

Michael O. Leavitt Governor Dianne R. Nielson, Ph.D. Exeutive Director Kent P. Gray Director

State of Utah

DEPARTMENT OF ENVIRONMENTAL QUALITY DIVISION OF ENVIRONMENTAL RESPONSE AND REMEDIATION

168 North 1950 West P.O. Box 144840 Salt Lake City, Utah 84114-4840 (801) 536-4100 (801) 359-8853 Fax (801) 536-4414 T.D.D. www.deq.state.ut.us Web

ERRC-201-00

SDMS Document ID

August 8, 2000

Luke Chavez U.S. EPA Region VIII 999 18th Street. Suite 500 Denver, Colorado 80202-2405

Dear Mr. Chavez:

Enclosed is the Analytical Results Report for the Mount Olivet Cemetery Plume site, located in eastern Salt Lake City, Salt Lake County, Utah.

The report is a compilation of studies performed by EPA and EPA contractors, and the Utah Division of Response and Remediation documenting PCE (perchloroethylene) contamination of the shallow aquifer near the Mount Olivet Cemetery. Groundwater flow in the immediate area appears to move in a northwesternly direction, toward two University of Utah drinking water wells, located less than 2000 feet away.

An upward hydraulic gradient appears, at present, to be protective of the deeper aquifer. This deeper aquifer is the water source for the two above mentioned of University of Utah drinking water wells. However, changes in the hydraulic gradient could cause the plume to migrate to the deeper aquifer through the PCE-contaminated Mount Olivet Cemetery irrigation well, the abandoned "Fountain of Ute" University of Utah well, or the underlying geologic strata of the area. We therefore recommend that this site be evaluated further under the Superfund Program.

If you have any questions concerning this report, please contact Neil Taylor at (801) 536-4100.

Sincerely,

J. Steven Thiriot, Manager

Site Assessment Section/ CERCLA Branch

Division of Environmental Response and Remediation

BTJ/NBT/

Enclosure(s)

cc: Kevin Brown, Director, Utah Division of Drinking Water Royal DeLegge, Director, Environmental Health, Salt Lake Valley Health Department, 788 E. Woodoak Ln., #120 Murray, Utah 84107-6379

ANALYTICAL RESULTS REPORT

MOUNT OLIVET CEMETERY PLUME

Salt Lake County, Utah UTD981548985

Utah Department of Environmental Quality Division of Environmental Response and Remediation Prepared By: Neil B. Taylor

Draft:

Date 5/4/60 Initials 1/137
Date 1/16/00 Initials Initials

Revision:

Final:

ANALYTICAL RESULTS REPORT

MOUNT OLIVET CEMETERY PLUME

Salt Lake County, Utah UTD981548985

Utah Department of Environmental Quality
Division of Environmental Response and Remediation
Prepared By: Neil B. Taylor

ANALYTICAL RESULTS REPORT

MOUNT OLIVET CEMETERY PLUME

Salt Lake County, Utah UTD981548985

Utah Department of Environmental Quality
Division of Environmental Response and Remediation
Prepared By: Neil B. Taylor

Draft:	Date	Initials
Revision:	Date	Initials
Final:	Date 11/16/00	Initials C

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 OBJECTIVES	1
3.0 SITE DESCRIPTION	2
3.1 Site Location	
3.2 Operational History	
3.3 Previous Investigations	
4.0 FIELD ACTIVITIES	3
4.1 Sample Collection	3
4.2 Quality Assurance/Quality Control (QA/QC)	
5.0 WASTE/SOURCE CHARACTERISTICS	6
6.0 GROUNDWATER EXPOSURE PATHWAY	7
6.1 Hydrogeology	
6.2 Groundwater Targets	
6.3 Sample Locations	
6.4 Analytical Results	
6.5 Conclusions	
7.0 SURFACE WATER EXPOSURE PATHWAY1	3
7.1 Hydrologic Setting	13
7.2 Surface Water Targets	3
7.3 Surface Water Sample Locations	3
8.0 SOIL EXPOSURE PATHWAY1	4
8.1 Physical Conditions	4
8.2 Soil Targets	4
8.3 Soil Sample Locations	4
9.0 AIR EXPOSURE PATHWAY1	. 5
9.1 Meteorology	5
9.2 Air Targets	
10.0 SUMMARY AND CONCLUSIONS	6
11.0 REFERENCES 1	6

LIST OF FIGURES, TABLES AND APPENDICES

LIST OF FIGURES

Figure 1	Regional Location Map - page 18
Figure 2	Site Location Map - page 19
Figure 3	EPA Monitoring Well Groundwater Elevations - page 20
Figure 4	Groundwater Sample Locations and PCE Analytical Results - page 21
Figure 5	15 Mile Surface Water Runoff Map - page 22

LIST OF TABLES

Table 1	November 1996 Soil Gas Sample Locations and Results - page 4
Table 2	EPA Monitoring Well Sample Locations and Rational - page 9
Table 3	Mount Olivet Irrigation Well and 1511 East 500 South Salt Lake City
	Well - Well Log Comparison - page 10
Table 4	Existing Well Sample Locations and Rational - page 11
Table 5	Spring Water Screening Sample Locations - page 11
Table 6	VOC Analytical Results - page 23

LIST OF APPENDICES

Appendix A. URS Operating Services Inc.
Field Activities and Analytical Results For
Soil Gas Sampling at the Mount Olivet Cemetery Plume
Salt Lake City, Utah December 6, 1996

Appendix B. URS Operating Services Inc.
Site Activities Report
Mount Olivet Cemetery, Salt Lake City, Utah, May 20, 1999

Appendix C. URS Operating Services Inc.

Field Investigation Report Supplement To The Site Activities Report

Mount Olivet Cemetery, Salt Lake City, Utah, March 14, 2000

Appendix D. Municipal Drinking Water Sources
Within Four Miles

Appendix E Analytical Results and Quality Assurance Information

Appendix F Grant of Access, Chain of Custody, and Shipping Information

Appendix G. Four Mile Population Radius

Appendix H. Site Inspection Data Summary

1.0 INTRODUCTION

The Mount Olivet Cemetery Plume (EPA ID # UTD981548985) consists of a contaminated groundwater plume located in Salt Lake City, Salt Lake County, Utah. The site was known previously as the Utah Army National Guard Org. Maintenance Shop 5. Previously, the National Guard Maintenance Shop was thought to be a potential source for the groundwater plume, however that does not appear to be correct.

The Mount Olivet Cemetery Plume was investigated under the authority of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended, and in accordance with applicable provisions of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This report summarizes the results of sampling activities and relates the sampling results to possible exposure pathways. The Utah Division of Environmental Response and Remediation (DERR) conducted this investigation during the period of 1996-1999, under agreement with the U. S. Environmental Protection Agency (EPA). This report provides results of sampling as part of a Site Inspection in accordance with EPA guidance for activities at CERCLA sites.

In 1996, four soil gas samples were collected from potential contamination sources near the plume. During the period of June 1998 to January 2000, six groundwater monitoring wells were constructed near the plume and groundwater samples analyzed for volatile organic compounds.

2.0 OBJECTIVES

The objectives of these investigations were as follows:

- Document groundwater contamination at the site
- Identify possible sources of the groundwater contamination
- Evaluate environmental targets associated with the groundwater pathway and determine if these targets are, or have the potential of, being exposed.

3.0 SITE DESCRIPTION

3.1 Site Location

Site Location and Description: The site is located in eastern Salt Lake City, south of the University of Utah Campus, in the vicinity of the Mount Olivet Cemetery in Section 4, Township 1N, Range 1E. Geographic coordinates for the site are 40° 45′ 14″ north latitude and 111° 50′ 42″ west longitude. The plume was first identified as part of routine monitoring of the Mount Olivet Cemetery's irrigation well conducted in 1990 by Salt Lake City Department of Public Utilities. A regional location map is given as Figure 1 on page 18. A site location map is given as Figure 2 on page 19.

3.2 Operational History

Samples taken from the cemetery irrigation well from 1990 to 1999 by Utah Department of Environmental Quality and the Salt Lake Department of Public Utilities yield perchloroethylene (PCE) concentrations in groundwater that exceed both state and federal regulations. The EPA Maximum Contaminant Level (MCL) for PCE in drinking water is five parts per billion (ppb)^{1,2}. Since the initial report in 1990, levels of the contaminant have ranged from 11 to 184 ppb² in samples collected from the Mount Olivet Cemetery irrigation well.

Dimensions of the Mount Olivet Cemetery Plume site, or the extent of potential contamination, is not known. Identified potential sources are the former dry cleaning operation on the VA Medical Center campus in Building 7, former chemical storage operations at Fort Douglas Building 515, and a former Utah National Guard vehicle maintenance facility.

3.3 Previous Investigations

A Preliminary Assessment for the Utah Army National Guard Org. Maintenance Shop was conducted in 1989. This shop is located immediately to the east of the cemetery and was at one time

thought to be a potential source of the contamination found in the Mount Olivet Cemetery well. This has not proven to be correct.

On May 19 and 22, 1995, Ecology and Environment Inc., under contract to the Environmental Protection Agency, collected 15 soil-gas samples from several locations near the site. Two of the 15 soil gas samples contained organic chlorides. Sample OC-SG-06 was collected from Mount Olivet Cemetery and yielded 16 ppb of PCE. Sample NG-SG-02, was collected near one of the National Guard maintenance buildings and yielded 1 ppb of TCE.

On June 26, 1995 Ecology and Environment Inc., using the Geoprobe, collected soil gas samples at several locations near the National Guard maintenance buildings and near the Veteran's Medical Center. The initial objective of the sampling event was to obtain groundwater samples. However, a hard caliche layer prevented the Geoprobe from penetrating beyond four feet below grade. All samples were negative for organic chlorides.

Since the groundwater plume was initially identified in 1990, samples of groundwater from the Mount Olivet Cemetery irrigation well have been collected annually. The well is 470 feet deep and screened the majority of this length, through both confined and unconfined aquifers. PCE levels in samples collected from the well have ranged from 11 to 184 ppb².

More recent activities, conducted in the hope of identifying the contamination source, are described in section 4.0 "FIELD ACTIVITIES".

4.0 FIELD ACTIVITIES

4.1 Sample Collection

In November of 1996, soil gas samples were collected by an EPA contractor from three locations, using a Geoprobe truck-mounted system. Sample locations and sample results are given in Table 1. Concentrations are given in ppb. The field activities report for this sampling effort is included as Appendix A.

	Table 1 - November 1996 Soil Gas Sample Locations and Results								
Boring No.	Location	1,1-DCE	1,2-DCE	TCE	PCE				
O-SG-1	VA Medical Center Southeast of Building 6	ND	ND	ND	1.9				
O-\$G-2	Fort Douglas Center of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND				
O-8G-3	Fort Douglas Northwest side of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND				
O-SG-4	Fort Douglas Southwest of loading dock for Building 515 (old brig)	ND	ND	3.4	49.0				

During June - August of 1998, five monitoring wells were installed east and southeast of the Mount Olivet Cemetery. The wells were located to provide information about the groundwater gradient, the groundwater flow direction, and the extent of organic chloride contamination to determine potential PCE source areas. Each well location was selected based on samples collected from previous wells and the expected groundwater flow direction. The wells were numbered sequentially based on order of installation. The wells were sampled for organic chloride and metals analysis in November of 1998. The Site Activities Report for the monitoring well construction and sampling is included as Appendix B.

Monitoring well EPA-MW-03 was abandoned in September 1999 due to planned construction in the area. A sample was collected from the well by an EPA contractor prior to abandonment and submitted to Datachem Laboratory in Salt Lake City for PCE analysis. The reported PCE concentration in the sample was 7.1 ppb.

During September of 1999, an additional monitoring well (EPA-MW-06) was installed in the southeast corner of Sunnyside Park. This well was located upgradient of wells with PCE contamination and upgradient of the sewer line that originates from the former dry cleaning facility at the VA Medical Center. On January 6, 2000 an EPA contractor collected a sample from monitoring well EPA-MW-06 for organic chloride and metals analysis. The Site Activities Report for the well construction and sampling is included as Appendix C.

During August and September 1998, five screening samples were collected of spring water emerging west to southwest of the Mount Olivet Cemetery. These samples were collected in an attempt to track the plume's western and southwestern extent, under the assumption that groundwater flow is to the west to southwest.

Table 1 on page 23 summarizes groundwater sample results.

Deviations from the Work Plan

The original work plan for placement and sampling of monitoring wells was approved by EPA in February 1996; however, subsequent events led to a substantial modification of the work plan.

Changes included the following:

- Placement and sampling of the wells was conducted by EPA contractors rather than by contractors selected by DERR. The sampling and analysis methods were, therefore, those routinely used by the contractors, which were reviewed and approved by both EPA and DERR.
- The location of the first monitoring wells placed and sampled (EPA-MW-01S and EPA-MW-01D) was modified slightly to be east of Guardsman Way. These first wells detected PCE in the shallow groundwater. The work plan incorrectly assumed this well to be upgradient of the groundwater contamination plume. The location and number of subsequent wells, therefore, was changed to locations mostly likely to provide useful information on the extent and source of the groundwater plume.
- Groundwater samples collected from monitoring wells were analyzed for both metals and
 volatile organic compounds to provide additional information useful in ensuring the same
 aquifer was being sampled in each monitoring well.

 Groundwater samples collected by DERR staff include the 1511 East 500 South Salt Lake City well and the Mount Olivet Cemetery irrigation well.

4.2 Quality Assurance/Quality Control (QA/QC)

All groundwater samples collected from existing wells by DERR personnel were handled under strict chain-of-custody, packed on ice to 4° Celsius, sealed and shipped express mail to Southwest Laboratory of Oklahoma (an EPA Contract Laboratory), and analyzed under Routine Analytical Services (RAS) for VOA's. A carbon-filtered deionized water sample was collected and traveled with the other samples. Data validation was checked by URS Operating Services (an EPA contractor). The data was considered acceptable with qualifiers added by the reviewer.

Screening samples collected from flowing springs by DERR personnel were handled under strict chain-of-custody, packed on ice to 4° Celsius, and transported to the Utah State Health Department Laboratory and analyzed for VOA's. A deionized water sample traveled with each sample as a trip blank.

Quality control requirements for air samples are not documented; therefore, data from the November 1996 soil gas sampling event were reviewed for compliance with Method 8260 water analysis quality control criteria. Based on this review, the data were found to be acceptable for the intended purposes. More detail concerning quality control criteria for the November 1996 sampling event is contained in Appendix A.

Quality control procedures for the EPA monitoring well sampling events are described in Appendices B and C.

5.0 WASTE/SOURCE CHARACTERISTICS

PCE (also known as tetrachloroethene and tetrachloroethylene) is a synthetic, colorless, nonflammable chlorinated solvent that is commonly used for dry cleaning fabrics and for metal-

degreasing operations. Solvent soaps, printing inks, some lubricants, and silicones also may contain PCE³. Dimensions of the Mount Olivet Cemetery Plume site, or the extent of potential contamination, is not known. The width of the PCE plume is greater than 900 feet at well EPA-MW-01 based on the 320 ppb and 11 ppb PCE concentration in monitoring wells EPA-MW-01 and EPA-MW-03 respectively. Groundwater elevation data obtained from EPA monitoring wells reveals that groundwater in the immediate area flows in a northwestern direction. Based upon this groundwater flow and PCE concentrations, the source for contamination of the aquifer is southeast of monitoring wells EPA-MW-01S and EPA-MW-02 and northwest of monitoring well EPA-MW-06. The only identified potential source of PCE in this area is the sewer line that originates from the former dry cleaning facility at the VA Medical Center.

6.0 GROUNDWATER EXPOSURE PATHWAY

6.1 Hydrogeology

The geographic coordinates and elevation for each installed monitoring well described in Appendices B and C were surveyed by ESI engineering. UOS measured groundwater depths for each monitoring well on September 1, October 22, and November 10, 1999. Depths to the water table in this area vary from about 118 to 205 feet. Depths to groundwater in five of the six monitoring wells are given in Table 6 of Appendix B. Installation of the last monitoring well (EPA-MW-06) is described in Appendix C. Depth to groundwater in this monitoring well is 118 feet.

Ground water in the Salt Lake Valley occurs in a confined (artesian) aquifer, a deep-unconfined aquifer and a shallow-unconfined aquifer. All of the aquifers are connected hydraulically to some degree; thus, composing the groundwater reservoir in the Salt Lake Valley³.

Based upon October 1998 groundwater elevation measurements by UOS, flow direction of the unconfined aquifer in the immediate vicinity of the site is northwest at an approximate 2% grade. This flow direction is approximately opposite of the surface topography which slopes toward the

southeast. The groundwater elevation above mean sea level of the EPA monitoring wells as measured on October 22, 1998 is given in Figure 3 on page 20

The "principal aquifer" in the valley consists of the confined and the deep-unconfined aquifers. The primary recharge areas for the principal aquifer are along the mountain fronts on the eastern and western sides of the valley. The Mount Olivet Cemetery Plume is located in a transitional area that includes both primary and secondary aquifer recharge areas. The primary recharge area includes the Wasatch Front and upper bench where confining layers are thinner than 20 feet⁴. The secondary recharge areas are characterized by a shallow unconfined aquifer and a confining aquifer separated by a confining layer. Information from EPA monitoring well EPA-MW-01D indicates the deeper aquifer displays an upward hydraulic gradient at this point. A branch of the Wasatch Fault extends approximately through the Mount Olivet Cemetery, however, it is unlikely that the fault influences shallow groundwater flow through unconsolidated materials.

6.2 Groundwater Targets

Two drinking water wells owned by the University of Utah are located approximately 2000 feet northwest of the Mount Olivet Cemetery well at 1511 East 500 South. A drinking water well owned by Salt Lake is located approximately 1000 feet to the north. Both the University of Utah wells and the Salt Lake City well are routinely sampled by the water utilities, generally annually, for VOC regulated contaminants. The most recent analytical results for the University of Utah wells (December 1999) and the Salt Lake City wells (July 1998) are non-detect for all regulated VOC's⁵ Historical analyses for the University of Utah wells, dating back to 1994, are also negative for regulated VOC's. Both presently used University of Utah wells appear to be screened in the deep aquifer⁶. A well abandoned by the University of Utah is located just west of University of Utah Well No. 1. This well appears to be screened in both upper and lower aquifers⁷ and has not been grouted in⁸, which could permit contamination to migrate from upper to lower aquifers.

A report giving information about wells located within four miles of the site is given as Appendix D. The most recent information indicates there are 19 municipal wells located within four miles of

the site. A map showing the location of these wells in relation to sampling points described later in this report is given as Figure 4 on page 21.

6.3 Sample Locations

Locations of groundwater samples collected from EPA monitoring wells during November 1998 and January 2000 are given in Table 2. A map of the EPA monitoring well locations is given as Figure 2 of Appendix B. A detailed review of analytical results is given as Table 4 of Appendix B. General chemistry along with certain cation and anion results were used to map the hydrochemical facies of the sample. The data were also compared with sample data from the other monitoring wells on a Piper diagram (Appendix C, Figure 3). Monitoring well sample cation and anion data plotted in the same area of the Piper diagram, which indicates that the wells are screened in the same or chemically similar aquifers (except well EPA-MW-01D).

	Table 2 - Mount Olivet Cemetery Plume EPA Monitoring Well Sample Locations and Rational	
Well No.	Location	Rational
EPA MW-01S	Wells EPA-MW-01S and EPA-MW-01D are nested wells with total depths of 224 and 404 feet. The wells are located in the southwestern	Determine if contamination is
EPA-MW-01D	corner of the Steiner Aquatic Center parking lot, approximately 700 feet east of the Mount Olivet well.	present in both deep and shallow aquifers
EPA-MW-02	This well is located approximately 500 feet east of well EPA-MW-01 and has a screened interval of 175.5 to 205.5 feet bgs in the first aquifer encountered.	Determine eastern extent of groundwater plume
EPA-MW-03	This well is located approximately 500 feet north of EPA-MW-02, also on Salt Lake City property. The well has a screened interval of 190 to 210 feet bgs in the first aquifer encountered.	Determine northern extent of groundwater plume.
EPA-MW-04	This well is located in Sunnyside Park, about 850 feet south and 350 feet west of well EPA-MW-01. The well has a screened interval of 143 to 173 feet bgs in the first aquifer encountered.	Determine southern extent of groundwater plume
EPA-MW-05	This well is located at the VA Medical Center, approximately 1,700 feet east-northeast of well EPA-MW-01. The well was screened from 186 to 221 feet bgs in the first aquifer encountered.	Determine if contamination exists east of the VA Medical Center laundry
EPA-MW-06	This well is located in the southeast corner of Sunnyside Park, upgradient of other EPA monitoring wells in which PCE was previously detected and upgradient of the sewer line that originates from the former dry cleaning facility at the VA Medical Center.	Determine if contamination exists east of the VA Medical Center laundry sewer line

The 1511 East 500 South Salt Lake City municipal drinking water well and the Mount Olivet Cemetery irrigation well appear to be drawing water from the same shallow aquifer, based upon a review of well logs. Table 3 is a summary of the well log comparison.

			Tal	ole 3			
		Mount Olivet Irrig	ation Well and 151	1 East 500	South Sale	t Lake City Well	
		_	Well Log (Compariso	n	·	
Mount (Olivet Irrig	ation Well - Grade Ele				Well - Grade Elevation 4	710 Feet
	Below	Formation	Comments		Below	Formation	Comments
Elevation	Grade			Elevation	Grade		
	0-3	Soil			0-2	top soil	
	3-13	rock and boulders			2-210	clay, gravel, boulders	
	13-16	gravel		1			
	16-20	boulders		1			
	20-45	boulders and clay		1			
	45-52	rock and boulders		i			
	52-70	clay and boulders		1			
	70-80	boulders		1			
	80-85	boulders and clay		1			
	85-90	boulders					<u> </u>
4490	90-165	boulders and clay	water - 140'	4500	210-216	clay, gravel	water
4435	175-195	water gravel	water, perforated	4474	216-236	clay, gravel	
4425	195-205	boulders	perforated	4444	236-266	clay, gravel	perforated
4415	205-215	boulders and clay		4412	266-298	sand, gravel	perforated
4395	215-235	water gravel	perforated	4362	298-348	sand gravel, boulders	perforated
4350	235-280	yellow clay		4322 perforated	348-380	sand gravel, cong	omerate
•	280-305	boulders, fine sand	perforated				
4320	305-310	boulders and clay	perforated				
4315	310-315	sandy rock	perforated				
4292	315-338	conglomerate	perforated	4302	380-400	conglomerate	perforated

On September 22, 1998 groundwater samples were collected from these two existing well locations. A list of samples associated with this sampling effort is given in Table 4. The municipal well was selected as a sampling point to verify contamination did not extend to this well. The analytical results and quality assurance summary is given as Appendix E. The grants of access, chain-of-custody forms, and shipping information is given as Appendix F.

	Table 4 - Mount Olivet (Existing Well Sample Loca	
Sample	Sample Location	Rationale
MT-01	Mt Olivet Cemetery irrigation	Verify presence/absence of VOA's
	well	in groundwater
MT-02	1511 East 500 South Salt	Determine northern extent of
_	Lake City municipal well	groundwater plume
MT-03	Trip Blank	Quality Control

On August 5 through September 4, 1999 four springs located approximately ½ mile southwest to west of the Mount Olivet Cemetery were sampled for VOC's. The name and location of the springs are given in Table 5. Spring samples were collected in an attempt to identify the western an southwestern extent of the groundwater plume. The spring samples were collected before groundwater elevation measurements in EPA monitoring wells had revealed a northwestern groundwater flow direction. The samples were collected for screening purposes only and were submitted to the Utah State Health Department Laboratory for VOC analysis.

	Table 5 - Mount Olivet Cen Spring Water Screening Sam	
Sample	Spring	Address
SP-1	Our Lady of Lourds Spring	1063 East 700 South
SP-2	Benson Spring	761 South 1100 East
SP-3	Smith Spring	1123 Alpine Place
SP-4	Bowen Spring	1220 East Yale Ave

6.4 Analytical Results

PCE was the primary VOC reported in groundwater samples. PCE concentrations ranged from non-detect at the 10 ppb reporting limit (RL) to 320 ppb. Low concentrations (<10 ppb) of TCE, chloroform, methylene chloride, and 1,2 - dichloroethene were also reported. The concentrations of these contaminants were below the 10 ppb RL and considered to be estimated values. The 6 ppb methylene chloride reported as present in the 1511 East 500 South Well sample is most likely a laboratory analysis artifact as methylene chloride was also detected in the trip blank.

Sample EPA-MW-08 was an equipment rinsate sample. The rinsate sample was collected immediately following the sample at monitoring well EPA-MW-01S which had the highest PCE concentration of the EPA monitoring wells. Chloroform and PCE were detected in the rinsate sample. These results reveal that a10-gallon purge was not sufficient to remove the residual PCE from the pump. However, other precautions were taken during the sampling event to prevent cross contamination (i.e., going from low to high concentration wells and pumping larger purge volumes. Low concentrations of chloroform (< 2 ppb) detected in spring water samples is most likely the result of chlorinated drinking water recharge of the shallow aquifer.

A map of all well sample locations and PCE analytical results is given as Figure 4 on page 21. Table 6 on page 23 gives a summary of VOC analytical results. No PCE was detected east of the VA Medical Center laundry building in which a dry cleaning operation operated historically or east of the sewer line leading from the laundry building.

6.5 Conclusions

PCE contamination appears, at this point in time to be limited to the shallow aquifer.

Groundwater flow is to the northwest, in the direction of two University of Utah drinking water wells. The width of the PCE plume is greater than 900 feet at monitoring well EPA-MW-01 based on the 320 ppb and 11 ppb PCE concentration in monitoring wells EPA-MW-01 and EPA-MW-03 respectively. Based upon the northwestern groundwater flow direction and PCE concentrations, the source for contamination of the aquifer is southeast of monitoring wells EPA-

MW-01S and EPA-MW-02, west of EPA-MW-05, and northwest of EPA-MW-06. The only identified potential source of PCE in this area is the sewer line that originates from the former dry cleaning facility at the VA Medical Center. Organic chloride contamination appears to be limited, at this point in time, to the shallow aquifer.

7.0 SURFACE WATER EXPOSURE PATHWAY

7.1 Hydrologic Setting

Hydrology: Red Butte Creek is located about ½ mile south of the site. An underground, piped diversion from Red Butte Creek flows under a portion of the site and feeds the Mount Olivet Reservoir. Reservoir water is used for irrigation in the Cemetery. Occasionally, withdrawals pump the reservoir essentially dry. Reservoir overflow water enters the city storm sewer system. Red Butte Creek flows downstream of the site, through Sunnyside, Miller, and Liberty Parks and then, largely underground, to the Jordan River about four miles away. Water flowing northwest of the site would enter the city storm sewer system, underground to the Jordan River. The 15 mile downstream surface water pathway is illustrated as Figure 5 on page 22.

7.2 Surface Water Targets

Surface Water Pathway Analysis: Red Butte Creek and the Mount Olivet Reservoir are not open to fishing. The Jordan River is home to various species of waterfowl and is used by some as a warm water fishery. Fish that are commonly stocked in the Jordan River are catfish, walleye, bass, and occasionally rainbow trout¹⁰.

7.3 Surface Water Sample Locations

Sampling efforts focused on determining the extent and potential sources of groundwater contamination. No surface water samples were collected. Groundwater samples collected from monitoring wells closest to Red Butte Creek (monitoring wells EPA-MW-05 and EPA-MW-06) were non-detect for PCE. Therefore, it is unlikely that the plume extends as far east as Red

Butte Creek and is not associated with the University of Utah Building 515 chlorinated solvent plume.

8.0 SOIL EXPOSURE PATHWAY

8.1 Physical Conditions

The major soil types in the area are of the Bingham-Parley's association. This association is characterized by well-drained soils on high lake terraces and alluvial fans¹¹. No evidence of hazardous waste has been found during previous site visits. The area is generally well vegetated and lawn covers a great deal of the area.

8.2 Soil Targets

Soil Exposure Pathway Analysis: Soil gas surveys have failed to locate surface soil contamination. The potential for direct contact via dermal or ingestion pathways appears low. The number of on-site residents is less than 10. Up-to-date estimates indicate that the population within ¼ mile of the site is 563 and within ½ mile of the site the population is 4892¹². The 1990 population estimates by census tract are given as Appendix G.

Estimates of the nearby population, based on census block information, are presented in the Air Pathway section of this report. Although large numbers of people frequent the cemetery year round, the likelihood of direct exposure to PCE through soil contact is not suspected at this time due to the lack of a definable source. Therefore, no soil samples were collected. Land immediately east of the site is used for a vehicle maintenance facility for the Utah National Guard. Land farther east and south of the site is used for recreational purposes.

8.3 Soil Sample Locations

Soil gas surveys have failed to locate surface soil contamination. Therefore, no soil samples were collected.

9.0 AIR EXPOSURE PATHWAY

9.1 Meteorology

The climate in the Salt Lake Valley is characterized by hot windy summers and cold winters. Temperatures approaching 100 degrees Fahrenheit are common in the summer months, while sub-zero temperatures commonly occur during the winter. The average annual precipitation at the site generally ranges between 10 to 16 inches¹³.

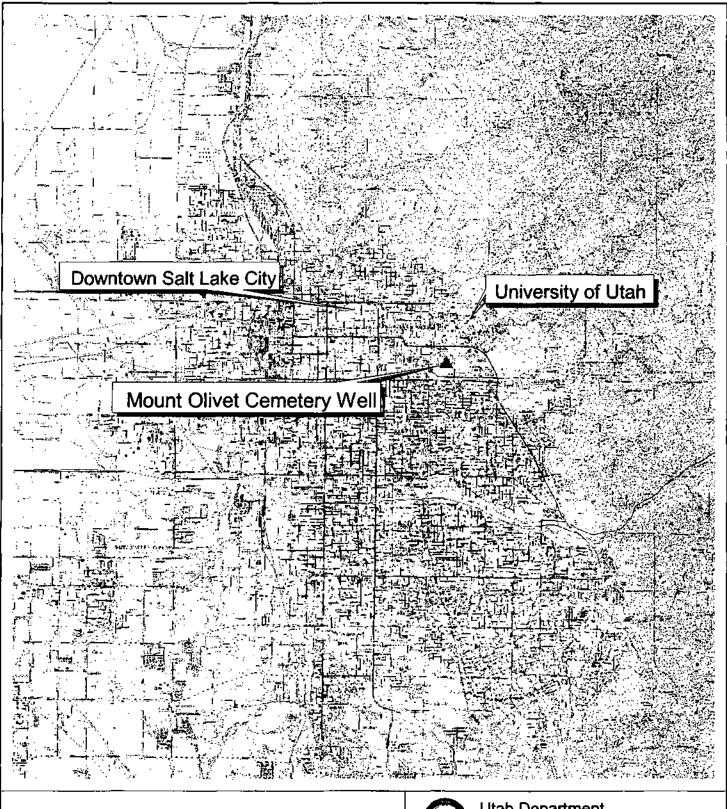
9.2 Air Targets

Air Exposure Pathway Analysis: A source of surface contamination has not been identified. A release of PCE to the ambient air would be anticipated when the well is pumped for irrigation. Cemetery workers have been advised to minimize irrigating lawns when visitors are close by and to minimize contact with the pumped water.

The nearest residents to the site are within 0.6 mile at the University Village. Population within four miles of the site, estimated by census block information, is 151,013 persons¹⁴. Appendix G lists the population estimates by census block, and by ½, ½, 1, 2, 3 and 4 mile radii from the site.

9.3 Air Sample Locations

No air samples were collected due to the limited potential for exposure via the air pathway.


10.0 SUMMARY AND CONCLUSIONS

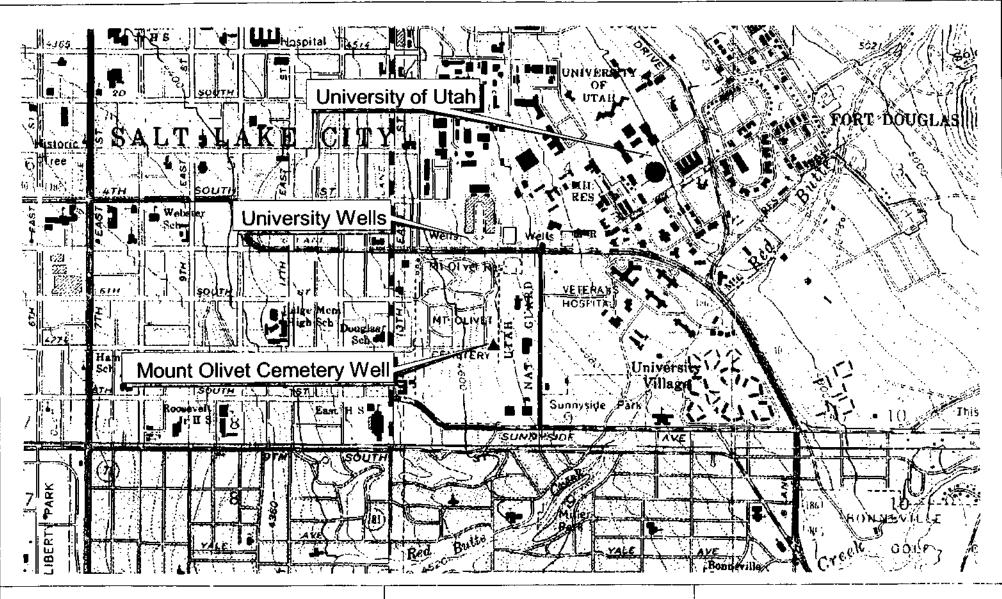
The Mount Olivet Cemetery Plume site, consists of a groundwater plume contaminated with an unknown source of PCE. Contamination of the irrigation well, located inside Mount Olivet Cemetery, was first discovered in 1990, displaying levels of PCE that exceed regulatory levels. Presently the well is still contaminated. The plume is located in a transitional area that includes both primary and secondary aquifer recharge areas. The precise dimensions of the contaminated plume are unknown; however the plume width is greater than 900 feet at well EPA-MW-01 and appears to be limited to the shallow aquifer. Groundwater flow appears to be to the northwest, in the direction of two University of Utah drinking water wells. An abandoned University of Utah well located near the other university wells appears to be screened in both upper and lower aquifers and has not been grouted in, which could permit contamination to migrate from upper to lower aquifers. Groundwater samples collected from monitoring wells closest to Red Butte Creek (EPA-MW-05 and EPA-MW-06) were non-detect for PCE. Therefore, it is unlikely that the plume extends as far east as Red Butte Creek. Based upon the northwestern groundwater flow direction and PCE concentrations, the source for contamination of the aquifer is southeast of monitoring wells EPA-MW-01S and EPA-MW-02, west of monitoring well EPA-MW-05, and northwest of EPA-MW-06. The only identified potential source of PCE in this area is the sewer line that originates from the former dry cleaning facility at the VA Medical Center.

11.0 REFERENCES

- 1. Utah Division of Environmental Response and Remediation. CERCLA site files.
- 2. U.S. Department of Public Health and Human Services. April, 1993 (update). Toxicological Profile for Tetrachloroethylene
- 3. Utah Department of Natural Resources. 1987. Ground-Water Conditions in Salt Lake Valley, Utah. Technical Publication No. 87.
- 4. U.S. Geological Survey. 1994. Hydrogeology of Recharge Areas and Water Quality of the Principle Aquifers Along the Wasatch Front and Adjacent Areas, Utah. Water-Resources Investigations Report 93-4221, 1994.
- 5. Utah Division of Drinking Water Database.

- 6. Reports of Well and Tunnel Driller. State of Utah. November 28, 1956 and Jan 25, 1979
- 7. Report of Well and Tunnel Driller. State of Utah. July 1, 1935.
- 8. Crawford, Dennis. University of Utah. Personal Communication. September 26, 1995.
- 9. Valdez, Dan. Mount Olivet Cemetery. Personal Communication, December 8, 1995.
- 10. Darby, Dave. Utah Division of Wildlife Resources. January, 1995. Telephone conversation regarding aquatic life in the Jordan River.
- 11. U.S. Department of Agriculture. Soil Conservation Service. April, 1974. Soil Survey of Salt Lake Area, Utah.
- 12. U.S. Bureau of the Census. 1990 Population Counts.
- 13. Stevens, Dale J., R. Clayton Brough, Rodney D. Griffen and E. Arlo Richardson. 1983. Utah Weather Guide.
- 14. U.S. Bureau of the Census. 1995 Population Totals.

6000 0 6000 12000 Feet


▲ Mount Olivet Cemetery Well

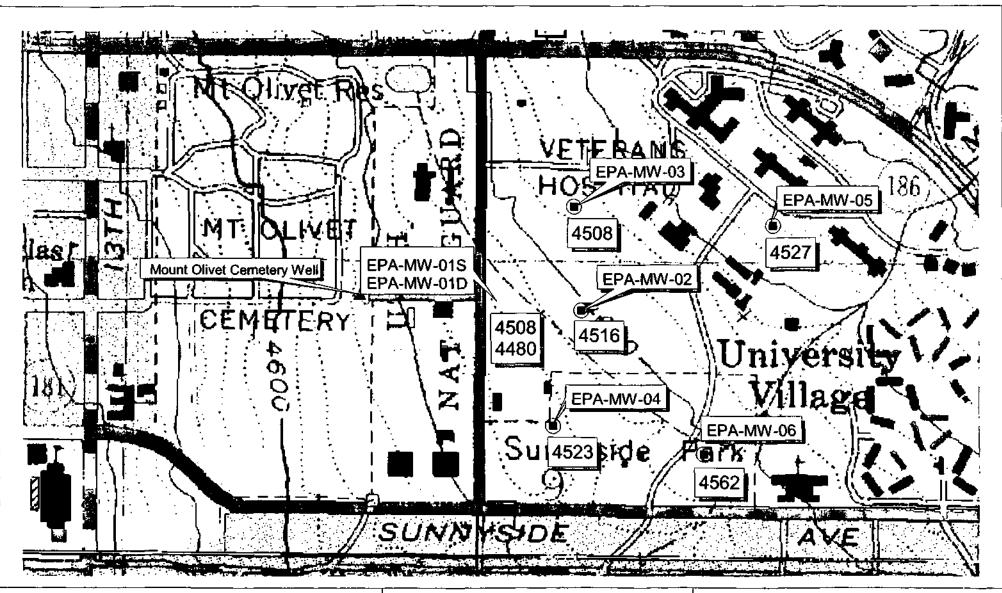
Utah Department of Environmental Quality

Division of Environmental Response and Remediation

Figure 1
REGIONAL LOCATION MAP
Mount Olivet Cemetery Plume - Salt Lake City
Salt Lake County, Utah
Page 18

0.2 0 0.2 0.4 Miles

Mount Olivet Cemetery Well


Figure 2
SITE LOCATION MAP
Mount Olivet Cemetery Plume - Salt Lake City
Salt Lake County, Utah

Page 19

Utah Department of Environmental Quality

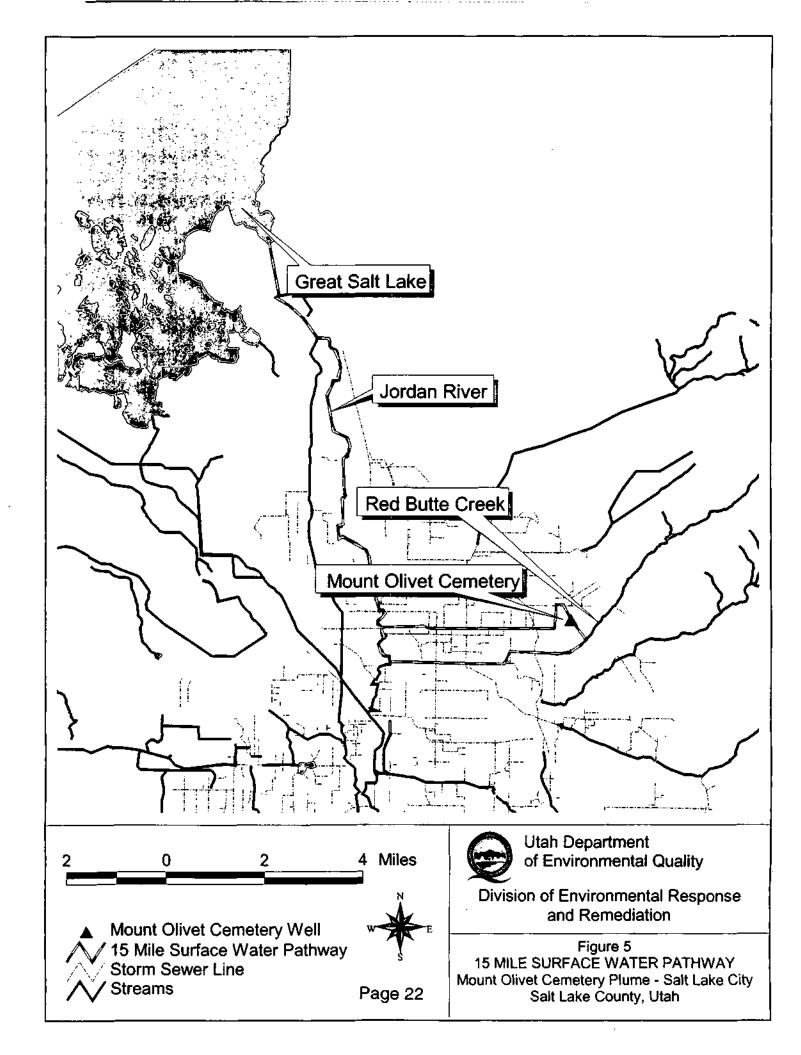
Division of Environmental Response and Remediation

0.05 0 0.05 0.1 Miles

Mount Olivet Cemetery Well

EPA Monitoring Wells

Figure 3 EPA Monitoring Well Groundwater Elevations (10/22/1998)


Page 20

Utah Department of Environmental Quality

Division of Environmental Response and Remediation

Table	Sample Number			MT-02	MT-01	MT-03	EPA-MW-01S	EPA-MW-01S	EPA-MW-010	EPA-MW-M	EPA-MW-03	EPA-MW-04	EPA-MW-05	EPA-MW-07	EPA-MW-08	MT-02	SP-1	SP-2	SP-3	SP-4
Company Comp		· · · · · ·																		
Stanger Type CPA Rog SCLUR CPA Rog		2	,	Mount Ofvail Complety Well	1511 East 500 South 538 Like	Top blank collected from OERR DI	Steiner Contei	Sharter Center Shudow	Sterier	500 FI East of Well	500 Ft North of Wall	West End of Surveyants	Northeast of VA Laurency			East of VA Laureny	Lourds School Spang - 0 68	Bermon Spring - 0.58 Malon southwest of	Smith Spring - 0.61 Miles southwest of	Bowen Spring © 75 miles southwest of prio
Marchester Pyk						<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>						
Consequence								ļ <u> </u>	<u> </u>		<u> </u>		<u> </u>		<u>_</u>		 	!		
## International 5 n 19 19 19 10 10 10 10 10		. pg/L										777								
Variet Trisons																				05.0
Concessions 2,000 NI																				05'0
Marthemore Chinage 1	· '			4		10 0		10'0					10.0	10,01				05 V		050
Assertion 3,700 di 10 U 10		33,000																		050
Cabbo Chaulang 3,2700 d 10 U														100				4		05 U
1.1 Descriptionshape 30 0.14 or 10 U 10																				0.5 U
1Decisioname (1Decisioname (1De						10 U				50 U										0 5 U
1,2 Obstacemente really 200 R. 2,3 16 U 10 U 5 U 3,3 3,2 16 U 10 U 5 U 10 U		30																		05 U
Cise original (Cise original Communication (Cise original Cise original Communication (Cise original Communication) (Cise original Communication (Cise original Communication (Cise original C		ĺ	3,700} (0			10,0		[10 <u>.</u> 0]	ı ığı	50 U		10 U			10 U			(0.5 ∪	,-	050
1.2 Centificenthape		200																		050
2 Bithornes MARKS 18, 22,000 of 10 U 1						10 U												0.7		1.8
1.1.1-Inchloredmane																				0.5 U
Cathor Transcrisones 0 sst ca 10 U		NI.				10 UJ				50 _. U		10 U	10,0	10,0	10,0	10 U		0.5 U		0.5 U
Bomespetherendmanse														10.0	10,0					0.5 0
1.2 Dickhorquegapie					=	100							1 77.7	10.0				0.5 U	1 277.7	0.5 U
Cast 1.5 Diseletocopeane 1 ML 10 10 10 10 10 10 1						10 0		10 U				10 U		10.0		10 U	0.5 U	0.5 U		0.5 0
International Processing CE 20 5 mol 2 J 10 U	1,2 Dichloropropane		13 0	10 U		j0,U	10 U						l iõ ju	100	ίου	10 0	0.5 U	050		0.5 U
Determorbitecternalitation 1 or 10 U		- 1	NL ~	· 10 U		10 U	10 U	10 U	10 U	50 Ù	10 U		10 0	10 U	10 U	10 U	0.5 U	0.5 U	0.5 ป	050
1.12.Technoreshame 1.15. of 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	(inculoreethers (ICE)	20	5 m	ci 2 J	10,0	10 U	4 J	4.J	10 U	50 U	10 U	2 1	10'0	700	iĝυ	10 0	0.5,0	0.5 U	0.5 U	050
Senzerice 2,9 C 10 U	Dibromochloromathane		, il e	r (10 U	10 U	10 0	100	190	10 U	50 0	10 0	100	19.0	10,0	10 0			0.5 0	0.5	0.5 ับ
September 1 NL 10 U	1,1,2-Trichlorosthane		15 0	10 U	10,0	lo ∪	10 U	10 U	19.0	50 Ü] ioù	10'0	100	10 U	10 0	10 0	05'0	ÓŚŪ	0.5 U	0.5 U
Bennotrom 500 11 c	Benzene		2.9 c	r io U	10,0	10 U	10 U	10 U	10 ()	50 U	jου	10,0	10 0	10 0	100	io u	0.5 U	0.5 U	0.5 U	05 U
### Additional Process of the Control of the Contro	wans-1,3-Dichloropropene	1	NL	· [10 U	100	10 U	10 U	10 U	10 U	50 U	10,0	10,0	10 U	1600	10 0	10 Ú	0.5 U	0.5 Ú	0.5 U	050
### All Process of the Company of th	Bromotorm	500	In c	10 년	10,0	10 U	10,0	10.0	10′0	\$0 U	10'0	10 U	10'0	1 100	10 U	10 U	0.5 U	0.5 U	0.5 0	0.5 U
Tablachiocembene (PCE) 40 1.5 cr 150 10 U 10 U 320 D 310 DJ 1 J 290 11 10 U	4-Mathyl-2-Pentanone	ŃL	2.900 rs	10,00	l iojui	ທ່ານ	10,0	10 U	10 U	50 Ū	100	ıō'ü	10,0	100		100	0,5 U	0.5 U	0.50	0.5]U
1.1.2.2-1 etrachteroethane 1.000 mol 10 U 10	2-Meranona	NL	NL .	10 UJ	10 (4)	10,01	10'0	io'u	10,0	Šού	to`u	10,0	10'0	10.0	10 U	10 U	0.5 U	0.5 U	050	05'0
Tokenen 1,000 ms 10 U 10	Tetrachioroethena (PCE)	40	1,5 G	150	10 U	וס'ט ו	320 O	310 00	13	290	51	190	16 U	[iō Ú	34	10 0	0.5 0	0.5 U	0.5 U	os'u
Chlorobenzene 100 mcl 10 U 10	1, 1,2,2-7 etrachiproethane		0 43 6	100	10,0	10 U	10,0	10,0	10.0	50 U	10 U	10 U	10 0	່າວັນ	10 U	10 U	0.5 U	0.5 U	0.5 U	050
Emphanizena 700 mcl 10 U 10	Totuene		1,000 m	3 10 U	10 U	10 U	10.0	10 U	10 00	so u	10 U	10'0	10 U	l iów	10 0	10'0	0.5 U	0.5 U	050	0.5 U
Styrene 100 mcl 10 U 10	Chloropenzene		100 m	rt 10 U	10 U	10 U) 10U	10 W	10,03	50 U) iou	10'0	10 U] 10 W	10'0	10 U	050	05'0	0.5 U	0,5 U
SCOM: Superfund Chemical Data Meline, 6/96, (Std column e in), it value not listed, dunking water values, (Std column e inchidder) were used NL. A bench mark is not based for this substance. J. The associated numerical value is an estimated quantity bocause the Quahity Combol criteria were not mel U.f. The reposted amount is astimated because Quality Control criteria were not mel U.f. The reposted amount is astimated because Quality Control criteria was not detected and the associated value U.f. The analysis indicates the presence of an analytic for which there is presumptive explainable on analysis for which there is presumptive explainable. N. The analysis indicates the presence of an analytic for which there is presumptive explainable. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS N. I. S. J.	Etrylbanzena		700 m	d 18 U	10 U	10 0	10,0	10 ()1	10 00	50 U	10'0	10 U	100	ທ່ານ	10'0	10,0	05'U	050	0.5 U	05 U
SCDM - Superfund Chemical Data Materia. 6/36, (Sid column + IW) - it value not fisled, dunking water values, (Sid column = micrid/cr) were used N A bench mark is not based for this substance. J. The associated numerical value or an estimated quantity because the Quality Combol criteria were not met U. The malerial was analyzed for, but was not detected above the level of the associated value U. The majorial substimated because Quality Control criteria were not met. Element or compound was not detected (U. The analysis indicates the presence of an enalyte that has been funtatively identified and the associated numerical value represents its approximate concentration. N. The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are sheded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotizetoxane N					10 U	10 U	10 U	10 W	10 W	50 U	10 U	10 U	10 ()	io w	10 U	10.0	05 0	0.5 €	0.5 ∪	250
SCIDA - Superfund Chemical Data Matin, 696, (Stid column is IN) - It value not listed, duriting water values (Stid column is mctridic) were used J. The dispositation furnismical value is an estimated quantity bocause the Quahry Combol criteria were not met. U. The matierial was analyzed for, but was not detected above the level of the associated value 19. The reposited amount is estimated because Quality Control criteria were not met. Element or compound was not detected NJ. The analysis indicates the presence of an analyte for mich that has been fernitatively identified and the associated numerical value represents its approximate concentration. N. The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tertiative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY (DENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidoxane N.L. 6.J. 5.J.	Xylene (Total)	! !	10,000 m	a] 10,0	10,0	10,0	ן וויסי	l iom	10 W	50υ	10,0	10 U	10,0	10 W	10,0	10 U	0.5	05,0	0.5,0	0.5 U
Nt In be associated numerical value is an estimated quantity because the Quantity Control criteria were not met. U. The material was analyzed for, but was not detected above the level of the associated value U. The reposted amount is assimpted because Quality Control criteria were not met. Element or compound was not detected NJ The analysis indicates the presence of an analytic that has been "lentatively identified and the associated numerical value represents its approximate concentration. N - The analysis indicates the presence of an analytic for which there is presumptive evidence to make a tentative identification that it is presented to the presence of an analytic for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidoxané NL. 6 J 5 J	'SCDM - Superfund Chemica	il Data Matric. 6	796, (Sid colum	n w (w) - (I value no	n listed, dunkana	water values (Sit	oolumn : mck	(d/ci) were used									-			-
J. The reported amount is stimpted because Quantity because the Quarky Control cyrteins were not meg. U. The reported amount is stimpted because Quality Control cyrtein were not med. Element or compound was not detected. NJ. The reported amount is stimpted because Quality Control cyrtein were not mel. Element or compound was not detected. NJ. The analystis indicates the presence of an analytis that has been fentatively identified and the associated numerical value represents its approximate concentration. N. The analysis indicates the presence of an analytis for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS N.L				•	•	•	•									-				
U. The material was analyzed for, but was not detected above the level of the associated value U. The reported amount is assimpted because Quality Control citetie was not men. Element or compound was not detected NJ. The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification. N- The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidoxane NL. 6 J 5 J	J - The associated numerical	value is an est	mated quantity	because the Quali	ly Comtrol cateria	wate not mel														
U.9. The reported amount or astimated because Quality Control cities the notion of the compound was not detected. N.1. The analysis indicates the presence of an analytis to which there is presumptive associated numerical value represents its approximate concentration. N.1. The analysis indicates the presence of an analytis for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidoxane NIL 6.7 5.7							•													
NJ. The analysis indicates the presence of an analyse that has been fentatively identified and the associated numerical value represents its approximate concentration. N. The analysis indicates the presence of an analyse for which there is presumptive evidence to make a tentative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidoxané N.L							s not detected			-										
N- The analysis indicates the discense of an analytic for which there is presumptive evidence to make a torisative identification. Concentrations that exceed the given threshold value are shaded. TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisido sande NL 6.7. 5.7								represents its an	Organimata conc	entration			•	•						-
Concentrations that exceed the given threshold value are shaded. TENTATIVELY (DENTIFIED COMPOUND CONCENTRATIONS Cyclotriseoxane NL 6 J 5 J	N - The analysis indicates the	presence of a	analyte for wh	ich there is presun	prive evidence t	o make a teniativ	e identification.		,											
TENTATIVELY IDENTIFIED COMPOUND CONCENTRATIONS Cyclotrisidexans N									•	•			•						•	
Cyclotrisidozane NL 6.3 5.3	l '' ' I		1	1	1 1	l	l '	1 !	[ı	1	1 .	1	l '	I	Ι .	Ι .	1 .	l	
Cyclobration	TENTATIVELY (DEXTIFIED	COMPOUND	ONCENTRATI	onis I							1					-				
Mokinowa	Cyclotrisiloxane	i	, I.,	.1	ا نها					ŀ	•		· ·				I		!	
	Unknown		NI I	. 1	5	l ''	l			I	I		· ·	l ·		i				•

APPENDIX A

URS OPERATING SERVICES INC.

FIELD ACTIVITIES AND ANALYTICAL RESULTS FOR
SOIL GAS SAMPLING AT THE
MOUNT OLIVET CEMETERY PLUME
SALT LAKE CITY, UTAH
DECEMBER 6, 1996

URS OPERATING SERVICES

1099 18TH STREET SUITE 710

DENVER, COLORADO 80202-1908

TEL: (303) 291-8300 FAX: (303) 291-8296

December 6, 1996

Mr. Luke D. Chavez
Site Assessment Manager
U.S. Environmental Protection Agency
Region VIII, Mail Code 8EPR-ER
999 18th Street, Suite 500
Denver, Colorado 80202

SUBJECT:

START, EPA Region VIII, Contract No. 68-W5-0031, TDD No. 9609-0003 Field Activities and Analytical Results for Soil Gas Sampling at the Mount Olivet Cemetery Plume, Salt Lake City, Utah, November 1996

Dear Mr. Chavez:

The attached report recounts the soil gas collection field activities and gives the results of the laboratory analyses of the four soil gas samples collected on November 9, 1996, for the Mt. Olivet Cemetery Plume site in Salt Lake City, Utah.

If you have any questions, please call me at 291-8270. Please initial both attached copies of this letter and return them to Janet Benson when you have approved this document.

Very truly yours,

URS OPERATING SERVICES, INC.

Barry Hayhurst

Environmental Scientist

cc:

T. F. Staible/UOS

without attachments

File/UOS

_	
	EPA ACTION BLOCK
؍ ا	
ı	Approved
0	Approved, TDD to follow
0	Approved as corrected
0	Disapproved
0	Review with
0	Original to
0	Copy to
0	Reply envelope enclosed
	12/2 O1
44	3/91 x.C.
υa	ie By

URS Operating Services. Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery Plume - Trip Report Revision: 0

Date: 12/1996

Page 1 of 6

Field Activities and Analytical Results for Soil Gas Sampling Mount Olivet Cemetery Plume Salt Lake City, Utah November 1996

INTRODUCTION

URS Operating Services, Inc. (UOS) has been tasked, under Technical Direction Document (TDD) No.

9609-0003 and 9609-0003A, by the Region VIII office of the U.S. Environmental Protection Agency

(EPA), to conduct soil gas sampling in the vicinity of the Mount Olivet Cemetery Plume in Salt Lake

City, Salt Lake County, Utah (CERCLIS ID # UTD981548985) (Figure 1).

Background information for this site can be found in the Work Plan for the Army National Guard,

Armory/Org. Maintenance Shop 5, Salt Lake County, Utah, prepared by Neil B. Taylor of the Utah

department of Environmental Quality, Division of Environmental Response and Remediation, 1996; the

Environmental Priorities Initiative Preliminary Assessment for the University of Utah, prepared by URS

Consultants, 1993; and from the Analytical Results Report of the Mount Olivet Well site prepared by

Ecology and Environment, Inc., Technical Assistance Team (TAT), 1995. Sampling rationale, procedures

and protocols are documented in the Field Sampling Plan for the Mount Olivet Cemetery Plume, Salt Lake

City, Utah, prepared by UOS in October 1996.

SOIL GAS SAMPLING ACTIVITIES

Soil gas samples were collected using the Geoprobe Model 8-M truck mounted system. The probe was

driven to refusal at each location then retracted approximately six inches to allow the disposable point to

disengage. A line was then run from the end of the probe to an air pump which purged the line. The

purged line was then connected to a Tedlar® Bag in a vacuum chamber and the Tedlar® Bag was allowed

to fill with soil gas in response to the evacuation of the vacuum chamber.

Soil gas samples were initially collected from three separate locations on October 18, 1996. Three soil

gas samples were collected from east and southeast of Building 7 of the Veterans Hospital where a sewer

line exited the building. One sample was taken uphill of the sewer line, one from where the sewer line

exited the building, and the third from a parking area adjacent to the buried sewer line (Photo 1). The

75-60903.00

\START\Mt-Olive\Trin Rottbas

URS Operating Services, Inc. START, EPA Region VIII

Contract No. 68-W5-0031

Mt. Olivet Cemetery Plume - Trip Report

Revision: 0 Date: 12/1996

Page 2 of 6

second area sampled was southeast of the Coast Guard Building maintenance shop on the Fort Douglas

Army Base. The samples were collected in a field near Red Butte Creek Gulch. Two samples were taken

from this location, one from the center of the gulch (Photo 2) and one from the northeast side of the

gulch. The third area sampled was also on Fort Douglas and was located just south of the loading dock

for Building 515 (Photo 3).

The soil gas samples that were collected were not by START field personnel because of equipment

operation problems.

A second START field crew re-sampled the locations on November 9, 1996, using the same procedures

from the approved Field Sampling Plan that were used to collect the original samples. These four

recollected samples were sent to Environmental Chemistry Services, Inc. of Englewood, Colorado, where

they were analyzed using SW-846 Method 8260 modified for volatile organic compounds in gaseous

phase. The four soil gas samples were received by the laboratory on November 11, 1996, and were

analyzed on November 12, 1996.

Soil gas samples were collected from the same locations on November 9, 1996, as had been collected on

October 18, 1996, with the following exception. Originally three samples were collected behind the

Veterans Hospital Building 7. On the re-sampling date the area where the first two soil gas samples had

been collected was being paved for a parking lot and the construction area was not sampled. All final

sample locations are shown in Figure 2.

SOIL GAS SAMPLE RESULTS

The data were not validated. Quality control requirements for air samples are not documented; therefore,

the data were reviewed for compliance with Method 8260 water analysis quality control criteria. The

review covered holding time, instrument tune, calibration, blank contamination, system monitoring

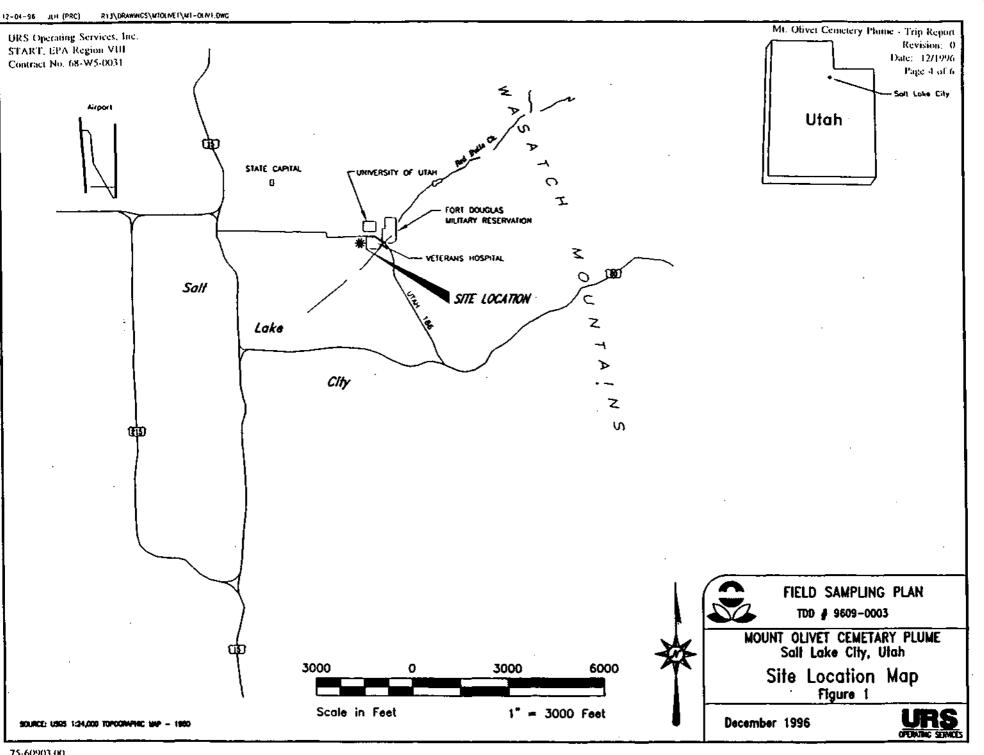
compounds and laboratory quality control samples. Based on this review, the data were found to be

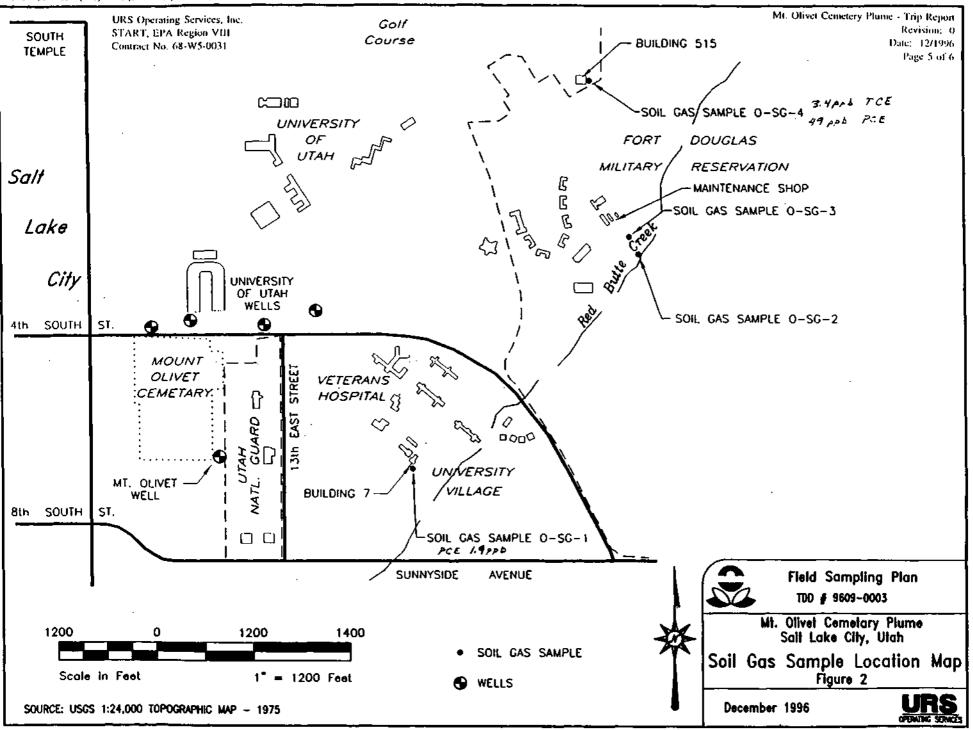
acceptable for the intended purposes. Minor non-compliance with method water requirements have no

impact on the reported analyte concentrations.

75-60903.00

STARTIMENT OF Reaching


URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery Plume - Trip Report


Revision: 0 Date: 12/1996

Page 3 of 6

The soil gas sample results are reported in Table 1. A detection of PCE at 1.9 ppb was recorded at O-SG-1 (The sewer line leading from the back of the VA Medical Center's Building 7. There were no detections of 1,1-DCE; +-1.2-DCE; TCE; or PCE in Samples O-SG-2 and O-SG-3 taken from Red Butte Gulch southwest of the Coast Guard Maintenance Shop. Sample station O-SG-4, from southwest of Building 515's loading dock, included detections of TCE at 3.4 ppb and PCE at 49 ppb. A copy of the complete laboratory results is included in Appendix B.

75-60903.00 \START\Mr-Olive\Trip Rombas

Mt. Oliver Cemetery Plume - Trip Report Revision: 0

Date: 12/1996 Page 6 of 6

TABLE 1 Soil Gas Sample Results All concentrations in ppb (µg/l)

Sample Location Detection Limit	1,1-DCE 1	+-1,2-DCE 1	TCE 1	PCE 1
O-SG-1 VA Medical Center southeast of Building 6	,ND	ND	ND	1.9
O-SG-2 Fort Douglas Center of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND
O-SG-3 Fort Douglas Northwest side of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND
O-SG-4 Fort Douglas Southwest of loading dock for Building 515 (old brigg)	ND	ND	3.4	49.0


APPENDIX A

Photolog

рното і

Location of resampled station number O-SG-01. This location was resampled on November 9, 1996. Soil gas sample taken from approximately five feet below parking lot adjacent to sewer line (note manhole) running northeast to southwest. East of VA Hospital Building No. 6. John Noto (START) at geoprobe and Robert Blonquist (VA Medical Center) observing.

PHOTO 2

Location of resampled stations O-SG-2 and O-SG-3. This location was resampled on November 9, 1996. This location is in fill material of the gulch of Red Butte Creek and is east of the Coast Guard Reserve maintenance shop. Sample O-SG-2 was taken from the center of the gulch and sample O-SG-3 was taken between O¹SG-2 and the maintenance shop which is northwest of the gulch. Neil Thomas (Utah¹Department of Environmental Quality) in foreground observing John Noto (START) at geoprobe.

РНОТО 3

Location of resampled station No. O-SG-4. This location was resampled on November 9, 1996. This location is south of Building 545 or the old brig, loading dock. Soil gas sample taken from approximately 5 feet below ground surface.

APPENDIX B Complete Laboratory Results

ENVIRONMENTAL CHEMISTRY SERVICES, INC. 7108 S. Alton Way, Bldg. E. Englewood, CO 80112 (303) 850-7606

TABLE 1

ECS Project #: UOS Project #: U0S011 7560903

Method #:

Mod. EPA 8260

Matrix: Units:

Air

pg/L

Date Received:

11/11/96 11/9/96

Date Sampled: Date Extracted:

n/a

Date Analyzed:

11/12/96

	PARAMETER	DETECTION LIMIT	LABEL # 002271 SAMPLE # 0-S6-1	LABEL # 002272 SAMPLE # O-S6-2	LABEL # 002273 SAMPLE # 0-S6-3	LABEL # 002274 SAMPLE # 0-56-4	BLANK
	Dichlorodillatoromethana	2.	ND	ND	NED	NO .	04
	Chloromethage	2	ND	ND	NO ,	ND	ND
<u> </u>	Brismoniathana	2	FID.	ND	ND	NC	מא
	Vinyl chloride	2	ND	ND	ND	DN	ND
	Chloroethano	2	ND	ND	ND	DO	ND
	1 netitoroffuoromethene	2	ND	ND	ND	ND	ND
	Mothylane chloride	2	ND	ND	ND	ND	, ND
	1, I-Dichlaracthone	1	ND	ND	ND	ND	ND
	1,3-Dichlerouthane	1	ND	סמ	NO	ทบ	ND
	cis-1,2-Dichloroethono	1	ФИ	NÐ	NO	ИD	, аи
	Trans-1,2-Dichloroothene	1	ND	ND	ND	ND	ND
	Chlorotain	1	ND	ND	ND	ND	ND
	Bromochloromethora	1 7 1 7 2	ND	NO 1	ND	ND	ND .
	Dibrarvenethana	1	ND	UN	พบ	ND	ND
	1,2 Dichtaroethana	1	ND II	ND	ND	ND	ND

PARAMETER	DETECTION LIMIT	LABEL # 002271 SAMPLE # 0-S6-1	LABEL # 002272 SAMPLE # 0-S6-2	LABEL # 002273 SAMPLE # 0-S6-3	LABEL # 0022/4 SAMPLE # 0-S8-4	BLANK
1,1,1-Trichloroothans	1	ND	ND	ND	ND	NO
Carbon tetrachlorido	1 1 1	L ND	ND	ND	ND .	ИД
Bromodichloromethane	1	ND	ND	ND	ND	ND
1,2-Dichloroptopane	1	ND	ND _	ND	ND	ND
1,1-Dichleropropene	1	ND	ND	ND	ND,	ND
trans-1,3-Dichleropropens	1	ND	. ND	ND	ND	ND
2,2-Dichloropropnne	1	ND	ND	ND	ИD	ND
cis-1,3 Dichloropropane	1	ND	ND	ФИ	ND	ир
* Trichlarootheno	1	ND	ND	ND	3,4	ND
1,3 Dichlaropropuns	1	NO .	ND	ND	ИD	ND
1.1,2-Trichloroethana	1	ND	ND	CIN	ND	ทบ
Dibromochloronathano	1	ND	ND	ND	ND	ND
1,2 Dibromosthana	-1	ИÐ	ND	ND	ND	. ND
Bromoform	1	ND	ND	ND	ND	ND
1,1,1,2 Totrachlorosthane	1	ИО	ND	ОИ	NO	ND
1,2,3-Trichluropropario	1,1	NO:	ND	ND	ND	ND:
1,1,2,2-Tetrachlurnethane	1	ND	ND	ND	ND	ND
* Tetrachloroethena	1	1,9	ND :	ND	49	ND
Chlorobanzeno	1	ND	ND	ND ·	ND	, ND
1,3 Dichlorohenzane	1	ND	NQ	. ND	ND	, ND /
1,2 Dictilorobenzana	1	ND	ND	ND	ND	ND
1,4-Dichlerobanzana	1	ND	ND I	ND	ND	ND
2 Chlorotoluone	1	ND	ND	ND	ND	ND
4-Cidorotoluene	1.0	СИ	ND	ND	ND	ND
					• · · · · · · · · · · · · · · · · · · ·	

November 13, 1996 Table 1 Page 3

	PARAMETER	DETECTION LIMIT	LABEL # 002271 SAMIPLE # 0-S6-1	LABEL # 002272 SAMPLE # 0-S6-2	LABEL # 002273 SAMPLE # D-S6-3	LABEL # 002274 SAMPLE # 0-S6-4	BLANK ,
	Styrane	1	ND	ND	ND	ND	ИО
l	Benzano	1	ND	ND	ND	ND	טא
	Tolumo "	1	ND	ND	1.0	ND	NO
	E (Piythsonzinia		ND	ND	ND	dtt	ทอ
	Total xylanes	1	ND	ND	ND	ФИ	ОМ
<u></u>	Isopropylbenzena	1	ND	ND	МÐ	ונט	ND
	n-Propylbenzenn	1	D#D	ND	ND	ND	ND.
	1,3,5-Trimethylbenzene	1	NID	ND	NO	ND	ND
	1,2,4-1 rimethylbenzene	1	ND	ND	ND	ND	NĐ
	s Natyllienzona	1	ND	NO	ND	ND	UN
	i-Butyllanazon o	1	ND	ND	ND	. ND	ND
	p looptopyltoluens	1	ND	ND	ND	ND	ND
	n Butylhenzena	1	ND:	NO	NO	ND	ИD
	1,2-Olbromo-3-chloropropano	1	NU	ND	ND	ND	ИD
	Haxachlorobutadiena	1	ND	HO III	CIM	ND	NO
	Naphthalone	1	ND	ND	ND	ND	ND
	1,2,4 Trichlurobanzona	1:	ND دروز	ND	ND	NO	ND
	1,2,3-Trichlerobenzene	1	ND	ND	ND	ND	ND

ND = Not detected at levels exceeding the reporting detection limit.

SURROGATE % RECOVERY

SURROGATE	SURROGATE AMOUNT	LASEL # 002271 SAMPLE # 0-S6-1	LABEL #002272 SAMPLE # 0-56-2	LABEL # 002273 SAMPLE1 # 0-56-3	LABEL # 002274 SAMPLE # 0-S6-4	BLANK
1,2 Dichloroethans-D4	50	95	103	\$9	100	102
Toluene-D8	50	83	78	81	84	76
Bremolluorobenzene	50	\$01	102	102	102	101

START

Superfund Technical Assessment and Response Team - Region VIII

United States Environmental Protection Agency

Contract No. 68-W5-0031

SITE ACTIVITIES REPORT

MT. OLIVET CEMETERY Salt Lake City, Utah

TDD #9803-0014

MAY 20, 1999

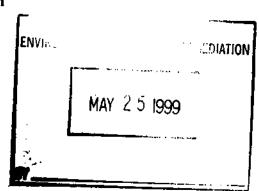
In association with:

Tetra Tech EM Inc.
URS Greiner Woodward Clyde
Maxim Technologies, Inc.
LT Environmental, Inc.
The Roybal Corporation

APPENDIX B

URS OPERATING SERVICES INC.
SITE ACTIVITIES REPORT
MOUNT OLIVET CEMETERY
SALT LAKE CITY, UTAH
MAY 20, 1999

Mt. Olivet Cemetery - SAR
Signature Page
Revision: 0
Date: 05/1999
Page i of iv


SITE ACTIVITIES REPORT

MT. OLIVET CEMETERY
Salt Lake City, Salt Lake County, Utah

EPA Contract No. 68-W5-0031 TDD No. 9803-0014

> Prepared By: John Noto Geologist

URS Operating Services, Inc. 1099 18th Street, Suite 710 Denver, CO 80202-1908

Approved:	Luke Chavez, Site Assessment Manager, EPA, Region VIII	Date:	
Approved:	T. F. Staible, START Team Leader, UOS	Date: .	5/20/99
Approved:	Church W. B. FOR John P. Noto, Geologist, UOS	Date: _	5/20/99

This document has been prepared for the U.S. Environmental Protection Agency under Contract No. 68-W5-0031. The material contained herein is not to be disclosed to, discussed with, or made available to any person or persons for any reason without prior express approval of a responsible officer of the U.S. Environmental Protection Agency. In the interest of conserving natural resources, this document is printed on recycled paper and double-sided as appropriate.

Mt. Olivet Cemetery - SAR
Distribution List
Revision: 0
Date: 05/1999
Page ii of iv

DISTRIBUTION LIST

. U.S. ENVIRONMENTAL PROTECTION AGENCY

Luke Chavez (2 copies) Site Assessment Manager, EPA Region VIII

STATE OF UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

Neil Taylor (3 copies)

URS OPERATING SERVICES, INC.

John P. Noto

Geologist, START, EPA Region VIII

File (2 copies)

START, EPA Region VIII

Mt. Olivet Cemetery - SAR
Table of Contents
Revision: 0
Date: 05/1999
Page iii of iv

SITE ACTIVITIES REPORT Mt. Olivet Cemetery Salt Lake City, Utah

TABLE OF CONTENTS

		PAGE#
DIST	NATURE PAGE TRIBUTION LIST LE OF CONTENTS	i ii iii
1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	SITE GEOLOGY	2
4.0	PCE DESCRIPTION AND COMMON USES	3
5.0	SITE ACTIVITIES/WELL INSTALLATIONS 5.1 Well Installation 5.2 Well Locations and Depths 5.3 Well Development 5.4 Groundwater Samples	
6.0	QUALITY ASSURANCE/QUALITY CONTROL 6.1 Sample Collection 6.2 Site and Sample Documentation 6.3 Data Review 6.3.1 EPA Target Analyte List Metals and Mercury 6.3.2 EPA Target Compound List VOCs 6.3.3 General Chemistry - Cations, Anions, and pH Analysis	7
7.0	GROUNDWATER SAMPLE RESULTS 7.1 Volatile Organic Analysis 7.2 Metals Analysis 7.3 Anion/pH Analysis 7.4 Groundwater Chemistry	10
8.0	PLUME EXTENT AND GROUNDWATER FLOW DIRECTION	11
9.0	SUMMARY/CONCLUSIONS	13
10.0	LIST OF REFERENCES	15

Mt. Olivet Cemetery - S Table of Conta Revision Date: 05/16 Page iv o

TABLE OF CONTENTS (continued)

FIGURES

Figure 1 Site Location Map

Figure 2 Groundwater Contours on Detailed Site Map

TABLES

Table 1	Well Development Volumes
Table 2	Sample Log
Table 3	Final Field Parameters Prior to Sample Collection
Table 4	VOC Results
Table 5	General Chemistry Results, Methods 150.1, 300.0, 310.1, and SM2320B
Table 6	Groundwater Elevations

APPENDICES

Appendix A	Photolog
Appendix B	Lithologic Logs and Fence Diagrams
Appendix C	QA/QC Work Plan
Appendix D	Inorganic Analysis Data Sheets
Appendix E	Acculab's Report of Analysis - General Chemistry
Appendix F	Groundwater Chemistry Stiff and Piper Diagrams
Appendix G	UOS - Field Activities and Analytical Results for Soil Gas Sampling at the Mount
	Olivet Cemetery Plume, December 6, 1996

Mt. Olivet Cemetery - SAR Revision: 0

> Date: 05/1999 Page 1 of 23

1.0 <u>INTRODUCTION</u>

This report is submitted in accordance with certain task elements specified in Technical Direction Document

(TDD) number 9803-0014 issued to the URS Operating Services, Inc. (UOS) Superfund Technical

Assessment and Response Team (START) in Region VIII by the U.S. Environmental Protection Agency

(EPA). START contracted for and managed the installation of six groundwater monitoring wells to

investigate perchloroethylene (PCE) contamination.

2.0 BACKGROUND

The Mt. Olivet Cemetery site is located in Salt Lake City, Salt Lake County, Utah (Figure 1). The site is

generally within the area bounded by 500 South and Sunnyside Avenue and approximately 1400 East and

1900 East Streets. All land in the investigated area is occupied by either municipal, federal, or state

facilities. These include the Veterans Administration (VA) Hospital and campus, the City of Salt Lake

Steiner Swimming Pool, Sunnyside Park, University of Utah practice fields, Utah National Guard Facilities,

and the Mt. Olivet Cemetery. The known area of contamination extends from the southeast quarter of

Section 4 to the northwest quarter of Section 9, T. 1 S., R. 1 E. (U.S. Geological Society (USGS) 1975).

The initial indication of aquifer contamination occurred when samples collected from an irrigation well at

the Mt. Olivet Cemetery by the State of Utah Department of Environmental Quality (UDEQ) were found to

be contaminated with perchloroethylene (PCE), a commonly used dry-cleaning fluid and degreaser. The

well was initially sampled in October 1990 and had a reported PCE concentration of 32 parts per billion

(ppb). A PCE concentration of 184 ppb was reported in a sample collected in May 1997.

Previous EPA investigations were conducted by Ecology and Environment, Inc., Region VIII Technical

Assistance Team (TAT), in June 1995 (Ecology and Environment, Inc. (E&E) 1995) and by UOS Region

VIII START in October and November 1996 (URS Operating Services, Inc. (UOS) 1996).

The TAT investigation included the area near the Mt. Olivet Cemetery irrigation well, the area behind the

former National Guard Maintenance Facility, and the southwest part of the VA campus. The TAT collected

soil gas samples using a Geoprobe® or a manually powered slide hammer. Samples were collected from

depths 12 feet below ground surface (bgs) or shallower. Volatile Organic Compounds (VOC) contamination

was not reported above the 10 ppb laboratory reporting limit (RL).

75-80314.00

Mt. Olivet Cemetery -Revision Date: 05/

Page 2.

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

The UOS START investigation was conducted under TDD #9609-0003 (UOS 1996). Four soil gas sami

were collected during the investigation using a Geoprobe®. At the Fort Douglas Military Reservatio.

sample collected adjacent to Building 515 had a PCE concentration of 49 ppb, and a trichloroethene (T' concentration of 3.4 ppb. Two samples collected next to Red Butte Creek were non-detect for PCE.

sample collected from the VA Medical Center near Building 7 had 1.9 ppb PCE (Appendix G).

3.0 SITE GEOLOGY

The site is approximately one mile west of the Wasatch Mountain front. The site topography slopes w

southwest with a grade of approximately 4%. The site is in a transitional area that includes both primary

secondary aquifer recharge areas. The primary recharge area includes the Wasatch Front and upper be

where confining layers are thinner than 20 feet (USGS 1994). The secondary recharge areas

characterized by a shallow unconfined aquifer and a confined aquifer separated by a confining layer.

aquifers are part of a basin-fill system that is composed of sediments eroded from the adjacent moun-

ranges. The sediments were transported by streams and ancient Lake Bonneville toward the center of

valley. Red Butte Creek is the nearest creek and is located approximately 1,200 feet to the east and so

of site wells.

Basin-fill aquifers are very complex because they consist of multiple aquifers and confining layers that

both laterally discontinuous and internally heterogeneous (USGS 1994). Contamination in the prim

recharge areas has great potential to affect the principal aquifer because of coarse-grained sediments and h.

conductivity values that enable rapid movement of contaminants from the surface to the aquifer. The

wells and contaminant plume lie within both the primary and the secondary recharge areas based on a US

study of other wells in the area (USGS 1994).

Lake Bonneville occupied what is now the Salt Lake Valley and much of northwestern Utah in the

Pleistocene epoch (<150,000 to >10,000 years before present (ybp)) with identified shorelines form

between 30,000 and 10,000 years ago (Hintze 1993). The highest recorded shoreline is at an elevation

5,090 feet, which is above the elevation of site wells. Shoreline elevations fluctuated between below 4,

feet to 5,090 feet with numerous transgressions and regressions across the current site area.

The result is a complex layering of alluvial fan and lake deposits. Gravel and sand were carried

mountain streams and deposited in the valley or into the lake. Finer sediments were carried farther into

Mt. Oliver Cemetery - SAR Revision: 0

Date: 05/1999

Page 3 of 23

valley by the streams or in the lake to the center of the basin (USGS 1994). The coarser sediments along the

mountain front compose the primary recharge areas. Lake-deposited silts and clays make up the confining

layers with their maximum lateral extent defined by former shorelines.

The most recent deglaciation along the Wasatch front has been dated at approximately 8,000 years ybp, when

ice receded in Little Cottonwood canyon. Red Butte Creek and Dry Creek, which bound the site to the south

and north, respectively, lie in V-shaped valleys that do not appear to have contained glaciers.

The Wasatch Fault lies along the western edge of the Wasatch Mountain Range. The mountains are an

upraised fault block. The fault line separates the fractured-consolidated strata of the upraised (mountain)

fault block from the thick accumulations of alluvial fan and lake deposits at the base of the uplifted mountain

block. The primary recharge area for the principal basin-fill aquifer is at the base of the mountains and

associated fault zone.

4.0 PCE DESCRIPTION AND COMMONUSES

PCE is a colorless, nonflammable chlorinated solvent commonly used in dry cleaning industry and less

commonly for cold cleaning and vapor degreasing of metals. Other reported uses include a chemical

intermediate in the synthesis of fluorocarbon 113, 114, 115, and 116; textile production; insulating fluid and

cooling gas in electric transformers; and typewriter correction fluids. Aerosol formulations, solvent soaps,

printing inks, adhesives, sealants, polishes, lubricants, silicones, and shoe polish are other products that may

contain PCE (EPA 1994).

Estimated 1974 relative PCE consumption by industry was dry cleaning and textile 69%, metal cleaning 16%,

Chemical intermediate 12%, and miscellaneous uses 3%.

The molecular formula of PCE is CCL₂CCL₂. PCE is relatively volatile with a vapor pressure of 24

millimeters (mm) at 30° C. and has a relatively high density with a specific gravity of 1.626. The solubility

of PCE in water is 1,100 milligrams per liter (mg/L) at 20° C.

The reduction reaction daughter product of PCE is TCE; products of TCE are Cis-Dichloroethene, Trans-

dichloroethene, and 1,1-Dichloroethene (Vogel 1987).

75-80314.00

Mt. Olivet Cemetery - S Revision Date: 05/1' Page 4 of

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

5.0 SITE ACTIVITIES/WELL INSTALLATIONS

The activities conducted under this TDD included the installation of six (one dual nested well and for individual) groundwater monitoring wells. The wells were installed for a groundwater contaminant plur investigation to determine a general source area, extent of the plume, and the flow direction of the shallo aquifer.

The START contracted with Layne Christenson Company, a drilling contractor in Salt Lake City, Utah, install the wells. Each well was installed with an air rotary drill rig. The wells were installed during July, and August, 1998. UOS START photographs of the well installations are in Appendix A. The we were all installed east of the Mt. Olivet Cemetery irrigation well. Samples were collected of the purge wanter the completion of each well development and submitted for VOC analysis. Each sample result was us to plan the next well location. The wells are numbered based on the order in which they were installed.

5.1 WELL INSTALLATION

The wells were installed using air rotary type rigs with advance casing. Air rotary drilling is a "dr procedure in which a down-hole bit cuts rock and unconsolidated material that is then carried to t surface by air. An on-board air compressor is used to supply the air that travels through the dr string at high pressure and velocity. The casing consists of threaded pipe sections that travels with the bit down the length of the borehole. Air pushes the cuttings to the surface and through a cyclowhere the velocity is decreased prior to exiting the system. The cuttings were captured in a roll-c bin at well EPA-MW-01, and in drums or a small dump truck at the other wells.

UOS START logged the borehole lithology by observing cuttings that exited the cyclone. A limit number of two-foot split-spoon samples were collected from the boreholes. The cuttings yield only approximate information about subsurface lithology. Information was limited because or small fragments of rock were carried to the surface, the air also tends to mix particles and fragmer causing information on bedding and structure to be unobtainable. This mixing renders thin laye of sand, silt, gravel, and clay indistinguishable. Lithologic logs are attached to this report Appendix B.

Mt. Olivet Cemetery - SAR

Revision: 0 Date: 05/1999

Page 5 of 23

Thin saturated (perched) zones may also be penetrated by an air-rotary rig without being identified.

This occurs because positive air pressure at the bit tends to push water out of the path of the bit. If

the borehole is advanced quickly, the casing may seal off the wet zone before water is allowed to

enter the borehole. The hot dry air may also dry the cuttings before they exit the cyclone. The rig

was periodically idled to allow water to flow into the casing when the estimated depth of the first

major aquifer was reached.

5.2 WELL LOCATIONS AND DEPTHS

The wells were located to provide information about the groundwater gradient, the groundwater flow

direction, and the extent of PCE contamination to determine potential PCE source areas. Each well

location was selected based on the samples collected from previous wells and the expected

groundwater flow direction. The wells were numbered sequentially based on order of installation.

Well installation locations were chosen with the goal of determining potential PCE source area(s)

based on the extent of the PCE plume and groundwater flow direction. Identified potential PCE

sources are the former dry cleaning operation on the VA Hospital campus in Building 7, former

operations at Fort Douglas, and a former Utah National Guard vehicle maintenance facility (Figure

2). Well locations and these potential source areas are illustrated on Figure 2. Lithologic logs for

each well are attached in Appendix B.

All cuttings were either collected in a dump truck and transported to an on-site holding area or

placed on plastic near the borehole. A sample was collected from each cuttings pile and submitted

for VOC analysis. All VOCs were below the laboratory RL.

Wells EPA-MW-01S and EPA-MW-01D are nested wells with total depths of 224 and 404 feet bgs,

respectively. Well drilling and installation took place June 16 through 30, 1998. The wells were

nested in the same borehole. The wells are located in the southwestern corner of the Steiner

Swimming Pool parking lot, approximately 700 feet east of the Mt. Olivet well (Figure 2). The

screened interval of well EPA-MW-01S is 184 to 224 feet bgs. The screened interval of well

EPA-MW-01D is 364 to 404 feet bgs.

75-80314.00

Mt. Olivet Cemetery - . Revisio. Date: 05/1

816: 05/1 Page 6 c

Well EPA-MW-02 is located approximately 500 feet east of well EPA-MW-01. The well \boldsymbol{v}

completed with a screened interval of 175.5 to 205.5 feet bgs, in the first (shallowest) aquifer. T

well is on Salt Lake City property just west of the VA fence line. Drilling and installation took pl-

July 20 through 24, 1998.

Well EPA-MW-03 was installed approximately 500 feet north of well EPA-MW-02, also on §

Lake City property. The screened interval of the well is 190 to 210 feet bgs. Installation took pl

July 28 through 30, 1998

Well EPA-MW-04 was installed in Sunnyside Park, approximately 850 feet south and 350 feet w

of well EPA-MW-01. The borehole was completed to a depth of 173 feet bgs with a screen

interval from 143 feet to 173 feet bgs. The well is screened in the first aquifer. The well v

installed July 30 through August 1, 1998.

Well EPA-MW-05 was installed at the VA approximately 1,700 feet east-northeast of w

EPA-MW-01. The well was screened from 186 to 221 feet bgs, in the first aquifer encountered.

well was installed August 28 through August 31, 1998.

5.3 WELL DEVELOPMENT

Layne Christenson developed the wells with a submersible pump at wells EPA-MW-01S 2

EPA-MW-01D. A bailer was used for developing all other wells. The goal of the well developm

was to extract fine-grained particles from inside the well and the filter (sand) pack. Table 1 li

water quantities extracted from each well during development. All purge water was containerize

in 55-gallon drums or poly tanks. A sample was collected from each drum and tank and submit.

for VOC analysis. Containers that did not contain VOCs above the laboratory RL were emptied

site. Other containers with VOCs were placed in a staging area near well EPA-MW-02.

5.4 GROUNDWATER SAMPLES

Groundwater samples were collected immediately after well development and submitted for Ve

analysis to the state of Utah and/or the UOS START laboratory. The results from these inic.

samples were only used for planning the next well location.

75-80314.00

Mt. Olivet Cemetery - SAR Revision: 0

Date: 05/1999 Page 7 of 23

UOS conducted a formal sampling event in November 1998. Groundwater samples were collected

from each well and submitted for VOC, metals, pH, and analyte analysis (Table 2). The sample

collection and analysis was guided by the EPA-approved Sampling Quality Assurance/Quality

Control (QA/QC) Work Plan (Appendix C).

The samples were collected after three casing volumes of water had been purged from the well

and/or pH, temperature, and conductivity stabilized within 10%. Final field parameters and purge

volumes are shown on Table 3.

6.0 OUALITY ASSURANCE/OUALITY CONTROL

START adhered to sample collection, packaging, and documentation procedures outlined in the Sampling

Quality Assurance/Control (QA/QC) Work Plan (Appendix C).

6.1 SAMPLE COLLECTION

UOS used a non-dedicated Grunfos Rediflo® submersible pump for collecting samples from all

wells except at well EPA-MW-05, which was sampled with a disposable bailer. To minimize the

risk of cross-contamination, samples were collected in order from lowest to highest contaminated

wells. The pump was used for both for purging and sample collection.

Samples EPA-MW-01S and EPA-MW-06 were both collected from well EPA-MW-01S. These

samples were collected to evaluate the consistency of laboratory analysis and sample

collection/handling. Very similar contaminant concentrations were reported for these samples

(Table 4).

Sample EPA-MW-07 was a trip blank prepared with bottled distilled water. The blank was shipped

with the other VOC samples. The blank was submitted for VOC analysis as an indicator of potential

cross contamination of the samples during shipping and storage. Sample EPA-MW-07 results on

Table 4 reveal low-level concentrations of methylene chloride, 1,2-dichloroethene, and acetone;

however PCE and TCE were not reported in the sample.

/5-80314.00

Mt. Olivet Cemetery - 5 Revisior Date: 05/1

Page 8 of

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Sample EPA-MW-08 was an equipment rinsate sample. The sample was distilled water run through the pump head and line. Approximately 10 gallons of water was pumped from a bucket through the pump prior to sample collection. The rinsate sample was collected immediately following the sample at well EP. W-01S, which had the highest PCE concentration of 320 ug/L D. The Proconcentration in the content sample was 34 $\mu g/L$. The results reveal that the 10-gallon purge was sufficient to remove the residual PCE from the pump. However, other precautions were tak during the sampling event to prevent cross contamination (i.e., going from low to high concentration wells and pumping larger purge volumes).

6.2 SITE AND SAMPLE DOCUMENTATION

All samples were maintained under custody prior to and during shipment to the laboratory. A lai was attached to each sample container to indicate the sample identification, time, date, location, a analysis. This information was also placed on the chain-of-custody (COC) form that accompani the samples to the laboratory.

6.3 DATA REVIEW

Monitoring well aqueous samples were submitted for EPA Contract Laboratory Program (CL analyses. Volatile analyses for nine samples were provided by American Testing and Analytic Services (ATAS) using the EPA Statement of Work (SOW) version OLM03.2. Analysis of metand mercury was provided by Southwest Laboratory of Oklahoma using EPA SOW ILM04.0. Ilaboratory data were validated by TechLaw, Inc., a UOS Team subcontractor, using the EPA C. Functional Guidelines for Data Validation and the EPA Region VIII validation report format. To completed validation reports were reviewed and approved by the UOS Quality Assurance Office The data are acceptable for the purpose of characterizing contamination in the samples.

Deliverables/Documentation (e.g., COC, preparation logs, analysis run logs) were reviewed a completeness. Raw data were reviewed for completeness and transcription accuracy onto summa forms. Data were reviewed for holding times, tuning criteria, blank contamination, surrogarecoveries, interference checks and other method requirements. Approximately 10-20% of a results reported in each of the samples, calibrations, and QC analyses were recalculated and verific

URS Operating Services, Inc. START, EPA Region VIII

Contract No. 68-W5-0031

Mt. Olivet Cemetery - SAR Revision: 0 Date: 05/1999

Page 9 of 23

If problems were identified during the recalculation of results, all laboratory calculations were

verified.

Laboratory precision (relative percent difference) was acceptable as demonstrated by the compliant

matrix spike/matrix spike duplicate (for VOCs) and matrix spike/duplicate (for metals). The

laboratory replicate spikes also demonstrated acceptable precision.

Laboratory accuracy (percent recovery of spike analytes) was acceptable for both the volatile organic

analysis and the metals analysis.

The following problems were identified in the validation report:

6.3.1 **EPA Target Analyte List Metals and Mercury**

One sample (MHEC01) was received at the laboratory at a pH<2. All results for this sample

were qualified as estimated.

Some of the target metals were detected in the blanks at low concentrations. Metals

reported as detected in the blanks and in the samples were qualified as estimated or

undetected/estimated depending on the reported concentrations in both the blank and the

corresponding sample (Appendix D).

6.3.2 **EPA Target Compound List VOCs**

The unpreserved water samples HS663 and HS669 were not analyzed within seven days of

collection as required. Aromatic compounds in these samples are qualified as undetected

with an estimated detection limit. The aromatic compounds include benzene, toluene,

styrene, chlorobenzene, xylenes, ethylbenzene.

Two compounds (chloromethane and vinyl chloride) did not meet continuing calibration

criteria for sample HS669. These compounds were qualified as undetected with an

estimated detection limit.

75-80314.00

Revision

Date: 05/11 Page 10 of

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

The tetrachlorobenzene concentration for sample HS668DL is qualified as estimated of

to high surrogate recovery.

6.3.3 General Chemistry - Cations, Anions, and pH Analysis

A review of the Acculab, Inc. data was conducted by TechLaw, Inc.. The reviewer list

the following comments/problems; the pH analyses were not within the 24-hour holdi

time; the raw data for bicarbonate, carbonate, and hydroxide were not provided; and various

general chemistry parameters did not have associated summary forms.

7.0 **GROUNDWATER SAMPLE RESULTS**

> 7.1 VOLATILE ORGANIC ANALYSIS

Samples were submitted for VOC analysis to American Technical and Analytical Services via t

Contract Laboratory Program (CLP) (Table 2).

PCE was the primary VOC reported in groundwater samples (Table 4). PCE concentrations

groundwater ranged from non-detect at the 10 ppb RL to 320 ppb. Four of the five shallow aqui

wells had PCE concentrations above the laboratory RL. The highest concentrations were in samp.

collected from wells EPA-MW-01S, EPA-MW-02, and EPA-MW-04 (Figure 2).

Low concentrations (<10 ppb) of TCE, chloroform, methylene chloride, and 1,2 - dichloroethe

(DCE) were also reported in four well samples (Table 4). The concentrations of these contaminal

were below the 10 ppb RL and considered to be estimated values.

7.2 **METALS ANALYSIS**

Samples were submitted for inorganic analysis to Southwest Lab of Oklahoma via the CLP (Tal-

2). The inorganic analysis data sheets with data qualifier annotations are attached in Appendix

7.3 ANION/pH ANALYSIS

START, EPA Region VIII Contract No. 68-W5-0031

Mt. Olivet Cemetery - SAR Revision: 0

> Date: 05/1999 Page 11 of 23

A sample from each well was submitted to Acculab Inc. for analysis via methods SM2320B, 300.0,

310.1, and 150.1 for alkalinity, sulfate, chloride, bicarbonate, carbonate, hydroxide, and pH. This

chemical information was acquired for general aquifer characterization and for comparison of

groundwater samples from each well. These sample results are shown in Table 5, and the laboratory

report is attached in Appendix E.

7.4 GROUNDWATER CHEMISTRY

All water samples are calcium bicarbonate type and very similar in chemical composition.

Chemical properties of the groundwater are illustrated graphically by plotting milliequivalent (epm)

concentrations of certain cations and anions on Stiff and Piper diagrams (Appendix F). The

diagrams were prepared using United Nations Ground Water for Windows software. The error

balance (in percent) is the sum of the cations in epm in balance with the sum of the anions. All well

locations had a relatively low error balance, indicating good quality analysis.

The primary notable difference in chemical composition is the epm value of the chloride (Cl-) anion

which is about 50% less in the deeper aquifer sample (EPA-MW-01D) than in other samples.

8.0 PLUME EXTENT AND GROUNDWATER FLOW DIRECTION

UOS subcontracted ESI Engineering to survey each well coordinate and elevation. The survey measurements

were used to determine precise groundwater elevations.

UOS measured groundwater depths on September 1, 1998, October 22, 1998, and November 10 and 11,

1998. Groundwater elevations are shown on Table 6. The October 1998 groundwater elevations are shown

on Figure 2.

The October 1998 groundwater flow direction of the unconfined aquifer is toward the northwest at an

approximate 2% grade. This flow direction is approximately opposite of the surface topography which

slopes toward the southeast.

Mt. Olivet Cemetery - .
Revisio
Date: 05/1

Page 12 c

The groundwater contours (Figure 2) are based on the premise that all wells (except EPA-MW-01D)

screened in the same aquifer or in hydraulically connected aquifers. Evidence that wells are in

same/connected aquifer(s) includes; the uniform spacing and straightness of the contours, the similar dep

of the screened intervals, and the placement of the screen in the first major saturated interval encounter

The presence of PCE in wells EPA-MW-01S through EPA-MW-04 is also evidence that the wells share

common or connected aquifer. The comparable chemistry (illustrated on the Stiff and Piper diagra:

Appendix F) is also an indication that the screened intervals intersect a common aquifer.

The contaminant plume in the study area extends beyond the wells installed by UOS and its boundar

cannot be defined. The width of the PCE plume is greater than 900 feet at well EPA-MW-01 based on

320 ppb and 11 ppb PCE concentrations in wells EPA-MW-01 and EPA-MW-03, respectively. The plu

may be greater than 1,800 feet wide if it is symmetrical around well EPA-MW-01. Based on the groundware

flow direction and PCE concentrations, the source for contamination of the aquifer is southeast of wells EI

MW-01S and EPA-MW-02.

Salt Lake City and University of Utah municipal wells are located to the northwest and downgradient of

contaminant plume. If the groundwater flow direction continues toward the northwest, the wells at r

listed are 57-112 and 57-3450 (Utah Division of Water Rights identification numbers). Although these we

may be at risk, additional well installations will be necessary northwest of the well EPA-MW-01 to confi

the migration path of the contamination.

There are no identified potential sources upgradient of the contaminated wells, toward the souther

However a thorough investigation for potential sources has not been conducted.

Although it is west of the contaminated wells and not upgradient of the highest concentrations (Figure

the former dry cleaning operation in VA Building 7 is a potential source of the contamination. Buildin

could be a source if PCE traveled south or southeast from Building 7 along a sewer line or other conduit pr

to infiltration into the aquing (approximately 140 to 190 feet bgs). The southwest-sloping surfa-

topography and shallow gree adwater may have also directed PCE from Building 7 toward the southwe

To determine the source of PCE contamination, additional upgradient wells in the contaminated aquifer v

be required. Once a source area is approximated, a shallow subsurface investigation of soil gas

groundwater could be conducted to pinpoint the source.

Mt. Olivet Cemetery - SAR Revision: 0

Date: 05/1999

Page 13 of 23

9.0 <u>SUMMARY/CONCLUSIONS</u>

UOS START installed six groundwater monitoring wells at five locations in Salt Lake City, Utah, to

investigate a report of PCE in the groundwater. The wells were installed in Sections 4 and 9 of T. 1. S. and

R. 1. E. The investigation was motivated by the presence of PCE and other chlorinated hydrocarbons in an

irrigation well at the Mt. Olivet Cemetery. A former dry-cleaning facility at the Veterans Hospital in

Building 7 is the only identified PCE operation in the area. Other potential users of PCE include the

operations at Fort Douglas (to the northeast) and the Utah National Guard vehicle maintenance facility to

the west of the study area.

The wells were located to provide information about the groundwater gradient, groundwater flow direction,

and the extent of PCE contamination to determine potential PCE source areas. Each well location was

selected based on the samples collected from the previous wells and the expected groundwater flow direction.

The wells were numbered sequentially based on order of installation.

Based on October 1998 measurements, the groundwater gradient slopes toward the northwest at an

approximate 2% grade.

The contaminant plume also appears to be oriented northwest/southeast consistent with the groundwater flow

direction. Wells were not installed beyond the extent of the contamination, thus the plume boundaries have

not been defined. Based on the groundwater flow direction and PCE concentrations, the source of

contamination is southeast of wells EPA-MW-01S and EPA-MW-02.

There are no identified potential sources toward the southeast. The former dry cleaning operation at the VA -

Building 7 is east of the contaminated wells and is not upgradient of the highest concentrations, based on the

October 1998 groundwater flow direction. However, Building 7 could be an indirect source if PCE followed

a south or southwest-flowing sewer line of other conduit. PCE release from Building 7 may have also

migrated south or southwest (in the direction of the surface topography) prior to reaching the aquifer at

approximately 140 feet to 190 feet bgs.

Salt Lake City and University of Utah municipal wells are located northwest and downgradient of the

contaminant plume. These at risk wells include number 57-112 and number 57-3450 (Utah Division of

Mt. Olivet Cemetery • . Revisio Date: 05/! Page 14 c

Water Rights identifiers). Additional monitoring wells will be necessary to determine the course contamination northwest of wells EPA-MW-01 and EPA-MW-03.

To determine the source of contamination, additional upgradient wells in the contaminated aquifers be required. Once a source area is approximated, a shallow subsurface investigation of soil gas groundwater could be conducted to pinpoint the source.

Mt. Olivet Cemetery - SAR Revision: 0

Date: 05/1999 Page 15 of 23

10.0 LIST OF REFERENCES

Ecology and Environment (E&E). 1995. "Analytical Results Report, Mt. Olivet Well Site," Salt Lake City,

Utah. August 2, 1995.

Hintze. 1993. "Geologic History of Utah," Brigham Young University Geology Studies, Special

Publication, July 7, 1993.

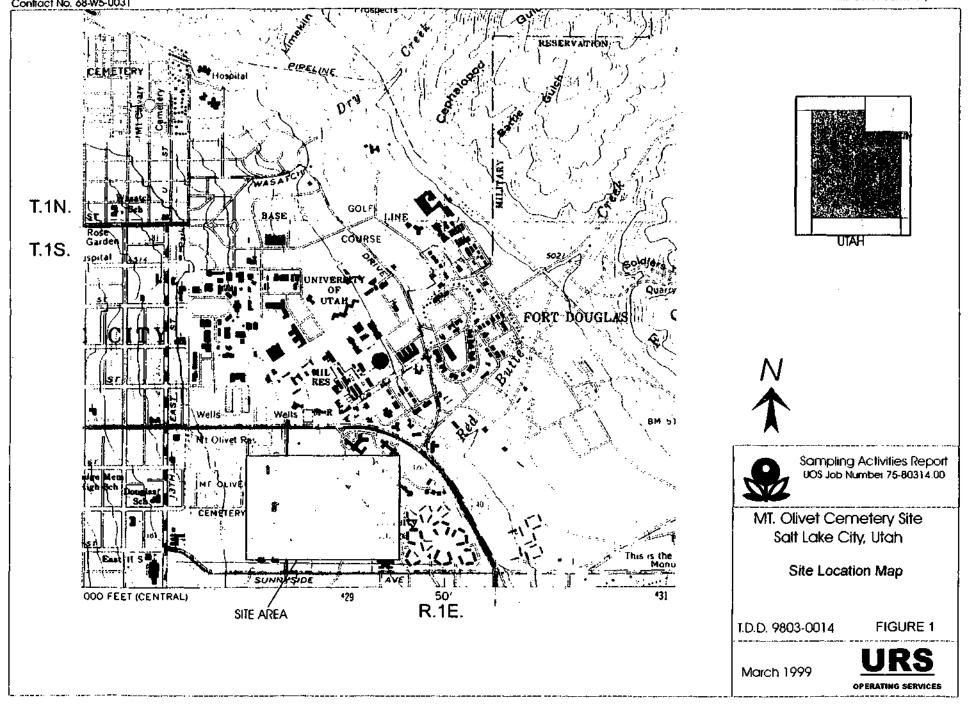
U.S. Environmental Protection Agency (EPA): 1994. OPPT Chemical Fact Sheet, Chemical in the

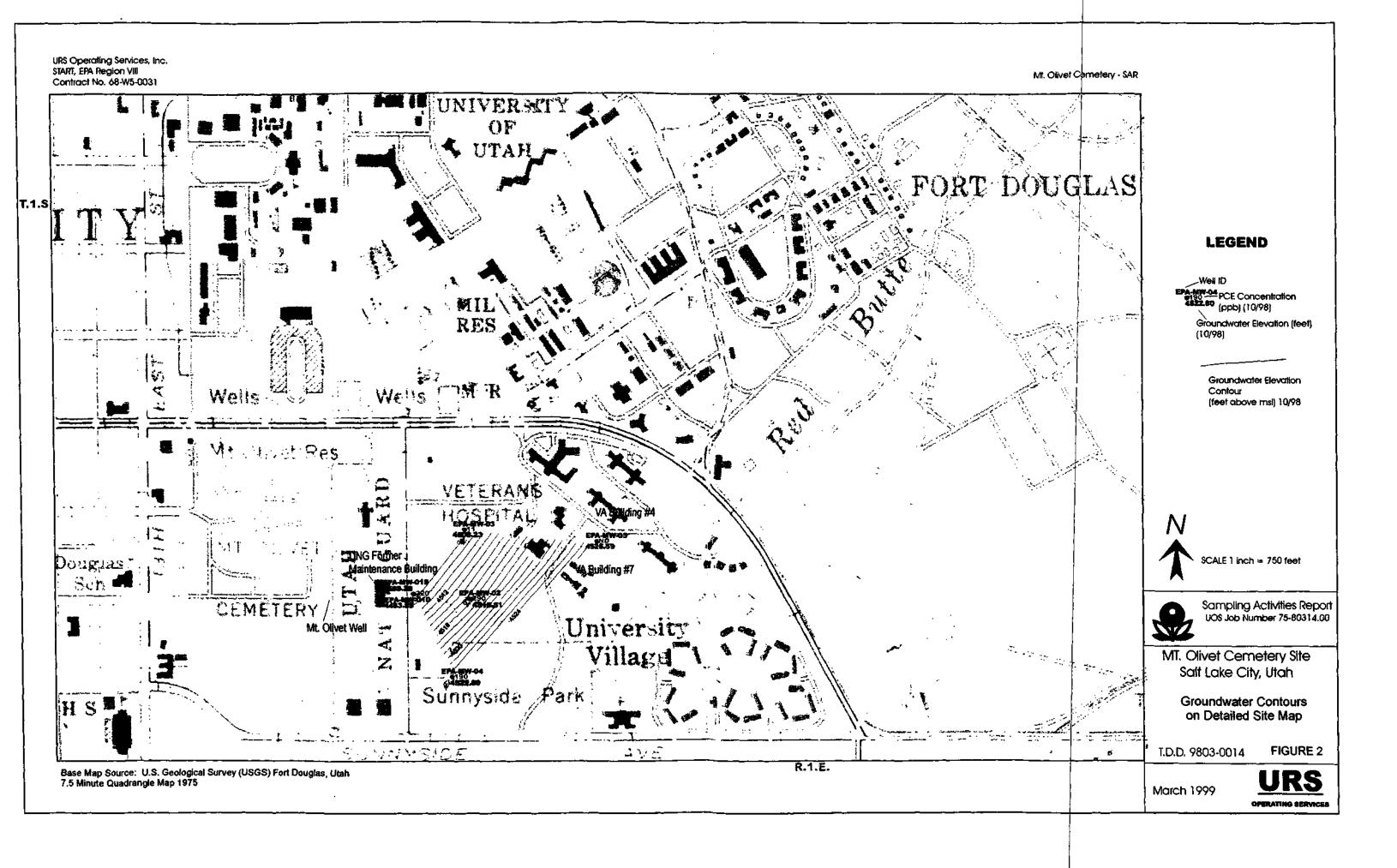
Environment: Perchloroethylene (CAS NO. 127-18-4) EPA 749-F-94-020, August 1994.

U.S. Geological Survey (USGS). 1975. 7.5 Minute Quadrangle Map, Fort Douglas, Utah.

U.S. Geological Survey (USGS). 1994. "Hydrogeology of Recharge Areas and Water Quality of the

Principal Aquifers Along the Wasatch Front and Adjacent Areas, Utah," Water-Resources Investigations


Report 93-4221, 1994.


URS Operating Services, Inc. (UOS). 1996. "Field Activities and Analytical Results for Soil Gas Sampling

at the Mount Olivet Cemetery Plume," Salt Lake City, Utah, December 1996.

Vogel, Criddle, and McCarty. 1987. "Transformations of halogenated aliphatic compounds" Environmental

Science and Technology, V.21, No 8 1987.

Mt. Ofivet Cemetery - SAR Revision: 0 Date: 05/1999 Page 18 of 23

TABLE 1 Well Development Volumes

Well ID	Volume Purged (gallons)	Method
EPA-MW-01S	50	Pump
EPA-MW-01D	700	Pump
EPA-MW-02	160	Bailer
EPA-MW-03	110	Bailer
EPA-MW-04	160	Bailer
EPA-MW-05	20	Bailer

Mt. Olivet Cemetery - SAR Revision: 0 Date: 05/1999 Page 19 of 23

TABLE 2 Sample Log

·WELL ID	Date	Time	Method	COC or CLP Case #	Tag # or CLP sample ID#
EPA-MW-01S	11/11/98	1645	300, 310.1, 150.1, and SM2320B	4549	10601
			VOA (CLP SOW)	26631	HS662
			Metals (CLP SOW)	26631	MHEB96
EPA-MW-01D	11/10/98	1130	300, 310.1, 150.1, and SM2320B	4549	10602
			VOA (CLP SOW)	26631	HS663
			Metals (CLP SOW)	26631	МНЕВ97
EPA-MW-02	11/11/98	1150	300, 310.1, 150.1, and SM2320B	4549	10603
			VOA (CLP SOW)	26631	HS664
	,		Metals (CLP SOW)	26631	МНЕВ98
EPA-MW-03	11/11/98	1010	300, 310.1, 150.1, and SM2320B	4549	10604
	1		VOA (CLP SOW)	26631	HS665
			Metals (CLP SOW)	26631	МНЕВ99
EPA-MW-04	11/11/98	1320	300, 310.1, 150.1, and 5M2320B	4549 ´	10605
			VOA (CLP SOW)	26631	HS666
			Metals (CLP SOW)	26631	MHEC00
EPA-MW-05	11/11/98	1850	300, 310.1, 150.1, and SM2320B	4549	10606
			VOA (CLP SOW)	26631	HS667
			Metals (CLP SOW)	26631	MHEC01
EPA-MW-06	11/11/98	1850	300, 310.1, 150.1, and SM2320B	4549	-
(collocated with EPA-MW-02)			VOA (CLP SOW)	26631	HS668
2171 1177 (2)			Metals (CLP SOW)	26631	MHEC02
EPA-MW-07	11/11/98	1850	300, 310.1, 150.1, and SM2320B	4549	-
(Trip blank)			VOA (CLP SOW)	26631	HS669
			Metals (CLP SOW)	26631	-
EPA-MW-08	11/11/98	1850	300, 310.1, 150.1, and SM2320B	4549	•
(Rinsate blank)			VOA (CLP SOW)	26631	HS670
			Metals (CLP SOW)	26631	-

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Mt. Ofivet Cemetery - SAR Revision: 0 Date: 05/1999 Page 20 of 23

TABLE 3
Final Field Parameters Prior to Sample Collection

WELL ID	Volume Purged (gallons)	Temperature (°F)	рН	Conductivity (mS)
EPA-MW-01S	24	53.3	6.74	1,029
EPA-MW-01D	105	54.4	6.50	926
EPA-MW-02	. 55	51.4	6.52	1,088
EPA-MW-03	27	. 54.2	6.51	1,035
EPA-MW-04	55	53.6	- 6.72	1,118
EPA-MW-05	4	49.1	6.82	1,206

Mt. Olivet Cemetery - SAR Revision: 0

Date: 05/1999 Page 21 of 23

TABLE 4 VOC Results Concentrations in µg/L

Well ID	EPA-MW-01S	EPA-MW-06 (EPA-MS-01S) collocated)	EPA-MW-01D	EPA-MW-02	EPA-MW-03	EPA-MW-04	EPA-MW-05	EPA-MW-07 (Trip blank)	EPA-MW-08 (Rinsate)
EPA CLP Number:	HS662	HS663	HS664	HS665	HS666	HS667	HS668	HS669	HS670
methylene chloride	10 U 50 U	2 J 8 DJ	1.7	24 J	10 U	2 J	10 U	4 JB 10 U	3 J 10 U
1,2 - Dichloroethene	S J 50 U	3 J 50 U	· 10 U	50 U	10 U	1 J	10 U	2 J	10 U
Chloraform	4 J 50 U	5 J 50 U	10 U	50 U	3.1	4 J	2.3	10 U	16
Trichloroethene (TCE)	4 J 50 U	4 J 50 U	10 U	50 U	10 U	2 J	10 U	10 U	10 U
Perchloroethylene (PCE)	420 E 320 D	480 E 310 DJ	10 U	290	11	190	10 U	10 U	34
Acetone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	11	10 U

The associated numerical value is an estimated quantity because quality control criteria were not met. Presence of the analyte is reliable.

U The analyte was not detected above the CRQL.

D Analyte was diluted to bring within instrument calibration range or to remove matrix interferences.

E Reported concentration is above the instrument calibration range.

B Analyte was detected in the laboratory method blank.

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Mt. Olivet Cemetery - SAR Revision: 0 Date: 05/1999 Page 22 of 23

TABLE 5
General Chemistry Results, Methods 150.1, 300.0, 310.1, and SM2320B
Concentrations in mg/L

Well ID	EPA-MW-01S	EPA-MW-01D	EPA-MW-02	EPA-MW-03	EPA-MW-04	EPA-MW-05
Alkalinity	250	260	260	260	280	360
Bicarbonate	300	310	310	310	340	440
Carbonate	<5	<5	<5	<5	<5	<5
Chloride	150	69	160	140	170	140
Hydroxide	<5	<5	<5	<5	<5	<5
Sulfate	110	160	110	100	100	110
pII	7.4	7.3	7.4	7.4	7.3	7.3

Mt. Olivet Cemetery - SAR Revision: 0 Date: 05/1999

Page 23 of 23

TABLE 6 **Groundwater Elevations**

Well ID	Northing	Easting	тос	Ground Elevation	DTGW 9/1/98	GW 9/1/98	DTGW 10/22/98	GW 10/22/98	DTGW 11/10/98	GW 11/10/98
EPA-01S	3274.49	6976.38	4662.18	4662.54	155.35	4506.83	153.9	4508.28	152.96	4509.22
EPA-01D	3274.17	6976.15	4662.2	4662.54	190.55	4471.65	182.2	4480	178.65	4483.55
EPA-02	3228.73	7490.2	4680.41	4678.41	NA	NA	164.9	4515.51	164.1	4516.31
EPA-03	3861.5	7444.02	4697.98	4695.54	187.6	4510.38	189.75	4508.23	188.9	4509.08
EPA-04	2513.17	7319.76	4654.15	4654.35	132.65	4521.5	131.35	4522.8	130.65	4523.5
EPA-05	3753.76	8658.65	4732.09	4732.45	207.1	4524.99	205.5	4526.59	204.71	4527.38

Top of casing (feet above mean sea level) Depth to groundwater (feet) TOC

DJGW =

GW Groundwater elevation (feet above mean sea level)

Not available NΛ =

APPENDIX A Photolog

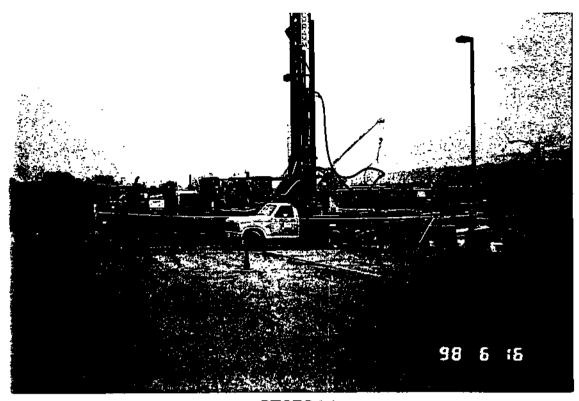
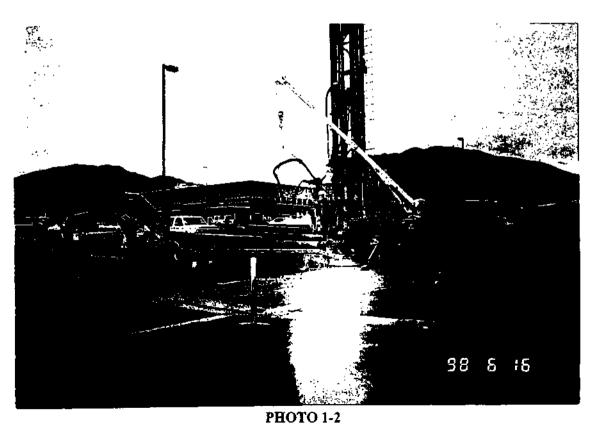



PHOTO 1-1
Well on Steiner pool lot facing southwest toward the UNG facility.
Location of well EPA-MW-01. Photo taken at 1320 hours by J. Noto/UOS.

Rig with pool in the background. Location of EPA-MW-01. Photo taken at 1325 hours by J. Noto/UOS.

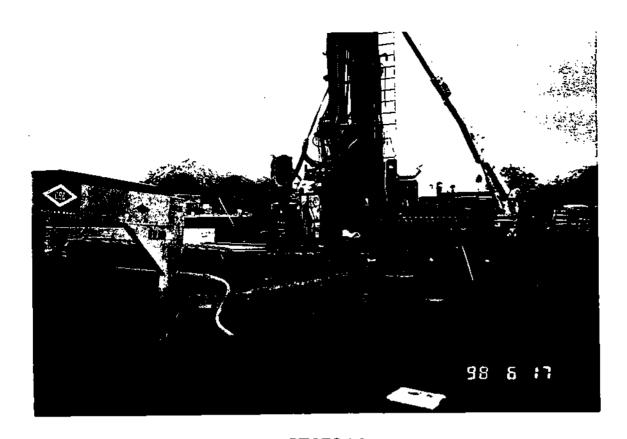


PHOTO 1-3
First hole being drilled at Steiner pool lot. Location of EPA-MW-01. Photo taken at 0945 hours by J. Noto/UOS.

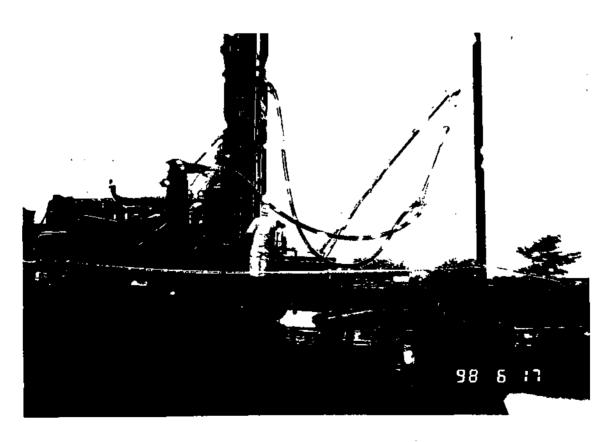


PHOTO 1-4
Drilling well EPA-MW-01 on Steiner pool lot. 130 feet below ground surface (bgs).
Photo taken toward the south by J. Noto/UOS at 0915 hours on June 18, 1998.

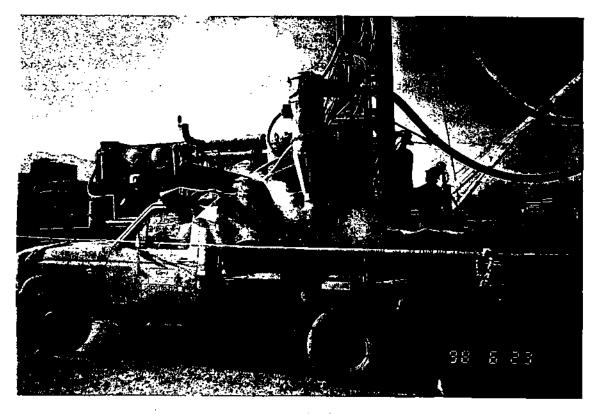


PHOTO 1-5
Picture of dust cloud discharging from chute at 210 feet bgs. Photo taken toward the southwest by B. LaRow/UOS.

PHOTO 1-6
Split spoon, showing the distinct sandy gravel and silty clay transition. Photo taken by B. LaRow/UOS.

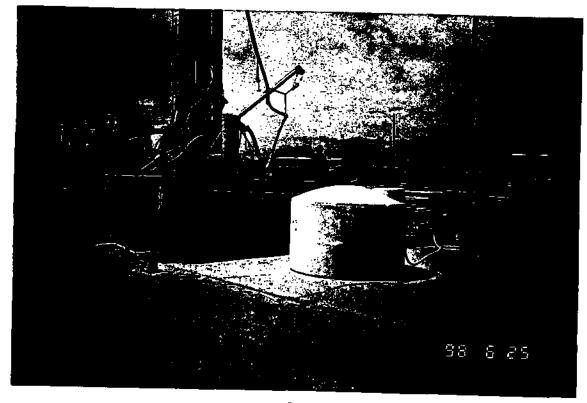


PHOTO 1-7
Roll-off bin and poly tank for collecting cuttings. Photo taken by B. LaRow/UOS.

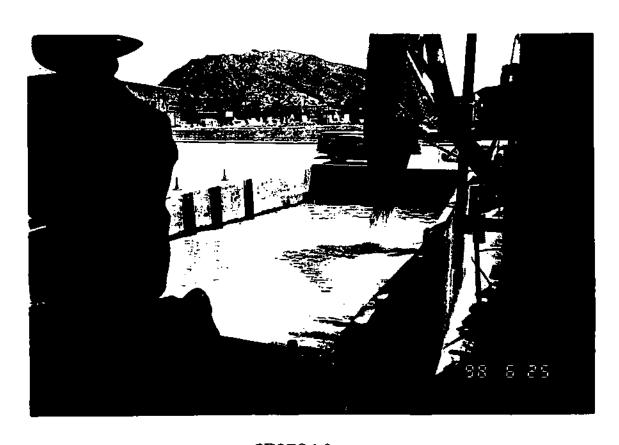


PHOTO 1-8
Formation water in roll-off bin. Photo taken by B. LaRow/UOS.

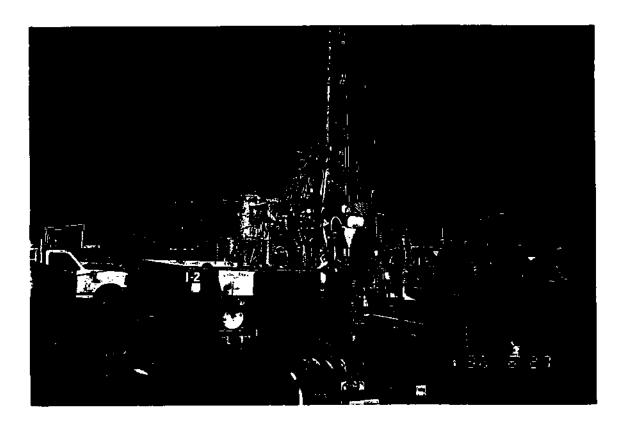


PHOTO 1-9
Installation of EPA-MW-01. Photo taken by B. LaRow/UOS.

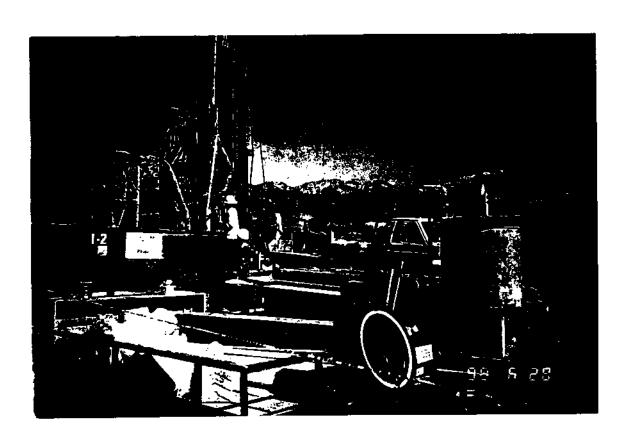


PHOTO 1-10
Bentonite slurry mixer at EPA-MW-01. Photo taken by B. LaRow/UOS.

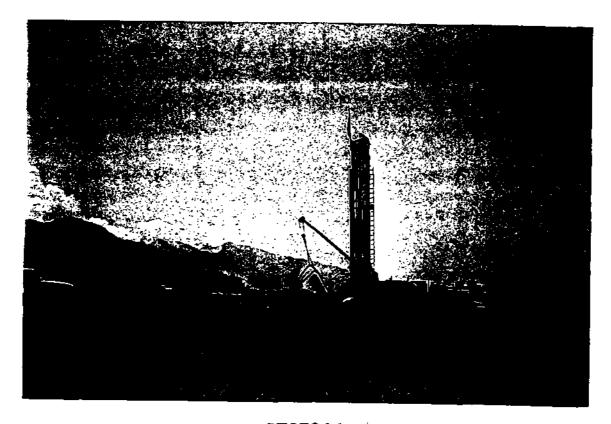


PHOTO 2-1
Rig installing EPA-MW-02. Photo taken toward the southeast by J. Noto/UOS on July 20, 1998.

PHOTO 2-2

Developing EPA-MW-02 with bailer; pool building is in the background. Photo taken by J. Noto/UOS on July 24, 1998.

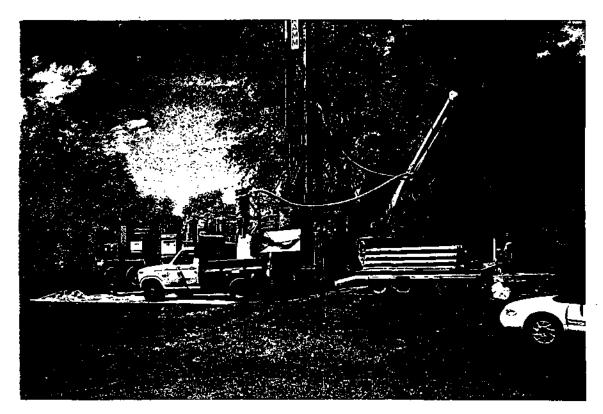


PHOTO 2-3
Installation of EPA-MW-04 at Sunnyside Park. Photo taken by Bill LaRow/UOS on July 28, 1998.

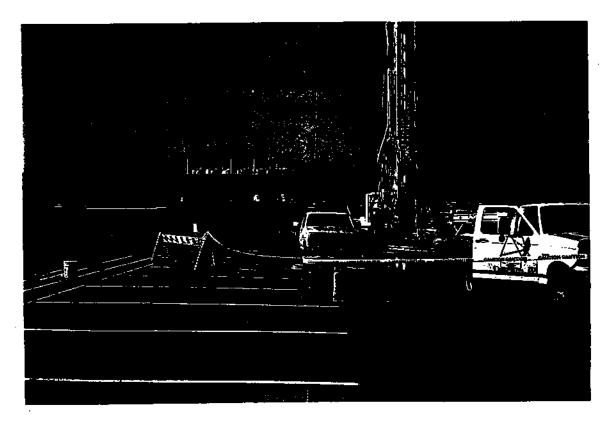


PHOTO 2-4
Installation of EPA-MW-05 at VA campus, Building 4 parking lot.
Photo taken toward the west by J. Noto/UOS on August 28, 1998.

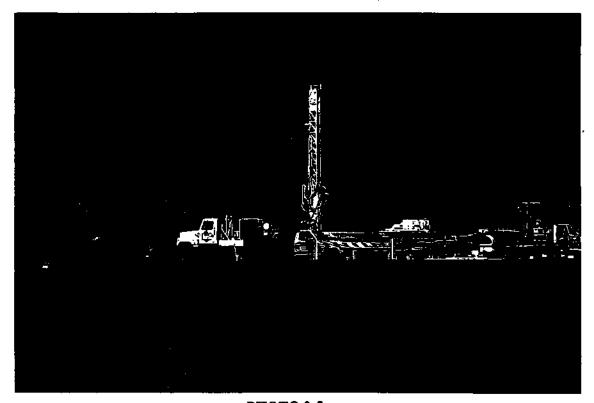


PHOTO 2-5
Installation of EPA-MW-05. Photo taken toward the east by J. Noto/UOS on August 28, 1998.

PHOTO 2-6
Installation of EPA-MW-05. Dust from cuttings. Photo taken by J. Noto/UOS on August 30, 1998.

APPENDIX B Lithologic Logs and Fence Diagrams

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-01 Salt Lake City, Utah 7580314.00 Boring Depth (ft) X Diameter (in): 404.0 x 10 Drilling Method: Air Rotary w/advance casing Well Contractor Name: Logged by: John Noto, Bill LaRow Layne Christenson N 40 45'15.188" **Ground Surface** Top of Casing Lat. Northing 3274.49 Long. W 111 50'41.959" Easting 6776.38 Elevation (ASL): 4662.54 Elevation (ASL): 4662.18 Date Started: Date Completed: Additional Comments: TOC Elevation deep well: 4662.20 6/16/98 6/30/98 PID / FID (ppm) Graphic Log Well Sample no. Blow USCS Depth Construction Lithologic Description (feet b.g.s.) Details ML Bentonite chips, PVC Fill; silty w/gravel casing Fill; sandy w/gravel 10 Gravelly sand; reddish brown, fg-vfg sand, angular pebbles, dry 20 Sandy gravel; tan-brown Gravelly sand; 41/50(3*) Clay silty gravel; red/brown, 20-50% silt. 1.0 Clayey silt layer 1" thick, >2" diameter., angular igneous, pebbles, dry Sandy gravel; reddish brown, fg sand, moist Clay; red, <10% gravel, highly plastic, very 60 soft, moist Gravelly sand, red, fg, 없 Gravelly sandy clay; red, moist 65 Clay, red, high plasticity, very soft, dry Gravelly sand; tan-brown, fg-mg sand, rounded 70 <1" pebbles, some silt, dry 75 SP Sand; red-brown, vfg, well sorted dry 80 Sandy gravel; red, wet at 80' bgs 50(3°) 15 Sandy clay with gravel; red, wet @ 82' - 84' 85 Silty sandy gravel; red, 20 - 40% gravel, <1" diameter, rounded, nonspherical pebbles,

^{*} SS (split spoon) HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings)

Observations	Date:	6/30/98	10/22/98 (S)	10/22/98 (D)	
Static Water Level (from TOC)	Level:	154.6" bgs (S)	¥ 153.9	艾 182.2	
Static Water Level (ASL)	Level:		4508.28	4479.98	

SOIL BORING LOG / MONITORING WICCONSTRUCTION DIAGRAM

Boring / Well Number:	TDD Name/Pro	ject I	Numbe	r: Site	Loc	cation:				
EPA-MW-01	7580314.00			Salt	Lal	ke City, Utah	_,	_	,	
Lithologic De	scription	nscs	Graphic Log	Depth (feet b.g.s.)		Well Construction Details	Sample no.	Sample type	Blow	PID / FID
wet 🍪 95' - 98'				90 95						
Silty sandy gravel; tan-brow	n, dry	GIA		100						
Silty sand with gravel; red, v gravel, dry	rfg sand, <10%	SM		110				· I		
				115— 120— 125—				·		
Silty sandy gravel; red. 20 -	40% gravel, dry	GM	2000	130 =						
				135						
Sandy clay; red, slightly plas Silty sandy gravel; wet @ 15	stic, moist 4 - 156"bgs	GM		145 — 150 — 155 —				-		
Clayey sand; red moderately moist	y plastic, soft,	sc	SH	160 165						
Sandy clay with gravel; mode soft, dry	erately plastic,	SC		170— 175—						7
				¥180		10-20 mesh sand		ļ		
				185		.010 stot, 2* PVC screen				
	-			195						
	İ			200						
				200						

^{*}SS (split spoon) HSA (hollow*stem auger) MC (Geoprobe macrocore) CT (cuttings)

Observations	Date:	6/30/98	10/22/98 (S)	10/22/98 (D)	
Static Water Level (from TOC)	Level:	154.6" bgs (S)	¥ 153.9	Ÿ 182.2	
Static Water Level (ASL)	Level:		4508.28	4479.98	

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-01 7580314.00 Salt Lake City, Utah PID / FID (ppm) uscs Graphic Log Well Sample no.
Sample type Blow count Depth Construction Lithologic Description (feet b.g.s.) **Details** Clayey silt; brown-red, trace gravel, low 210 plasticity, moist - wet @ 210 silty sand; brown-red, trace gravet Sandy clay, brown-red, moist 220 Silty clay with gravel, dry 225 Bentonite chips 230 Silty - clayey sand; trace gravel, dry 235 Silty gravel; dry 250 255 Gravel; well sorted, subangular to angular, wet 260 265 275 280 285 290 295 300 305 310 320

Observations	Date:	6/30/98	10/22/98 (S)	10/22/98 (D)	
Static Water Level (from TOC)	Level:	154.6" bgs (S)	¥ 153.9	¥ 182.2	
Static Water Level (ASL)	Level:		4508.28	4479.98	

SOIL BORING LOG / MONITORING W CONSTRUCTION DIAGRAM

TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** EPA-MW-01 Salt Lake City, Utah 7580314.00 PID / FID Graphic Log Well Sample no. uscs Depth Construction Lithologic Description (feet b.g.s.) Details 330 335 350 355 10-20 mesh sand .010 slot, 4" diameter PVC screen 365 375 380 385 390 395

Observations	Date:	6/30/98	10/22/98 (S)	10/22/98 (D)	
Static Water Level (from TOC)	Level:	154.6" bgs (S)	¥ 153.9	₹ 182.2	
Static Water Level (ASL)	Level:		4508.28	4479.98	

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** EPA-MW-02 Salt Lake City, Utah 7580314.00 Boring Depth (ft) X Diameter (in): 205.5 x 8 **Drilling Method:** Air Rotary w/advance casing Well Contractor Name: Layne Christenson Logged by: John Noto **Ground Surface** Top of Casing Lat. N 4045'14.756" Northing 3228.73 Long. W 111 50'35.282" Easting 7490.2 Elevation (ASL): 4678.41 Elevation (ASL): 4680.41 Date Started: Date Completed: **Additional Comments:** 7/20/98 7/22/98 Well Depth Lithologic Description Construction (feet b.g.s.) Details GM Bentonite pellets Silty sand with gravel, grey angular to subrounded pebbles, dry 20 Clayey Sand, reddish brown, low plasticity ĠM Gravelly sand with silt; reddish brown, grey 25 sandstone pebbles, angular-subrounded, nonspherical, dry
Gravelly sand with silt; reddish brown 30 35 Gravelly silt with sand, reddish brown, dry GM Gravetty sand, reddish brown, fg sand, slightly 40 cohesive when damp, dry 45 50 Gravelly sand; dark reddish brown, coarse grained, dry 55 60 Gravelly sand with silt; reddish brown, dry 65 70 Sand; reddish brown, medium grained, 75 moderately sorted, slightly cohesive, with gravel, dry 80 Gravelly sand with silt; reddish brown, dry 85 90

^{*} SS (split spoon) HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings)

Observations	Date:	7/22/98	10/22/98		
Static Water Level (from TOC)	Level:	180 bgs	¥ 164.9	,	
Static Water Level (ASL)	Level:		4515.51	,	

SOIL BORING LOG / MONITORING W CONSTRUCTION DIAGRAM

TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** Salt Lake City, Utah EPA-MW-02 7580314.00 Graphic Log Well uscs Depth Construction Lithologic Description (feet b.g.s.) Details 95 100 105 Sand; reddish brown, fg-mg sand, <10% 120 gravel, dry 125 130 135 150 155 Clayey sand; red, low plasticity, slightly SW cohesive, dry Gravelly sand with silt; reddish brown, 20-25% 160 gravel, not cohesive, fg-mg sand, rounded nonspherical pebbles, dry ₹₁₆₅ Silt; reddish brown, trace gravel, slightly 10-20 mesh sand plastic/cohesive, dry 170 Gravelly silty sand; 175 .010 screen Gravelly sand: reddish brown >25% gravel, 180 Sandy clay; reddish brown, <5% gravel, soft, mod. plasticity, weak bedding, moist at 182' 11/12/21(2: 1 bgs 185 Sandy gravelly clay, 4" layer, w/black "spotty" ĞĊ banding. Sand; 4" layer trace clay, soft, wet Sandy clayey gravel; reddish brown, wet, mod. 190 plasticity, 25-50% gravel, wet 195 200 Sand: wet 205

HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings) * SS (split spoon)

Observations	Date:	7/22/98	10/22/98		
Static Water Level (from TOC)	Level:	180 bgs	▼ 164.9		
Static Water Level (ASL)	Level:		4515.51		

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-03 Salt Lake City, Utah 7580314.00 Boring Depth (ft) X Diameter (in): 210.0 x 8 Drilling Method: Air Rotary w/advance casing Well Contractor Name: **Layne Christenson** Logged by: **Bill LaRow Ground Surface** Top of Casing Lat. N 40 45'21.005" Northing -3861.5 Long. W 111 50'35.913" 7444.02 Easting Elevation (ASL): 4695.54 Elevation (ASL): 4697.98 Date Started: Date Completed: Additional Comments: 7/28/98 7/30/98 Well Sample type * Blow count USCS Depth Construction Lithologic Description (feet b.g.s.) **Details** bentonite granuals, 4° Silty sand with gravel, brown, subrounded gravel, dry PVC pipe 60 65 Silty sand with gravel, same as above, reddish brown, coarser sand, less gravel, dry 70 75 80 Silty sand with gravel, as above, sand better sorted, dry 85 90 O 95

Observations	Date:	7/29/98	10/22/98		
Static Water Level (from TOC)	Level:	190.5 bgs	⊻ 189.75		
Static Water Level (ASL)	Level:		4508.23		

SOIL BORING LOG / MONITORING W. CONSTRUCTION DIAGRAM

TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** EPA-MW-03 Salt Lake City, Utah 7580314.00 Graphic Log PID / FID Well Sample no. USCS Blow Depth Construction Lithologic Description (feet b.g.s. Details 100 0 0 ٥ O Silty sand with gravel, as above, more silty, less gravel, dry as above, slightly moist at 155 160 Silty sand with gravel, as above, dry 165 ò 0 bentone seal 185 Silty to clayey sand, reddish brown, low 10-20 mesh sand plasticity, less gravel, slightly moist filter pack ¥₁₉₀. .010 PVC screen in Silty sand, moist at 191 feet bgs filter pack 195 Silty sand with gravel, reddish brown, moist 200 210

Observations	Date:	7/29/98	10/22/98	·	
Static Water Level (from TOC)	Level:	190.5 bgs	▼ 189.75		
Static Water Level (ASL)	Level:	=	4508.23		

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-04 Salt Lake City, Utah 7580314.00 **Drilling Method:** Boring Depth (ft) X Diameter (in): 173.0 x 8 Air Rotary w/advance casing Well Contractor Name: **Layne Christenson** Logged by: **Bill LaRow** 2513.17 **Ground Surface** Top of Casing Lat. N 40 45'07.680 Northing Long. W 111 50'37.460" Easting 7319.76 Elevation (ASL): 4654.15 Elevation (ASL): 4654.35 Date Started: **Date Completed:** Additional Comments: Sunnyside park 7/30/98 8/1/98 PID / FID (ppm) Graphic Log Well Sample no. Sample type . Blow count USCS Depth Construction Lithologic Description (feet b.g.s.) Details Bentonite chips, 4° Silty sand with gravel; brown, dry PVC casing 10 Clayey sand/sandy clay with gravel; moderate plasticity, moist 20 25 Sandy clay with gravel; brown, low plasticity. 30 35 45 50 55 60 65 70 80 85 Silty sand with gravel; slightly moist

^{*} SS (split spoon) HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings)

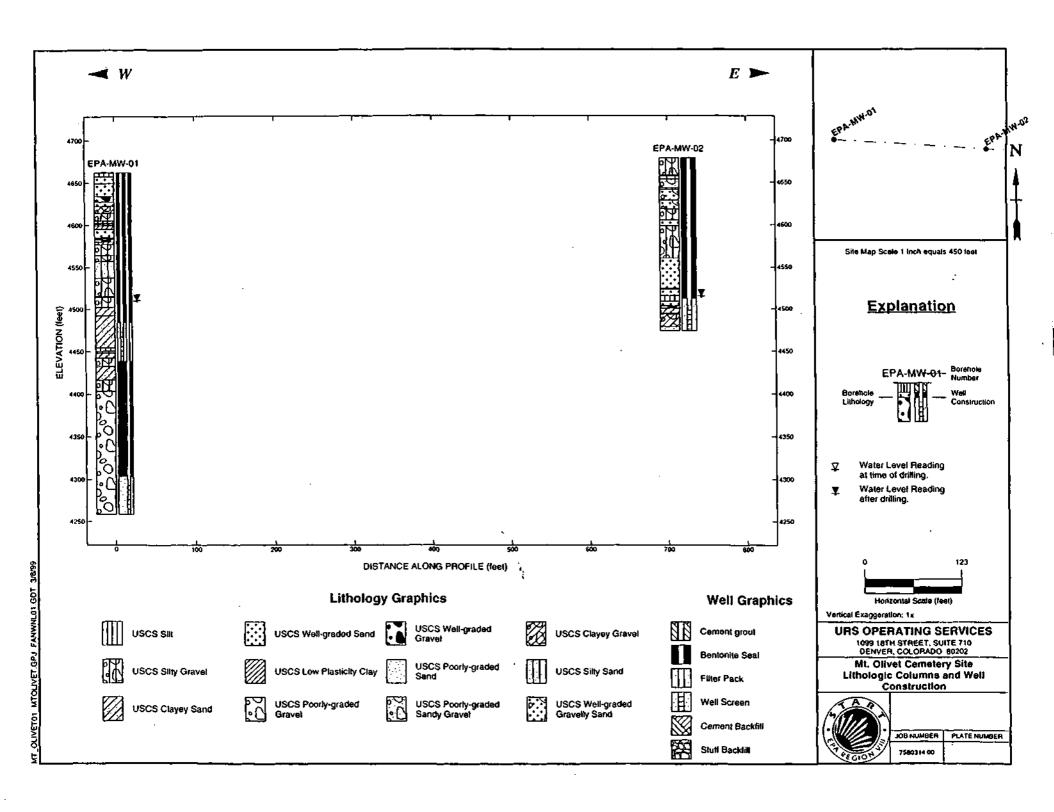
Observations	Date:	7/30/98	10/22/98		
Static Water Level (from TOC)	Level:	♀ 139	₹ 131.35	_	
Static Water Level (ASL)	Level:	4515.35	4523.00		

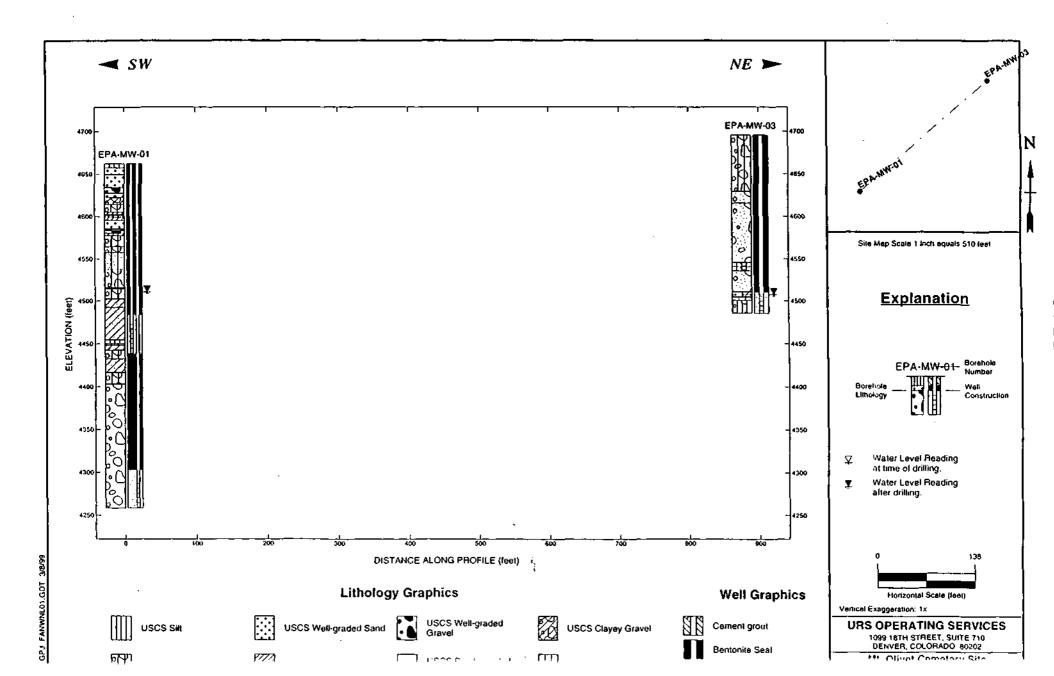
SOIL BORING LOG / MONITORING WICCONSTRUCTION DIAGRAM

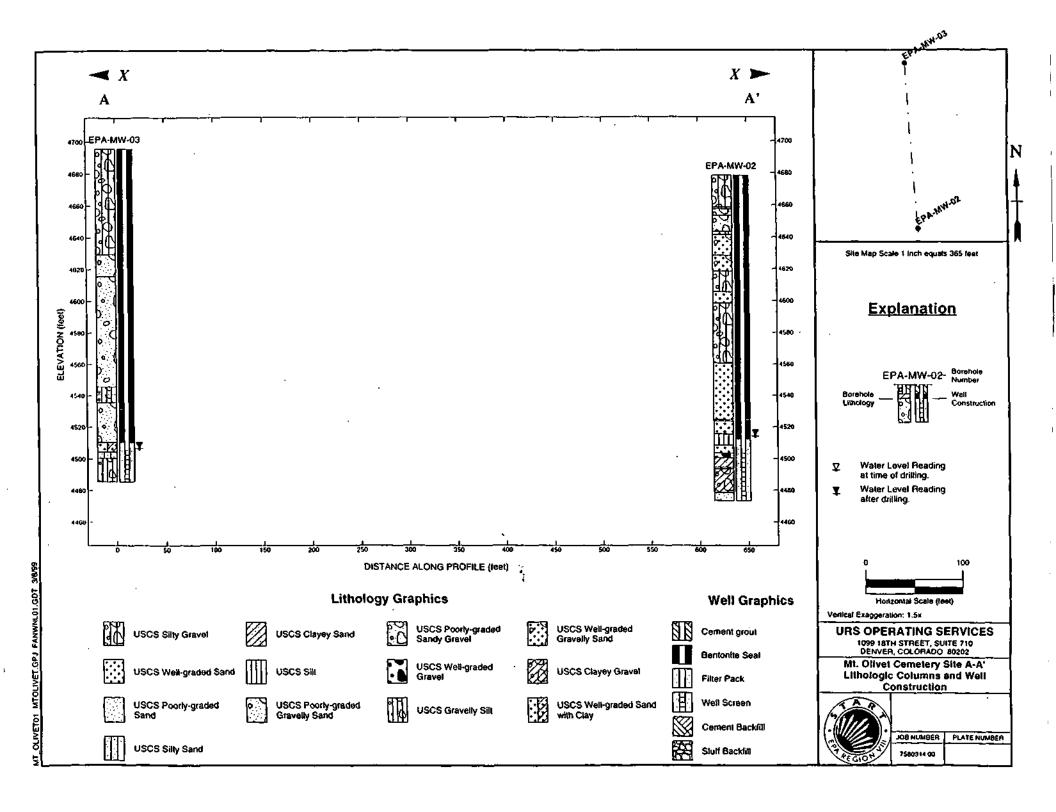
TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** EPA-MW-04 Salt Lake City, Utah 7580314.00 PID / FID Graphic Log Well Sample no. SSS Depth (feet b.g.s.) Construction Lithologic Description Details 100 135 10-20 mesh sand Ÿ 140 Gravel with clay; wet .010 PVC screen 150 155 160 165

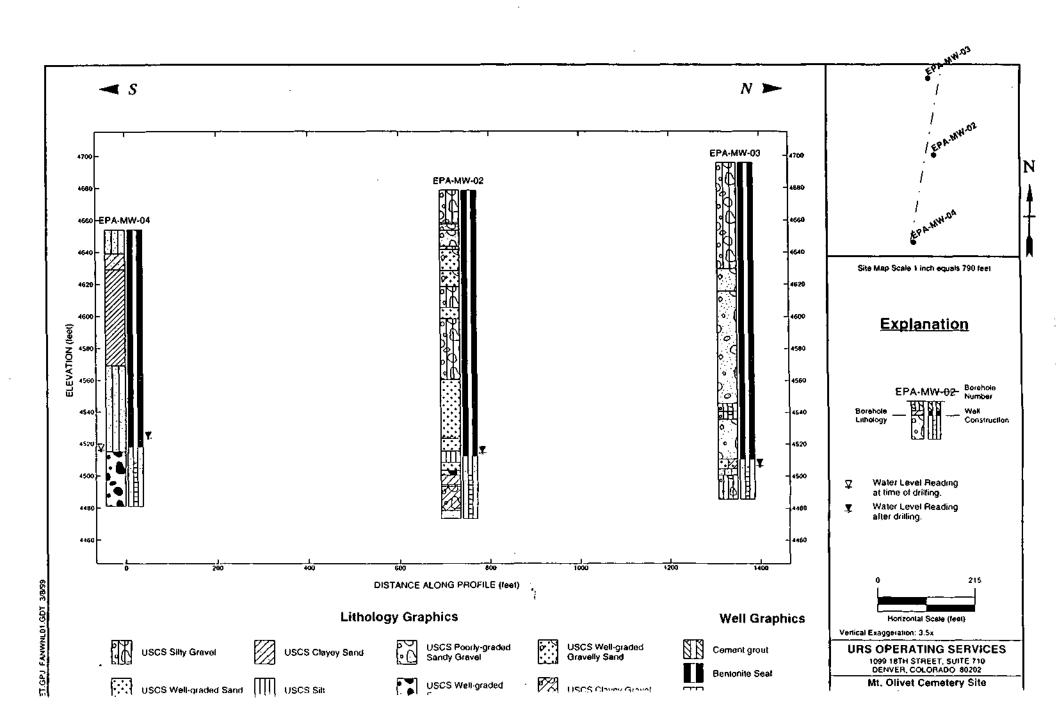
Observations	Date:	7/30/98	10/22/98		
Static Water Level (from TOC)	Level:	⊈ 139	▼ 131.35		
Static Water Level (ASL)	Level:	4515.35	4523.00		

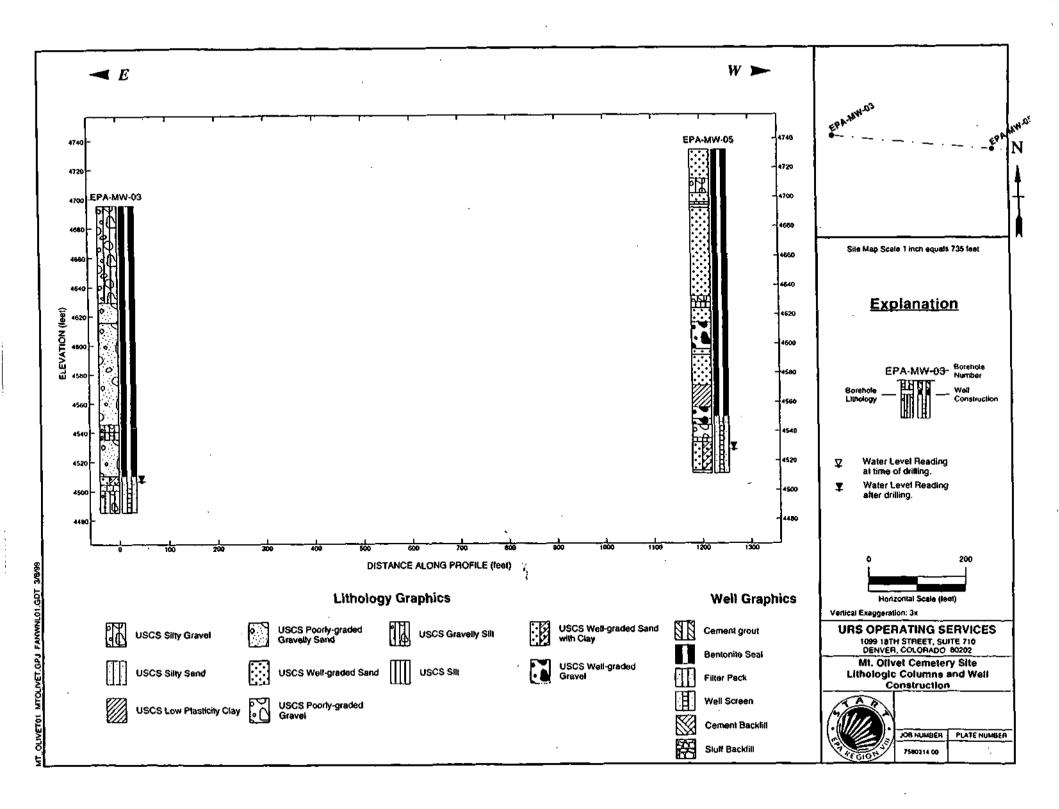
SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

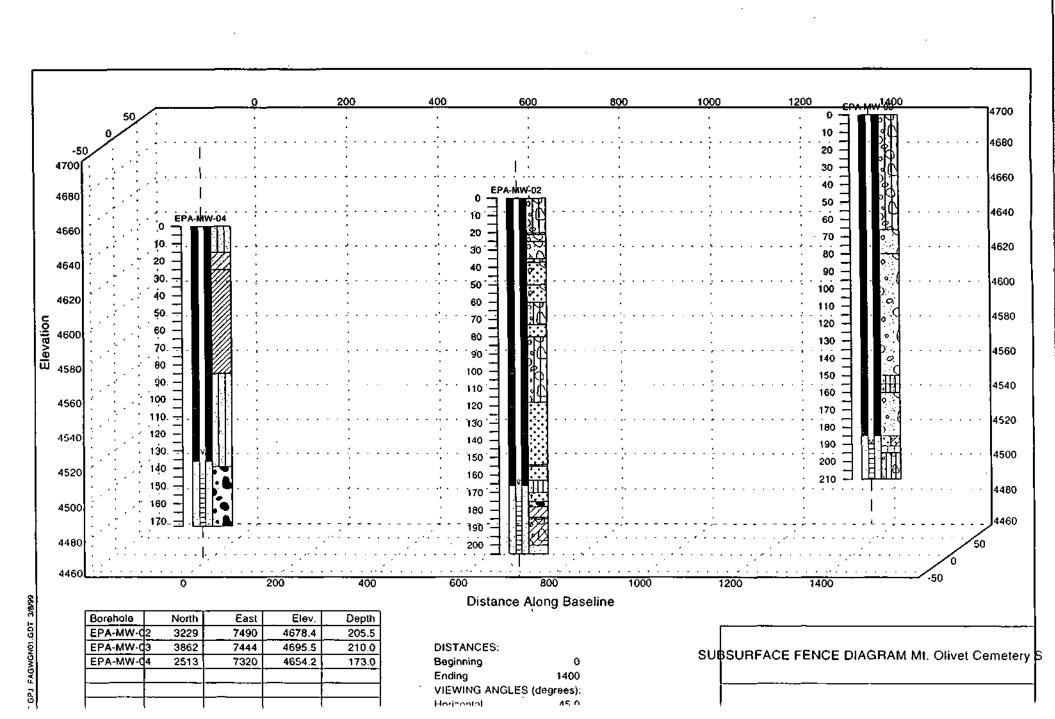

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-05 Salt Lake City, Utah 7580314.00 Boring Depth (ft) X Diameter (in): Drilling Method: Air Rotary w/advance casing 221.0 x 6 Well Contractor Name: **Layne Christenson** Logged by: John Noto **Ground Surface** Top of Casing Lat. N 40 45'19.987 Northing 3753.76 Long. W 111 50'20.128" Easting 8658.65 Elevation (ASL): 4732.45 Elevation (ASL): 4732.09 Date Started: Date Completed: Additional Comments: 8/28/98 VA Hospital, bldg. 4 lot 8/31/98 Well Sample no. Sample type • Blow count USCS Depth Construction Lithologic Description (feet b.g.s.) Details Bentonite chips, 2° Gravelly sand; brown, fill, dry PVC casing 20 Gravelly sand; reddish brown, silty, dry 30 Sand,; reddish brown, fg-mg, slightly cohesive, some gravel, dry SW Sand: same as above Gravelly sand; reddish brown, subrounded to rounded nonspherical SS/quartzite pebbles, silty-sandy matrix, dry 95


Observations	Date:	10/22/98	
Static Water Level (from TOC)	Level:	¥ 205.5	
Static Water Level (ASL)	Level:	4526.59	


SOIL BORING LOG / MONITORING W CONSTRUCTION DIAGRAM


TDD Name/Project Number: Boring / Well Number: Site Location: **Mount Olivet** EPA-MW-05 Salt Lake City, Utah 7580314.00 Graphic Log Well Sample no. Blow USCS Depth Construction Lithologic Description (feet b.g.s. Details 100 GM Silty gravelly sand; reddish brown, >20% gravel, dry 105 Silt; light brown, <10% gravel Gravelly sand; reddish brown, f.g.-silty, thin silt layer @ 117', dry Gravelly sand/sandy gravel; tan-brown, thin silt 120 layer @127', dry 125 130 135 Silty gravelly sand; red-brown, vig-fg sand, <10% gravel, dry same as above, higher % gravel, silty @ 146-148', dry 150 155 160 Clayey silt; brown, no sand, cohesive. moderate plasticity, gravelly @ 172 dry 165 170 Silty sandy gravel, reddish brown, 10-50% gravel, vfg-fg sand, trace clay, low plasticity 180 when wetted, dry 10-20 mesh sand same as above with < .5' layers of silt/clay 185 .010 screen 2° PVC (indicated by drilling speed) Sandy gravel; > 50% gravel, dry 190 195 Clay/silt; dry М 200 Gravelly sand with clay/silt layers, very resistant @ 122.5-113.5', dry drilling, rig **₹**205 idled 5 minutes @ 113.5' water in hole, 210 215 220 Gravelly sand, dry MC (Geoprobe macrocore) CT (cuttings) * SS (split spoon) HSA (hollow stem auger)


Observations	Date:	10/22/98		
Static Water Level (from TOC)	Level:	 ¥ 205.5		
Static Water Level (ASL)	Level:	4526.59	 	



APPENDIX C QA/QC Work Plan

Sampling and Analysis Plan

Prepared By: John P. Noto	
U.S. EPA Project Number:9803-0014	· .
Contractor Project Number: 75-80314.00	
U.S. EPA Contract Number: 68-W5-0031 EPA Region VIII	
Approvals:	10/16/99
EPA On-Scene Coordinator	Date
L.w.Bl	10/7/28
START Deputy Team Leader	Date
9. h p. 112	10/9/98
START Project Leader	Date
/	

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Emergency Response - Sampling and Analysis Plan Revision: 0 Date: 07/1997 Page 2 of 21

Note: This sampling and analysis plan was prepared by URS Operating Services, Inc. (UOS) for the U.S. Environmental Protection Agency (EPA) Region VIII Emergency Response Program (ERP) as a part of the Superfund Technical Assessment & Response Team (START) program. START is executed under Contract No. 68-W5-0031 for the EPA in Region VIII.

EPA Order 5360.1 "Policy and Program Requirements to Implement the Mandatory Quality Assurance Program" requires that all environmental data collection activities that are performed by or on behalf of the EPA, be supported by an approved Quality Assurance Project Plan (QAPP) prior to the start of data collection activities, except as specified by Region VIII emergency response/time-critical removal policies. A generic QAPP was prepared for the ERP in accordance with the EPA guidance document entitled, "EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations, Draft Interim Final EPA QA/R-5" and "Quality Assurance/Quality Control Guidance for Removal Activities" (EPA 1990). The ERP generic QAPP is supplemented by this project-specific Sampling and Analysis Plan (SAP), Standard Operating Procedures and a Site Health and Safety Plan.

A change in site conditions and/or direction from the EPA OSC may require a departure from this SAP. Departures from this SAP will be noted in the field log books and project reports.

1.0 GEN	ERAL SITE IN	FORMATION					
Name: Mt. Ol	ivet Cemetery						
Street Address	s:		•				
City: Salt Lak	e City		State:	UT		Zip Code:	
County: Salt I	ake						
Latitude:		Longitude:		Sectio	n:	Township:	Range:
<u>40 ° 45 '</u>	_· "	111_°51'	_ "	4 and 9	<u>9</u> .	1 S	<u>1 E</u>
Approximate A	Area of Site:	Acres					•
General Topos Nearest Reside	graphy ences are located	Slope to west		to 1	the	·	
							<u>. </u>
2.0 OWN	ER/OPERATO	R INFORMAT	ION				
Owner: NA				Operat	tor: NA	ميعن	
Street Address	:			Street .	Address	:	
City:				City:			
State:	Zip Co	de:		State:		Zip C	ode:
Telephone:				Teleph	none:		•
Type of Owner	rsh ip :						
000	Private County	0	Munici Not Spe			Federal Agend State	су
3.0 NAMI	E OF EPA AND	OR STATE A	GENCY	CONT	ACT:		, ,
EPA Contact	Luke Chavez				State C	ontact Neil Tay	/lor
Street Address	: 999 18th Street	#500			Street A	Address:	
City: Denver	State: CO	Zip Code: 8020	02		City: S	alt Lake City	State:UT
Telephone: 303	3-312-6512			•	Teleph	one: 801-536-4	102

Poor Quality Source Document

The following document images have been scanned from the best available source copy.

To view the actual hard copy, contact the Superfund Records Center at (303) 312-6473.

Revision Date: 07. Page 4

4.0 GEN	ERAL SITE CHARA	CTERISTI	CS	-	
Years of Oper	ration:				
□ Known	x Unknown				
Beginning yea	ar Endi	ng Year			Aband med Since
Status of Site:					
☐ Active	x Not Specified	☐ Inact	ive	□ NA	(G, plume, etc.)
Predominant I	Land Uses Within One I	Mile of Site	(Chec	k all that	tapply):
	Industrial Commercial Residential Forest/Fields	Agricult Mining DOD DOE		x x	DEI Other Federal Facility (VA) cemetery, city swimming pool, par
Site Setting:		Previous	Inves	tigations	/Assessments/Permit Violations
x 	Urban Suburban Rural		Yes - T No Unkno		
Distance to sur	rface water from site: <	1,500 ft.			<u> </u>
	Water Intake(s) locate	ed within _	_ mile:	s	
Distance to clo	osest domestic or munic	ipal well: <u>≤</u>	1.500	ft	
Facility Type /	Site Operations (Checl	call that ap	ply):		
 □ Lumbe □ Drum □ Plastic □ Paints, □ Agricu □ Petroci □ Refine □ Retail 	Gasoline Station y Reclamation	s (c c c c		Metal F Junk/Sa Landfill Metal C Mining Incinera Miscella Industri	Coating, Plating or Engraving ator/Smelter aneous Chemical Products al ent, Storage, or Disposal
☐ Fabrica x <u>Dry Cl</u>	onic Equipment ated Metal Products eaning			Federal □	fanufacturingFacility

5.0	REMEDIAL UNITS AND WASTI	E CHAR	ACTE	USTICS
Re	medial Units: (Check all that apply)			
000000000 × 0000	Underground Tanks Vats Lagoons Tailings Pile Landfill Chemical Waste Pile Process Areas Contaminated Soil Railroad Tracks Contaminated Groundwater Plume (unidentified source) Wetlands Stormwater Ponds No Remedial Unit Identified Scrap Metal or Junk Pile	0000000000000000	Surfa Drun Trasi Build Stora Labo Road Cont (unid Injec Wast	ace Impoundment ns h Pile (open dump) dings nge Areas I Treatment bratory ls/ Access Ways aminated Surface Water/Sediment lentified source) tion Wells ewater Ponds nage Ditches
The	following types of materials were handle	d at the si	ite: (Ch	eck all that apply)
	Unknown	Vaste Waste	x	Organics
_	sical State of Waste as Deposited (Check Solid Sludge Powder	_	piy). quiđ	□ Gas □
	Contaminants of Concern are:		1	
	Contaminants		Conce	entration Range
	Perchloroethylene (PCE)		<	1.0 ppb to 500 ppb
•				
			•	

Page r

	antity or areal extent of contamination to be addressed is: The Groundwater plume known is approx. 1500 by 1000 feet
The ph	ysical/chemical threat to the population at risk is: PCE proximal to city and university wells
The fol	lowing project limitations (e.g., time) have been identified: Site access restrictions
The fol	lowing sampling limitations (e.g., access, potential hazards) have been identified: None
☐ Phote	sis for the site information is: Site maps X Geological information Disposal records Disposal records Disposal Information Disposal
6.0	PROJECT OBJECTIVES
6.1	Project Stage X Early Assessment □ Advanced Assessment, Phase II □ Cleanup Attainment
6.2	Regulatory Objectives: Sampling for expanded site assessment (ESI)
	Action levels for contaminants: EPA SDWA MCLs
	The basis for this sampling effort is: Define plume and potential source areas
	The work involved is as follows: Collect groundwater samples from six monitoring wells installed by UOS in 1998
	The planned activities will resolve the problem as follows: Sample results will be used for ESI
	The intended use and users of the data are: <u>US EPA</u> , and State of Utah Department of Environmental Quality
	The decision makers are: U.S. EPA

Date: 07/1997 Page 7 of 21

6.3	Data Use Objectives: The following project objectives and data types* will be applied to this project (Choose from lists below):			-	-
	Sample Objective		Removal	Program Area	Site Assessment
	H&S assessment for worker protection General physical or chemical properties/sources	0	S S	0	S S
x00x0000000000000000	Delineation of plume in groundwater Sample location selection Identification of hot spots Identify sources Extent of contamination Migration pathways Transport mechanisms Obtain broad screen of contaminants Document observed release Identify contaminants Unit/area concentrations Treatment and disposal options Threat to humans Threat to environment Background/control Verification of cleanup Ecological assessment Quantity of contamination Compare to benchmark Emergency response Determine presence of contamination	000000000000000000000	SSSSSSSSSSSSDD SDSSSS SDA NA	x00x0000000000000000000000000000000000	S S S S D S S D S A D D D D D A A S D A D S N S D S N S N S S N S S N S S N S S N S S N S S N S N S N S S N S N S S N S

 General descriptions of the data types and specific QA/QC requirements for various common analyses are described in Appendix A.

S = Non-definitive (i.e., screening) data

S/D = Non-definitive data with 10% definitive confirmation

D = Definitive data N/A = Not applicable

Screening Data with Definitive Confirmation: Screening data are generated by rapid, less precise methods of analysis and less rigorous sample preparation. Screening data provide analyte identification and quantification, although the quantification may be relatively imprecise. At least 10% of the screening data are confirmed using analytical methods and QA/QC procedures and criteria associated with definitive data. Screening data without associated confirmation data are not considered to be data of known quality.

Definitive Data: Definitive data are generated using rigorous analytical methods, such as approved EPA reference methods. Data are analyte-specific, with confirmation of analyte identity and concentration. Methods produce tangible raw data (e.g., chromatograms, spectra, digital values) in the form of paper printouts or computer-generated electronic files. Data may be generated at the site or at an off-site location, as long as the QA/QC requirements are satisfied. For the data to be definitive, either analytical or total measurement error must be determined.

7.0 Sampling Design

The following sections summarize the sampling design. Put the number for each matrix type next to each the same matrix, and use that number in the blanks associated with the analytical parameters, sampling approximately sampling equipment (Sections 7.2, 7.3 and 8.1).

7.1 Matrix: Air	Water	Liquid Waste	Soil/Sedime
1 Ambient air 2 Waste material 3 Soil gas 4 5 6	1 Potable Water 2 Surface Water 3 Groundwater 4 5	1 Oil 2 Drum Liquid 3 Tank Liquid 4 Waste Material 5	1 Soil 2 Drum Solid 3 Tank Solid 4 Waste Mate 5 Sediment 6
7.2 Parameter: Air	Water	Liquid Waste	Soil/Sedimer
	BNA (SVOC) BOD COD Corrosivity Creosotes Cyanide Dioxins/Furans Haz Cat Herbicides Ignitability Metals Oil and Grease PAHs Pesticides/PCBs Petroleum Hydrocarbons TEPH TVPH Phenols Reactivity (CN and sulfide) TOC TOX VOC Anions TOC TOX Anions	BNA (SVOC) BOD COD Corrosivity Creosotes Cyanide Dioxins/Furans Haz Cat Herbicides Ignitability Metals Oil and Grease PAHs Pesticides/PCBs Petroleum Hydrocarbons TEPH TVPH Phenols Reactivity (CN and sulfide) TOC TOX VOC	Ash Conten BNA (SVO BTU Creosotes Cyanide Dioxin/Fura Haz Cat Heavy Meta Herbicides Ignitability Metals Oil and Gre: PAHs Pesticides/P Petroleum Hydrocarbo TEPH TVPH Phenols Reactivity ('Sulfide) Sulfur TCLP - Hg TCLP - Hg TCLP - Met Hg) TCLP - Sem TCLP - Vol: TOC Total Solids TOX VOC

Emergency Response - Sampling and Analysis Plan Revision: 0

Date: 07/1997 Page 9 of 21

7.3 Sampling Approach	Water	Liquid Waste	Soil/Sediment/Solids
Sample Approach (check one) Judgmental Systematic Grid Worst Case (Air Only) Search (hot spots) Random Systematic Random One Time Stratified Random Transect Typical Composite (explain below)	Sample Approach (check one) _3	Sample Approach (check one) Judgmental Systematic Grid Search (hot spots) Random Systematic Random One Time Stratified Random Transect Typical Composite (explain below)	Sample Approach (check one) Judgmental Systematic Grid Search (hot spots) Random One Time Stratified Random Transect Typical Composite (explain below) Samples will be composited as follows:
Justification for Sam	oling Frequency		·

8.0 SAMPLING AND ANALYSIS

Table 1, "Environmental and Quality Control Sample Quantities for Environmental Analyses" identifies the number of field and QC samples to be collected. Include background samples and designate which samples will be used for Lab/Field QC. Include field analyses.

Complete one Table 1 for each Remedial Unit to be sampled for this project. Make extra copies of Table 1

Air Water Carbon steel Carbon steel Stainless steel Stainless steel Teflon (PTFE) PVC Glass Glass Plastic Plastic Plastic/polyethylene Carbon steel/stainless steel Acetate Acetate Water Carbon steel Stainless steel Teflon (PTFE) PVC Glass Plastic Plastic/polyethylene Carbon steel/stainless steel Acetate Acetate	Liquid Waste Carbon steel Stainless steel Teflon (PTFE) PVC Glass	Soil/Sedimen Carbon steel Stainless steel Teffon (PTFE)
Carbon steel Stainless steel Teflon (PTFE) PVC Glass Plastic Plastic/polyethylene Carbon steel/stainless steel Carbon steel/stainless steel Carbon steel/stainless steel	Carbon steel Stainless steel Teflon (PTFE) PVC Glass	Carbon steel Stainless steel Teffon (PTFE)
Stainless steel Teflon (PTFE) PVC Glass Plastic Plastic/polyethylene Carbon steel/stainless steel Stainless steel Teflon (PTFE) PVC Glass Plastic Plastic Plastic/polyethylene Carbon steel/stainless steel	Stainless steel Teflon (PTFE) PVC Glass	Stainless steel Teflon (PTFE)
	Plastic Plastic/polyethylene Carbon steel/stainless steel Acetate	PVC Glass Plastic Plastic/polyeth Carbon steel/- Acetate
8.3 Decontamination Steps (Check applicable of	choices for non-dedicated equip	oment)
Air Water	Liquid Waste	Soil/Sediment
Physical removal Non-phosphate detergent wash Potable water rinse 10% nitric acid rinse Hexane rinse Methylene chloride rinse Pesticide grade acetone rinse Distilled/deionized water rinse Organic free water rinse Air dry Cover with Physical removal Non-phosphate detergent wash Potable water rinse 10% nitric acid rinse Hexane rinse Methylene chloride rinse Pesticide grade acetone rinse Distilled/deionized water rinse Organic free water rinse Air dry Cover with Cover with	Physical removal Non-phosphate detergent wash Potable water rinse 10% nitric acid rinse Hexane rinse Methylene chloride rinse Pesticide grade acetone rinse Distilled/deionized water rinse Organic free water rinse Air dry Cover with	Physical remove Non-phosphate wash Potable water ri 10% nitric acid Hexane rinse Methylene chlor Pesticide grade a Distilled/deioniz rinse Organic free wa Air dry Cover with

Emergency Response - Sampling and Analysis Plan

Date: 07/1997 Page 11 of 21

8.5	Disposal of Investigation-Derived Wastes (IDW)
0 X 0 0	No IDW will be generated. IDW will be containerized and characterized for appropriate disposal. IDW will be placed on site in an approved location.
0 0 0	
0	

8.6 Analytical Summary

Complete Table 2. Table 2, "Environmental Sample Collection and Laboratory Analysis specifications" contains information pertinent to sampling, such as the analytical methods to be used, sample preservation method (include field filtration when necessary) to be used, container types and the quantity of sample to be collected at each sampling location, the preservation method to be used, and the sample holding times (based on the parameter being analyzed for and the matrix). For the air matrix, this table identifies the sample flow rate rather than sample containers and the volume to be collected rather than the preservative.

8.7 Performance Requirements

Complete Table 3. Table 3, "Quality Assurance Objectives for Environmental Samples" contains the required detection limits, analytical method references, the associated required data type designation, and three of the five data assessment parameters (precision, accuracy, completion). The parameters of comparability and representativeness are addressed in the project design and rationale sections of this SAP.

The EPA supports the implementation of the Data Quality Objectives (DQO) Process to ascertain the type, quality, and quantity of data necessary to address site-specific problems ("Guidance for the Data Quality Objectives Process, EPA QA/G-4," EPA 1994d). It is the responsibility of the Project Leader, in conjunction with the QAO, to implement the DQO process as part of the project planning activities. In those cases in which the DQO process is not used, it is still necessary to state the project quality objectives and measurement performance criteria in the project-specific SAP.

9.0 TECHNICAL STANDARD OPERATING PROCEDURES

START Technical Standard Operating Procedures (TSOPs) will be implemented for this project. TSOPs are applicable procedures that may be varied or changed as required, dependent upon site conditions or equipme limitations imposed by the procedure. In all instances, the procedures employed will be documented and asswith the final project deliverables.

Indicate Applicable START Technical Standard Operating Procedures (check all that apply):

- TSOP 4.1 General Field Operation describes the overall field organization in support of sample consample identification, record keeping, field measurements, and data collection.

 TSOP 4.2 Sample Containers, Preservation and Maximum Holding Times describes the methods place samples in appropriate containers to preserve specific samples, and the maximum time a sample held before it is analyzed.
- x TSOP 4.3 Chain of Custody outlines the documentation necessary to trace sample possession.
- x TSOP 4.4 Sample Identification, Labeling, and Packaging specifies the methods for sample identiand labeling. Sample packing and shipment methods are also outlined.
- x TSOP 4.5 Sample Location Documentation outlines the methods for documentation of all sample
- x TSOP 4.6 Use and Maintenance of Field Log Books outlines the proper documentation of informatield log books during data collection activities.
- TSOP 4.7 Hazardous Waste Characterization outlines the methods for characterization of unknow materials for disposal, bulking, recycling, grouping and classification purposes.
- x TSOP 4.8 Investigation Derived Waste Management outlines the management of wastes generated environmental field operations.
- TSOP 4.9 Monitor Well Installation describes the methods for monitoring well installation, includesign, construction procedures, and materials.
- TSOP 4.10 Monitor Well Development describes the methods for monitoring well development, i data recording formats.
- x TSOP 4.11 Equipment Decontamination describes the techniques used to decontaminate equipme. sample collection or data measurement.
- x TSOP 4.12 Groundwater Sampling establishes the methods for monitoring well purging, sample c and equipment use when sampling.
- x TSOP 4.12A Groundwater Sampling for Low Flow Purge describes equipment and operations for groundwater monitor wells using a pump to obtain samples with a minimum of turbidity.
- x TSOP 4.13 Water Level Measurement describes the methods used to record water levels at surfaclocations and in groundwater monitoring wells.
- TSOP 4.14 Water Sample Field Measurements describes the measurement techniques and data requirements associated with the collection of either a groundwater or surface water sample.

Emergency Response - Sampling and Analysis Plan Revision: 0

Date: 07/1997 Page 13 of 21

0	TSOP 4.15 - Flow Measurements - describes the methods for conducting flow measurements during surface water sampling.
۵	TSOP 4.16 - Surface and Shallow Depth Soil Sampling - establishes the methods for sample collection using a variety of sampling devices. Techniques for avoiding sample and equipment cross-contamination are also discussed.
	TSOP 4.17 - Sediment Sampling - establishes the methods for sample collection using a variety of sampling devices. Techniques for avoiding sample and equipment cross-contamination are also discussed.
	TSOP 4.18 - Surface Water Sampling - establishes the methods for sample collection and equipment use at a variety of surface water locations. Techniques for avoiding water body and sample cross-contamination are also discussed.
	TSOP 4.19 - Soil Gas Sampling - outlines the methods for decontamination and soil gas sampling for routine field operations.
	TSOP 4.20 - Drum and Container Sampling - describes methods for safe and effective sampling of drums and containers less than 120 gallons.
	TSOP 4.21 - Tank Sampling - describes the measurement techniques used in sampling aboveground storage tanks.
	TSOP 4.22 - Aquifer Slug Testing - establishes the methods and data recording formats for conducting slug tests in groundwater monitoring wells.
	TSOP 4.23 - Aquifer Pump Testing - establishes the methods and data recording formats for conducting pump tests in groundwater extraction and monitoring wells.
	TSOP 4.24 - Geological Borehole Logging - describes the information and observations to be recorded for the identification, logging, and sampling of a borehole. Sampling methods and data collection formats are also presented.
	TSOP 4.25 - Residential Dust Sampling - describes the methods for collecting composite dust samples in a residential community.
	TSOP 4.26 - Chip, Wipe and Sweep Sampling - describes the equipment and methods required for obtaining a representative chip, wipe or sweep sample to monitor potential surface contamination.
.	Draft Equipment SOP 1.6 - TW Spectrace 9000 FPXRF - describes the equipment and methods required for obtaining a representative metals analyses of selected materials.

10.0 SAMPLE DOCUMENTATION, HANDLING, AND SHIPMENT

Sample documentation, handling, and shipment will be in accordance with the START generic QAPP and START TSOPs.

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

11.0	QUALITY ASSURANCE ASSESSMENTS
The fo	ollowing QA Assessments will be applied to this project:
x x 0 0	Independent technical review Technical edit Readiness review Field surveillance Field audit Management system review
	uplete description of these reviews can be found in Section 12.0 of the ERP Generic QAPP.
12.0	DATA VALIDATION
Data v	will be validated as indicated: x QC review x Validation 🗆 Undecided
* Dat	a Validation is required for definitive data.
13.0	DELIVERABLES
The fo	llowing deliverables will be provided: (Check all that apply)
x	Trip Report: A detailed accounting of what occurred during each sampling mobilization will be prep within (two weeks) of the last day of each sampling mobilization. The Trip Report will be organized three or four major sections: Background, Observations and Activities, Conclusions and Recommendational), and Future Activities. Information will be provided regarding major events, dates, and per on site (including affiliations).
	Status Report: Prepared periodically (weekly/monthly/etc.) To provide a detailed accounting of pass future sampling activities. Information will be provided on time and date of major events and personsite (including affiliations). The status report will be organized into three major sections: Backgroun Observations and Activities, and Future Activities.
	Analytical Report: Documentation of lab selection, raw data, or analytical results.
	Data Validation Report: Review of the data generated under this plan.
	(Draft) Final Report: Correlates available background information with data generated under this sar event and identifies supportable conclusions and recommendations that satisfy the objectives of this sampling QA/QC plan.

Emergency Response - Sampling and Analysis Plan Revision: 0
Date: 07/1997
Page 15 of 21

The follow	ving illustrations will be provided:
x Ma	aps (size specifications)
II	gures (borehole logs, cross sections)
	rawings (scale)
	eld forms
- '''	
<u> </u>	
14.0 PR	ROJECT ORGANIZATION AND RESPONSIBILITIES
Personnel I	Information:
1	Site Assessment Manager, Luke Chavez, will provide overall direction to the START staff concerning ectives, sampling needs, and schedule.
Project Lea	T Project Leader, John Noto, is the primary point of contact with the EPA On-Scene coordinator. The ader is responsible for the development and completion of the Sampling QA/QC Plan, project team on, and supervision of all project tasks.
	T Quality Assurance Officer is responsible for ensuring field adherence to the Sampling QA/QC Plan and my deviations. The Analytical Services Coordinator is the primary contact with the analytical laboratory.
The followi	ing personnel will also work on this project:
Name TBD	Responsibility Sampling and documentation
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	
For a detaile	ed description of personnel responsibilities, refer to Section 2.0 of the ERP generic QAPP.
15.0 SCH	EDULE OF ACTIVITIES
Proposed Sc	chedule of Work:
Activity	Start Date End Date
	ls October 1998
zambia uali	
	
· · · · · ·	

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Revision: 0 Date: 07/1997 Page 16 of 21

TABLE 1
Environmental and Quality Control Sample Quantities for Environmental Analyses
Remedial Unit Groundwater

物理家			d - deto sig Lugiveie		* (3)				y Control San				K.P. S
											2A/QC	il ve here in	
Sample ID / Location	9 9 9		Anion			Standard Reference Samples	MS/MSD	Other3	Field Replicates	Trip Blanks	Field Blank	Equipment Rinsate	Total Samples
EPA-MW-01S	х	х	х		 		х						3
EPA-MW-01D	x	x	х										3
EPA-MW-02	x	m5 <i>7e</i> 6l	х		_								3
EPA-MW-03	x	х	х										3
EPA-MW-04	х	х	х										3
EPA-MW-05	х	х	х						_				3
EPA-MW-06 (field duplicate)	x	x	х						x				3
EPA-MW-07 (Trip blank)	х						,			х	-		1
EPA-MW-08 (rinsate)	х						· ¾					x	1
Total Samples	\$ (9·50)	7 .	12 7 (7)	The states	della est		The second second	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	编约1 第9	/ / / / / / / / / / / / / / / / / / /		(1) 1 章章	♣ 指 23 (集)

Revision: 0 Date: 07/1997 Page 17 of 21

TABLE 2
Environmental Sample Collection and Laboratory Analysis Specifications

Analysis	Analytical Method	Reference	Container:	Required Volume	Preservation	Holding Time
VOC	524.4	EPA	2 - 40ml glass vial	80 mi	4°C	7 days
Metals	200.7	EPA	1 liter HDPE	200 ml	pH<2 HNO3	6 months
Anions	300	EPA	250 ml HDPE	100 ml	4°C	28 days
				i		
						
	<u> </u>	,				•
	 		"			
			,			
						·
		 				
		***************************************	-	 	-	-

a Container types: AGV = amber glass vial; HDPE = high-density polyethylene bottle and cap; AGB = amber glass bottle.

b Sample preservation will be performed by the sampler immediately upon sample collection. Preservatives will be added to filtered samples following filtration. Containers used for volatile organic samples will be completely filled, permitting no head space.

c Holding times begin from the time of sample collection in the field. Two holding times indicate the maximum holding time until sample extraction and the maximum holding time.

Emergency Response - Sampling and Analysis Plan Revision: 0 Date: 07/1997 Page 18 of 21

TABLE 3 Quality Assurance Objectives for Environmental Samples

Analysis (for each matrix)	Analytical Method	Data Type	Units	Detection Limits	Accuracy %	Precision,	Completeness
VOCs	524.4	D	ppb	1 ppb	90	90	95
Metals	200.7	D	ppm	varies	90	90	95
Anions	300	D	ppm	varies	90	90	. 95
						,	•
			<u> </u>				
				<u> </u>			
i,					,		
					·		

Note: The complete list of analytes determined from laboratory sample analysis is published in each reference document listed for the specified analytical method. Detection limit, accuracy, and precision values are presented in this table as ranges, but are assigned to each individual analyte as published in each reference document.

Data type refers to the following:

S = non-definitive data (i.e., screening);

S/D = non-definitive data with 10% definitive confirmation;

D = definitive data

75-70306.00
F:\START\Mt.Olivet\ERP-SAP.wpd:bas

Revision: 0 Date: 07/1997 Page 19 of 21

ATTACHMENT 1 Data Types

QA/QC Levels	Non-Definitive (Screening)	Non-Definitive with 10% Definitive Confirmation (Screening with Confirmation)	The first term of the second o
Data Uses	Data useful only for immediate situation; not defensible for decision making	Data useful for site assessment and decision making at OSC discretion	Data useful for enforcement, litigation, risk assessment, and most other uses
Typical Uses	 Exploratory data Screening Non-critical Decisions Emergency situations Waste profiling 	 Site characterization Waste characterization Clean-up confirmation 	Enforcement Litigation Risk assessment
Quality Assurance Type	Data of <u>Unknown</u> Quality	Data of known quality (low level)	Data of known quality (high level)
Quality Assurance Elements	Logged quality control checks Qualified analyst	 Identification Quantification Confirmation of 10% of the samples by a definitive method Error determination¹ 	 Raw data Definitive identification Definitive quantification Error determination
Validation	None	QC Review ²	Yes
Quality Control Elements	 Instrument QC Field QC Analyst training 	 Instrument QC Field QC Analyst training QC within method parameters 	 Instrument QC Field QC Analyst training QC within method parameters Document DLs

⁴ Error determination is required for both the definitive and non-definitive portions of the data.

¹ QC review is required for all samples analyzed. Data validation is required for the confirmation data only.

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Emergency Response - Sampling and Analysis Plan Revision: 0

Date: 07/1997 Page 20 of 21

ATTACHMENT 1 Data Types

QA/QC Levels	Non-Definitive (Screening)	Non-Definitive with 10% Definitive. Confirmation (Screening with Confirmation)	22.044.00.000.000.000.000.000.000.000.00
Sampling Plan	Optional	Mandatory	Mandatory
Typical Volatile Analyses	Field GC	Field GC with 10% of samples being confirmed by GC/MS with full QA/QC deliverables; duplicates and blanks.	EPA Method 8240 or 8260; data package; replicates; blanks and spikes
		GC method with 10% of samples being confirmed by GC/MS with full QA/QC deliverables; duplicates and blanks.	EPA Method 8010/ 8020 with second column confirmation; data package replicate, blanks, and spikes.
Typical Non-volatile Analyses	Immunoassay kits	Immunoassay with 10% of samples being confirmed by GC/MS with full QA/QC deliverables; duplicates and blanks.	EPA Method 8270; data package; replicates, blanks, and spikes.
		GC method with 10% of samples being confirmed by GC/MS with full QA/QC deliverables; duplicates and blanks.	EPA Method 8100/ 8120 with second column confirmation; data package; replicate, blanks, and spikes.
Typical Metal Analyses	• Field XRF	Field XRF with 10% of samples being confirmed by ICP or AA with full QA/QC deliverables; duplicates and blanks.	EPA Method 6010; data package; replicates, blanks, and spikes.
		 AA, ICP, IC, or wet chemistry methods with 10% of samples being confirmed by ICP or AA with full QA/QC deliverables; duplicates and blanks. 	EPA methods for AA (7000s); data pa replicate, blanks, and spikes.

Date: 07/1997 Page 21 of 21

ATTACHMENT 1 Data Types (continued)

QA/QC Levels	Non-Definitive (Screening)	Non-Definitive with 10% Definitive Confirmation (Screening with Confirmation)	Definitive
Typical PCB/ Pesticide Analyses	- Inimunoassay Kits	 Immunoassay kits³ with 10% of samples being confirmed by GC/MS with full QA/QC deliverables; duplicates and blanks. 	EPA Method 8140-Pesticides; data package; replicates, blanks, and spikes.
		 GC method with 10% of samples being confirmed by GC on a second column with full QA/QC deliverables; duplicates and blanks. 	EPA Method 8080 with second column confirmation; data package; replicate, blanks, and spikes.
Typical Petroleum Hydrocarbon Analyses	Immunoassay kits Chem test kits (HANBY) IR (EPA 413 and 418) methods	 Immunoassay, IR, and chemical analysis with 10% of samples being confirmed by GC/MS or EPA Method 8015 (modified) with second column confirmation with full QA/QC deliverables; duplicates and blanks. 	EPA Method 8015 (modified) with second column confirmation; data package; replicate, blanks, and spikes.
		GC method with 10% of samples being confirmed by GC/MS or GC on two columns with full QA/QC deliverables; duplicates and blanks.	•
	neters is not analyte specific. Therefore, by strice efinitive if approved methodology is followed.	t definition, any physical test would have to be	considered non-definitive. However, the
Physical Parameters (pH, flash point, etc.)	Field testing equipment	Testing equipment with QC samples, duplicates, and blanks.	Testing equipment; data package; and QC samples, duplicates, and blanks.

³ Immunoassay kits used to generate Level I data must be capable of generating calibration, blank, duplicate, and estimation of error data.

APPENDIX D

Inorganic Analysis Data Sheets

EPA	SAMPLE	NO
-----	--------	----

MHEB96

Lab Code: SWOK_____ Case
Matrix (soil/water): WATER

SAS No.: SD

SDG No.: MHEB96

Level (low/med): LOW_

Lab Sample ID: 36392.01 Date Received: 11/13/98

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	c	Q	м	
7429-90-5	Aluminum	12.0	Ī₩	 	P	luz
7440-36-0	Antimony -	3,0		[[P_	[
7440-38-2	Arsenic					
7440-39-3	Barium	45.6			P-	
7440-41-7	Beryllium	1.0			- -	i
7440-43-9	Cadmium	1.0			P_ P_ P_	J
7440-70-2	Calcium	126000	Ŭ		-	Ì
7440-47-3	Chromium	7.1	B			
7440-48-4	Cobalt	2.0	ซ		₽-	
7440-50-8	Copper	2.0	Ū,		ו דם ו	
7439-89-6	Iron	109	Ŭ		P_	
7439-92-1	Lead	1.0	ប៊		B-	}
7439-95-4	Magnesium	43000	٦		P_ P	[
7439-96-5	Manganese	2.5	₽		P-	
7439-97-6	Mercury	0.22	ו"		Ċ∇	11
7440-02-0	Nickel -	17.0	B		P	· •
7440-02-0	Potassium	1790	В		P-	
7782-49-2	Selenium	3.0			P-	นร
7440-22-4	Silver		ان		Ď-	W 3
	· — — /	2.0	╵		<u>-</u> -	
7440-23-5	Sodium		ᆔ		P P	ιλ.
7440-28-0	Thallium_					V
7440-62-2	Vanadium_		В		₽_	
7440-66-6	Zinc	2.9	В		P_	
			_			
			_			
	i		_			
	I		_1			
		[_[I	
			_		!	
			_			
		<u> </u>	_			
	<u></u>		_		[
	I		_			
· · · · · · · · · · · · · · · · · · ·						

Color Before: Color After:	COLORLESS COLORLESS	Clarity Before: CLEAR_ Clarity After: CLEAR_	Texture: Artifacts:
Comments:			RK 1/30/29
		FORM I - IN	ILMO4.0

EPA SAMPL

MHEB97

Tab	Mama.	COLEMNSTOR	TAD	ΛP	OPTAROMA	Contract.	68-D5-0136
Lab	name:	SOUTHWEST	TWR	OF.	OKLAHOMA	Contract:	08-D2-0T30

Case No.: 26631 SAS No.: Lab Code: SWOK_

SDG No.: Lab Sample ID: 3639:

Matrix (soil/water): WATER Level (low/med): LOW_ 0.0

Date Received: 11/1

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		 	,			
CAS No.	Analyte	Concentration	С	Q	М	
7429-90-5	Aluminum	12.0	ਰਿ		P P	U つ
7440-36-0	Antimony	3.0	Ū		₽] `
7440-38-2	Arsenic	2.0	Ū		₽-	}
7440-39-3	Barium	23.0	В		P	1
7440-41-7	Beryllium	1.0	ŪΙ		P_	
7440-43-9	Cadmium	1.0	Ū		P-	
7440-70-2	Calcium	125000			P-	
7440-47-3	Chromium	1.0	ات		P-	นว
7440-48-4	Cobalt	2.0	ΰ		\mathbf{P}^{-1}	J V J
7440-50-8	Copper	2.0	υl		P-	
7439-89-6	Iron	12.0	ŭΙ		~-	
7439-92-1	Lead	1.0	ŭΙ		P P	
7439-95-4	Magnesium	34300	Ĭ		P-	
7439-96-5	Manganese	3.1	Βĺ		P-	
7439-97-6	Mercury	0.23	_		Ċ∇	u
	Nickel	1.0	υl		P	- (
	Potassium	2050	в	 ;	P-	
	Selenium	3.0	υl		$ _{\mathbf{P}}^{-} $	$\alpha \supset$
	Silver		ŭ		P-	-
	Sodium	27500	٦		\mathbf{P}^{-}	
	Thallium		副		P-	u
	Vanadium		וט		P-	•
	Zinc	21.3	٦,		~-	
/440-00-0	2111C——————————————————————————————————					
[-[[—[
	j		-		!	
			-1			
	i]	-1			
			-		—[
 			-		<u>—</u> [
					<u>—</u> [
			_[.			
1		L.	- 1			

Color Before: Color After:	COLORLESS	Clarity Before Clarity After:	: CLEAR_ CLEAR_	Texture: Artifacts:
Comments:				TK 1/20/11
				
		FORM I - I	.N	ILM

1

EPA SAMPLE NO.

MHEB98	
--------	--

SDG No.: MHEB96

Matrix (soil/water): WATER Level (low/med): LOW

Lab Sample ID: 36392.03

% Solids:

0.0

Date Received: 11/13/98

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.		, 		, 				٠.
7440-36-0		CAS No.	Analyte	Concentration	c	Q	М	
7440-36-0		7429-90-5	Aluminum	12.0	ប៊		╽ᡖ╴	่นร
7440-38-2 Arsenic 2.0 U P 7440-39-3 Barium 53.0 B P 7440-41-7 Beryllium 1.0 U P 7440-43-9 Cadmium 1.0 U P 7440-70-2 Calcium 125000 P 7440-47-3 Chromium 2.3 B P 7440-48-4 Cobalt 2.0 U P 7439-89-6 Iron 20.8 B P 7439-92-1 Lead 1.0 U P 7439-95-4 Magnesium 43300 P 7439-97-6 Mercury 0.31 CV W 7440-02-0 Nickel 4.5 B P 7440-09-7 Potassium 3.0 U P 7440-22-4 Silver 2.0 U P 7440-23-5 Sodium 46400 P 7440-28-0 Thallium 3.8 B P 7440-62-2 Vanadium 1.7 B P						· · ·		~ ^
T440-39-3					_	[1
T440-41-7				53.0				
7440-43-9 Cadmium 1.0 U P 7440-70-2 Chromium 2.3 B P 7440-47-3 Chromium 2.3 B P 7440-48-4 Cobalt 2.0 U P 7439-89-6 Copper 2.0 U P 7439-92-1 Lead 1.0 U P 7439-95-4 Magnesium 43300 P P 7439-96-5 Mercury 0.31 CV A 7440-02-0 Nickel 4.5 B P 7440-02-0 Nickel 3.0 U P 7440-22-4 Silver 2.0 U P 7440-23-5 Sodium 46400 P 7440-28-0 Thallium 3.8 B P 7440-62-2 Vanadium 1.7 B P					บ			1
7440-70-2 Calcium 125000 P T T T T T T T T T		•			Ū			}
7440-47-3 Chromium 2.3 B				125000				l
7440-48-4 Cobalt 2.0 U P P 7440-50-8 Copper 2.0 U P P 7439-89-6 Iron 20.8 B P P 7439-95-4 Magnesium 43300 P P 7439-96-5 Manganese 1.0 U P P 7439-97-6 Mercury 0.31 CV 7440-02-0 Nickel 4.5 B P P 7782-49-2 Selenium 3.0 U P CV 7440-23-5 Sodium 46400 P 7440-28-0 Thallium 3.8 B P CV 7440-62-2 Vanadium 1.7 B P CV 7440-62-2 Vanadium 1.7 B P CV CV CV CV CV CV CV		7440-47-3	Chromium	2.3	B			17
7439-89-6 Iron		7440-48-4		2.0	U		P_	_
7439-89-6 Iron		7440-50-8	Copper	2.0	U		₽ [—]	}
7439-95-4 Magnesium 43300 P P A39-96-5 Manganese 1.0 U P P A39-97-6 Mercury 0.31 CV A P P A440-02-0 Nickel 4.5 B P P A440-09-7 Potassium 1870 B P P A440-22-4 Silver 2.0 U P P A440-23-5 Sodium 46400 P P A440-28-0 Thallium 3.8 B P A440-62-2 Vanadium 1.7 B P P		7439-89-6		20.8	В		P_	1
7439-96-5 Manganese 1.0 U P 7439-97-6 Mercury 0.31 CV 7440-02-0 Nickel 4.5 B P 7782-49-2 Selenium 3.0 U P 7440-23-5 Sodium 46400 P 7440-28-0 Thallium 3.8 B P 7440-62-2 Vanadium 1.7 B P		7439-92-1	Lead	1.0	U		P	Į
7439-97-6 Mercury 0.31 CV 7440-02-0 Nickel 4.5 B P P 7782-49-2 Selenium 3.0 U P U 7440-23-5 Sodium 46400 P P 7440-23-5 Thallium 3.8 B P 7440-62-2 Vanadium 1.7 B P P		7439-95-4	Magnesium	43300			P_	ļ
7440-02-0 Nickel		7439-96-5	Manganese		Ū		₽ <u> </u>	İ
7440-09-7 Potassium	Ì	7439-97-6	Mercury	0.31			CV	시
7782-49-2 Selenium 3.0 U P U 7440-22-4 Silver 2.0 U P P U 7440-23-5 Sodium 46400 P P U 7440-62-2 Vanadium 1.7 B P U		7440-02-0	Nickel	4.5	围	-,	P	
7440-22-4 Silver 2.0 U P 7440-23-5 Sodium 46400 P 7440-28-0 Thallium 3.8 B P 7440-62-2 Vanadium 1.7 B P		7440-09-7	Potassium		В		P_	ĺ
7440-23-5 Sodium 46400 P P P 7440-28-0 Thallium 3.8 B P P 7440-62-2 Vanadium 1.7 B P P		7782-49-2		3.0	U			ムブ
7440-28-0 Thallium 3.8 B P P	ı	7440-22-4	Silver	2.0	U		P	
7440-28-0 Thallium 3.8 B P P	ı	7440-23-5	Sodium	46400	_		P .	
	ļ						P	U
7440-66-6 Zinc	1	7440-62-2	Vanadium_		- 1			
	١	7440-66-6	Zinc	2.1	В		P_	
	Ì			<u> </u>	_			
	1				_			
	1				_1			
	1				_			
	ı				_			
	ı							l
	ı				_	·		
					_			
lllll	١				_			
			!	i	_1		/	

Color Before: Color After:	COLORLESS COLORLESS	Clarity Before: Clarity After:	CLEAR_ CLEAR_	Texture: Artifacts:	
Comments:				TZ 1/20/19	
					<u> </u>
		FORM I - IN	·	ILMO	 1 0

EPA	SAMPL.

MHEB99

Lab Name: SOUTHWEST_LAB_OF_OKLAHOMA Contract: 68-D5-0136

Lab Code: SWOK___ Case No.: 26631 SAS No.:

: SDG No.: 1 Lab Sample ID: 3639

Matrix (soil/water): WATER Level (low/med): LOW_

Date Received: 11/1

% Solids: __0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No. Analyte Concentration C Q M 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 Calcium 111000 C Q M P Q Q M P Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q
7440-36-0 Antimony 3.0 U P 7440-38-2 Arsenic 2.0 U P 7440-39-3 Barium 49.4 B P 7440-41-7 Beryllium 1.0 U P 7440-43-9 Cadmium 1.0 U P 7440-70-2 Calcium 111000 P
7440-36-0 Antimony 3.0 U P 7440-38-2 Arsenic 2.0 U P 7440-39-3 Barium 49.4 B P 7440-41-7 Beryllium 1.0 U P 7440-43-9 Cadmium 1.0 U P 7440-70-2 Calcium 111000 P
7440-38-2 Arsenic 2.0 U P 7440-39-3 Barium 49.4 B P 7440-41-7 Beryllium 1.0 U P 7440-43-9 Cadmium 1.0 U P 7440-70-2 Calcium 111000 P
7440-39-3 Barium 49.4 B P 7440-41-7 Beryllium 1.0 U P 7440-43-9 Cadmium 1.0 U P 7440-70-2 Calcium 111000 P
7440-41-7 Beryllium
7440-43-9 Cadmium
7440-70-2 Calcium 111000 P
7440-47-3 Chromium 1.0 0 P UJ
7440-48-4 Cobalt 2.0 U P
7440-50-8 Copper 2.0 U P
7439-89-6 Iron 12.0 U P
7439-92-1 Lead 1.0 U P
7439-95-4 Magnesium 41200 P
7439-96-5 Manganese 1.0 U
7439-97-6 Mercury 0.25 CV \
7440-02-0 Nickel 1.2 B P
7440-09-7 Potassium 2100 B P
7782-49-2 Selenium 3.0 U P U
7440-22-4 Silver 2.0 U P
7440-23-5 Sodium 53700 P
7440-28-0 Thallium3.9 B P
7440-62-2 Vanadium 2.3 B P
7440-66-6 Zinc 2.0 U P
RF 1/30/9

Color Before: Color After:	COLORLESS COLORLESS	Clarity Before: Clarity After:	CLEAR_ CLEAR_	Texture: Artifacts:
Comments:				
··		FÖRM I - IN		ILM

EPA	SAM	PLE	NO.

					_	MHECOO	
		LAB_OF_	OKLAHOMA	Contract:	68-D5-0136	l	
Lab Code: :		Case	No.: 2663:	l SAS No	o.:	SDG No.:	MHEB96
Matrix /co	11 (wator) .	MATER			Iah Camala	. TD 2626	11 00

Date Received: 11/13/98

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		γ 	_			,
CAS No.	Analyte	Concentration	c	Q	м	
7429-90-5	Aluminum	12.0	ប		P	luz
7440-36-0	Antimony	3.0	บั	ļ— —	۳۵ ا	"
7440-38-2	Arsenic	2.0				!
7440-39-3	Barium	47.2	E		P_ P_	1
7440-41-7	Beryllium	1.0			P_	}
7440-43-9	Cadmium	1.0	Ū		P_ P	ĺ
7440-70-2	Calcium	116000	-		₽-	!
7440-47-3	Chromium	1.0	₹		P-	ムゴ
	Cobalt	2.0	Ü		P_	0, 2
1	Copper	2.0	Ü		₽-	
7439-89-6	Iron	12.0	Ü		P	
7439-92-1	Lead	1.0	Ü		P-	
7439-95-4	Magnesium	40300			P_	
7439-96-5	Manganese	1.0	ij		P-	
7439-97-6	Mercury	0.21	Ĭ		€V	ル
7440-02-0	Nickel	1.0	₹		P	
	Potassium	2110	В		P-	
	Selenium	3.0	υl		P-	UZ
	Silver		ŭ		$ \mathbf{p}^- $	0(3
	Sodium	68300	Ĭ	 -	P-	
	Thallium	3.6	E		-P	
, ,	Vanadium		Ē		P-	
	Zinc		וט	 -)	P	
1440-00-0	ZIIIC		۲,			
	———I		-1	 -		
	———		-1			
			-	——		
			-1	——I		
			-1			
	 i		-1	 -		
			-[
		 -	- -	 [—I	
·			-1			
l			_1	,	!	

Color Before: Color After:	COLORLESS COLORLESS	Clarity Before: CLEAR_ Clarity After: CLEAR_	Texture:
Comments:			Re 1/30/99
···-			
		EODM I IN	TIMO

FORM I - IN

ILM04.0

EPA SAMPI

MHEC01

SDG No.:

Matrix (soil/water): WATER

Lab Sample ID: 3639

Level (low/med): % Solids:

0.0

Date Re sived: 11/1

Concentration Units (ug/L or mg/kg dry weight : UG/L_

	, -	· · · · · · · · · · · · · · · · · · ·	_	,		
CAS No.	Analyte	Concentration	C	Q	м	
7429-90-5	Aluminum	1680			P	1 3
7440-36-0	Antimony	3.0	ប៊		P-	us
7440-38-2	Arsenic	2.0	U.		P_	us
7440-39-3	Barium —	105	В		p_	
7440-41-7	Beryllium	1.0	็บไ	·	$\bar{\mathbf{p}}^-$	5
7440-43-9	Cadmium	1.0	U		P_	47
7440-70-2	Calcium	143000			P	27
7440-47-3	Chromium	6.4	B		$_{\rm P}^{-}$	ゴ
7440-48-4	Cobalt	2.0	U		P	ZZ
7440-50-8	Copper	6.7	В		P_	7
7439-89-6	Iron	3180			P_	~
7439-92-1	Lead	1.8	ਛ		P^{-1}	}
7439-95-4	Magnesium	49600			p_	1 1
7439-96-5	Manganese	64.5	-		P-	1
7439-97-6	Mercury	0.24	-		€V	ムゴ
7440-02-0	Nickel -	6.3	B		P	ਤ ੇ
7440-09-7	Potassium	3480	В		P_	ت د
7782-49-2	Selenium	3.0	υl		₽-	ひろ
7440-22-4	Silver	2.0	U		P_	už
7440-23-5	Sodium	42800			P_	2
7440-28-0	Thallium	3.4	B		P^-	1
7440-62-2	Vanadium_	4.9	В		P_	.
7440-66-6	Zinc	19.0	в		P_	
' - ' - ' - ' - '					-	V
· · · · · ·			-1			
			-1			
			7			
			-		1	
			-			
			-			
·			-1			
			-[-	
			-			
l	l	·	-'			

Color Before Color After:	Clarity Before: CLEAR_ Clarity After: CLEAR_	Texture: Artifacts:
Comments:		7× 1/30/17
	 TORW T	

EPA SAM	PLE	NO
---------	-----	----

BATTE	\sim	2
MHE	Lυ	_

Case No.: 26631 SAS No.:

SDG No.: MHEB96 Lab Sample ID: 36392.07

Date Received: 11/13/98

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No.	Analyte	Concentration	c	Q	м	
7429-90-5	Aluminum	12.0	ប៊		P	ルゴ
7440-36-0	Antimony	3.0	Ū	l ———	P_	``
7440-38-2	Arsenic -	2.0	lυ		P_	
7440-39-3	Barium —	53.5	В		₽™	1
7440-41-7	Beryllium	1.0	U		P - P -	
7440-43-9	Cadmium	1.0	ប		₽_	i
7440-70-2	Calcium	126000			P_	
7440-47-3	Chromium	2.9	B		P_	<u> </u>
7440-48-4	Cobalt -		ן ט		I p [™]	i –
7440-50-8	Copper		ប		₽	
7439-89-6	Iron —	13.6	В		P_	1
7439-92-1	Lead	1.0	ប		P_	İ
7439-95-4	Magnesium	43700			₽_	Ì
7439-96-5	Manganese	1.0	Ü		₽_	
7439-97-6	Mercury	0.25			€V	ᇇ
7440-02-0	Nickel -	4.6	B		P	
7440-09-7	Potassium	1850	В		₽-	ĺ
	Selenium	3.0	U		P_	uT
	Silver -	2.0	U		p	
	Sodium	47300	- 1		P_	
	Thallium	2.7	₽		P_	-
	Vanadium		В		P-	
7440-66-6	Zinc	2.0	<u>י</u>		₽_	
			- }			
			-		-	
		· · · · · · · · · · · · · · · · · · ·	-1			
			-		<u> </u>	
	 i		-			
			-		—	
			-		<u> </u>	
			-			
			-[
			-		—	
! i		I	-1		<u> </u>	

Color Before: Color After:	COLORLESS COLORLESS	Clarity Before: CLEAR_ Texture: Clarity After: CLEAR_ Artifacts:	
Comments:		िस् ।(३०/१९	
· ·		FORM T - IN TIMOA (`

APPENDIX E

Acculab's Report of Analysis General Chemistry

Date: 11/30/98 Page 1 - B

Chloride

Hydroxide (as OH-)

REPORT OF ANALYSIS

Lab Job Number: 026740 Ms Karen Kuoppala Date Samples Received: 11/13/98 URS Operating Services 1099 18th Street Customer PO Number: OS-98-P-5465 Suite 710 Denver, CO 80202-1908 ALR Designation: 98-A23251 EPA-MW-01S Client Designation: Sample Location: Location II: 11/11/98 16:45 Date/Time Collected General Chemistry (results in mg/L unless noted): Alkalinity, Total (as CaCO3) 300 Bicarbonate (as HCO3-) Carbonate (as CO3=) < 5 150 Chloride < 5 Hydroxide (as OH-) 110 Sulfate (as SO4) Нф 7.4 A 98-A23252 ALR Designation: EPA-MW-01D Client Designation: Sample Location: Location II: Date/Time Collected 11/10/98 11:30 General Chemistry (results in mg/L unless noted): Alkalinity, Total (as CaCO3) 310 Bicarbonate (as HCO3~) Carbonate (as CO3=) < 5 Chloride 69 < 5 Hydroxide (as OH-) Sulfate (as SQ4) 160 7.3 🛦 ALR Designation: 98-A23253 EPA-MW-02 Client Designation: Sample Location: Location II: Date/Time Collected 11/11/98 11:50 General Chemistry (results in mg/L unless noted): Alkalinity, Total (as CaCO3) 310 Bicarbonate (as HCO3-) < 5 Carbonate (as CO3=)

160

< 5

000002

Date: 11/30/98 Page 2 - B

REPORT OF ANALYSIS

Ms Karen Kuoppala URS Operating Services	Lab Job Number: 026740 Date Samples Peceived:
ALR Designation:	98-A23253
Client Designation:	EPA-MW-02
Sample Location:	
Location II:	
Date/Time Collected	11/11/98 11:50
Sulfate (as SO4)	110
рН	7.4 🛦
ALR Designation:	98-A23254
Client Designation:	EPA-MW-03
Sample Location:	
Location II:	
Date/Time Collected	11/11/98 10:10
eral Chemistry (results in mg/L unle	ess noted):
Alkalinity, Total (as CaCO3)	260 ,
Bicarbonate (as HCO3-)	310
Carbonate (as CO3=)	< 5
Chloride	140
Hydroxide (as OH-)	< 5
Sulfate (as SO4)	100
pН	7.4 🛦
. ALR Designation:	98-A23255
Client Designation:	EPA-MW-04
Sample Location:	
Location II:	•
Date/Time Collected	11/11/98 13:20
eral Chemistry (results in mg/L unle	ess noted):
Alkalinity, Total (as CaCO3)	280
Bicarbonate (as HCO3-)	340
Carbonate (as CO3=)	< 5
Chloride	. 170
Hydroxide (as OH-)	< 5
A-3-6-4 A-3 A-4-	100
Sulfate (as SO4)	100

Date: 11/30/98 Page 3 - B

REPORT OF ANALYSIS

Ms Karen Kuoppala URS Operating Services Lab Job Number: 026740 URS005 Date Samples Received: 11/13/98

ALR Designation: Client Designation: Sample Location:

98-A23256

Location II:

EPA-MW-05

Date/Time Collected

11/11/98 18:50

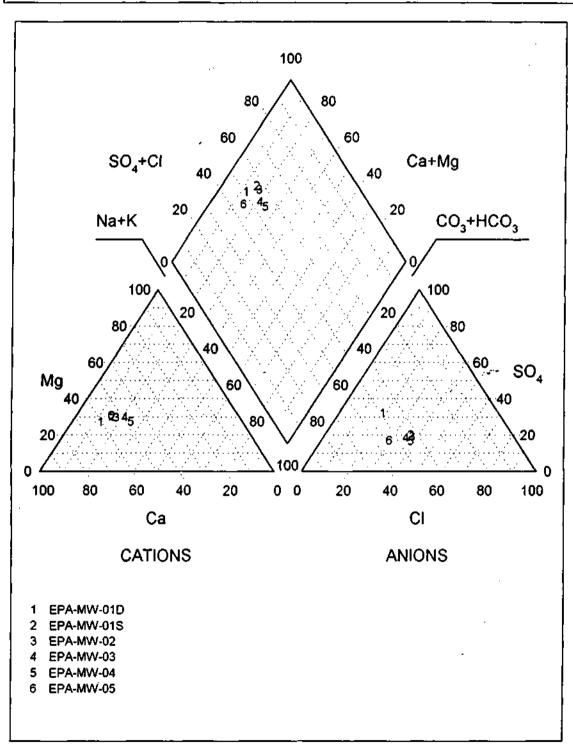
General Chemistry (results in mg/L unless noted):

Alkalinity, Total (as CaCO3)	360
Bicarbonate (as HCO3-)	440
Carbonate (as CO3=)	. < 5
Chloride	140
Hydroxide (as OH-)	< 5
Sulfate (as SO4)	. 110
рн	7.3
-	

NOTES:

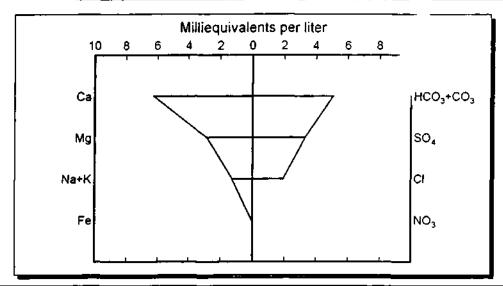
▲ Indicates that samples were received and analyzed past holding time.

Scheduled sample disposal/return date: December 30, 1998.


Trudy L. Scott

Laboratory Manager

APPENDIX F


Groundwater Chemistry Stiff and Piper Diagrams

Piper Diagram .. Demo of the GWW Software

STIFF Diagram

Well ident EPA-MW-01D Description

Cations					
	Ca	Mg	Na	K	Fe
Milliequivalents per liter	6.2375	2.8215	1.1962	0.05242	0.0005
Milligrams per liter	125.00	34.30	27.50	2.05	0.01

Anions					
	нсоз	CO3	SO4	СІ	NO3
Milliequivalents per liter	5.08090	0.0000	3.33120	1.94649	
Milligrams per liter	310.00	0.00	160.00	69.00	

Mn 0.0000	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.30	SAR 0.5621

Water Type

Calcium Bicarbonate

Cations (epm) 10.3 Anions (epm) 10,4

Error Balance 0.24

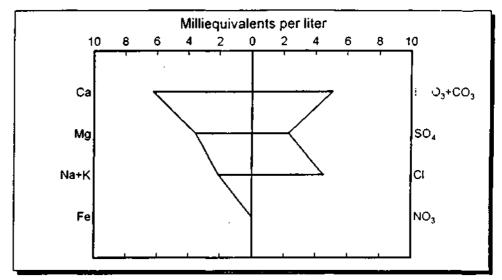
STIFF Diagram

Well Ident EPA-MW-01S Description

		Cations			
	Ca	Mg	Na	K	Fe
Milliequivalents per liter	6.2874	3.5372	1.7400	0.04577	0.0059
Milligrams per liter	126.00	43.00	40.00	1.79	0.11

Anions					
	<i>НСО3</i>	CO3	SO4	CI	NO3
Milliequivalents per liter	4.91700		2.29020	4.23150	
Milligrams per liter	300.00		110.00	150.00	

Mn 0.0000	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.40	SAR 0.7851


Water Type

Calcium Bicarbonate

Cations (epm) 11.6 Anions (epm) 11.4

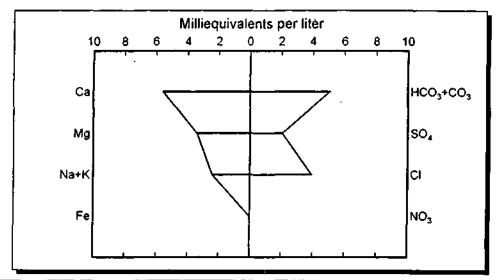
Error Balance 0.77

Well Ident EPA-MW-02 Description

Cations								
	Ca	Mg	Na	K	Fe			
Milliequivalents per liter	6.2375	3.5619	2.0184	0.04782	0.0016			
Milligrams per liter	125.00	43.30	46.40	1.87	0.03			

Anions								
	нсоз	СО3	SO4	CI	NO3			
Milliequivalents per liter	5.08090	0.0000	2.29020	4.51360				
Milligrams per liter	310.00	0.00	110.00	160.00				

Mn 0.0000	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.40	SAR 0.9119


Water Type

Calcium Bicarbonate

Cations (epm) 11.9 Anions (epm) 11.9

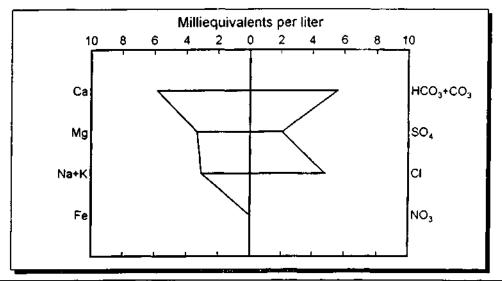
Error Balance 0.07

Well Ident EPA-MW-03 Description

Cations								
	Ca	Mg	Na	K	Fe			
Milliequivalents per liter	5.5389	3.3891	2.3360	0.05370	0.0005			
Milligrams per liter	111.00	41.20	53.70	2.10	0.01			

Anions							
	нсоз	CO3	SO4	cı	NO3		
Milliequivalents per liter	5.08090	0.0000	2.08200	3.94940			
Milligrams per liter	310.00	0.00	100.00	140.00			

Mn 0.0000	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.40	SAR 1.1056


Water Type

Calcium Bicarbonate

Cations (epm) 11.3 Anions (epm) 11.1

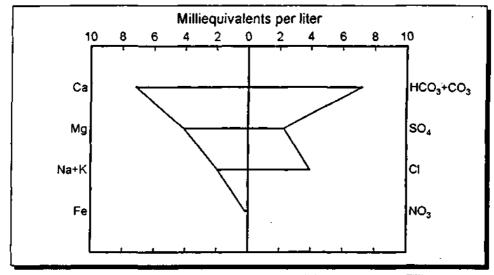
Error Balance 0.92

Well Ident EPA-MW-04 Description

Cations									
:	Ca	Mg	Na	K	Fe				
Milliequivalents per liter	5.7884	3.3151	2.9710	0.05395	0.0005				
Milligrams per liter	116.00	40.30	68.30	2.11	0.01				

Anions								
-	<i>НСО3</i>	CO3	SO4	CI	NO3			
Milliequivalents per liter	5.57260	0.0000	2.08200	4.79570	<u></u> .			
Milligrams per liter	340.00	0.00	100.00	170.00	<u></u>			

Mn 0.0000	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.30	SAR 1.3926


Water Type

Calcium Bicarbonate

Cations (epm) 12.1 Anions (epm) 12.5

Error Balance 1.31

Well Ident EPA-MW-05 Description

Cations									
	Ca	Mg	Na .	K	Fe				
Milliequivalents per liter	7.1357	4.0801	1.8618	0.08898	0.1708				
Milligrams per liter	143.00	49.60	42.80	3.48	3.18				

Anions								
	нсоз	CO3	SO4	CI	NO3			
Milliequivalents per liter	7.21160	0.0000	2.29020	3.94940				
Milligrams per liter	440.00	0.00	110.00	140.00				

Mn 0.0022	NO2	PO4	F	В	SIO2
TDS	Hardness	Alkalinity	Conductivity	рН 7.30	SAR 0.7862

Water Type

Calcium Bicarbonate

Cations (epm) 13.3 Anions (epm) 13.5

Error Balance 0.42

Appendix G

UOS - Field Activities and Analytical Results for Soil Gas Sampling at the Mount Olivet Cemetery Plume, December 6, 1996

URS OPERATING SERVICES

1099 18TH STREET SUITE 710

DENVER, COLORADO 80202-1908

TEL: (303) 291-8300 FAX: (303) 291-8296

December 6, 1996

Mr. Luke D. Chavez
Site Assessment Manager
U.S. Environmental Protection Agency
Region VIII, Mail Code 8EPR-ER
999 18th Street, Suite 500
Denver, Colorado 80202

SUBJECT:

START, EPA Region VIII, Contract No. 68-W5-0031, TDD No. 9609-0003 Field Activities and Analytical Results for Soil Gas Sampling at the Mount Olivet Cemetery Plume, Salt Lake City, Utah, November 1996

Dear Mr. Chavez:

The attached report recounts the soil gas collection field activities and gives the results of the laboratory analyses of the four soil gas samples collected on November 9, 1996, for the Mt. Olivet Cemetery Plume site in Salt Lake City, Utah.

If you have any questions, please call me at 291-8270. Please initial both attached copies of this letter and return them to Janet Benson when you have approved this document.

Very truly yours,

URS OPERATING SERVICES, INC.

Barry Hayhurst

Environmental Scientist

cc:

T. F. Staible/UOS

without attachments

File/UOS

	EPA ACTION BLOCK
0000	Approved Approved, TDD to follow Approved as corrected Disapproved Review with Original to Copy to Reply envelope enclosed
Da	ite By

Mt. Olivet Cemetery Plume - Trip Revis Date: 1

Page

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

> Field Activities and Analytical Results for Soil Gas Sampling Mount Olivet Cemetery Plume Salt Lake City, Utah November 1996

INTRODUCTION

URS Operating Services, Inc. (UOS) has been tasked, under Technical Direction Document (TDD) 9609-0003 and 9609-0003A, by the Region VIII office of the U.S. Environmental Protection Ag (EPA), to conduct soil gas sampling in the vicinity of the Mount Olivet Cemetery Plume in Salt. City, Salt Lake County, Utah (CERCLIS ID # UTD981548985) (Figure 1).

Background information for this site can be found in the Work Plan for the Army National G Armory/Org. Maintenance Shop 5, Salt Lake County, Utah, prepared by Neil B. Taylor of the department of Environmental Quality, Division of Environmental Response and Remediation, 1996 Environmental Priorities Initiative Preliminary Assessment for the University of Utah, prepared by Consultants, 1993; and from the Analytical Results Report of the Mount Olivet Well site prepare-Ecology and Environment, Inc., Technical Assistance Team (TAT), 1995. Sampling rationale, proceed and protocols are documented in the Field Sampling Plan for the Mount Olivet Cemetery Plume, Salt! City, Utah, prepared by UOS in October 1996.

SOIL GAS SAMPLING ACTIVITIES

. Soil gas samples were collected using the Geoprobe Model 8-M truck mounted system. The probe driven to refusal at each location then retracted approximately six inches to allow the disposable poidisengage. A line was then run from the end of the probe to an air pump which purged the line. purged line was then connected to a Tedlar® Bag in a vacuum chamber and the Tedlar® Bag was allo to fill with soil gas in response to the evacuation of the vacuum chamber.

Soil gas samples were initially collected from three separate locations on October 18, 1996. Three gas samples were collected from east and southeast of Building 7 of the Veterans Hospital where a se line exited the building. One sample was taken uphill of the sewer line, one from where the sewer exited the building, and the third from a parking area adjacent to the buried sewer line (Photo 1).

Mt. Olivet Cemetery Plume - Trip Report Revision: 0

......

URS Operating Services, Inc. START, EPA Region VIII

Contract No. 68-W5-0031

Date: 12/1996 Page 2 of 6

second area sampled was southeast of the Coast Guard Building maintenance shop on the Fort Douglas

Army Base. The samples were collected in a field near Red Butte Creek Gulch. Two samples were taken

from this location, one from the center of the gulch (Photo 2) and one from the northeast side of the

gulch. The third area sampled was also on Fort Douglas and was located just south of the loading dock

for Building 515 (Photo 3).

The soil gas samples that were collected were not by START field personnel because of equipment

operation problems.

A second START field crew re-sampled the locations on November 9, 1996, using the same procedures

from the approved Field Sampling Plan that were used to collect the original samples. These four

recollected samples were sent to Environmental Chemistry Services, Inc. of Englewood, Colorado, where

they were analyzed using SW-846 Method 8260 modified for volatile organic compounds in gaseous

phase. The four soil gas samples were received by the laboratory on November 11, 1996, and were

analyzed on November 12, 1996.

Soil gas samples were collected from the same locations on November 9, 1996, as had been collected on

October 18, 1996, with the following exception. Originally three samples were collected behind the

Veterans Hospital Building 7. On the re-sampling date the area where the first two soil gas samples had

been collected was being paved for a parking lot and the construction area was not sampled. All final

sample locations are shown in Figure 2.

SOIL GAS SAMPLE RESULTS

The data were not validated. Quality control requirements for air samples are not documented; therefore,

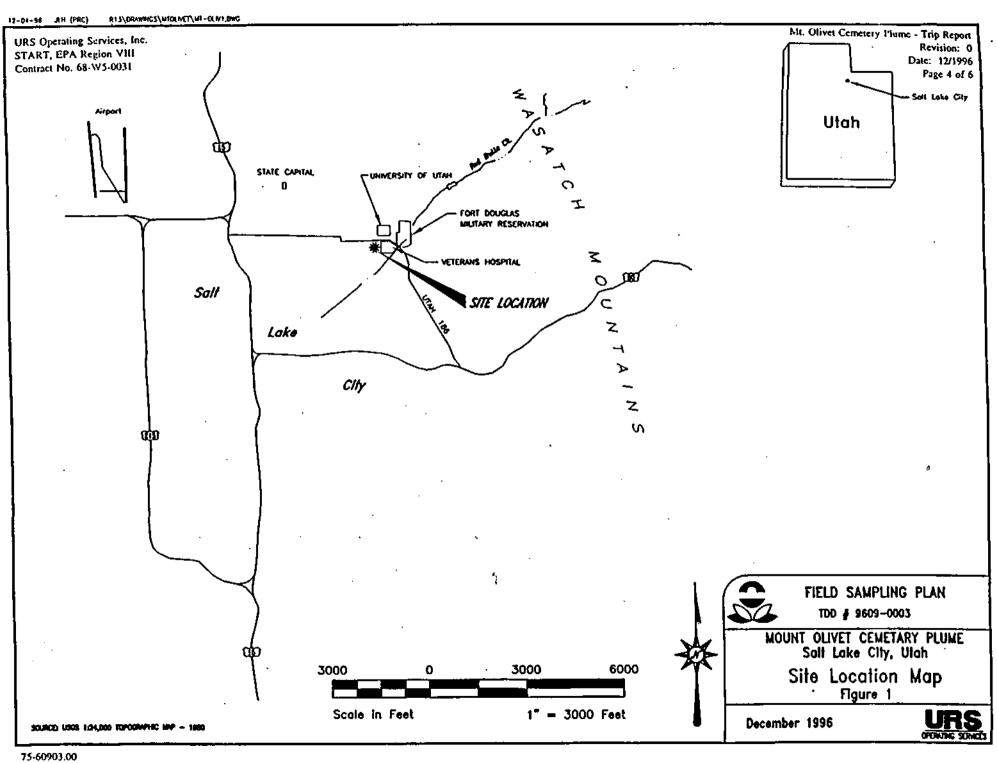
the data were reviewed for compliance with Method 8260 water analysis quality control criteria. The

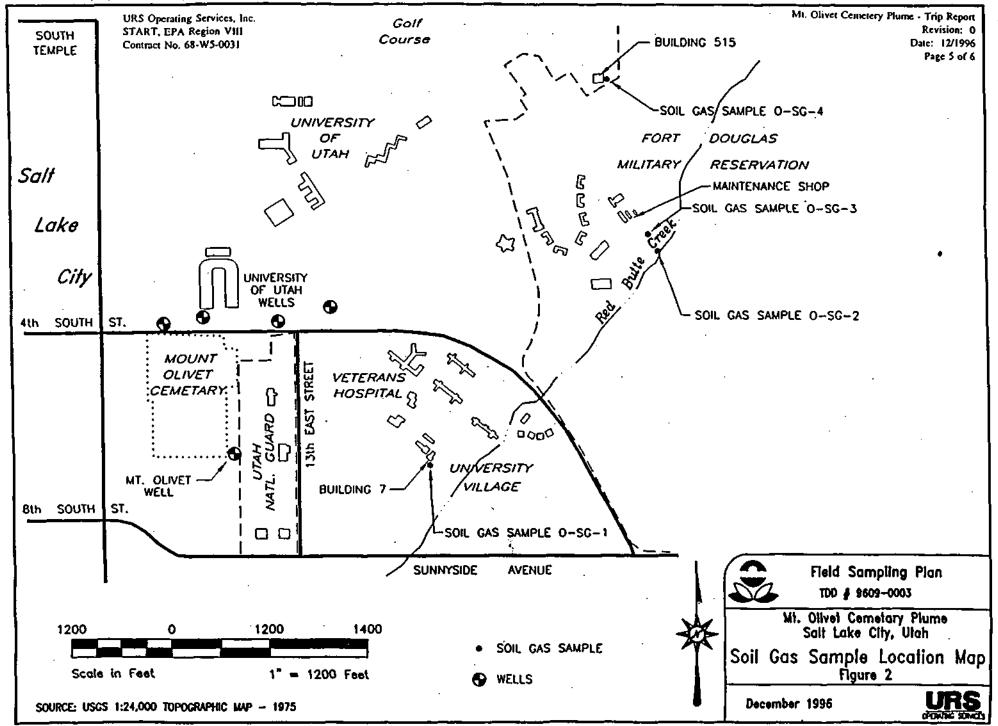
review covered holding time, instrument tune, calibration, blank contamination, system monitoring

compounds and laboratory quality control samples. Based on this review, the data were found to be

acceptable for the intended purposes. Minor non-compliance with method water requirements have no

impact on the reported analyte concentrations.


75-60903.00


URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery Plume - Trip Report Revision: C Date: 12/1996

. . .

Page 3 of 6

The soil gas sample results are reported in Table 1. A detection of PCE at 1.9 ppb was recorded at O-SG-1 (The sewer line leading from the back of the VA Medical Center's Building 7. There were no detections of 1,1-DCE; +-1,2-DCE; TCE; or PCE in Samples O-SG-2 and O-SG-3 taken from Red Butte Gulch southwest of the Coast Guard Maintenance Shop. Sample station O-SG-4, from southwest of Building 515's loading dock, included detections of TCE at 3.4 ppb and PCE at 49 ppb. A copy of the complete laboratory results is included in Appendix B.

Mt. Olivet Cemetery Plume - Trip Report Revision: 0

Date: 12/1996 Page 6 of 6

TABLE 1
Soil Gas Sample Results
All concentrations in ppb (µg/l)

Sample Location Detection Limit	1,1-DCE 1	+-1,2-DCE 1	TCE 1	PCE 1
O-SG-1 VA Medical Center southeast of Building 6	ND	ND	ND	1.9
O-SG-2 Fort Douglas Center of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND
O-SG-3 Fort Douglas Northwest side of Red Butte Gulch, southwest of Coast Guard Maintenance Shop	ND	ND	ND	ND
O-SG-4 Fort Douglas Southwest of loading dock for Building 515 (old brigg)	ND	ND	3.4	49.0

APPENDIX B Complete Laboratory Results

ENVIRONMENTAL CHEMISTRY SERVICES, INC. 7108 S. Alton Way, Bidg. E Englewood, CO 80112 (303) 850-7606

TABLE 1

ECS Project #: UOS Project #:

UOS011 7560903

Method #:

Mod. EPA 8260

Matrix: Units: Air μg/L Date Received:

11/11/96 11/9/96.

Date Sampled: Date Extracted:

11/9/96. n/a

Date Analyzed:

11/12/96

	PARAMETER	DETECTION LIMIT	LABEL # 002271 SAMPLE # 0-S6-1	LABEL # 002272 SAMPLE # 0-56-2	LABEL # 002273 SAMPLE # 	LABEL # 003274 SAMPLE # O-S6-4	BLANK
	Dichlorodillveromethane	2 (2)	No	ND	ND ASSE	ND	提高的ND等法的
	Chloromethana	2	ИВ	, ND	ND	ND	МО
	Bromomethene?		NO	ND	ND	ND	多數學的學家
	Vinyl chloride	2	ИО	ND	ND	ND	ND
	Chloroethane	19 2 P	ND	NO L	ND ND	NO.	ND
	Trichlaroffueramethana	2	ND	ND	ND ND	ND .	ND
3.34	Mothylene chloride	1964	ND	NO TO	ND ND	NO	ND
	1.1-Dichloroethone	1	ND	, ND	ND	ND	ND
N.	1;1-Dichlorouthane		ND	NO	NO	ND	ND
	cia-1,2-Dichloroetheno	1	ND	ND	ND_	ND	ND ND
10 A	Trans-1,2-Dichloroethene		NO	NO	ND	ND.	ND
	Chloroform	1	ND	ND	NO	NO	ND
美國	Bromochloromethane		NO.	ND	ND	NO	ND
	Dibrornomothune	1	ND	ОИ	ND	ND	ND
1	1.2 Dichloroathene	A STATE OF THE STA	ŇD	du	ND ND	NO	ND.

	PARAMETER	DETECTION LIMIT	LABEL # 002271 SAMPLE # 0-S6-1	LABEL # 002272 SAMPLE # 0-S6-2	LABEL # 002273 SAMPLE # 0-S6-3	LABEL # 002274 SAMPLE # 0-56-4	BLANK
_	1,1,1-Trichloraethans	1	ND	ND	ND	ND	ND
Š.	Carbon tetrachloride	1	ND	ND	NĎ	NO	ND
	Bromodichloromethana	1	ND	ND	ND	ND	ND
	.1,2:Dicivioropropané		ND	, ND	ND	ND	NO
	1,1-Dictriorapropene	1	ND	ND	ND	ND.	ND
1 (1) No. 1	trans-1,3-Dichloropropene	giainte.	ND	NO	NO	ND	NO
	2,2-Dichloropropana	1	ND	ND	ND	ND	ND
	cis-1.3-Dichloropropene		ND	NO	ND	ND .	ND /
·_	Trichloroethene	1	ND	NO	NO	3.4	ND
	1;3-Dichloropropene	理論等過期雙	ND 3	NO	No	ND	NO
	1,1,2-Trichloroethann	1	ND	ND	ND	ND	ND
	Dibromochloromethere	1. 数据有工程的	ND	ND	ND	ND	ND
	1,2-Dibromoethene	1	ND	ND	ND	ND	ND
	Bromoform		ND	ND	ND	NO	ND
	1,1,1,2-Tetrachloroethans	1	ND	ND	ND	ND	ND
18. 18. kg	1,2,3-Trichlotopropane	1354218	No	ND	ND	ND	ND (
	1,1,2,2-Tetrachloroethane	1	ND	` ND	ND	ND	ND
•	Tetrachloroethena	HER LINE	1.9	ND	ND.	49	NO
	Chiorobenzene	1	ND	ND	ND	ND	ND_
	1,3-Dichlarobenzona		ND NO	NO	ND	ND	NO.
	1,2-Dichlorobenzane	1	ND	ND	ND	ND	D
	1,4-Dichlorobonzene		ND	ND	ND	ND .	ND
	2-Chilorotoluena	1	ND	ND	ND	ND	ND
	. 4-Chlorotoluene		ND	NO	ND	ND	ND
	Bromobenzene	1	ND	ND	ND	ND	ND

·	PARAMETER .	DETECTION LIMIT	LABEL # 002271 SAMPLE # 0-S6-1	LABEL # 002272 SAMPLE # 0-56-2	LABEL # 002273 SAMPLE # 0-56-3	LABEL # 002274 SAMPLE # 0-\$6-4	BLANK
*	Styrene		ND	ND	ND	NO I	NO S
	Benzena	1	NĐ	ND	ND .	NtD	ND
1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to	Toluene		ND	A NO	10 3	ND	NO
	Ethylbonzane	1	ND	ND	ND	ND	ND
13 Miles	Totul xylanes		ND	ND	ND 1	NO	ND
	Isopropylbenzene	1	ND	ND	ND	ND ·	NO_
. 1	n-Propylbenzerie	出品的機	ND	ND	NÖ	ND	NO
	1,3,5-Trimethylbenzene	1	ND	ND	ND	ND	ND
	1,2,4-Trimothy/benzene		ND	NO.	ND A	ND	ND
	n-Butylineszene	1	ND	ND	ND_	ND	ND
	t-Butylbanzone	Preservation.	ND A	ND	ND	ND	ND
	p-laoptopyltoluene	1	ND	ND	ND	ND	МО
	n-Butylbenzene		ND	NO	ND	ND	NO .
	1,2-Dibromo-3-chiosopropana	1	ND	ND	ND	ND	ND
	Hexachlorobuladiene		ND	ND ND	, M	ND	ND
	Nophthalone	1	ND	ND	ND	ND	ND
75 By 18,322	1,2,4 Trichlenbenzene	LE WASHING	ND	ND -	ND	NO	ND ND
	1,2,3-Trichlurabenzena	1	ND	y ND	ND	ОИ	ND

ND = Not detected at levels exceeding the reporting detection limit.

APPENDIX C

URS OPERATING SERVICES INC.

FIELD INVESTIGATION REPORT SUPPLEMENT TO THE

SITE ACTIVITIES REPORT

MOUNT OLIVET CEMETERY

SALT LAKE CITY, UTAH

MARCH 14, 2000

Luke

START

Superfund Technical Assessment and Response Team - Region VIII

United States
Environmental Protection Agency

Contract No. 68-W5-0031

SUPPLEMENT TO THE SITE ACTIVITIES REPORT

MT. OLIVET CEMETERY Salt Lake City, Utah

TDD #9803-0014

MARCH 14, 2000

In association with:

Tetra Tech EM Inc.
URS Greiner Woodward Clyde
Maxim Technologies, Inc.
LT Environmental, Inc.
The Roybal Corporation

URS OPERATING SERVICES

1099 18TH STREET SUITE 710

DENVER, COLORADO 80202-1908

TEL: (303) 296-3523 FAX: (303) 291-8296

March 14, 2000

Mr. Luke D. Chavez
Site Assessment Manager
U.S. Environmental Protection Agency
Region VIII, Mail Code: 8EPR-ER
999 18th Street, Suite 500
Denver, Colorado 80202-2405

SUBJECT: START, EPA Region VIII, Contract No. 68-W5-0031, TDD No. 9803-0014

Supplement to the Site Activities Report - Mt. Olivet Cemetery, Salt Lake City, Utah

Dear Luke:

Attached are two copies of the draft Supplement to the Site Activities Report for the Mt. Olivet Cemetery at Salt Lake City, Utah. Additional site activities included contracting for and managing the extension of background monitoring well EPA-MW-02 and the abandonment of monitoring well EPA-MW-03. This document is submitted for your review and comments.

If you have any questions, please call me at 303-291-8313.

Very truly yours,

URS OPERATING SERVICES, INC.

Jøhn P. Noto Geologist

cc:

T. F. Staible/UOS

File/UOS

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery - SAR Supplement Signature Page Revision: 0 Date: 03/2000 Page i of iii

SUPPLEMENT TO THE SITE ACTIVITIES REPORT

MT. OLIVET CEMETERY
Salt Lake City, Salt Lake County, Utah

EPA Contract No. 68-W5-0031 TDD No. 9803-0014

Prepared By: John Noto
Geologist

URS Operating Services, Inc. 1099 18th Street, Suite 710 Denver, CO 80202-1908

Approved:	Luke Chavez, Site Assessment Manager, EPA	Date: 3/20/00	
		•	
Approved:	T. F. Staible, START Team Leader, UOS		Date:
Approved:	John P. Noto, Geologist, UOS		Date:

This document has been prepared for the U.S. Environmental Protection Agency under Contract No. 68-W5-0031. The material contained herein is not to be disclosed to, discussed with, or made available to any person or persons for any reason without prior express approval of a responsible officer of the U.S. Environmental Protection Agency. In the interest of conserving natural resources, this document is printed on recycled paper and double-sided as appropriate.

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery - SAR Supplement

Distribution List Revision: 0 Date: 03/2000 Page ii of iii

DISTRIBUTION LIST

U.S. ENVIRONMENTAL PROTECTION AGENCY

Luke Chavez (2 copies)

Site Assessment Manager, EPA Region VIII

STATE OF UTAH DEPARTMENT OF ENVIRONMENTAL QUALITY

Neil Taylor (3 copies)

URS OPERATING SERVICES, INC.

John P. Noto

Geologist, START, EPA Region VIII

File (2 copies) START, EPA Region VIII

Mt. Olivet Cemetery - SAR Supplement
Table of Contents
Revision: 0
Date: 03/2000
Page iii of iii

SUPPLEMENT TO THE SITE ACTIVITIES REPORT

MT. OLIVET CEMETERY Salt Lake City, Utah

TABLE OF CONTENTS

		PAGE#
SIGNATURE DISTRIBUTI TABLE OF C	ON LIST	i ii iii
1.0 INTR	ODUCTION	1
2.0 WELL	L ABANDONMENT AND EXTENSION	1
3.0 WELI	L INSTALLATION AND SAMPLING	. 1
4.0 DATA	VALIDATION AND INTERPRETATION	3
5.0 SAME	PLE RESULTS EPA-MW-06	4
6.0 SUMN	MARY AND CONCLUSIONS	5
7.0 ĻIST	OF REFERENCES	6
FIGURES Figure 1 Figure 2 Figure 3	Site Location Map Groundwater Contours on Detailed Site Map Piper Diagram	
TABLES Table 1 Table 2	Sample Log Groundwater Elevations	• •
APPENDICES	5	

Appendix A	Photolog
Appendix B	Lithologic Well Log
Appendix C	Laboratory Data Sheets
Appendix D	CLP Data Validation Report

Mt. Olivet Cemetery - SAR Supplement Revision: 0 Date: 03/2000

Page 1 of 11

1.0 <u>INTRODUCTION</u>

. This Report is submitted in accordance with certain task elements specified in Technical Direction Document

(TDD) number 9803-0014 issued to the URS Operating Services, Inc. (UOS) Superfund Technical

Assessment and Response Team (START) in Region VIII by the U.S. Environmental Protection Agency

(EPA). This report is a supplement to the Site Activities Report for the Mt. Olivet Cemetery (URS Operating

Services, Inc. (UOS) 1999a). START contracted for and managed the installation of an additional

background well at the Mt. Olivet site (Figure 1). Construction of an ice rink necessitated that well EPA-

MW-03 be abandoned and well EPA-MW-02 be extended.

2.0 WELL ABANDONMENT AND EXTENSION

Due to the planned construction work in the area, well EPA-MW-03 was abandoned by the Layne

Christenson Company on September 21, 1999, per State of Utah regulations. A sample was collected from

the well prior to abandonment and submitted to Datachem Laboratory in Salt Lake City, Utah, for

perchloroethylene (PCE). The reported PCE concentration in the sample was 7.1 micrograms per liter

 $(\mu g/L)$.

The planned construction work also necessitated that well EPA-MW-02 be extended in height. The well was

extended with a welded-on section of steel protector casing and a PVC blank casing extension.

3.0 <u>WELL INSTALLATION AND SAMPLING</u>

The START contracted with Layne Christenson Company, a drilling contractor in Salt Lake City, Utah, to

install the well, EPA-MW-06. The well was installed with an advance casing hammer/percussion rig in

September 1999. Photographs of the well installation are included in Appendix A. The lithologic log for

the well is attached in Appendix B.

Well EPA-MW-06 was installed in the southeast corner of Sunnyside Park, in the northeast quarter of

Section 9, T. 1 N., R. 1 E. (Figure 2). Well EPA-MW-06 was located upgradient of wells with PCE

contamination. The well was placed upgradient of the PCE contamination identified in other wells and

upgradient of the sewer line that originates from the former dry cleaning facility at the Veterans

Administration (VA) Hospital.

75-80314.00

F:\START\Mt.Olivet\Draft Suppl. SAR\Text epa-mw-06.wpd:bas

Mt. Olivet Cemetery - SAR Supplement Revision: 0

URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031

Date: 03/2000 Page 2 of 11

All cuttings and formation water were collected in drums. The cuttings were screened with a photoionization

detector (PID). Because the PID readings on the cuttings were not elevated, the cuttings were discarded near

well EPA-MW-02. Two samples, SB-06-A and SB-06-B, were collected from the cuttings that originated

near the vadose zone. The samples were submitted for volatile organic compound (VOC) analysis via the

START Gas Chromatograph/Mass Spectrometer (GC/MS). All VOCs were below the laboratory reporting

limit (RL).

Sample EPA-MW-06A was collected of the formation water during drilling at approximately 126 feet below

ground surface (bgs). The sample was submitted for VOC analysis via the START GC/MS. All VOCs were

below the laboratory RL.

Well EPA-MW-06 was installed to a depth of approximately 134 feet bgs, approximately 20 feet into the first

aquifer, which was encountered at about 114 feet bgs. The well casing and screen were four-inch inside

diameter (i.d.) Schedule 40 PVC. The well was screened at approximately 134 feet to 104 feet bgs

(Appendix B).

Layne Christenson developed the well with a stainless steel bailer on September 23, 1999. Approximately

75 gallons of water (5.6 casing volumes) were bailed. A water sample was collected of the final development

water and submitted for PCE analysis. The sample was collected to determine if the purge water required

formal disposal. The sample was analyzed for PCE using the UOS START GC/MS. There was no PCE

reported in the sample above the reporting limit.

On January 6, 2000, START collected sample EPA-MW-06 from well EPA-MW-06 with a Geotech bladder

pump. Approximately three well volumes (20 gallons) were purged prior to sample collection. Water

parameters were measured with a pH, temperature, conductivity meter at 10-gallon, 15-gallon, and 20-gallon

purge volumes. The respective water parameters all measured within 10 percent on all three readings. The

samples were submitted for volatile organic analysis to Sentinel Laboratory in Huntsville, Alabama; for

metals analysis to Mitkem Corporation in Warwick, Rhode Island; and for general chemistry (anions,

alkalinity, and pH) analysis to Accu-Labs in Golden, Colorado. START adhered to sample collection,

packaging and documentation procedures outlined in the Sampling Quality Assurance/Control (QA/QC)

Work Plan (UOS 1999b). A summary of the samples collected is presented in Table 1.

75-80314.00

F:\START\Mt.Olivet\Draft Suppl. SAR\Text epa-mw-06.wpd:bas

Mt. Olivet Cemetery - SAR Supplement Revision: 0

> Date: 03:2000 Page 3 of 11

4.0 <u>DATA VALIDATION AND INTERPRETATION</u>

One aqueous monitoring well sample, EPA-MW-06, was submitted for EPA Contract Laboratory Program (CLP) analysis. Volatile organic analysis of the monitoring well sample was provided by Mitkem Corporation using the EPA Statement of Work (SOW). Metals and mercury analysis of the monitoring well sample was provided by Sentinel, Inc. using EPA SOW. All laboratory data were validated by Tech Law, Inc., a UOS Team subcontractor, using the EPA CLP Functional Guidelines for Data Validation and the EPA Region VIII validation report format (U.S. Environmental Protection Agency (EPA) 1994). The data validation report is attached as Appendix D.

The data are acceptable for the purpose of characterizing contamination in the samples.

The following problems were identified:

VOC:

Acetone was estimated (J) because the continuing calibration was outside of validation criteria. This was possibly due to background levels within the laboratory.

Chloroform was also estimated (J) because it was below the contract required detection limit.

Metals:

Positive and negative blank contamination was detected in chromium, copper, lead, thallium, and vanadium. Associated samples were qualified estimated (J) and undetected estimated (UJ).

Antimony and selenium and low matrix spike recoveries of 61.6% and 63.2% were qualified estimated (J) and undetected estimated (UJ). This was possibly due to sample preparation and procedures.

Serial dilution results for barium and potassium exceeded validation criteria by 6% and 1%, respectively. This possibly indicates matrix interference. All associated samples were qualified estimated (J) and undetected estimated (UJ).

Mt. Olivet Cemetery - SAR Supplement Revision: 0

> Date: 03/2000 Page 4 of 11

5.0 SAMPLE RESULTS EPA-MW-06

All laboratory data sheets are attached in Appendix C. There were no VOCs reported above the laboratory

reporting limit in sample EPA-MW-06. There were no elevated concentrations of metallic ions of concern.

The general chemistry along with certain cation and anion results were used to map the hydrochemical facies

of the sample. The data were also compared with sample data from the other wells on a Piper diagram

(Figure 3). All well sample data plotted in the same area of the diagram, indicating wells are screened in the

same or chemically similar aquifers (except well EPA-MW-01D).

Water levels were measured in the six existing wells on September 21, 1999, prior to the installation of well

EPA-MW-06 (Table 2). An approximate water elevation of EPA-MW-06 was calculated from the October

14, 1999, measurement and the top-of-casing (TOC) estimated elevation. These recent water table

measurements are consistent with previous measurements listed in the UOS Site Activities Report (SAR)

(UOS 1999a). The estimated groundwater elevation at EPA-MW-06 is also consistent with the northwestern

sloping water table of the first unconfined aquifer.

Mt. Olivet Cemetery - SAR Supplement Revision: 0 Date: 03/2000

Page 5 of 11

6.0 SUMMARY AND CONCLUSIONS

.UOS START managed the installation of a monitoring well at the Mt. Olivet Cemetery site in September

1999. The well installation was required to provide a sampling location upgradient of the existing wells with

PCE contamination. START sampled the well in January 2000.

Due to the construction of a building and parking lot, well EPA-MW-03 was abandoned and well EPA-MW-

02 was extended. Well EPA-MW-03 was sampled prior to abandonment; the PCE concentration in the well

was 7.1 μ g/l.

START collected samples from the well and submitted them for metals, VOC, anions, alkalinity, and pH

analysis to Mitkem, Sentinel, and Accu-labs laboratories, respectively. The samples were forwarded through

the CLP. There were no VOCs reported above the laboratory reporting limits.

The hydrochemical facies of water collected from well EPA-MW-06 is similar to that of the other wells

installed in the study area. The groundwater chemistry combined with other information such as water table

contours and observations made during the well installations indicate the wells are screened in a common

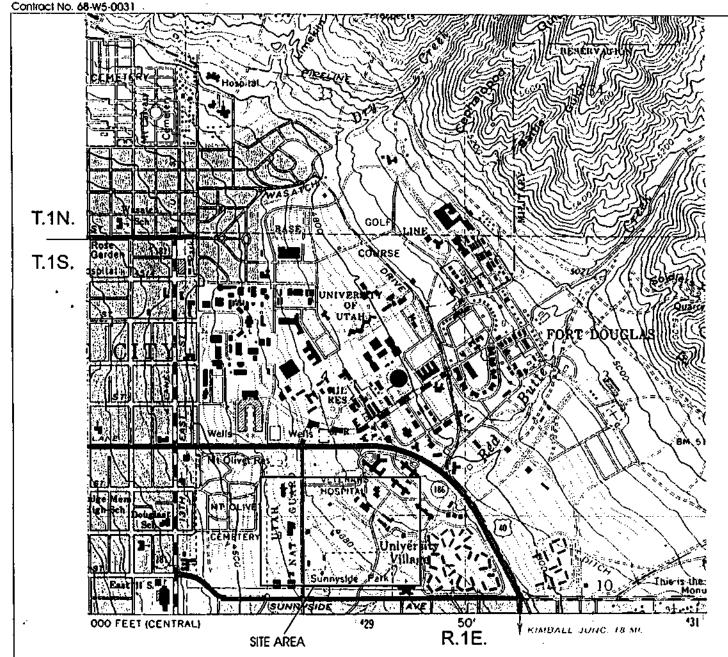
aquifer (except well EPA-MW-01D).

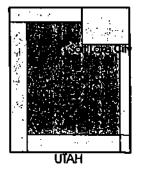
The water table information and laboratory results indicate that well EPA-MW-06 is a background well

relative to the PCE source area and the PCE contaminant plume. The specific location of the PCE release,

however, is still not defined. The only identified potential source of PCE that is both downgradient of the

background wells and upgradient of the contaminant plume is the former VA dry cleaning facility.


URS Operating Services, Inc. START, EPA Region VIII Contract No. 68-W5-0031 Mt. Olivet Cemetery - SAR Supplement Revision: 0 Date: 03/2000 Page 6 of 11


7.0 LIST OF REFERENCES

.U.S. Environmental Protection Agency (EPA). 1994. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review." Publication 9240.1-05, PB94-963501 EPA540/R-94/012. February 1994. Office of Emergency and Remedial Response, Washington, D.C.

URS Operating Services, Inc. (UOS). 1999a. "Site Activities Report, Mt. Olivet Well Site," Salt Lake City, Utah. May 1999.

URS Operating Services, Inc. (UOS). 1999b. "Sampling and Analysis Plan, Mt. Olivet Well Site," Salt Lake City, Utah. October 1998.

Supplement to Sampling Activities Report UOS Job Number 75-80314.00

MT. Olivet Cemetery Site Salt Lake City, Utah

Site Location Map

T.D.D. 9803-0014

FIGURE 1

March 2000

URS OPERATING SERVICES

Base Map Source: U.S. Geological Survey (USGS) Fort Douglas, Utah 7.5 Minute Quadrangle Map 1975

LEGEND

...Well ID EPA-MW-04 PCE Concentration (ppb) 4522.88 (wells sampled 10/98, EPA-MW-06 sampled 1/20

Groundwater Elevation (feet)

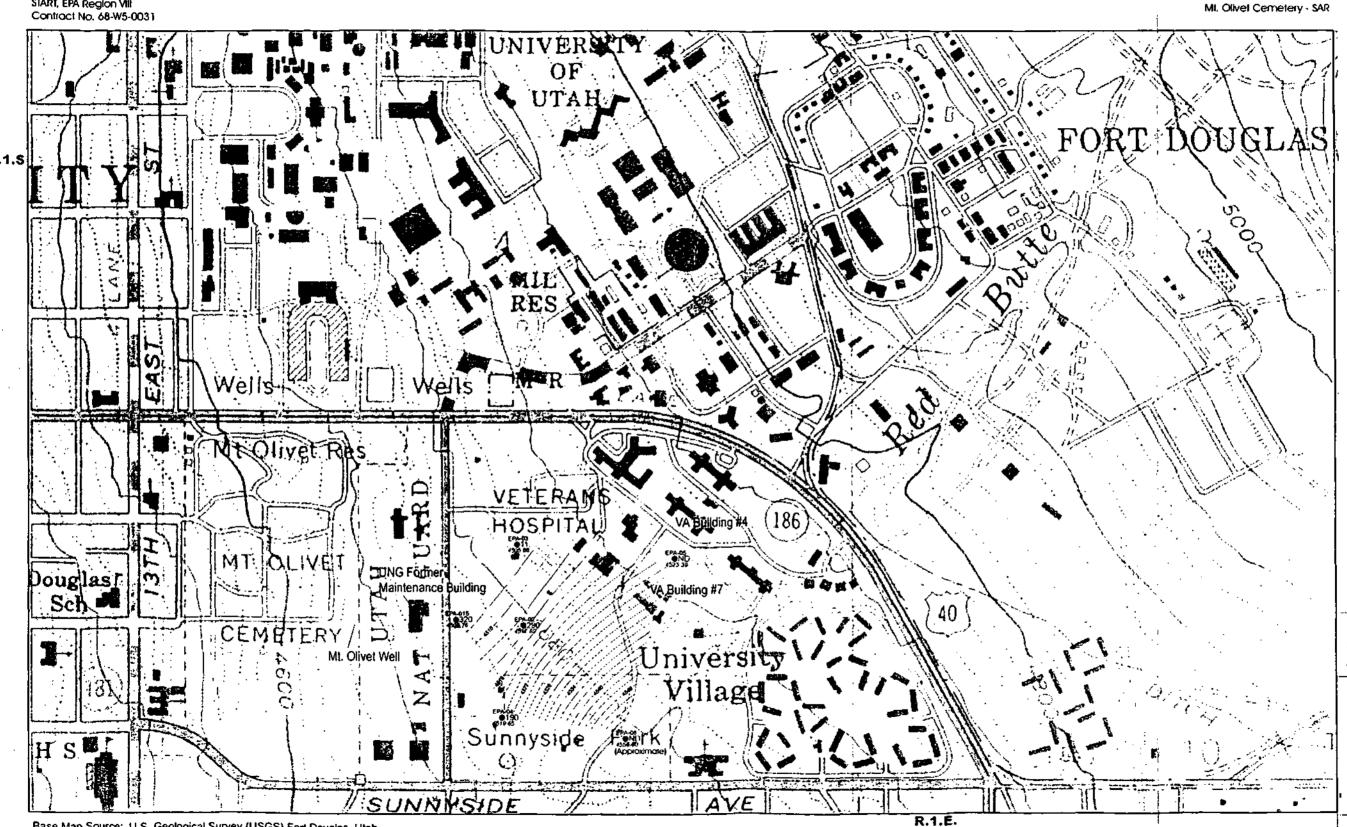
Groundwater Elevation (feet above msl) 9/99

Note: The location and elevation of EPA-MW-06 are approximate.

\$CALE 1 inch = 750 feet

Supplement to Sampling Activities Repo UOS Job Number 75-80314.0

MT. Olivet Cemetery Site Salt Lake City, Utah


> **Groundwater Contours** on Detailed Site Map

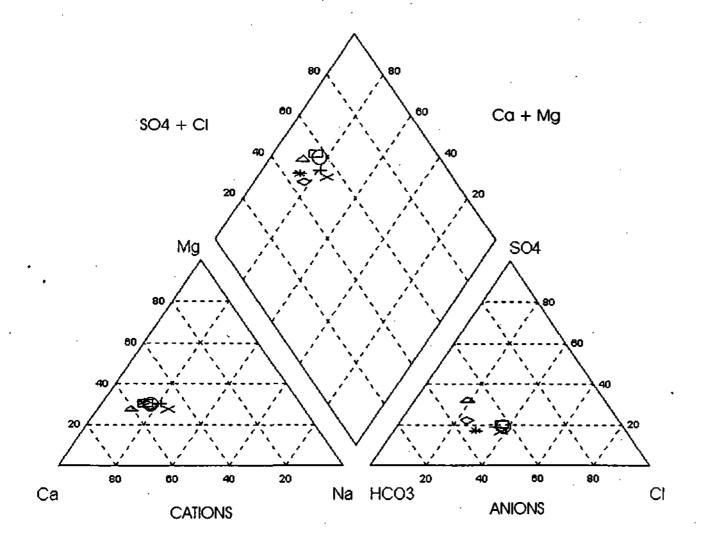

T.D.D. 9803-0014

FIGURE 2

March 2000

OPERATING SERVICE

Legend:

☐ EPA-MW-01S

○ EPA-MW-02

-+ EPA-MW-03

→ EPA-MW-04

★ EPA-MW-05

◇ EPA-MW-06

△ EPA-MW-01D

Supplement to Sampling Activities Report UOS Job Number 75-80314.00

MT. Olivet Cemetery Site Salt Lake City, Utah

PIPER DIAGRAM

T.D.D. 9803-0014

FIGURE 3

March 2000

URS OPERATING SERVICES

Mt. Olivet Cemetery - SAR Supplement Revision: 0 Date: 03/2000 Page 10 of 11

TABLE 1 Sample Log

Sample ID	COC# or CLP Case#	Matrix	Date	Laboratory	Analysis
EPA-MW-03	DN5005	Aqueous	9/20/99	Data Chem	PCE
EPA-MW-06A	DN5004	Aqueous	9/22/99	UOS START	VOCs
SB-06-A	DN5004	Soil	9/22/99	UOS START	VOCs
SB-06-B	DN5004	Soil	9/22/99	UOS START	VOCs
EPA-MW-06	8-24705 27716	Aqueous	1/6/00	Accu-Labs (CLP)	Anions, Alkalinity, pH
				Mitkem (CLP) Sentinel (CLP)	Volatile Organics Inorganics

Mt. Olivet Cemetery - SAR Supplement Revision: 0 Date: 03/2000 Page 11 of 11

TABLE 2 Groundwater Elevations

Well ID	Date	Depth to Groundwater (feet)	TOC Elevation (feet amsl)	Groundwater Elevation (feet amsl)
EPA-MW-01D	09/21/99	193.78	4662.2	4468.42
EPA-MW-01S	09/21/99	156.43	. 4662.18	4505.75
EPA-MW-02	09/21/99	167.52	4680.41	4512.89
EPA-MW-03	09/21/99	192.1	. 4697.98	4505.88
EPA-MW-04	09/21/99	139.25	4654.15	4514.9
EPA-MW-05	09/21/99	208.7	4732.09	4523.39
EPA-MW-06*	10/04/99	118.21	4680	4561.79

EPA-MW-06 TOC and groundwater elevations are estimated.

ams! Above mean sea level.

APPENDIX A

Photolog

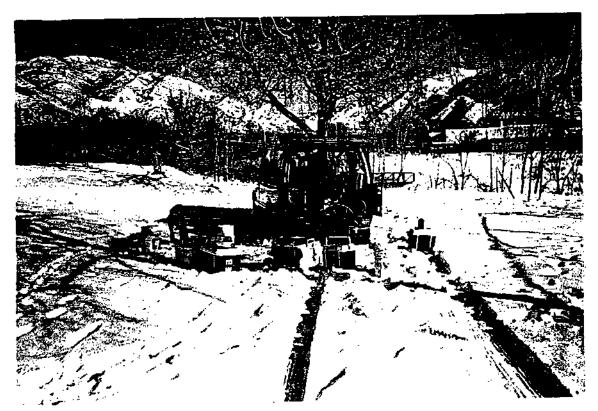


PHOTO 1
Preparing pump and equipment to collect sample EPA-MW-06.

PHOTO 2 Well EPA-MW-06.

PHOTO 3
Photo taken toward the south of Well EPA-MW-06.

APPENDIX B Lithologic Well Log

URS Operating Services

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

<u> </u>							
Boring / Well Number: Ti	DD Name/Pro ount Olivet	ject Number:	Site L	ocation:			
EPA-MW-06 7:	580314.00		Salt Lake City, Utah				
Boring Depth (ft) X Diam	Boring Depth (ft) X Diameter (in): 134.0 x 8			Drilling Method: Hammer Rig w/advance casing			
Well Contractor Name:	Layne Christe	enson	Logge		rmien		
Ground Surface	Top of Ca	sing	Lat.	of Sunnyaine fatt	North	ing	
Elevation (ASL):	Elevation	(ASL):	Long.	of Sways	Easti	ng 	
Date Started:	Date Con	npleted:	Addition	onal Comments:			
9/22/99	9/23/99	, 	Sunn	yside Park north of t		<u>t </u>	
Lithologic Descri	ption		epth b.g.s.)	Well Construction Details	Sample Type * Sample Recovery	Blow	PIO / FIO (ppm)
Silty clay; tan-brown, plastic, 109 Silty gravel; Red, low plasticity, n PID=background Gravelly sand; reddish, silty, med	o Clay, dry,		5 10 11 15 11 120 11 13 13 13 13 140 1	4° Sch. 40 PVC blank, bentonite pellet seal			
sand, 10% gravel Silty clay; reddish-pink, plastic, m		a	55 1				••
•			=]	

^{*} SS (split spoon) HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings)

Observations	Date:	9/23/99	1/6/00		
Static Water Level (from TOC)	Levei:	♀ .118.21	¥ 121		
Static Water Level (ASL)	Level:			_	

URS Operating Services

SOIL BORING LOG / MONITORING WELL CONSTRUCTION DIAGRAM

Boring / Well Number: TDD Name/Project Number: Site Location: **Mount Olivet** EPA-MW-06 7580314.00 Salt Lake City, Utah Well Depth Construction Lithologic Description (feet b.g.s.) Details Gravelly silt; red, 30% gravel, dry 75 85 90 Silty sand; red 10-20 mesh silica sand Sandy gravel; red, dry 4° Sch. 40 slotted screen in 10-20 mesh sand 105 Sitly sand; red, dry Silty sand; red, wet (water table @ 115 bgs) **▼**120 Gravel/silt/clay; very resistant, slow drilling, well cemented, qtz, rhyolite, amphiboles, and feldspars 130

^{*} SS (split spoon) HSA (hollow stem auger) MC (Geoprobe macrocore) CT (cuttings)

Observations	Date:	9/23/99	1/6/00	- <u>-</u>	
Static Water Level (from TOC)	Level:	♀ 118.21	<u>¥</u> 121	•	
Static Water Level (ASL)	Level:		•		

APPENDIX C

Laboratory Data Sheets

Date: 01/25/00 Page 1 - B

REPORT OF ANALYSIS

Mr Jim Gindelberger US EPA Region 8 (8ES-MEB) 999 18th Street Suite 500 Denver, CO 80202-2466 Lab Job Number: 035791 EPA002 Date Samples Received: 01/07/00 Customer PO Number: 9X0017NASA

Acculabs Designation: Client Designation: Sample Location: Location II: Date/Time Collected

01/06/00 16:15

00-A340

WELL #6

General Chemistry (results in mg/L unless noted):
Alkalinity, Total (as CaCO3) 260
Bicarbonate (as HCO3-) 310
Carbonate (as CO3=) < 5
Chloride 78
Hydroxide (as OH-) < 5
Sulfate (as SO4) 100
pH 8.0

NOTES:

Scheduled sample disposal/return date: July 23, 2000.

Trudy L. Scott

Laboratory Manager

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

ab Name: SENTINEL INC.	Contract: 68-D5-	0169
ab Code: SENTIN Case No.: 277	16 SAS No.:	SDG No.: MHEPO:
SOW No.: ILM04.0		
EPA Sample No. MHEP01 MHEP01D MHEP01S	Lab Sample ID. 28628S 28628S2 28628DS	
	·	
	·	
		,
		,
	· · · · · · · · · · · · · · · · · · ·	
		-
 ;		
		·
Pere ICP interelement corrections ere ICP background corrections ap If yes-were raw data generate application of background cor	oplied? ed before	Yes/No YES Yes/No YES Yes/No NO
	ted due to possible M	ating interferencel
The cool terrative means	ed 0.5°C. 1	
- 		•••
certify that this data package in proditions of the contract, both the ther than the conditions detailed in this hardcopy data package and in floppy diskette has been author anager's designee, as verified by ignature:	rechnically and for complete above. Release of the in the computer-readable rized by the Laboratory the following signature. Name: Title:	eleteness, for data contained e data submitted Manager or the
	VER PAGE - IN	ILMO4.0

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET

Contract: 68-D5-0169

MHEP01

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

Matrix (soil/water): WATER

Lab Name: SENTINEL INC.

Lab Sample ID: 28628S

Level (low/med): LOW

Date Received: 01/07/2000

% Solids:

0.0

Concentration Units (ug/L or mg/Kg,dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q		м
7429-90-5	Aluminum	34.9	ប៊	<u> </u>		<u>-</u>
7440-36-0	Antimony	2.1	Ū	N		P
7440-38-2	Arsenic	2.2	Ū			P
7440-39-3	Barium	56.1	B	E		Ρ
7440-41-7	Beryllium	0.10	Ū	_		P
7440-43-9	Cadmium	0.30	บั			P
7440-70-2	Calcium	107000	-			P
7440-47-3	Chromium	0.70	В			P
7440-48-4	Cobalt	0.60		ł		Ρ
7440-50-8	Copper	1.6	В	1		P
7439-89-6	Iron	18.6	ָ ט	j		P
7439-92-1	Lead	1.7	B			p
7439-95-4	Magnesium	35500	_			PΙ
7439-96-5	Manganese	2.4	U.			P]
7439-97-6	Mercury	0.10	ט			cv
7440-02-0	Nickel	1.3	Ū			P
7440-09-7	Potassium	2000	В	E		Ρļ
7782-49-2	Selenium	2.3	В	N		P
7440-22-4	Silver	0.40	υ	.		P
7440-23-5	Sodium	40400	-			Ρļ
7440-28-0	Thallium	3.5	В			P
7440-62-2	Vanadium	2.8	В			Ρ
7440-66-6	Zinc	12.9	ប			P
	Cyanide				- 11	NR
	•].
	· ——— ·		_ '			

Color Before: COLORLESS Clarity Before: CLEAR

Color After: COLORLESS Clarity After: CLEAR Artifacts:

Comments:

SDG Narrative

Mitkern Corporation submits the enclosed data package in response to USEPA Case # 27716 and SDG# HW935. Analyses were performed for one aqueous sample that was received on January 7, 2000. The analyses were performed under USEPA Contract # 68-W-99-076.

The following samples are submitted in this data package:

			Aqueous
Client ID	<u>Lab ID</u>	<u>Analysis</u>	VOA pH
HW935	70027001	V	<2
HW935MS	70027002	v	<2
HW935MSD	70027003	. V .	<2

V = Volatiles

The analyses were performed using USEPA CLP Multi-Media, Multi-Concentration (OLM04.2) protocols. The analyses were performed with strict adherence to the SOW with the following exceptions and observations:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required.

2. Volatile Analysis:

Trap used for instrument V6: OI Analytical #10 trap containing 8 cm each of Tenax, silica gel and carbon molecular sieve

GC column used: 30 m x 0.25 mm id (1.4 um film thickness) DB-624 capillary column.

Matrix spike and matrix spike duplicate were performed on HW935. Spike recoveries and replicate RPDs were within QC limits except for benzene in which the RPD was not within the QC limit.

No other unusual observation was made for the analysis.

All of the submittals to the region are originals other than log book pages and copies of tunes and standard files which are shared by many other cases. For these, the original copies are archived in the laboratory.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Ng

Ugnesky

CLP Project Manager

1/20/00

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HW935

	•			
Lab Name	: MITKEM	CORPORATION	Contract:	68W99076

Matrix: (soil/water) WATER

Lab Code: MITKEM Case No.: 27716

SAS No.: _____ SDG No.: <u>HW935</u>

Lab Sample ID: 70027001

Sample wt/vol:

<u>5.000</u> (g/mL) <u>ML</u>

Lab File ID: V6A0591

Level: (low/med) LOW

Date Received: 01/07/00

% Moisture: not dec. _____

Date Analyzed: 01/13/00

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

75-71-8	Dichlorodifluoromethane	10	<u> </u>
74-87-3	Chloromethane	10	0
			
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	Ū
75-00-3	Chloroethane	10	Ŭ
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	<u> </u>
67-64-1	Acetone	10	<u> </u>
75-15-0	Carbon Disulfide	10	U
79-20-9	Methyl Acetate	10	Ū
75-09-2	Methylene Chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	Ū
1634-04-4	Methyl tert-Butyl Ether	10	ט
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	2	J
71-55-6	1,1,1-Trichloroethane	10	Ū
110-82-7	Cyclohexane	10	Ū
56-23-5	Carbon Tetrachloride	10	<u>U_</u>
71-43-2	Benzene	10	Ū
107-06-2	1,2-Dichloroethane	10	ับ

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HW935
HW935

Lab	Name:	MITKEM	CORPORATION	Contract: 68W99076	HW935
Lab	Code:	MITKEM	Case No.: 27716	SAS No.:	SDG No.: HW935

Lab Sample ID: 70027001 Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML_ Lab File ID: V6A0591 Level: (low/med) LOW Date Received: <u>01/07/00</u>

% Moisture: not dec. Date Analyzed: <u>01/13/00</u>

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm) Dilution Factor: 1.0

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: (uL)

. CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

Trichloroethene	10 U
Methylcyclohexane	10 U
1,2-Dichloropropane	10 U
Bromodichloromethane	10 U
cis-1,3-Dichloropropene	10 U
4-Methyl-2-Pentanone	10 U
Toluene	_ 10 U
trans-1,3-Dichloropropene	10 U
1,1,2-Trichloroethane	10 U
Tetrachloroethene	10 U
2-Hexanone	10_U
Dibromochloromethane	10 U
	10 U
	10 U
	10 U
Xylene (Total)	10U
Styrene	10 U
Bromoform	10_\ U
	10 U
	10 J U
1,3-Dichlorobenzene	10 0
1,4-Dichlorobenzene	10 U
1,2-Dichlorobenzene	10 U
1,2-Dibromo-3-chloropropane	10 U
1,2,4-Trichlorobenzene	10 U
	1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-Pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene Ethylbenzene Xylene (Total) Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

(ug/L or ug/Kg) ug/L

Lab Name: MITKEM CORPORATION	Contract: 68W99076	HW935
Lab Code: MITKEM Case No.: 27716	_ SAS No.: SDG No.:	HW935
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 7002	7001
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6A05	91
Level: (low/med) LOW_	Date Received: 01/0	7/00
% Moisture: not dec.	Date Analyzed: 01/1	3/00
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.	<u>o</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume	:(uL)
	CONCENTRATION UNITS	:

Number TICs found: 0

27. 28. 29. 30.

CAS NUMBER COMPOUND NAME RT EST. CONC. ======= ____ 4. б. 9. 10. 11. 12. 13. 14. <u> 15.</u> 16. 17. 18. 19. 20. 21. 23. 24. 25. 26.

APPENDIX D CLP Data Validation Report

TECHLAW INC.

PHONE: (303) 763-7188 FAX: (303) 763-4896

February 2, 2000

Ms. Lori Raschke URS Operating Services 1099 18th Street, Suite 710 Denver, CO 80202

RE: Transmittal of Data Validation Reports

Mt. Olivet Cemetery TDD No. 75-80314

SDG Nos. HW935 and MHEP01

Dear Ms. Raschke:

Please find the enclosed data validation report for TDD No. 75-80314 for the Mt.Olivet Cemetery project. These reports are for the validation of CLP volatile and metal analyses.

If you have any questions regarding the enclosed reports, please contact me at (303) 763-7188.

Yours sincerely, TECHLAW, INC.

Lisa Burnley

Associate Consultant

enclosure

IF: Q252-371

REGION VIII DATA VALIDATION REPORT ORGANICS - VOA

Case No. / TDD No.	Site N	ame	Operable Unit
27716 / 75-80314	Mt. Olivet Cemeter	<u>,</u>	
RPM/OSC Name			
Luke Chavez			
Contractor Laboratory	Contract No.	SDG No.	Laboratory DPO/Region
Mitkem Corporation	68-W-99-076	HW935	

Review Assigned Date	January 31, 2000	Data Validator	Bill Fear
Review Completion Date	February 2, 2000	Report Reviewer	Amy Ballow

Sample ID	Station Location	Matrix	Analysis
HW935	EPA-MW-06	Water	CLP - Volatile Analyses

HW935v Organics - I

TPO Attention Required? Yes ___

DATA QUALITY STATEMENT

Data are ACCEPTABLE according to EPA Functional Guidelines with no qualifiers (flags) added () by the reviewer. Data are UNACCEPTABLE according to EPA Functional Guidelines. () Data are acceptable with QUALIFICATIONS noted in review. (X) Telephone/Communication Logs Enclosed? Yes __ No X No X If yes, list the items that require attention:

ORGANIC DATA VALIDATION REPORT

REVIEW NARRATIVE SUMMARY

This data package was reviewed according to the EPA document "USEPA Contract Laboratory Program National Functional Guidelines For Organic Data Review," February 1994.

Raw data were reviewed for completeness and transcription accuracy onto the summary forms. Approximately 10-20% of the results reported in each of the samples, calibrations, and QC analyses were recalculated and verified. If problems were identified during the recalculation of results, a more thorough calculation check was performed.

Case No. 27716, SDG No. HW935 consisted of one water sample for CLP volatile organic analyses.

The laboratory performed the required library search on all non-target sample components.

The following tables lists data qualifiers added to the data. (Please see Data Qualifier Definitions, attached to the end of this report.)

Sample Numbers	Semivolatile Compound	Qualifler	Reason For Qualification	Review Section
HW935	Acetone	ບງ	Continuing calibration %D > 25%	4

Data Validation Report

Method Number <u>OLM04.0</u>
Revision <u>OLM04.2</u>

Organic Data Completeness Checklist VOA

Quality Control Summary Package

- P Surrogate Recovery Summary
- P MS/MSD Summary:
- P_ Method Blank Summary
- P GC/MS Tuning and Mass Calibration

Sample Data Package

- P Holding Times (CLASS Sample Traffic Reports/UOS Chain-of-Custody)
- P Organic Analysis Data Sheets
- P Reconstructed Ion Chromatogram(s) (RIC)
- P Quantitation Reports
- P Mass Spectral Data
- P Mass Spectral Library Search for TICs

Standards Data Package

- NR Current List of Laboratory/Instrument Detection Limits
- P Initial Calibration Data for each instrument
- P Continuing Calibration Data for each instrument
- P Internal Standard Area Summary
- P VOA Standards RICs
- P VOA Standards Quantitation Reports

Raw QC Package

P BFB mass spectra and mass listings

Reagent Blank Data

- P Organic Analysis Data Sheets
- P RIC or Total Ion Chromatogram
- P Quantitation Reports
- P Mass Spectral Data
- P Library Search for TICs

Matrix Spike/Matrix Spike Duplicate Data

- P Organic Analysis Data Sheets
- P RIC
- P Quantitation Reports
- NA_ Mass Spectral Data
- NA Library search for TICs

KEY:

- P = Provided in original data package
- R = Provided as resubmission
- NP = Not provided in original data package or as resubmission
- NR = Not required
- NA = Not applicable to this data package or analysis

1. DELIVERABLES

All deliverables were present as specified in the subcontract.

VOA: Yes_X_ No_

Comments: None.

2. HOLDING TIMES AND PRESERVATION CRITERIA

All method holding times were met.

VOA: Yes_X No__

Comments: The water sample was analyzed within ten days from sample receipt at the

laboratory. Chain-of-custody, summary forms, and raw data were evaluated.

All technical holding times and preservation criteria were met.

VOA: Yes_X No___

Comments: The preserved water sample was analyzed within 14 days from sample collection.

Chain-of-custody records, summary forms, and raw data were evaluated. No

shipping or receiving problems were noted.

3. BFB PERFORMANCE RESULTS

The bromofluorobenzene (BFB) performance results were within the specified control limits. All appropriate BFB results were included.

VOA: Yes_X No___

Comments: BFB instrument performance checks were run for each 12 hours of analysis. Ion

abundance criteria were met and were verified from raw data.

4. INSTRUMENT CALIBRATIONS: INITIAL AND CONTINUING STANDARDS

Initial instrument calibrations were performed according to method requirements and met the specified control limits listed in the Functional Guidelines.

VOA: Yes_X_ No___

Comments: Initial calibration standards containing both volatile target compounds and

surrogate compounds were analyzed at the required frequency. Initial calibration relative response factors (RRFs) for all target volatile compounds and surrogate

compounds were greater than or equal to 0.05. The percent standard deviations (%RSDs) were less than or equal to 30% for all compounds. Summary forms and raw data were evaluated.

Continuing instrument calibrations were performed according to method requirements and met specified control limits listed in the Functional Guidelines.

VOA: Yes___ No_X_

Comments:

Continuing calibration standards containing both target compounds and surrogate compounds were analyzed at the beginning of each 12-hour analysis period. Continuing calibration RRFs for all target volatile compounds and system monitoring compounds were greater than or equal to 0.05. Summary forms and raw data were evaluated.

The following table lists the percent differences (%Ds) for compounds that were greater than 25% in the continuing calibration and the qualifiers added to the data:

	Compound	%D	Associated Samples	Qualifiers
Acetone	<u> </u>	27.7	HW935	Ωĵ

5. SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was performed according to method requirements and results met specified control limits.

VOA: Yes_X No___

Comments:

Surrogate compounds were added to all samples and blanks. The surrogate percent recoveries (%Rs) were all within the QC limits. Summary forms and raw data were evaluated.

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Matrix Spike/Matrix Spike Duplicate (MS/MSD) analyses were performed according to method requirements and results met recommended recovery and precision limits.

VOA: Yes___ No_X_

Comments:

MS/MSD analyses were performed on samples HW935. The percent recoveries for the MS/MSD analyses were within QC limits. The relative percent difference (RPD) for benzene at 12% exceeded the QC limit of 11%. No action is required as sample results are not qualified using only MS/MSD data. Summary forms and raw data were evaluated.

7. INTERNAL STANDARD AREA

Internal standard area analysis was performed according to method requirements and results met specified control limits.

VOA: Yes_X_ No__

Comments:

Internal standard area counts did not vary by more than a factor of two from the associated 12-hour calibration standard. The internal standard retention times did not vary more than \pm 30 seconds from the retention time of the associated 12-hour calibration standards. Summary forms and raw data were evaluated.

8. LABORATORY BLANK ANALYSIS RESULTS

The laboratory blank analysis was performed according to method requirements and results met specified limits.

VOA: Yes_X No__

Comments:

A method blank analysis was performed after the calibration standards and once for every 12-hour time period beginning with a BFB analysis. Contamination was not detected in the volatile blanks or in the holding blank. Summary forms and raw data were evaluated.

Tentatively identified compounds (TICs) were not found in the method or holding blanks.

9. SAMPLE RESULTS

The sample results were reviewed and all compound identifications were acceptable and met contract requirements.

VOA: Yes_X No___

Comments:

Sample relative retention times (RRTs) were within \pm 0.06 RRT units of the standard RRT. Ions present in the standard mass spectrum at a relative intensity greater than 10% were present in the sample spectrum. Relative intensities of ions agreed within \pm 20% between standard and sample spectra.

No TICs were found in the sample.

10. Additional Comments or Problems/Resolutions Not Addressed Above

VOA: Yes___ No_X_

Comments: None.

ORGANIC DATA QUALITY ASSURANCE REVIEW

Region VIII

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

GENERAL QUALIFIERS for use with both INORGANIC and ORGANIC DATA

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- NJ Estimated value of a tentatively identified compound. (Identified with a CAS number.) ORGANICS analysis only.
- The material was analyzed for, but was not detected above the level of the associated value.
 The associated value is either the sample quantitation limit or the sample detection limit.

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

_	HV	V 935	
DG	No.:	<u>HW935</u>	

Lab Name: MITKEM CORPORATION Contract: 68W99076

Lab Code: MITKEM Case No.: <u>27716</u> SAS No.: S

Matrix: (soil/water) WATER

Lab Sample ID: 70027001

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V6A0591

Level: (low/med) LOW

CAS NO.

Date Received: 01/07/00

% Moisture: not dec.

Date Analyzed: 01/13/00

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

COMPOUND

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q

		(ug/2 or ug/ng/n <u>oo/2</u>	×
75-71-8	Dichlorodifluoromethane	10	Ŭ
74-87-3	Chloromethane	10	<u>U</u> .
75-01-4	Vinyl Chloride	10	Ü
74-83-9	Bromomethane	10	Ų
75-00-3	Chloroethane	10	Ü
75-69-4	Trichlorofluoromethane	10	Ü
75-35-4	1,1-Dichloroethene	10	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	U
79-20-9	Methyl Acetate	10	Ū
75-0 <u>9-2</u>	Methylene Chloride	_ 10	_บ
156-60-5	trans-1,2-Dichloroethene	10	Ū
1634-04-4	Methyl tert-Butyl Ether	10	Ū
75-34-3	1,1-Dichloroethane	10	Ū
156-59-2	cis-1,2-Dichloroethene	10	<u>U</u>
78- <u>93-3</u>	2-Butanone	10	U
67-66-3	Chloroform	2	J
71-55-6	1,1,1-Trichloroethane	10	Ū
110-82-7	Cyclohexane	10	Ü
56-23-5	Carbon Tetrachloride	10	บ
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	Ū

Pf 1/21/00

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

 Lab Name:
 MITKEM CORPORATION
 Contract: 68W99076
 HW935

 Lab Code:
 MITKEM
 Case No.:
 27716
 SAS No.:
 SDG No.:
 HW935

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 70027001

 Sample wt/vol:
 5.000 (g/mL)
 ML
 Lab File ID:
 V6A0591

 Level:
 (low/med)
 Low
 Date Received:
 01/07/00

% Moisture: not dec. _____ Date Analyzed: 01/13/00

GC Column: $\underline{DB-624}$ ID: $\underline{0.25}$ (mm) Dilution Factor: $\underline{1.0}$

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	10 0
108-87-2	Methylcyclohexane	10 U
78-87-5	1,2-Dichloropropane	10 U
75-27-4	Bromodichloromethane	10 U
10061-01-5	cis-1,3-Dichloropropene	10 U
108-10-1	4-Methyl-2-Pentanone	10 U
108-88-3	Toluene	10 U
10061-02-6	trans-1,3-Dichloropropene	10 U
79-00-5	1,1,2-Trichloroethane	10 Ü
127-18-4	Tetrachloroethene	_ 10 U
591-78-6	2-Hexanone	10 U
124-48-1	Dibromochloromethane	10 U
106-93-4	1,2-Dibromoethane	10 U
108-90-7	Chlorobenzene	ט 10 ט
100-41-4	Ethylbenzene	10 0
1330-20-7	Xylene (Total)	10 U
100-42-5	Styrene	10 U
75-25-2	Bromoform	10 U
98-82-8	Isopropylbenzene	10 0
79-34-5	1,1,2,2-Tetrachloroethane	10 0
541-73-1	1,3-Dichlorobenzene	10 U
106-46-7	1,4-Dichlorobenzene	10 0
95-50-1	1,2-Dichlorobenzene	10 U
96-12-8	1,2-Dibromo-3-chloropropane	10 U
120-82-1	1,2,4-Trichlorobenzene	10 U

TE 1/3/10

1F VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPI	D.	NO
E.F.A.	SAME	·F.	INCI

	l
. HW935	

Lab Name: MITKEM CORPORATION	Contract: 68W99076
Lab Code: MITKEM Case No.: 27716	SAS No.: SDG No.: HW935
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 70027001
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6A0591
Level: (low/med) <u>LOW</u>	Date Received: 01/07/00
% Moisture: not dec	Date Analyzed: 01/13/00
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS:

			· · · · · · · · · · · · · · · · · · ·	 -
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	255555555555555555555555555555555555555	=======		====:
2.		·} ·		
3.				
4				
5				
6				<u> </u>
7.	_ <u></u>	 		ļ —_
8. 9.	_			
- 9 · 	_ <u>-i</u>	 		
10. 11. 12. 13. 14.				
12		<u></u>		
13.		 		
14.		 		
15.		 		
16. 17.				
17				
18				
19				
20.				<u> </u>
21				
22.		ļ 		
23.				
24. 25		 		
25.		 	<u> </u>	-
18. 19. 20. 21. 22. 23. 24. 25. 26. 27.		 		
28	·	 		
29.		 		
30.		 		

A dialo.

FORM I VOA-TIC

OLM04.1

HOLDING TIMES

Method #:	VOA	cemous.1	
Client & Batch	1#· (JEZ-HU	283 S

Validator/Date: Reviewer/Date: 0201:00

Includ	le samples, dilutions & rea	nalyses			Daton ir.	2.	7-14								
		(If Ap	plicable)				Extractables		Extrac	tables		Acti	ion Take	en .	
\ \			SAMPLE	TEMP.					EXT.	ANAL.	ANAL.	YOA			COMMENTS (ANY
1	SAMPLE NUMBER	Form I	PRE SERVED	(±2°C)	CONC.	DATE	DATE	DATE	DATE -	DATE -	DATE -	Aromatic J(+)	J	J (+)	PROBLEMS ESP. WITH SHIPPING, RECEIPT &
#	(per COC)	Y/N	Y/N	Y/N	MATRIX		EXTRACTED	ANALYZED	DATE	DATE	DATE	03 (0)	ALL	R (U)	SAMPLING CONDITION)
1	HU135		4	ابر'	Û	1-6-001		1-13-100			7,				, FPA - m
2		<u></u>	_											<u>ر بر ر</u>	(FPA- musula
3												1/2	1		
4		<u> </u>						<u> </u>		<u> </u>		V	1.0		
5				·								0	<u> </u>	<u> </u>	
6		,				·						<u>.</u>			
7		ļ	<u> </u>					· ·		<u> </u>					
8		<u> </u>													, ,
9		<u> </u>					<u> </u>		ļ	 			<u> </u>	<u> </u>	1-12 1/A/10 UTSR-
10	 	 -	 		ļ	<u> </u>			ļ <u> </u>		<u> </u>				1.712-
11	··		<u> </u>		1			<u> </u>						<u> </u>	. 00,0
12		ļ	 		 	<u> </u>	<u> </u>	<u> </u>	ļ	ļ			<u> </u>		
13		1	 		-		 -		 	 		-			
14		-	}	·	 	<u> </u>	<u> </u>	l	 	 	├	 	 	-	j
15		 	<u> </u>		 		<u> </u>	 	} -	ļ-—	 	 	 		
16			 		 		<u> </u>		-			 	 		,
17			<u> </u>		ļ	<u> </u>	<u></u>		-			 -	<u> </u>	<u> </u>	
18		ļ <u>.</u>	 	 -	-		 			├─	\vdash	-			
19 20	· · · · · ·	+		 	 	 	ļ		 	 	 		<u> </u>	-	
21			•		ļ				 .		 			_	
22	·		1		-		 		 -					 	
23			 		} 		 	 	 	1		 			·
23	<u> </u>	 -	 	 	 	1		 	 	 	 	<u> </u>	 	 	
\vdash		 	 	 	 	-			 -			 	 	 	
25			4	I	i .		l '	I	I	1	I	1	I	1	l

For all worksheets: (1) If a particular category is "Not Applicable," denote with N/A (2) Calculation checks performed by validators.

TUNING

Include samples, dilutions, reanalyses, calibrations & cal checks

TUNING COMPOUND	DATE & TIME TUNED	INSTRUMENT	ABUND. CRIT. MET Y/N	SAMPLE WITHIN <u>(と</u> HR. TIME FRAME Y/N	FORM 5 #'S EQUAL RAW DATA Y/N	CALC. OK	HEADER INFO OK Y/N	ACTION/COMMENTS
·	DATE: <u>I-1\-00</u> TIME: <u>17-4-1-</u>	γ6	2	7	\ \			
Associated samples:	オヘブ	· ;						Nave /
TUNE 2:	DATE: (~12-00)	٧6 .	7	5	/			
Associated samples:	Av.					.,		
TUNE 3:	DATE:							
Associated samples:		·—·········	·					
TUNE 4:	DATE:							, .
Associated samples:			<u> </u>	······································	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
TUNE 5:	DATE:							
Associated samples:			J		l		·	
TUNE 6:	DATE:							
Associated samples:		 	<u> </u>			<u> </u>		

INITIAL CALIBRATION

Include samples, dilutions, reanalyses, spikes & blanks

INITIAL DATE INSTRU- RRF 2 RSD 5 FOR TRACE- TRRF AVG. CORR. COMMENTS TRACE- TRRF AVG. CORR. COMMENTS TRACE- TRRF AVG. CORR. COMPOUNDS FAILING CRITERIA FOLIANT COMMENTS COMPOUNDS FAILING CRITERIA FOLIANT COMMENTS COMPOUNDS FAILING CRITERIA FOLIANT				ĺ	· · · · · · · · · · · · · · · · · · ·	1ST ORD.	2ND ORD.	0010	III ATIONS S	LIEGUO	
INITIAL DATE INISTRU- AVG RRF 2 RSD 2 0.79 TRACES 1 RRF AVG CORR RRF 2 0.99 Y/N Y/N Y/N Y/N Y/N STND. 4 4 4 4 4 4 4 4 4				li '	1		ZNU OKU.	CALC	OLATIONS C	HECK\$	
INSTALL DATE INSTALL CALIBRATION C			•					i l			,
CAL 1:	****					•		4 005			
CAL 1:					RSD ≤						-
CAL 2: 5) 6) 7) 6) 6) 7) 6) 6) 7) 6) 7) 6) 7) 7	CACIBIONTION	CALIBRATED		V/N	\ \frac{\sigma_{\sigma_{\text{N}}}}{\sqrt{\text{N}}}						
CAL 2:	I-CAL 1:									1,0,0,0,0	(Note il compounds are SPCC of CCC)
Sesocialed samples: CAL 2: 5) 6) 7) 6) Sesociated samples: CAL 3: 9) 10) 11) 12) Sesociated samples: CAL 4: 13) 14) 15) 16) CAL 5: 17) 18) 19) 20)		1-11-00	V6	I .		ľ" <i>–</i>	<u> </u>	/			. /
CAL 2: 5) 6) 7) 6)				2	7						1 1000
CAL 2:	Associated samp	les:					_				1 - ·
Sesociated samples: CAL 3: 9) 10) 11) 12) Sesociated samples: CAL 4: 13) 14) 15) 16) Sesociated samples: CAL 5: 17) 18) 19) 20) Sesociated samples:			AL								
Sesociated samples: CAL 3: 9) 10) 11) 12) Sesociated samples: CAL 4: 13) 14) 15) 16) Sesociated samples: CAL 5: 17) 18) 19) 20) Sesociated samples:	I CAL 2:	·		Tes.	les	Test	Tas · · ·				
CAL 3: 9) 10) 11) 12) ssociated samples: CAL 4: 13) 14) 15) 16) ssociated samples: CAL 5: 17) 18) 19) 20) ssociated samples:	I-GAL Z.) ·	^(۵) .	<i>'</i> '	⁶⁾			l	
CAL 3: 9) 10) 11) 12) ssociated samples: CAL 4: 13) 14) 15) 16) ssociated samples: CAL 5: 17) 18) 19) 20) ssociated samples:		-		ļ						[•
CAL 3: 9) 10) 11) 12) ssociated samples: CAL 4: 13) 14) 15) 16) ssociated samples: CAL 5: 17) 18) 19) 20) ssociated samples:	Associated samp	ies:		 ,	<u>. </u>	<u> </u>	<u> </u>	·	·	L	
Sesociated samples: CAL 4: 13) 14) 15) 16)								•		·	
Sesociated samples: CAL 4: 13) 14) 15) 16)											
CAL 4: 13) 14) 15) 16)	I-CAL 3:			9)	10)	11)	12)	1			
CAL 4: 13) 14) 15) 16)		-								1	
CAL 4: 13) 14) 15) 16)		<u></u>		<u> </u>	<u> </u>	ļ	<u>L</u>	<u> </u>		<u> </u>	
CAL 5: (17) 18) 19) 20) ssociated samples:	Associated samp	oles:									
CAL 5: (17) 18) 19) 20) ssociated samples:	•										•
CAL 5: (17) 18) 19) 20) ssociated samples:	LCAL 4:			113)	14)	115)	T16)				(
CAL 5: 17) 18) 19) 20) .ssociated samples:	1-0AL 4.			'''	'"	,	'''	ŀ			
CAL 5: 17) 18) 19) 20) .ssociated samples:]	}]			
ssociated samples:	Associated samp	les:		<u> </u>		<u> </u>	<u> </u>		······································	·	' '
ssociated samples:	-						-				
ssociated samples:											j '
	I-CAL 5:			[17)	18)	19)	20)			[·	1
				ľ	1	Ī		i]	·
		<u></u>		<u>!</u>		<u> </u>	<u> </u>	<u> </u>		[·
	Associated samp	les;								-	
CAL 6: [21) [22) [23) [24)	I-CAL 6:		İ	21)	221	123)	124)	,		·	· · · · · · · · · · · · · · · · · · ·
CAL 6: 21) 22) 23) 24)	POME 0.			[21]	[44]	(40)]^")	[]	
]	1						
ssociated samples:	Associated same	les:			J		1		· · · -		1 .
									•		
										<u> </u>	

CONTINUING CALIBRATION

Include samples, dilutions, reanalyses, spikes & blanks

Ticide samples, dilution.			DAILY	Т	CALCULATION	ONS CHECKS	
CONTINUING	DATE & TIME	ASSOC. I-CAL	RRF ≥ 0.05	%0≤ <u>25</u> %	MIN. 1 DAILY	MIN. 1	COMPOUNDS FAILING CRITERIA
CALIBRATION	CALIBRATED	DATE	Y/N	Y/N	RRF	%D	(Note if compounds are SPCC or CCC)
C-CAL 1:	1/12/00 (2328)	1/11/00	" 43	Nン (2)	<i>\</i>		Aceta- 27.7 - UJV
Associated samples:	AU						
C-CAL 2:	·		[3)	4)			
Associated samples:		• .	<u>I</u>	<u> </u>			
C-CAL 3:			(5)	6)			
Associated samples:		<u> </u>	<u> </u>			<u> </u>	
C-CAL 4:			7)	8)			, .
Associated samples:		<u>L</u>	<u>. </u>	1			
C-CAL 5:	_		9)	10)			
Associated samples:		<u> </u>		 	<u> </u>		
					•		
C-CAL 6:			11)	12)			
Associated samples:	l	l	<u>L</u>		<u> </u>	<u> </u>	

BLANKS

Include method, trip, equipment & field blanks

BLANK NUMBER & TYPE (Melhod, Trip, Equipment, Field)	DATE EXTRACTED	DATE ANALYZED	CORRECT MATRIX & LEVEL Y/N	FREQ- UENCY MET Y/N	ENTER BLANK CONTAMINANTS FOLLOWED BY CONCENTRATION	COMMENTS
BLK #/TYPE (ルは、5) V BL となる Associated samples:		1/13/00 UZI		/	No h13	
·	ALL	· ··				nove
VHBUKET		المالية المالية		1	No hats	. •
Associated samples:	٨''					
BLK #/TYPE						
Associated samples:						
BLK #/TYPE						
Associated samples:	<u> </u>		•	<u> </u>		
BLK #/TYPE						
Associated samples:		<u> </u>				
BLK #/TYPE						
Associated samples:	L					

SURROGATES & INTERNAL STANDARDS

Ì	,	SUF	ROGATES		INTERNA	L STDS.	SURR & IS		1	
#	SAMPLE NUMBER (Include sample number if limits not met)	RECOVERIES WITHIN LIMITS FORM II Y/N	IF NOT, RE-EXT./ RE-ANAL Y/N	RE-EXT/ RE-ANAL WITHIN LIMITS	AREAS WITHIN LIMITS MET Y/N	R.T.S. WITHIN LIMITS Y/N	CALC. OK	SURROGATES OUTSIDE QC LIMITS*	INTERNAL STANDARDS OUTSIDE QC LIMITS*	ACTIONS/COMMENTS
1	A.\\	5.	[) į	5	7	05	vone out	None sol	
2)					Na
3										No
4		,								
5				·	-					
6										
7							<u> </u>			
8	•									•
9					.	•				
10	•			-						
11				· · · · ·						
12										
13										
14										•
15				· · · · · · · · · · · · · · · · · · ·						
16										
17										
18				_			 			
19					·					
20			_							
21	· · · · · · · · · · · · · · · · · · ·									
22				-	<u></u> .		 			•
23							 			
24				-			 			
25	<u> </u>					l	 			

^{*}Indicate whether surrogate recovery (or internal standard area) was above—or below QC limits. Use—for extremely low surrogate recoveries (<10%) or internal standard areas (<2x the lower limit)

SPIKES ,LFBs, & LCSs

Include matrix spikes & laboratory fortified blanks which do not met spiking criteria

TYPE OF SPIKE (Circle One) & ID NUMBER	DATE & TIME ANALYZED	FREQUENCY CRITERIA MET Y/N	SPIKED AT CORRECT LEVEL Y/N	CALC. & TRANS. OK Y/N	LIST SPIKING COMPOUNDS OUTSIDE PERCENT RECOVERY CRITERIA (Followed by percent recovery)	LIST MS/MSD SPIKING COMPOUNDS OUTSIDE RPD CRITERIA (Followed by RPD)	ACTIONS/COMMENTS
LFB/MS/MSD/LCS#	1(13)00				none uit	Benzene 12 -11	
Associated samples:	-			<u> </u>			·
	Au			•	·	·	,
LFB / MS / MSD / LCS #						•	
Associated samples:		•			· 		
LFB/MS/MSD/LCS#			<u></u>				
Associated samples:		<u> </u>	<u> </u>	<u> </u>	•	-	
Associated samples:	•						
LFB/MS/MSD/LCS#							
Associated samples:	<u> </u>	<u> </u>				·	
LFB/MS/MSD/LCS#							
Associated samples:		l	<u>. </u>				
LFB/MS/MSD/LCS#					· · ·	·	
Associated samples:	<u>!</u>		I		:	·	

COMPOUND IDENTIFICATION, QUANTITATION & MDLS

		ID CR	TERIA	COMMENTS		CALC. C	CHECKS		
#	SAMPLE NUMBER (Include if problems exist)	RRT (0.06) MET Y/N	MASS SPECTRAL MET Y/N	COMMENTS & COMPOUNDS FAILING ID CRITERIA	SPECTRA PRESENT (TCL & TIC) Y/N	MDLS CORRECT Y/N	CHECK 1-3 HIT(S)	TRANS- CRIPTION ERRORS Y/N	ACTIONS/COMMENTS
1	BUNKS			Notifi		V	/		
2	435		·v		/	~			_
3			'ē <u>·</u>]			None
4	·								
5									E
6			-		- <u>-</u> .				
7	,			•					
8									
9		_						<u> </u>	
10				·					
11									
12		_					 	<u> </u>	
13		_					<u> </u>	<u></u>	
14						<u></u>		<u></u>	•
15									
16			<u></u>				<u> </u>	<u> </u>	
17						<u> </u>		· ·	
18						<u> </u>		<u> </u>	
19						<u> </u>		<u> </u>	
20						·		<u> </u>	
21							ļ <u></u>	<u> </u>	
22								<u> </u>	
23									
24									
25									

For all worksheets: (1) If a particular category is "Not Applicable," denote with N/A (2) Calculation checks performed by validators.

TechLaw

SYSTEM PERFORMANCE, DATA COMPLETENESS & ADDITIONAL QC :

SAMPLE NUMBER	IDENTIFY FACTORS THAT INDICATE SYSTEM PERFORMANCE PROBLEMS (e.g. Baseline Shifts, Large Air Peaks, I.S. Area Changes, etc.)	SAMPLE NUMBER	OTHER MISSING DATA (Including Mass Spectra)			
			,			
-1						
	- -					
•	┦ ├					
	-					
	<u>-</u>					
	_		, le			
	-{`	·	C			
·	┨					
	_{		•			
	´	····				
	┪ . ├-					
- and a second	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
d duplicates.						
		OMPOUNDS WITH RPDs OUTSIDE RPD CRITERIA				
	d duplicates. UPLICATE SAMPLE NUMBERS	d duplicates. ADDITIONAL, Q UPLICATE SAMPLE LIST COMPOUNDS WITH RPDs OUTSIDE F	d duplicates. ADDITIONAL, QC UPLICATE SAMPLE NUMBERS LIST COMPOUNDS WITH RPDs CUTSIDE RPD CRITERIA (followed by RPD)			

Page 9 of 9

Gcmswk98,xlssystm.qc

REGION VIII DATA VALIDATION REPORT INORGANIC

Case No. / TDD No.	Site N	ame	Operable Unit
27716 / 75-80314	Mt. Olivet Cem	etery	
RPM/OSC Name			
Luke Chavez			·
Contractor Laboratory	Contract No.	-SDG No.	Laboratory DPO/Region
Sentinel, Inc.	68-D5-0169	MHEP01	

Review Assigned Date	January 31, 2000	Data Validator	Bill Fear	
Review Completion Date_	February 2, 2000	Report Reviewer	Amy Ballow	

Sample ID	Sample Location	Matrix	Analysis
мнеро1	EPA-MW-06	Water	CLP - Metals and Mercury

MHEP01m inorganic - 1

DATA QUALITY STATEMENT

() () (X)	Data are ACCEPTABLE according to EPA Functional guidelines with no qualifiers (flags) added by the reviewer. Data are UNACCEPTABLE according to EPA Functional Guidelines. Data are acceptable with QUALIFICATIONS noted in review.					
Teleph	none/Communication Logs En	closed?	Yes_	NoX		
TPO Attention Required? Yes No			x	If yes, list the items that require attention:		

INORGANIC DATA VALIDATION REPORT

REVIEW NARRATIVE SUMMARY

This data package was reviewed according to "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994.

Raw data were reviewed for completeness and transcription accuracy onto the summary forms. Approximately 10-20% of the results reported in <u>each</u> of the samples, calibrations, and QC analyses were recalculated and verified. If problems were identified during the recalculation of results, a more thorough calculation check was performed.

The data package, Case No. 27716, SDG No. MHEP01, consisted of one water sample for CLP metals and mercury.

The following table lists the data qualifiers added to the sample analyses. Please see Data Qualifier Definitions, attached to the end of this report.

Sample ID	Elements :	Qualifiers	Reason for Qualification	Review - Section
МНЕР01	Chromium Copper Lead Vanadium	U	Blank contamination	VII
	Thallium	J	Negative blank contamination	
	Antimony Selenium	1/UJ	Matrix spike recoveries less than QC limits	ΙΧ
	Barium Potassium		Serial dilution %D greater than 10% and original sample value at least 50*IDL	χV

Data Validation Report

Metho Revisi	od/SOW Number <u>ILM04.0</u> on 0.0	
100130	Inorganic Deliverables Completeness Che	ecklist
	Inorganic Cover Page Inorganic Analysis Data Sheets (Form I) Initial Calibration and Calibration Verification Results (Form II) Continuing Calibration Verification Results (Form II) CRDL Standard for ICP and AA (Form II, Part 2) Blank Analysis Results (Form III) ICP Interference Check Sample Results (Form IV) Spiked Sample Results (Form V) Post-digest Spiked Sample Analysis (Form V, Part 2) Duplicate Sample Results (Form VI) Instrument Detection Limits (Form VII) or (Form X - Quarterly Laboratory Control Sample results (Form VII) Standard Addition Results (Form IX) Holding Times Summary Sheet (Form X) ICP Interelement Correction Factors (Form XII - Quarterly, or IICP Linear Ranges (Form XII (XII) - Quarterly) Raw Data)
NA P P P P	P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution NA Furnace AA P Mercury Analysis	P Blanks P Spikes P LCS NA Cyanide Analysis
KEY: P R NP NR NA	 Provided in original data package, as required by the SOW Provided as Resubmission Not provided in original data package or as resubmission Not required under the SOW Not applicable to this data package or analysis 	,

IĮ.

Ш.

I.	DELIVERAB	LE\$
----	------------------	------

All deliverab	les were present as specified in the Statement of Work.
Yes <u>X</u>	No
Comments:	None.
HOLDING T	TIMES AND PRESERVATION CRITERIA
All method he	olding times were met.
Yes <u>X</u>	No
Comments:	None.
All technical	holding times and preservation criteria were met.
Yes_X	No
Comments:	The sample was properly preserved and analyzed within required holding times. No shipping or receiving problems were noted.
INSTRUME	NT CALIBRATIONS: STANDARDS AND BLANKS
Initial instrum	ent calibrations were performed according to SOW requirements.
Yes_X_	No
Comments:	None.
The instrumen	its were calibrated daily and each time an analysis run was performed.
Yes <u>X</u>	No
Comments:	None.
The instrumen	ts were calibrated using one blank and the appropriate number of standards.
Yes <u>X</u>	No
Comments:	None.

IV.

Yes X

Comments:

FORM 1 - SAMPLE ANALYSIS RESULTS

	Sample analyses were entered correctly on Form Is.
	Yes_X_ No
	Comments: None.
v.	FORM 2A - INITIAL AND CONTINUING CALIBRATION VERIFICATION
	The initial and continuing calibration verification standards (ICV and CCV, respectively) met SOV requirements.

The calibration verification results were within 90-110% recovery for metals, 85-115% for cyanide, and 80-120% for mercury.

The calibration correlation coefficient for mercury was greater than 0.995.

Yes_X No___
Comments: None.

No_

The continuing calibration standards were run at 10% frequency.

Yes X No No No None.

VI. FORM 2B - CRDL STANDARD FOR ICP AND AA

ICP Analysis: Standards (CRI) at two times the CRDL or the IDL (whichever were greater) were "analyzed at the beginning and the end of each sample run, or at a minimum of twice per eight hours, whichever was more frequent.

Yes X No No None.

VII.

sample run.	sis. Standards (CRA) at two times CRDE were analyzed at the beginning of each
Yes	No NA_X_
Comments:	None.
The CRI and/	or the CRA were analyzed after the ICV.
Yes_X_	No
Comments:	None.
FORM 3 - BI	LANKS
The initial and	continuing calibration blanks (ICB and CCB, respectively) met SOW requirements.
Yes <u>X</u>	No
Comments:	None.
The continuing	g calibration blanks were run at 10% frequency.
Yes_X_	No
Comments:	Continuing calibration blanks were run every 10 samples.
	reparation blank was run at the frequency of one per twenty samples, or per sample (whichever is more frequent), and for each matrix analyzed.
Yes <u>X</u>	No
Comments:	None.
All analyzed b	lanks were free of contamination.
Yes	No_X_
Comments:	The following table lists the blanks with contamination, elements present, affected samples, and data qualifiers:

URS Operating Services, Inc.

Blank Contaminants

Biank ID	Date	Contaminant	Concentration Found in Blank (ug/L)	IDL (ug/L)	Associated Samples	Concentration Found in Sample (ug/L)	Qualifier/ Adjustment
ŧСВ	01/12/00	Chromium	0.5	0.3	MHEP01	0.70	υ
		Lead	1.3	1.1		1.7	
	•	Vanadium	0.7	0.5		2.8	
CCBI		Copper	0.7	0.5		1.6	
CCB2		Thallium	-2.2	2.1	•	3.5	J

VIII. FORM 4 - ICP INTERFERENCE CHECK SAMPLE

The ICP interference check sample (ICS) was run twice per eight hour shift and/or at the beginning
and end of each sample set analysis sequence (whichever is more frequent).

Yes_X_ No__

Comments: None.

Percent recovery of the analytes in solution ICSAB were within the range of 80-120%.

Yes_X_ No__

Comments: None.

Sample results for aluminum, calcium, iron, and magnesium were less than the ICSA values.

Yes_X_ No___

Comments: None.

IX. FORM 5A - MATRIX SPIKE SAMPLE ANALYSIS

A matrix spike sample was analyzed with every twenty or fewer samples of a similar matrix, or one per sample delivery group (whichever is more frequent).

· Yes<u>X</u> No__

Comments: None.

The percent recoveries (%R) were calculated correctly.

% Recovery =
$$\frac{(SSR - SR)}{SA}$$
 X 100

SSR = spiked sample result SR = sample result

SA = spike added

Yes_X No__

Comments: None.

Spike recoveries were within the range of 75-125% (an exception is granted where the sample concentration is four times the spike concentration).

Yes___ No_X_

Comments: The following table lists the spike recoveries outside control limits, matrix, samples

affected, and data qualifiers:

Element	Spike Recovery	Matrix	Samples Affected	Qualifiers
Antimony	61.6%	Water	MHEP01	ເນ
Selenium	63.2%			J

X. FORM 5B - POST DIGEST SPIKE RECOVERY

A post-digest spike was performed for those elements that did not meet the specified criteria (i.e., Pre-digestion/pre-distillation spike recovery falls outside of control limits and sample result is less than four times the spike amount added, exception: Ag, Hg).

Yes_X No__ Not Required__

Comments: Post digestion spike recoveries for the antimony and selenium were within QC limits. Post digestion spike results do not affect sample qualification.

XI. FORM 6 - DUPLICATE SAMPLE ANALYSIS

Duplicate sample analysis was performed with every twenty or fewer samples of a similar matrix, or one per sample delivery group (whichever is more frequent).

Yes_X_ No__

Comments: None.

The RPDs were calculated correctly.

No___

$$RPD = \frac{(S-D)}{(S+D)/2} \times 100$$

S = sample D = duplicate

Yes<u>X</u>

Comments: None.

For sample concentrations greater than five times the CRDL, RPDs were within $\pm 20\%$ (limits of $\pm 35\%$ apply for soil/sediments/tailings samples).

Yes_X_

No___

NA__

Comments:

None.

For sample concentrations less than five times the CRDL, duplicate analysis results were within the control window of \pm CRDL (two times CRDL for soils).

Yes_X

No___

Comments:

None.

XII. GFAA QC

Duplicate injections were performed on all GFAA samples and the RSD was within \pm 20%.

Yes___

No___

NA_X_

Comments:

GFAA analyses were not performed on these samples.

Analytical spikes were performed on all GFAA samples and the percent recovery was 85 - 115%.

Yes

No.

NA<u>X</u>

Comments:

GFAA analyses were not performed on these samples.

MSAs	were analyzed	when required and the correlation coefficient was > 0.995.	
	Yes	No NA_X_	
	Comments:	None.	
XIII.	FORM 7 - L	BORATORY CONTROL SAMPLE	
		control sample (LCS) was prepared and analyzed with every twenty or fewer sample trix, or one per sample delivery group (whichever is more frequent).	es
	Yes <u>X</u>	No	
	Comments:	None.	•
	All results we	e within control limits.	
	Yes_X_	No	
	Comments:	All LCS recoveries were within the control limits of 80-120%.	
xrv.	FORM 8 - ST	ANDARD ADDITION RESULTS	
	Results from g	aphite furnace standard additions were entered on Form VIII as directed in the SOV	V.
	Yes	No NA_X	
•	Comments:	None.	
xv.	FORM 9 - IC	QC	
		n was performed for ICP analysis with every twenty or fewer samples of a simil- per sample delivery group, whichever is more frequent.	ar
	Yes_X_	No	
	Comments:	None.	
	The serial dilu	on was without interference problems as defined by the SOW.	
	Yes	No_X_	

Comments:

The following serial dilution %Ds were greater than 10% and the original sample

results were at least 50* the IDLs:

Element	% Difference		Samples Affected	Qualifiers
Barium	15.9%	MHEP01		J
Potassium	11.4%		-	

AVI. FORM 10 - QUARTEREI INSTRUMENT DETECTION LIMITS (II	XVI.	FORM 10 -	QUARTERLY INSTRUMENT DETECTION LIMIT	rs (ID)
--	------	-----------	--------------------------------------	---------

IDLs v	were pro	ovided fo	r all	elements	on the	target	analyte	list.

Yes_X_ No_

Comments: None.

Reported IDLs met SOW requirements.

Yes_X_ No__

Comments: None.

XVII. FORM 11 - INTERELEMENT CORRECTION FACTORS FOR ICP

Interelement corrections for ICP were reported.

Yes_X_ No__

Comments: None.

XVIII. FORM 12 - ICP LINEAR RANGES

ICP linear ranges were reported.

Yes X No

Comments: None.

XIX. LINEAR RANGE VERIFICATION ANALYSIS

Linear Range Verification Analysis (LRA) was performed and results were within control limits	of
± 5% of the true value.	

Yes___ No___ NA

Comments: None.

XX. FORM 13 - PREPARATION LOG

Information on the preparation of samples for analysis was reported on Form XIII.

Yes_X No__

Comments: None.

XXI. FORM 14 - ANALYSIS RUN LOG

A Form XIV with the required information was filled out for each analysis run in the data package.

Yes_X_ No___

Comments: None.

XXII. Additional Comments or Problems/Resolutions Not Addressed Above

Yes___ No_X_

Comments: None.

INORGANIC DATA QUALITY ASSURANCE REVIEW

Region VIII

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality. Use of additional qualifiers should be carefully considered. Definitions for all qualifiers used should be provided with each report.

GENERAL QUALIFIERS for use with both INORGANIC and ORGANIC DATA

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- N J Estimated value of a tentatively identified compound. (Identified with a CAS number.) ORGANICS analysis only.
- The material was analyzed for, but was not detected above the level of the associated value.
 The associated value is either the sample quantitation limit or the sample detection limit.

ACRONYMS

AA Atomic Absorption

Ag Silver

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CFR Code of Federal Regulations

CLP Contract Laboratory Program

CRA CRDL standard required for AA

CRDL Contract Required Detection Limit

CRI CRDL standard required for ICP

CV Cold Vapor

EPA U.S. Environmental Protection Agency
GFAA Graphite Furnace Atomic Absorption

Hg Mercury

ICB Initial Calibration Blank

ICP Inductively Coupled Plasma

ICS Interference Check Sample

ICSA Interference Check Sample (Solution A)

ICSAB Interference Check Sample (Solution AB)

ICV Initial Calibration Verification
IDL Instrument Detection Limit
LCS Laboratory Control Sample

LRA Linear Range Verification Analysis

MSA Method of Standard Additions

PDS Post Digestion Spike

QC Quality Control

RPD Relative Percent Difference RPM Regional Project Manager

RSD Percent Relative Standard Deviation

SA Spike Added

SAS Special Analytical Services

SDG Sample Delivery Group

SOW Statement of Work

SR Sample Result

SSR Spiked Sample Result

TPO Technical Project Officer

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

MHEP01

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.:

SDG No.: MHEP01

Matrix (soil/water): WATER

Lab Sample ID: 28628S

Level (low/med): LOW

Date Received: 01/07/2000

Solids:

0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

•		1					Γ
	CAS No.	Analyte	Concentration	C	Q	M	
	7429-90-5	Aluminum	34.9	[ច		P P	
	7440-36-0	Antimony	2.1	Ū	N		ďΖ
	7440-38-2	Arsenic	2.2	U		P	'
	7440-39-3	Barium	56.1	в	E	P	Н
	7440-41-7	Beryllium	0.10	U		P	
	7440-43-9	Cadmium	0.30	U		P	
	7440-70-2	Calcium	107000]		P	
	7440-47-3	Chromium	0.70	В		₽	八
	7440-48-4	Cobalt	0.60	U		P	
	7440-50-8	Copper	1.6	В		P	1 U
	7439-89-6	Iron	18.6	U		P	
	7439-92-1	Lead	1.7	в		P	W
	7439-95-4	Magnesium	35500			P	
- 1	7439-96-5	Manganese	2.4	ט		₽	
	7439-97-6	Mercury	0.10	U		CV	
	7440-02-0	Nickel	1.3	U		P	
- (7440-09-7	Potassium	2000	В	E	P	7
	7782-49-2	Selenium	2.3	В	N	P	חח
	7440-22-4	Silver	0.40	U		P	_
	7440-23-5	Sodium	40400			P	
	7440-28-0	Thallium	3.5	В		P	hu
		Vanadium	2.8	В		₽	u
	7440-66-6	Zinc	12.9	U		P	
		Cyanide		j		NR	
				_			

Color Before: COLORLESS

Clarity Before: CLEAR

Texture:

olor After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:	C	٥	m	me	n	t	s	1
-----------	---	---	---	----	---	---	---	---

76 . (25/00

せ 一天5~ るの3 /〜 ist all analytes which d		ina time criter	ia				つつ	214	
Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
MHEPUL	14).	Α	1-6-42/	-1-12-0	(-10-0)			- 0-	\sqrt{\sq}}}}}}}}}}}}}} \sqite\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \sqite\sqite\sqit}}}}} \end{\sqrt{\sqrt{\sq}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}} \sqrt{\sqrt{\
<u> </u>					•	!		ļ	
								ļ	
								<u> </u>	
<u> </u>									
		<u>-</u>						<u> </u>	<u> </u>
	<u> </u>						.		
					, :				<u> </u>
		1			<u>:</u>		_:	<u> </u>	
· -								 	<u> </u>
		 			-				
	•								
<u></u>	<u>· </u>						_		
 -		-			-				
<u> </u>								 	<u>-</u>
						· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>	
- ·							·	<u> </u>	<u></u>
	_								<u> </u>
							··· <u>·</u> ···	 	
							<u> </u>		l
MMENTS (aV	(section 4	ا <u>۔ ا</u> محن نہی		سسايلو	<u>_</u>	u-+ 0	ط ()د	<u>1</u> ——	L
MAINTENTIO (8.	15C4 BA1 -			, , -	- درم				
· ·	<u> </u>					<u> </u>			
tions:				<u> </u>					
If holding times are excee If holding times are grossi				3/4					
imated (J), and non-detec			evente resons		Validated by:	D-	_	1. 1.	Date:
				-		Bull	1	1/2/00	
eservatives: Preserved w/HNO3 and c	cooled to 4°C				Review By:	٨	0		Date:

ANALYTE	HOLDING TIME	PRESERVATIVE	
		AQUEOUS	SOIL
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C

Holding Time = Analysis Date - Collection Date

BATCH: LA HERU(

List all ICP analytes that did not meet the perce	nt recovery criteria for initial calibration verification (ICV) and
continuing calibration verification (CCV)	

	ccv	TRUE	Found	% R	Action	Sam	ples Affected
						Art win	12.15
⁄∪९	C13	12500	13711	110.31	عددىر	to ech	bricket
	l				· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>
· -·		<u> </u>	· -	-	;	<u>.</u>	; ;
. '						· · · · · · · · · · · · · · · · · · ·	
·-						<u> </u>	<u> </u>
						<u>.</u>	
		-					
				· -		· · · · · · · · · · · · · · · · · · ·	
	-						· · · · · · · · · · · · · · · · · · ·
			·				
		<u> </u>		<u>.</u>	·	<u> </u>	•
						· · · · · ·	
-							
		s and at end of					
CRDL check :	sample (CRI) ar	nalyzed at the be		the end of each	sample run (CL	P only)? (Yes	No **
		<u> </u>	· · · · · · · · · · · · · · · · · · ·				

ICV/CCV Actions:

PERCENT RECOVERY

 <75%</th>
 75-89%
 90-110%
 111-125%
 >125%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

BATCH:

Analyte	ICV CCV	TRUE	Found	% R	Action	Samp	les Affected
<u>·</u>		·		_	 		<u> </u>
	· ·	 		. <u>.</u>	 	_/	
	<u> </u>	 					
		<u> </u>					
						\	
				_			
						· - v -	
						· · · ·	
							
		 			,		<u> </u>
		 - 		/			
	············	 				 	
		 			1		
		}~	-/-	·	<u> </u>		_
	·	 - 	/			· ·	
		 	/ .				
		<u> </u>				·	·
							<u>.</u>
	· .	<i>Y</i> 1					
		1					
						•	
	7.						
ere the corre	ct number of	standards and t	lanks used to	calibrate the	instrument?	Yes No	
		elation coefficien	•	Yes	No		
		and samples:				·. 	-
		(CRA) analyzed	t at the beginn	ing of each s	ample run? (CL	P only) Yes	No
		en samples and			Yes	No	
MENTS				*****			
14161410	· · · · · · · · · · · · · · · · · · ·						 _
	· 		·			•	
ns:				· .			
CCV Actions:							
		PER	CENT RECOV	/ERY			
		<75%	75-89%	90-110%	111-125%	>125%	
		R	J	٧	J	R	
ted results		• • •					

- 1. If three standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

IIC. INORGANIC ANALYSIS WORKSHEET - Hg CALIBRATIONS

-	1=2.1	
BATCH:	MHEROL	

CCV	TRUE	Found	% R	Action		Sar	mples Affected	•
					Αų	. In	lints	
				,			<u> </u>	- · · · -
				<i>;</i>				
			-		· -		• • • • • • • • • • • • • • • • • • • •	
	_						· · · · · · · · · · · · · · · · · · ·	
						,		•
-								 ·
	_			<u>-</u>				
,	·		-	_	÷	:	•	- ;
_	_							
	•						<u> </u>	· · · · · · · · · · · · · · · · · · ·
					<u>.</u>			
	,				-			
		·			•	· • • • • • • • • • • • • • • • • • • •		<u>. </u>
								
								;
	_ i						,	
	-						-	
							··	
	· .							
		,	-		= -	•		
			-				. <u>.</u>	·. · ·
						\$		
1. Were the co	rrect number	of standards and	blanks used to	calibrate the in	strument?	(Yeg) 1	No.	· •
	_	relation coefficie			lo	0. 989. 84		
		es and samples:			•		`	
			ed at the begins	ning of each san	npie run? (CLP	only) (Yeş	No	
		ten samples an			∕ves)	No		
COMMENTS			· <u>-</u>		$\overline{\bigcirc}$			
								
· ·				····-			· ·	•
Actions:						· · · · · · · · · · · · · · · · · · ·		
		D	RCENT RECO	WEDV				Ġ.

 <65%</th>
 65-79%
 80-120%
 121-135%
 >135%

 Detected results
 R
 J
 V
 J
 R

 Non-detected Results
 R
 UJ
 V
 V
 V

1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

					BATCH:
t all cyanide		F I			and/or CCV standard.
ccv	TRUE	Found	% R	Action	Samples Affected
	-				
					
	•				N
	·				2 10
					/ //
			•		
				/	
				·	
	···				
			-/	 -	
-		 	/	-	
	 -	- 1			·
			<u> </u>		
	-	-/- -		-	·
		/			
		/			
	- 		·		
	- / [
					<u> </u>
				alibrate the instru	ment? Yes No
	calibrations corre		> 0.995?	Yes No	<u> </u>
2	fectéd analytes a				<u></u>
	range calibration	n standard or an	ICV distilled?	Yes	No
	fected samples:				
MMENTS			•		······································
/					
4					
ions:		_			

1. If three standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

85-115%

116-130%

>130%

R

2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

70-84%

J

UJ

3. If a mid-range standard (or ICV) was not distilled, qualify sample results as estimated (J)/(UJ).

<70%

R

R

Detected results

Non-detected Results

III. INORGANIC ANALYSIS WORKSHEET - BLANKS

	MATRIX:	_لمالحو				BATCH: UHESOL
						•
List the highest positi		ive blank resul	t >=[DL[below.	. Use one work	ksheet for soil m	natrix and another for water matrix.
Analyte	CCB	101	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
A	PB/MB	<u> </u>				
4(CCBI					wo hit in cone
<u> </u>	Ten	<u> </u>	4.00			No Lt Si-be
59	7(3		1.3	2-0		>5
	<u> </u>	[JC]				No hat Exected
<u> </u>			1.0	- ~-		- 11 Lit
CR	⊅८छ	0.3	0.5	2-5	W	MH=101 - (0.72)
<u>(</u> 2	Voc					No mt
CT Fe	क्टा	<i>v</i> . <	υ. Դ	3.5	(3)	MHERI (LG)
<u>te</u>	00/					No had
<u>ρ</u> b.	± c3	1.1	1-3	6-5		MUSEU (1-2)
<u>, , , , , , , , , , , , , , , , , , , </u>	ሊጀ		54.7	<i>2</i> 7 3	<u> </u>	> 5× -
٧,٠	203		21-8	134	<u> </u>	>54
<u>A</u>	Naszn	>				No hit
_رن ځــــ	<i>ح</i> ر <i>ب</i> ک	155A	7726	3868		>54
170	CC32	21_	-2.2	-13		WHEDOI (3.7)
k	দের		الم ويموا	bricket		
V	#13	0.5	φ÷	31	(u)	EPU (28)
			-			
	•			_		
	_					
_					,	_
		•				
NOTE: Verify that the	absolute valu	e of any analy	te concentratio	n in the PB or I	MB is < CRDL *	
<u>Verify</u>				· -		
One prep blank per ma	atrix					use cosit 2 "
One prep blank per ba				· · · ·		
ICB analyzed immedia						
CCB analyzed after ea						
Field/equipment/rinsat		zed? If so, in	clude above if	applicable to n	roject.	
COMMENTS	<u> </u>			<u>:</u>		1
			• • • • •			

1. If [Slank] < IOL, no action is taken.

Actions:

- 2. If Blank > = IDL, then all sample results > = IDL and < 5°Blank are non-detected (U).
- 3. If Blank = < -IOL, all sample results > = IOL and < 5* [Blank] are estimated (J).
- 4. If Blank = < -IOL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- "If blank concentration > CRDL, all detected sample results > 5 "Blanks and < 10" Blank are estimated (J).

IVA. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	M4 E901
BATCH:	MILLO

Comments

NOTE: The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or equal to the concentration found in the ICSA solution.

ICS Value

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

Sample Result

<50%

R.

R.

Sample ID

Detected results

Non-detected results

Analyte

				Morde	
				**:-	\neg
	-			4 3060	 -
· · · · · · · · · · · · · · · · · · ·			 	7,50	
- . 			<u> </u>		_ .
				, , , , , , , , , , , , , , , , , , , ,	,
	/ /			<u> </u>	
		ì			
	· · · ·	<u> </u>			\neg
					
	<u>-</u> [L	<u> </u>	<u> </u>	
				-	
List any analytes in th	e ICS AB solution the	at did not meet the crit	teria of 80-120% R.		
Analyte	% R	Action	1	Samples Affected	
			(~ du-1201	
	- 		<u> </u>	1201	
	 				
	<u> </u>				
	<u>.</u>				
					· .
-		· · · · · - · · ·		•	
					
	-		'		
	-	· · · · · · · · · · · · · · · · · · ·			
		<u> </u>			
	<u> </u>				
	1				••
CLP Protocol Only	•••	1			
Were Interference Che	eck/Samples run at ti		of each sample analy	sis run, or a minimum of twice per 8-hour s	hift (whichever
is more frequent)?	Yes/	No		<u> </u>	
COMMENTS		<u>. </u>		· · ·	
Actions:					
	1	DEDCENT DECC	\/EDV		

80-120%

>120%

50-79%

· J

UJ

IVB. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	WHEROI	
BATCH:	WHEROL	

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result
ΛA								
* 11								
					,	-		
		:	<u>"</u>			7		
		<u> </u>				_		
<u>-</u>		<u>-</u> -			7.			
					·		Ì	1
	 	·		/.				
	·					;	;	1
· · · · · · · · · · · · · · · · · · ·	 					<u> </u>		
	 	· · · · ·		i	·	L		
	 		/			<u> </u>		<u> </u>
<u> </u>			/	<u> </u>				
	 	. <u> </u>	/					
	 			'				
	 							
	 					<u> </u>		1
····	 	/					<u>'</u>	<u> </u>
	 	<u></u>						
	 							
· - -	 - /- 				<u> </u>		<u> </u>	
	 / 						<u> </u>	
	/ 			<u> </u>				<u> </u>
	 			l	·		 	
/			·	-			<u> </u>	
	<u> </u>							<u> </u>
<u>/</u>	 							·
······································							<u> </u>	
		<u></u> .						
	<u> </u>							
						-		
	T - 1						-	

Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5° |ICSA|.
- 2. Estimate (UJ) non-detected results.

⁄૫ મ∈શ્ગ

BATCH:_

V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

422

MATRIX:_

ample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected	
01	Sb.	308-2	_	८००८	61-6-1.	<u>' 47</u>	0\	
	<u>- Se</u>	8-10.	228	100	63.2.1.	-	0\	
	_							
	*							
						,	- ',	
Ī								
					•			
							1 ,	
					1			
j					•			
		,						
							-	
		_					<u> </u>	
					٠,			
								-
1								
	•						 	
1							- :	
		, , , , , , , , , , , ,			1			
Was a pre- pre frequent		rix spike prep No	ared at the rec	suired frequency	y of once even	/ 20 samples	, or every SDG (whichever is	
	,		lyzed for all IC	P elements, e	cent Silver th	at did not me	et the ore-	
			$\overline{}$		xcept Silver, the		who limits -	_
	rix spike prep	ared for each	amerent samp	ne matrix?	Yes	No		
DMMENTS		- ·			(K2)	 		
	-			·				
		_						

Note

Detected results

Non-detected Results

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

< 30%

R

PERCENT RECOVERY

> 125%

30-74%

UJ

VI. INORGANIC ANALYSIS WORKSHEET - LABORATORY DUPLICATES

MATRIX:	450	BATCH: 14EPOL
**** * * * * * * * * * * * * * * * * * *		

List all parameters that do not meet RPD or CRDL criteria.

Sample ID	Analyte	Sample Result	Dup. Results	RPD	Difference ³	Action	Samples Affected
					· ·		<u>-</u>
		A 1 1					
			Cryeria	۾ ري	ھ ہ	2+_/	
						· · · · · · · · · · · · · · · · · · ·	
		·		_			
				•			
	_	. = .					
							<u> </u>
		·					
·				!		. <u> </u>	
	_						·
							; <u>-</u>
		-		,			
				,			
	<u> </u>						
<u>· </u>							<u> </u>
MMENTS			·		· · · - · -	<u>_</u>	
				•		<u></u>	
							••

Actions:

1. AQUEOUS

If both sample values > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

2. SOLIC

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result|
Include outliers for field duplicates (if applicable)

Note

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

VII. INORGANIC ANALYSIS WORKSHEET - LABORATORY CONTROL SAMPLES

		MATRIX:	H20			BATCH:	WHE)OI	
List all paramet	ters that do not	meet the percent		l				
LCS ID	Analyte	True Value	Found Value	% R	Action		Samples Affected	
		-			 	AU	w/~ &0~2	. D' L.
	<u> </u>							<u>, </u>
	<u> </u>							
							-	· · · · ·
							·	
						,		
		<u> </u>			<u> </u>			
		<u> </u>			,	,		
					_		· - ··	
	<u> </u>						·····	
			·					
			_					_
					<u> </u>			
						ļ		
				,		<u> </u>		
		<u> </u>			<u> </u>]		
		1			<u> </u>			. <u></u>
		<u> </u>			<u> </u>	ļ. <u></u>	<u> </u>	
	<u> </u>	<u></u>			<u></u>			
Note:		· · · - · · · ·	<u> </u>					
LCS with the sa	me matrix as sa	amples must be p	repared for each	SDG.				
COMMENTS								
		 				_		
								
		·····	•					
# - 4* ·					-		<u>-</u>	· · · · · · ·
Actions: Exception: Anti	imony and silver	r have no control	limits. An aqueo	ous LCS is not	t required for CN	and mercury.		
		-			~ ` `			
1. AQUEOUS			<50%	PERCEN 50-79%	IT RECOVERY)	\ >120%		
Detected results	5		R	J	/ v /	J		
Non-detected re		•	R	กา	(_ V	V		
2. SOLID LCS					_			
Recoveries stip	ulated by EMSL							
		•	BELOW		WITHIN		ABOVE	
			CONTROL LIMITS		CONTROL LIMITS		CONTROL LIMITS	
Detected result:	s		J.		V		J	
Non-detected re			ŲJ į		v		٧	

VIIIA. INORGANIC ANALYSIS WORKSHEET - ANALYTICAL SPIKE ANALYSIS

all samples	whose analytica	al spike recove	ry did not m ee l	i the 85-115% n	ecovery criteri	ia.	
Analyte	Sample ID	Sample Result	Spiked Sample Result	True Spike Value	% R	Action	Comment
		=					/
			· ·			1	
				·		1	
						1	
						7	
	· · · · · · · ·					·——	
					/	. •	
.							
				<u> </u>	/·		
							<u> </u>
			<u></u>		l		
				/			
Ì			/				
			···-				
	····		/				
			/	· · · · · ·			
			-/	 -			 ,
\longrightarrow			<u> </u>				
				ļ			
		/ /		,			
		/					
						-	
		/					
	/			i			
ike Recovi	ery for CLP Prote	ocal: One poir	t analytical soi	kes were nerfor	med for all G	FAA samoles?	Yes No
	7					•	
	ery for 544-646:	One analytica	spike was an	alyzed per batch	i or matrix, w	nichever is mor	re frequent? Yes No
MENTS	/			1			
	/ -	···					
 -	/						
	/			 			<u> </u>
				· · · · · · · · · · · · · · · · · · ·			
sample res	suff is <50% of the	he spike result	or the sample	result is >50%	of the spike o	esult* and the o	percent recovery is <40% or
			or the sample	result is >50%	of the spike r	esult* and the p	percent recovery is <40% or
	Sult is <50% of the following		or the sample	result is >50%	of the spike r	esult* and the p	percent recovery is <40% or
- 1			or the sample	PERCENT R		esult* and the p	percent recovery is <40% or
			or the sample			esult* and the p	percent recovery is <40% or

*Spike result = [spiked sample result - sample result]

VIIIB. INORGANIC ANALYSIS WORKSHEET -- FURNACE AA ANALYSIS

BATCH:	
RATCH	
DATO::	

If the sample result is > = 50% of the spike result and the percent recovery was between 40-84% or > 115%, then MSA must be performed.

List all samples for which an MSA analysis was required but not performed, or MSA results were outside control limits.

Analyte	Sample ID	1st Corr. Coeff.	2nd Corr. Coeff.	Action	Comments	
	<u> </u>					
]			
		-	_			
		·				
					<u> </u>	

Actions:

- 1. Estimate (J/UJ) if an MSA was required and not performed.
- 2. If the correlation coefficient was <0.995, the MSA should be performed a second time. If a reanalysis was not performed, or the reanalysis correlation coefficient was <0.995, or result from the highest correlation coefficient was not reported, then estimate (J/UJ) all sample results.

List all sample > CRDL whose duplicate injections did not agree within 20% RSD or CV, or samples in which duplicate injections were not performed.

Analyte	Sample ID	Sample Result	Duplicate Result	% RSD or CV	CRDL	Action	Comment
				:			
		<i></i>					-
		/					
							_
	/	<u> </u>					
	•/					11	
	/					<u></u>	<u> </u>
	<u>/</u>						
						<u> </u>	
	·					1	
				<u> </u>			

^{*}Spike result = [spiked sample result - sample result]

Actions:

- 1. Estimate (J) detected results greater than the CRDL if duplicate injections are outside 20% RSD.
- 2. Estimate (J) all sample results if duplicate injections were not performed.

NOTE: Three separate spiked sample concentration levels, in addition to the unspiked sample must be analyzed for each MSA.

BATCH: 44 ENL

IX. INORGANIC ANALYSIS WORKSHEET - ICP SERIAL DILUTION ANALYSIS

Works/

MATRIX:__

nalyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action		Samples Affected
<u> 159</u>	0.8	40	Slo-1	ن کی	1S-9	7	01 /	
1	32	160	200-1	2233	11.4	7	01_	
		<u> </u>		<u> </u>			ļ . <u></u>	
	<u> </u>		<u></u>	<u> </u>				
	-			 		<u></u>		·
		<u> </u>	<u> </u>			<u> </u>		
	-				·		ļ <u>-</u>	
		<u> </u>		 - 	_			-
	<u>-</u> :				-			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
		 		 	***		2	
				 				-
			_ .		_			-
		_	·		-			-
	. <u>-</u> .				·		j	
						-		
_					· . ·:.			
					_		ļ	·
		i.						·
	-						ļ	<u> </u>
						•		
				1			 	-
		· 				<u> </u>	<u> </u>	
					 .		<u> </u>	
				1	<u> </u>	<u> </u>		
TIVELY	COUPLED PL	SMA SERIAL	DILUTION AN	IALYSIS: of the diluted sam	nie analysis s	anseed within		
cent of th	ne original undi were not perfor	uted analysis.	Yes	No	pio 4:14:15:0			
ENTS		1265 + 20	1296	ი ს		-		••
	کنر	545.63		耳(P	پر م ^ا د ہ	٠ ٢٠٠	ر ک	KD ok for dog
	PY	17 - 23		_,,	· -			•
	1, 3			 -				

Actions

Estimate (J) detected results if %D is > 10%.

NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

X. METAL ANALYSIS WORKSHEET - SAMPLE RESULT VERIFICATION

BATCH: MHEAU

-			_							
I. Describe any raw	data agomatico (i	a bacalina s	hifte nagel	live absorbances	transcript	ion or ca	lculation e	rrore legibili	hu ata	
. Describe any raw	data anomalies (i.	.e., Daseille (mits, negat	uve absorbances	, transcript		.caiation e	rors, regioni	iy, e.c.	
	-			. ,				·		
 			<u></u>	· ·	-					
	<u>-</u>		1				•			
							· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
						-				
,								-		
	· · · · · · · · · · · · · · · · · · ·			 -						
·-·		• •				•				
List results that fal ere not reanalyzed.	l outside the linea	r range of the	ICP instrur	ment or the calib	rated range	of the A	A or Cyan	ide instrume	nt, and	
			. ۾ ٠ در	4-7-m2	req_in	. >				
										
			_	<u></u>				/ ./ /		
	-						, ' \	ola		
Were ICP linear ra	nges obtained wit	hin 3 months	of, and pre	ceding, the same	ole analyse	\$?	(Yes)	<u> </u>	10	ŅA
								<u> </u>		
Were ICP intereler	nent corrections of	btained withi	n 12 month:	s of, and precedi	ng, the sar	nple ana	yses?	/Yes/	No	NA
								\sim	(124	
Were instrument d							ed within 3	months of,	and	
eceding, the sample	analyses?	Yes/	ابارح	No	<u>N</u>	IA				
<u> </u>		4- 45 - 101	'6	N. D		\sim				
Were all sample re	suits reported dov	WI TO THE IDL	ir running C	JLP protocol?		Yes		No		NA
Were all sample re	culte reported de	un to MDL if	N/2 paiga	LRAS mathode?		Yes		No		NA
vvere all sample re	suits reported dov	WIT TO MIDE IF	unning Svv	-040 methods?		res	 -	No No		INA
Were sample weig	hts volumes nes	cont colide la	nd dilutions	need correctly in	han report	ing the co	eulte?	(Yes)	No	
THE SELECTION WEIGH	ins, volumes, per	Cent Sonds, e		used confectly w	men report	ing the re	:50K3 :	/i es)	. 110	
		·	; · -	 	•	····				
OMMENTS	None.									
DMIMEN 13	10000.							· .		:
		 -								
										
			•							
	",								 -	
	•				·					-
		_								
										_
			 							
	·			•						
			•							

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number: P4

Date: 10/15/1999

Flame AA ID Number:

Furnace AA ID Number:

	Wave-				
	length	Back-	CRDL	IDL	. !
Analyte	(mm)	ground	(ug/L)	(ug/L):	M
Aluminum	308.20		200	34.9	P-
Antimony	206.80		60	2.1	
Arsenic	189.00		10	2.2	
Barium	493.40		200	0.8	, ,
Beryllium			. 5	0.1	
Cadmium	226.50	:	5	0.3	
Calcium	317.90		5000	2592.0	P
Chromium	267.70		10	0.3	P
Cobalt	228.60		50	0.6	P
Copper	324.70		25	0.5	P
Iron	271.40		100	18.6	P
Lead	220.30	i	3	1.1	P
Magnesium	279.00		5000	38.8	P
Manganese	257.60		15	2.4	P
Mercury			0.2		NR
Nickel	231.60		40	1.3	P
Potassium	766.40		5000	3.2	₽
Selenium	196.00		5	1.8	P 4
Silver	328.00		10	0.4	P
Sodium	330.20		5000	155.1	P
Thallium	190.80		10	2.1	P
Vanadium	292.40	İ	50	0.5	P
Zinc	206.20	İ	20	12.9	P
Cyanide			10		NR
I[,	اا

Comments:	:	
-----------	---	--

P4: THERMO JA	WYCH HOU

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number:

Date: 10/15/1999

Flame AA ID Number: C5

Furnace AA ID Number:

Analyte			 		
Antimony Arsenic 10 NR 10 NR Barium 200 NR Beryllium 5 NR Cadmium 5 NR Calcium 5000 NR Chromium 10 NR Cobalt 50 NR Copper 25 NR Iron 100 NR Lead 3 NR Magnesium Manganese 15 NR NR Mercury 253.60 0.2 0.1 CV	Analyte	length	 :		м
Nickel 40 NR Potassium 5000 NR Selenium 5 NR Silver 10 NR Sodium 5000 NR Thallium 10 NR Vanadium 50 NR Zinc 20 NR Cyanide 10 NR	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	253.60	60 10 200 5 5 5000 10 50 25 100 3 5000 15 0.2 40 5000 10 5000	0.1	KR KR KR KR KR KR KR KR KR KR KR KR KR K

	ments: C5: CETAC	M6000					
٠			•	_	 		
					•	<u>-</u>	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number: P4

Date: 08/26/1999

T	-	T .			· · · · · · · · · · · · · · · · · · ·	
	Wave-	Inter	element Cor	rection Fact	tors for:	
	length					
Analyte	(nm)	Al	Ca	Fe	Mg	Co
	i ' '					-
Aluminum	308.20	0.0000000	0.0000000	0.0000000	0.000000	-0.0177100
Antimony	206.80	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.40	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000250	0.0000000			
Calcium	317.90	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.70	0.0000000	0.0000000		0.0000000	0.0000000
Cobalt	228.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.70	0.0000000	0.0000000	0.0000000	0.0000000	-0.0003560
Iron	271.40	0.0000000	0.0000000	0.0000000	0.0000000	0.0797000
Lead	220.30	0.0004200			0.0000000	0.0001490
Magnesium		0.0000000		0.0000000	0.0000000	
Manganese	257.60	-0.0000150	0.0000000	0.0000000	0.0000180	0.0000000
Mercury	•					
Nickel	231.60	0.0000000		0.0000000		-0.0002400
Potassium	766.40	0.0000000		0.0000000		0.0000000
Selenium	196.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0002000
Silver	328.00	0.0000000	0.000000	-0.0003400	0.0000000	0.0000000
Sodium	330.20	0.0000000		0.0000000	0.0000000	0.0000000
Thallium	190.80	0.0000000	0.0000000	-0.0000500	0.0000000	0.0032000
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Zinc	206.20	0.0000000	0.0000000	0.0000000	0.0000320	0.0000000
l		l <u></u>				ll

_	'n	_	_	_	_	_	_	
ſ	~~	m	m	0	п	т	•	٠

P4: THERMO JARRELL ASH

11B ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number: P4

Date: 08/26/1999

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		<u></u>			
	Wave-	Inter	element Cor	rection Fac	tors for:	
	length		•			
Analyte	(nm)	Cŕ	Cu	Mn	Mo	_ <u>N</u> i
Aluminum	308.20	0.000000	0.000000	0.000000	0.0100000	0.0000000
Antimony	206.80	0.0056000	1		0.0000000	
Arsenic	189.00	0.0020000	0.0000000	0.0000000	-0.0015000	0.000000
Barium	493.40	0.0000000	0.0000000		0.0000000	0.0000000
Beryllium	313.00	0.0000000	0.0000000			0.0000000
Cadmium	226.50	0.0000000	0.0000000			0.0000650
Calcium	317.90	0.0000000	0.0000000	0.0000000	0.0300000	0.0000000
Chromium	267.70	0.0000000	0.0007700			0.0000000
Cobalt	228.60	0.0000000	0.0000000	0.0000000		0.0001100
Copper	324.70	0.0000000	0.0000000	0.0000000	0.0010000	0.0000000
Iron	271.40	0.0016100	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.30	0.0000000	0.0000000	0.0000430	-0.0002000	0.0002950
Magnesium	279.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Mercury						
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.40	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.00	0.0000000	0.0000000	0.0003300	0.0000000	0.0000000
Silver	328.00	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Sodium	330.20	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.80	0.0002400	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	-0.0012000	0.0000000	0.0000000	-0.0020000	0.0000000
Zinc	206.20	0.0083700	0.0000000	0.0000000	0.0009000	0.0000000
		l				

~~	m	-	-	+	_	

P4: THERMO JARRELL ASH

11B ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: SENTINEL INC. Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number: P4 Date: 08/26/1999

	Wave-	Interelement Correction Factors for:				
Analyte	length (nm)	Ti	v	Zn		
Aluminum	308.20	0.0000000	0.0043000	0.000000		
Antimony	206.80	0.0000000	0.0000980	0.0000000		
Arsenic	189.00	0.0000000	0.0000000	0.0000000	;	
Barium	493.40	0.0000000	0.0000000	0.0000000		j
Beryllium	313.00	-0.0014000	0.0012300	0.0000000		
Cadmium	226.50	0.0000000	0.0000000	0.0000000		
Calcium	317.90	0.0000000				
Chromium	267.70	0.0000000		l		
Cobalt	228.60	0.0018000				
Copper	324.70	0.0000000		[}
Iron	271.40	0.0000000		r I		
Lead	220.30	0.0000000				
Magnesium		0.0000000			•	
Manganese	257.60	0.0000000	0.0000000	0.0000000		
Mercury						
Nickel	231.60	0.0000000			-	
Potassium	766.40	0.0000000				
Selenium	196.00	0.0000000	0.0002000	0.0000000		
Silver	328.00	0.0000000				
Sodium	330.20	0.0000000				
Thallium	190.80	-0.0015000	0.0000000	· ·		
Vanadium	292.40	0.0000000	0.0000000	·		
Zinc	206.20	0.0000000	0.0000000	0.0000000		
1 1]				

mm		

P4: THERMO JARRELL ASH

.\7

12 ICP LINEAR RANGES (QUARTERLY)

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

ICP ID Number: P4

Date: 10/15/1999

		<u> </u>		
	Analyte Aluminum Antimony	Integ. Time (Sec.) 15.00	Concentration (ug/L) 900000.0 25000.0	М
	Arsenic	15.00	25000.0	I - I
	Barium	15.00	10000.0	1 - F
	Beryllium		5000.0	l – I
	Cadmium	15.00	25000.0	
	Calcium	15.00	1130000.0	P
	Chromium	15.00	100000.0	P
	Cobalt	15.00	100000.0	P
	Copper	15.00	100000.0	₽
	Iron	15.00	1000000.0	
	Lead	15.00	50000.0	
	Magnesium	15.00	1000000.0	
	Manganese	15.00	100000.0	P
	Mercury			NR
	Nickel	15.00	50000.0	
	Potassium	15.00	400000.0	
	Selenium	15.00	25000.0	P
	Silver	15.00	1250.0	
	Sodium	15.00	1000000.0	
ļ	Thallium	15.00	50000.0	P [
	Vanadium	15.00	100000.0	P
Ì	Zinc	15.00	100000.0	P
Ì	I	{		I I

C	O	m	m	e	n	t	s	•
•	v			_	••	_	_	٠

P4: THERMO JARRELL ASH

13 PREPARATION LOG

Lab Name: SENTINEL INC. Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

Method: P

EPA	Preparation	Weight	Volume
Sample No.	Date	(gram)	(mL)
		(323,	(/
LCSW	01/10/2000		
MHEP01	01/10/2000	f	100
MHEP01D	01/10/2000		100
MHEPOIS	01/10/2000	·	100
PBW	01/10/2000		100
··	10, 20, 2000		
			
- 			ļ
	i _		
		·	
J			
	 -		[
]			
			[
∤			[]
	`		
			
			-
			
		i 	
			<u></u>
			
			 -[
]			
			
[[
			
	- 		<u>-</u> -
		·	
			j[
			ll
		··-	
ll	,,,,,,,,_,,_,,_,		ll

U.S. EPA - CLP

13 PREPARATION LOG

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

Method: CV

EPA	Preparation	Weight	Volume (mL)
Sample No.	Date	(gram)	(""")
MHEP01	01/10/2000		100
MHEP01D	01/10/2000		100
MHEPOIS	01/10/2000 01/10/2000 01/10/2000		100
PBW	01/10/2000		100
			ļ ——— ļ
			
			<u> </u>
·[·		-
			
			
<u> </u>			
			· · · · · · · · · · · · · · · · · · ·
			 · · · · ·
			-
			
	· · · · · · · · · · · · · · · · · · ·		

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

Instrument ID Number: P4

Method: P

Start date: 01/12/2000 End date: 01/12/2000

_]			T .			Analytes																							
	EPA	5/-	 		-	-		1 -	-	-	ובו		_			نجا	<u> </u>	100	24		1	7.2	_	-	Ţ.		انوو		_
	Sample	D/F	Time	8	Ŕ	A	S	A	B A	B E	C	O,	C R	C	C D	F	O B	M		១ ដ	Ŋ	K	ს (A	N	T	V		<u>C</u>
	No.	1	-	1		L	В	s	A	E	D	Ā	K	0	"	E	В	G	N	G	I		Ε	G	A	L	Ì	N	N
	<u>s</u> 0	1.00	0451]		$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	x	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	x	1	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	\bar{x}	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	-:
	s	1.00	0456			X	x	Х	X	х	x	х	X	x	x	X.	X	x	X	~	Х	x	X	X	x	\mathbf{x}		x	-1
_	ICV	1.00	0501			Х	X	x	x	$ \mathbf{x} $		X	X	X	Х	$ \mathbf{x} $	X	$ \mathbf{x} $	X		$ \mathbf{x} $	x	X	Х	Х	X	X	\mathbf{x}	_
	ICB	1.00	0506			\mathbf{x}	x	x	х	Х		х	X	X	X	X	X	x	X	_	X	X	X	x	x	X		\mathbf{x}	_
	CRI	1.00	0511			_	X	X	_	X	X	_	X X	Х	X	_	X	_	X	_	X	<u> </u>	Х	X	_	X		X	
ſ	ICSA	1.00	0515	l		$\overline{\mathbf{x}}$	Х	X	$\bar{\mathbf{x}}$	X		$\bar{\mathbf{x}}$		X	X	$\bar{\mathbf{x}}$		$\bar{\mathbf{x}}$	X	_	X	x	X	\mathbf{x}	$\bar{\mathbf{x}}$	Х		\mathbf{x}	_
	ICSAB	1.00	0520	l		X	X	X	X	X	X	X	X	X	X	х	X	X	X	_	X	X	Х	X,	X	X		X	
١Į	CCV	1.00	0525			X	Х	X	X	X	X	X	X	X	X	X	X	X	X	-	X	X	X	X	X	X		X	
ſ	CCB	1.00	0530			X	X	X	X	X	X	X	X	X	X	X	X	X	X	_	X	X	X	X	X	X		X	
ı	PBW	1.00	0535			X	X	X	X	X	X	X	X	X	X	X	X	X	X	-	X	X	X	X	X	X		X	-!
	LCSW MHEP01L	1.00 5.00	0540 0544	 		X X	X	X X	X	X	X	X	X	X	x	X	X	Ϋ́	X	-	X	X X	X X	x	X	X X		X	-
_ [MHEPOIL	1.00	0549					X	X X	X X	X	X	X X	X	X X	X	X	X	X X	-	X	X	X	X X	X	X		x	-1
	MHEP01D	1.00	0554			X X X	X	x	î	X	x	χ̈́	X	x		x	x	x	X		X X	X	X	X	X	X		$\hat{\mathbf{x}}$	-
	MHEP015	1.00	0559			ၞ	x	x			x	^	x				x	^	X	-	X	Λ	X	x	^	X		$\hat{\mathbf{x}}$	-
	MHEP013	1.00	0604		 i		x	^	^	^	^	-	^	^	^	^	^	-	^	-	 ^	-	X	^;	-	^	^	^	-1
▄┆	ZZZZZZ	1.00	0609			-	^	-	-	-	-1	-	-1	-	-	-1	-	-	-	-	-	-	^	-	-	-	-	-1	-
	ZZZZZZ	10.00	0613				-1	-	-	-	-	-	-	-1	-	-	-	_	-	_	-	-		-	-	_	-	-	-1
•	CCV	1.00	0618		 i	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	$\vec{\mathbf{x}}$	$\bar{\mathbf{x}}$	$\overline{\mathbf{x}}$	-	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	X	Ī	$\bar{\mathbf{x}}$	$\bar{\mathbf{x}}$	x	$\overline{\mathbf{x}}$	-1
_	CCB	1.00	0623			X	X				x			x		\mathbf{x}	X	x	X	-	X	X	Х	x	х	X		x	-1
H	ZZZZZZ	10.00	0628							-		Ī								_	-							Ī	_
	ZZZZZZ	10.00	0633			_		-1	_	-	-	-	-	-	-	_	_	-	_	-	-	_	-	-	-	_	~	_	
_	ZZZZZZ	10.00	0637				_		_		_		_		_	_	_	_	_	_	_	_		_	_	_	[_]	_	
	ZZZZZZ	10.00	0642											_			_1	_}			_	_			_	_			
	ZZZZZZ	10.00	0647				_	_	_	_	_	_1					_	_	_		<u> </u>	_		_			_		_
	CRI	1.00	0652				$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	_	$\overline{\mathbf{x}}$	$\overline{\mathbf{x}}$	- <u>x</u>	\overline{x}		\overline{X}	_	$\overline{\mathbf{x}}$		X		$ \overline{\mathbf{x}} $	_	X	X		X	x	X	_
	ICSA		0657			$\overline{\mathbf{x}}$	X		$\tilde{\mathbf{x}}$	\mathbf{x}	X	х	x		X	X	X	$\overline{\mathbf{x}}$	X	_	X	X	X	Х	$\bar{\mathbf{x}}$	X	X	X	-1
	ICSAB	1.00	0702		—l	X	X	X	X	X	X	X	X X	X	X	х	X	X	X	_	X	X	X	X	X X	X	X		_
	CCV	· •	0706			X	X		X			x	X	X	X		X	X	X	_	X	X	X	X	X	X	Х	X	_
	CCB	1.00	0711			X	X	X	X	X	X	x	x	X	X	x	x	x	X	-	X	X	X	X	X	X	X	X	_
I				:		-1	-1	-		-1	-	-1	-1	-1	-1	-1	∸	-1	-	-1	-	-	-	 –	-	-		 - 	-
7						-	-	-	-1	-	-	-	-	-!	-	-	-	-	-	_	 i	-	_	-	-	-		-	-
ľ		!	·			_!	_1	_!	l	_	_1	_!	<u>.</u>	_	_	_'	ا ہـ	_1	_	_!	'	 _	-	۱_	<u> </u>	_	I	— 1	-1

U.S. EPA - CLP

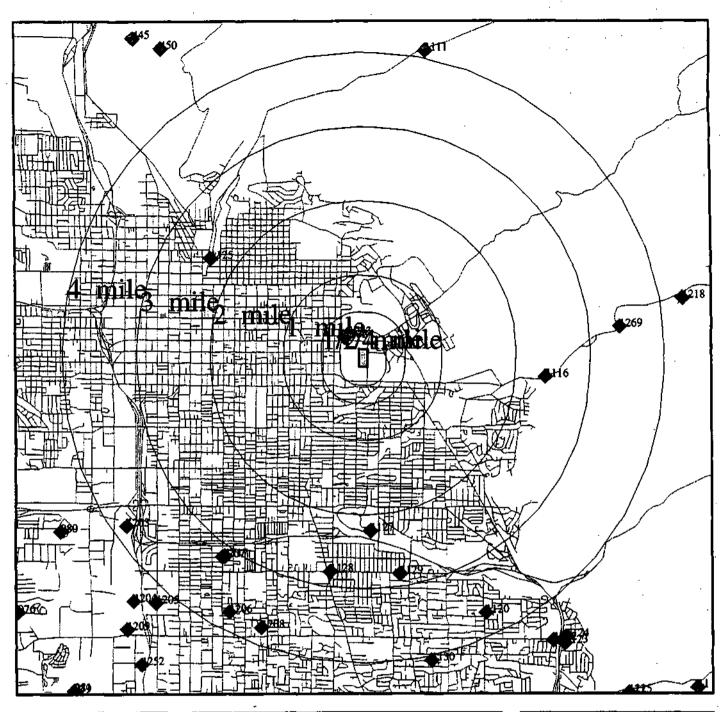
ANALYSIS RUN LOG

Lab Name: SENTINEL INC.

Contract: 68-D5-0169

Lab Code: SENTIN Case No.: 27716 SAS No.: SDG No.: MHEP01

Instrument ID Number: C5


Method: CV

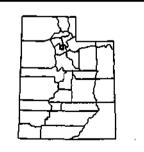
Start date: 01/10/2000 End date: 01/10/2000

	·					_								_	 ;	àn:	aly	<u> </u>											 (
EPA															1	-11¢	al)	7 6 (ج										
Sample	D/F	Time	,	용 .	R	Ā	S	Α	В	В	C	C.	C	C	C	F	ĪΡ			H	N	K	s	A	N	T	Įν	Z	ΤċΙ
No.	,		[L		s	B A	Ε	D	CA	R	0	Ū	FE	В		И	G	I		SE	A G	Α	Ļ	ŀ		N
l		l				l_	1_1	_	_	1_1	_		1_	[_	1_	_	$ _{\perp} $		 _	 _	 _	_	_	_	_	_		_	_
S0	1.00	1339	l				-	_	 _	[_]	_	 _		[_	_	-	_	-	<u> </u> ;	X	_	_	<u> </u>	_	_	_	_	_	_
S0.2	1.00	1340	!			_	1-1	1-	 _	_	 _		1_1	_	 _	1_	-	-	<u> </u> _	X	 _	 _	_	1-	-	-	1_	_	-
80.5	1.00	1341	·			1-1	1-1	-	1_	1-1	ا_ا	-	_	_	_	-	_	ا ـــ ا	-	X	-	_	_	_	_	-	_	_	_
\$1.0	1.00	1343	·			_	1-1	_	_	[-]	_	_	_	_	_	<u> _</u>	_	!_	 _	X	1-1	_	_	_	_	_	_	 _	_
\$2.0	1.00	1344				1-1	-	1_		ا ـــ ا	1_	_		_	 _	_	_	ا_ا	 _	X	_	-	-	_	_	_	_	_	_
S5.0	1.00	1346				-	1_1	_	 _	-	 _	_	ا_\	_	_	_	_	1_1	 	X	_	_	 _	[_]	<u> </u> _	_	_	_	1 <u> </u>
S10.0		1347				1_	1_	_	_	_	 _ 	_	-	$ _ $	_	_	_	_	_	X	1_	_		 _		_	_	 _	_ ,
ICV	1.00	1426			!	1_	1_1		_	ا_	_	_[[_]	$ _ $	_	_	_	_	_	Х	_	_	-	[_	-	_	_	_	_
ICB	1.00	1428				_	1_1	_	_	_	ا_ا		-	_		_	-	_	_	X	<u> </u>	_	_	_		_	_	$ _ $	_\
CRA	1.00	1429				_	_	_	_	1_1	ا_ا		-	_	_	<u> </u> _	-	 _		X	 _	_	-	-	_	-	_	_	-
ccv	1.00	1430				-		_	1_1	_	_	_	ا_'	_	_	_	-1	-	_	X		1-1	[_	l_	[]	1-1	_	_	$\lfloor - \rfloor$
CCB	1.00	1432				1_	_	_	1_}	_	-1	_	_	_	_	_	_	-	_	X	_	_	[_	_	<u> _ </u>	_	_	_	_ .
PBW		1433			<u></u> i	1_1	1_1	_	-	ا_ا	_	_	ا_'	_	_	_	_	-	_	X	_	_	-	_	<u> _ </u>	!_	_	_	_
MHEP01		1434				1_1	1_1	_	_	ا_\	_	_	ا_'	_	ا_ا	_	ا_ا	ا_ا		X	_	-	_	_	 _	_	 _	_	
MHEP01D	1	1436				1_1	1_	_	_	<u>'</u> _	_	_1		_	'_/	<u>'</u> _	_	'_		X	-	_	-	-	 _	-	ا_ا	!_	'_/I
MHEP01S		1437				_	1_1	_	_	_	_	_	_	_	_	_	ا_ا	_	_	Х	_	_	_	_	1_	_	ا_ا	_	_
CCV		1439				_	_	_	_	_	_	_	_	`_	ا_'	'_l	ا_!	_	_	Х	_	_	-	_	 _	<u> _ </u>	_	_l	<u>.</u>
CCB	1.00	1440						_	_	_	_]	-	_		 _	_	ا_ا	_	_	Х	-	_	_	_	<u> _ </u>	_	<u>ا _</u> ا	1_1	
ll					Ì	_	'_	_}	1_/	_	_1	4	_}	-1	ا_ا	_	ا_'	-	_	_	-	 _	1_1	1_	<u> _ i</u>	_	_	!_}	
						<u> _</u>	'_	_	_	_	_[_	-1	_[_	_	_	<u>-</u>	_	_	_	1_	1_	1_	_	_	_	_	_ .
						_	`	_	_	_	_		_	_		 _		_	_		_	ا_	1_	_	_	_	ا_\	_	_
<u> </u>	·]			_		_	'-	-	_	-	-	_	_	-	-1	-1	 _	-1	-	-		ا ــ ا	_	_	_		_	_	-
<u> </u>		<u></u>				-	-	 	 	-1	-	-1	-1			-	_	-	·		1-1	-	[-	[-	! 	۱—I	-	-
		<u></u>				-	'-	-	-	-	-	-1	-	-1	-	-	-]	-	-	· —	-	-	_	-	 	 _ 	_	-	-
					<u> </u>	-	-	-	-	-	-	-	-	-1	-	-	-[-1		·-	-	-	-	-	-		 - 	-	- 1
				-		-	'-	-	-	-	-	-	-	-	-	-	-	-1		-	-	-	[-	-	-	-	-	1-	-
		 -				i-	-	-	-	-1	-		-1	-	-	-	-	-1	-	-	! —	-	-	!-	-		1 -		- 1
		I	_	—	 -		-	-		-1	-1	-	-	-	-	-[-	-	-	-[-		-	-			-	1-1	-
				_	 -	-	-	-	-	-1	-1	-	-[-	-[-1	-	-	-	-	-	-1	-	-		-	-	-[-
·				—		-	-	-[-	-	-	-	-	-	-	-[-	-	-	-	-	-	-		-		-	-	-
	 }		_	_		-	-1	-1	-	-	-1		-	-1	-	-1	-1	-1	-1	-	1-	-	1-	-	-	1-	-	-[-
I	 -				 -	-1	-1	-	-1	-	-	-1	-	-	-	-	-	-1	-	-	-	-	-	-	-	-	-	-	- 1
	·	l			<u> </u>	_ [-1	_	_ 1	. I	_ [_!	_1	_1	_1	1	_1	_	_ [!		_ [- I	· — •	<u> </u>	1	1	_1	I

APPENDIX D

MUNICIPAL DRINKING WATER SOURCES WITHIN FOUR MILES

Mount Olivet Cemetery Plume Drinking Water Wells Within Four Miles


Legend

I'' = 1.29 Miles

Road Centerlines

Drinking Water Sources

UDEQ Division of Environmental Response and Remediation DRINKING WATER WELL REPORT

Date: October 03, 1995 8:25 PM

Distance to Site: 2.4 miles

HDDWS-ID: 1116

SYSTEM-NUM: 18026

SYSTEM-NAME: SALT LAKE CITY WATER SYS.

LOCATION: SALT LAKE CITY 1530 S W TEMPLE ADDRESS: SYSTEM-OWNER: SALT LAKE CITY

USER-POPUL: 285258 RES-CONNECT: 78806 TOTAL-CONNECT: 83000 SOURCE-NUM: 08 SOURCE-TYPE: SPRING

EMIGRATION TUNL SOURCE-NAME:

WELL-DEPTH:

WELL-DIAMETER: FIRM-SUPPLY: 1480 LATITUDE: 404505.5 LONGITUDE: 1114755.0 BEGIN-PERIOD-OPE: 04/01 END-PERIOD-OPER: 11/31

VOC: 11/17/93

Distance to Site: 3.12 miles

HDDWS-ID: 1117 SYSTEM-NUM: 18026

SYSTEM-NAME: SALT LAKE CITY WATER SYS.

LOCATION: SALT LAKE CITY 1530 S W TEMPLE ADDRESS: SYSTEM-OWNER: SALT LAKE CITY

USER-POPUL: 285258 RES-CONNECT: 78806 TOTAL-CONNECT: 83000 SOURCE-NUM: 09 SOURCE-TYPE: WELL

ART. BAS. 3RD E SOURCE-NAME:

WELL-DEPTH:

WELL-DIAMETER: FIRM-SUPPLY: 5475 LATITUDE: 404257.5 LONGITUDE: 1115250.5 BEGIN-PERIOD-OPE: 04/01 END-PERIOD-OPER: 11/31 VOC: 08/30/93

Distance to Site: 3.67 miles

HDDWS-ID: 1120 SYSTEM-NUM: 18026

SALT LAKE CITY WATER SYS. SYSTEM-NAME:

SALT LAKE CITY LOCATION: ADDRESS: 1530 S W TEMPLE SYSTEM-OWNER: SALT LAKE CITY

USER-POPUL: 285258 RES-CONNECT: 78806 TOTAL-CONNECT: 83000 SOURCE-NUM: 12 SOURCE-TYPE: WELL

SOURCE-NAME: ABANDONED

```
WELL-DEPTH:
WELL-DIAMETER:
                    16
FIRM-SUPPLY:
                    404219.0
LATITUDE:
                    1114849.0
LONGITUDE:
BEGIN-PERIOD-OPE:
                    - /
END-PERIOD-OPER:
                     1
VOC:
                      1
                    2.34 miles
Distance to Site:
HDDWS-ID:
                    1125
                    18026
SYSTEM-NUM:
SYSTEM-NAME:
                    SALT LAKE CITY WATER SYS.
                    SALT LAKE CITY
LOCATION:
                    1530 S W TEMPLE
ADDRESS:
                    SALT LAKE CITY
SYSTEM-OWNER:
USER-POPUL:
                    285258
RES-CONNECT:
                    78806
                    83000
TOTAL-CONNECT:
SOURCE-NUM:
SOURCE-TYPE:
                    WELL
                    202 CANYON RD.
SOURCE-NAME:
WELL-DEPTH:
                    20
WELL-DIAMETER:
                    3472
FIRM-SUPPLY:
LATITUDE:
                    404627.0
                    1115306.0
LONGITUDE:
BEGIN-PERIOD-OPE:
                    04/01
END-PERIOD-OPER:
                    11/31
VOC:
                    07/21/89
                    0.24 miles
Distance to Site:
HDDWS-ID:
                    1126
SYSTEM-NUM:
                    18026
SYSTEM-NAME:
                    SALT LAKE CITY WATER SYS.
LOCATION:
                    SALT LAKE CITY
                    1530 S W TEMPLE
ADDRESS:
SYSTEM-OWNER:
                    SALT LAKE CITY
                    285258
USER-POPUL:
                    78806
RES-CONNECT:
TOTAL-CONNECT:
                    83000
SOURCE-NUM:
                    18
SOURCE-TYPE:
                    WELL
                    1511 E. 500 S.
SOURCE-NAME:
WELL-DEPTH:
                    20
WELL-DIAMETER:
FIRM-SUPPLY:
                    1944
                    404532.0
LATITUDE:
LONGITUDE:
                    1115101.0
BEGIN-PERIOD-OPE:
                    04/01
END-PERIOD-OPER:
                    11/31
VOC:
                    08/30/93
Distance to Site:
                    2.21 miles
                    1127
HDDWS-ID:
SYSTEM-NUM:
                    18026
SYSTEM-NAME:
                    SALT LAKE CITY WATER SYS.
```

SALT LAKE CITY

SALT LAKE CITY

1530 S W TEMPLE

LOCATION:

ADDRESS: SYSTEM-OWNER: USER-POPUL: 285258
RES-CONNECT: 78806
TOTAL-CONNECT: 83000
SOURCE-NUM: 19
SOURCE-TYPE: WELL

SOURCE-NAME: SUGARHOUSE PARK

WELL-DEPTH: D WELL-DIAMETER: 20 FIRM-SUPPLY: 3889 LATITUDE: 404316.0 LONGITUDE: 1115036.0 BEGIN-PERIOD-OPE: 04/01 END-PERIOD-OPER: 11/31 VOC: 08/30/93

Distance to Site: 2.79 miles

HDDWS-ID: 1128 SYSTEM-NUM: 18026

SYSTEM-NAME: SALT LAKE CITY WATER SYS.

LOCATION: SALT LAKE CITY
ADDRESS: 1530 S W TEMPLE
SYSTEM-OWNER: SALT LAKE CITY

USER-POPUL: 285258
RES-CONNECT: 78806
TOTAL-CONNECT: 83000
SOURCE-NUM: 20
SOURCE-TYPE: WELL

SOURCE-NAME: 1297 E. 2700 S.

WELL-DEPTH: D
WELL-DIAMETER: 20
FIRM-SUPPLY: 2700
LATITUDE: 404247.0
LONGITUDE: 1115113.0
BEGIN-PERIOD-OPE: 04/01
END-PERIOD-OPER: 11/31

Distance to Site: 2.82 miles

HDDWS-ID: 1129 SYSTEM-NUM: 18026

VOC:

SYSTEM-NAME: SALT LAKE CITY WATER SYS.

08/30/93

LOCATION: SALT LAKE CITY
ADDRESS: 1530 S W TEMPLE
SYSTEM-OWNER: SALT LAKE CITY

USER-POPUL: 285258
RES-CONNECT: 78806
TOTAL-CONNECT: 83000
SOURCE-NUM: 21
SOURCE-TYPE: WELL

SOURCE-NAME: 1905 E. 2700 S.

WELL-DEPTH: D
WELL-DIAMETER: 20
FIRM-SUPPLY: 2835
LATITUDE: 404246.0
LONGITUDE: 1115009.0
BEGIN-PERIOD-OPE: 04/01
END-PERIOD-OPER: 11/31
VOC: 08/30/93

Distance to Site: 3.8 miles

HDDWS-ID: 1203 SYSTEM-NUM: 18032 SYSTEM-NAME: SOUTH SALT LAKE CITY SOUTH SALT LAKE LOCATION: ADDRESS: 220 E MORRIS AVE SYSTEM-OWNER: CITY OF SOUTH SALT LAKE USER-POPUL: 11500 RES-CONNECT: 2752 TOTAL-CONNECT: 3010 SOURCE-NUM: 02 SOURCE-TYPE: WELL SOURCE-NAME: BOLINDER NO 2 WELL-DEPTH: WELL-DIAMETER: 16 FIRM-SUPPLY: 300 LATITUDE: 404318.0 LONGITUDE: 1115422.0 BEGIN-PERIOD-OPE: 01/01 END-PERIOD-OPER: 12/31 VOC: 08/25/92 Distance to Site: 3.74 miles HDDWS-ID: 1206 SYSTEM-NUM: 18032 SYSTEM-NAME: SOUTH SALT LAKE CITY SOUTH SALT LAKE LOCATION: 220 E MORRIS AVE ADDRESS: SYSTEM-OWNER: CITY OF SOUTH SALT LAKE USER-POPUL: 11500 RES-CONNECT: 2752 TOTAL-CONNECT: 3010 SOURCE-NUM: 05 SOURCE-TYPE: WELL 400 E 3000 S SOURCE-NAME: WELL-DEPTH: D WELL-DIAMETER: ' 16 FIRM-SUPPLY: 425 LATITUDE: 404218.0 LONGITUDE: 1115246.0 BEGIN-PERIOD-OPE: / END-PERIOD-OPER: - / 03/23/93 VOC: Distance to Site: 3.15 miles 1207 HDDWS-ID: SYSTEM-NUM: 18032 SYSTEM-NAME: SOUTH SALT LAKE CITY SOUTH SALT LAKE LOCATION: 220 E MORRIS AVE ADDRESS: SYSTEM-OWNER: CITY OF SOUTH SALT LAKE USER-POPUL: 11500 RES-CONNECT: 2752 TOTAL-CONNECT: 3010 SOURCE-NUM: 06 SOURCE-TYPE: WELL SOURCE-NAME: 2501 S. 300 E. WELL-DEPTH: D WELL-DIAMETER: 16 FIRM-SUPPLY: 350 LATITUDE: 404257.0

```
1115253.0
LONGITUDE:
BEGIN-PERIOD-OPE:
                     1
END-PERIOD-OPER:
VOC:
                   05/18/90
                   3.75 miles
Distance to Site:
HDDWS-ID:
                   1208
SYSTEM-NUM:
                   18032
SYSTEM-NAME:
                   SOUTH SALT LAKE CITY
LOCATION:
                   SOUTH SALT LAKE
                   220 E MORRIS AVE
ADDRESS:
SYSTEM-OWNER:
                   CITY OF SOUTH SALT LAKE
                   11500
USER-POPUL:
RES-CONNECT:
                   2752
TOTAL-CONNECT:
                   3010
                   07
SOURCE-NUM:
SOURCE-TYPE:
                   WELL
                   700 E 3190 S
SOURCE-NAME:
WELL-DEPTH:
                   D
WELL-DIAMETER:
                   16
                   700
FIRM-SUPPLY:
LATITUDE:
                   404207.0
LONGITUDE:
                   1115216.0
BEGIN-PERIOD-OPE:
                     - /
END-PERIOD-OPER:
                   03/23/93
VQC:
Distance to Site:
                   0.24 miles
HDDWS-ID:
                   1242
SYSTEM-NUM:
                   18057
SYSTEM-NAME:
                   UNIVERSITY OF UTAH
LOCATION:
                   SALT LAKE CITY
ADDRESS:
                   BLDG 50 RM 222
SYSTEM-OWNER:
                   UNIVERSITY OF UTAH
USER-POPUL:
                   18000
RES-CONNECT:
                   1000
TOTAL-CONNECT:
                   1125
SOURCE-NUM:
                   02
SOURCE-TYPE:
                   WELL
SOURCE-NAME:
                   WELL NO. 1
WELL-DEPTH:
                   20
WELL-DIAMETER:
FIRM-SUPPLY:
                   975
LATITUDE:
                   404532.0
LONGITUDE:
                   1115101.0
BEGIN-PERIOD-OPE:
                  06/01
END-PERIOD-OPER:
                   11/31
VOC:
                   02/03/88
Distance to Site:
                   0.24 miles
HDDWS-ID:
                   1243
SYSTEM-NUM:
                   18057
                   UNIVERSITY OF UTAH
SYSTEM-NAME:
LOCATION:
                   SALT LAKE CITY
ADDRESS:
                   BLDG 50 RM 222
                   UNIVERSITY OF UTAH
SYSTEM-OWNER:
USER-POPUL:
                   18000
RES-CONNECT:
                   1000
```

1125

ΟЗ

TOTAL-CONNECT:

SOURCE-NUM:

SOURCE-TYPE: WELL SOURCE-NAME: WELL NO. 2 WELL-DEPTH: D WELL-DIAMETER: 16 1100 FIRM-SUPPLY: 404534.0 LATITUDE:

LONGITUDE: 1115058.0 BEGIN-PERIOD-OPE: 06/01 END-PERIOD-OPER: 11/31

02/03/88 VOC:

3.41 miles Distance to Site:

HDDWS-ID: 1269 SYSTEM-NUM: 18113

RUTH'S DINER SYSTEM-NAME:

LOCATION: EMIGRATION CANYON ADDRESS: 2100 EMIGRATION CYN CURTIS OBERHANSLEY SYSTEM-OWNER:

USER-POPUL: 40 0 RES-CONNECT: TOTAL-CONNECT: 1 01 SOURCE-NUM: SOURCE-TYPE: WELL

SOURCE-NAME: RUTH'S WELL

WELL-DEPTH: S. WELL-DIAMETER: 60 FIRM-SUPPLY:

404541.2 LATITUDE: LONGITUDE: 1114646.8

BEGIN-PERIOD-OPE: 1 END-PERIOD-OPER: VOC:

APPENDIX E

ANALYTICAL RESULTS AND QUALITY ASSURANCE INFORMATION

TRANSMITTAL LETTER

URS OPERATING SERVICES

1099 18TH STREET SUITE 710 DENVER, COLORADO 80202-1907

Date:	2/3/99					TEL: (303) 291-8300	
То:	Steven The			· ·				
Attention: Proj. Name:	Yernal Au	· TCE / I	nt Olivet	UOS i	# <u>75</u> -	-90102 J	90103	
Please find e following item	nclosed ns prepared by _	R	, or under s and sen	eparatent via	e cover _ <i>Fed</i> .	Ε <u>χ</u>	, the	
Copies	Item No.		Description				Status	
/	A A	Dute 1	suclation P.	Ppt	<u>Case</u> Case	26586	SDGS 14581 SDGS 14579	4
				ENVIR	ONMENTA	DERR AL RESPONSE I ENTERED	& REMSCUTION	
Remarks:				ВУ				
ery truly you	irs, TING SERVICES	s, INC.	<u>Status</u> A = N B = M	lo Exce	•	aken		
Lou	Ke Charez	<u></u>	E = F F = F G = F	ubmit s or Con or You	Specifie structic r Revie r Files	ed Items in w and Com	nment -	

REGION VIII SUMMARY OF DATA QUALITY ASSURANCE REVIEW ORGANICS - VOA

Case No. / TDD No.	Site N	ame	Operable Unit
26509 / 75-90103	Mt. Olivet Plume		
RPM/OSC Name			
Luke Chavez			1
Contractor Laboratory	Contract No.	SDG No.	Laboratory DPO/Region
Southwest Laboratory of Oklahoma	68-D5-0026	HS794	

Review Assigned Date January 11, 1999 Data Validator Bill Fear
Review Completion Date February 2, 1999 Report Reviewer Lisa Burnley

Sample II	Station Loca	ation Matrix	Analysis
HS794	MT-01	Water	CLP - Volatile analyses
HS795	MT-02		
HS796	MT-03		

i	- INDIVI	ENTA	L RES Ent	PONSE	& REM	EDIATION
			. *		 ,	
	į	-1		·	i	

DATA QUALITY STATEMENT

() () (X)	Data are ACCEPTABLE according to by the reviewer. Data are UNACCEPTABLE according to the property of the prop	ng to EPA Function	
Teleph	none/Communication Logs Enclosed?	Yes	NoX
TPO A	Attention Required? Yes	No X If y	ves, list the items that require attention:

HS794v Organics - 2

ORGANIC DATA QUALITY ASSURANCE REVIEW

REVIEW NARRATIVE SUMMARY

This data package was reviewed according to the EPA document "USEPA Contract Laboratory Program National Functional Guidelines For Organic Data Review," February 1994.

Raw data were reviewed for completeness and transcription accuracy onto the summary forms. Approximately 10-20% of the results reported in each of the samples, calibrations, and QC analyses were recalculated and verified. If problems were identified during the recalculation of results, all laboratory calculations were verified.

Case No. 26509, SDG No. HS794, consisted of 3 water samples for CLP volatile analyses.

The laboratory performed the required library search on all non-target sample components. TICs detected in the samples and associated blanks were qualified rejected (R).

The following tables lists data qualifiers added to the data. (Please see Data Qualifier Definitions, attached to the end of this report.)

Sample Number	Volatile Compound	Qualifier	Reason For Qualification	Review Section
HS794, HS795, HS796	Acetone	נט/נ	Initial calibration %RSD exceeded 30%	4
	Methylene chloride Acetone 4-Methyl-2-pentanone 2-Hexanone		Continuing calibration %D > 25%	

HS794v Organics - 3

Method Number <u>OLM03.0</u> Revision <u>OLM03.2</u>

Organic Data Completeness Checklist VOA

Quality Control Summary Package

- P Surrogate Recovery Summary
- P MS/MSD Summary
- P Method Blank Summary
- P GC/MS Tuning and Mass Calibration

Sample Data Package

- P Holding Times (CLASS Sample Traffic Reports/UOS Chain-of-Custody)
- P Organic Analysis Data Sheets
- P Reconstructed Ion Chromatogram(s) (RIC)
- P Quantitation Reports
- P Mass Spectral Data
- P Mass Spectral Library Search for TICs

Standards Data Package

- NR Current List of Laboratory/Instrument Detection Limits
- P Initial Calibration Data for each instrument
- P Continuing Calibration Data for each instrument
- P Internal Standard Area Summary
- P_ VOA Standards RICs
- P VOA Standards Quantitation Reports

Raw QC Package

P BFB mass spectra and mass listings

Reagent Blank Data

- P Organic Analysis Data Sheets
- P RIC or Total Ion Chromatogram
- P Quantitation Reports
- P Mass Spectral Data
- P Library Search for TICs

Matrix Spike/Matrix Spike Duplicate Data

- P Organic Analysis Data Sheets
- P RIC
- P Quantitation Reports
- NA Mass Spectral Data
- NA Library search for TICs

KEY:

- P = Provided in original data package
- R = Provided as resubmission
- NP = Not provided in original data package or as resubmission
- NR = Not required
- NA = Not applicable to this data package or analysis

1. DELIVERAB

All deliverables were	present as	specified	in the	subcontract.
	•			

VOA: Yes_X No___

Comments: None.

2. HOLDING TIMES AND PRESERVATION CRITERIA

All method holding times were met.

VOA: Yes_X No___

Comments: The sample analyses were within ten days from the validated time of receipt.

Chain-of-custody, summary forms, and raw data were evaluated.

All technical holding times and preservation criteria were met.

VOA: Yes___ No_X_

Comments: The preserved water samples were analyzed within the recommended 14 days

from sample collection. The samples were received by the laboratory at a temperature of 6.5° C which is just above the 6.0° C requirement. No qualification was taken. Chain-of-custody, summary forms, and raw data were

evaluated.

3. BFB PERFORMANCE RESULTS

The bromofluorobenzene (BFB) performance results were within the specified control limits. All appropriate BFB results were included.

VOA: Yes X No No No

Comments: BFB instrument performance checks were run for each 12 hours of analysis. Ion

abundance criteria were met and were verified from raw data.

4. INSTRUMENT CALIBRATIONS: INITIAL AND CONTINUING STANDARDS

Initial instrument calibrations were performed according to method requirements and met the specified control limits listed in the Functional Guidelines.

VOA: Yes___ No_X_

Comments:

Initial calibration standard relative response factors (RRFs) for all volatile compounds and system monitoring compounds were greater than or equal to 0.05. Summary forms and raw data were evaluated.

The following table lists the percent relative standard deviation (%RSD) that was greater than 30% in the initial calibration and qualifiers added to the data:

Сотроипа	%RSD	Associated Samples	Qualifiers
Acetone	30.9	All samples	UJ .

Continuing instrument calibrations were performed according to method requirements and met specified control limits listed in the Functional Guidelines.

VOA: Yes___ No_X_

Comments:

Continuing calibration standards containing both target compounds and system monitoring compounds were analyzed at the beginning of each 12-hour analysis period. The continuing calibration RRFs for all volatile compounds and system monitoring compounds were greater than or equal to 0.05. Summary forms and raw data were evaluated.

The following table lists the percent differences (%Ds) in the continuing calibration that were greater than 25% and qualifiers added to the data:

Compound	%D	Associated Samples	Qualifiers
Methylene chloride Acetone 4-Methyl-2-pentanone 2-Hexanone	30.4 42.6 36.7 27.2	All samples	נט/נ

5. SURROGATE COMPOUND RECOVERY

Surrogate compound recovery analysis was performed according to method requirements and results met specified control limits.

VOA: Yes_X No___

Comments: System monitoring compounds were added to all samples and blanks. System

monitoring compound recoveries were verified from raw data and were within QC

limits. Summary forms and raw data were evaluated.

HS794v Organics - 6

6. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Matrix Spike/Matrix Spike Duplicate (MS/MSD) analyses were performed according to method requirements and results met recommended recovery and precision limits.

VOA: Yes___ No_X_

Comments:

MS/MSD analyses were performed for every 20 samples of similar matrix in this SDG. The percent recoveries were within QC criteria. Summary forms and raw data were evaluated. No action is taken on MS/MSD results alone.

The following table lists MS/MSD results that were outside criteria:

Sample	Compound	Per Reco MS	RPD	Contro % R	ol Limits RPD	Qualifiers
HS794	Benzene		 15		11	None

7. INTERNAL STANDARD AREA

Internal standard area analysis was performed according to method requirements and results met specified control limits.

VOA: Yes_X No___

Comments:

Internal standard area counts did not vary by more than a factor of two from the associated 12-hour calibration standard. The internal standard retention times did not vary more than \pm 30 seconds from the retention time of the associated 12-hour calibration standards. Summary forms and raw data were evaluated.

8. LABORATORY BLANK ANALYSIS RESULTS

The laboratory blank analysis was performed according to method requirements and results met specified limits.

VOA: Yes___ No_X_

Comments:

A method blank analysis was performed after the calibration standards and once for every 12-hour time period beginning with a BFB analysis. Summary forms and raw data were evaluated.

No target compounds were detected in the volatile method blanks or the storage blank.

Tentatively identified compounds (TICs) that were found in both the samples and associated blanks were qualified as rejected (R). The following table lists blank TIC results, associated samples, and qualifiers added to the data.

Blank ID	Analysis	TIC Retention Time	Associated Samples	Qualifiers
VBLK1	09/29/98	12.6	HS795, HS796	R

9. SAMPLE RESULTS

The sample results were reviewed and all compound identifications were acceptable and met contract requirements.

VOA: Yes_X_ No___

Comments:

Sample relative retention times (RRTs) were within \pm 0.06 RRT units of the standard RRT. Ions present in the standard mass spectrum at a relative intensity greater than 10% were present in the sample spectrum. Relative intensities of ions agreed within \pm 20% between standard and sample spectra. TICs were qualitatively assessed by a mass spectral library search and all TICs identified with a CAS number were qualified as "NJ" by the laboratory.

Sample HS795 reported two TICs (cyclotetrasiloxane and an unknown) and sample HS796 reported one TIC (cyclotetrasiloxane) that appear to be column bleed.

10. Additional Comments or Problems/Resolutions Not Addressed Above

VOA: Yes___ No_X_

Comments: None.

ORGANIC DATA QUALITY ASSURANCE REVIEW

Region VIII

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

GENERAL QUALIFIERS for use with both INORGANIC and ORGANIC DATA

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- N J Estimated value of a tentatively identified compound. (Identified with a CAS number.)
 ORGANICS analysis only.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

HS794v Organics - 9

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HS794

Lab Name: SWL-TULSA Contract: 68-D5-0026

Lab Code: SWOK Case No.: 26509 SAS No.: SDG No.: HS794

Matrix: (soil/water) WATER Lab Sample ID: 35676.01

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: L33665.D

Level: (low/med) LOW Date Received: 09/24/98

% Moisture: not dec. _____ Date Analyzed: 09/29/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND COMP

	·	 .	
74-87-3Chloromethane	10	ט	
74-83-9Bromomethane	10	أنَّ ا	
75-01-4Vinyl Chloride	10		
75-00-3Chloroethane	10	انّ ا	
75-09-2Methylene Chloride	io	Ŭ₩	1=5
67-64-1Acetone	10	Ü	ันไ
75-15-0Carbon Disulfide	10	וט	-1 -3
75-35-41,1-Dichloroethene	10	Ŭ	
75-34-31,1-Dichloroethane	10	บ	
540-59-01,2-Dichloroethene (total)			
67-66-3Chloroform	2	J	
	2]]	
107-06-21,2-Dichloroethane	10	ü	
78-93-32-Butanone	10	ן ט	
71-55-61,1,1-Trich_oroetmane	1	J	
56-23-5Carbon Tetrachloride	10	ן ט	
75-27-4Bromodichloromethane	10		
78-87-51,2-Dichloropropane	10	ָט	
10061-01-5cis-1,3-Dichloropropene	10	ן ט	
79-01-6Trichloroethene	2	J	
124-48-1Dibromochloromethane	10	U U	
79-00-51,1,2-Trichloroethane	10	ן ט	
71-43-2Benzene	10	ו טו	
10061-02-6trans-1,3-Dichloropropete	10	ן ט	
75-25-2Bromoform	10	Ū	
108-10-14-Methyl-2-Pentanone	10	ן ט	てと
591-78-62-Hexanone	10		ひて
127-18-4Tetrachlorosthene	150		
79-34-51,1,2,2-Tetrachloroethane	10	ا ت - ا ر	
108-88-3Toluene	10	اقا	
108-90-7Chlorchenzene		ان	
	10		
100-41-4Ethylbenzene	10	U	
100-42-5Styrene	10	Ü	
1330-20-7Xylene (Total)	10	U	
<u></u>			

Q . 129/19

FORM I VOA

OLM03.0

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

|--|

Lab Name: SWL-TULSA

Contract: 68-D5-0026

Lab Code: SWOK

Case No.: 26509 SAS No.:

SDG No.: HS794

Matrix: (soil/water) WATER

Lab Sample ID: 35676.01

Sample wt/vol: 5.0

(g/mi) Ml

Lab File ID: L33665.D

Level: (low/med) LOW

Date Received: 09/24/98

% Moisture: not dec. _____

Date Analyzed: 09/29/98

GC Column:DB-624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: Number TICs found: 0 (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	R T	EST. CONC.	Q
1				
3.				
5.				
7.				
9.				
11.				
14.				
15.				
18.				
20			•	
22.				
24.				
25.				
28.				
29. 30.				
I				

FORM I VOA-TIC

OLM03.0

Q- 1/29/99

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

HS795

Lab Name: SWL-TULSA Contract: 68-D5-0026

Case No.: 26509

Lab Code: SWOK

CONCENTRATION UNITS:

SAS No.: SDG No.: HS794

Matrix: (soil/water) WATER Lab Sample ID: 35676.02

5.0 (q/mL) ML Lab File ID: Sample wt/vol: L33666, D

Level: (low/med) LOW Date Received: 09/24/98

Date Analyzed: 09/29/98 % Moisture: not dec.

ID: 0.53 (mm) Dilution Factor: 1.0 GC Column:DB-624

Soil Aliquot Volume: (uL) Soil Extract Volume: (uL)

(ug/L or ug/Kg) UG/L CAS NO. COMPOUND 0 74-87-3-----Chloromethane 10 74-83-9-----Bromomethane 10 U 75-01-4------Vinyl Chloride 10 U U 75-00-3------Chloroethane 10 75-09-2-----Methylene Chloride J 6 UZ 67-64-1-----Acetone 10 U 75-15-0-----Carbon Disulfide U 10 75-35-4-----1,1-Dichloroethene U 10 75-34-3-----1,1-Dichloroethane U 10 540-59-0----1,2-Dichloroethene (total) U 10 67-66-3------Chloroform J 2 107-06-2----1,2-Dichloroethane 10 U 78-93-3----2-Butanone 10 U 71-55-6----1,1,1-Trichloroethane 10 U 56-23-5-----Carbon Tetrachloride 10 Ū 75-27-4-----Bromodichloromethane U 10 υ 78-87-5-----1,2-Dichloropropane 10 U 10061-01-5----cis-1,3-Dichloropropene 10 79-01-6----Trichloroethene U 10 124-48-1-----Dibromochloromethane 10 U 79-00-5----1,1,2-Trichloroethane U 10 U 71-43-2----Benzene 10 10061-02-6----trans-1,3-Dichloropropene U 10 75-25-2-----Bromoform 10 U レコ 108-10-1----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone T N 10 Ū. 127-18-4-----Tetrachloroethene Ü 10 79-34-5-----1,1,2,2-Tetrachloroethane 10 U U 108-88-3-----Toluene 10 108-90-7-----Chlorobenzene 10 Ū 100-41-4-----Ethylbenzene 10 U 100-42-5-----Styrene 1330-20-7-----Xylene (Total) 10 U U

RE 1/29/61

FORM I VOA

OLM03.0

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: 3

EPA SAMPLE NO.

Tab Name: SWL-TULSA	Contract: 68-D5-0026
Lab Code: SWOK Case No.: 26509	SAS No.: SDG No.: HS794
Matrix: (soil/water) WATER	Lab Sample ID: 35676.02
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: L33666.D
Level: (low/med) LOW	Date Received: 09/24/98
% Moisture: not dec.	Date Analyzed: 09/29/98
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	ا و
1. 2. 3. 4.	Cyclotrisiloxane UNKNOWN UNKNOWN	12.350 12.638 16.959	6 9 5	J JB J
5. 6. 7. 8.				
9. 10. 11.				
13. 14. 15.				
18. 19. 20.				
21. 22. 23. 24.				
25. 26. 27. 28.				
29.				

PF 1/29(18

FORM I VOA-TIC

OLM03.0

Lab Name: SWL-TULSA Contract: 68-D5-0026 HS796

Lab Code: SWOK Case No.: 26509 SAS No.: SDG No.: HS794

Matrix: (soil/water) WATER Lab Sample ID: 35676.03

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: L33667.D

Level: (low/med) LOW Date Received: 09/24/98

% Moisture: not dec. _____ Date Analyzed: 09/29/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/L COMPOUND Q 74-87-3-----Chloromethane 10 74-83-9-----Bromomethane 10 U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane U J U 10 75-09-2-----Methylene Chloride 5 67-64-1-----Acetone 10 UZ 75-15-0-----Carbon Disulfide U 10 75-35-4-----1,1-Dichloroethene U 10 75-34-3-----1,1-Dichloroethane U 10 540-59-0-----1,2-Dichloroethene (total) U 10 67-66-3-----Chloroform U 10 107-06-2----1,2-Dichloroethane U 10 78-93-3----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane 10 U 56-23-5-----Carbon Tetrachloride U 10 75-27-4-----Bromodichloromethane U 10 78-87-5----1,2-Dichloropropane U 10 10061-01-5----cis-1,3-Dichloropropene 101 U 79-01-6-----Trichloroethene U 10 124-48-1-----Dibromochloromethane 10) U 79-00-5-----1,1,2-Trichloroethane Ū 10 71-43-2----Benzene 10061-02-6----trans-1,3-Dichloropropene U 10 U 10 75-25-2-----Bromoform 10 U $\mathcal{L}\mathcal{N}$ 108-10-1----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone レス 10 U 127-18-4-----Tetrachloroethene U 10 79-34-5----1,1,2,2-Tetrachloroethane_ U 10 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene 10 U 100-41-4----Ethylbenzene IJ 10' 100-42-5-----Styrene 1330-20-7-----Xylene (Total) 10 U 10

FORM I VOA

QC 1/25/19 OLMO3.0

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

0026	HS796	
UUZB		

SDG No.: HS794

Lab Name: SWL-TULSA Contract: 68-D5-0026	——————————————————————————————————————
--	--

Case No.: 26509 SAS No.: Matrix: (soil/water) WATER Lab Sample ID: 35676.03

Sample wt/vol: 5.0 Lab File ID: (d/mL) ML L33667.D

Level: (low/med) LOW Date Received: 09/24/98

% Moisture: not dec. Date Analyzed: 09/29/98

Dilution Factor: 1.0 GC Column: DB-624 ID: 0.53 (mm)

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 2

Lab Code: SWOK

1				·
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
********				I ··· — — I
1.	Cyclotrisiloxane UNKNOWN	12.339	5	J
2.	UNKNOWN	12.598	8	JB
3				
4.				
5.				
6.			l 	11
7:	<u> </u>		<u> </u>	\
, ·				!
8.	- 	<u> </u>		!
9				\T
10.				
11.				
12.				
13.			_ 	
1 14	<u> </u>			
14.	i ————————————————————————————————————	.———		
± 2 ·				
16				
17				
18.			1	,
19.				
20.				
21				
21.				
1 44.				
i 23.	<u> </u>		l	
1 24.			l	
		_	·	
26.				
27.				<u> </u>
28.				 -
20.	<u> </u>		 ;	
29.		·	l —————	ll
30				iI
·				

FORM I VOA-TIC

Pt 122/19

OLM03.0

				Metho	od#: V ∙	54-CLP	HOLDING	TIMES	_		Valida	ition /Dat	e:	B.n	(F_
				Client	& Batch #	ues-	H1291		_		Revie	w/Date:_	1	<u>.~3</u>	"
Includ	de samples, dilutions & rea	nalyses													
		(If Ap	plicable)	l			Extractables	1	Extrac	tables		Act	lon Take	9 0	
		COC#		TEMP			Rec's		EXT.	ANAL	ANAL.	YQA			COMMENTS (ANY
		= .	PRE-	4°C	CONC.	DATE	DATE	DATE	DATE - COLL.	DATE -	DATE -	Aromatic J(+)	J	J (+)	PROBLEMS ESP. WITH SHIPPING, RECEIPT &
#	SAMPLE NUMBER (per COC)	Form I	SERVED Y/N	(±2°C) Y/N	MATRIX	COLLECTED				DATE	DATE	n) (n)	ALL		SAMPLING CONDITION)
7	45-794	4	4	6,00		4/22/18					4				٦
2			1	1	1			17	<u> </u>		i i			_	1
3	- 	177	 		1	1					1				1
4	•	1	<u> </u>		 	:	 		t				 	_	1
5								<u> </u>				1 11			temp jush
6											01-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>		ا ۵۵۰۰ و
7.			-				<u> </u>								temp jush above 6'C
8												<u> </u>			1 ••
9					- 		 	 							1
10	· · · · · · · · · · · · · · · · · · ·				- 		 _		<u> </u>		 		<u> </u>		Ì
11	· · · · · · · · · · · · · · · · · · ·	 										-			
12					- 	· · · · · ·						· · · · · · · · · · · · · · · · · · ·			
13	•								<u> </u>			<u>"</u>			1
14							 		•						
15		 													
16	···				<u> </u>	<u> </u>									
17										-					
18					1						-		_		
19															
20															
21															
22				·											
23									[
24					7										
							;			_					

For all worksheets: (1) If a particular category is "Not Applicable," denote with N/A (2) Calculation checks performed by validators.

TUNING

(45 7⁹⁰

Include samples, dilution	ns, reanalyses, callbratio	ons & cal checks	_					
TUNING COMPOUND	DATE & TIME TUNED	INSTRUMENT	ABUND, CRIT, MET Y/N	SAMPLE WITHIN 12-HR, TIME FRAME Y/N	FORM 5 #'S EQUAL RAW DATA Y/N	CALC. OK	HEADER INFO OK Y/N	ACTION/COMMENTS
TUNE 4:	DATE: 6-10-98	<u>_</u>	3	Ŋ	Ŋ	5	/	
Associated samples:	JCAL	- ′						Now
TUNE 2:	DATE: 9-29-48 TIME: 10) 2_	L	3	7	S	ソ		
Associated samples:	4~						_	
TUNE 3:	DATE: TIME:		,					
Associated samples:								
TUNE 4: .	DATE:							
Associated samples:						-	-	
TUNE 5:	DATE:				,			
Associated samples:				·				
TUNE 6:	DATE:TIME:						•	
Associated samples:					· · · · · · · · · · · · · · · · · · ·			

INITIAL CALIBRATION

とりもとと

Include sample	es, dilutions, rea	analyses, sj	oikes & blan	ks						
	1)	1	1	1ST ORD.	2ND ORD.	CALC	CULATIONS (CHECKS	1
INITIAL CALIBRATION	DATE CALIBRATED	INSTRU- MENT ID	AVG RRF <u>></u> 0.05 	RSD ≤ <u>30</u> % Y/N	CORR. COEF. (r) or r ² ≥ 0.99 Y/N	VALUES TRACE- ABLE Y/N	1 RRF PER 1- CAL STD.	MIN 1 AVG. RRF & %RSD	MIN. 1 . CORR. COEF- FICIENT	COMMENTS & COMPOUNDS FAILING CRITERIA (Note if compounds are SPCC or CCC)
I-CAL 1;	8-10-44	۷	" ~	2)	3)	4)	-			2). Aceture -30.1
Associated samp	ples:	^	`\	<u> </u>			<u> </u>			
I-CAL 2:			(5)	(6)	[7]	(8)				
·				1						
Associated samp	ples:		<u> </u>							
I-CAL 3:			9)	10)	1.1)	12)				
Associated samp	ples;	<u> </u>	<u> </u>	<u> </u>	<u> </u>	J	<u> </u>	<u> </u>	!	
· - · · -										
I-CAL 4;			13)	14)	15)	16)				
Associated samp	ples:	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	. ! —	<u></u>	1		<u></u>	<u> </u>	
I-CAL 5:			17)	18)	19)	20)		<u></u>		
Associated samp	les:		L	1		<u> </u>			l	
I-CAL 6:		<u> </u>	21)	22)	23)	24)			· · · · · · · · · · · · · · · · · · ·	
Associated samp	les:			<u></u>						
									ľ	

CONTINUING CALIBRATION

Include samples, dilutions	, reanalyses, spikes &	l blanks					
			DAILY		MIN. 1	ONS CHECKS MIN.	
CONTINUING	DATE & TIME	ASSOC.	RRF ≥ 0.05	%D≤ 2\2000 %	DAILY	1 MIN.	COMPOUNDS FAILING CRITERIA
CALIBRATION	CALIBRATED	DATE	Y/N	Y/N	RRF	%D	(Note if compounds are SPCC or CCC)
C-CAL 1:	9/20/87	B/10/98	" "	2) ~3			Mece - 30.4/ Arela 426/
Associated samples:	Δ.\			· · ·			Mece - 30.4 Acel - 426 4-mach 7 76.7 2- Her 222
C-CAL 2:			3)	4)			
Associated samples:	.		<u></u>	.L		L	
C-CAL 3:		-	5)	6)			
Associated samples:		<u> </u>					
C-CAL 4:			7)	8)			
Associated samples:	<u> </u>			<u> </u>	<u> </u>		
C-CAL 5:		·····	9)	10)			
				}			•
Associated samples:		<u> </u>		<u>' </u>	·		
C-CAL 6:		·	11)	12)			•
Associated samples:				l	<u> </u>		

45794

A Company of the day

Include method, trip, equipme	ent & field blanks				<u> </u>	<u> </u>
BLANK NUMBER & TYPE (Method, Trip, Equipment, Field)	DATE EXTRACTED	DATE ANALYZED	CORRECT MATRIX & LEVEL Y/N	FREQ- UENCY MET Y/N	ENTER BLANK CONTAMINANTS FOLLOWED BY CONCENTRATION	COMMENTS
U BLK #/TYPE MEX		9/29	5	9	wo the forset hits w	
Associated samples:	A~.		· · · · · · · · · · · · · · · · · · ·		onk the et (2.59)	(77 m/s)
PLK #/TYPE HO124-7		9(21	-			795
Associated samples:	4~/	_			No Acrosti	
BLK #/TYPE						
Associated samples:	J	<u>, , , , , , , , , , , , , , , , , , , </u>	 			
BLK #/TYPE						
Associated samples:	· · · · · · · · · · · · · · · · · · ·					
BLK #/TYPE					· · · · · · · · · · · · · · · · · · ·	
Associated samples:	· ·		I			
BLK #/TYPE						
Associated samples;	· ·		<u> </u>			

SURROGATES & INTERNAL STANDARDS

Include	samples, dilutions, re	analyses, spikes	& blanks wh	ich do not me	et criteria.				, — <u> </u>	
:		SURROGATES			INTERN/	AL STDS.	SURR & IS			[
 QUI#	SAMPLE NUMBER (Include sample number if limits not met)	RECOVERIES WITHIN LIMITS FORM II Y/N	IF NOT, RE-EXT./ RE-ANAL Y/N	RE-EXT/ RE-ANAL WITHIN LIMITS Y/N	AREAS WITHIN LIMITS MET Y/N	R.T.S. WITHIN LIMITS Y/N	CALC. OK	SURROGATES OUTSIDE QC LIMITS*	INTERNAL STANDARDS OUTSIDE QC LIMITS*	ACTIONS/COMMENTS
1	40 A4	15		-	3	3	06	rone	<i>1</i> 03	
2					၂	7				/
3	-							<u></u>	· · · · · · · · · · · · · · · · · · ·	Nove
4							 		 	
5										
6			[_				 		 	
7.	<u></u>	<u> </u>	 						<u> </u>	
8_		 _								}
9			<u> </u>					 		
10							·—·	<u></u> .		1
11		<u></u>								
13						-, , · · · ·			ļ	
14	<u> </u>							71717111111111111111111111111111111111		
15									,	
16										
17								······································		ļ
18										
19										
20										
21										
22										
23										
24										Į.
25										T .

- 10

SPIKES , LFBs, & LCSs

HSFEY

Include matrix spikes & laboratory fortified blanks which do not met spiking criteria LIST MS/MSD SPIKED AT LIST SPIKING COMPOUNDS CORRECT CALC. & **OUTSIDE PERCENT** SPIKING COMPOUNDS TYPE OF SPIKE DATE & FREQUENCY TRANS, OK OUTSIDE RPD CRITERIA (Circle One) TIME CRITERIA MET LEVEL RECOVERY CRITERIA & ID NUMBER **ANALYZED** Y/N Y/N Y/N (Followed by percent recovery) (Followed by RPD) ACTIONS/COMMENTS LFB/MS/MSU7LCS# 016 none 75794 Associated samples: AN LFB/MS/MSD/LCS# Associated samples: LFB/MS/MSD/LCS# Associated samples: LFB/MS/MSD/LCS# Associated samples: LFB/MS/MSD/LCS# PUE 140 17 - rot on 51-100 Mec Associated samples: LFB / MS / MSD / LCS # Associated samples:

GC/MS WORKSHEETS

COMPOUND IDENTIFICATION, QUANTITATION & MDLS

45284

Include samples, dilutions, reanalyses & blanks

	ID CRITERIA		COMMENTS	CALC.	CHECKS	[
QLI#	SAMPLE NUMBER (Include if problems exist)	RRT (0.06) MET Y/N	MASS SPECTRAL MET Y/N	& COMPOUNDS FAILING ID CRITERIA	SPECTRA PRESENT (TCL & TIC) Y/N	MDLS CORRECT Y/N	CHECK 1-3 HIT(S) PER SAMPLE	TRANS- CRIPTION ERRORS Y/N	ACTIONS/COMMENTS
1	794								
2	715			_			, ,		3-1163 1B
3	784								2714 15
4				ر رور					
5		1		Nago)					
6		<u> </u>		()					
7		<u> </u>							
8	<u>_</u>				!				
9									CB 7-645
10									_ CØ
11									
12			,						
13									
14									•
15									
16							•		
17									
18									
19									
20				[
21									
22						·			
23				{					
24				ſ			·		•
25					·				

For all worksheets: (1) If a particular category is "Not Applicable," denote with N/A (2) Calculation checks performed by validators.

SYSTEM PERFORMANCE, DATA COMPLETENESS & ADDITIONAL QC

LS 794

SYST	TEM PERFORMANCE	D	ATA COMPLETENESS
SAMPLE LI# NUMBER	IDENTIFY FACTORS THAT INDICATE SYSTEM PERFORMANCE PROBLEMS (e.g. Baseline Shifts, Large Air Peaks, I.S. Area Changes, etc.)	SAMPLE NUMBER	OTHER MISSING DATA (including Mass Spectra)
	<u> </u>		•
			•
		·	
] Γ		
	1 – – – – – – – – – – – – – – – – – – –	•	
	i – – – – – – – – – – – – – – – – – – –		
<u> </u>	<u> </u>		/ .
	<u> </u>	/-	
·	{		•
_ 	<u> </u>		
	 		•
	<u> </u>		
	∤		
- 	/ ⊢	······································	
	/		•
	/		•
			•
		·	•
lude field duplicates.		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
FIELD DUPLICATE SAMPLE	ADDITIONAL, C LIST COMPOUNDS WITH RPDs OUTSIDE I	DOD CRITERIA	
NUMBERS	(followed by RPD)	THE CHIEFURY	ACTION/COMMENTS
		1	
· · · · · · · · · · · · · · · · · · ·			
		1	

EPA SAMPLE NO.

HS662 Contract: 68-D5-0018

Lab Name: ATAS, INC.

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.01

Sample wt/vol:

5.0 (g/mL) ML

Lab File ID: C7613.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. _____

Date Analyzed: 11/18/98

GC Column: DB-624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L

				Ι
74-87-3	Chloromethane	10	U	
	Bromomethane	10	υ	1
75-01-4	Vinyl Chloride	10	U]
75-00-3	Chloroethane	10	U	
75-09-2	Methylene Chloride	10	Ù	
67-64-1		10	Ū	
75-15-0	Carbon Disulfide	10	Ū	1
75-35-4	1,1-Dichloroethene	10	Ŭ	ì
75-34-3	1,1-Dichloroethane	10	Ŭ	1
540-59-0	1,2-Dichloroethene (total)	5	Ť	!
67-66-3	Chloroform	1 4	Ĵ	<u> </u>
	1,2-Dichloroethane	10	Ŭ	
78-93-3	2-Butanone	10	Ŭ	
	1,1,1-Trichloroethane	10	Ŭ	,
56-23-5	Carbon Tetrachloride	10	Ŭ	
75-27-4	Bromodichloromethane	10	Ŭ	
78-87-5	1,2-Dichloropropane	10	ŭ	
10061-01-5	cis-1,3-Dichloropropene	10	Ŭ	
79-01-6	Trichloroethene	4	Ĭ	1
124-48-1	Dibromochloromethane	10	ប័	i
	1,1,2-Trichloroethane	10	ម័	1
71-43-2	Benzene	1 10	บั	1
	trans-1,3-Dichloropropene	10	ŭ	
75-25-2	Bromoform	10	ŭ	!
	4-Methyl-2-Pentanone	10	ช	1
	2-Hexanone	•		1
	Tetrachloroethene	10	מ	
		420	E	320 D
	1,1,2,2-Tetrachloroethane	10		ľ
108-88-3		10	ប្	ļ
100-90-/	Chlorobenzene	10	Ü	(
100-41-4	Ethylbenzene	10	Ŭ	1
100-42-5		10	ַט	1
1330-20-7	Xylene (Total)	10	ָ ט	}
		1		

Report PCE from the 5 times diluted enelysis TE 1/29/99

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0018 HS662
Lab Code: ATAS Case No.: 26631	SAS No.: SDG No.: HS662
Matrix: (soil/water) WATER	Lab Sample ID: 24509.01
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: C7613.D
Level: (low/med) LOW	Date Received: 11/13/98
% Moisture: not dec.	Date Analyzed: 11/18/98
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1:				
3				
5. 6				
8:				
10.				
12.				
14				
16. 17. 18.				
19.				
22:				
24				
25. 26. 27.				
28.				
30				

RE 1/29/19

FORM I VOA-TIC

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 58-D5-0018 HS662DL

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER Lab Sample ID: 24509.01

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7626.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. Date Analyzed: 11/18/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 5.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 501 74-87-3-----Chloromethane 74-83-9-----Bromomethane 50 Ŭ 75-01-4-----Vinyl Chloride 50 U 75-00-3-----Chloroethane 50 IJ 75-09-2-----Methylene Chloride 50 U 50 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 50 Ü 75-35-4-----1,1-Dichloroethene_75-34-3-----1,1-Dichloroethane_ U 50 50 U 540-59-0-----1, 2-Dichloroethene (total) Ū 50 טטטטטטטטטט 67-66-3-----Chloroform 50 107-06-2----1,2-Dichloroethane 501 78-93-3-----2-Butanone 50 71-55-6-----1,1,1-Trichloroethane 50 56-23-5-----Carbon Tetrachloride 50 Ì 50 75-27-4-----Bromodichloromethane 78-87-5-----1,2-Dichloropropane 50 l 10061-01-5----cis-1,3-Dichloropropene 50 79-01-6-----Trichloroethene 50 124-48-1-----Dibromochloromethane U 50 79-00-5-----1,1,2-Trichloroethane 501 Ũ 71-43-2----Benzene 50 Ũ 10061-02-6----trans-1,3-Dichloropropene 501 75-25-2-----Bromoform 50 108-10-1-----4-Methyl-2-Pentanone 50 บั 591-78-6----2-Hexanone_ 50 Ū 127-18-4-----Tetrachloroethene 320 D 79-34-5-----1,1,2,2-Tetrachloroethane_ U 50 108-88-3-----Toluene 50 Ū 108-90-7-----Chlorobenzene____ 50 U 100-41-4-----Ethylbenzene 50 Ū 100-42-5------Styrene 1330-20-7------Xylene (Total) Ų 50 50 Ū

Report only PCE from this analysis

FORM I VOA 7 1/29/89

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

HS662DL

Lab Name: ATAS, INC. Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.01

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: C7626.D

Level: (low/med) LOW

Date Received: 11/13/98

% Moisture: not dec. _____

Date Analyzed: 11/18/98

GC Column: DB-624 ID: 0.53 (mm)

Dilution Factor: 5.0

Soil Extract Volume: (uL)

Number TICs found: 0

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

EST. CONC. Q CAS NUMBER COMPOUND NAME RT ------------======= ---------12. 13. 16._ 17. 18. 19. 20. 21. 22. 23. 25. 25. 27. 28. 29.

> Report only PCE from this enalysis BE 1128/88 FORM I VOA-TIC

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER Lab Sample ID: 24509.02

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7615.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. _____ Date Analyzed: 11/18/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

74-87-3	Chloromethane	10		
	Bromomethane	īŏ	Ŭ	į
75-01-4	Vinyl Chloride	10	บั	1
75-00-3	Chloroethane	10	ŭ	
	Methylene Chlorice	ĭ	Ĵ	10 6
67-64-1		10	Ü	•-
	Carbon Disulfide	10	บั	l
75-35-4	1,1-Dichloroethene	10	Ü	}
75-34-3	1,1-Dichloroethane	10	. Ŭ,	
540-59-0	1,2-Dichloroethene (total)	10	Ū	1
57-66-3	Chloroform	10	ŭ	,
	1, 2-Dichloroethane	10	บั	
78-07-2	2-Butanone	10	บ)
	1,1,1-Trich_oroethane	10	Ü	•
71-33-6	Carbon Tetrachloride	10	ប	
	Bromodichlcromethane	10	Ü	
	1,2-Dichloropropane	10		
10061 01 5	cis-1,3-Dichloropropene		ָּט ט	
70-01-6	Trichloroethene	10		
	Dibromochloromethane	10	Ŭ	
		10	Ü	l .
71-43-2	1,1,2-Trichloroethane	- 10	ប្ត	
10061 00 6	Benzene	10	Ü	NZ
T0091-07-9	trans-1,3-Dichloropropene	10	<u>ת</u>	
	Bromoform	10	ŭ	
108-10-1	4-Methyl-2-Pentanone	10	U	
	2-Hexanone	10	ប្	
127-18-4	Tetrachlorosthene	1	J	
79-34-5	1,1,2,2-Tetrachloroethane	10	ָ ע	_
108-88-3	Toluene	10	ָ ט	NZ
	Chlorobenzene	10	U	! <u>}</u>
100-41-4	Ethylbenzens	10	ע	
100-42-5	Styrene	10	ַ ד	l l
1330-20-7	Xylene (Total)	10	ַ ד	↓

TE 129198

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0018 HS663
Lab Code: ATAS Case No.: 26631	SAS No.: SDG No.: HS662
Matrix: (soil/water) WATER	Lab Sample ID: 24509.02
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: C7615.D
Level: (low/med) LOW	Date Received: 11/13/98
% Moisture: not dec	Date Analyzed: 11/18/98
GC Column: DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
3 ·				
5.				
8.				
10.				
12. 13. 14.				
16.				
17. 18. 19.				
21:				
22. 23. 24.				
26.				
28.				
29.				

· FORM I VOA-TIC

Ph. 121/19

OLM3.0

000037

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER Lab Sample ID: 24509.03

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7627.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. Date Analyzed: 11/18/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 5.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: COMPOUND CAS NO. ∃ug/L or ug/Kg) UG/L O 74-87-3-----Chloromethane 50/ 74-83-9-----Bromomethane 50 U 75-01-4-----Vinyl Chloride 50 Ŭ 50 75-00-3-----Chloroethane U 75-09-2-----Methylene Chlorida 24 J 50 U 50 67-64-1-----Acetone 75-15-0-----Carbon Disulfide 50 U 75-35-4----1,1-Dichloroethens 50 U 50 75-34-3-----1,1-Dichloroethane U 540-59-0----1,2-Dichloroethene (cotal) 50 U 67-66-3-----Chloroform 50 U 50 U 107-06-2----1, 2-Dichlorcethane U 78-93-3----2-Butanone 50 Ū 71-55-6----1,1,1-Trichloroetmane 50 U 56-23-5-----Carbon Tetrachloride 50 75-27-4-----Bromodichloromethane 50 Ų 50 U 78-87-5-----1, 2-Dichloropropane_ 10061-01-5----cis-1,3-Dichloropropene 50 Ū 79-01-6-----Trichloroethane 50 Ü 124-48-1-----Dibromochloromethane 50 U 79-00-5----1,1,2-Trichloroethane_ 50 Ų 71-43-2----Benzene 50 U 10061-02-6----trans-1,3-Dichlorcpropens U 50 75-25-2-----Bromoform_ 50 U 108-10-1----4-Methyl-2-Pentanche Ų 50 591-78-6----2-Hexanone Ū 50 127-18-4----Tetrachloroethene 290 Ü 79-34-5----1,1,2,2-Tetrachlorsethane 50 108-88-3-----Toluene 50 U 108-90-7-----Chlorobenzene_. 50 U 100-41-4-----Ethylbenzene_ 50 U 100-42-5-----Styrene 1330-20-7-----Xylene (Total) Ū 50

PSF , 129/99

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

HS664	

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.:

SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.03

Sample wt/vol: 5.0

(g/mL) ML

Lab File ID: C7627.D

Level: (low/med)

Date Received: 11/13/98

% Moisture: not dec. ____

Date Analyzed: 11/18/98

GC Column: DB-624

ID: 0.53 (mm)

LOW

Dilution Factor: 5.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1:			i	
3.4.		_		
5.		_		
7.		-		=
9		-		
÷·				
3.		_		
5:		-		
7:				
9.				
1.		-		
3.		-		
5		-		
6. 7.		_		
8		-		
0		_		

FORM I VOA-TIC

PK 1/25/69

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018

CONCENTRATION UNITS:

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER Lab Sample ID: 24509.06

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7618.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. _ _ _ Date Analyzed: 11/18/98

GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. (ug/L or ug/Kg, UG/L COMPOUND Q 74-87-3-----Chloromethane__ 10 74-83-9-----Bromomethane 10 75-01-4-----Vinyl Chloride_ 10 U 75-00-3------Chloroethane Ü 10 75-09-2-----Methylene Chloride__ U 10 67-64-1-------Acetone 75-15-0------Carbon Disulfide_ Ū 10 Ū 10 75-35-4-----1,1-Dichloroethene_ 10 U 75-34-3-----1,1-Dichloroethane_ 10 U 540-59-0----1,2-Dichloroethene (total) 10 U J U U 67-66-3-----Chloroform 3 107-06-2----1,2-Dichloroethane 10 78-93-3----2-Butanone 10 71-55-6-----1,1,1-Trichloroethane 10 U 56-23-5-----Carbon Tetrachloride_ 10 U 75-27-4-----Bromodichloromethane 10 U 78-87-5-----1,2-Dichloropropane_ 10 U 10061-01-5----cis-1,3-Dichloropropene U 10 79-01-6-----Trichloroethene Ū 10 124-48-1-----Dibromochloromethane 10 U 79-00-5-----1,1,2-Trichloroethane_ 10 Ų 71-43-2-----Benzene 10 Ū 10061-02-6----trans-1,3-Dichloropropene 10 Ū Ū 75-25-2-----Bromoform 10 108-10-1----4-Methyl-2-Pentanone U 1.0 591-78-6----2-Hexanone_ 10 U 127-18-4-----Tetrachloroethene 11 Ū 79-34-5----1,1,2,2-Tetrachloroethane_ 10 108-88-3-----Toluene Ų 10 U 108-90-7-----Chlorobenzene 10 100-41-4-----Ethylbenzene U 10 100-42-5------Styrene 1330-20-7------Xylene (Total) U 10 10 Ũ

T , 129 109

FORM I VOA

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0018 HS665
Lab Code: ATAS Case No.: 26631	SAS No.: SDG No.: HS662
Matrix: (soil/water) WATER	Lab Sample ID: 24509.06
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: C7618.D
Level: (low/med) LOW	Date Received: 11/13/98
% Moisture: not dec.	Date Analyzed: 11/18/98
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q ====
1				
3.				
5				
7				
8	· · · · · · · · · · · · · · · · · · ·	_		
10.		-		
±•. :		_		
13				
16.		_		
17.				
20.		-		
21.		-		
23.		-		
4J.		_[
27: -				
29:———\—				
30.		-		

FORM I VOA-TIC

A 129/19

EPA SAMPLE NO.

HS666 Contract: 68-D5-0018 Lab Name: ATAS, INC. Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662 Lab Sample ID: 24509.07 Matrix: (soil/water) WATER Lab File ID: 5.0 (g/mL) ML C7619.D Sample wt/vol: Date Received: 11/13/98 Level: (low/med) LOW Date Analyzed: 11/18/98 % Mcisture: not dec. Dilution Factor: 1.0 GC Column:DB-624 ID: 0.53 (mm)

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND COMP

· ·			
74-87-3Chloromethane	10	U	
74-33-9Bromomethane	10		
75-31-4Vinyl Chloride	10		j
75-30-3Chloroethane	10)
75-09-2Methylene Chloride	2	Ĵ	10 U
67-64-1Acetone	10	Ŭ	, , ,
75-15-0Carbon Disulfide	10	Ŭ	ĺ
75-35-41,1-Dichloroethene	10	Ŭ	
75-34-31,1-Dichloroethane	10		ļ
540-59-01,2-Dichloroethene (total)	1	ı Ÿ	
67-66-3Chloroform	1	J J	1
107-06-21,2-Dichloroethane	10	ซื	ļ
78-93-32-Butanone	1 10	ט	
71-55-61,1,1-Trichloroethane	10		
56-23-5Carbon Tetrachloride	10		
75-27-4Bromodichloromethane	10	ן ט	
78-37-51,2-Dichloropropane		ָט (
	10	ū	
10061-01-5cis-1,3-Dichloropropene	10	U J	
79-11-6Trichloroethene	2	اِ بِ	
124-48-1Dibromochloromethane	10	ַ עַ	
79-00-51,1,2-Trichloroethane	10	ַ	
71-43-2Benzene	10	Ŭ	
10061-02-6trans-1,3-Dichloropropens	10	[ט	l
75-25-2Bromoform_	10	יט	
108-10-14-Methyl-2-Pentanone	10	ן ט	
591-78-62-Hexanone	[20:	ן ט	
127-18-4Tetrachloroethene	190		
79-34-51,1,2,2-Tetrachloroethane	10	Ū	
108-88-3Toluers	10	(ט	
108-90-7Chloropenzene	10.	ן ט	
100-41-4Ethylbenzene	10	ן ט	
100-42-5Styrene	101	ן ט	
1330-20-7Xylene (Total)	10	ן ט	
	<u></u>		

130/11

FORM I VOA

OLM3.0

000028 000028

ļΕ VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0018 HS666
Lab Code: ATAS Case No.: 26631	SAS No.: SDG No.: HS662
Matrix: (soil/water) WATER	Lab Sample ID: 24509.07
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: C7619.D
Level: (low/med) LOW	Date Received: 11/13/98
% Moisture: not dec.	Date Analyzed: 11/18/98
GC Column:DB-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER RT COMPOUND NAME EST. CONC. 3._ 11. 12. 13. 14. 15._ 16._ ī7._ ī8._ 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.

nt 120199

OLM3.0

FORM I VOA-TIC

COMPOUND

CAS NO.

100-42-5----Styrene

1330-20-7-----Xylene (Total)__

.

EPA SAMPLE NO.

Q

HS667 Contract: 68-D5-0018 Lab Name: ATAS, INC. SDG No.: HS662 Lab Code: ATAS Case No.: 26631 SAS No.: Matrix: (soil/water) WATER Lab Sample ID: 24509.08 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7620.D Date Received: 11/13/98 Level: (low/med) LOW Date Analyzed: 11/18/98 % Moisture: not dec. GC Column: DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Scil Aliquot Volume: __ (uL) Soil Extract Volume: ____(uL) CONCENTRATION UNITS:

(ug/L or ug/Kg UG/L

U 74-87-3-----Chloromethane_ 10 ΰ 74-83-9-----Bromomethane 10 10 75-01-4------Vinyl Chloride___ U, 75-00-3-----Chloroethane 10 U U U 75-09-2-----Methylene Chloride 10 10 67-64-1-----Acetone **COCCECTOCC** 75-15-0------Carbon Disulfide 10 75-35-4-----1,1-Dichloroethene 10 10 75-34-3-----1,1-Dichloroethane_ 540-59-0-----1,2-Dichloroethene (total 10 2 67-66-3-----Chloroform 10 107-06-2----1,2-Dichloroethane_ 78-93-3-----2-Butanone 10 71-55-6-----1,1,1-Trichloroethane 10 56-23-5-----Carbon Tetrachloride 10 75-27-4-----Bromodichloromethane 101 U 101 78-87-5-----1,2-Dichloropropane_ Ū 10061-01-5----cis-1,3-Dichloropropene_ 10 ΰ 79-01-6-----Trichloroethene 10 บั บั 10 124-48-1-----Dibromochloromethane_ 79-00-5-----1,1,2-Trichloroethane 10 71-43-2----Benzene U 10 10061-02-6----trans-1,3-Dichloropropene 10 U. 75-25-2-----Bromoform 10 Ŭ 108-10-1-----4-Methyl-2-Pentanons 10 U; 591-78-6----2-Hexanone 10 Ũ 127-18-4-----Tetrachloroethene 10 U: 79-34-5-----1,1,2,2-Tetrachloroethane 10 U 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene 10 U 100-41-4-----Ethylbenzene 10 υi

DE-129/99

Ũ

10

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: ATAS, INC.	Contract: 68-D5-0918 HS667
Lab Code: ATAS Case No.: 26631	SAS No.: SDG No.: HS662
Matrix: (soil/water) WATER	Lab Sample ID: 24509.08
Sample wt/vol: 5.0 (g/mL) Mi	Lab File ID: C7620.D
Level: (low/med) LOW	Date Received: 11/13/98

% Moisture: not dec. _____ Date Analyzed: 11/18/98

Number TICs found: 1

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 104-76-7 2.	1-Hexanol, 2-ethyl-	17.716	17	No.
3. 4. 5.				
6. 7. 8.				
9				
2				
4. 5.				
7				<u></u>
9 D 1				
2. 3. 4.				
5				
7. 8. 9.				
0				

FORM I VOA-TIC

at held

HS668

EPA SAMPLE NO.

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS

Case No.: 26631

SAS No.:

SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.09

Sample wt/vol:

5.0 (g/mL) ML

Lab File ID: C7621.D

Level:

(low/med) LOW

Date Received: 11/13/98

% Moisture: not dec.

Date Analyzed: 11/18/98

GC Column: DB-624 ID: 0.53

(mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____ (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

			1
74-87-3Chloromethane	10	ָ ד	
74-83-9Bromomethane	10	Ū	
75-01-4Vinyl Chloride	10	Ū	
75-00-3Chloroethane	10	Ŭ	
75-09-2Methylene Chloride	2	j	lou
67-64-1Acetone	10	ָ טַ	''
75-15-0Carbon Disulfide	10	Ŭ,	
75-35-41,1-Dichloroethene	10	Ŭ	1
75-34-31,1-Dichloroethane	10	ŭ	ľ
75-34-3	1 13	j,	
540-59-01,2-Dichloroethene (total)		J	
67-66-3Chloroform	, ,	<u>, </u>	
107-06-21,2-Dichloroethane	10	ū	
78-93-32-Butanone	10	ū	
71-55-61,1,1-Trichloroethane	10	U	
56-23-5Carbon Tetrachloride	10	Ŭ	
75-27-4Bromodichloromethane	10	Ū	
78-87-51,2-Dichloropropane	10	U	
10061-01-5cis-1,3-Dichloropropene	10	ן ט	
79-01-6Trichloroethene	4	J	
124-48-1Dibromochloromethane	10	Ū	
79-00-51,1,2-Trichloroethane	10	ប	
71-43-2Benzene	10	ប	
10061-02-6trans-1,3-Dichloropropene	10.	ט	
75-25-2Bromoform	10	ט	
108-10-14-Methyl-2-Pentanone	10	ŬΙ	
591-78-62-Hexanone	10	Ŭ	
127-18-4Tetrachloroethene	480	Ē	310 0
79-34-51,1,2,2-Tetrachloroethane	10	บี	, ,,,
108-88-3Toluene	10	บี	
108-90-7Chlorobenzene	10	ו ט	
100-41-4Ethylbenzene	10	וֹט	
	10	l ü	
100-42-5Styrene	10	Ü	•
1330-20-7Xylene (Total)	10	ויי	
l	l	l	

Report PCE from 5 times dilution

FORM I VOA

DE 1/29/89"

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name:	ATAS, INC.		Contract: 68-D5-0018	HS668
Lab Code:	ATAS	Case No.: 26631	SAS No.: SDG	No.: HS662
Matrix: (soil/water)	WATER	Lab Sample ID	: 24509.09
Sample wt	/vol: 5.0	(g/mL) MI	L Lab File ID:	C7621.D
Level:	(low/med)	LOW	Date Received	: 11/13/98

% Moisture: not dec. ____

GC Column:DB-624 ID: 0.53 (mm)

Dilution Factor: 1.0

Date Analyzed: 11/18/98

Soil Extract Volume: _____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	R T	EST. CONC.	Q
1. 75-37-6 2. 110-54-3 3.	Ethane, 1,1-difluoro- Hexane	2.441 7.606	21 5	UN UN
5. 6. 7. 8. 9.				
10. 11. 22. 13.				
15. 16. 17.				
20. 21. 22. 23.				
25. 26. 27. 28.				
30				

FORM I VOA-TIC

OLM3.0

ĸ

of whelse

EPA SAMPLE NO.

HS668DL

Lab Name: ATAS, INC.

Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.:

SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.09

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: C7694.D

Level: (low/med) LOW

Date Received: 11/13/98

% Moisture: not dec.

Date Analyzed: 11/21/98

GC Column:DB-624 ID: 0.53 (mm)

Dilution Factor: 5.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATION UNITS:		Q
74-87-3	Chloromethane_		50	

			1
74-87-3Chloromethane	50	σ	
74-83-9Bromomethane	50	บั	ł
75-01-4Vinyl Chloride	50	Ū	ŧ
75-00-3Chloroethane	50	Ü	
75-09-2Methylene Chloride	8	JĎ	[
67-64-1Acetone	50	ซื	ł
75-15-0Carbon Disulfide	50	Ü	i
75-35-41,1-Dichloroethene	50	Ŭ	ľ
75-34-31,1-Dichloroethane	50	Ü	1
540-59-01,2-Dichloroethene (total)	50	lŏ	İ
67-66-3Chloroform	50	บั	i
107-06-21,2-Dichloroethane	50	ŭ	į
78-93-32-Butanone	50	បី	İ
71-55-61,1,1-Trichloroethane	50	បី	
56-23-5Carbon Tetrachloride	50	บั	
75-27-4Bromodichloromethane	50	บั	ļ
	50	บั	j
78-87-51,2-Dichloropropane			j
10061-01-5cis-1,3-Dichloropropene	50	ŭ	}
79-01-6Trichloroethene	50	Ŭ	þ
124-48-1Dibromochloromethane	50	ŭ	ŀ
79-00-51,1,2-Trichloroethane	50	ũ	ŀ
71-43-2Benzene	50	ū	1
10061-02-6trans-1,3-Dichloropropene	50	ŭ	{
75-25-2Bromoform	50	ŭ	
108-10-14-Methyl-2-Pentanone	50	ָּטַ י	
591-78-62-Hexanore	50.	U	
127-18-4Tetrachloroethene	310	D	
79-34-51,1,2,2-Tetrachloroethane	50	U	
108-88-3Toluene	50	U	
108-90-7Chloroberzene	501	Ŭ	
100-41-4Ethylbenzene	50 j	Ŭ	
100-42-5Styrene	50	U	į .
1330-20-7Xylene (Total)	50	บ	ĺ

Report only PCE from this analysis

FORM I VOA

PF 1/29 199 OLM3.0

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

C7694.D

Lab	Name:	ATAS,	INC.				Contract:	68~D5-0018		HS668DL	
Lab	Code:	ATAS		Case No	o.:	26631	SAS No.:	S	DG	No.: HS662	

SDG No.: HS662 Matrix: (soil/water) WATER Lab Sample ID: 24509.09

Sample wt/vol: 5.0 (g/mL) ML

% Moisture: not dec. Date Analyzed: 11/21/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 5.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

Lab File ID:

Date Received: 11/13/98

Number TICs found: 0 (ug/L or ug/Kg) UG/L

LOW

Level: (low/med)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1.		_		
2.				
5				
7:				<u> </u>
8.				
10.				
13.		_		
14. 15. 16.				
17.				
19.				
20.				
23.				
24. 25.		_		
26. 27.				
28. 29. 30.				
~~`			- 	

A 1/20/11

FORM I VOA-TIC

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018 HS669

Lab Code: ATAS Case No.: 26631 SAS No.:

SDG No.: HS662

Matrix: (soil/water) WATER

Lab Sample ID: 24509.10

Sample wt/vol:

5.0 (g/mL) ML

Lab File ID: C7679.D

Level: (low/med)

LOW

Date Received: 11/13/98

% Moisture: not dec. ____

Date Analyzed: 11/21/98

GC Column: DB-624

ID: 0.53 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

74-87-3Chloromethane	10	ָט	いろ
74-83-9Bromomethane	10	U	
75-01-4Vinyl Chloride	10	Ŭ	いろ
75-00-3Chloroethane	10	ט	
75-09-2Methylene Chloride	4	JВ	104
67-64-1Acetone	11		
75-15-0Carbon Disulfide	10	<u>ת</u>	
75-35-41,1-Dichloroethene	10	ប	
75-34-31,1-Dichloroethane	10	ט	
540-59-01,2-Dichloroethene (total)	10	ע	•
67-66-3Chloroform	2	J	
107-06-21,2-Dichloroethane	10	ប	
78-93-32-Butanone	10	ប	
71-55-61,1,1-Trichloroethane	10:	. ជ	
56-23-5Carbon Tetrachloride	10	U.	
75-27-4Bromodichloromethane	10	Ü	
78-87-51,2-Dichloropropane	10	Ū	
10061-01-5cis-1,3-Dichloropropene	10	Ū	
79-01-6Trichloroethene	10	וט	
124-48-1Dibromochloromethane	10	ΰ	
79-00-51,1,2-Trichloroethane	10	Ŭ	
71-43-2Benzene	10	บั	UJ
10061-02-6trans-1,3-Dichloropropene	10	ŭ	0, 4
75-25-2Bromoform	10	บั	
108-10-14-Methyl-2-Pentanone	10	ŭ	
591-78-62-Hexanone	10	บั	
127-18-4Tetrachloroethene	10	ម	
79-34-51,1,2,2-Tetrachloroethane	10	ŭ	
108-88-3Toluene	10	ŭ	とい
108-90-7Chlorobenzene	10	ŭ.	V
100-41-4Ethylbenzene	10	Ü	
100-41-4Styrene	10	ان	- 1
1330-20-7Xylene (Total)	10	ü],
1330-20-7Aytene (Total)	10	٧I	v
	l	!	

DE1/29/19

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		170660
Lab Name: ATAS, INC.	Contract: 68-	D5-0018 HS669
Lab Code: ATAS Case No.: 26	531 SAS No.:	SDG No.: HS662
Matrix: (soil/water) WATER	Lab	Sample ID: 24509.10
Sample wt/vol: 5.0 (g/mL) ML Lab	File ID: C7679.D
Level: (low/med) LOW	Date	Received: 11/13/98
% Moisture: not dec.	Date	Analyzed: 11/21/98
GC Column:DB-624 ID: 0.53 (mm) Dilu	tion Factor: 1.0

Soil Extract Volume: ____(uL)

Number TICs found: 0

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER COMPOUND NAME RT EST. CONC. Q _____ 3._ 10._ 11._ 13.__ 14.__ 15._ 16.___ ī7.__ 18.___ 19._ 20. 21. 22._ 23. 24. 25._ 26. 27. 28._ 29. 30.

FORM I VOA-TIC

Ox 1/20 les

EPA SAMPLE NO.

Lab Name: ATAS, INC. Contract: 68-D5-0018

Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662

Matrix: (soil/water) WATER Lab Sample ID: 24509.11

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7623.D

Level: (low/med) LOW Date Received: 11/13/98

% Moisture: not dec. _____
Date Analyzed: 11/18/98

GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L C U 74-87-3-----Chloromethane 10 ŪΙ 74-83-9-----Bromomethane 10 U 75-01-4------Vinyl Chloride 10 U 75-00-3-----Chloroethane_ 10 104 75-09-2-----Methylene Chloride__ 3 l U 67-64-1-----Acetone 10 75-15-0-----Carbon Disulfide U 10 Ū 75-35-4-----1,1-Dichloroethene 10 Ū 75-34-3----1,1-Dichloroethane_ 10 540-59-0----1,2-Dichloroethene (total) 10 Ų 67-66-3-----Chloroform 16 107-06-2----1,2-Dichloroethane Ü 10 10 Ũ 78-93-3----2-Butanone 71-55-6-----1,1,1-Trichloroethane 56-23-5-----Carbon Tetrachloride 10 U 10 IJ 30 75-27-4-----Bromodichloromethane Ū 78-87-5-----1,2-Dichloropropane_ 10 10061-01-5----cis-1,3-Dichloropropene Ŭ 10 79-01-6-----Trichloroethene Ū 10 124-48-1-----Dibromochloromethane מטטטט 10 79-00-5----1,1,2-Trichloroethane_ 10 71-43-2----Benzene 10 10061-02-6----trans-1,3-Dichloropropene 10 75-25-2-----Bromoform 10 108-10-1----4-Methyl-2-Pentanone_ Ū 10 591-78-6----2-Hexanone ij 10 127-18-4-----Tetrachloroethene 34 79-34-5----1,1,2,2-Tetrachloroethane 10 10 108-88-3-----Toluene IJ 108-90-7-----Chlorobenzene 10 U 100-41-4-----Ethylbenzene 10 Ū 100-42-5-----Styrene IJ 10 1330-20-7-----Xylene (Total)

Df: 129 111

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

HS670 Lab Name: ATAS, INC. Contract: 68-D5-0018 Lab Code: ATAS Case No.: 26631 SAS No.: SDG No.: HS662 Matrix: (soil/water) WATER Lab Sample ID: 24509.11 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C7623.D Level: (low/med) LOW Date Received: 11/13/98 % Moisture: not dec. Date Analyzed: 11/18/98 GC Column:DB-624 ID: 0.53 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: 1

CAS NUMBER COMPOUND NAME RT EST. CONC. 1. 75-37-6 Ethane, 1,1-difluoro- 2.435 12	Q NJ
2	NJ
2	NJ
) 	
5:	·] —
	·
7	·
8. ————————————————————————————————————	.
9:	·]
10.	·
10.	\
12	.
13	·
14.	
15.	\
16.	·
17.	\
1 10.	i
19.	
20.	1
21.	i
22.	\
23.	
24,	
43.	
26.	
27.	
28.	1
29.	1
30.	l — — —

FORM I VOA-TIC

7 129 H

Lab

9807807

Send Report To: UDEQ - DERR - UST

ATTN:

168 N 1950 W BLDG #2 SALT LAKE CITY UT 84116

1,2-dibromo-3-chloropropane 0.5

Utah Division of Laboratory Services

46 North Medical Drive

Salt Lake City, UT 84113

Date/Time Collected: 09/04/98 Collected By: NEIL TAYLOR	Sampling S	
Description of Sampling Point:	OUR LADY OF LORDS SPR	ING
Analyst: 2.1 D	ate Received: <u>09/04/98</u>	Date Analyzed: <u>09/11/9</u> &

<u>Regulated</u>	<u>MRL</u>	<u>Results</u>	<u>List 1</u>	MRL	<u>Results</u>
		ug/L			ug/L
Benzene	0.5	ប	Chloroform	0.5	1.2
Carbon Tetrachloride	0.5	υ	Bromodichloromethane	0.5	U
1,2-Dichloroethane	0.5	ប	Chlorodibromomethane	0.5	U
1,1-Dichloroethylene	0.5	ប	Bromoform	0.5	U
Para-Dichlorobenzene	0.5	ប	m-Dichlorobenzene	0.5	U
1,1,1-Trichloroethane	0.5	Ü	1,1-Dichloropropene	0.5	U
Trichloroethylene	0.5	บ	1,1-Dichloroethane	0.5	U
Vinyl Chloride	0.5	U	1,1,2,2-Tetrachloroethane	0.5	Ü
o-Dichlorobenzene	0.5	Ų	1,3-Dichloropropane	0.5	ប
cis 1,2-Dichloroethylene	0.5	U	Chloromethane	0.5	บ
trans 1,2-Dichloroethylene	0.5	U	Bromomethane	0.5	ប
1,2-Dichloropropane	0.5	ប	1,2,3-Trichloropropane	0.5	υ
Ethylbenzene	0.5	U	1,1,1,2-Tetrachloroethane	0.5	υ
Monochlorobenzene	0.5	υ	Chloroethane	0.5	ט
Styrene	0.5	U	2,2-Dichloropropane	0.5	ប
Tetrachloroethylene	0.5	υ	o-Chlorotoluene	0.5	U
Toluene	0.5	U	p-Chlorotoluene	0.5	ប
Xylenes (total)	0.5	U	Bromobenzene	0.5	ប
Dichloromethane	0.5	U	cis-1,3-Dichloropropene	0.5	ប
1,2,4-Trichlorobenzene	0.5	U	trans-1,3-Dichloropropene	0.5	ប
1,1,2-Trichloroethane	0.5	Ü	Dibromomethane	0.5	บ
Ethylene Dibromide	0.5	U			

<u>List 3</u>	<u>MDL</u>	<u>Results</u>		, <u>MDL</u>	Results
		ug/L			ug/L
1,2,4-Trimethylbenzene	0.5	U	p-Isopropyltoluene	0.5	ט
1,2,3-Trichlorobenzene	0.5	ט	Isopropylbenzene	0.5	บ
n-Propylbenzene	0.5	U	Tert-butylbenzene	0.5	ប
n-Butylbenzene	0.5	υ	Sec-bytylbenzene	0.5	U
Napthalene	0.5	U	Fluorotrichloromethane	0.5	ប
Hexachlorobutadiene	0.5	Ų	Dichlorodifluoromethane	0.5	U
1,3,5-Trimethylbenzene	0.5	ប	Bromochloromethane	0.5	υ

U

U- Analyzed for but not detected

18

Analysis Certified By:	 Date:	9//

Cost Code: 367

Send Report To:

DIV.EMERGENCY RESPONSE & REMED

SALT LAKE CITY UT 84114

ATTN: 168 NORTH 1950 WEST Utah Division of Laboratory Services

46 North Medical Drive

Salt Lake City, UT 84113

Date/Time Collected: 08/07/98 09:15 Sample Matrix: Water Collected By: NEIL TAYLOR Sampling Site: _ Description of Sampling Point: BENSON SPRING ____ Date Received: 08/07/98 Date Analyzed: ___

Regulated	MRL	Results ug/L	List 1	MRL	Results ug/L
Benzene	0.5	ug/L U	Chloroform	0.5	0.7
Carbon Tetrachloride	0.5	υ	Bromodichloromethane	0.5	ช
1,2-Dichloroethane	0.5	U	Chlorodibromomethane	0.5	ប
1,1-Dichloroethylene	0.5	ប	Bromoform	0.5	ប
Para-Dichlorobenzene	0.5	ប	m-Dichlorobenzene	0.5	U
1,1,1-Trichloroethane	0.5	IJ	1,1-Dichloropropene	0.5	U
Trichloroethylene	0.5	ט	1,1-Dichloroethane	0.5	U
Vinyl Chloride	0.5	ซ	1,1,2,2-Tetrachloroethane	0.5	ূ ড
o-Dichlorobenzene	0.5	ប	1,3-Dichloropropane	0.5	ď
cis 1,2-Dichloroethylene	0.5	U	Chloromethane	0.5	U
trans 1,2-Dichloroethylene	0.5	U	Bromomethane	0.5	U
1,2-Dichloropropane	0.5	. 0	1,2,3-Trichloropropane	0.5	U
Ethylbenzene	0.5	υ	1,1,1,2-Tetrachloroethane	0.5	ប
Monochlorobenzene	0.5	Ū	Chloroethane	0.5	ប
Styrene	0.5	Ū	2,2-Dichloropropane	0.5	U
Tetrachloroethylene	0.5	U	o-Chlorotoluene	0.5	ប
Toluene	0.5	U	p-Chlorotoluene	0.5	ប
Xylenes (total)	0.5	υ	Bromobenzene	0.5	ប
Dichloromethane	0.5	U	cis-1,3-Dichloropropene	0.5	ប
1,2,4-Trichlorobenzene	0.5	ប	trans-1,3-Dichloropropene	0.5	U
1,1,2-Trichloroethane	0.5	ប	Dibromomethane	0.5	ប
Ethylene Dibromide	0.5	ប			
1,2-dibromo-3-chloropropane	0.5	ប			

List 3	MDL	Results ug/L		MDL	Results ug/L
1,2,4-Trimethylbenzene	0.5	ັ້ປ	p-Isopropyltoluene	0.5	ט - יפּר
1,2,3-Trichlorobenzene	0.5	υ	Isopropylbenzene	0.5	υ
n-Propylbenzene	0.5	Ų.	Tert-butylbenzene	0.5	U
n-Butylbenzene	0.5	ີ້ ບ	Sec-bytylbenzene	0.5	ប
Napthalene	0.5	U	Fluorotrichloromethane	0.5	t
Hexachlorobutadiene	0.5	Ŭ	Dichlorodifluoromethane	0.5	ឋ
1,3,5-Trimethylbenzene	0.5	U	Bromochloromethane	0.5	ប

U- Analyzed for but not detected

Analysis	Certified	By:	 	12	Date:	Siz
		-	 			<u> </u>

^{*}Data could be suspect. LFB failed. Recovery for some compounds > 120%

Lab

9806484

Send Report To: UDEQ - DERR - UST

ATTN:

168 N 1950 W BLDG #2 SALT LAKE CITY UT 84116

1,2-dibromo-3-chloropropane 0.5

Utah Division of Laboratory Services

46 North Medical Drive

Salt Lake City, UT 84113

Date/Time Collected: 08/03/98 12:45 Sample Matrix: Water

Collected By: M TAYLOR Sampling Site:

Description of Sampling Point: CHAPMAN WELL

Analyst: R.L Date Received: 08/03/98 Date Analyzed: 08/04/98

<u>Regulated</u>	MRL	<u>Results</u>	<u>List 1</u>	MRL	<u>Results</u>
		ug/L			ug/L
Benzene	0.5	ט	Chloroform	0.5	ט
Carbon Tetrachloride	0.5	ប	Bromodichloromethane	0.5	บ
1,2-Dichloroethane	0.5	ט	Chlorodibromomethane	0.5	U
1,1-Dichloroethylene	0.5	υ	Bromoform	0.5	ប
Para-Dichlorobenzene	0.5	ប	m-Dichlorobenzene	0.5	σ
1,1,1-Trichloroethane	0.5	Ŭ	1,1-Dichloropropene	0.5	σ
Trichloroethylene	0.5	ប	1,1-Dichloroethane	0.5	ប
Vinyl Chloride	0.5	U	1,1,2,2-Tetrachloroethane	0.5	υ
o-Dichlorobenzene	0.5	Ŭ	1,3-Dichloropropane	0.5	σ
cis 1,2-Dichloroethylene	0.5	υ	Chloromethane	0.5	Ū
trans 1,2-Dichloroethylene	0.5	Ŭ	Bromomethane	0.5	ប
1,2-Dichloropropane	0.5	Ŭ	1,2,3-Trichloropropane	0.5	U
Ethylbenzene	0.5	U	1,1,1,2-Tetrachloroethane	0.5	Ū
Monochlorobenzene	0.5	ซ	Chloroethane	0.5	U
Styrene	0.5	\mathbf{v}	2,2-Dichloropropane	0.5	U
Tetrachloroethylene	0.5	ប	o-Chlorotoluene	0.5	ָ ט
Toluene	0.5	ប	p-Chlorotoluene	0.5	ប
Xylenes (total)	0.5	Ū	Bromobenzene	0.5	Ų
Dichloromethane	0.5	IJ	cis-1,3-Dichloropropene	0.5	ប
1,2,4-Trichlorobenzene	0.5	U	trans-1,3-Dichloropropene	0.5	ប
1,1,2-Trichloroethane	0.5	U	Dibromomethane	0.5	U
Ethylene Dibromide	0.5	U			

<u>List 3</u>	MDL	Results		MDL	<u>Results</u>
		ug/L			ug/L
1,2,4-Trimethylbenzene	0.5	U	p-Isopropyltoluene	0.5	U
1,2,3-Trichlorobenzene	0.5	U	Isopropylbenzene	0.5	U
n-Propylbenzene	0.5	Ų	Tert-butylbenzene	0.5	U
n-Butylbenzene	0.5	U	Sec-bytylbenzene	0.5	Ū
Napthalene	0.5	U	Fluorotrichloromethane	0.5	U
Hexachlorobutadiene	0.5	U	Dichlorodifluoromethane	0.5	U
1,3,5-Trimethylbenzene	0.5	Ŭ	Bromochloromethane	0.5	υ

U- Analyzed for but not detected

- 7

Analysis	Certified	By:		_	α	Date:	815	
		- <u>-</u>	 					

Purgeables

Send Report To: UDEQ - DERR - UST

Cost Code: 360

ATTN:

168 N 1950 W BLDG #2 SALT LAKE CITY UT 84116 Utah Division of Laboratory Services 46 North Medical Drive

Salt Lake City, UT 84113

Date/Time Collected: 08/05/98 10:00 "Sample Matrix: Water Collected By: NEIL TAYLOR Sampling Site: ____

Description of Sampling Point: SMITH SPRING

Analyst: Received: 08/05/98 Date Analyzed: 6/1/

			=======================================		
<u>Regulated</u>	MRL	<u>Results</u>	<u>List 1</u>	MRL	<u>Results</u>
		ug/L			ug/L
Benzene ·	0.5	ប	Chloroform	0.5	ช
Carbon Tetrachloride	0.5	U	Bromodichloromethane	0.5	ប
1,2-Dichloroethane	0.5	ΰ	Chlorodibromomethane	0.5	ט
1,1-Dichloroethylene	0.5	U	Bromoform	0.5	บ
Para-Dichlorobenzene	0.5	ប	m-Dichlorobenzene	0.5	U
1,1,1-Trichloroethane	0.5	U	1,1-Dichloropropene	0.5	บ
Trichloroethylene	0.5	U	1,1-Dichloroethane	0.5	บ
Vinyl Chloride	0.5	Ų	1,1,2,2-Tetrachloroethane	0.5	ָ ט
o-Dichlorobenzene	0.5	U	1,3-Dichloropropane	0.5	Ū
cis 1,2-Dichloroethylene	0.5	U	Chloromethane	0.5	ប
trans 1,2-Dichloroethylene	0.5	U	Bromomethane	0.5	ប
1,2-Dichloropropane	0.5	Ŭ	1,2,3-Trichloropropane	0.5	ប
Ethylbenzene	0.5	U	1,1,1,2-Tetrachloroethane	0.5	บ
Monochlorobenzene	0.5	U	Chloroethane	0.5	Ŭ
Styrene	0.5	U	2,2-Dichloropropane	0.5	Ŭ
Tetrachloroethylene	0.5	Ŭ	o-Chlorotoluene	0.5	Ü
Toluene	0.5	U	p-Chlorotoluene	0.5	ប
Xylenes (total)	0.5	U	Bromobenzene	0.5	ប
Dichloromethane	0.5	σ	cis-1,3-Dichloropropene	0.5	U
1,2,4-Trichlorobenzene	0.5	Ū	trans-1,3-Dichloropropene	0.5	ប
1,1,2-Trichloroethane	0.5	U	Dibromomethane	0.5	บ
Ethylene Dibromide	0.5	ប			
1,2-dibromo-3-chloropropane	0.5	U			

List 3	MDL	Results ug/L		MDL	Results uq/L
1,2,4-Trimethylbenzene	0.5	ับ	p-Isopropyltoluene	0.5	ט .
1,2,3-Trichlorobenzene	0.5	ប	Isopropylbenzene	0.5	Ų
n-Propylbenzene	0.5	u	Tert-butylbenzene	0.5	ប
n-Butylbenzene	0.5	u	Sec-bytylbenzene	0.5	Ū
Napthalene	0.5	U	Fluorotrichloromethane	0.5	υ
Hexachlorobutadiene	0.5	ប	Dichlorodifluoromethane	0.5	U
1,3,5-Trimethylbenzene	0.5	ប	Bromochloromethane	0.5	ប

U- Analyzed for but not detected

*Data could be suspect. LFB failed. Recovery for some compounds > 120%

Analysis Certified By: _ Date: \$73/

24.2 GC/MS Lab

Send Report To: UDEQ - DERR - UST

ATTN: 168 N 1950 W BLDG #2 SALT LAKE CITY UT 84116

.

Utah Division of Laboratory Services 46 North Medical Drive Salt Lake City, UT 84113

9806568

Date/Time Collected: 08/05/98 11:00 Sample Matrix: Water
Collected By: NEIL TAYLOR Sampling Site:

Description of Sampling Point: BOWEN SPRING

Analyst: Date Received: 08/05/98 Date Analyzed: 8/11/9 P

Regulated	MRL	Results	List 1	MRL	Results
		ug/L			ug/L
Benzene	0.5	U	Chloroform	0.5	1.8
Carbon Tetrachloride	0.5	U	Bromodichloromethane	0.5	ប
1,2-Dichloroethane	0.5	ט	Chlorodibromomethane	0.5	บั
1,1-Dichloroethylene	0.5	U	Bromoform	0.5	U
Para-Dichlorobenzene	0.5	U	m-Dichlorobenzene	0.5	ប
1,1,1-Trichloroethane	0.5	U	1,1-Dichloropropene	0.5	υ
Trichloroethylene	0.5	บ	1,1-Dichloroethane	0.5	ប
Vinyl Chloride	0.5	U	1,1,2,2-Tetrachloroethane	0.5	ָ ט
o-Dichlorobenzene	0.5	U	1,3-Dichloropropane	0.5	ָ ט
cis 1,2-Dichloroethylene	0.5	Ŭ	Chloromethane	0.5	ប
trans 1,2-Dichloroethylene	0.5	Ŭ	Bromomethane	0.5	ប
1,2-Dichloropropane	0.5	U	1,2,3-Trichloropropane	0.5	U
Ethylbenzene	0.5	Ū	1,1,1,2-Tetrachloroethane	0.5	บ
Monochlorobenzene	0.5	U	Chloroethane	0.5	U
Styrene	0.5	U	2,2-Dichloropropane	0.5	U
Tetrachloroethylene	0.5	U	o-Chlorotoluene	0.5	U
Toluene	0.5	U	p-Chlorotoluene	0.5	U
Xylenes (total)	0.5	U	Bromobenzene	0.5	U
Dichloromethane	0.5	Ū	cis-1,3-Dichloropropene	0.5	U
1,2,4-Trichlorobenzene	0.5	Ū	trans-1,3-Dichloropropene	0.5	ט
1,1,2-Trichloroethane	0.5	Ţ	Dibromomethane	0.5	U
Ethylene Dibromide	0.5	ט			
1,2-dibromo-3-chloropropane	0.5	บ			

List 3	<u>MDL</u>	Results		MDL	Results
		ug/L			ug/L
1,2,4-Trimethylbenzene	0.5	บ	p-Isopropyltoluene	0.5	ប
1,2,3-Trichlorobenzene	0.5	U	Isopropylbenzene	0.5	ប
n-Propylbenzene	0.5	Ţ	Tert-butylbenzene	0.5	U
n-Butylbenzene	0.5	Ü	Sec-bytylbenzene	0.5	ប
Napthalene	0.5	Ü	Fluorotrichloromethane	0.5	ប
Hexachlorobutadiene	0.5	ט	Dichlorodifluoromethane	0.5	U
1,3,5-Trimethylbenzene	0.5	U	Bromochloromethane	0.5	U

U- Analyzed for but not detected

*Data could be suspect. LFB failed. Recovery for some compounds > 120%

Analysis Certified By:	r	Date:	× > ,
maryord certified by.	 <u> </u>	Dare	

APPENDIX F GRANT OF ACCESS, CHAIN OF CUSTODY, AND SHIPPING INFORMATION

DEPARTMENT OF VETERANS AFFAIRS

Medical Center 500 Foothill Blvd. Salt Lake City UT 84148

In Reply Refer To: 660/00QH

.October 8, 1996

Mr. Neil Taylor Environmental Scientist, Site Assessment Section Division of Environmental Response and Remediation 168 North, 1950 West, Salt Lake City, UT 84114

Bonjuil

Dear Mr. Taylor:

Thank you for your letter of October 3, 1996. Enclosed is the Consent for Access To Property as you have requested. The date of October 18, 1996 is acceptable to conduct the sampling. Please contact me when you arrive on-site. I can be reached at extension 4533 or VA pager 1338.

Sincerely,

ROBERT P. BLONQUIST Industrial Hygienist

Enclosure

cc: District Counsel (02)

Utah Department of Environmental Quality Division of Environmental Response and Remediation CERCLA Branch

CONSENT FOR ACCESS TO PROPERTY

Name, Title, Mailing Address:

Robert Blonquist Veteran's Medical Center 500 Foothill Drive Salt Lake City, Utah 84

Property Location:

This property is located at 500 Foothill Drive, Salt Lake City, Utah. Building Seven is located on the southeastern section of the facility.

I am an owner of record, title holder or authorized agent for the record owner, of the property described above, after receiving reasonable advanced notice, I hereby give my consent and grant access for ingress and egress to the Property to officers, employees, and authorized representatives of the Utah Division of Environmental Response and Remediation (UDERR) and the U.S. Environmental Protection Agency (USEPA) for the following purposes:

- ♦ Collecting subsurface soil samples east and south of Building Seven.
- Other such actions related to the taking of the above samples as may be necessary.

I have been informed and understand that these actions by UDERR are undertaken pursuant to the authorities provided in the Utah Environmental Quality Regulations of the <u>Utah Code Ann.</u>: Sections 19-1-101 et seq. (General Provisions), and Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C.A. 9601.

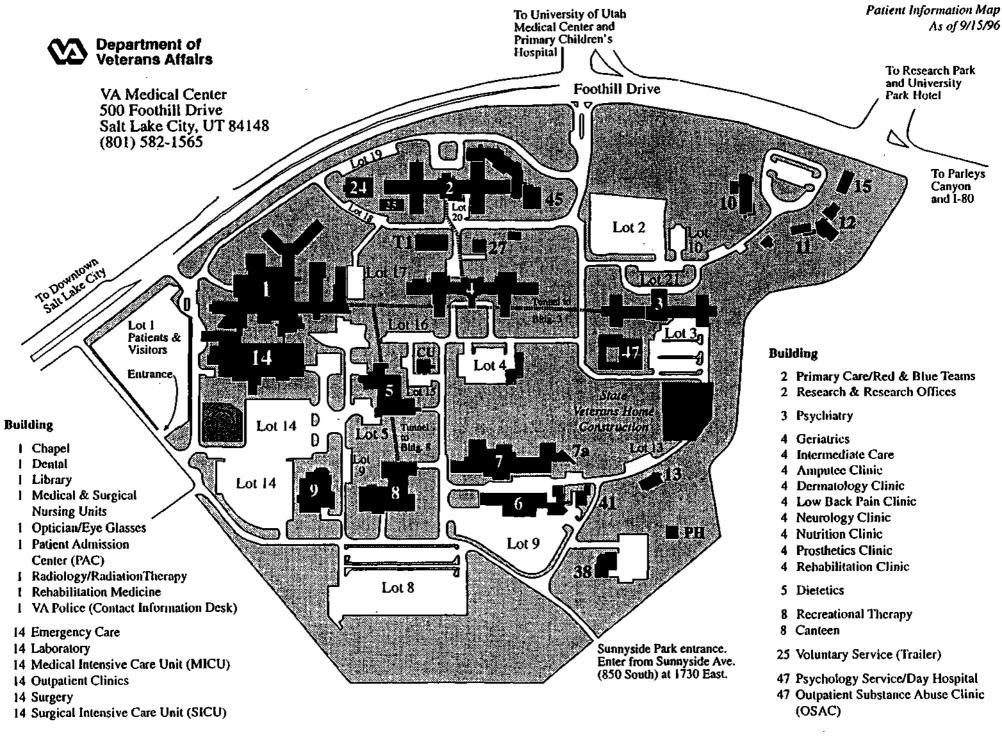
This consent and grant for access is given voluntarily with knowledge of my right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral, have been made by UDERR to induce my consent.

- () I wish to obtain splits of all samples collected on the above property and a receipt describing each sample taken. I understand that I must provide the necessary sample containers to obtain these splits. The responsibility of choosing an analytical laboratory and the cost of analysis of the splits is solely mine.
- (r) I waive my right to obtain split samples.

(Signature) Rales of Blongwish (Date) 1278/94

VETERANS ADMINISTRATION I, PERMIT NO. PERMIT FOR USE OF REAL PROPERTY BY FEDERAL AGENCY Permission, revocable at the will of the Voterans Administration, is hereby granted the permittee bureinafter named to use the property described below for the purpose designated. Subject to the conditions, special and general, herein prescribed. 2. WAME OF PERMITTIES AGENCY SA, VANE AND ADDRESS OF LCCAL PERMITTER REPRESENTA-JR. TELEPHONE NO Nัซ์ร์ 1 B. Taylor Utah Div. of Environmental Response and Remediation and/ Utah Div. of Environmental 536-4102 Response and Remediation or the U.S. E.P.A. 4. NAME AND AUDRESS OF INSTAULATION 5. MAXIMUM PERIOD COVERED Department of Veteran Affairs 270 31 Medical Center, 500 Foothill Blvd. 8/23/98 Salt Lake City, UT 84148 8/21/98 GA. OCTORIPTION OF PROPERTY ASSECTED Site Map Parking Lot #4, VA Medical Center attached

7. PURPOSE OF BENMIT


To allow the E.P.A. to drill a single monitoring well (water) to determine the presence of a contaminant (Perchlorethylene) in the aquifer.

By the acceptance of this permit, the permittee agrees to abide by and be bound by the following conditions:

8. SPECIAL CONDITIONS

- a. The time of the drilling operations shall be between the hours of 7:00 A.M. and 5:00 P.M. 8/21/98 through 8/23/98.
- b. Drilling operations to be concluded within the maximum period covered unless an extension of time agreement between both parties is entered into.
- c. Sample splits will be provided to the VA by the permittee in containers provided by the E.P.A.
- d. Permittee shall provide the VA with copies of any and all reports and/or analytical data from the findings.
- e. Capping of the well will be the responsibility of the permittee; will be performed within the maximum time allowed and will be done so to the satisfaction of the VA.
- f. The POC for the VA is Robert P. Blonquist, Safety & Occupational Health Specialist, and may be reached at 582-1565.
- g. Permittee's access to the well outside the period covered here will be permitted only upon notice and approval of the VA.
- h. Permittee shall give the VA 24-hour notice of additional water sampling, as required.

SPECIAL CONCITIONS (Continued)
\cdot
b. The permittee shall at its own expense and without cost or expense to the Veterans Administration, maintain and keep the property in
good repair and condition. c. The use to be made of the property shall be limited to that specified in this permit. d. The remaitive shall may the cost, as determined by the Medical Center Director of his authorized representative, of producing end/or supplying may writting and other services furnished by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. No additions to or elterations of the property shall be made account one permittee. Medical Center Direct or his authorized representative.
good repair and condition. c. The use to be made of the property small be limited to that specified in this permit. d. The permittive shall may the cost, as determined by the Medical Center Director of his authorized representative, of producing end/or supplying may intitive and other services furnished by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. Ma additions to or alterations of the property square account one permittee. Medical Center Direct
c. The use in be made of the property shall be limited to that specified in this permit. d. The recultive shall pay the cost, as determined by the Medical Center Director or his authorized representative, or producing end/or supplying any intitudes and other carries furnished by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. We additions to or alterations of the property shall be mines attitude and permittee the premises, remove its property therefrom shall include the permittee the premises, remove its property therefrom shall include the primities, remove its property increation and recovered an include the primities, remove its property increation and recovered an include the primities, remove its property increation and recovered an include the primities, remove its property increation and recovered an increase we alternated within such hims as the increase administration may designate. **CETCHANS ACMINISTRATION REMNITTOR** **GETCHANS ACMINISTRATION REMNITTOR** **GETCHANS ACMINISTRATION REMNITTOR** **CENTRANS ACMINISTRATION REMNITTOR** **CENTRANS ACMINISTRATION REMNITTOR**
c. The use to be made of the property shall be limited to that specified in this permit. d. The permittee shall pay the cost, as determined by the Medical Center Director or his authorized representative, or producing end/or supplying any contition and other carriers formissed by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. No additions to or alterations of the property shall be mineral end entired the permittee is oweing. The argument was a condition an argument of this versit, the permittee shall vacante the premises, remove its property therefrom shall vacate the premises, remove its property therefrom shall vacate the premises, remove its property therefrom any designate. VETERANS ACMINISTRATION REMAITTOR PATE OF COMMITTEE DATE OF COMMITTEE PATE OF COMMITTEE PAGE TO SHALL THE
c. The use to be made of the property shall be limited to that specified in this permit. d. The permittee shall pay the cost, as determined by the Medical Center Director or his authorized representative, of producing end/or supplying may autified and other carries internal by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. No additions to or alterations of the property shall be made authors and permittee in the Medical Center Direct or his anthorized representative. Chair sources we will represent a transferror of this appropriate shall vacate the premises, remove its property therefrom shall vacate the premises, remove its property therefrom shall vacate the premises, remove its property understood and restore the premises and authorized transferror and designate. VETERANS ACMINISTRATION REMOTTER PATE OF COUNTY Manin Map, veery
c. The use to be made of the property shall be limited to that specified in this permit. d. The permittee shall pay the cost, as determined by the Medical Center Director or his authorized representative, or producing end/or supplying any contition and other carriers formissed by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. No additions to or alterations of the property shall be mineral end entired the permittee is oweing. The argument was a condition an argument of this versit, the permittee shall vacante the premises, remove its property therefrom shall vacate the premises, remove its property therefrom shall vacate the premises, remove its property therefrom any designate. VETERANS ACMINISTRATION REMAITTOR PATE OF COMMITTEE DATE OF COMMITTEE PATE OF COMMITTEE PAGE TO SHALL THE
c. The use to be made of the property shall be limited to that specified in this permit. d. The permittee shall pay the cost, as determined by the Medical Center Director or his authorized representative, or producing end/or supplying any contition and other carriers formissed by the Veterans Administration for use of the permittee. At signing, no cost to the permittee is oweing. e. No additions to or alterations of the property shall be mineral end entired the permittee is oweing. The argument was a condition an argument of this versit, the permittee shall vacante the premises, remove its property therefrom shall vacate the premises, remove its property therefrom shall vacate the premises, remove its property therefrom any designate. VETERANS ACMINISTRATION REMAITTOR PATE OF COMMITTEE DATE OF COMMITTEE PATE OF COMMITTEE PAGE TO SHALL THE

FABIAN & CLENDENIN

A PROFESSIONAL CORPORATION ATTORNEYS AT LAW

TWELFTH FLOOR 215 SOUTH STATE STREET P.O. BOX 510210 SALT LAKE CITY, UTAH 84151-0210 TELEPHONE [801] 531-8900 FACSIMILE (801) 596-2814

OF COUNSEL RALPH H. MILLER DAVID J LYON ROBERT S. McCONNELL

NEVADA OFFICE

38II WEST CHARLESTON BLVD., SUITE 208 LAS VEGAS, NEVADA 89102-1846 TELEPHONE (702) 367-4545 FACSIMILE (702) 367-1227

GEORGE D. MELLING, JR. WARREN PATTEN JOHN E. S. ROBSONT M. BYRON FISHER STANFORD B. OWEN PETER W. BILLINGS, JR. THOMAS CHRISTENSEN, JR. IAY B. BELL DANIEL W. ANDERSON GARY E. JUBBER ROSEMARY J. BELESS W. CULLEN BATTLE KEVIN N. ANDERSONT NORMAN J. YOUNKER MICHELE MITCHELLT

DOUGLAS 8. CANNON* DOUGLAS J. PAYNE ROBERT PALMER REES DIANE H. BANKS P. BRUCE BADGER JOHN (JACK) D. RAY CRAIG T. JACOBSEN DOUGLAS R. BREWER JULIE PEASLEE ROBERT A. GARDA E. BLAINE RAWSON JOHN D. DUNN ROSS I. ROMERO

T ALSO IN NEVADA * ALSO IN IDAHO

October 3, 1997

HAND DELIVERED

Neil B. Taylor, Environmental Scientist Division of Environmental Response and Remediation Utah Department of Environmental Quality 168 North 1950 West Salt Lake City, Utah 84114

Re: Proposed Sampling of Water Well at Mount Olivet Cemetery Site

Dear Mr. Taylor:

Pursuant to your request for access for an EPA contractor to sample the water well at Mount Olivet Cemetery on a date between October 13, 1997 to November 13, 1997, we are enclosing a Consent for Access to Property which will be signed by Mount Olivet Cemetery Association for that purpose.

As stated in our letter of November 6, 1995, to Luke D. Chavez and Steve Hawthorn, it is important that Daniel ValDez, the sexton of Mount Olivet Cemetery, receive adequate notice of EPA's date of sampling because he must coordinate funerals being held at the cemetery in order to avoid a conflict with EPA's proposed time of testing the well. Also, he must have a copy of EPA's plan for testing the well because the well is normally shut down after October 15, 1997, and he must continue to provide electric power to the well and know what pumping requirements will be required under EPA's sampling plan. You will note that the enclosed Consent for Access is nearly identical to the last consent used for this project.

Mount Olivet looks forward to working with DERR and EPA in order to find the answers to questions concerning any contamination, or potential contamination, of the well located on Mount Olivet's property.

Mount Olivet is willing to allow access to DERR and EPA pursuant to the terms of the enclosed Consent for Access to Property. Please advise me of your concurrence in this

FABIAN & CLENDENIN A PROFESSIONAL CORPORATION

Neil B. Taylor, Environmental Scientist Page 2 of 2 October 3, 1997

matter so that I can have an original executed Consent for Access to Property hand delivered to you as soon as possible.

Thank you for your attention to this matter.

Very truly yours,

Rosemary J. Beless

Attorney for Mount Olivet Cemetery

Association

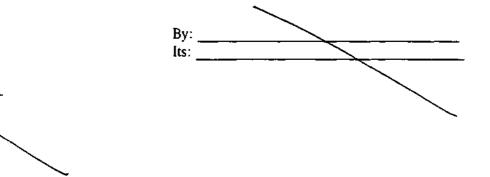
cc: Daniel A. ValDez, Sexton

RJB:aw

CONSENT FOR ACCESS TO PROPERTY

Mount Olivet Cemetery Association ("Mount Olivet"), owner of the real property at the address of 1342 East 500 South, Salt Lake City, Utah 84102 (the "Site"), agrees, subject to the understandings provided herein, to allow the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation ("DERR") and the United States Environmental Protection Agency ("EPA"), (collectively the "Governmental Representatives") to enter upon the Site, after meeting with Mount Olivet personnel, on a date between October 13, 1997 and November 13, 1997, after giving Daniel ValDez, Sexton of Mount Olivet, at least twenty-four (24) business hours (8:00 a.m. - 5:00 p.m. Monday through Friday) notice by telephone of the specific date and time of the investigation, solely for the purpose of taking groundwater samples from Mount Olivet's water well.

Mount Olivet will be provided with splits of each sample taken, will be given a receipt describing each sample taken, and will be promptly furnished with a copy of the results of any analysis made of samples taken. Mount Olivet will provide the necessary sample containers to obtain these splits and will be responsible for the cost of analysis of the split samples.


It is understood that the Government Representatives shall notify Mount Olivet in writing of the names, titles, and employers of the individuals who will be entering onto the Site prior to their entry.

It is understood that the Government Representatives shall promptly provide Mount Olivet with copies of any and all photographs taken of the Site and of any final reports made or data collected from the above-described activities. It is further understood that the Government Representatives shall provide Mount Olivet with a sampling and analysis plan, including specific procedures for testing the well, for the above-referenced sampling activities at least twenty-four (24) business hours prior to their entry upon the Site. This sampling and analysis plan will provide Mount Olivet with the information necessary to operate its well appropriately for the sampling activity.

It is understood that prior to the Government Representatives' completion of activities at the Site, the Government Representatives will remove from the Site all discarded materials, rubbish, protective clothing and unused chemicals and sampling devices which they brought on the Site during their sampling activities.

Mount Olivet understands that the above-described activities by the Government Representatives are undertaken pursuant to their response and enforcement responsibilities pursuant to the Utah Environmental Quality Code at Utah Code Ann. § 19-1-101 et seq. (General Provisions) and § 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liability Act, (CERCLA) 42 U.S.C.A. § 9601. By granting access to the Government Representatives, Mount Olivet makes no admission of liability or responsibility for any contamination which may be found on the Site. As of this date, Mount Olivet, in giving this voluntary consent, is not responding to any threats, nor is it relying upon any additional promises, representations or claims, either oral or written, made by any Government Representative, other than the understandings specified in this Consent for Access to Property.

MOUNT OLIVET CEMETERY ASSOCIATION

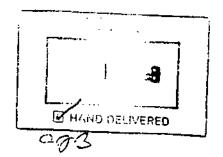
Date

119183

FABIAN & CLENDENIN A PROFESSIONAL CORPORATION

ATTORNEYS AT LAW

TWELFTH FLOOR 215 SOUTH STATE STREET P.O. BOX 510210 SALT LAKE CITY, UTAH 84151-0210 TELEPHONE [801] 531-8900 FACSIMILE 18011 596-2814


OF COUNSEL RALPH H. MILLER DAVID J. LYON ROBERT S. McCONNELL CRAIG T. JACOBSEN

NEVADA OFFICE

3811 WEST CHARLESTON BLVD., SUITE 208 LAS VEGAS, NEVADA 89102-1846 TELEPHONE (702) 367-4545

FACSIMILE (702) 367-1227

June 10, 1998

MICHELE MITCHELLT T ALSO IN NEVADA * ALSO IN IDAHO

IAY B. BELL DANIEL W. ANDERSON GARY E. JUBBER

GEORGE D. MELLING, JR. WARREN PATTEN

PETER W. BILLINGS, JR. THOMAS CHRISTENSEN, JR.

M. BYRON FISHER STANFORD B. OWEN

ROSEMARY J. BELESS W. CULLEN BATTLE

KEVIN N. ANDERSONT NORMAN J. YOUNKER

HAND DELIVERED

JOHN E. S. ROBSONT

DIANE H. BANKS P. BRUCE BADGER

ROBERT A, GARDA JOHN D. DUNN

JOHN (JACK) D. RAY DOUGLAS R. BREWER JULIE PEASLEE

ROSS I, ROMERO SCOTT M. PETERSEN

DOUGLAS B. CANNON* DOUGLAS J. PAYNE ROBERT PALMER REES

Neil B. Taylor, Environmental Scientist Division of Environmental Response and Remediation Utah Department of Environmental Quality 168 North 1950 West Salt Lake City, Utah 84114

Re: Proposed Sampling of Water Well at Mount Olivet Cemetery Site

Dear Mr. Taylor:

Pursuant to your request for access for an EPA contractor to sample the water well at Mount Olivet Cemetery on a date between June 15, 1998 to July 25, 1998, we are enclosing a Consent for Access to Property which will be signed by Mount Olivet Cemetery Association for that purpose.

As stated in our letter of November 6, 1995, to Luke D. Chavez and Steve Hawthorn, it is important that Daniel ValDez, the sexton of Mount Olivet Cemetery, receive adequate notice of EPA's date of sampling because he must coordinate funerals being held at the cemetery in order to avoid a conflict with EPA's proposed time of testing the well. Also, he must have a copy of EPA's plan for testing the well so that he can provide electric power to the well and know what pumping requirements will be required under EPA's sampling plan. You will note that the enclosed Consent for Access is nearly identical to the last consent used for this project.

Mount Olivet looks forward to working with DERR and EPA in order to find the answers to questions concerning any contamination, or potential contamination, of the well located on Mount Olivet's property.

FABIAN & CLENDENIN A PROFESSIONAL CORPORATION

Neil B. Taylor, Environmental Scientist June 10, 1998 Page 2

Mount Olivet is willing to allow access to DERR and EPA pursuant to the terms of the enclosed Consent for Access to Property. Please advise me of your concurrence in this matter so that I can have an original executed Consent for Access to Property hand delivered to you as soon as possible.

Thank you for your attention to this matter.

Very truly yours,

Rosemary J. Beless

Attorney for Mount Olivet Cemetery

Association

RJB/cam

cc: Daniel A. ValDez, Sexton

CONSENT FOR ACCESS TO PROPERTY

Mount Olivet Cemetery Association ("Mount Olivet"), owner of the real property at the address of 1342 East 500 South, Salt Lake City, Utah 84102 (the "Site"), agrees, subject to the understandings provided herein, to allow the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation ("DERR") and the United States Environmental Protection Agency ("EPA"), (collectively the "Governmental Representatives") to enter upon the Site, after meeting with Mount Olivet personnel, on a date from June 15, 1998 to and including July 25, 1998, after giving Daniel ValDez. Sexton of Mount Olivet, at least twenty-four (24) business hours (8:00 a.m. - 5:00 p.m. Monday through Friday) notice by telephone of the specific date and time of the investigation, solely for the purpose of taking groundwater samples from Mount Olivet's water well.

Mount Olivet will be provided with splits of each sample taken, will be given a receipt describing each sample taken, and will be promptly furnished with a copy of the results of any analysis made of samples taken. Mount Olivet will provide the necessary sample containers to obtain these splits and will be responsible for the cost of analysis of the split samples.

It is understood that the Government Representatives shall notify Mount Olivet in writing of the names, titles, and employers of the individuals who will be entering onto the Site prior to their entry.

It is understood that the Government Representatives shall promptly provide Mount Olivet with copies of any and all photographs taken of the Site and of any final reports made or data collected from the above-described activities. It is further understood that the Government Representatives shall provide Mount Olivet with a sampling and analysis plan, including specific procedures for testing the well, for the above-referenced sampling activities at least twenty-four (24) business hours prior to their entry upon the Site. This sampling and analysis plan will provide Mount Olivet with the information necessary to operate its well appropriately for the sampling activity.

It is understood that prior to the Government Representatives' completion of activities at the Site, the Government Representatives will remove from the Site all discarded materials, rubbish, protective clothing and unused chemicals and sampling devices which they brought on the Site during their sampling activities.

Mount Olivet understands that the above-described activities by the Government Representatives are undertaken pursuant to their response and enforcement responsibilities pursuant to the Utah Environmental Quality Code at Utah Code Ann. § 19-1-101 et seq. (General Provisions) and § 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liability Act, (CERCLA) 42 U.S.C.A. § 9601. By granting access to the Government Representatives, Mount Olivet makes no admission of liability or responsibility for any contamination which may be found on the Site. As of this date, Mount Olivet, in giving this voluntary consent, is not responding to any threats, nor is it relying upon any additional promises, representations or claims, either oral or written, made by any Government Representative, other than the understandings specified in this Consent for Access to Property.

MOUNT OLIVET CEMETERY ASSOCIATION

By: \	\L200	
By:	4	Leave - a
		31 · 6 wag
		The state of the s

Date

RICHARD GRAHAM

SALT LAKE GITY CORPORATION

DEEDEE GORRADINI

June 10, 1998

State of Utah
DEQ/DERR
Attn: Neal Taylor
168 North 1950 West
Salt Lake City, UT 84114-4840

Re: Grant of Access to Steiner Aquatic Center on Guardsman Way

The State of Utah is hereby granted the authority to construct a monitoring well as described in items 1 and 2 of the attached "Grant of Access to Property" agreement. Item 3, "any other such actions related to the above activities on the Property as may be necessary," is granted only on a "by case" basis. Each case must be approved in advance.

Salt Lake City reserves the right to monitor and observe the work and requires the restoration of the property to its original state upon completion of the work.

For access to the lot, please contact Amy Quinn at Steiner Aquatic Center, 583-9713.

Sincerely.

Debbie Booth

Environmental Analyst

Attachments: 1

Cc: Sherianne Cotterell, Director of Youth and Family Services Division

Amy Quinn, Steiner Aquatic Center

GHANT OF ACCESS TO PROPERTY

Debbie Booth, is the owner ("Owner") of record, title holder or authorized agent for certain real property located at the Steiner Aquatic Center, 645 South Guardsman Way, Salt Lake City, Utah. These locations are referred to as the "Property".

The Owner hereby grants to the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation (DERR) and/or United States Environmental Protection Agency (EPA) access, including ingress and egress, to the Property for the following purposes:

- 1. construction of a monitoring well in the southwest portion of the aquatic center parking lot.
- 2. the taking of soil, boring and/or groundwater samples,
- 3. Any other such actions related to the above activities on the Property as may be necessary.

The tasks described above may be altered if conditions change or if the DERR or EPA obtains additional information requiring further investigation. The DERR or EPA will notify the Owner in writing of any new planned tasks.

It is anticipated that the work described herein will be performed between 15 June 1998 and 25 July 1998. If it becomes necessary to perform the work at other times, the DERR or EPA will notify the Owner by telephone at least 24 hours before it intends to enter the Property.

I have been informed and understand that these actions by the EPA and EPA are undertaken pursuant to the authorities provided in the Utih Environmental Quality Code of Utah Code Ann. Sections 19-1-101 et seq., (General Provisions), Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C. A. 9601.

By granting access to the DERR or EPA, the Owner makes no admission of liability or responsibility for any contamination which may be found on the property. This grant of access is given voluntarily with knowledge of my right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral have been made by the Grantee to induce my consent.

By accepting this grant the DERR and EPA shall, as far as permitted by state or federal law, indemnify and hold Owner and its officers, agents, and employees harmless from claims, loss, damage, injury, or liability (hereafter "Liability") resulting from the conduct of DERR or EPA's operations or from use of the property by contractors, officers, agents or employees, including reasonable attorney's fees, but excluding any liability resulting from acts or omissions of Owner, its contractors, officers, agents, or employees. Nothing herein shall be construed as a waiver of any of the rights or defenses under the Utah Governmental Immunity Act (Utah Code Annotated 1953, Section 63-30-1, et seq) or the coverage of defenses provided therein.

[] I wish to obtain splits of all samples collected on the Property and a receipt describing each sample taken. I understand that I must provide the necessary sample containers to obtain these splits. The responsibility of choosing an analytical laboratory and the cost of analysis of the splits is solely mine.

X I waive my right to obtain split samples.

Owner's Signature:

Title: <u>ENVINONMENTIL Apalyst</u>

GRANT OF ACCESS TO PROPERTY

John Benson, is the owner ("Owner") of record, title holder or authorized agent for the record owner of certain real property located at 761 South 1100 East in Salt Lake City, Utah. The property is hereafter referred to as the "Property".

The Owner hereby grants to the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation (DERR) access, including ingress and egress, to the Property for the taking of spring or well water samples,

It is anticipated that the work described herein will be performed on August 5, 1998. If it becomes necessary to perform the work at other times, the Grantee will notify the Owner by telephone at least 24 hours before it intends to enter the Property.

I have been informed and understand that these actions by the Grantee are undertaken pursuant to the authorities provided in the Utah Environmental Quality Code of Utah Code Ann. Sections 19-1-101 et seq., (General Provisions), Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C. A. 9601.

By granting access to the Grantee, the Owner makes no admission of liability or responsibility for any contamination which may be found on the property. This grant of access is given voluntarily with knowledge of right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral have been made by the Grantee to induce my consent.

[]	I wish to obtain splits of all samples collected on the Property and a receipt describing each sample taken. I understand that I must provide the necessary sample containers to obtain these splits. The responsibility of choosing an analytical laboratory and the cost of analysis of the splits is solely mine.
1 /1	I waive my right to obtain split samples.
	Det a calalact

Owner's Signature:

Date

Title:

GRANT OF ACCESS TO PROPERTY
is the owner ("Owner") of record, title holder
or authorized agent for the record owner of certain real property located
at OUR CADY OF LOWDES in Salt Lake City, Utah. The property is hereafter
referred to as the "Property".
The Owner hereby grants to the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation (DERR) access, including ingress and egress, to the Property for the taking of a spring water sample.
It is anticipated that the work described herein will be performed on September 4, 1998. If it becomes necessary to perform the work at other times, the Grantee will notify the Owner by

I have been informed and understand that these actions by the Grantee are undertaken pursuant to the authorities provided in the Utah Environmental Quality Code of Utah Code Ann. Sections 19-1-101 et seq., (General Provisions), Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C. A. 9601.

By granting access to the Grantee, the Owner makes no admission of liability or responsibility for any contamination which may be found on the property. This grant of access is given voluntarily with knowledge of right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral have been made by the Grantee to induce my consent.

I wish to obtain splits of all samples collected on the Property and a receipt describing each sample taken. I understand that I must provide the necessary sample containers to obtain these splits. The responsibility of choosing an analytical laboratory and the cost of analysis of the splits is solely mine.

[] I waive my right to obtain split samples.

Owner's Signature:

telephone at least 24 hours before it intends to enter the Property.

Tielas

GRANT OF ACCESS TO PROPERTY

Stephen Chapman, is the owner ("Owner") of record, title holder or authorized agent for the record owner of certain real property located at 1457 South 900 East in Salt Lake City, Utah. The property is hereafter referred to as the "Property".

The Owner hereby grants to the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation (DERR) access, including ingress and egress, to the Property for the taking of spring or well water samples,

It is anticipated that the work described herein will be performed on August 3, 1998. If it becomes necessary to perform the work at other times, the Grantee will notify the Owner by telephone at least 24 hours before it intends to enter the Property.

I have been informed and understand that these actions by the Grantee are undertaken pursuant to the authorities provided in the Utah Environmental Quality Code of Utah Code Ann. Sections 19-1-101 et seq., (General Provisions), Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C. A. 9601.

By granting access to the Grantee, the Owner makes no admission of liability or responsibility for any contamination which may be found on the property. This grant of access is given voluntarily with knowledge of right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral have been made by the Grantee to induce my consent.

[]	I wish to obtain splits of all samples collected on the Property and a receipt describing
	each sample taken. I understand that I must provide the necessary sample containers
	to obtain these splits. The responsibility of choosing an analytical laboratory and the
	cost of analysis of the splits is solely mine.

•	•	•					1	1.		•
٠.			ATTOTALA	TYNT!	richt	to	Obtain	COLIT	come	100
4			WAIVE	HIV	11211		obtain	SOUTH	Samo	ı
4									F	

Owner's Signature:	Bevery P.	Rapman 8/3/98
Title:	The state of the s	/ Date

GRANT OF ACCESS TO PROPERTY

Clark or Julie Smith, are the owner ("Owner") of record, title holder or authorized agent for the record owner of certain real property located at 1123 Alpine Place in Salt Lake City, Utah. The property is hereafter referred to as the "Property".

The Owner hereby grants to the officers, employees, authorized representatives, and consultants of the Utah Division of Environmental Response and Remediation (DERR) access, including ingress and egress, to the Property for the taking of spring or well water samples,

It is anticipated that the work described herein will be performed on August 5, 1998. If it becomes necessary to perform the work at other times, the Grantee will notify the Owner by telephone at least 24 hours before it intends to enter the Property.

I have been informed and understand that these actions by the Grantee are undertaken pursuant to the authorities provided in the Utah Environmental Quality Code of Utah Code Ann. Sections 19-1-101 et seq., (General Provisions), Sections 19-6-301 et seq. (Hazardous Substances Mitigation Act), and/or the Comprehensive Environmental Response, Compensation and Liabilities Act (CERCLA), 42 U.S.C. A. 9601.

By granting access to the Grantee, the Owner makes no admission of liability or responsibility for any contamination which may be found on the property. This grant of access is given voluntarily with knowledge of right to refuse access. I further acknowledge that no other promises, representations or claims of any kind, either written or oral have been made by the Grantee to induce my consent.

[]	I wish to obtain splits of all samples collected on the Property and a receipt describing
	each sample taken. I understand that I must provide the necessary sample containers
	to obtain these splits. The responsibility of choosing an analytical laboratory and the
	cost of analysis of the splits is solely mine.

Owner's Signature:

Title:

[7] I waive my right to obtain split samples.

Owner's Signature:

Date

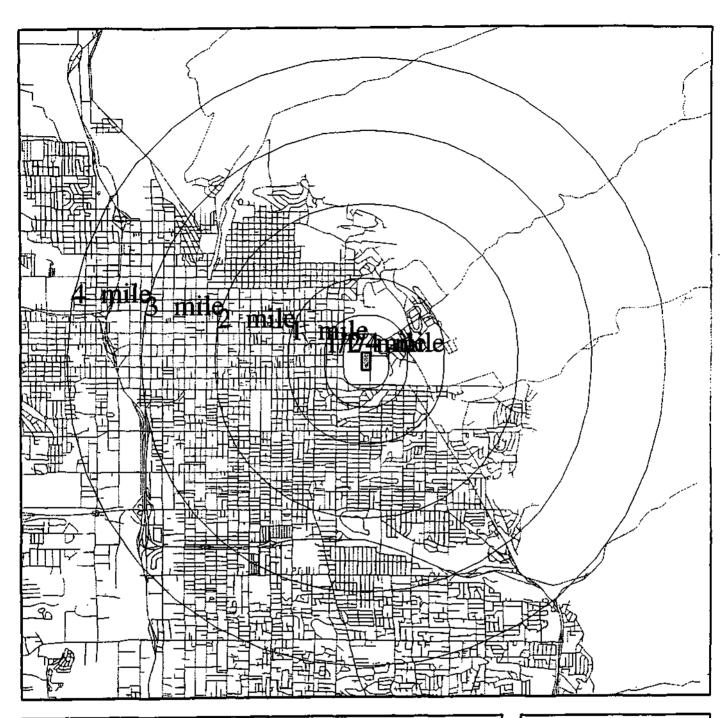
CSF CHAIN OF CUSTODY FORM

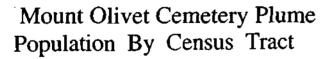
U.S. Environmental Protection Agency - Region 8 Environmental Services Division, Multi-Media Branch Analytical Operations Section

•		_
Audit Number: 08-08-99		Number: <u>26509</u>
Date CSF Received: 10/8/	38 Site	Name: Mt. Olivet Plume
Auditor: Land Bland	Lab	Name: SWOK
Date of Audit: 11/16/98	SDG	Number: 145 794
Date of Transfer: $1/5/99$		Comments:
Transfer to: Luke Ch	aug	
Affiliation: 2		
Transfer from (AOS): RSC		
Transfer from (AOS).	<u> </u>	
CSR Relinquished By: Chol Deard Print Name	15/99 Date	Signature Signature
CSF Received By:	1=199 Date	James James
CSF Relinquished Ey: Acea Aupppala Print Name	Date	Signature W
CSF Received By:		1 M
Print Name	Date	Signature
CSF Relinquished By:	2400	7
Print Name	Date	Signature
CSF Received By:		
Print Name	Date	Signature

₽E	P	A	United S	lates Env Contract							Chail (For	n of r Orga	Traffic Re Custody I	por Rec	rt cord	Case		550	9	
					4. Date Shipped Carrier 8/23/98 Fiel Ex			(4	6. Matrix (Enter			7. Preservative (Enter in Column D)								
Regional Infor	mation	·		ŝ	ample	er (Na	me)	rylo		Airbill Nu	in Column A) Listill Number 1. Surface Water 2. Ground Water				1, 1	ICI INO3				
Non-Superfun	d Progr	am		l_	19-		Early A	cition	· ·	5. Ship 1 Scut	Lucio O	+ 4	ibs of ole	Ja	homa	5	. Leacha . Field Q . Soil/Se	C diment	4. i 5. i	NaHSO4 H2SO4 ce only
Site Name Mt, 01	livet	- Pe	140	L L	SF		P	LEM A EM	Action FS	1700 Brok	eni	ALI	+ Ibany	5 in. 79	1012	7	. Oil (Hiç . Waste . (High o . Other (nly)		Other (Specily in Column D) Not
City, State (lity	Site S	Gill ID	<u>, L</u>	ST FE	D	I I I	1 1 <u>Si</u>	RA O&M NPLD	ATTN	H	1//	Borg	.		<u> </u>	in Colu		preserved	
CLP Sample Numbers (from labels)	A Matrix (from Box 6) Other:	B Conc.: Low Med High	C Sample Type: Comp Grab	Preservative (from Box 7	:l-t	√ 8	High only ARO/ TOX		Tracki	F nal Specil ng Numbe g Number	er		G´ Station Location Identifier		H Mo/D Year/T Sam Collec	ime ole	CLP In	I ponding norganic ple No.	J Sampler Initials	K Field QC Qualifier B = Blank S = Snihe D = Duplicate A = Rinsale PE = Perform Eval — = Ninga QC Sampho
HS 795	2_	L	6	1	X		T	8-	164	299	7		KT-0		9/22/	98			41.7	
#5796	7	Ĺ	6	1	X	_		8	-164 -164	29 297	,		MT-03		9/22/9		<u> </u>	·	8/51 N/51	13
Shipment for (Complete? (Y		F	age of	San	ıple(s) to be	Used	for Lat	poratory QC	· · · · · · ——	,.		Sampler Signati	ures			Chain of	Custody	Seal Num	ber(s)
Relinquished	bv: (Sid	nature	,)		ite / T	ime	Red	eived	by: (Signa		F CUS		Y RECORD quished by: (S	iona	ture)	Date	/ Time	IReceive	d by: (Sig	nature)
1			9,2)		10:00	1		, (-3	,			, , ,	.					, , ,	,	
Relinquished		gnature			/ ate / T			eived	by: (Signa	lure)	·	Relin	quished by: (S	Signa	nture)	Date	/ Time	Receive	d by: <i>(Sig</i>	nalure)
Relinquished	by: (Sig	gnature)	Da	ale / T	ime		ceived gnature	for Laborat	ory b y :		 	Date / Time	Re	emarks Is	custody	seal intac	t? Y/N/no	one	

	FecEx. USA Airbill Itacking 2165562070	Sender: Capy 23 100 44102398 6270M
	Date 9/23/98 Sender's FedEx Account Number 1828-8775-7	48 Express Package Service Packages under 150 lbs. Pedexy (common and helder washes account feelby for the party and account feelby fe
	Sender's 1/Cil Taylor Phone 89 1536-9102 Dest. Processing Phone	1.1 M. FedEx First Overnight If athe values business monining delivery to select locations. If and it is a contracting to the contracting the contracting the contracting to the contracting to the contracting to the contracting the contra
	Company DEPT OF ENVIRONMENTAL QUALITY Address 168 N 1950 WEST	Express Freight Service Packages over 150 lbs. Deturns commonent may be taken member the solution of the taken member the solution of the taken member the solution of the taken member the solution of the taken member the solution of the
-	City SALT LAKE CITY State UT Zip 8 4 1 1 6	5 Packaging FedEx FedEx FedEx Box Tube Pkg.
,	To (please print) Recipent's Southwest Labs of OK lahaa Phone 9/8 1 251-0545 Dept/Floor/Suite/Room Company	Does this shipment contain dangerous goods? Yes Separate Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye
٠	Address 1700 West Albany Suiter C. Attn: Hang Bry (1a 14010 of Fodes laceston, print Fodes address hare) (We Cannot Deliver to P.O. Baxes or P.O. Zip Codes) City Boken Arous State Ok Zip 740/2 For HOLD at Fodes Location check here Hold Saturdary (Nos eventuable of all locations) (the small below to all locations) (the small below to all locations) (the small below to all locations) (the small below to all locations) (the small below to all locations) (the small below to all locations)	FedEs Account No Credit Cord No Total Packages Total Weight Total Declared Value Total Charges 5 00 5
	Service Conditions, Declared Yelue, and Limit of Llebility – By using this Actual, you agree to the service conditions in our current Service Goods or U.S. Government Service Bude. Both are available on recycle SEE BACK OF SENDERS COPY OF THIS AURBILL PORKET PRAKATION AND ADDITIONAL TERMS. We will not be responsible for any closin in excess of SIDD per package whether the result of loss, darings, or of before nor deficiency, misdelvery, or misdenamation, may upon your request, and with some investions, refured all transportation charges pack.	When deficing a value higher than SMI des dynamer, you pay an additional charge. See SERVICE CONCOTTONS, OCCURRED VALUE AND UNIST OF SAMPLITY section for further information. B. Refease Signature Your signature authorizes Federal Express to poliver this shipment without obtaining a synamic and agrees to indemnify and legible sampless focus forms any resurding claims.
	Ouestions? Call 1-800-Go-FedEx (1-800-463-3339) See the FedEx Service Guide for further details $The\ World\ On\ M$	Time


- - -


, :

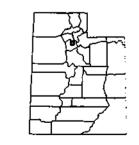
.

APPENDIX G

FOUR MILE POPULATION RADIUS

Scale

1'' = 1.29 Miles


Legend

Site

Concentric bands

Road Centerlines

County boundaries

UDEQ Division of Environmental Response and Remediation Population by Concetric Bands Calculated from Census Blocks Site Theme: cercla

Site Theme: Cercia Site Name: uang Created By: eqerr Created On: 09/21/95

Total	1/4 mile	191.000000
Total	1/2 mile	4,129.000000
Total	1 mile	20,603.000000
Total	2 mile	69,031.000000
Total	3 mile	113,870.000000
Total	4 mile	151,013.000000

APPENDIX H

SITE INSPECTION DATA SUMMARY

SITE INSPECTION DATA SUMMARY

Site	e Name: Mount Olivet Cemetery Plume EPA Re	egion:8	Date: 05/12/2000
Stat	te Office or Contractor Name and Address: <u>Utah Div</u>	rision of Er	vironmental Response
and	d Remediation		
	GENERAL SITE INFORM	MATION	
1.	CERCLIS ID Number: UTD981548985		
	Address: 1342 East 500 South (approximate)	City: <u>Salt</u>	Lake City
	County: Salt Lake State: UT Zip Code:	<u>84102</u> Cong	. Dist.: <u>2</u>
2.	Owner Name: No Owner Identified (groundwater plum	me)	
	Owner Address: City	/:	State:
	Operator Name:		
	Operator Address: C	ity:	State:
3.	Type of Ownership (check all that apply):		
	X Private Municipal County	State	
	Federal/Agency Name:	Other:	
	•	Refe	rences:
4.	Approximate size of Property: 90 acres.	Refe	rences:
5.	Latitude: 40 45 14		
	Longitude: 111 50 42	Refe	rences:
6.	Status: Active _X Inactive Unknown	Refe	rences:
7.	Years of Operation: From: To:	Refe	rences:
8.	Previous Investigations:		
	TYPE AGENCY/STATE/CONTRACTOR	DATE	
	Work Plan Utah DEO	1996	References: 1
	Soil Gas EPA	1995	References: 2
			References:
	· · · · · · · · · · · · · · · · · · ·		References:
		<u></u>	References:
			References:

WASTE SOURCE INFORMATION

1.	Waste source types (check all that apply):
	Constituent Wastestream (type):
	LandfillTanks or non-drum containers (type):
	Drums Pile (type):
	Contaminated Soil Surface Impoundment (buried)
	Land Treatment Surface Impoundment (backfilled)
	X Other: PCE groundwater plume
2.	Types of wastes (check all that apply):
	X Organic Chemicals Municipal Wastes
	Pesticides/Herbicides Metals Solvents
	Radionuclides Other:
	References:
	ples taken from the cemetery irrigation well from 1990 to 1999 by Utah Department
exc 199 fro Ide the	Maximum Contaminant Levels (MCLs) for PCE, recommended by the EPA, should not eed five parts per billion (ppb) in drinking water. Since the initial report in 0, levels of the contaminant have ranged from 11 to 184 ppb in samples collected m the Mt. Olivet Cemetery irrigation well. Intified potential organic chloride sources are the former dry cleaning operation on VA Hospital campus in Building 7, former chemical storage operations at Fort glas Building 515, and a former Utah National Guard vehicle maintenance facility. References: 1
4.	Source characterization (Attach pages to show quantity and calculations):
	Source 1 name: PCE groundwater plume Source Type: groundwater
	Describe Source: Groundwater plume
	Ground water migration containment: None
	Surface water migration containment: NA
	Air migration (gas and migration) containment: None
	Physical State of Wastes:
	Solid <u>X</u> LiquidSludge/Slurry Gas Unknown
	Constituent Quantity of Hazardous Substances: <u>Unknown</u> (specify units).
	Wastestream Quantity Containing Hazardous Substances: (specify units).
	Volume of Source (yd³): Area of Source (ft²):unknown

	Hazardous substances associated with source 1:
	PCE References: 2
	Source 2 name: Source Type:
	Describe Source:
	Ground water migration containment:
	Surface water migration containment:
	Air migration (gas and migration) containment:
	Physical State of Wastes:
	Solid Liquid Sludge/Slurry Gas Unknown
	Constituent Quantity of Hazardous Substances: (specify units)
	Wastestream Quantity Containing Hazardous Substances: (specify units)
	Volume of Source (yd³): Area of Source (ft²): 20,000
	Hazardous substances associated with source 2:
	If Removal has occurred, identify the removal authority and describe the activities. Specify the date(s) of the removal. References:
	GROUND WATER INFORMATION
	Ground water drinking water use within 4 miles of site sources:
	Municipal Private <u>X</u> Both No Drinking Water Use
	References: 3,4
	Is ground water contaminated?
	X Yes No Uncertain but likely Uncertain but not likely
	Additional sampling required
3	analytical evidence available? X_ Yes No
	References: 1

3.18 ground water contamination attributable to the site?	
X Yes No Additional sampling required	
Groundwater at the site is contaminated, but the source of the contamination	
has not been identified	
References:	
4. Are drinking water wells contaminated?	
Yes _X No Uncertain but likely Uncertain but not likely	
Additional sampling required	
Is analytical evidence available? X Yes No References: 5	_
5. Net precipitation (HRS Section 3.1.2.2): 2 inches.	
6. County average number of persons per residence:	
3.2 people. References: 6,7	_
7. Discuss general stratigraphy underlying the site. Attach sketch of stratigraph column.	nic
Ouaternary lake sediments and alluvial floodplain deposits underlie to These consist of fine sandy loams and clays of sedimentary and igneo origins deposited as lake sediments which underlie the more cour grained stream sediments of sands, silts and gravel. The clay laye near the site are likely not thick enough or probably not large enough areal extent to act as true aquicludes in the local hydrolog system.	us se rs gh
Reference: 8, 9	

8. Using Table GW-1, summarize geology underlying the site (starting with formation #1 closest to ground surface). Indicate if formation is interconnected with overlying formation.

TABLE GW-1: SITE GEOLOGY

NAME OF FORMATION	INTER- CONNECT? (yes/no)	TYPE OF MATERIAL	AVERAGE THICKNESS (feet)	HYDRAULIC CONDUCTIVITY (cm/sec)	USED FOR DRINKING WATER?
Sand/Silty Clay	yes		160	unk	Yes
Clayey Sand	unk		100	unk	No
Gravel	unk		200	unk	Yes

Ref	erences: 10			
9.	Does a karst aqui	ifer underlie any site	source?	
	Yes _ <u>X</u> 1	lo	Ref	erences: 10
10.	Depth to top of a	quifer: <u>118</u> feet	:	
	Elevation: 4561	feet	Ref	erences: 10
11.	located within	w, enter the number of 4 miles of the site cs. Key aquifer to fo	. For each aquife:	r, attach population
	POPULATION SE	RVED BY WELLS WITHIN	DISTANCE CATEGORIES 1	BY AQUIFER
	STANCE OF WELL(S)	AQUIFER A: INCLUDES FORMATIONS 1-2	AQUIFER B: INCLUDES FORMATIONS 3	AQUIFER C: INCLUDES FORMATIONS
1/4	mile or less	0	11,265	
>1/	4 to ½ mile	0 .	0	
>>	to 1 mile	0	0	
>1	to 2 miles	0	0	
>2	to 3 miles	0	11,327	
<u>>3</u>	to 4 miles	0	11,232	
12.	Is ground water to	from multiple wells b	lended prior to distr	erences: 11 ibution? erences: 11
	_	33.4		erences
13.	_X Yes No	olended with surface v		erences: 11
	Briefly Describe	:		
pot	entially affected	tion Sheet 2 indica population. Groundwater treatment plants.	ater is blended with	of contribution and surface water from a
<u>vai</u>	<u>lety of surface wa</u>	<u>icer creatment plants.</u>	1	

	0	. <u>24</u> Mile	References: 3
15.	Brie:	fly describe standby drinking water wells wi	thin 4 miles of sources at the
	<u> All</u>	municipal wells listed are actively used, bu	it some during summer only.
			References: 7
.6.	Grow	nd water resources within 4 miles of site sou	irces (HRS Section 3.3.3):
	_	Irrigation (5-acre minimum) of commercial for	ood or commercial forage crops.
		Commercial livestock watering.	
	_	Ingredient in commercial food preparation.	
		Supply for commercial aquaculture.	
	_	Supply for major or designated water recrewater use.	eation area, excluding drinking
		Water usable for drinking water but no drimiles.	inking water wells are within 4
	<u>x</u> _	None of the above.	
			References:
7.	Well 3.3.	head protection area (WHPA) within 4 miles 4):	of site sources (HRS Section
		Source with non-zero containment factor value	e lies within or above the WHPA.
	<u>x</u>	Observed ground water contamination attriwithin the WHPA.	butable to site source(s) lies
		WHPA lies within 4 miles of site sources.	
		None	
		•	References: 7
Add	itiona	al ground water pathway description:	
		<u> </u>	References:

SURFACE WATER INFORMATION

COMPLETE A COPY OF THIS SECTION OF THE DATA SUMMARY FOR EACH WATERSHED

1. Describe the surface water migration path from site sources to at least 15 miles downstream. Attach a sketch of the surface water migration route.

Surface water may follow Red Butte Creek to the city storm sewer system, or enter the storm sewer directly. Storm sewers lead to the Jordan River which leads to the Great Salt Lake.

		References: 8
		References: 6
2.	Is Surface Water Contaminated?	
	YesNoUncertain but likely _X	_ Uncertain but not likely
	Additional sampling is required	
	Is analytical evidence available? Yes <u>X</u> No	References:
3.	Is surface water contamination attributable to the	site?
	Yes <u>X</u> No Additional sampling required	References:
4.	Floodplain category in which site sources are locat	ed (check all that apply):
	1-year10-year500-year <u>X_None</u>	References: 13
5.	Describe flood containment for each source (HRS Sec	tion 4.1.2.1.2.2):
	Source #1_NA Flood Containment	
	Source #2 Flood Containment	
		References:
6.	Shortest overland distance to surface water from 4.1.2.1.2.1.3):	om any source (HRS Section
	<u>1200</u> feet	References: 10
7.	Size of drainage area (HRS Section 4.4.3):	
	<u>NA</u> acres	References:1
8.	Describe the predominant soil group within the 4.1.2.1.2.1.2):	drainage area (HRS Section
	NA	
		References: 1
9.	2-year 24-hour Rainfall (HRS Section 4.1.2.1.2.1.2)	;
	<u>2.41</u> inches	References: 6
LO.	Elevation of the bottom of nearest surface water bo	ody:
	4670 feet above sea level	References: 14

11.	Elevation of top of	of uppermo	st aquifer:			
	4508 feet above	sea level			References	s: <u>10</u>
12.	Predominant type of and nearest drinki			probable	point of entry to	surface water
	<u>X</u> River I	ake			References	5:_14
13.	Identify all drink 15 miles downstres		intakes, fis	heries, a	nd sensitive envi:	ronments within
	TARGET NAME/TYPE	WATER BODY TYPE	DISTANCE FROM PPE	FLOW (CFS)	TARGET CHARACTERISTICS*	TARGET SAMPLED ?
Jo	rdan River	River	4.6 Miles	400-600	Fishery (production unknown)	No
	organisms (pounds miles). Attach ca			IS A WELL		s: <u>15</u>
14.	Is surface water d	lrinking w	ater blended	prior to	distribution?	
	_X Yes N	lo			References	s: <u>3</u>
15.	Describe any standby drinking water intakes within 15 miles downstream:					
						
					References	s: <u>3</u>
16.	Surface water reso	ources wit	hin 15 miles	downstre	am (HRS Section 4	.1.2.3.3):
	Irrigation (5	acres mir	nimum) of con	mercial i	food or commercial	. forage crops
	Commercial liv	restock wa	ntering			
	Ingredient in	commercia	al food prepa	ration		
	X Major or design	nated wat	er recreatio	n area, e	excluding drinking	, water use
	Water designat	ed by the	state for dr	inking wa	ter use but is not	currently used
	X Water usable f	or drinki	ng water but	no drinki	ing water intakes	within 15 miles
	None of the ab	oove				
					References	s: <u>15</u>

SOIL EVALUATION

	Yes No Uncertain but lil	tely X Uncertain but not likely
	Additional sampling required	
	Is analytical evidence available? Yes	X No References:
2.	Is surficial or soil contamination attribut	able to the site?
	Yes <u>X</u> No Additional Sample	ing Required
3.	Is surficial contamination on the property school, daycare center, or workplace?	and within 200 feet of a residence,
	Yes No Uncertain but lil	cely X Uncertain but not likely
	Additional sampling required	
	Is analytical evidence available? Yes	X No References:
4.	Total area of surficial contamination (HRS :	Section 5.2.1.2):
	NA Acres	References:
5.	Attractiveness/accessibility of the areas of 5.2.1.1). Check all that apply:	observed contamination (HRS Section
	Designated recreational area	
	Used regularly, or accessible and uniqu	e recreational area
	Moderately accessible with some use	
	Slightly accessible with some use	
	Accessible with no use	
	Inaccessible with some use	
	Inaccessible with no use	References:

DISTANCE FROM SITE SOURCES	POPULATION
0.25	191
0.50	4129
1.00	20603

Kelerences: /	References:	7
---------------	-------------	---

AIR INFORMATION

1.	Is air contamination present at the site?
	YesNoUncertain but likely <u>X</u> Uncertain but not likely
	Additional sampling required
	Is analytical evidence available? Yes _X_ No References:
2.	Is air contamination attributable to the site?
	Yes _X NoAdditional sampling required
3.	Are populations, sensitive environments, or wetlands exposed to airborne hazardous substances released from the site?
	YesNoUncertain but likely _X Uncertain but not likely
	Additional sampling required
	Is analytical evidence available? Yes _X_ No References:
4.	Evidence of biogas release from any of the following source types at the site
	Below-ground containers or tanks Landfill
	Buried surface impoundment References:
5.	Particulate migration potential factor value: 17 (HRS Figure 6-2)
6.	Particulate mobility factor value: (HRS Figure 6-3)
7.	Distance from any incompletely contained source to nearest residence or regularly occupied area:
	NA_ miles References:
	· ·

8. Population within 4 miles of site sources.

DISTANCE FROM SITE SOURCES	POPULATION			
0.25	191			
0.50	3938			
1.00	16665			
2.00	52366			
3.00	61504			
4.00	89509			

References: 7

9. Resources within 1/2 mile of site sources (HRS Section 6.3.3):	
Commercial agriculture	
Commercial silviculture	
X Major or designated recreation area	
None of the above	
References: 14	

10. Sensitive environments and wetlands within 4 miles of the site:

NAME/DESCRIPTION/ LOCATION OF SENSITIVE ENVIRONMENT OR WETLAND	DISTANCE FROM SITE (MILES)	TYPE OF SENSITIVE ENVIRONMENT	WETLAND SIZE (ACRES)
None			

References:	
Vererences:	

LIST OF REFERENCES

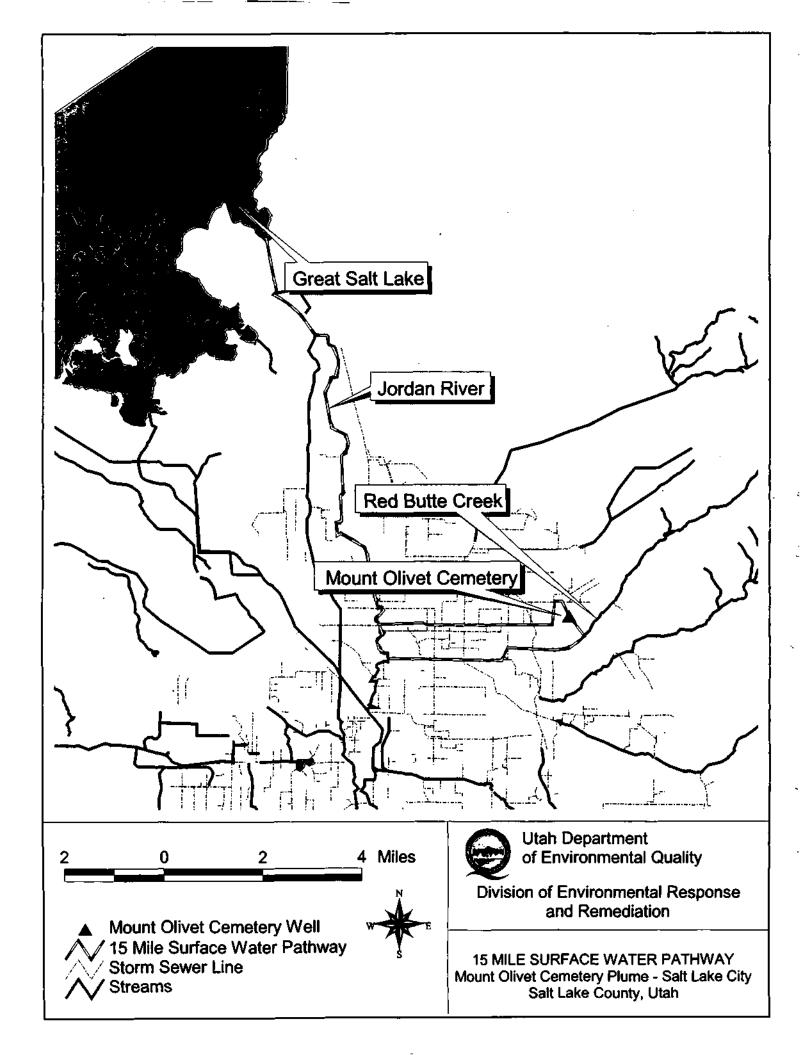
- 1. Work Plan, Army National Guard Armory/ORG. Maintenance Shop 5. Division of Environmental Response and Remediation. February 2, 1996.
- Ecology and Environment, Analytical Results Report. Soil Gas Sampling. Mount Olivet Cemetery, Salt Lake City, Utah, June 2, 1995
- Utah Division of Drinking Water. October, 1996. Municipal well location printout.
- 4. Utah Department of Natural Resources Points of Diversion Database.
- Personal Conversation. Florence Reynolds. Salt Lake City Public Utilities. June 8, 2000
- Stevens, Dale J., R. Clayton Brough, Rodney D. Griffen, and Arlo E. Richardson. 1983. <u>Utah Weather Guide</u>.
- 7. Personal Conversation. James Staples. University of Utah. June 15, 2000
- 8. Salt Lake Department of Public Works. Flood Control Division.
- Utah Geological and Mineral Survey. Geological Map of the Central Wasatch Front, Utah 1993.
- Lambert, Patrick. U.S. Geological and Mineral Survey. Personal Communication. September 29, 1995.
- 11. URS Operating Services. Site Activities Report. Mt. Olivet Cemetery Salt Lake City, Utah. May 20, 1999.
- 12. Utah Division of Drinking Water Database.
- 13. Personal Conversation. Nancy Barr. Utah Division of Comprehensive Emergency Management. June 15, 2000.
- 14. U.S.G.S. Topography Maps Fort Douglas.
- 15. Personal Conversation. Dave Darbey. Utah Division of Wildlife Resources. January 1995.
- 16. Utah Division of Wildlife Resources. April, 1995. Telephone conversation regarding sensitive environments.

Population Calculation Sheet 1 Municipal Drinking Water Source Population Estimates Olivet Pede Planta Property Proper

Mt. Olivet Park Plume - By Distance From The Site and Aquifer

Well No.	Drinking Water System	# of G.W. Withdrawals in System	% That G.W. Contributes to System	Population Served by System	Population Affected by Well	Distance From Site (mi.)	Aquifer	Distance Population Totals
1126	Salt Lake City	27	20	305835	2,265	0.24		
1243	University of Utah	2	50	18000	4,500	0.24		
1242	University of Utah	2	50	18000	4,500	0.24	В	11.265
1116	Salt Lake City	27	20	305835	2,265	2.40		
1125	Salt Lake City	27	20	305835	2,265	2.34		
1128	Salt Lake City	27	20	305835	2,265	2.79		
1129	Salt Lake City	27	20	305835	2,265	2.82	В	9,062
1117	Salt Lake City	27	20	305835	2,265	ر 3.12		
1207	Salt Lake City	27	20	305835	2,265	3.15		
1206	South Salt Lake	7	90	11500	1,479	3.74]	
1208	South Salt Lake	7	90	11500	1,479	3.75	В	7.488

Municipal Drinking Water Source Population Estimates Mount Olivet Cemetery Plume - By Distance From The Park


Well No.	Drinking Water System	# of G.W. Withdrawals	% That G.W.	Population Served by	Population Affected	Distance From Site	Distance Population
		in System	System	System	by Well	(mi.)	Totals
1129	Salt Lake City	27	20	285258	2113	0.69	
1129	Salt Lake City	27	20	285258	2113	0.77	4226
1130	Salt Lake City	27	20	285258	2113	1.93	
1208	South Salt Lake City	. 7	90	11500	1479	1.96	
1117	Salt Lake City	27	20	285258	2113	1.99	5705
1207	South Salt Lake City	7	90	11500	1479	2.03	
1206	South Salt Lake City	7	90	11500	1479	2.19	
1126	Salt Lake City	27	. 20	285258	2113	2.63	
1242	University of Utah	2	50	18000	4500	2.63	
994	Holiday Water	6	80	15000	2000	2.65	<u> </u> [
1243	University of Utah	2	50	18000	4500	2.66	
1124	Salt Lake City	27	20	285258	2113	2.98	18183
1123	Salt Lake City	27	20	285258	2113	3.01	
1205	South Salt Lake City	7	90	11500	1479	3.05	
1118	Salt Lake City	27	20	285258	2113	3.14	
1116	Salt Lake City	27	20	285258	2113	3.14	
992	Holiday Water	6	80	15000	2000	3.21	
1203	South Salt Lake City	7	90	11500	1479	3.29	
1121	Salt Lake City	27	20	285258	2113	3.3]
993	Holiday Water	6	80	15000	2000	3.3	}
1204	South Salt Lake City	7	90	11500	1479	3.33	
1122	Salt Lake City	27	20	285258	2113	3.34	
1252	Daily Foods	_	80	25	20	3.58]
996	Holiday Water	6	80	15000	2000	3.86	<u> </u>
1132	Salt Lake City	27	20	285258	2113	3.86	
995	Holiday Water	6	80	15000	2000	3.88	}
1224	Boundary Spring	l	100	120	120	3.92] :
1152	SL County Water	18	17	1 00000	3778	3.95	29032

Population Served, by Distance Category

0-1/2 mile----- 0 >2 - 3 miles---18,183

>1/2 - 1 mile----- 4226 >3 - 4 miles----29,032

>1 - 2 miles-----5705

