naphthalene weight being 0.08 Lb larger than indicated weight and the Toluene weight being 0.2 Lb smaller than the indicated weights. These assumptions resulted in the maximum Naphthalene concentration. The opposite assumptions would produce the minimum Naphthalene concentration. See Table V for further explanation.

Estimated Uncertainty in the Average Naphthalene Concentration:

Table V below describes the computational method and information used to estimate the concentration uncertainty for Naphthalene in the Naphthalene in Toluene Solution.

TABLE V Calculation of the Minimum and Maximum Naphthalene Drum Concentrations Based on Worst Case Cumulative Measurement Uncertainty Assumptions

Estimated Toluene Concentration Uncertainty

Table VI below describes the computational method and information used to estimate the concentration uncertainty for Toluene in the Naphthalene in Toluene Solution.

Calculation of the Minimum and Maximum Toluene Drum Concentrations Based on Worst Case Cumulative Measurement Uncertainty Assumptions TABLE VI

				Weight, I.h			ו־טר		
#								Loluene Concentration,	Ę
	Naphthaler	Naphthalene (w/o Purity Cor	2]	Toluci	Toluene (with Purity Corrected ²)	rected ²)		Wt%	
	Indicated*	Minč	Max	Indicated ²	Min ⁴	Max ⁴	Indicated ⁵	Min	Max
1-6, & 8-14	100.71	100.63	100.79	272.11	271.91	272.31	72.95	72.92	77 08
7	100.71	100.63	100.79	272.31	272.11	272.51	72.964	72 934	72 904
Ave	100.71	100.63	100.79	272.1243	271.9243	272.3243	72.951	72 921	77 981
Range	100.71	100.63	100.79	272.11 -272.31	271.91 -272.11	272.31 -272.51	72.95 –72.964	72.92- 72.934	72.98–72.994
Summary	Results: Maxin	num Toluene Co	oncentration Ra	Summary Results: Maximum Toluene Concentration Range = 72.92 to 72.994 wt %.	94 wt %.				
	Levia [Knov	non from Indica vn] Toluene Con	ted Average Co	Deviation from Indicated Average Concentration \approx - 0.031 to + 0.043 wt %. [Known] Toluene Concentration = 72.951 wt % \pm 0.043 wt % = 72.95 wt %	Deviation from Indicated Average Concentration = -0.031 to +0.043 wt %. [Known] Toluene Concentration = 72.951 wt % \pm 0.043 wt % = 72.95 wt % \pm 0.045 wt %.	0.045 wt %.			
Footnotes:	 Indicated Na 	ohthalene Weight	from second colu	un from left in Table	Indicated Naphthalene Weight (from second column from left in Table III without aurity, correspond	antion			
	2. Indicated Tol	uene Weight from	fourth column fr	om left in Table III x 0	3,9993 (Tolliene purify	Indicated Toluene Weight from fourth column from left in Table III x 0.9993 Ffoliumen mirry concentrations as attached managements of the second seco	To a familiar of the familiar body	[4 -	
	 Max Nap We Lb. 	Max Nap Weights (wt) = Indicated Lb.	sted Nap wt + (4 [[sub-batches]) x {(+0.0	I [positive deviation8 ([Nap wt + (4 [sub-batches]) x {(+0.01 [positive deviation of gross wt]) - (-0.01 Lb [negative deviation of tare wt])} = Indicated Nap wt + 0.08	b [negative deviation8	oAj. of tare wt])} = Indicat	ed Nap wt + 0.08
	4. Max Toluene	Max Toluene Weight ≈ Indicated 1 Lh	ed Toluene weigh	t + (+0.1 Lb [positive ⁸	deviation of gross weig	[oluene weight + (+0.1 Lb [positive deviation of gross weight]) - (-0.01 Lb [negative deviation of tare weight]) = Indicated Toluene wt + 0.2	ive ⁸ deviation of tare w	veight]) = Indicated T	oluene wt + 0.2
	5. Indicated Tol	uene wt $\% = [/Ind]$	icated Tolnene ⁹ w	/e/oht)/(Indicated Tolin	anolo maint + Indian	Indicated Toluene wt % = [(Indicated Toluene* weight)//Indicated Toluene wt % = [(Indicated Toluene wt	ò		
	6 Min Toluene	wt % = [Min Tolu	ene wt/(Max Na	Min Toluene wt % = IMin Toluene 9 wt//Max Nan ¹⁰ wt + Min Toluene wt % = IMin Toluene	outle weight + indicate outlier 100%.	sa ivap weignt)] x 100	% .		
	7. Max Toluene	wt % = [Max Tolt	uene wt/(Min Na	Max Toluene wt % = $[Max\ Toluene^3 wt/(Min\ Nap^{10}\ wt + Max\ Toluene^{10}\ wt)] \times 100\%$	10 wt)] x 100%				
	Reverse wt do	Reverse wt deviations for minimum Nap and Toluene wts.	num Nap and Tol	uene wts.	10000 T 10000				
	Purity Corrected.	ted.	•						
	Not Purity Corrected	nrected							
!									

Certificate of Composition Naphthalene in Toluene Solution

Based on the information provided herein, the Certificate of Composition (CoC) for the Naphthalene in Toluene Solution was prepared (See Fig. 2 for a highly abbreviated version of the Naphthalene in Toluene Solution CoC).

Fig. 2 CERTIFICATE OF COMPOSITION: NAPHTHALENE IN TOLUENE SOLUTION (Highly Abbreviated Format)

Product:	Naphthalene in Toluene Solution
Composition:	Naphthalene ¹ : 26.96 wt %
- . _	Toluene ¹ : 72.95 wt %
CERTIFICATION OF COM	MPOSITION.
best of my knowledge and be	position information provided above and in the footnote is true and accurate to the
Desi of my knowledge and be	thei.
Signed:	
	Schofield, PhD, PE Date
ESS Project	
-	· ·
Footnotes:	
Based on an analysis of:	the first of the state of the s
(a) the Measurement uncerta	ainty of the weigh scales used to produce this material,
(c) the procedures which we	luene manufacturers' Certifications of Analysis, and ere used to produce this material,
I have concluded that the com-	position of the Naphthalene in Toluene Solution is:
(a) Naphthalene = 26.96 wt	% + 0.045 wt % and
(b) Toluene = 72 95 wt % +	

IMPACT OF COMPOSITION UNCERTAINTY ON ABSOLUTE AND RELATIVE SPIKING RATE UNCERTAINTY

The impact of compositional uncertainty discussed above on the Species (S) spiking rate uncertainty was calculated on two bases:

- 1. Absolute Species (S) Spiking Rate Uncertainty, ± Lb S/Hr, and
- 2. Relative Species Spiking Rate Uncertainty [uncertainty expressed as a % of the indicated spiking rate, ± %RU].

The results are presented in Table VII and summarized as follows:

	Spiking Rate,	Specie Spiking Ra	ite Uncertainty:
Spiking Specie (S)	Lb S/Hr	Absolute Uncertainty, ±Lb S/Hr	Relative Uncertainty, ±% RU
Ash	14,12	± 0.0064 Lb Ash/Hr	± 0.045% RU
Naphthalene	26.52	± 0.0119 Lb Nap/Hr	± 0.045% RU
Toluene	67.54	± 0.0323 Lb Toluene/Hr	± 0.045% RU

Table VII Effect of Composition Uncertainty	Associated with the Laboratory Standard Method on
Specie Spiking Rate Uncertainty	

	~ptt.	о ории	S CO C	o meer tar						
					Effect of Composi	Effect of Composition Uncertainty on:				
Spiking		Mas	s/Run:		Apparent	Absolute Specie Spiking Rate	Relative Specie Spiking Rate			
Specie,	Mat	erial	Sp	ecie	Spiking Rate,	Uncertainty,	Uncertainty,			
(S)	± Lb	± %	± Lb	±%	Lb S/Hr	± Lb S/Hr	± % RU			
Ash ¹	0.2	0.18	0.05	0.18	14,12	± 0.0064 Lb/Hr	± 0.045 %RU			
Nap ²	0.2	0.06	0.06	0.06	26.52	± 0.0119 Lb/Hr	± 0.045 %RU			
Toluene ³	0.2	0.08	0.15	0.08	67.54	± 0.0323 Lb/Hr	± 0.045 %RU			

- 1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO₂ Dispersion/Run (Table III)
- 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317.96 Lb Nap Sol/Run (Table V)
- 3. Toluene has an indicated composition of 72.95 wt % ± 0.045 w % in 246.88 Lb Nap Solution/Run (Table VI)

Inspection of these results indicates that the compositional uncertainty associated with the *laboratory* standard method of demonstrating spiking material composition resulted in very modest spiking rate uncertainties whether on an absolute and relative uncertainty basis.

COMPARISON OF Laboratory Standard Method AND Sample and Analyze Method UNCERTAINTIES

In order to complete this analysis by comparing the uncertainties associated with the *laboratory standard method* to the corresponding uncertainties associated with the *sample and analyze method*, it is first necessary to estimate the measurement uncertainties associated with the analytical methods (SW846 or similar methods) which are most likely to be used to determine the composition of spiking materials in a HWC Test context.

Three approaches were utilized to estimate measurement uncertainties of the applicable SW846 (& ASTM) Methods:

- 1. Reviewing a recent, Agency approved QAPP for guidance using the acceptable analyte recovery range for a given method in duplicate spiked samples,
- 2. Reviewing Agency Guidance, specifically QA Objectives for method accuracy (defined for a given method as the acceptable analyte recovery range in duplicate spiked samples), and
- 3. Polling Analytical/Trial Burn Experts for opinions based on experience.

Reference (3), QA Objectives for TB, Table III-1, Process Samples.
 Reference (4), based on low [analyte concentration] level sample analysis.

Table VIII summarizes the results of that effort.

Table VIII Estimated Measurement Uncertainties for Selected Analytical Methods

	Spiking:	Analytical	Source of	Source of Method Uncertainty Estimates:			
Specie	Material	Method ¹	Recent QAPP(2)	Guidance(3)2	Expert Opinion(4)3		
Ash	TiO ₂ Dispersion	ASTM D-482	± 10 %	± 25 %	NA		
Metals	Dispersion or Solution	6010 & 7470	± 30 %	± 30 %	6 - 41 %		
Naphthalene	Nap & Toluene Solution	8270	-90 to -54,+50 %	± 50 %	6 - 40 %		
Toluene	Nap & Toluene Solution	8260	-50, +30 %	± 50 %	10 - 30 %		
Footnotes: 1. S	W846 unless otherwise noted.		· - · · · · · · · · · · · · · · · · · ·		 		

Inspection of Table VIII prompts three significant observations:

- 1. There is a relatively wide range within the measurement uncertainty estimates;
- 2. The expert opinion estimates of measurement uncertainty are based on low [analyte concentration] level analyses and, as such, probably under state the measurement uncertainty which would be present with analysis of high level spiking material samples. Conversely, the QAPP and Guidance estimates are based on a wide range of analytical laboratories and, as a result, probably over state uncertainties associated with analytical results from a laboratory with a strong QA/QC Program; and
- 3. The level of measurement uncertainty associated with each of these analytical methods (sample and analyze method) is at least two (2) orders of magnitude larger than the measurement uncertainty associated with the laboratory standard method (e.g., \pm 5% vs. \pm 0.045%).

As a result of the last observation, no further effort was invested to refine the measurement uncertainty for the analytical methods. As a result of the first two observations, the following method specific measurement uncertainties were, somewhat arbitrarily, selected:

Method	Analyte	Measurement Uncertainty, ±%
ASTM D-482	Ash	± 10%
SW846 8270	Naphthalene	± 30%
SW846 8260	Toluene	± 30%

These measurement uncertainty estimates were used to calculate the absolute and relative spiking rate uncertainties on the same case study basis and with the results were summarized in Table IX, below.

Table IX Effect of Compositional Uncertainty Associated with the Sample & Analyze Method on Specie Spiking Rate

Spiking Specie, (S)	Apparent Spiking Rate, Lb S/Hr	Est'ed Measurement Uncertainty, ± %	Absolute Spiking Rate Uncertainty, ± Lb S/Hr	Relative Spiking Rate Uncertainty, ± %RU
Ash	14.12 Lb/Hr	± 10%	± 1.41 Lb Ash/Hr	± 10%RU
Naphthalene	26.52 Lb/Hr	± 30%	± 7.96 Lb Nap/Hr	± 30%RU
Toluene	67.54 Lb/Hr	± 30%	± 20.3 Lb Toluene/Hr	± 30%RU

The absolute and relative specie spiking rate uncertainties based on the *laboratory standard method* and the *sample and analyze method* were then taken from Tables VII & IX, respectively, and compiled as a comparison in Table X. Inspection of Table X reveals significantly larger spiking rate uncertainties with the *sample and analyze method* than the *laboratory standard method* for all species and on both absolute and relative uncertainty bases.

Table X Comparison of Spiking Rate Uncertainties Associated with the Laboratory Standard and Sample & Analyze Methods

Specie Spiking Rate Uncertainty Spiking Specie, Absolute Uncertainty, ± Lb S/Hr Relative Uncertainty (RU), ±%RU **(S)** Laboratory Standard Sample & Analyze Laboratory Standard Sample & Analyze Ash ± 0.0064 Lb Ash /Hr ± 1.41 Lb Ash /Hr ± 0.045%RU ± 10%RU Naphthalene ± 0.0119 Lb Nap/Hr ± 7.96 Lb Nap/Hr $\pm 0.045\% RU$ ± 30%RU Toluene ± 0.0323 Lb Toluene /Hr ± 20.3 Lb Toluene /Hr ± 0.045%RU ± 30%RU

Independent Assurance of Spiking Material Composition while Using the Laboratory Standard Method:

If there are regulatorily sensitive circumstances or other reasons that spiking material composition must be independently verified, the authors propose the following approach which would incur little or no additional cost compared to typical commercial analytical costs for GC/MS &/or ICP/CVAA analyses. The proposed approach would provide for the agency hiring a qualified, independent Professional Engineer (PE, or similar independent technically qualified individual) based near the material preparer's facility to observe the materials being prepared including all materials packages being opened, all measurement equipment being calibrated and all measurements being made and recorded, the Certificates of Analyses (CoAs) for all of the raw materials used, and the placement of a seal on all openings of the finished materials shipping containers, if required, and to obtain copies of all records related to the composition of the spiking materials including but not limited to: (1) calibration procedures for all measurement instrument/equipment, traceability of all standards used, and all applicable calibration records, (2) CoAs for all raw materials used, (3) all applicable material preparation procedures and measurement results, (4) all calculations based on the calibrations, standards, measurements, and procedures used to determine the spiking material composition, and (5) the PE's notes related to his/her observation of the materials being made, containerized, and sealed prior to shipment.

CONCLUSIONS

As a result of the information provided herein the authors have derived the following conclusions:

- 1. The compositional uncertainty of the two spiking materials prepared for the Case Study Trial Burn using the *laboratory standard method* as well as the impact of this compositional uncertainty on spiking rate are very modest (e.g., ± 0.045 wt% for each of the three spiking species: Ash, Naphthalene, and Toluene).
- 2. The laboratory standard method of demonstrating spiking material composition provides a much smaller uncertainty (by at least two orders of magnitude) in terms of both spiking material composition and spiking rate than is currently possible with the sample and analyze method due to inherent limitations/uncertainties of the current complex analytical methods. This uncertainty advantage is expected to remain even if analytical methods designed for high level samples were used, due to the very large magnitude of the uncertainty advantage compared to low level methods, and since all of the analytical method uncertainties remain with high level methods except those associated with sample dilutions.
- 3. Should there be sensitive regulatorily or other circumstances which make independent verification of spiking material composition mandatory, the use of an independent, technically qualified observer to confirm the details of the spiking material preparation using the *laboratory standard method* would be a logistically and economically viable alternative to the far less accurate *sample and analyze method*.

REFERENCES

- 1. Trial Burn Spiking Report, 2003, Confidential Client & Location.
- 2. Quality Assurance Project Plan, Confidential Client & Location.
- 3. USEPA, Region VI, Center for Combustion Science and Engineering, HWC Unit Permitting Manual, Component 2, "How to Review a QAPP", prepared by Tetra Tech, Inc., 1996

4. Private phone and email communications by one of the authors (WRS) with Julius Fulop, et. al., Philip Analytical Services, February, 2004.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the able assistance of:

Julius Fulop, and David Boomer both of Philip Analytical Services for their helpful comments on a draft of this paper and for sharing a significant quantity of written information on the increasingly rigorous topic of measurement uncertainty.

Robert Bucher of Weighing Technology for his unstinting practical and theoretical explanations, and detailed written information concerning weighing system operations, precision, and accuracy.

As used herein **Spiking Material (M)** refers to the material which is actually spiked, i.e., a metal solution, a TiO₂ and/or metal dispersion, and/or an individual or a mixture of POHCs. **Spiking Species (S)** refers to the portion of the **Spiking Material** which is of specific interest in meeting the test objectives, i.e., individual metals, ash, individual POHCs, Cl⁻, etc.

The weight of TiO₂ per drum assuming that the gross weight measurements for each of the three TiO₂ sub-batches were higher than indicated weight by an amount equal to the full uncertainty, and all net weight measurements for TiO₂ were less by the full uncertainty, which yields a quantity of TiO₂ = 91.65 + 0.06 = 91.71 Lb TiO₂/Drum.

The Lb TiO₂ /drum based on the opposite assumptions to footnote ii above, which yields TiO₂ = 91.65 - 0.06 = 91.59 Lb. TiO₂/Drum.

The term "indicated" as used within herein refers to the apparent weight or weight percent of a substance as "indicated" on the digital readout devices (digital indicators) employed in this work.

The following assumptions were made in estimating the maximum Naphthalene concentration (e.g., the cumulative positive uncertainty) for a given drum:

All four Naphthalene tare weights were assumed to be smaller than the indicated weight by the full measurement uncertainty.

All four Naphthalene gross weights were assumed larger,

The Toluene tare weight (drum + Naphthalene) was assumed larger, and

The Toluene gross weight was assumed smaller.

In toto, this series of worst case assumptions results in the Naphthalene weight being 0.08 Lb larger than indicated and the Toluene weight being 0.2 Lb smaller than the indicated weights. These assumptions resulted in the maximum Naphthalene concentration. The opposite assumptions would produce the minimum Naphthalene concentration. See Table V for further explanation

Attachment V. Effect of Measurement Uncertainty on Spiking Rate Uncertainty

A. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Material Composition and Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #103, Phoenix, AZ, May, 2004

THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING MATERIAL COMPOSITION AND SPIKING RATE UNCERTAINTIES

Bill Schofield, PhD, PE Engineered Spiking Solutions, Inc. LaPorte, Texas 77571

Anthony R. Eicher Focus Environmental, Inc. Knoxville, Tennessee 37923

Sean O'Brien
TRC Environmental Corporation
Houston, Texas 77043

ABSTRACT

It is not unusual for an agency, a client, or even a supplier of spiking materials to assert without justification that the only way to "know" the composition of a spiking material is through sampling and analysis of that spiking material. While this approach [which will be identified herein as the sample and analyze method] offers the advantage of determining composition independently of the spiking material supplier, it suffers the disadvantage of large measurement uncertainties resulting from inherent limitations in the analytical methods employed. However, there is another, fundamentally different, approach which is based on long standing principles of analytical chemistry and provides spiking material compositions with significantly smaller uncertainties. Conceptually, this approach is analogous to an analytical chemist preparing a laboratory standard for calibrating a sensitive analytical instrument. This approach, which will be identified herein as the laboratory standard method for preparing spiking materials, provides very accurate spiking specie concentrations.

Estimates of compositional uncertainty with the *laboratory standard method* developed herein are based on: (1) the test-specific details of a Case Study (e.g., a 2003 TB conducted at a private, US based HWC Unit), and (2) a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties to produce the largest cumulative compositional uncertainty. Conversely, the assumption was made that no blatant operator mistakes were made since: (1) all measurements affecting composition were straight forward weight measurements using non-interpretive digital indicators, (2) the material preparation procedures were simple, and clear, (3) the documentation and record keeping procedures used were thorough, comprehensive, and consistently followed; and (4) the preparation procedure had built-in cross checks which included the utilization of two independent measurement observers and data recorders for most measurements. The premises on which the uncertainty analysis is based are explicitly identified, and rationales provided for their validity in the HWC Spiking context. Also, due to the small magnitude of all first-order uncertainties, second order uncertainties were ignored. Using first-order uncertainties developed for the case study example, the validity of this assumption was demonstrated.

The compositional uncertainty with the laboratory standard method is smaller (e.g., on the order of \pm 0.1%) than is possible with the sample and analyze method using commercially available analytical methods. Depending on the method, matrix, and specie, the measurement uncertainty with commercially available analytical methods could vary from \pm 5% up to \pm 50%, assuming no uncertainty associated with sample collection and preparation.

This paper: (1) describes the spiking material preparation procedures used, (2) develops the apparent concentration of each spiking specie using the *laboratory standard method*, (3) describes the calculation procedures used to estimate uncertainty and presents the resulting estimates of uncertainty of spiking specie concentrations, (4) presents the impact of compositional uncertainty on spiking rate uncertainty, (5) estimates measurement uncertainty for the analytical methods most likely used to analyze spiking material composition in a HWC testing context, (6) presents the resulting impact on spiking rate, (7) presents a comparison of the composition and spiking rate uncertainties based on the *laboratory standard method* to those based on the *sample and analyze method*, and (8) proposes an approach for verifying spiking material composition independently of the material preparation firm should that be required in a regulatorily sensitive circumstance.

INTRODUCTION AND BACKGROUND

It is not unusual for an agency, a client, or even a supplier of spiking materials to assert that the only way to "know" the composition of a spiking material (e.g., a metal solution, an organic solution, a dispersion, and/or a "neat" POHC) is through sampling and analysis of that spiking material. While this approach [which will be identified herein as the sample and analyze method] offers the advantage of determining composition independently of the spiking material supplier, it suffers the disadvantage of large measurement uncertainties resulting from inherent limitations in the analytical methods employed. However, there is another, fundamentally different, approach which is based on long standing principles of analytical chemistry and provides spiking material compositions with significantly smaller uncertainties.

Conceptually, this approach is analogous to an analytical chemist preparing a laboratory standard for calibrating a sensitive analytical instrument and requires that one:

- 1. Know, with as much accuracy as possible, the purity of each reagent used in the preparation of a laboratory standard; especially as it relates to the chemical specie to be analyzed;
- 2. Use highly accurate, and carefully maintained measuring devices which are calibrated prior to use with NIST traceable standards; and
- 3. Maintain careful records for each step in the preparation of the laboratory standard.

This approach, which will be identified herein as the *laboratory standard method* for preparing spiking materials, provides very accurate spiking specie concentrations. The concentration uncertainty with this approach is smaller (e.g., on the order of \pm 0.1%) than is possible with commercially available analytical methods (i.e., which, depending on the method, matrix, and specie could vary from \pm 5% up to \pm 50% without consideration of possible sample collection and preparation uncertainties).

Large concentration uncertainties are especially likely in spiking applications in which the use of SW846 and similar "low [analyte concentration] level" methods is required. As a result of large dilutions, these methods are generally not suitable for obtaining highly accurate analyses of the high analyte concentrations frequently encountered with spiking materials. Further, the *laboratory standard method* is expected to have smaller uncertainties than commercially available analytical methods which have been designed for analysis of samples with high analyte concentrations, due to the very large magnitude of the uncertainty advantage compared to low level methods, and since all of the analytical method uncertainties remain with high level methods except those associated with sample dilutions.

Estimates of compositional uncertainty with the *laboratory standard method* developed herein are based on: (1) the test-specific details of a Case Study (e.g., a 2003 TB conducted at a private, US based HWC

Unit), and (2) a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties to produce the largest possible cumulative compositional uncertainty. Conversely, due to fact that: (1) all measurements are made with an absolute measurement method [based on the most fundamental parameter, e.g., gravity = mass, paraphrased from Reference (4)], (2) the use of non-interpretive digital indicators for all measurements, (3) the simplicity and clarity of the material preparation procedures used, (4) the use of thorough record keeping for each procedural step and measurement, (5) the experience and training of the personnel weighing the ingredients and preparing the finished spiking materials, and (6) built-in procedural cross checks including the utilization of two independent measurement observers and data recorders for most measurements; blatant operator mistakes are assumed to not be present. Also, due to the small magnitude of all first-order uncertainties, second order uncertainties were ignored.

Please note that a significant number of calculations are made in this uncertainty analysis. To avoid rounding errors and to retain the integrity of the uncertainty estimates developed herein, a relatively large number of significant figures are carried through the calculations and presented in the tables. The authors are not claiming the accuracy &/or precision in these figures that would normally be implied by the standard significant figures rules.

Engineered Spiking Solutions, Inc. (ESS) was retained to provide spiking materials as well as all necessary spiking equipment, and services for a Trial Burn (TB) which was conducted on a confidential, non-commercial, HWC Unit during 2003. The spiking materials used were: (1) a TiO₂ Dispersion (@ a nominal 25wt% Total Ash), and (2) a Naphthalene in Toluene Solution (@ a nominal 27wt% Naphthalene). The laboratory standard method was used in the case study with excellent results.

This paper: (1) describes the spiking material preparation procedures used, (2) develops the apparent concentration of each spiking specie using the *laboratory standard method*, (3) describes the calculation procedures used to estimate uncertainty and presents the resulting estimates of uncertainty of spiking specie concentrations, (4) presents the impact of compositional uncertainty on spiking rate uncertainty, (5) estimates measurement uncertainty for the analytical methods most likely used to analyze spiking material composition in a HWC testing context, (6) presents the resulting impact on spiking rate, (7) presents a comparison of the composition and spiking rate uncertainties based on the *laboratory standard method* to those based on the *sample and analyze method*, and (8) proposes an approach for verifying spiking material composition independently of the material preparation firm should that be required in a regulatorily sensitive circumstance.

Description of the "Case Study" Trial Burn

The Case Study TB consisted of two Test Conditions (TC) which were defined as follows: (1) TC #1: Maximum Waste Feed, and (2) TC #2: Minimum Temperature (DRE). The spiking materials consisted of a 27% Naphthalene in Toluene Solution [Nap Sol] and a 25% TiO₂ Dispersion. The testing/spiking schedule is summarized as follows:

Test Condition	Date	Spikin	g With:
	Conducted	Nap Sol	Dispersion
TC #1	2003	✓	✓
TC #2	2003	✓	

The spiking function for this TB involved three spiking speciesⁱ (e.g., Total Ash, Naphthalene, and Toluene) which were contained in two spiking materialsⁱ (e.g., TiO₂ Dispersion and Naphthalene in

Toluene Solution). The dispersion was used as an ash surrogate with ash contributions from both the TiO₂ (primary) and the proprietary dispersing agent (secondary). The Naphthalene in Toluene Solution spiking material contained both POHCs, e.g., Naphthalene and Toluene.

Conceptual Basis for the Laboratory Standard Method to Demonstrating Spiking Material Composition

The *laboratory standard method* for preparing and demonstrating the composition of spiking materials is analogous in concept to the approach employed by analytical chemists to prepare a laboratory standard for use in calibrating sensitive analytical instruments:

- 1. Make every effort to know, with as much accuracy as possible, the purity of each ingredient used in the preparation of a spiking material; especially as it relates to the specie being spiked, e.g. Naphthalene, Toluene, or Total Ash.
- 2. Have and carefully maintain a range (e.g., 1 Lb, 10 Lb, 50 Lb, 300 Lb, and 1,000 Lb) of highly accurate (Measurement Uncertainty = ± 0.01% of Full Scale Capacity, or better) weigh scales for accurately determining the quantity of each ingredient used. Use the most accurate (smallest) scale practical for a given application. Calibrate each scale with NIST traceable weight standards prior to each use.
- 3. Carefully record every spiking materials preparation step to facilitate documentation of the resulting spiking material composition, and QA audits.

Premises [with Supporting Rationales] on which this Uncertainty Analysis Was Based

The following premises were used as a basis for the Uncertainty Analysis provided herein. A rationale which demonstrates the validity of each premise in the HWC Testing/Spiking context is also provided:

1. **Premise:** No Chemical reactions will occur between the raw materials used to prepare a spiking material.

Rationale: The two spiking materials used in the Case Study Trial Burn (e.g., Naphthalene in a Toluene solution, & TiO₂ in a mineral oil based dispersion) are typical of spiking materials in general, in that they well known in terms of chemistry and have been successfully used many times over a period of more than a decade. Naphthalene does not react chemically with toluene. Similarly TiO₂ and the proprietary dispersing agent are both chemically inert and furthermore would revert back to the same ash producing Ti & Si oxides in the combustion chamber if chemical reactions were to occur. Other systems, such as metal nitrates in an aqueous solution, will produce a weak nitric acid which could very well react with an unlined steel drum, will require special containers (lined or plastic drums) to ensure that such reactions do not occur.

2. Premise: Precipitation of spiking species out of solutions will not occur.

Rationale: The solubility of the vast majority of spiking species (Naphthalene in Toluene, and metal salts in aqueous solutions) is well known (Merck Index, Perry's, etc.), and have been successfully used many times over a period of more than a decade. Solutions are never prepared at ≥90% of saturation (where cost has an impact, such as a Naphthalene in Toluene solution) and usually <50% of saturation (where there

is essentially no cost impact, such as aqueous solutions). Whenever there is any uncertainty, metal salts are not combined into the same solution as a means of ensuring that common ion and similar solubility effects do not bring composition in doubt.

3. Premise:

Vapor Losses will have negligible impact on composition, or can be easily corrected

Rationale:

All solutions are prepared in closed top drums which are kept sealed except when solute is added and mixed. Almost all spiking material solutions are aqueous solutions prepared at concentrations which are far from saturation. Thus, mixing times and associated vapor losses from the closed top drums are modest. For solutions prepared with higher vapor pressure solvents (e.g., Toluene), the quantity of vapor losses can be determined (by weight loss) and, if necessary, corrections made.

Measurement Uncertainty with Weight Measurements

All spiking material quantity measurements [which could affect the composition of the spiking materials discussed in this paper] were made using two weigh scales: (1) a 50 Lb bench scale, Model #: CQ25R33 manufactured by Ohaus Corporation, and (2) a 1,000 Lb floor scale, Model: Survivor FB2424-1000 manufactured by Rice Lake Weighing Systems. Selected (accuracy related) specifications for both of these scales are provided in Table I.

Table I Weighing Equipment Specifications

Specification	Units	Weigh Scale	Manufacturer
operation	Ollits	Ohaus	Rice Lake
Capacity @ Full Scale (FS)	Lb (Kg)	50 (25)	1,000 (500)
Divisions ¹ (d)/FS		·	
			
NTEP ²	d/FS	5,000	5,000
Non-NTEP ²	d/FS	10,000	10,000
_b/Division (%FS/d)			
NTEP ²	Lb/d (%FS/d)	0.01 (0.01%)	0.02 (0.02%)
Non-NTEP ²	Lb/d (%FS/d)	0.005 (0.005%)	0.01 (0.01%)
Non-Linearity	0.03% FS	NA	0.03% FS
Hysterises	0.02% FS	NA NA	0.02% FS

- Footnotes: 1. The number of divisions/FS is an indication of scale sensitivity. For example, a division is the smallest weight increment discernable by the weighing system according to a given set of accuracy, calibration frequency, and environmental condition requirements.
 - 2. NTEP is a quasi governmental organization established to regulate weights and measures used for commercial purposes. NTEP certified equipment has a conservative classification to properly reflect how measuring equipment may be used in commerce [i.e., infrequently calibrated, handled roughly, operated in a wide range of environmental conditions] while still providing acceptable accuracy. For the purposes of weighing ingredients for spiking materials with very frequent equipment maintenance & calibrations, and in controlled conditions of temperatures and humidity, the Non-NTEP division count is generally considered to be representative of scale accuracy. This observation has been confirmed by extensive pre-use and post-used calibration verifications with NIST traceable standards which consistently demonstrated deviations from the standards of \leq 0.01% or equivalently d/FS \geq 10,000.

PREPARATION OF SPIKING MATERIALS: TiO2 DISPERSION

This section provides: (1) a description of the TiO₂ Dispersion preparation procedure, (2) the calculation procedure for determining Total Ash concentration and the calculated results, (3) the calculation procedure for estimating uncertainty in the apparent Total Ash concentration and the calculated results, and (4) the Certification of Composition for the TiO₂ Dispersion.

TiO₂ Dispersion Preparation Procedure (Summarized)

- 1. Setup and calibrate the 50 Lb ± 0.01 Lb, and 1,000 Lb ± 0.1 Lb weigh scales using NIST Traceable Weight Standards;
- 2. Add Mineral Seal Oil (MSO) to the Dispersion Matrix (DM) blend tank. Weigh each drum before and after the MSO transfer with the 1,000 Lb weigh scale. Record the drum gross and tare weights;
- 3. Weigh out the dispersion agent (DA) in four (4) batches on the 50 Lb \pm 0.01 Lb weigh scale. Record the tare and gross weights;
- 4. Slowly add the dispersion agent to the blend tank and mix with maximum shear;
- 5. Weigh out the activator in five (5) batches on the 50 Lb \pm 0.01 Lb weigh scale. Record the tare and gross weights;
- 6. Slowly add the activator to the blend tank and mix with maximum shear until the dispersing system is fully developed;
- 7. Drum off the DM per the Drum Weight Schedule provided. Weigh each numbered DM drum (Drum # 1-6 for the TiO₂ Dispersion) before and after adding DM and record the tare and gross weights;
- 8. Prepare six (6) batches (numbered 1-6) of TiO₂ for addition to the corresponding six (6) numbered drums of the TiO₂ Dispersion being prepared. Determine the quantity of TiO₂ in each batch on the basis of 0.3228 Lb TiO₂/Lb DM in the corresponding DM drum. Prepare each batch of TiO₂ in three sub-batches, (numbered as 1A, 1B, 1C; 2A, 2B,.....6B, 6C), record each tare and gross weight;
- 9. Slowly add each TiO2 sub-batch to the corresponding drum of DM and shear thoroughly; and
- 10. Tightly seal, label and prepare each drum for shipment to the test site.

Calculation of Dispersion Matrix (DM) Composition

The DM composition data (e.g., the weights developed in procedure steps 2, 3, & 5 above) were compiled and summarized in Table II. Table II provides the DM composition information on weight (Lb), and weight percent (wt%) bases with corresponding uncertainty estimates. The term "indicated" as used herein refers to the apparent weight or weight percent of a substance as "indicated" on the digital readout devices [indicators] employed in this work.

Table II Combosition of Distiersion Water	Table II	Composition	of Dispersion Matrix
---	----------	-------------	----------------------

			DM1 #1 Co	mposition By:		
Constituent1	Weight, Lb				Weight Per Cent,	Wt%
	Target	Indicated	Uncertainty ²	Target	Indicated	Uncertainty
MSO ¹	4,862.00	4,832.70	± 2.60 ²	94.16	94.12	± 0.0506
DA ¹	146.64	146.94	$\pm 0.08^{2}$	2.84	2.8618	± 0.0016
Activator	154.91	154.98	$\pm 0.10^{2}$	3.00	3.0183	± 0.0019
Total	5,163.55	5,134.62	± 2.78	100.00	100.00	± 0.0541

Footnotes

- 1. DM = Dispersion Matrix, MSO = Mineral Seal Oil, & DA = Dispersing Agent.
- 2. Basis: A. Obtaining the total MSO weight involved a total of 26 individual weight measurements (e.g., gross and tare weights for 13 drums), each with an estimated measurement uncertainty of ± 0.1 Lb/weight measurement.
 - B. Obtaining the total DA weight involved a total of 8 individual weight measurements (i.e., tare and gross weights for four batches of DA), each with an estimated measurement uncertainty of ± 0.01 Lb/weight measurement.
 - C. Obtaining the total Activator weight involved a total of 10 individual weight measurements (i.e., tare and gross weights for five batches of activator), each with an uncertainty of ± 0.01 Lb/weight measurement.
 - D. Each weight measurement is assumed to have measurement uncertainties in the direction which would produce the largest cumulative positive or negative uncertainty.

Calculation of the Total Ash Drum Concentrations

The TiO_2 Dispersion composition data from procedure steps 7 & 8 above, and Table II are summarized in Table III. Additionally, measured values for ash concentration (mass fraction ash) in the TiO_2 and the dispersion agent were provided by their respective manufacturers. These values were used to calculate the total ash content (expressed as Lb ash/Drum, and wt% ash) for each drum of finished TiO_2 Dispersion.

Estimated Uncertainty in Total Ash Concentration

The uncertainty in the total ash concentration (wt%) in a given drum is comprised of four primary components of uncertainty which were estimated as follows:

- 1. The measurement uncertainty in determining the net weight of Dispersion Matrix (DM) per drum: This measurement uncertainty is estimated as the sum of the uncertainties in the two [tare and gross] weight measurements obtained in preparation procedure (step 7 above) and is calculated as follows:
 - **DM** Uncertainty = 2 [weigh measurements] $x \pm 0.1$ Lb DM [the uncertainty associated with each measurement].

Thus, the net weight of the DM present in Drum #1, for example, [see Table III, column (4)], is estimated to be:

• **DM/Drum** = $283.97 \text{ Lb} \pm 0.2 \text{ Lb DM/Drum}$.

		Table	III TiO ₂ l	Dispersio	n, Total A	sh Conc	entration		
	Indicated	DM Wt, Lb/Dr		Net Weight, Lb/Drum					
1	Weight TiO2 Disp	Dian			TiO ₂		DA		Tota
	Lb/Dr	Target	Indicated	Target	Indicated	Ash ²	Indicated	Ash ³	Ash

	Indicated	DIVI VVI	, LD/Dr		Т	iet weign	it, Lb/Drum			
Drum #	Weight TiO₂ Disp	Tanget	Indiana.d		TiO ₂		DA		Total	Total Ash, Wt %
]	Lb/Dr	Target	t Indicated	Target	Indicated	Ash ²	Indicated	Ash ³	Ash	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$(1)^{1}$	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
11	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
2	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
3	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
4	375.53	283.9	283.9	91.63	91.63	90.44	8.12	4.30	94.74	25.23 ⁴
5	376.72	283.9	284.8	91.92	91.92	90.73	8.15	4.32	95.05	25.23 ⁴
6	374.87	283.9	283.4	91.47	91.47	90.28	8.11	4.30	94.58	25.23 ⁴
Ave	375.62	283.9	283.97	91.65	91.65	90.46	8.12	4.303	94.77	25.23

Footnotes:

- 1. The bracketed numbers, i.e. (1), (2) ...(11), in this row signify the Column numbers which are used in the calculation explanations to the right.
- 2. The TiO2 is 98.7 wt% ash based on manufacturer's CoA.
- 3. The DA is 52.96 wt% ash based on manufacturer's CoA.
- 4. These values range from 25.2283% for Drums #1, 2, 3, & 4; to 25.2309% for Drum #5; and 25.2301% for Drum #6, for an average of 25,2290 wt % and a range of -0.0007 wt % to + 0.0019 wt %
- 5. Mass fraction of DA in DM from Table II.

Information Sources:

1. Values provided in Columns (4) and (6) are based on measured weights. Values provided in Columns (3) and (5) are targets provided in the detailed dispersion preparation SOP.

Calculations:

- Weight TiO₂ Disp (Column 2) = Columns (4) + (6)
- 2. "Ash" content of TiO_2 (Column 7) = Column (6) x 0.987^2
- DA content (Column 8) = Column (4) $\times 0.0286^{\circ}$
- Ash content of DA (Column 9) = Column (8) $\times 0.5296^3$. Total Ash (Column 10) = Columns (7) + (9)
- Total Ash, wt % (Column 11) = Column (10) + Column (2) x 100%.
- 2. The measurement uncertainty in the ash contribution from TiO2: This uncertainty is estimated as the sum of:
 - (a) the weight measurement uncertainty in the quantity of TiO2 added to each drum is estimated as follows:
 - \pm Ash (Lb ash/Drum) = [two weight measurements per TiO₂ sub-batch] x 3 [three sub-batches/drum] $x \pm 0.01$ Lb [the uncertainty per weight measurement] x 0.987 [the mass fraction of TiO₂ which is $= \pm 0.0592$ Lb ash/Drum), and
 - (b) the uncertainty in the Lb ash/drum due to uncertainty in the % ash in TiO₂ measurement. This uncertainty is estimated to be 98.7% \pm 0.1% ash (or 0.987 \pm 0.001 expressed as a mass fraction) in the ash content measurement times 91.65 Lb TiO₂/Drum [from Table III, column (6)], or:

```
± Ash (Lb ash/Drum)
                             = (91.65 \text{ Lb TiO}_2/\text{Drum}) \times (\pm 0.001 \text{ Lb ash/Lb TiO}_2)
                              = \pm 0.09165 Lb ash/Drum.
```

The total estimated uncertainty in the mass of ash per drum from the TiO_2 is then ± 0.1509 Lb $ash/Drum (e.g., \pm 0.0592 Lb ash/Drum \pm 0.09165 Lb ash/Drum = \pm 0.1509 Lb ash/Drum).$

Note: Consistent with the assumption that second-order uncertainties can be ignored, these two first-order uncertainties are simply added. The validity of this assumption is demonstrated below. 3. The measurement uncertainty in the weight of TiO₂ per drum: Following the logic [and the TiO₂ related math] of step 2(a) above, the weight measurement uncertainty in the quantity of TiO₂ added to each drum is estimated as follows:

```
± TiO<sub>2</sub> (Lb ash/Drum) = 2 [two weight measurements per TiO<sub>2</sub> sub-batch]
x 3 [three sub-batches/drum]
x ± 0.01 Lb [the uncertainty per weight measurement]
```

Then, following the format of step 1 above:

```
TiO_2/Drum = 91.65 Lb \pm 0.06 Lb TiO_2/Drum.
```

- 4. The uncertainty in the ash contribution from the dispersing agent: Following the logic of step 2 above, this uncertainty is estimated as the sum of:
 - (a) the uncertainty in the DA content per drum (± 0.08 Lb DA [from the fourth column from the left in Table II] divided by the number of DM drums produced in this DM lot [19 drums]) x (0.5296 Lb ash/Lb DA), or:

```
\pm Ash (Lb ash/Drum) = (\pm 0.08 Lb DA/19 Drums) x (0.5296 Lb ash/Lb DA) = \pm 0.0022 Lb ash/Drum, and
```

(b) the uncertainty in the weight loss on ignition measurement which was estimated at 52.96 $\% \pm 0.1$ % (or 0.5296 \pm 0.001 expressed as a mass fraction) times 8.12 Lb DA/Drum [From Table III, column (8)]), or:

```
\pm Ash (Lb ash/Drum) = (\pm 0.001 Lb ash/Lb DA) x (8.12 Lb DA/Drum) = \pm 0.00812 Lb ash/Drum.
```

The total ash contribution from DA is \pm 0.0103 Lb ash/Drum (\pm 0.0022 Lb \pm 0.00812 Lb ash/Drum).

Uncertainty in the Total Ash Content per Drum:

The uncertainty in the total ash content per drum is then:

```
Ash Content Uncertainty from TiO_2 = \pm 0.1509 Lb ash/Drum

Ash Content Uncertainty from DA = \pm 0.0103 Lb ash/Drum

Total Ash Content Uncertainty = \pm 0.1612 Lb ash/Drum
```

The uncertainty in ash concentration (expressed on a wt% basis) is estimated as follows (Drum #1 is used as an example):

```
Uncertainty in wt% Ash = \frac{\pm 0.1612 \text{ Lb ash/Drum x } 100\%}{(283.97 \pm 0.2 \text{ Lb DM/Drum}) + (91.65 \pm 0.06 \text{ Lb TiO}_2/\text{Drum})}
```

Note that wt% uncertainty is maximized when the DM weight is assumed to be the indicated weight minus the measurement uncertainty. [The smaller DM weight will minimize the denominator which in turn maximizes the wt% uncertainty.] Therefore, the maximum:

Positive Uncertainty in wt% Ash $= \frac{+ 0.1612 \text{ Lb ash X } 100\%}{(283.77 \text{Lb} + 91.71^{ii} \text{ Lb})} = + 0.0429 \text{ wt % ash.}$ Negative Uncertainty in wt% Ash $= \frac{-0.1612 \text{ Lb ash X } 100\%}{(283.77 \text{Lb} + 91.59^{iii} \text{ Lb})} = - 0.0429 \text{ wt % ash.}$

Thus, the TiO_2 Dispersion is $25.23\% \pm 0.0429\%$ which was revised upward to $25.23\% \pm 0.045\%$ to compensate for the minor drum to drum ash concentration difference described in Table III, footnote 4.

Certification of Composition for the TiO2 Dispersion:

Based on this information, a Certification of Composition (CoC) for the TiO₂ Dispersion was prepared (See Fig. 1 for a highly abbreviated version of the TiO₂ Dispersion CoC).

Fig. 1 CERTIFICATE OF COMPOSITION: TiO2 DISPERSION (Highly Abbreviated Format) Product: TiO, DISPERSION Composition: Total Ash: 25.23 wt %1 CERTIFICATION OF COMPOSITION: I hereby certify that the composition information provided above and in the footnote is true and accurate to the best of my knowledge and belief. Signed: W.R. (Bill) Schofield, PhD, PE Date ESS Project Manager Footnotes: Based on an analysis of: (a) the measurement uncertainty of weigh scales used to produce this material, (b) the raw material composition information provided by the manufacturers, and (c) the procedures which ESS used to produce this material; I have concluded that the composition of this TiO_2 dispersion is $25.23\% \pm 0.045$ wt% ash.

Demonstrating the Validity of the Assumption that Second-Order Uncertainties Can Be Ignored

This analysis of measurement uncertainty is partially based on the assumption that second-order uncertainties can be ignored. Using the first-order uncertainties calculated above, we can demonstrate the validity of this assumption. For example, we demonstrated above that the uncertainty in the quantity of ash from TiO_2 : (1) due to weight measurement uncertainties was \pm 0.0592 Lb ash/Drum, and (2) due to ash concentration measurement uncertainty was \pm 0.09165 Lb ash/Drum. We will now calculate the second-order ash content uncertainty due to both TiO_2 weight measurement uncertainty and ash concentration uncertainty as follows:

```
± Ash (Lb ash/Drum) = [(± 0.0592 Lb ash/Drum)/(0.987 Lb ash/Lb TiO<sub>2</sub>)] x (± 0.001 Lb Ash/Lb TiO<sub>2</sub>)
= [± 0.0600 Lb TiO<sub>2</sub>/Drum] x (± 0.001 Lb Ash/Lb TiO<sub>2</sub>)
= ± 0.00006 Lb Ash/Drum
```

Obviously, an uncertainty of 6 parts in 100,000 parts is not significant even in the HWC Testing context. Similarly insignificant results would occur with other second-order uncertainties, simply due to the very small first-order uncertainties present.

PREPARATION OF SPIKING MATERIALS: NAPHTHALENE IN TOLUENE SOLUTION

This section provides: (1) a description of the Naphthalene in Toluene Solution preparation procedure, (2) the calculation procedure for determining Naphthalene and Toluene Concentrations and the calculated results, (3) the calculation procedure for estimating uncertainties in the apparent Naphthalene and Toluene Concentrations and the calculated results, and (4) the Certification of Composition for the Naphthalene in Toluene Solution.

Naphthalene in Toluene Solution Preparation Procedure (Summarized):

- 1. Setup and Calibrate the 50.00 Lb \pm 0.01 Lb, and 1,000.0 Lb \pm 0.1 Lb weigh scales using NIST Traceable Weight Standards;
- 2. Number fourteen (14) closed top "DOT" drums as Drum #1 through Drum #14;
- 3. Prepare fourteen (14) numbered batches (numbered I through 14) of 100.71 Lb of Naphthalene Flake. Weigh each batch on the 50.00 Lb bench scale as four sub-batches in sealed containers which are numbered as 1A, 1B, 1C, and 1D; through 14A, 14B, 14C, and 14D. Weigh each container before (tare weight) and after (gross weight) adding the Naphthalene and record the weights;
- 4. Weigh each drum and record the tare weight;
- 5. Add each Naphthalene sub-batch to the corresponding numbered closed top drum;
- 6. Weigh each drum after adding the Naphthalene and record the weight;
- 7. Add 272.3 Lb of Toluene to each drum and record the weight;
- 8. Mix the Naphthalene and Toluene contents of each drum thoroughly; and
- 9. Tightly seal, label and prepare each drum for shipment to the test site.

Calculation of Naphthalene Concentrations:

Table IV below provides the measured or indicated weights of each batch of Naphthalene, and the Toluene added to each drum; the estimated measurement uncertainty associated with each weigh scale reading (indication of weight); the Naphthalene purity (per the Manufacturer's Certificate of Analysis for the lot of Naphthalene used); and the calculated apparent or indicated Naphthalene concentration (wt%, assuming all weight measurements are accurate), as well as the cumulative Naphthalene concentrations uncertainty (based on the cumulative uncertainties assuming that each measurement was made with the maximum [error] measurement uncertainty and with the direction of each measurement uncertainty [error] which would result in largest increased or decreased concentrations, respectively, e.g., which would result in the maximum cumulative uncertainty).

Table IV Composition of Naphthalene in Toluene Solution by Drum

Nap Batch # & Drum #	Indicated Nap Weight, Lb/Batch	Scale Uncertainty ¹ , ± Lb	Indicated Toluene Weight, Lb/Drum	Scale Uncertainty ¹ , ± Lb	Nap Purity Correction, Mass Fraction	Wt ^o	% Naphthale	ene
	Dividaten	<u> </u>	LIJ/DT din		Fraction	Indicated	Min ²	Max ²
1	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
2	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
3	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
4	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
5	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26,989
6	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
7	100.71	± 0.01	272.5	± 0.1	0.9985	26.944	26,914	26.974
8	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
9	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
10	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26,989
11	100.71	± 0.01	272,3	± 0.1	0.9985	26.96	26.929	26,989
12	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
13	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
14	100.71	± 0.01	272.3	± 0.1	0.9985	26.96	26.929	26.989
Average	100.71	± 0.01	272.31	± 0.1	0.9985	26,958	26.928	26.988

Footnotes:

- 1. Estimated measurement uncertainty for a single weight measurement on the weigh scale used.
- 2. The following assumptions were made in estimating the maximum Naphthalene concentration for a given drum:
 - All four Naphthalene tare Weights were assumed to be smaller by the scale measurement uncertainty,
 - All four Naphthalene gross weights were assumed larger,
 - The Toluene tare weight (drum + Naphthalene) was assumed larger, and
 - The Toluene gross weight was assumed smaller.

In Toto, these worst case assumptions result in the Naphthalene weight being 0.08 Lb larger than indicated weight and the Toluene weight being 0.2 Lb smaller than the indicated weights. These assumptions resulted in the maximum Naphthalene concentration. The opposite assumptions would produce the minimum Naphthalene concentration. See Table V for further explanation.

Estimated Uncertainty in the Average Naphthalene Concentration:

Table V below describes the computational method and information used to estimate the concentration uncertainty for Naphthalene in the Naphthalene in Toluene Solution.

TABLE V Calculation of the Minimum and Maximum Naphthalene Drum Concentrations Based on Worst Case Cumulative Measurement Uncertainty Assumptions

Estimated Toluene Concentration Uncertainty

Table VI below describes the computational method and information used to estimate the concentration uncertainty for Toluene in the Naphthalene in Toluene Solution.

Calculation of the Minimum and Maximum Toluene Drum Concentrations Based on Worst Case Cumulative Measurement Uncertainty Assumptions TABLE VI

				Weight, I.h			ו ע		
#								Loluene Concentration,	Ę
	Naphthaler	Naphthalene (w/o Purity Cor	2]	Toluci	Toluene (with Purity Corrected ²)	rected ²)		Wt%	
	Indicated*	Minč	Max	Indicated ²	Min ⁴	Max ⁴	Indicated ⁵	Min	Max
1-6, & 8-14	100.71	100.63	100.79	272.11	271.91	272.31	72.95	72.92	77 08
7	100.71	100.63	100.79	272.31	272.11	272.51	72.964	72 934	72 904
Ave	100.71	100.63	100.79	272.1243	271.9243	272.3243	72.951	72 921	77 981
Range	100.71	100.63	100.79	272.11 -272.31	271.91 -272.11	272.31 -272.51	72.95 –72.964	72.92- 72.934	72.98–72.994
Summary	Results: Maxin	num Toluene Co	oncentration Ra	Summary Results: Maximum Toluene Concentration Range = 72.92 to 72.994 wt %.	94 wt %.				
	Levia [Knov	non from Indica vn] Toluene Con	ted Average Co	Deviation from Indicated Average Concentration \approx - 0.031 to + 0.043 wt %. [Known] Toluene Concentration = 72.951 wt % \pm 0.043 wt % = 72.95 wt %	Deviation from Indicated Average Concentration = -0.031 to +0.043 wt %. [Known] Toluene Concentration = 72.951 wt % \pm 0.043 wt % = 72.95 wt % \pm 0.045 wt %.	0.045 wt %.			
Footnotes:	 Indicated Na 	ohthalene Weight	from second colu	un from left in Table	Indicated Naphthalene Weight (from second column from left in Table III without aurity, correspond	antion			
	2. Indicated Tol	uene Weight from	fourth column fr	om left in Table III x 0	3,9993 (Tolliene purify	Indicated Toluene Weight from fourth column from left in Table III x 0.9993 Ffoliumen mirry concentrations as attached managements of the concentration of t	To a familiar of the familiar body	[4 -	
	Max Nap We Lb.	Max Nap Weights (wt) = Indicated Lb.	sted Nap wt + (4 [[sub-batches]) x {(+0.0	I [positive deviation8 ([Nap wt + (4 [sub-batches]) x {(+0.01 [positive deviation of gross wt]) - (-0.01 Lb [negative deviation of tare wt])} = Indicated Nap wt + 0.08	b [negative deviation8	oAj. of tare wt])} = Indicat	ed Nap wt + 0.08
	4. Max Toluene	Max Toluene Weight ≈ Indicated 1 Lh	ed Toluene weigh	t + (+0.1 Lb [positive ⁸	deviation of gross weig	oluene weight + (+0.1 Lb [positive deviation of gross weight]) - (-0.01 Lb [negative deviation of tare weight]) = Indicated Toluene wt + 0.2	ive ⁸ deviation of tare w	veight]) = Indicated T	oluene wt + 0.2
	5. Indicated Tol	uene wt % = [/Ind	icated Tolnene ⁹ w	/e/oht)/(Indicated Tolin	anolo maint + Indian	Indicated Toluene wt % = [(Indicated Toluene* weight)//Indicated Toluene wt % = [(Indicated Toluene wt	ò		
	6 Min Toluene	wt % = [Min Tolu	ene wt/(Max Na	Min Toluene wt % = IMin Toluene 9 wt//Max Nan ¹⁰ wt + Min Toluene wt % = IMin Toluene	outle weight + indicate outlier veight + indicate	sa ivap weignt)] x 100	% .		
	7. Max Toluene	wt % = [Max Tolt	uene wt/(Min Na	Max Toluene wt % = $[Max\ Toluene^3 wt/(Min\ Nap^{10}\ wt + Max\ Toluene^{10}\ wt)] \times 100\%$	10 wt)] x 100%				
	Reverse wt de	Reverse wt deviations for minimum Nap and Toluene wts.	num Nap and Tol	uene wts.	10000 T 10000				
	Purity Corrected.	ted.	•						
	Not Purity Corrected	nrected							
!									

Certificate of Composition Naphthalene in Toluene Solution

Based on the information provided herein, the Certificate of Composition (CoC) for the Naphthalene in Toluene Solution was prepared (See Fig. 2 for a highly abbreviated version of the Naphthalene in Toluene Solution CoC).

Fig. 2 CERTIFICATE OF COMPOSITION: NAPHTHALENE IN TOLUENE SOLUTION (Highly Abbreviated Format)

Product:	Naphthalene in Toluene Solution
Composition:	Naphthalene ¹ : 26.96 wt %
- . _	Toluene ¹ : 72.95 wt %
CERTIFICATION OF COM	MPOSITION.
best of my knowledge and be	position information provided above and in the footnote is true and accurate to the
Desi of my knowledge and be	thei.
Signed:	
	Schofield, PhD, PE Date
ESS Project	
-	· ·
Footnotes:	
Based on an analysis of:	the first of the second of the
(a) the Measurement uncerta	ainty of the weigh scales used to produce this material,
(c) the procedures which we	luene manufacturers' Certifications of Analysis, and ere used to produce this material,
I have concluded that the com-	position of the Naphthalene in Toluene Solution is:
(a) Naphthalene = 26.96 wt	% + 0.045 wt % and
(b) Toluene = 72 95 wt % +	

IMPACT OF COMPOSITION UNCERTAINTY ON ABSOLUTE AND RELATIVE SPIKING RATE UNCERTAINTY

The impact of compositional uncertainty discussed above on the Species (S) spiking rate uncertainty was calculated on two bases:

- 1. Absolute Species (S) Spiking Rate Uncertainty, ± Lb S/Hr, and
- 2. Relative Species Spiking Rate Uncertainty [uncertainty expressed as a % of the indicated spiking rate, ± %RU].

The results are presented in Table VII and summarized as follows:

	Spiking Rate,	Specie Spiking Ra	ite Uncertainty:
Spiking Specie (S)	Lb S/Hr	Absolute Uncertainty, ±Lb S/Hr	Relative Uncertainty, ±% RU
Ash	14,12	± 0.0064 Lb Ash/Hr	± 0.045% RU
Naphthalene	26.52	± 0.0119 Lb Nap/Hr	± 0.045% RU
Toluene	67.54	± 0.0323 Lb Toluene/Hr	± 0.045% RU

Table VII Effect of Composition Uncertainty	Associated with the Laboratory Standard Method on
Specie Spiking Rate Uncertainty	

	~ptt.	о ории	S CO C	o meet tat			
					Effect of Composi	tion Uncertainty on:	
Spiking		Mas	s/Run:		Apparent	Absolute Specie Spiking Rate	Relative Specie Spiking Rate
Specie,	Mat	erial	Sp	ecie	Spiking Rate,	Uncertainty,	Uncertainty,
(S)	± Lb	± %	± Lb	±%	Lb S/Hr	± Lb S/Hr	± % RU
Ash ¹	0.2	0.18	0.05	0.18	14,12	± 0.0064 Lb/Hr	± 0.045 %RU
Nap ²	0.2	0.06	0.06	0.06	26.52	± 0.0119 Lb/Hr	± 0.045 %RU
Toluene ³	0.2	0.08	0.15	0.08	67.54	± 0.0323 Lb/Hr	± 0.045 %RU

- 1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO₂ Dispersion/Run (Table III)
- 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317.96 Lb Nap Sol/Run (Table V)
- 3. Toluene has an indicated composition of 72.95 wt % ± 0.045 w % in 246.88 Lb Nap Solution/Run (Table VI)

Inspection of these results indicates that the compositional uncertainty associated with the *laboratory* standard method of demonstrating spiking material composition resulted in very modest spiking rate uncertainties whether on an absolute and relative uncertainty basis.

COMPARISON OF Laboratory Standard Method AND Sample and Analyze Method UNCERTAINTIES

In order to complete this analysis by comparing the uncertainties associated with the *laboratory standard method* to the corresponding uncertainties associated with the *sample and analyze method*, it is first necessary to estimate the measurement uncertainties associated with the analytical methods (SW846 or similar methods) which are most likely to be used to determine the composition of spiking materials in a HWC Test context.

Three approaches were utilized to estimate measurement uncertainties of the applicable SW846 (& ASTM) Methods:

- 1. Reviewing a recent, Agency approved QAPP for guidance using the acceptable analyte recovery range for a given method in duplicate spiked samples,
- 2. Reviewing Agency Guidance, specifically QA Objectives for method accuracy (defined for a given method as the acceptable analyte recovery range in duplicate spiked samples), and
- 3. Polling Analytical/Trial Burn Experts for opinions based on experience.

Reference (3), QA Objectives for TB, Table III-1, Process Samples.
 Reference (4), based on low [analyte concentration] level sample analysis.

Table VIII summarizes the results of that effort.

Table VIII Estimated Measurement Uncertainties for Selected Analytical Methods

	Spiking:	Analytical	Source of	Method Uncertain	ty Estimates:
Specie	Material	Method ¹	Recent QAPP(2)	Guidance(3)2	Expert Opinion(4)3
Ash	TiO ₂ Dispersion	ASTM D-482	± 10 %	± 25 %	NA
Metals	Dispersion or Solution	6010 & 7470	± 30 %	± 30 %	6 - 41 %
Naphthalene	Nap & Toluene Solution	8270	-90 to -54,+50 %	± 50 %	6 - 40 %
Toluene	Nap & Toluene Solution	8260	-50, +30 %	± 50 %	10 - 30 %
Footnotes: 1. S	W846 unless otherwise noted.		· - · · · · · · · · · · · · · · · · · ·		

Inspection of Table VIII prompts three significant observations:

- 1. There is a relatively wide range within the measurement uncertainty estimates;
- 2. The expert opinion estimates of measurement uncertainty are based on low [analyte concentration] level analyses and, as such, probably under state the measurement uncertainty which would be present with analysis of high level spiking material samples. Conversely, the QAPP and Guidance estimates are based on a wide range of analytical laboratories and, as a result, probably over state uncertainties associated with analytical results from a laboratory with a strong QA/QC Program; and
- 3. The level of measurement uncertainty associated with each of these analytical methods (sample and analyze method) is at least two (2) orders of magnitude larger than the measurement uncertainty associated with the laboratory standard method (e.g., \pm 5% vs. \pm 0.045%).

As a result of the last observation, no further effort was invested to refine the measurement uncertainty for the analytical methods. As a result of the first two observations, the following method specific measurement uncertainties were, somewhat arbitrarily, selected:

Method	Analyte	Measurement Uncertainty, ±%
ASTM D-482	Ash	± 10%
SW846 8270	Naphthalene	± 30%
SW846 8260	Toluene	± 30%

These measurement uncertainty estimates were used to calculate the absolute and relative spiking rate uncertainties on the same case study basis and with the results were summarized in Table IX, below.

Table IX Effect of Compositional Uncertainty Associated with the Sample & Analyze Method on Specie Spiking Rate

Spiking Specie, (S)	Apparent Spiking Rate, Lb S/Hr	Est'ed Measurement Uncertainty, ± %	Absolute Spiking Rate Uncertainty, ± Lb S/Hr	Relative Spiking Rate Uncertainty, ± %RU
Ash	14.12 Lb/Hr	± 10%	± 1.41 Lb Ash/Hr	± 10%RU
Naphthalene	26.52 Lb/Hr	± 30%	± 7.96 Lb Nap/Hr	± 30%RU
Toluene	67.54 Lb/Hr	± 30%	± 20.3 Lb Toluene/Hr	± 30%RU

The absolute and relative specie spiking rate uncertainties based on the *laboratory standard method* and the *sample and analyze method* were then taken from Tables VII & IX, respectively, and compiled as a comparison in Table X. Inspection of Table X reveals significantly larger spiking rate uncertainties with the *sample and analyze method* than the *laboratory standard method* for all species and on both absolute and relative uncertainty bases.

Table X Comparison of Spiking Rate Uncertainties Associated with the Laboratory Standard and Sample & Analyze Methods

Specie Spiking Rate Uncertainty Spiking Specie, Absolute Uncertainty, ± Lb S/Hr Relative Uncertainty (RU), ±%RU **(S)** Laboratory Standard Sample & Analyze Laboratory Standard Sample & Analyze Ash ± 0.0064 Lb Ash /Hr ± 1.41 Lb Ash /Hr ± 0.045%RU ± 10%RU Naphthalene ± 0.0119 Lb Nap/Hr ± 7.96 Lb Nap/Hr $\pm 0.045\% RU$ ± 30%RU Toluene ± 0.0323 Lb Toluene /Hr ± 20.3 Lb Toluene /Hr ± 0.045%RU ± 30%RU

Independent Assurance of Spiking Material Composition while Using the Laboratory Standard Method:

If there are regulatorily sensitive circumstances or other reasons that spiking material composition must be independently verified, the authors propose the following approach which would incur little or no additional cost compared to typical commercial analytical costs for GC/MS &/or ICP/CVAA analyses. The proposed approach would provide for the agency hiring a qualified, independent Professional Engineer (PE, or similar independent technically qualified individual) based near the material preparer's facility to observe the materials being prepared including all materials packages being opened, all measurement equipment being calibrated and all measurements being made and recorded, the Certificates of Analyses (CoAs) for all of the raw materials used, and the placement of a seal on all openings of the finished materials shipping containers, if required, and to obtain copies of all records related to the composition of the spiking materials including but not limited to: (1) calibration procedures for all measurement instrument/equipment, traceability of all standards used, and all applicable calibration records, (2) CoAs for all raw materials used, (3) all applicable material preparation procedures and measurement results, (4) all calculations based on the calibrations, standards, measurements, and procedures used to determine the spiking material composition, and (5) the PE's notes related to his/her observation of the materials being made, containerized, and sealed prior to shipment.

CONCLUSIONS

As a result of the information provided herein the authors have derived the following conclusions:

- 1. The compositional uncertainty of the two spiking materials prepared for the Case Study Trial Burn using the *laboratory standard method* as well as the impact of this compositional uncertainty on spiking rate are very modest (e.g., ± 0.045 wt% for each of the three spiking species: Ash, Naphthalene, and Toluene).
- 2. The laboratory standard method of demonstrating spiking material composition provides a much smaller uncertainty (by at least two orders of magnitude) in terms of both spiking material composition and spiking rate than is currently possible with the sample and analyze method due to inherent limitations/uncertainties of the current complex analytical methods. This uncertainty advantage is expected to remain even if analytical methods designed for high level samples were used, due to the very large magnitude of the uncertainty advantage compared to low level methods, and since all of the analytical method uncertainties remain with high level methods except those associated with sample dilutions.
- 3. Should there be sensitive regulatorily or other circumstances which make independent verification of spiking material composition mandatory, the use of an independent, technically qualified observer to confirm the details of the spiking material preparation using the *laboratory standard method* would be a logistically and economically viable alternative to the far less accurate *sample and analyze method*.

REFERENCES

- 1. Trial Burn Spiking Report, 2003, Confidential Client & Location.
- 2. Quality Assurance Project Plan, Confidential Client & Location.
- 3. USEPA, Region VI, Center for Combustion Science and Engineering, HWC Unit Permitting Manual, Component 2, "How to Review a QAPP", prepared by Tetra Tech, Inc., 1996

4. Private phone and email communications by one of the authors (WRS) with Julius Fulop, et. al., Philip Analytical Services, February, 2004.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the able assistance of:

Julius Fulop, and David Boomer both of Philip Analytical Services for their helpful comments on a draft of this paper and for sharing a significant quantity of written information on the increasingly rigorous topic of measurement uncertainty.

Robert Bucher of Weighing Technology for his unstinting practical and theoretical explanations, and detailed written information concerning weighing system operations, precision, and accuracy.

As used herein **Spiking Material (M)** refers to the material which is actually spiked, i.e., a metal solution, a TiO₂ and/or metal dispersion, and/or an individual or a mixture of POHCs. **Spiking Species (S)** refers to the portion of the **Spiking Material** which is of specific interest in meeting the test objectives, i.e., individual metals, ash, individual POHCs, Cl⁻, etc.

The weight of TiO₂ per drum assuming that the gross weight measurements for each of the three TiO₂ sub-batches were higher than indicated weight by an amount equal to the full uncertainty, and all net weight measurements for TiO₂ were less by the full uncertainty, which yields a quantity of TiO₂ = 91.65 + 0.06 = 91.71 Lb TiO₂/Drum.

The Lb TiO₂ /drum based on the opposite assumptions to footnote ii above, which yields TiO₂ = 91.65 - 0.06 = 91.59 Lb. TiO₂/Drum.

The term "indicated" as used within herein refers to the apparent weight or weight percent of a substance as "indicated" on the digital readout devices (digital indicators) employed in this work.

The following assumptions were made in estimating the maximum Naphthalene concentration (e.g., the cumulative positive uncertainty) for a given drum:

All four Naphthalene tare weights were assumed to be smaller than the indicated weight by the full measurement uncertainty.

All four Naphthalene gross weights were assumed larger,

The Toluene tare weight (drum + Naphthalene) was assumed larger, and

The Toluene gross weight was assumed smaller.

In toto, this series of worst case assumptions results in the Naphthalene weight being 0.08 Lb larger than indicated and the Toluene weight being 0.2 Lb smaller than the indicated weights. These assumptions resulted in the maximum Naphthalene concentration. The opposite assumptions would produce the minimum Naphthalene concentration. See Table V for further explanation

Attachment V. Effect of Measurement Uncertainty on Spiking Rate Uncertainty

)

B. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Field Spiking Rate and Overall Specie Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #102, Phoenix, AZ, May, 2004

THE EFFECT OF MEASUREMENT UNCERTAINTY ON FIELD SPIKING RATE AND OVERALL SPECIE SPIKING RATE UNCERTAINTIES

Bill Schofield Engineered Spiking Solutions, Inc. LaPorte, Texas 77571

Anthony R. Eicher Focus Environmental, Inc. Knoxville, Tennessee 37923

Sean O'Brien
TRC Environmental Corporation
Houston, Texas 77043

ABSTRACT

Objectives

The objectives of this paper are:

- 1. To develop estimates for Measurement Uncertainty on a common basis for the two primary field methods of measuring spiking rate, e.g., weigh cell and mass flow meter technologies;
- 2. To determine the impact of these measurement uncertainties on field spiking rate and overall spiking rate uncertainties; and
- 3. To compare the combined spiking rate uncertainties due to measurement uncertainties associated with: (a) spiking material composition, (b) field spiking rate measurement, and (c) spiking material composition plus field spiking rate measurements.

Methodology

Estimates of field spiking rate uncertainties are developed on the basis of:

- Case Study Basis for Calculations: The test-specific details of a 2003 TB [conducted at a private, US based HWC Unit] are used as a Case Study basis for preparing quantitative comparisons on a consistent basis.
- The two field spiking methods and associated modes of operation considered in this uncertainty analysis were:
 - o Weight loss versus time method with manual operation, and
 - Mass flow meter method with computer control.
- The Following Assumptions Were Made in Estimating and Propagating Uncertainties:
 - o For both spiking methods:
 - No undetected operator mistakes, equipment/software mal-functions, and/or data reduction/reporting errors have occurred.
 - · Second-order uncertainties are not significant, and
 - All spiking materials are uniform in composition throughout the test.

- For the weight loss versus time method:
 - Measurement uncertainty can be conservatively estimated based on a series of worst case conditions concerning both the magnitude and direction of individual measurement uncertainties, and
 - Indeterminative errors are adequately addressed with the conservative approach used to estimate determinative weight measurement uncertainty.
- For the mass flow meter method:
 - The mass flow meter manufacturer's published specification for equipment accuracy is an appropriate estimate of field measurement uncertainty, and
 - The function (accuracy) of the mass flow meter sensor is not adversely affected by corrosion, erosion, and/or uneven spiking material deposition onto the interior surfaces of the sensor tube.
- The compositional uncertainty estimates from a companion paper are combined with the field spiking rate uncertainties developed herein to produce the overall spiking system uncertainties, as follows:

Total System Uncertainty System #1 Uncertainty

- Compositional Uncertainties with the: +
- Spiking Rate Uncertainties with the:

- System #2 Uncertainty
- Laboratory Standard Method
- Weight Loss versus Time Method
- Sample and Analyze Method
- Mass Flow Meter Method

Results

Uncertainty comparisons are made for the two systems on three bases:

- o Overall spiking system uncertainties associated with spiking material composition uncertainty
- o Overall spiking system uncertainties associated with field spiking rate uncertainty alone, and
- Overall spiking system uncertainties due to the combined impact of both composition and field spiking rate uncertainties.

INTRODUCTION AND BACKGROUND

A great deal of effort has been expended over the last decade to investigate, understand, and improve the Quality Assurance (QA) aspects of the sampling and analytical methods used in Hazardous Waste Combustion (HWC) Risk Burns, Trial Burns, and HWC MACT Comprehensive Performance Tests. To date a comparable effort has not been made concerning the spiking function in these same tests. Additionally, conflicting information is being provided by proponents of the two most widely used methods of demonstrating spiking material composition and of measuring field spiking rates.

Objectives

The objectives of this paper are threefold:

- 1. To develop estimates for Measurement Uncertainty on a common basis for the two primary field methods of measuring spiking rate, e.g., weigh cell and mass flow meter technologies;
- 2. To determine the impact of these measurement uncertainties on field spiking rate and overall spiking rate uncertainties; and
- 3. To compare the spiking rate uncertainties due to measurement uncertainties associated with: (a) spiking material composition, (b) field spiking rate measurement and (c) spiking material composition plus field spiking rate measurements.

This paper also examines the effect of measurement uncertainty, imperfect knowledge, and/or error at each step of the spiking function from the point of setting a target spiking rate in a test plan, through spiking material design and preparation, the on-site spiking rate measurement and data collection functions, and the ultimate reporting of spiking rate results. Each major type of deviation, error, and/or uncertainty in the spiking function is identified and discussed in the context of the facility owners test objectives and applicable regulatory requirements.

Methodology: Estimating the Effect of Measurement Uncertainty

The effect of measurement uncertainty on field spiking rate and overall spiking system uncertainties are estimated on the following basis:

- Case Study basis for comparisons: The test-specific details of a 2003 TB [conducted at a private,
 US based HWC Unit] are used herein as a Case Study for preparing quantitative comparisons on
 a consistent basis;
- The Two Field Spiking Methods and associated Modes of Operation are used as the primary subject of this uncertainty analysis:
 - o Weight loss versus time method with manual operation, and
 - o Mass flow meter method with computer control.

[While ESS currently deploys computer based technology for spiking system monitoring, feedback control, data acquisition, archiving, and output; and both mass flow meter and weigh cell technologies for measuring field spiking rates; the data presented herein were obtained prior to the mass flow meter and computer control technology becoming operationally available.]

- The following Assumptions were made in estimating and propagating uncertainties:
 - o For both spiking methods:
 - No undetected operator mistakes, equipment/software mal-functions and/or data reduction errors have occurred,
 - Second-order uncertainties are not significant:
 [Because of the very small magnitude of all first-order uncertainties, no second order uncertainties are considered. The validity of this assumption is demonstrated within the companion paper (Ref.2), using first-order uncertainties estimates developed for the case study example], and
 - All spiking materials were uniform in composition throughout the test: [The two spiking materials used in the Case Study (e.g., Naphthalene in a Toluene solution, & TiO₂ in a mineral oil based dispersion) are typical of spiking materials, in that they well known in terms of chemistry and have been successfully used many times over a period of more than a decade. The solubility of Naphthalene is known and the Naphthalene in Toluene spiking material is prepared as an unsaturated solution.

While there are reports that some plating or deposition of TiO₂ onto the inner surfaces of tubing can occur, this phenomena would largely occur during the initial equipment conditioning (pre-test) phase, and the mass of TiO₂ which could plate out in this case prior to blocking the relatively short, small diameter (1/2" ID) tubing is very small (<< 0.1 Lb) in comparison to the total quantity of TiO₂ spiked during a given run (> 100 Lb).]

For the weight loss versus time method:

The impact of weight measurement uncertainty on field spiking rate uncertainty can be estimated based on a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties. [The maximum measurement uncertainty together with the direction of each measurement uncertainty which would produce the largest cumulative field spiking rate uncertainty are used in all uncertainty propagation calculations. Specifically, weight measurement uncertainty is estimated on the basis of a large determinative uncertainty (\pm U Lb) based on the equipment vendor's specification of measurement uncertainty, typically, U = 0.01% of the full scale capacity of the equipment used). This uncertainty is carried throughout the uncertainty propagation calculations as if it were part of the weight (W) value (i.e., W was replaced with W \pm U Lb). Once the calculation was completed, the + or - uncertainty directions for U which would result in the largest cumulative spiking rate uncertainty are selected.], and

Indeterminative errors are adequately considered with the conservative approach used to estimate determinative weight measurement uncertainty.

[The magnitude of determinative uncertainty (± U) is chosen to be sufficiently large and the weigh scale indicator setting is set such that random variation in the weight measurements (indeterminative uncertainty) is hidden in the decimal places which are not displayed. As a result, indeterminative uncertainty is not expected have a material impact on the results of this analysis.]

o For the mass flow meter method:

- The equipment manufacturer's published specification for sensor accuracy (Refs: 3, 4, 5)
 can be used without modification as the mass flow meter field measurement uncertainty,
 and
- The function (accuracy) of the mass flow meter sensor is not adversely affected by corrosion, erosion and/or uneven spiking material deposition onto the interior surfaces of the sensor tube (Refs: 3, 4, 5).

Significant figures:

- A large number of calculations are made in this uncertainty analysis, many with extremely small numbers. To avoid rounding errors and to retain the integrity of the uncertainty estimates developed herein, a relatively large number of significant figures are carried through the calculations and presented in the tables.
- The authors do not claim the accuracy and/or precision in these figures that would normally be implied by the standard significant figures rules.
- The compositional uncertainty estimates from a companion paper are combined with the field spiking rate uncertainties developed herein to produce the overall spiking system uncertainties, as follows:

```
Total System Uncertain = Compositional Uncertainties with the:
System #1 Uncertainty = Laboratory Standard Method
System #2 Uncertainty = Sample and Analyze Method + Sample and Analyze Method + Mass Flow Meter Method
```

[The uncertainties associated with composition and field spiking rate are combined in this manner to reflect the standard practices of representative spiking firms within the spiking industry.]

Results

Uncertainty comparisons are made for these two, frequently used spiking systems on three bases:

- Overall spiking system uncertainties associated with spiking material composition uncertainty alone,
- Overall spiking system uncertainties associated with field spiking rate uncertainty alone, and

 Overall spiking system uncertainties due to the combined impact of both composition and field spiking rate uncertainties.

Description of the "Case Study" Trial Burn

The Case Study TB was conducted on a confidential, non-commercial, HWC Unit during 2003, and consisted of two Test Conditions (TC) which were defined as follows: (1) TC #1: Maximum Waste Feed, and (2) TC #2: Minimum Temperature (DRE). The spiking materials consisted of a Naphthalene in Toluene Solution (@ a nominal 27 wt % Naphthalene) and a TiO₂ Dispersion (@ a nominal 25 wt % Total Ash). The testing/spiking schedule is summarized as follows:

Test	Date	Spikin	g With:
Condition	Conducted	Nap Sol	Dispersion
TC #1	2003	√	
TC #2	2003	√	

The spiking function for this TB involved three spiking speciesⁱ (e.g., Total Ash, Naphthalene, and Toluene) which were contained in two spiking materials¹ (e.g., TiO₂ Dispersion, and Naphthalene in Toluene Solution). The dispersion was used as an ash surrogate with ash contributions from both the TiO₂ (primary) and the proprietary dispersing agent (secondary). The Naphthalene in Toluene Solution spiking material contained both POHCs, e.g., Naphthalene and Toluene.

Equipment Setup and Operation for the Weight Loss Versus Time Spiking Approach

Typically a drum (or tote tank or gas cylinder) of spiking material is placed on an appropriately sized weigh scale (the smallest [most accurate] scale which can weigh the full container of spiking material) and connected with SS, dripless, quick-connect fittings to the metering pump, which is similarly connected to the waste feed line. As material is pumped out of the drum (and into the waste feed line) the mass on the weigh scale drops (see Figure 1). The weight of spiking material remaining on the weigh scale is recorded and the spiking rate calculated frequently based on the rate of change of mass on the weigh scale.

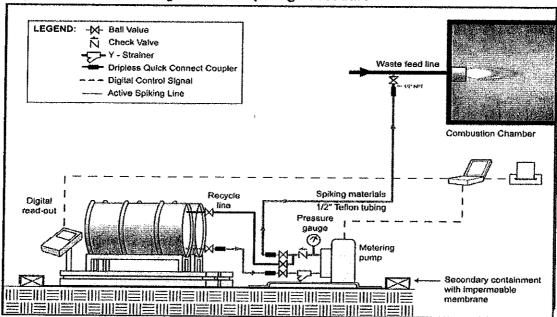


Figure 1 Schematic Diagram: ESS' Spiking Procedure

The weigh scalesⁱⁱ (See Table 1) are calibrated before the test and the calibration is verified on-site immediately before and after the test with NIST traceable standardsⁱⁱⁱ The pre- and post-test calibration verifications generally indicate no deviations (e.g., \pm 0.0 Lb deviation) for most if not all points over the full calibration range (typically, 0.0 - 650.0 Lb).

Units Lb (Kg) (d)/FS; d/FS d/FS	Rice Lake 1,000 (500) 5,000
(d)/FS: d/FS	5,000
(d)/FS: d/FS	
d/FS	
d/FS	10.000
	10,000
Lb/d (%FS/d)	0.02 (0.02%)
Lb/d (%FS/d)	0.01 (0.01%)
ns:	
0.03% FS	0.03% FS
0.02% FS	0.02% FS
ntal condition rec quasi government eights and measurable equipment has flect how measurable. infrequently, a wide range of a sing acceptable a	
	ns: 0.03% FS 0.02% FS 0.02% FS or of divisions/FS For example, a discernable by the faccuracy, calibrated condition requasi government eights and measurage of equipment has the flect how measurage of eacceptable acceptable accepta

NIST traceable standards which consistently demonstrated deviations from the standards of < 0.01% or equivalently d/FS

Procedures for Calculating Spiking Rate

Standard Spiking Rate Calculation Procedure

The standard procedure for calculating the spiking rate for a given run with the Weight Loss Versus Time Method is to include spiking rate data for the time period beginning when the stack sampling probe is first introduced into the stack [or from the beginning of sampling with the first VOST tube pair], through port changes [or VOST tube replacement] until the probe is removed from the stack at the end of that run [or until sampling with the last VOST tube pair is completed] unless some abnormal event occurs such as an extended combustor operational problem, or the rare sampling train leak check failure. Because metering pumps (which maintain essentially constant feed rates throughout the run^{iv}) are used (instead of simple transfer pumps which are susceptible to throughput swings in response to waste feed line pressure changes), this approach has a number of advantages (e.g., simplified data reduction, and reduced

 \geq 10,000.

measurement uncertainty [see discussion below]), and no disadvantages. If problems were to occur which might bring operating, sampling, or spiking performance data into question, then the spiking data from that period would be excluded from the spiking rate calculations.

With this procedure, calculation of the spiking rate for a given run typically requires the recording and use of two weight measurements, i.e., the beginning mass and the final mass. Thus, weighing systems measurement uncertainty could occur twice.

A conservative estimate of measurement uncertainty in the mass of spiked material per run would assume that: (1) the weight measurement for the beginning mass measurement and for the ending mass reading are each in "error", (2) the "error" is equal to the full measurement uncertainty, and (3) the two "errors" are in opposite directions (so that the measurement uncertainties would be additive and would not cancel each other).

If one were to assume a measurement uncertainty of \pm 0.1 Lb associated with each weight measurement reading, then the maximum measurement uncertainty for the total mass of spiking material (M) fed during a run would be \pm 0.2 Lb M/Run.

For a run with 300 Lbs M/Run, the relative uncertainty (RU, expressed as a per cent) would be:

```
RU = (\pm 0.2 \text{ Lb M/Run})/(300 \text{ Lb M/Run}) \times 100 \% \text{ RU}
= \pm 0.0667 \% \text{ RU}, a very small relative uncertainty.
```

For a run with 100 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would remain \pm 0.2 Lb M/Run, but the relative uncertainty would be:

```
RU = (± 0.2 Lb M/Run)/(100 Lb M/Run) X 100 % RU
= ± 0.2 % RU, still a very small relative uncertainty.
```

Similarly, if the spiking material were to contain the spiking specie (S) at a 20 wt% concentration, then the corresponding absolute measurement uncertainty would be \pm 0.04 Lb S/Run, and the corresponding RU values for specie uncertainties would not change.

A More Conservative Spiking Rate Calculation Procedure

If, however, one were to decide to use only spiking data during test periods when spiking and stack sampling for that specie were both occurring, the spiking rate calculations could involved two or more separate spiking periods during each run. As before, each sampling period (Sx Period) required two weight measurements (at the beginning and the end of each period), each with its own measurement uncertainty.

For a run with four sampling periods and 300 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would be \pm 0.8 Lb M/Run and the relative uncertainty would be:

```
RU = (± 0.2 Lb M/Sx Period) X (4 Sx Periods/Run)/(300 Lb M/Run)X100 % RU

= (± 0.8 Lb M/Run)/(300 Lb M/Run) X 100 % RU

= ± 0.2667 % RU, a very modest relative uncertainty.
```

And for a run with four sampling periods and 100 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would remain \pm 0.8 Lb M/Run, but the relative uncertainty would be:

- RE = (± 0.2 Lb M/Sx Period) X (4 Sx Periods/Run)/(100 Lb M/Run)X100 % RU
 - $= (\pm 0.8 \text{ Lb M/Run})/(100 \text{ Lb M/Run}) \times 100 \% \text{ RU}$
 - = ± 0.8 % RU, still a modest relative uncertainty.

Similarly, if the spiking material were to contain the spiking specie at 20 wt %, then the maximum measurement uncertainty for the total mass of spiking specie fed during a run would be \pm 0.16 Lb S/Run and the corresponding RU values for specie uncertainties would not change.

Additional quantitative analyses of the effect of measurement uncertainty on field spiking rate based on the Case Study TB are provided below.

FIELD SPIKING RATE RESULTS

The Spiking Log Sheets completed during the Case Study TB were used together with the Certificates of Composition to calculate the specie spiking rates using both the standard and the more conservative procedures described above.

Note: During the Case Study 2003 TB, each spiking specie (Ash/PM, Naphthalene, and Toluene) was sampled using a different sampling method and over different sampling periods.

The resulting field spiking rate results for Ash, Naphthalene, and Toluene are presented in Tables II, III, and IV, respectively.

Total Ash Spiking Rate Results

Table II provides the average TiO₂ Dispersion, and concentration corrected Total Ash spiking rates for each of the three TC #1 runs, as well as for TC #1 in toto.

Table II Average TiO₂ Dispersion (Spiking Material¹) and Total Ash (Spiking Specie¹) Spiking Rates by Run for TC #1

TC#1/		Mass Fr	action		Disp Spiking	Ash Spik	ing Rate ⁴ :
Run#	$[TiO_2]^2$	TiO ₂ Purity ²	Stoich. Content ²	[Ash] ²	Rate ³ , lb/min	lb/min	lb/hour
Run #1	0.244	98.7	1.0477	0.2523	0.8752	0.221	13.25
Run #2	0.244	98.7	1.0477	0.2523	0.9726	0.245	14.72
Run #3	0.244	98.7	1.0477	0.2523	0.9508	0.240	14.39
TC #1 Ave	0.244	98.7	1.0477	0.2523	0.9329	0.235	14.12

Footnotes:

- 1. As used throughout this paper, Spiking Material (M) refers to the material as it is actually spiked, i.e., a Naphthalene in Toluene Solution, and/or a TiO₂ dispersion. Spiking Species (S) refers to the portion of the Spiking Material which is of specific interest in meeting the test objectives, i.e., Naphthalene, toluene, ash, POHC, CI, etc.
- 2. Concentration refers to the concentration of the compound of interest in the Spiking Material, for example Nap in the Naphthalene in Toluene Solution assuming 100% purity. Purity refers to the assay, or purity of the Naphthalene, for example, used to make up the solution to the desired concentration. Stoich. Content refers to the stoichiometric content of the specie of interest in the compound, for example the Cl content in Perc or metal content in the metal compound. [Specie] indicates the specie concentration (usually expressed as Lb Specie/Lb Material, or mass fraction) and is defined as:
 - [Specie] = Concentration x Purity x Stoich. Content. [Specie] is used to convert the Spiking Material spiking rate to the corresponding Spiking Specie spiking rate. Usually, all four of the "correction" terms are expressed as mass fractions.
- 3. Without Correction for [Specie]. Calculated from field spiking data.
- 4. With Correction for [Specie]

Naphthalene Spiking Rate Results

Table III provides the average Naphthalene in Toluene Solution spiking rates as well as the concentration and purity corrected Naphthalene spiking results for: (1) each of the six TC #1 and TC #2 runs, (2) each of the two TCs, and (3) the overall trial burn.

Table III Average Naphthalene Solution (Spiking Material¹), and Naphthalene (Spiking Specie¹) Spiking Rate Results by Run and TC.

	Correct	ion Factors	, Mass Frac	tion	Nap Sol	Nap Spil	cing Rate
TC#/ Run#	Nap Concentration ¹	Nap Purity ¹	Stoich, Content ¹	[Nap] ¹	Spiking Rate ¹ , lb/min	lb/min	lb/hr
TC#1/Run#1	0.2700	0.9985	1.000	0.2696	1.7546	0.473	28.38
TC#1/Run#2	0.2700	0.9985	1.000	0.2696	1.8538	0.500	29.98
TC#1/Run#3	0.2700	0.9985	1.000	0.2696	1.6068	0.433^{2}	25.99 ²
TC#1 Ave	0.2700	0.9985	1.000	0.2696	1.7384	0.469	28.12
TC#2/Run#1	0.2700	0.9985	1.000	0.2696	1.5416	0.4156^{2}	24.94 ²
TC#2/Run#2	0.2700	0.9985	1.000	0.2696	1.5479	0.4173^{2}	25.04 ²
TC#2/Run#3	0.2700	0.9985	1.000	0.2696	1.5321	0.4130^{2}	24.78 ²
TC#2 Ave	0.2700	0.9985	1.000	0.2696	1.5405	0.415	24.92
TB Ave	0.2700	0.9985	1.000	0.2696	1.6395	0.442	26.52

- 1. See footnotes in Table II for definitions for these terms.
- ESS was directed to reduce the target spiking rate for these runs as a means of conserving limited stocks of spiking materials.

Table IV provides the average Naphthalene in Toluene Solution spiking rates as well as the concentration and purity corrected Toluene spiking results for: (1) each of the six TC #1 and TC #2 runs, (2) each of the two TCs, and (3) the overall trial burn.

Table IV Average Naphthalene in Toluene Solution (Spiking Material), and Toluene (Spiking Specie) Spiking Rate Results by Run and TC.

TC#/		ion Factors		4	Nap Sol		cing Rate ¹
Run No.	Toluene Concentration ¹	Toluene Purity ¹	Stoich. Content ¹	[Toluene] ¹	Spiking Rate ¹ , lb/min	lb/min	lb/hr
TC#1/Run# 1	0.7300	0.9993	1.000	0.7295	1.6261	1.186	71.17
TC#1/Run# 2	0.7300	0.9993	1.000	0.7295	1.7826	1.300	78.02
TC#1/Run# 3	0.7300	0.9993	1.000	0.7295	1.2100	0.8827 ²	52.96 ²
TC #1 Ave	0.7300	0.9993	1.000	0.7295	1.5396	1.123	67.39
TC#2/Run# 1	0.7300	0.9993	1.000	0.7295	1.5421	1.125 ²	67.50 ²
TC#2/Run# 2	0.7300	0.9993	1.000	0.7295	1.5550	1.134 ²	68.06 ²
TC#2/Run# 3	0.7300	0.9993	1.000	0.7295	1.5423	1.125 ²	67.50 ²
TC #2 Ave	0.7300	0.9993	1.000	0.7295	1.5464	1.128	67.69
TB Ave	0.7300	0.9993	1.000	0.7295	1.5430	1.126	67.54

^{1.} See footnotes in Table II for definitions for these terms.

THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING RATE RESULTS: METHODOLOGY & RESULTS

Measurement Uncertainty Associated with Field Weight Measurements with the weight loss versus time method

This section provides a summary of the measurement uncertainty aspects of: (1) the compositions of the two spiking materials which **ESS** prepared and supplied for this Trial Burn, (2) the weigh scale calibrations, pre- and post-test calibration verifications, and sensitivities, and (3) field spiking rate results. Additionally, an extensive uncertainty analysis was completed on spiking materials compositions and spiking rate results. The methodology used with respect to spiking rates is outlined below together with the results of both the composition and spiking rate analysis.

All weigh scales used during this trial burn were calibrated prior to the test and the calibrations were verified on-site (with \pm 0.0 lb deviations at each point in the calibration range) immediately before and after the tests with **ESS'** NIST traceable weight standards. Thus, the field spiking rate data for this Trial Burn are deemed to meet all appropriate QC and QA standards and are demonstratably accurate within \pm 0.1 Lb M/weight measurement.

^{2.} **ESS** was directed to reduce the target spiking rate for these runs as a means of conserving limited stocks of spiking materials.

Spik	ing			Average Mass of Materia
Material:	Specie:	Sampling Method	Ave Sampling Period, Hours	Spiked per Run, Lb M/Run
TiO ₂ Dispersion	Total Ash	Method 5	1.972	110.49 Lb TiO ₂ Dispersion
Nap Solution	Naphthalene	Method 0010 (SVOC)	3.000	317.96 Lb Nap Solution
Nap Solution	Toluene	VOST (VOC)	2.667	246.88 Lb Nap Solution

The spiking data from the 2003 Case Study TB were used to calculate the quantity of each spiking material spiked per run and while the corresponding sampling method for that specie was being used. The results are summarized as follows:

With a weigh scale measurement uncertainty of \pm 0.1 Lb M/weight measurement, and the assumption that all measurement uncertainty [error] occurs in the direction which would result in the maximum cumulative uncertainty, the maximum uncertainty in measuring the quantity of spiking material per run would be calculated as follows:

Field Measurement Uncertainty = (

= (4 Sx Periods/Run) x (2 Weight Measurements/Sx Period) X

(± 0.1 Lb M/Measurement)

 $= \pm 0.8 Lb M/Run$

The Effect of Measurement Uncertainty in Spiking Rate Results

Table V presents spiking rate uncertainty expressed on the following bases:

1 Absolute Uncertainty (Lb/Run AU) Basis:

a. Spiking Material (Dispersion or Nap Sol)
 b. Spiking Specie (Ash, Naphthalene, & Toluene)
 Column 4

2. Relative Uncertainty (%RU) Basis:

a. Spiking Materialb. Spiking SpecieColumn 3Column 5

3. Absolute Specie Spiking Rate Uncertainty (Lb Specie/Hr AU) Basis: Columns 7, 8, & 9

4. Relative Specie Spiking Rate Uncertainty (%RU) Basis: Columns 10, 11, & 12

¹The spiking rate uncertainties are presented on three measurement uncertainty bases: (1) field measurement uncertainty (Columns 7 & 10), (2) composition measurement uncertainty (Columns 8 & 11), and (3) the combined field spiking rate measurement plus composition uncertainty (Columns 9 & 12).

Table V Effect of Field Measurement Uncertainty (By Weight Loss Versus Time Method), Compositional Uncertainty (By Laboratory Standard Method), and Combined Field Plus Compositional Uncertainties on Overall Spiking Rate Uncertainty

	1 7 7 7 7							TION CHANGE			
	Field Measurement Uncertainties expressed as	ment Un	certainties exp	pressed as			Cumulative Specie Spiking Rate Uncertainties expressed as:	ie Spiking Ra	e Uncertainties	expressed as:	
	Absolute Unc	ertainty	Absolute Uncertainty (#Mass/Run AU), and	VU), and	Indicated	Absolut	Absolute Specie Spiking Rafe	o Rate	Relative	Relative Specie Spiking Pate	Date
	Relativ	ve Uncer	Relative Uncertainty (±%RU)	رر	Specie	Un	Uncertainty Due to:	0:	Unce	Uncertainties Due to:	
			:	•	Spiking	Field		Combined	Field		
Spiring	Spiking Spiking Material (M)	riai (M)	Spiking Specie (S)	ecie (S)	Rate,	Measurement	Measurement Composition	± Lb S/Hr	Measurement	Composition	Combined
Specie	Specie ± Lb M/Run, ± %RU, ± Lb S/Run, ± %RU	± %RU,	± Lb S/Run,	± %RU,	Lb S/Hr	\pm Lb S/Hr AU \pm Lb S/Hr AU	± Lb S/Hr AU	AU	± % RU	± % RU	±% RU
Ξ	(2)	ව	(4)	(5)	(9)	(7)	(8)	6)	(10)	(11)	(12)
Four S	Four Spiking Periods Per Run (Measurement Uncertai	er Run (Measurement		nty = ± 0.8 Lb M/Run)	b M/Run)					
Ash ¹	8.0	0.72	0.20	0.72	14.12	0.102	0.0064	0.108	0.72	0.045	92.0
Nap^2	8.0	0.25	0.22	0.25	26.52	990'0	0.0119	0.078	0.25	0.045	0.70
Toluene	8.0	0.32	0.58	0.32	67.54	0.216r	0.0323	0.248	0.32	0.045	0.36
One Sp	One Spiking Period Per Run (Measurement Uncertaint	· Run (M	easurement U	ncertainty	$y = \pm 0.2 \text{ Lb M/Run}$	M/Run)					
Ash ¹	0.2	0.18	0.05	0.18	14.12	0.025	0.0064	0.0314	0.18	0.045	0.22
Nap^2	0.7	0.06	90.0	90.0	26.52	0.016	0.0119	0.0279	0.06	0.045	0.11
Toluene	0.2	0.08	0.15	0.08	67.54	0.054	0.0323	0.0863	0.08	0.045	0.13
F	T-4-1 1-4 1-4-F										

^{1.} Total Ash has an indicated composition of 25.23 wt % \pm 0.045 wt % in 110.49 Lb TiO₂ Dispersion/Run 2. Naphthalene has an indicated composition of 26.96 wt % \pm 0.045 wt % in 317.96 Lb Nap Sol/Run 3. Toluene has an indicated composition of 72.95 wt % \pm 0.045 w % in 246.88 Lb Nap Solution/Run

^{4.} Column #'s which are used in text to identify uncertainty analysis results.

Additionally, for comparison purposes the entire analysis was repeated on the basis of ESS' standard spiking rate calculation procedures described above, i.e., spiking rate based on one spiking period with maximum field error of ± 0.2 Lb/Run. These results are presented in the bottom half of Table V.

Measurement Uncertainty Associated with Field Weight Measurements with the mass flow meter method

After reviewing available Micro Motion® Sales Literature and Product Specifications for the most sensitive (ELETE®) sensor and having numerous discussions with the Micro Motion ® technical sales and engineering staff, it appeared that a comprehensive analysis of measurement uncertainty in a "field" as opposed to a test bench setting was not available. As a result of the discussion with Mr. Tim Patten, Director of Measurement for Micro Motion®, one of the authors (WRS) concluded that the best approach to estimating field measurement uncertainty would be to assume that the published specification for sensor accuracy (Refs: 3, 4, 5) can be used without modification as the mass flow meter field measurement uncertainty. This approach allowed the uncertainty analysis to be completed without arbitrary revisions of the manufactures product specification. However, it should not necessarily be inferred that the manufactures product specification of accuracy is a complete measure of this equipments measurement uncertainty under field conditions.

Never the less, using the published accuracy specification of \pm 0.1% as an estimate of field measurement uncertainty and the Case Study comparison basis described above, the absolute and relative spiking rates results were calculated and summarized in Table VI.

Table VI Effect of Field Measurement Uncertainty (By Mass Flow Meter Method), Compositional Uncertainty (By Sample & Analyze Method), and Combined Field Plus Compositional Uncertainties on Overall Spiking Rate Uncertainty

						snr r rein r ins	y and the Company of the Compositional Uncertainties on Overall Spiking Rate Uncertainty	Uncertainties	on Overall Spik	ing Kate Uncer	tainty
	Field Measu	rement Ur	Field Measurement Uncertainties expressed as	pressed as			Cumulative Specie Spiking Rate Uncertainties expressed as:	ie Spiking Ra	te Uncertainties	expressed ac-	
	Absolute U	ncertainty	Absolute Uncertainty (±Mass/Run AU), and	AU), and	Indicated	niosdA	Absolute Specie Spiking Rate	g Rate	Relative	Relative Specie Spiking Rate	Rate
	WEIS	live Office	Acialive Uncertainty (#%KU)	7)	Specie	Un	Uncertainty Due to:	:	Unce	Uncertainties Due to:	
Spiking	Spiking Spiking Material (M)	terial (M)	Spiking Specie (S)	ecie (S)	Spiking Rate.	Field	Field Moseurement Composition	Combined	Field		
Specie	Specie ± Lb M/Run, ± %RU,	± %RU,	#	± %RU,	Lb S/Hr	± Lb S/Hr AU	± Lb S/Hr AU ± Lb S/Hr AU	± Lb S/Hr AU	Measurement # % RI	Composition \pm % RU	Combined # % RI
Ξ	(2)	(3)	(0	(5)	(9)	0	(8)	(6)	(10)	(11)	(12)
Four Sr	ileina Dariode	Don Dun	Maria	11							
C Ino.	MAINE I CITORS	Lei Aun	rous Spinals I citous I cit Aun (Measurement Uncertainty = ± 0.8 Lb M/Run)	Uncertain	$y = \pm 0.8 L$	M/Run)					
Ash	8.0	0.72	0.20	0.72	14.12	0.102	0.0064	0.108	0.72	0.045	92.0
Nap*	0.8	0.25	0.22	0.25	26.52	0.066	0.0119	0.078	0.25	0.045	0.00
Loluene	9.8	0.32	0.58	0.32	67.54	0.216r	0.0323	0.248	0.32	0.045	92.0
										CF-0-0	0000
One Spi	king Period P	er Run (M	One Spiking Period Per Run (Measurement Uncertaint)	ncertainty	$v = +0.2 \text{ Lh M/D}_{\text{un}}$	M/Dum)					
Ach	60	0.10	200	, ,	0.7.7.	AT WHILL					
Non-2	7.0	0.10	co.o	0.18	14.12	0.025	0.0064	0.0314	0.18	0.045	0.22
Telegi	7.0	0.00	0.00	0.00	26.52	0.016	0.0119	0.0279	90.0	0.045	0.11
1 Oruene	7.0	0.08	0.15	0.08	67.54	0.054	0.0323	0.0863	0.08	0.045	0.13
1. Total 2. Naph	l Ash has an ine thalene has an	dicated cor indicated α	nposition of 25 composition of	$.23 \text{ wt } \% \pm .26.96 \text{ wt } \%$	0.045 wt % ± 0.045 wt	1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO ₂ Dispersion 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317 96 I h Nan Sol/Rum	1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO ₂ Dispersion/Run 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317 96 1 h Nan Sol Run.	u			
3. Tolu	ene has an indi-	cated comp	3. Toluene has an indicated composition of 72.95 wt % ±	$5 \text{ wt } \% \pm 0.$	045 w % in	0.045 w % in 246.88 Lb Nap Solution/Run	Solution/Run				
4. Colu	mn #'s which a	tre used in	 Column #'s which are used in text to identify uncertainty analysis results. 	uncertainty	analysis res	ults.					

QUANTITATIVE COMPARISON OF WEIGH CELL AND MASS FLOW METER MEASUREMENT UNCERTAINTIES

The absolute and relative specie spiking rate uncertainties based on the weight loss versus time and mass flow meter methods were then taken from Tables V & VI, respectively, and compiled as a comparison in Table VII. Inspection of Table VI reveals that weight loss versus time and the mass flow meter methods for measuring field spiking rate are essentially identical for all spiking species and on both absolute and relative uncertainty bases. However, the much greater measurement uncertainty associated with Sample and Analyze Method of demonstrating spiking material composition compared with the Laboratory Standard Method resulted in much higher total system spiking rate uncertainty for the combine Mass Flow Meter & Sample & Analyze Approach in comparison to the Laboratory Standard & Weight Loss Versus Time Approach.

Table VII Comparison of System Spiking Rate Uncertainties Due to Measurement Uncertainty in: (1) Composition by Two Methods, (2) Field Spiking Rates by Two Methods, and (3) Combined Composition + Field Spiking Rate Uncertainties

					Specie S	piking Rate	Specie Spiking Rate Uncertainty Due to:	Due to:				
	ບຶ	mpositions	Compositional Uncertainty:	y:	Fiel	d Spiking R	Field Spiking Rate Uncertainty:	nty:	Composit	ion + Spikir	Composition + Spiking Rate Uncertainty	rfainty
:	Lab Standard	ndard	Sample & Anal	Analyze	Weig	Weigh Cell	Mass Flow Meter	w Meter	Lab Stand + Weigh	+ Weigh	Sx & Anal. + MFM	+ MEM
Spiking Specie	± Lb S/Hr	±%RU	± Lb S/Hr	± % RU	± Lb S/Hr	± % RU	±Lb S/Hr	± % RU	± Lb S/Hr	±%RU	± Lb S/Hr	# % BI
Four Sa	Four Sampling Periods Per Run	ods Per Ru	n									
Ash	0.0064	0.045	1.41	10	0.102	0.72	0.014	0.1	0.108	0.76	1.42	10.1
											772.57	10.1
Nap	0.0119	0.045	7.96	30	0.066	0.25	0.027	0.1	0.078	0.29	7.99	30.1
١												
Toluene	0.0323	0.045	20.3	30	0.216	0.32	890.0	0.1	0.248	0.36	20.4	30.1
		j										
One Sa	One Sampling Period Per Run	d Per Run										
Ash	0.0064	0.045	1.41	10	0.025	0.18	0.014	0.1	0.0314	0.22	1.42	[2]
Nap	0.0119	0.045	7.96	30	0.016	0.06	0.027	0.1	0.0279	0.11	7.99	30.1
Toluene	0.0323	0.045	20.3	30	0.054	0.08	890.0	0.1	0.0863	0.13	20.4	30.1
			!									

THE HWC CONTEXT FOR EVALUATING THE SPIKING FUNCTION

It is difficult if not impossible to evaluate the performance of one or more methods or technologies in meeting the requirements of their assigned function without some consideration of the application &/or context in which the methods/technologies are expected to perform. For example, there are several situations in which spiking occurs in HWC tests:

- 1. POHC spiking for DRE demonstration,
- 2. Acid gas precursor spiking for demonstrating the performance of and setting precursor feed rate limits for a wet scrubber, for example.
- 3. Ash spiking for similar purposes, and
- 4. Heavy metal spiking for demonstrating APC performance and feed rate APCS operating limit setting.

As a context for evaluating the performance of these competing technologies in the spiking function, we have somewhat arbitrarily assumed a case in which one metal is spiked into a HWC unit for the purpose of setting a feed rate limit for that metal. Within this general circumstance, each step in the process of designing, conducting and reporting the results a HWC test is identified and an order of magnitude estimate of the uncertainty associated with each step is provided in Table VIII.

Inspection of Table VIII prompts the following observations:

- 1. Uncertainties associated with the spiking function represent a relatively minor portion of the total uncertainty involved.
- 2. Within the spiking function, utilization of computer control and demonstrating spiking material composition with *the* Laboratory Standard Method clearly offer advantages in reducing spiking rate uncertainty.
- 3. Uncertainties associated with: (a) waste stream composition, (b) target spiking rate selection, (c) stack sampling, and (d) sample analysis all represent larger uncertainties than does the spiking function.

Table VIII The HWC Context for Evaluating the Spiking Function

Order of Magnitude Estimates of Uncertain	tes of Uncertainties/Errors in the HWC Process of Setting Constituent Feed Rate I imits	etting Constituen	t Feed Rate I	mite
	Mass Flow Meters With Computer	Wei	Weighing Systems with:	s with:
Areas of Uncertainty	Control and Composition by Sx & Analysis Method	Manual Control	Computer Control	[Specie] by Lab
Imperfect Knowledge of Waste Communition	7001			
The state of the s	±10%	±10%	±10%	70%
H 7				
Non-Opumum Larget Spiking Kate	+30%	730%	∓ 30%	#30%
5 (
Off-set of Average Rate from Target Spiking Rate Due to:				
Imperfect Control	#1%	+3%	+10%	7017
Imperfect Measurement	#1%	+1%	+10/	11/0
Imperfect Knowledge of [Specie]	+30%	70/1	-170/	H170
	9/07-	H1%0	±1%	#I%
Variations Around Average Spiking Rate Due to:				
Non-Homogeneous Materials	#1%	#1%	+1%	+10/
Imperfect Control	#1%	±1-5%	%I#	+1%
			3	2/1
Measurement Uncertainty in Stack Sampling	±10%	≠10%	±10%	±10%
Measurement Uncertainty in Sample Analysis	∓30%	≠30%	+30%	∓30%

QUALITATIVE COMPARISON OF WEIGH CELL AND MASS FLOW METER TECHNOLOGIES FOR MEASURING FIELD SPIKING RATE

Up to this point, all discussion has been concerned with quantitative calculations and comparisons of measurement uncertainty between the two most widely used methods of measuring field spiking rate. There are however, other more qualitative attributes of both technologies which recommend their use. These attributes as well as the attributes of computer control and data acquisition are summarized within this section.

Both spiking rate measurement methods benefit similarly from the use of computer based process control and data acquisition technology. These benefits are summarized as follows:

- 1. The ability to control the spiking rate more uniformly and more closely to the target spiking rate than is possible with manual control.
- 2. Acquisition, archiving, analysis, and reporting of data in real time.
- 3. The ability to more rapidly effect spiking rate changes, as needed during miniburns for example.

The relative advantages and disadvantages of the two methods of measuring field spiking rate are summarized in the following table:

Mass Flow Meters	Weighing Systems
Advantages:	Advantages:
Continuous, Direct Measurement of Flow	Rapid, Tangible Field Demonstration of Accuracy
More Rapid Detection of Rate Changes	Direct Measurement of Mass/Run
Very High Accuracy	Very High Accuracy
Disadvantages:	Disadvantages:
Very Difficult to Demonstrate Accuracy in the Field	Indirect Measurement of Rate

CONCLUSIONS:

As a result of the information provided herein, the authors have drawn the following conclusions:

- 1. Uncertainties associated with the spiking function in a HWC testing program are likely to be a modest part of the total uncertainty associated with the total regulatory/testing process for setting a metal feed rate limit.
- 2. Both the Mass Flow Meter Method and the Weigh Loss Versus Time Method of measuring field spiking rate provide highly accurate results.
- 3. The overall lowest level of spiking rate uncertainty is achieved with the Laboratory Standard Method of demonstrating spiking material composition combined with either of the Mass Flow Meter Method or the Weight Loss Versus Time Method of measuring field spiking rate.

REFERENCES

- 1. Trial Burn Spiking Report, 2003, Confidential Client & Location.
- 2. Schofield, Bill, Anthony R. Eicher, Sean O'Brien, THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING MATERIAL COMPOSITION AND SPIKING RATE UNCERTAINTIES, 2004 IT3 Conference Proceedings, Phoenix, AZ, May, 2004.
- 3. Micro Motion ® Product Data Sheet, PS-00230, Rev. A, October, 2003, Pages 9, 10, & 11, (Re: the CMF010 ELITE Sensor).
- 4. Traceability and Uncertainty Analysis for a Calibration Process for Flowmeters, Using Coriolis Flowmeters as Reference, Robert DeBoom, et. al., Micro Motion ®, June, 2000.
- 5. Private phone and email communications by one of the authors (WRS) with Mr. Tim Patten, Director of Flow Measurement, Micro Motion ®, March, 2004.
- 6. Neptune Chemical Pump Company, Inc, Bulletin DP-1100-2001, Series 500 dia-Pump, 2001, Page 10, Note 2.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the able assistance of:

Julius Fulop and David Boomer both of Philip Analytical Services for their helpful comments and for sharing a significant quantity of written information on the increasingly rigorous topic of measurement uncertainty.

Robert Bucher of Weighing Technology for his unstinting practical and theoretical explanations, and detailed written information concerning weighing system operations, precision, and accuracy.

Tim Patten, and David Hollek of Micro Motion ® for sharing a significant quantity of written information, as well as providing numerous detailed explanations of various technical, sensitivity, reliability, and economic aspects of the ELITE Sensor Mass Flow Meter which their firm offers.

As used herein **Spiking Material (M)** refers to the material which is actually spiked, i.e., a metal solution, a TiO₂ and/or metal dispersion, and/or an individual or a mixture of POHCs. **Spiking Species (S)** refers to the portion of the **Spiking Material** which is of specific interest in meeting the test objectives, i.e., individual metals, ash, individual POHCs, Cl, etc.

Typically, the maximum error ± 0.005 to ±0.01% of the scale's capacity, or in terms of weight, ± 0.05 to ± 0.1 lb for our most frequently used 1,000 lb scales.

ESS' 50 lb field standards are certified annually by the State of Texas to be within ± 0.008 lb (approx. ± 0.02% RE) of NIST Primary Standards.

The pump through-put to line pressure sensitivity is: -1.5 %/100 psig (Ref 6), i.e., with a constant pump through-put setting, a waste feed line pressure increase of 100 psig would result in a pumping rate decrease of only 1.5%.

Attachment V. Effect of Measurement Uncertainty on Spiking Rate Uncertainty

)

B. Schofield, PhD, PE, Bill, Anthony R Eicher, and Sean O'Brien, The Effect of Measurement Uncertainty on Field Spiking Rate and Overall Specie Spiking Rate Uncertainties, 2004 IT3 Conference Proceedings, Paper #102, Phoenix, AZ, May, 2004

THE EFFECT OF MEASUREMENT UNCERTAINTY ON FIELD SPIKING RATE AND OVERALL SPECIE SPIKING RATE UNCERTAINTIES

Bill Schofield Engineered Spiking Solutions, Inc. LaPorte, Texas 77571

Anthony R. Eicher Focus Environmental, Inc. Knoxville, Tennessee 37923

Sean O'Brien
TRC Environmental Corporation
Houston, Texas 77043

ABSTRACT

Objectives

The objectives of this paper are:

- 1. To develop estimates for Measurement Uncertainty on a common basis for the two primary field methods of measuring spiking rate, e.g., weigh cell and mass flow meter technologies;
- 2. To determine the impact of these measurement uncertainties on field spiking rate and overall spiking rate uncertainties; and
- 3. To compare the combined spiking rate uncertainties due to measurement uncertainties associated with: (a) spiking material composition, (b) field spiking rate measurement, and (c) spiking material composition plus field spiking rate measurements.

Methodology

Estimates of field spiking rate uncertainties are developed on the basis of:

- Case Study Basis for Calculations: The test-specific details of a 2003 TB [conducted at a private, US based HWC Unit] are used as a Case Study basis for preparing quantitative comparisons on a consistent basis.
- The two field spiking methods and associated modes of operation considered in this uncertainty analysis were:
 - o Weight loss versus time method with manual operation, and
 - Mass flow meter method with computer control.
- The Following Assumptions Were Made in Estimating and Propagating Uncertainties:
 - o For both spiking methods:
 - No undetected operator mistakes, equipment/software mal-functions, and/or data reduction/reporting errors have occurred.
 - Second-order uncertainties are not significant, and
 - All spiking materials are uniform in composition throughout the test.

- For the weight loss versus time method:
 - Measurement uncertainty can be conservatively estimated based on a series of worst case conditions concerning both the magnitude and direction of individual measurement uncertainties, and
 - Indeterminative errors are adequately addressed with the conservative approach used to estimate determinative weight measurement uncertainty.
- For the mass flow meter method:
 - The mass flow meter manufacturer's published specification for equipment accuracy is an appropriate estimate of field measurement uncertainty, and
 - The function (accuracy) of the mass flow meter sensor is not adversely affected by corrosion, erosion, and/or uneven spiking material deposition onto the interior surfaces of the sensor tube.
- The compositional uncertainty estimates from a companion paper are combined with the field spiking rate uncertainties developed herein to produce the overall spiking system uncertainties, as follows:

Total System Uncertainty System #1 Uncertainty

- Compositional Uncertainties with the: +
- Spiking Rate Uncertainties with the:

- System #2 Uncertainty
- Laboratory Standard Method
- Weight Loss versus Time Method
- Sample and Analyze Method
- Mass Flow Meter Method

Results

Uncertainty comparisons are made for the two systems on three bases:

- o Overall spiking system uncertainties associated with spiking material composition uncertainty
- o Overall spiking system uncertainties associated with field spiking rate uncertainty alone, and
- Overall spiking system uncertainties due to the combined impact of both composition and field spiking rate uncertainties.

INTRODUCTION AND BACKGROUND

A great deal of effort has been expended over the last decade to investigate, understand, and improve the Quality Assurance (QA) aspects of the sampling and analytical methods used in Hazardous Waste Combustion (HWC) Risk Burns, Trial Burns, and HWC MACT Comprehensive Performance Tests. To date a comparable effort has not been made concerning the spiking function in these same tests. Additionally, conflicting information is being provided by proponents of the two most widely used methods of demonstrating spiking material composition and of measuring field spiking rates.

Objectives

The objectives of this paper are threefold:

- 1. To develop estimates for Measurement Uncertainty on a common basis for the two primary field methods of measuring spiking rate, e.g., weigh cell and mass flow meter technologies;
- 2. To determine the impact of these measurement uncertainties on field spiking rate and overall spiking rate uncertainties; and
- 3. To compare the spiking rate uncertainties due to measurement uncertainties associated with: (a) spiking material composition, (b) field spiking rate measurement and (c) spiking material composition plus field spiking rate measurements.

This paper also examines the effect of measurement uncertainty, imperfect knowledge, and/or error at each step of the spiking function from the point of setting a target spiking rate in a test plan, through spiking material design and preparation, the on-site spiking rate measurement and data collection functions, and the ultimate reporting of spiking rate results. Each major type of deviation, error, and/or uncertainty in the spiking function is identified and discussed in the context of the facility owners test objectives and applicable regulatory requirements.

Methodology: Estimating the Effect of Measurement Uncertainty

The effect of measurement uncertainty on field spiking rate and overall spiking system uncertainties are estimated on the following basis:

- Case Study basis for comparisons: The test-specific details of a 2003 TB [conducted at a private, US based HWC Unit] are used herein as a Case Study for preparing quantitative comparisons on a consistent basis;
- The Two Field Spiking Methods and associated Modes of Operation are used as the primary subject of this uncertainty analysis:
 - o Weight loss versus time method with manual operation, and
 - o Mass flow meter method with computer control.

[While ESS currently deploys computer based technology for spiking system monitoring, feedback control, data acquisition, archiving, and output; and both mass flow meter and weigh cell technologies for measuring field spiking rates; the data presented herein were obtained prior to the mass flow meter and computer control technology becoming operationally available.]

- The following **Assumptions** were made in estimating and propagating uncertainties:
 - o For both spiking methods:
 - No undetected operator mistakes, equipment/software mal-functions and/or data reduction errors have occurred,
 - Second-order uncertainties are not significant:
 [Because of the very small magnitude of all first-order uncertainties, no second order uncertainties are considered. The validity of this assumption is demonstrated within the companion paper (Ref.2), using first-order uncertainties estimates developed for the case study example], and
 - All spiking materials were uniform in composition throughout the test: [The two spiking materials used in the Case Study (e.g., Naphthalene in a Toluene solution, & TiO₂ in a mineral oil based dispersion) are typical of spiking materials, in that they well known in terms of chemistry and have been successfully used many times over a period of more than a decade. The solubility of Naphthalene is known and the Naphthalene in Toluene spiking material is prepared as an unsaturated solution.

While there are reports that some plating or deposition of TiO₂ onto the inner surfaces of tubing can occur, this phenomena would largely occur during the initial equipment conditioning (pre-test) phase, and the mass of TiO₂ which could plate out in this case prior to blocking the relatively short, small diameter (1/2" ID) tubing is very small (<< 0.1 Lb) in comparison to the total quantity of TiO₂ spiked during a given run (> 100 Lb).]

For the weight loss versus time method:

The impact of weight measurement uncertainty on field spiking rate uncertainty can be estimated based on a series of worst case assumptions related to both the magnitude and direction of individual measurement uncertainties. [The maximum measurement uncertainty together with the direction of each measurement uncertainty which would produce the largest cumulative field spiking rate uncertainty are used in all uncertainty propagation calculations. Specifically, weight measurement uncertainty is estimated on the basis of a large determinative uncertainty (\pm U Lb) based on the equipment vendor's specification of measurement uncertainty, typically, U = 0.01% of the full scale capacity of the equipment used). This uncertainty is carried throughout the uncertainty propagation calculations as if it were part of the weight (W) value (i.e., W was replaced with W \pm U Lb). Once the calculation was completed, the + or - uncertainty directions for U which would result in the largest cumulative spiking rate uncertainty are selected.], and

Indeterminative errors are adequately considered with the conservative approach used to estimate determinative weight measurement uncertainty.

[The magnitude of determinative uncertainty (± U) is chosen to be sufficiently large and the weigh scale indicator setting is set such that random variation in the weight measurements (indeterminative uncertainty) is hidden in the decimal places which are not displayed. As a result, indeterminative uncertainty is not expected have a material impact on the results of this analysis.]

o For the mass flow meter method:

- The equipment manufacturer's published specification for sensor accuracy (Refs: 3, 4, 5)
 can be used without modification as the mass flow meter field measurement uncertainty,
 and
- The function (accuracy) of the mass flow meter sensor is not adversely affected by corrosion, erosion and/or uneven spiking material deposition onto the interior surfaces of the sensor tube (Refs: 3, 4, 5).

Significant figures:

- A large number of calculations are made in this uncertainty analysis, many with extremely small numbers. To avoid rounding errors and to retain the integrity of the uncertainty estimates developed herein, a relatively large number of significant figures are carried through the calculations and presented in the tables.
- The authors do not claim the accuracy and/or precision in these figures that would normally be implied by the standard significant figures rules.
- The compositional uncertainty estimates from a companion paper are combined with the field spiking rate uncertainties developed herein to produce the overall spiking system uncertainties, as follows:

```
Total System Uncertain = Compositional Uncertainties with the:
System #1 Uncertainty = Laboratory Standard Method
System #2 Uncertainty = Sample and Analyze Method + Sample and Analyze Method + Mass Flow Meter Method
```

[The uncertainties associated with composition and field spiking rate are combined in this manner to reflect the standard practices of representative spiking firms within the spiking industry.]

Results

Uncertainty comparisons are made for these two, frequently used spiking systems on three bases:

- Overall spiking system uncertainties associated with spiking material composition uncertainty alone,
- Overall spiking system uncertainties associated with field spiking rate uncertainty alone, and

 Overall spiking system uncertainties due to the combined impact of both composition and field spiking rate uncertainties.

Description of the "Case Study" Trial Burn

The Case Study TB was conducted on a confidential, non-commercial, HWC Unit during 2003, and consisted of two Test Conditions (TC) which were defined as follows: (1) TC #1: Maximum Waste Feed, and (2) TC #2: Minimum Temperature (DRE). The spiking materials consisted of a Naphthalene in Toluene Solution (@ a nominal 27 wt % Naphthalene) and a TiO₂ Dispersion (@ a nominal 25 wt % Total Ash). The testing/spiking schedule is summarized as follows:

Test	Date	Spikin	g With:
Condition	Conducted	Nap Sol	Dispersion
TC #1	2003	√	
TC #2	2003	√	

The spiking function for this TB involved three spiking speciesⁱ (e.g., Total Ash, Naphthalene, and Toluene) which were contained in two spiking materials¹ (e.g., TiO₂ Dispersion, and Naphthalene in Toluene Solution). The dispersion was used as an ash surrogate with ash contributions from both the TiO₂ (primary) and the proprietary dispersing agent (secondary). The Naphthalene in Toluene Solution spiking material contained both POHCs, e.g., Naphthalene and Toluene.

Equipment Setup and Operation for the Weight Loss Versus Time Spiking Approach

Typically a drum (or tote tank or gas cylinder) of spiking material is placed on an appropriately sized weigh scale (the smallest [most accurate] scale which can weigh the full container of spiking material) and connected with SS, dripless, quick-connect fittings to the metering pump, which is similarly connected to the waste feed line. As material is pumped out of the drum (and into the waste feed line) the mass on the weigh scale drops (see Figure 1). The weight of spiking material remaining on the weigh scale is recorded and the spiking rate calculated frequently based on the rate of change of mass on the weigh scale.

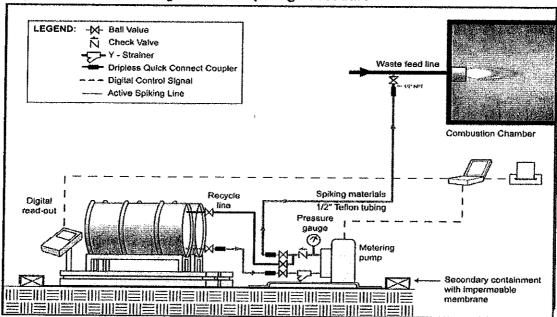


Figure 1 Schematic Diagram: ESS' Spiking Procedure

The weigh scalesⁱⁱ (See Table 1) are calibrated before the test and the calibration is verified on-site immediately before and after the test with NIST traceable standardsⁱⁱⁱ The pre- and post-test calibration verifications generally indicate no deviations (e.g., \pm 0.0 Lb deviation) for most if not all points over the full calibration range (typically, 0.0 - 650.0 Lb).

Units Lb (Kg) (d)/FS; d/FS d/FS	Rice Lake 1,000 (500) 5,000
(d)/FS: d/FS	5,000
(d)/FS: d/FS	
d/FS	
d/FS	10.000
	10,000
Lb/d (%FS/d)	0.02 (0.02%)
Lb/d (%FS/d)	0.01 (0.01%)
ns:	
0.03% FS	0.03% FS
0.02% FS	0.02% FS
ntal condition rec quasi government eights and measurable equipment has flect how measurable. infrequently, a wide range of a sing acceptable a	
	ns: 0.03% FS 0.02% FS 0.02% FS or of divisions/FS For example, a discernable by the faccuracy, calibrated condition requasi government eights and measurage of equipment has the flect how measurage of eacceptable acceptable accepta

NIST traceable standards which consistently demonstrated deviations from the standards of < 0.01% or equivalently d/FS

Procedures for Calculating Spiking Rate

Standard Spiking Rate Calculation Procedure

The standard procedure for calculating the spiking rate for a given run with the Weight Loss Versus Time Method is to include spiking rate data for the time period beginning when the stack sampling probe is first introduced into the stack [or from the beginning of sampling with the first VOST tube pair], through port changes [or VOST tube replacement] until the probe is removed from the stack at the end of that run [or until sampling with the last VOST tube pair is completed] unless some abnormal event occurs such as an extended combustor operational problem, or the rare sampling train leak check failure. Because metering pumps (which maintain essentially constant feed rates throughout the run^{iv}) are used (instead of simple transfer pumps which are susceptible to throughput swings in response to waste feed line pressure changes), this approach has a number of advantages (e.g., simplified data reduction, and reduced

 \geq 10,000.

measurement uncertainty [see discussion below]), and no disadvantages. If problems were to occur which might bring operating, sampling, or spiking performance data into question, then the spiking data from that period would be excluded from the spiking rate calculations.

With this procedure, calculation of the spiking rate for a given run typically requires the recording and use of two weight measurements, i.e., the beginning mass and the final mass. Thus, weighing systems measurement uncertainty could occur twice.

A conservative estimate of measurement uncertainty in the mass of spiked material per run would assume that: (1) the weight measurement for the beginning mass measurement and for the ending mass reading are each in "error", (2) the "error" is equal to the full measurement uncertainty, and (3) the two "errors" are in opposite directions (so that the measurement uncertainties would be additive and would not cancel each other).

If one were to assume a measurement uncertainty of \pm 0.1 Lb associated with each weight measurement reading, then the maximum measurement uncertainty for the total mass of spiking material (M) fed during a run would be \pm 0.2 Lb M/Run.

For a run with 300 Lbs M/Run, the relative uncertainty (RU, expressed as a per cent) would be:

```
RU = (\pm 0.2 \text{ Lb M/Run})/(300 \text{ Lb M/Run}) \times 100 \% \text{ RU}
= \pm 0.0667 \% \text{ RU}, a very small relative uncertainty.
```

For a run with 100 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would remain \pm 0.2 Lb M/Run, but the relative uncertainty would be:

```
RU = (± 0.2 Lb M/Run)/(100 Lb M/Run) X 100 % RU
= ± 0.2 % RU, still a very small relative uncertainty.
```

Similarly, if the spiking material were to contain the spiking specie (S) at a 20 wt% concentration, then the corresponding absolute measurement uncertainty would be \pm 0.04 Lb S/Run, and the corresponding RU values for specie uncertainties would not change.

A More Conservative Spiking Rate Calculation Procedure

If, however, one were to decide to use only spiking data during test periods when spiking and stack sampling for that specie were both occurring, the spiking rate calculations could involved two or more separate spiking periods during each run. As before, each sampling period (Sx Period) required two weight measurements (at the beginning and the end of each period), each with its own measurement uncertainty.

For a run with four sampling periods and 300 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would be \pm 0.8 Lb M/Run and the relative uncertainty would be:

```
RU = (± 0.2 Lb M/Sx Period) X (4 Sx Periods/Run)/(300 Lb M/Run)X100 % RU

= (± 0.8 Lb M/Run)/(300 Lb M/Run) X 100 % RU

= ± 0.2667 % RU, a very modest relative uncertainty.
```

And for a run with four sampling periods and 100 Lbs M/Run, the maximum measurement uncertainty for the total mass of spiking material fed during a run would remain \pm 0.8 Lb M/Run, but the relative uncertainty would be:

- RE = (± 0.2 Lb M/Sx Period) X (4 Sx Periods/Run)/(100 Lb M/Run)X100 % RU
 - $= (\pm 0.8 \text{ Lb M/Run})/(100 \text{ Lb M/Run}) \times 100 \% \text{ RU}$
 - = ± 0.8 % RU, still a modest relative uncertainty.

Similarly, if the spiking material were to contain the spiking specie at 20 wt %, then the maximum measurement uncertainty for the total mass of spiking specie fed during a run would be \pm 0.16 Lb S/Run and the corresponding RU values for specie uncertainties would not change.

Additional quantitative analyses of the effect of measurement uncertainty on field spiking rate based on the Case Study TB are provided below.

FIELD SPIKING RATE RESULTS

The Spiking Log Sheets completed during the Case Study TB were used together with the Certificates of Composition to calculate the specie spiking rates using both the standard and the more conservative procedures described above.

Note: During the Case Study 2003 TB, each spiking specie (Ash/PM, Naphthalene, and Toluene) was sampled using a different sampling method and over different sampling periods.

The resulting field spiking rate results for Ash, Naphthalene, and Toluene are presented in Tables II, III, and IV, respectively.

Total Ash Spiking Rate Results

Table II provides the average TiO₂ Dispersion, and concentration corrected Total Ash spiking rates for each of the three TC #1 runs, as well as for TC #1 in toto.

Table II Average TiO₂ Dispersion (Spiking Material¹) and Total Ash (Spiking Specie¹) Spiking Rates by Run for TC #1

TC#1/		Mass Fr	action		Disp Spiking	Ash Spik	ing Rate ⁴ :
Run#	$[TiO_2]^2$	TiO ₂ Purity ²	Stoich. Content ²	[Ash] ²	Rate ³ , lb/min	lb/min	lb/hour
Run #1	0.244	98.7	1.0477	0.2523	0.8752	0.221	13.25
Run #2	0.244	98.7	1.0477	0.2523	0.9726	0.245	14.72
Run #3	0.244	98.7	1.0477	0.2523	0.9508	0.240	14.39
TC #1 Ave	0.244	98.7	1.0477	0.2523	0.9329	0.235	14.12

Footnotes:

- 1. As used throughout this paper, Spiking Material (M) refers to the material as it is actually spiked, i.e., a Naphthalene in Toluene Solution, and/or a TiO₂ dispersion. Spiking Species (S) refers to the portion of the Spiking Material which is of specific interest in meeting the test objectives, i.e., Naphthalene, toluene, ash, POHC, CI, etc.
- 2. Concentration refers to the concentration of the compound of interest in the Spiking Material, for example Nap in the Naphthalene in Toluene Solution assuming 100% purity. Purity refers to the assay, or purity of the Naphthalene, for example, used to make up the solution to the desired concentration. Stoich. Content refers to the stoichiometric content of the specie of interest in the compound, for example the Cl content in Perc or metal content in the metal compound. [Specie] indicates the specie concentration (usually expressed as Lb Specie/Lb Material, or mass fraction) and is defined as:
 - [Specie] = Concentration x Purity x Stoich. Content. [Specie] is used to convert the Spiking Material spiking rate to the corresponding Spiking Specie spiking rate. Usually, all four of the "correction" terms are expressed as mass fractions.
- 3. Without Correction for [Specie]. Calculated from field spiking data.
- 4. With Correction for [Specie]

Naphthalene Spiking Rate Results

Table III provides the average Naphthalene in Toluene Solution spiking rates as well as the concentration and purity corrected Naphthalene spiking results for: (1) each of the six TC #1 and TC #2 runs, (2) each of the two TCs, and (3) the overall trial burn.

Table III Average Naphthalene Solution (Spiking Material¹), and Naphthalene (Spiking Specie¹) Spiking Rate Results by Run and TC.

	Correct	ion Factors	, Mass Frac	tion	Nap Sol	Nap Spil	cing Rate
TC#/ Run#	Nap Concentration ¹	Nap Purity ¹	Stoich, Content ¹	[Nap] ¹	Spiking Rate ¹ , lb/min	lb/min	lb/hr
TC#1/Run#1	0.2700	0.9985	1.000	0.2696	1.7546	0.473	28.38
TC#1/Run#2	0.2700	0.9985	1.000	0.2696	1.8538	0.500	29.98
TC#1/Run#3	0.2700	0.9985	1.000	0.2696	1.6068	0.433^{2}	25.99 ²
TC#1 Ave	0.2700	0.9985	1.000	0.2696	1.7384	0.469	28.12
TC#2/Run#1	0.2700	0.9985	1.000	0.2696	1.5416	0.4156^{2}	24.94 ²
TC#2/Run#2	0.2700	0.9985	1.000	0.2696	1.5479	0.4173^2	25.04 ²
TC#2/Run#3	0.2700	0.9985	1.000	0.2696	1.5321	0.4130^{2}	24.78 ²
TC#2 Ave	0.2700	0.9985	1.000	0.2696	1.5405	0.415	24.92
TB Ave	0.2700	0.9985	1.000	0.2696	1.6395	0.442	26.52

- 1. See footnotes in Table II for definitions for these terms.
- ESS was directed to reduce the target spiking rate for these runs as a means of conserving limited stocks of spiking materials.

Table IV provides the average Naphthalene in Toluene Solution spiking rates as well as the concentration and purity corrected Toluene spiking results for: (1) each of the six TC #1 and TC #2 runs, (2) each of the two TCs, and (3) the overall trial burn.

Table IV Average Naphthalene in Toluene Solution (Spiking Material), and Toluene (Spiking Specie) Spiking Rate Results by Run and TC.

TC#/		ion Factors			Nap Sol		cing Rate ¹
Run No.	Toluene Concentration ¹	Toluene Purity ¹	Stoich. Content ¹	[Toluene] ¹	Spiking Rate ¹ , lb/min	lb/min	lb/hr
TC#1/Run# 1	0.7300	0.9993	1.000	0.7295	1.6261	1.186	71.17
TC#1/Run# 2	0.7300	0.9993	1.000	0.7295	1.7826	1.300	78.02
TC#1/Run# 3	0.7300	0.9993	1.000	0.7295	1.2100	0.8827 ²	52.96 ²
TC #1 Ave	0.7300	0.9993	1.000	0.7295	1.5396	1.123	67.39
TC#2/Run# 1	0.7300	0.9993	1.000	0.7295	1.5421	1.125 ²	67.50 ²
TC#2/Run# 2	0.7300	0.9993	1.000	0.7295	1.5550	1.134 ²	68.06 ²
TC#2/Run# 3	0.7300	0.9993	1.000	0.7295	1.5423	1.125 ²	67.50 ²
TC #2 Ave	0.7300	0.9993	1.000	0.7295	1.5464	1.128	67.69
TB Ave	0.7300	0.9993	1.000	0.7295	1.5430	1.126	67.54

^{1.} See footnotes in Table II for definitions for these terms.

THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING RATE RESULTS: METHODOLOGY & RESULTS

Measurement Uncertainty Associated with Field Weight Measurements with the weight loss versus time method

This section provides a summary of the measurement uncertainty aspects of: (1) the compositions of the two spiking materials which **ESS** prepared and supplied for this Trial Burn, (2) the weigh scale calibrations, pre- and post-test calibration verifications, and sensitivities, and (3) field spiking rate results. Additionally, an extensive uncertainty analysis was completed on spiking materials compositions and spiking rate results. The methodology used with respect to spiking rates is outlined below together with the results of both the composition and spiking rate analysis.

All weigh scales used during this trial burn were calibrated prior to the test and the calibrations were verified on-site (with \pm 0.0 lb deviations at each point in the calibration range) immediately before and after the tests with **ESS'** NIST traceable weight standards. Thus, the field spiking rate data for this Trial Burn are deemed to meet all appropriate QC and QA standards and are demonstratably accurate within \pm 0.1 Lb M/weight measurement.

^{2.} **ESS** was directed to reduce the target spiking rate for these runs as a means of conserving limited stocks of spiking materials.

Spik	ing			Average Mass of Materia
Material:	Specie:	Sampling Method	Ave Sampling Period, Hours	Spiked per Run, Lb M/Run
TiO ₂ Dispersion	Total Ash	Method 5	1.972	110.49 Lb TiO ₂ Dispersion
Nap Solution	Naphthalene	Method 0010 (SVOC)	3.000	317.96 Lb Nap Solution
Nap Solution	Toluene	VOST (VOC)	2.667	246.88 Lb Nap Solution

The spiking data from the 2003 Case Study TB were used to calculate the quantity of each spiking material spiked per run and while the corresponding sampling method for that specie was being used. The results are summarized as follows:

With a weigh scale measurement uncertainty of \pm 0.1 Lb M/weight measurement, and the assumption that all measurement uncertainty [error] occurs in the direction which would result in the maximum cumulative uncertainty, the maximum uncertainty in measuring the quantity of spiking material per run would be calculated as follows:

Field Measurement Uncertainty = (

= (4 Sx Periods/Run) x (2 Weight Measurements/Sx Period) X

(± 0.1 Lb M/Measurement)

 $= \pm 0.8 Lb M/Run$

The Effect of Measurement Uncertainty in Spiking Rate Results

Table V presents spiking rate uncertainty expressed on the following bases:

1 Absolute Uncertainty (Lb/Run AU) Basis:

a. Spiking Material (Dispersion or Nap Sol)
 b. Spiking Specie (Ash, Naphthalene, & Toluene)
 Column 4

2. Relative Uncertainty (%RU) Basis:

a. Spiking Materialb. Spiking SpecieColumn 3Column 5

3. Absolute Specie Spiking Rate Uncertainty (Lb Specie/Hr AU) Basis: Columns 7, 8, & 9

4. Relative Specie Spiking Rate Uncertainty (%RU) Basis: Columns 10, 11, & 12

¹The spiking rate uncertainties are presented on three measurement uncertainty bases: (1) field measurement uncertainty (Columns 7 & 10), (2) composition measurement uncertainty (Columns 8 & 11), and (3) the combined field spiking rate measurement plus composition uncertainty (Columns 9 & 12).

Table V Effect of Field Measurement Uncertainty (By Weight Loss Versus Time Method), Compositional Uncertainty (By Laboratory Standard Method), and Combined Field Plus Compositional Uncertainties on Overall Spiking Rate Uncertainty

	1 7 7 7 7						p 2	TION CHANGE			
	Field Measurement Uncertainties expressed as	ment Un	certainties exp	pressed as			Cumulative Specie Spiking Rate Uncertainties expressed as:	ie Spiking Ra	e Uncertainties	expressed as:	
	Absolute Unc	ertainty	Absolute Uncertainty (#Mass/Run AU), and	VU), and	Indicated	Absolut	Absolute Specie Spiking Rafe	o Rate	Relative	Relative Specie Spiking Pate	Date
	Relativ	ve Uncer	Relative Uncertainty (±%RU)	رر	Specie	Un	Uncertainty Due to:	0:	Unce	Uncertainties Due to:	. wate
			:	•	Spiking	Field		Combined	Field		
Spiring	Spiking Spiking Material (M)	riai (M)	Spiking Specie (S)	ecie (S)	Rate,	Measurement	Measurement Composition	± Lb S/Hr	Measurement	Composition	Combined
Specie	Specie ± Lb M/Run, ± %RU, ± Lb S/Run, ± %RU	± %RU,	± Lb S/Run,	± %RU,	Lb S/Hr	\pm Lb S/Hr AU \pm Lb S/Hr AU	± Lb S/Hr AU	AU	± % RU	± % RU	± % RU
Ξ	(2)	ව	(4)	(5)	(9)	(7)	(8)	6)	(10)	(11)	(12)
Four S	Four Spiking Periods Per Run (Measurement Uncertai	er Run (Measurement		nty = ± 0.8 Lb M/Run)	b M/Run)					
Ash ¹	8.0	0.72	0.20	0.72	14.12	0.102	0.0064	0.108	0.72	0.045	92.0
Nap^2	8.0	0.25	0.22	0.25	26.52	990'0	0.0119	0.078	0.25	0.045	0.79
Toluene	8.0	0.32	0.58	0.32	67.54	0.216r	0.0323	0.248	0.32	0.045	0.36
One Sp	One Spiking Period Per Run (Measurement Uncertaint	· Run (M	easurement U	ncertainty	$y = \pm 0.2 \text{ Lb M/Run}$	M/Run)					
Ash ¹	0.2	0.18	0.05	0.18	14.12	0.025	0.0064	0.0314	0.18	0.045	0.22
Nap^2	0.7	0.06	90.0	90.0	26.52	0.016	0.0119	0.0279	0.06	0.045	0 11
Toluene	0.2	0.08	0.15	0.08	67.54	0.054	0.0323	0.0863	0.08	0.045	0.13
F	T-4-1 1-4 1-4-F										

^{1.} Total Ash has an indicated composition of 25.23 wt % \pm 0.045 wt % in 110.49 Lb TiO₂ Dispersion/Run 2. Naphthalene has an indicated composition of 26.96 wt % \pm 0.045 wt % in 317.96 Lb Nap Sol/Run 3. Toluene has an indicated composition of 72.95 wt % \pm 0.045 w % in 246.88 Lb Nap Solution/Run

^{4.} Column #'s which are used in text to identify uncertainty analysis results.

Additionally, for comparison purposes the entire analysis was repeated on the basis of ESS' standard spiking rate calculation procedures described above, i.e., spiking rate based on one spiking period with maximum field error of ± 0.2 Lb/Run. These results are presented in the bottom half of Table V.

Measurement Uncertainty Associated with Field Weight Measurements with the mass flow meter method

After reviewing available Micro Motion® Sales Literature and Product Specifications for the most sensitive (ELETE®) sensor and having numerous discussions with the Micro Motion ® technical sales and engineering staff, it appeared that a comprehensive analysis of measurement uncertainty in a "field" as opposed to a test bench setting was not available. As a result of the discussion with Mr. Tim Patten, Director of Measurement for Micro Motion®, one of the authors (WRS) concluded that the best approach to estimating field measurement uncertainty would be to assume that the published specification for sensor accuracy (Refs: 3, 4, 5) can be used without modification as the mass flow meter field measurement uncertainty. This approach allowed the uncertainty analysis to be completed without arbitrary revisions of the manufactures product specification. However, it should not necessarily be inferred that the manufactures product specification of accuracy is a complete measure of this equipments measurement uncertainty under field conditions.

Never the less, using the published accuracy specification of \pm 0.1% as an estimate of field measurement uncertainty and the Case Study comparison basis described above, the absolute and relative spiking rates results were calculated and summarized in Table VI.

Table VI Effect of Field Measurement Uncertainty (By Mass Flow Meter Method), Compositional Uncertainty (By Sample & Analyze Method), and Combined Field Plus Compositional Uncertainties on Overall Spiking Rate Uncertainty

						snr r icia i ias	y and the Company of the Compositional Uncertainties on Overall Spiking Rate Uncertainty	Uncertainties	on Overall Spik	ing Kate Uncer	tainty
	Field Measu	rement Ur	Field Measurement Uncertainties expressed as	pressed as			Cumulative Specie Spiking Rate Uncertainties expressed as:	ie Spiking Ra	te Uncertainties	expressed ac-	
	Absolute U	ncertainty	Absolute Uncertainty (±Mass/Run AU), and	AU), and	Indicated	niosdA	Absolute Specie Spiking Rate	g Rate	Relative	Relative Specie Spiking Rate	Rate
	Wells	live Office	Acialive Uncertainty (#%KU)	7)	Specie	Un	Uncertainty Due to:	:	Unce	Uncertainties Due to:	
Spiking	Spiking Spiking Material (M)	terial (M)	Spiking Specie (S)	ecie (S)	Spiking Rate.	Field	Field Moseurement Composition	Combined	Field		
Specie	Specie ± Lb M/Run, ± %RU,	± %RU,	#	± %RU,	Lb S/Hr	± Lb S/Hr AU	± Lb S/Hr AU ± Lb S/Hr AU	± Lb S/Hr AU	Measurement # % RI	Composition \pm % RU	Combined # % RI
Ξ	(2)	(3)	(0	(5)	(9)	0	(8)	(6)	(10)	(11)	(12)
Four Sr	ileina Dariode	Don Dun	Maria	11							
C Ino.	MAINE I CITORS	Lei Aun	rous Spinals I citous I cit Aun (Measurement Uncertainty = ± 0.8 Lb M/Run)	Uncertain	$y = \pm 0.8 L$	M/Run)					
Ash	8.0	0.72	0.20	0.72	14.12	0.102	0.0064	0.108	0.72	0.045	92.0
Nap*	0.8	0.25	0.22	0.25	26.52	0.066	0.0119	0.078	0.25	0.045	0.00
Loluene	9.8	0.32	0.58	0.32	67.54	0.216r	0.0323	0.248	0.32	0.045	92.0
										CF-0-0	0000
One Spi	king Period P	er Run (M	One Spiking Period Per Run (Measurement Uncertaint)	ncertainty	$v = +0.2 \text{ Lh M/D}_{\text{un}}$	M/Dum)					
Ach	60	0.10	200	, ,	0.7.7.	AT WHILL					
Non-2	7.0	0.10	co.o	0.18	14.12	0.025	0.0064	0.0314	0.18	0.045	0.22
Telegi	7.0	0.00	0.00	0.00	26.52	0.016	0.0119	0.0279	90.0	0.045	0.11
1 Oruene	7.0	0.08	0.15	0.08	67.54	0.054	0.0323	0.0863	0.08	0.045	0.13
1. Total 2. Naph	l Ash has an ine thalene has an	dicated cor indicated α	nposition of 25 composition of	$.23 \text{ wt } \% \pm .26.96 \text{ wt } \%$	0.045 wt % ± 0.045 wt	1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO ₂ Dispersion 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317 96 I h Nan Sol/Rum	1. Total Ash has an indicated composition of 25.23 wt % ± 0.045 wt % in 110.49 Lb TiO ₂ Dispersion/Run 2. Naphthalene has an indicated composition of 26.96 wt % ± 0.045 wt % in 317 96 1 h Nan Sol Run.	u			
3. Tolu	ene has an indi-	cated comp	3. Toluene has an indicated composition of 72.95 wt % ±	$5 \text{ wt } \% \pm 0.$	045 w % in	0.045 w % in 246.88 Lb Nap Solution/Run	Solution/Run				
4. Colu	mn #'s which a	tre used in	 Column #'s which are used in text to identify uncertainty analysis results. 	uncertainty	analysis res	ults.					

QUANTITATIVE COMPARISON OF WEIGH CELL AND MASS FLOW METER MEASUREMENT UNCERTAINTIES

The absolute and relative specie spiking rate uncertainties based on the weight loss versus time and mass flow meter methods were then taken from Tables V & VI, respectively, and compiled as a comparison in Table VII. Inspection of Table VI reveals that weight loss versus time and the mass flow meter methods for measuring field spiking rate are essentially identical for all spiking species and on both absolute and relative uncertainty bases. However, the much greater measurement uncertainty associated with Sample and Analyze Method of demonstrating spiking material composition compared with the Laboratory Standard Method resulted in much higher total system spiking rate uncertainty for the combine Mass Flow Meter & Sample & Analyze Approach in comparison to the Laboratory Standard & Weight Loss Versus Time Approach.

Table VII Comparison of System Spiking Rate Uncertainties Due to Measurement Uncertainty in: (1) Composition by Two Methods, (2) Field Spiking Rates by Two Methods, and (3) Combined Composition + Field Spiking Rate Uncertainties

					Specie S	piking Rate	Specie Spiking Rate Uncertainty Due to:	Due to:				
	ບົ	mpositiona	Compositional Uncertainty:	y:	Fiel	d Spiking R	Field Spiking Rate Uncertainty:	nty:	Composit	ion + Spikir	Composition + Spiking Rate Uncertainty	rfainty
:	Lab Standard	ndard	Sample & Anal	Analyze	Weig	Weigh Cell	Mass Flow Meter	w Meter	Lab Stand + Weigh	+ Weigh	Sx & Anal. + MFM	+ MEM
Spiking Specie	± Lb S/Hr	±%RU	± Lb S/Hr	± % RU	± Lb S/Hr	± % RU	±Lb S/Hr	± % RU	± Lb S/Hr	±%RU	± Lb S/Hr	# % BI
Four Sa	Four Sampling Periods Per Run	ods Per Ru	n									
Ash	0.0064	0.045	1.41	10	0.102	0.72	0.014	0.1	0.108	0.76	1.42	10.1
											7.5	10.1
Nap	0.0119	0.045	7.96	30	0.066	0.25	0.027	0.1	0.078	0.29	7.99	30.1
١												
Toluene	0.0323	0.045	20.3	30	0.216	0.32	890.0	0.1	0.248	0.36	20.4	30.1
		j										
One Sa	One Sampling Period Per Run	d Per Run										
Ash	0.0064	0.045	1.41	10	0.025	0.18	0.014	0.1	0.0314	0.22	1.42	[2]
Nap	0.0119	0.045	7.96	30	0.016	0.06	0.027	0.1	0.0279	0.11	7.99	30.1
Toluene	0.0323	0.045	20.3	30	0.054	0.08	890.0	0.1	0.0863	0.13	20.4	30.1
			!									

THE HWC CONTEXT FOR EVALUATING THE SPIKING FUNCTION

It is difficult if not impossible to evaluate the performance of one or more methods or technologies in meeting the requirements of their assigned function without some consideration of the application &/or context in which the methods/technologies are expected to perform. For example, there are several situations in which spiking occurs in HWC tests:

- 1. POHC spiking for DRE demonstration,
- 2. Acid gas precursor spiking for demonstrating the performance of and setting precursor feed rate limits for a wet scrubber, for example.
- 3. Ash spiking for similar purposes, and
- 4. Heavy metal spiking for demonstrating APC performance and feed rate APCS operating limit setting.

As a context for evaluating the performance of these competing technologies in the spiking function, we have somewhat arbitrarily assumed a case in which one metal is spiked into a HWC unit for the purpose of setting a feed rate limit for that metal. Within this general circumstance, each step in the process of designing, conducting and reporting the results a HWC test is identified and an order of magnitude estimate of the uncertainty associated with each step is provided in Table VIII.

Inspection of Table VIII prompts the following observations:

- 1. Uncertainties associated with the spiking function represent a relatively minor portion of the total uncertainty involved.
- 2. Within the spiking function, utilization of computer control and demonstrating spiking material composition with *the* Laboratory Standard Method clearly offer advantages in reducing spiking rate uncertainty.
- 3. Uncertainties associated with: (a) waste stream composition, (b) target spiking rate selection, (c) stack sampling, and (d) sample analysis all represent larger uncertainties than does the spiking function.

Table VIII The HWC Context for Evaluating the Spiking Function

Order of Magnitude Estimates of Uncertain	tes of Uncertainties/Errors in the HWC Process of Setting Constituent Feed Rate I imits	etting Constituen	t Feed Rate I	imite
	Mass Flow Meters With Computer	Wei	Weighing Systems with:	s with:
Areas of Uncertainty	Control and Composition by Sx & Analysis Method	Manual Control	Computer Control	[Specie] by Lab
Imperfect Knowledge of Waste Communition	7001			
The state of the s	±10%	±10%	±10%	±10%
H				
Non-Opumum Larget Spiking Kate	±30%	730%	∓ 30%	#30%
5 (
Off-set of Average Rate from Target Spiking Rate Due to:				
Imperfect Control	#1%	+3%	+10%	7107
Imperfect Measurement	#1%	+1%	+10/	110/
Imperfect Knowledge of [Specie]	+30%	70/1	-170/	H170
	9/00-1	H1%0	±1%	#I%
Variations Around Average Spiking Rate Due to:				
Non-Homogeneous Materials	+1%	#1%	+1%	+10/
Imperfect Control	#1%	±1-5%	%I#	+1%
			3	2/1
Measurement Uncertainty in Stack Sampling	±10%	≠10%	±10%	±10%
Measurement Uncertainty in Sample Analysis	∓30%	≠30%	+30%	∓30%

QUALITATIVE COMPARISON OF WEIGH CELL AND MASS FLOW METER TECHNOLOGIES FOR MEASURING FIELD SPIKING RATE

Up to this point, all discussion has been concerned with quantitative calculations and comparisons of measurement uncertainty between the two most widely used methods of measuring field spiking rate. There are however, other more qualitative attributes of both technologies which recommend their use. These attributes as well as the attributes of computer control and data acquisition are summarized within this section.

Both spiking rate measurement methods benefit similarly from the use of computer based process control and data acquisition technology. These benefits are summarized as follows:

- 1. The ability to control the spiking rate more uniformly and more closely to the target spiking rate than is possible with manual control.
- 2. Acquisition, archiving, analysis, and reporting of data in real time.
- 3. The ability to more rapidly effect spiking rate changes, as needed during miniburns for example.

The relative advantages and disadvantages of the two methods of measuring field spiking rate are summarized in the following table:

Mass Flow Meters	Weighing Systems
Advantages:	Advantages:
Continuous, Direct Measurement of Flow	Rapid, Tangible Field Demonstration of Accuracy
More Rapid Detection of Rate Changes	Direct Measurement of Mass/Run
Very High Accuracy	Very High Accuracy
Disadvantages:	Disadvantages:
Very Difficult to Demonstrate Accuracy in the Field	Indirect Measurement of Rate

CONCLUSIONS:

As a result of the information provided herein, the authors have drawn the following conclusions:

- 1. Uncertainties associated with the spiking function in a HWC testing program are likely to be a modest part of the total uncertainty associated with the total regulatory/testing process for setting a metal feed rate limit.
- 2. Both the Mass Flow Meter Method and the Weigh Loss Versus Time Method of measuring field spiking rate provide highly accurate results.
- 3. The overall lowest level of spiking rate uncertainty is achieved with the Laboratory Standard Method of demonstrating spiking material composition combined with either of the Mass Flow Meter Method or the Weight Loss Versus Time Method of measuring field spiking rate.

REFERENCES

- 1. Trial Burn Spiking Report, 2003, Confidential Client & Location.
- 2. Schofield, Bill, Anthony R. Eicher, Sean O'Brien, THE EFFECT OF MEASUREMENT UNCERTAINTY ON SPIKING MATERIAL COMPOSITION AND SPIKING RATE UNCERTAINTIES, 2004 IT3 Conference Proceedings, Phoenix, AZ, May, 2004.
- 3. Micro Motion ® Product Data Sheet, PS-00230, Rev. A, October, 2003, Pages 9, 10, & 11, (Re: the CMF010 ELITE Sensor).
- 4. Traceability and Uncertainty Analysis for a Calibration Process for Flowmeters, Using Coriolis Flowmeters as Reference, Robert DeBoom, et. al., Micro Motion ®, June, 2000.
- 5. Private phone and email communications by one of the authors (WRS) with Mr. Tim Patten, Director of Flow Measurement, Micro Motion ®, March, 2004.
- 6. Neptune Chemical Pump Company, Inc, Bulletin DP-1100-2001, Series 500 dia-Pump, 2001, Page 10, Note 2.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the able assistance of:

Julius Fulop and David Boomer both of Philip Analytical Services for their helpful comments and for sharing a significant quantity of written information on the increasingly rigorous topic of measurement uncertainty.

Robert Bucher of Weighing Technology for his unstinting practical and theoretical explanations, and detailed written information concerning weighing system operations, precision, and accuracy.

Tim Patten, and David Hollek of Micro Motion ® for sharing a significant quantity of written information, as well as providing numerous detailed explanations of various technical, sensitivity, reliability, and economic aspects of the ELITE Sensor Mass Flow Meter which their firm offers.

As used herein **Spiking Material (M)** refers to the material which is actually spiked, i.e., a metal solution, a TiO₂ and/or metal dispersion, and/or an individual or a mixture of POHCs. **Spiking Species (S)** refers to the portion of the **Spiking Material** which is of specific interest in meeting the test objectives, i.e., individual metals, ash, individual POHCs, Cl, etc.

Typically, the maximum error ± 0.005 to ±0.01% of the scale's capacity, or in terms of weight, ± 0.05 to ± 0.1 lb for our most frequently used 1,000 lb scales.

ESS' 50 lb field standards are certified annually by the State of Texas to be within ± 0.008 lb (approx. ± 0.02% RE) of NIST Primary Standards.

The pump through-put to line pressure sensitivity is: -1.5 %/100 psig (Ref 6), i.e., with a constant pump through-put setting, a waste feed line pressure increase of 100 psig would result in a pumping rate decrease of only 1.5%.