

Design 101 for Energy Managers

An Overview of MEPR design options for your supermarket, and how they impact your energy budget.

Tom Wolgamot Dave Cutbirth Tim Gwyn Mike Harvey

HVAC

Desiccants
VFD's
Ventilation strategies
Heat reclaim

Electrical Design

Lighting Power Distribution

Demand Response Sub-metering / load profiles

208V vs. 480V

Refrigeration

Conventional DX HFC
Secondary MT

CO₂
Distributed
ECM motors

Plumbing

Hot Water Heat Reclaim
Vacuum Condensate Systems
Fixtures
Recirculation Systems
Water Treatment

-Supermarkets use 5 times more energy than Commercial Buildings

-Refrigerated Cases 50 % Energy Used

-75 % of the Case Load Infiltration

Table 3 Relative Refrigeration Requirements with Varying Store Ambient Conditions

	70°F db Relative Humidity, %					78°F db Relative Humidity, %		
Refrigerator Model								
	30	40	55	60	70	50	55	65
Multideck dairy	0.90	0.95	1.00	1.08a	1.18 ^b	0.99	1.08a	1.18 ^b
Multideck low- temperature	0.90	0.95	1.00	1.08a	1.18 ^b	0.99	1.08a	1.18 ^b
Single-deck low- temperature	0.90	0.95	1.00	1.08a	1.15	0.99	1.05	1.15
Single-deck red meat	0.90	0.95	1.00	1.08a	1.15	0.99	1.05	1.15
Multideck red meat	0.90	0.95	1.00	1.08a	1.18 ^b	0.99	1.08a	1.18 ^b
Low-temperature reach-in	0.90	0.95	1.00	1.05 ^a	1.10	0.99	1.05 ^a	1.10

Note: Package warm-up may be more than indicated. Standard flood lamps are clear PAR 38 and R-40 types.

Source: 2010 ASHRAE Handbook 15.4

^aMore frequent defrosts required.

^bMore frequent defrosts required plus internal condensation (not recommended).

Fig. 9 Components of Refrigeration Load for Several Display Refrigerator Designs at 75°F db and 55% rh

Source: 2010 ASHRAE Handbook 15.5

Hilton Minneapolis, MN September 19-22, 2010 Energy & Store Development Conference

Desiccant Wheel Concept Condenser Heat Regenerative

Hilton Minneapolis, MN September 19-22, 2010 Energy & Store Development Conference

Performance @ 6000 cfm - full load conditions

Performance @ 6000 cfm - part load conditions

VFDs

Fan / Pump Laws:

 $BHP2 / BHP1 = (CFM2 / CFM1)^3$

Reduce CFM 10% = 27% horsepower reduction

VFDs

2003 CEC Advanced Variable Air Volume System Guide

57% Fan Energy savings for a 50,000 sq.ft. office building with a VAV system versus constant volume.

Exhaust Ventilation Control

- Exhaust and make-up airflow rates are adjusted in relation to the cooking load – Reduction up to 50%
- Sensors in the exhaust collar/hood meets the requirements of IMC 507.2.1.1

Water Treatment

Fouling Factor	Fouling Thickness (in)	Fouling Thickness (mm)	% inc. energy consumption ***
0.00025	1/32	0.079375	3.10%
0.0005	1/16	0.15875	6.20%
0.001	1/8	0.3175	12.40%
0.002	0.002 1/4		24.80%

*** FIGURES FROM ASHRAE® 2000 HANDBOOK; HVAC SYSTEMS & EQUIPMENT

Fouling Thickness (in)	Fouling Thickness (mm)	% inc. energy consumption *		
1/32	0.78	8.5		
1/16	1.56	12.4		
1/8	3.12	25		
1/4	6.24	40		

Non-chemical Technologies for Scale and Hardness Control", US Dept of Energy, DOE/EE-1062, Jan 1998

Hilton Minneapolis, MN September 19-22, 2010

Secondary Systems

Each 1°F increase in chilled water temp, system efficiency increases 2 – 4 %.

Each 1°F decrease in condenser water temp, system efficiency increases 1 – 2 %.

ECM Motors

Single Phase Power
W = V x A x Power Factor

Tom Wolgamot

twolgamot@dcengineering.net

Dave Cutbirth

dcutbirth@dcengineering.net

Tim Gwyn

tgwyn@dcengineering.net

Mike Harvey

mharvey@dcengineering.net

PH: 208-288-2181

