H6D040103 Analytical Report	1
Sample Receipt Documentation	28
Wet Chemistry	33
Sample Summary	34
QC Summary	43
Raw Data	57
Sample Receipt Documentation 1	153
Total Number of Pages1	157

STL Knoxville 5815 Middlebrook Pike Knoxville, TN 37921

Tel: 865 291 3000 Fax: 865 584 4315 www.stl-inc.com

ANALYTICAL REPORT

PROJECT NO. 142541

Focus/US Filter Westates 26A

Lot #: H6D040103

William Anderson

STL Knoxville 5815 Middlebrook Pike Knoxville, TN 37921-5947

SEVERN TRENT LABORATORIES, INC.

Kevin S. Woodcock
Project Manager

April 28, 2006

ANALYTICAL METHODS SUMMARY

H6D040103

PARAMETER	ANALYTICAL METHOD
Chlorine Emissions	KNOX 0050/26A Mod
Hydrogen Chloride Emissions	KNOX 0050/26A Mod

References:

KNOX

Severn Trent Laboratories Knoxville, Facility Standard Operating Procedure.

SAMPLE SUMMARY

H6D040103

WO # 8	SAMPLE#	# CLIENT SAMPLE ID	SAMPLED SAMP DATE TIME
H2H69	001	G-2978-R1-M5 0.1N H2SO4 IMPINGER SOLUTION	03/28/06
H2H7E	002	G-2979-R1-M5 0.1N NAOH IMPINGER SOLUTION	03/28/06
H2H7F	003	G-2982-R1-M5 0.1N H2SO4 IMPINGER SOLUTION RB	03/28/06
H2H7G	004	G-2983-R1-M5 0.1N NAOH IMPINGER SOLUTION RB	03/28/06
H2H7J	005	G-3065-R2-M5 0.1N H2SO4 IMPINGER SOLUTION	03/29/06
н2н7К	006	G-3066-R2-M5 0.1N NAOH IMPINGER SOLUTION	03/29/06
H2H7P	007	G-3149-R3-M5 0.1N H2SO4 IMPINGER SOLUTION	03/30/06
H2H7V	800	G-3150-R3-M5 0.1N NAOH IMPINGER SOLUTION	03/30/06
NOTE (S)	١ -		

NOIR(2):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

PROJECT NARRATIVE H6D040103

The results reported herein are applicable to the samples submitted for analysis only.

This report shall not be reproduced except in full, without the written approval of the laboratory.

The original chain of custody documentation is included with this report.

Sample Receipt

Custody seals were not present upon sample receipt at STL Knoxville; however, samples were hand delivered.

The "Relinquished by" field on the chain of custody documentation did not contain a signature.

Quality Control

Unless otherwise noted, all holding times and QC criteria were met and the test results shown in this report meet all applicable NELAC requirements.

Samples were analyzed for chloride by ion chromatography using SOP number KNOX-WC-005 (based on EPA methods 9056, 9057 and 26A). All sample results were reported as total μg hydrogen chloride (HCl) and total μg chlorine (Cl₂). Results were calculated using the following equations:

$$HCl, \ ug = \left(Chloride, ug \ / \ mL \right) * \left(Sample \ Volume, mL \right) * \left(\frac{Molecular Weight \ HCl}{Molecular Weight \ Cl} \right) * Bench \ Dilution$$

$$Cl_{\,2}, ug = \big(Chloride, ug \, / \, mL\big) * \big(Sample \, Volume, mL\big) * \, Bench \, Dilution$$

NaOH impinger samples were treated with sodium thiosulfate (Na₂S₂O₃) prior to the final analysis in order to convert residual hypochlorite (OCl⁻) to chloride ion.

STL Knoxville maintains the following certifications, approvals and accreditations: Arkansas DEQ Cert. #05-043-0, California DHS ELAP Cert. #2423, Colorado DPHE, Connecticut DPH Cert. #PH-0223, Florida DOH Cert. #E87177, Georgia DNR Cert. #906 (SDWA, expires 6/24/05), Hawaii DOH, Illinois EPA Cert. #000687, Indiana DOH Cert. #C-TN-02, Iowa DNR Cert. #375, Kansas DHE Cert. #E-10349, Kentucky DEP Lab ID #90101, Louisiana DEQ Cert. #03079, Louisiana DOHH Cert. #LA030024, Maryland DHMH Cert. #277, Massachusetts DEP Cert. #M-TN009, Michigan DEQ Lab ID #9933, New Jersey DEP Cert. #TN001, New York DOH Lab #10781, North Carolina DPH Lab ID #21705, North Carolina DEHNR Cert. #64, Ohio EPA VAP Cert. #CL0059, Oklahoma DEQ ID #9415, Pennsylvania DEP Cert. #68-00576, South Carolina DHEC Lab ID #84001001, Tennessee DOH Lab ID #02014, Utah DOH Cert. # QUAN3, Virginia DGS Lab ID #00165, Washington DOE Lab #C120, West Virginia DEP Cert. #345, Wisconsin DNR Lab ID #998044300, US Army Corps of Engineers, Naval Facilities Engineering Service Center and USDA Soil Permit #S-46424. This list of approvals is subject to change and does not imply that laboratory certification is available for all parameters reported in this environmental sample data report.

PROJECT NARRATIVE H6D040103

Note: A sample volume of 100 mL was used to convert the results to total μg for the method blanks, laboratory control samples, and client reagent blanks in order to standardize the analyte sample total.

For demonstration of analytical method performance on these samples, STL Knoxville analyzed matrix spikes (MS) and matrix spike duplicates (MSD). Acceptable recoveries of these spikes demonstrate that quantitation from this particular stack gas matrix is accurate and acceptable. Impinger samples containing 0.1N H₂SO4 and 0.1N NaOH display matrix interference effects causing poor method performance and possibly giving unreliable data unless the interference is removed. Therefore, the samples were diluted in the lab to remove the interference for a more accurate chloride response. The samples may be analyzed at increasing dilutions along with matrix spikes until matrix spikes recover from the sample within laboratory control limits. The ion chromatograph calibration range used to quantitate the sample results permits a standard ten-fold sample dilution while supporting the reporting limit with the low calibration standard.

The dilution factor reported on the sample result form does not represent the bench dilution factor. It is actually the combination of factors required by the method to convert the anion reporting limit and method detection limit from $\mu g/mL$ to total μg . It may appear to be elevated because it includes the total sample volume in mL.

Samples G-2979-R1-M5 0.1N NAOH Impinger Solution and G-3150-R3-M5 0.1 N NAOH Impinger Solution were analyzed at several dilutions along with matrix spikes. The matrix spike recoveries for Cl₂ improved with each successive dilution, but the matrix spike recoveries for the twenty-fold dilution were still outside laboratory control limits. Analyzing the samples at a fifty-fold dilution resulted in the samples being over-diluted; therefore, the results from the twenty-fold dilution were reported. The laboratory control samples showed acceptable results indicating that the analysis was in control.

STL Knoxville maintains the following certifications, approvals and accreditations: Arkansas DEQ Cert. #05-043-0, California DHS ELAP Cert. #2423, Colorado DPHE, Connecticut DPH Cert. #PH-0223, Florida DOH Cert. #E87177, Georgia DNR Cert. #906 (SDWA, expires 6/24/05), Hawaii DOH, Illinois EPA Cert. #000687, Indiana DOH Cert. #C-TN-02, Iowa DNR Cert. #375, Kansas DHE Cert. #E-10349, Kentucky DEP Lab ID #90101, Louisiana DEQ Cert. #03079, Louisiana DOHH Cert. #LA030024, Maryland DHMH Cert. #277, Massachusetts DEP Cert. #M-TN009, Michigan DEQ Lab ID #9933, New Jersey DEP Cert. #TN001, New York DOH Lab #10781, North Carolina DPH Lab ID #21705, North Carolina DEHNR Cert. #64, Ohio EPA VAP Cert. #CL0059, Oklahoma DEQ ID #9415, Pennsylvania DEP Cert. #68-00576, South Carolina DHEC Lab ID #84001001, Tennessee DOH Lab ID #02014, Utah DOH Cert. # QUAN3, Virginia DGS Lab ID #00165, Washington DOE Lab #C120, West Virginia DEP Cert. #345, Wisconsin DNR Lab ID #998044300, US Army Corps of Engineers, Naval Facilities Engineering Service Center and USDA Soil Permit #S-46424. This list of approvals is subject to change and does not imply that laboratory certification is available for all parameters reported in this environmental sample data report.

Sample Data Summary

Client Sample ID: G-2978-R1-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-001

Work Order #...: H2H69

Matrix..... AIR

Date Sampled...: 03/28/06

Date Received..: 04/02/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 Hydrogen chloride
 11800
 1860
 ug
 KNOX 0050/26A Mod 04/21/06
 04/21/06
 6114264

Dilution Factor: 1856.3 MDL..... 557

Client Sample ID: G-2979-R1-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-002 Work Order #...: H2H7E

Matrix..... AIR

Date Sampled...: 03/28/06

Date Received..: 04/02/06

PARAMETER	RESULT	<u>RL</u>	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chlorine	1950	610	ug	KNOX 0050/26A Mod	04/17/06	6116184

Dilution Factor: 610 MDL..... 183

Client Sample ID: G-2982-R1-M5 0.1N H2SO4 IMPINGER SOLUTION RB

General Chemistry

Lot-Sample #...: H6D040103-003 Work Order #...: H2H7F Matrix.....: AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride	ND	514	ug	KNOX 0050/26A Mod	04/25/06	6115303

Dilution Factor: 514.2 MDL..... 154

Client Sample ID: G-2983-R1-M5 0.1N NAOH IMPINGER SOLUTION RB

General Chemistry

Lot-Sample #...: H6D040103-004 Work Order #...: H2H7G

Matrix..... AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

	,		-	, .		
					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
Chlorine	ND	100	uq	KNOX 0050/26A Mod	04/17/06	6116184
	Dil	ution Fact	or: 100	MDL 30.0		

Client Sample ID: G-3065-R2-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-005

Work Order #...: H2H7J

Matrix..... AIR

Date Sampled...: 03/29/06

Date Received..: 04/02/06

PREPARATION- PREP ANALYSIS DATE BATCH #

Hydrogen chloride

PARAMETER

RESULT

6950

<u>UNITS</u> ug

•

KNOX 0050/26A Mod 04/21/06

Dilution Factor: 1938.6

RL

1940

MDL..... 582

METHOD

6114264

6116184

STL Knoxville - ACS

Client Sample ID: G-3066-R2-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-006

2010

Work Order #...: H2H7K

Matrix..... AIR

KNOX 0050/26A Mod 04/17/06

Date Sampled...: 03/29/06

Chlorine

Date Received..: 04/02/06

PREPARATION-PREP RESULT PARAMETER UNITS RLMETHOD ANALYSIS DATE BATCH #

ug MDL..... 216 Dilution Factor: 720

720

Client Sample ID: G-3149-R3-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-007

Work Order #...: H2H7P

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

PREPARATION- PREP
PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

Hydrogen chloride 6490 1940 ug KNOX 0050/26A Mod 04/21/06 6114264

Dilution Factor: 1938.6 MDL..... 582

6116088

STL Knoxville - ACS

Client Sample ID: G-3150-R3-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-008

Work Order #...: H2H7V

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

PREPARATION- PREP
PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

METHOD BLANK REPORT

General Chemistry

Client Lot #...: H6D040103

Matrix..... AIR

PARAMETER Chlorine	RESULT ND	REPORTING LIMIT UNITS Work Order #: H33P51A 10.0 ug Dilution Factor: 10	METHOD A MB Lot-Sample #: KNOX 0050/26A Mod	PREP BATCH # 6116184
Chlorine	ND	Work Order #: H33H91A 10.0 ug Dilution Factor: 10	A MB Lot-Sample #: KNOX 0050/26A Mod	6116088
Hydrogen chloride	ND	Work Order #: H3XTL1A 10.3 ug Dilution Factor: 10.3	A MB Lot-Sample #: KNOX 0050/26A Mod	6114264
Hydrogen chloride	ND	Work Order #: H31Q81A 10.3 ug Dilution Factor: 10.3	A MB Lot-Sample #: KNOX 0050/26A Mod	6115303
NOTE(S):				

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: H6D040103

Matrix..... AIR

PARAMETER Chlorine	PERCENT RECOVERY		RPD LIMITS	METHOD BH91AD-LCSD LCS Lc	PREPARATION- ANALYSIS DATE	<u></u>
CHIOTING	102		•	KNOX 0050/26A Mod	·-	
		· ·		·		
	101			KNOX 0050/26A Mod	04/25/06	6116088
		Dilution Fa	ctor: 1			
Chlorine		WO#:H33P51A	C-LCS/H33	BP51AD-LCSD LCS Lc	t-Sample#: H6D2	60000-184
	100	(90 - 110)		KNOX 0050/26A Mod	04/17/06	6116184
	101	(90 - 110) 0.5	9 (0-20)	KNOX 0050/26A Mod	04/17/06	6116184
		Dilution Fa	ctor: 1			
Hydrogen chl	oride	WO#:H3XTL1A	C-LCS/H3>	KTL1AD-LCSD LCS Lc	t-Sample#: H6D2	40000-264
	99	(90 - 110)		KNOX 0050/26A Mod	04/21/06	6114264
	101	(90 - 110) 2.3	(0-20)	KNOX 0050/26A Mod	04/21/06	6114264
		Dilution Fa	ctor: 1			
Hydrogen chl	oride	WO#:H31Q81A	.C-LCS/H31	LQ81AD-LCSD LCS Lc	ot-Sample#: H6D2	50000-303
	102	(90 - 110)		KNOX 0050/26A Mod	l 04/25/06	6115303
	101			KNOX 0050/26A Mod		
		Dilution Fa	ctor: 1			

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: H6D040103

Matrix..... AIR

	SPIKE	MEASURE)	PERCNT						PREPAR			PREP	
PARAMETER	TNUOMA	TRUOMA	UNITS	RECVRY	RPD	METHO	DD			ANALYS	SIS D	ATE_	BATCH	_#
Chlorine		WO	#:H33H91AC	-LCS/H3	3H91A	D-LCSI	D LCS	Lot	-Sa	mple#:	H6D2	60000	880-0	
	50.0	50.9	ug	102		KNOX	0050/	26A I	Mod	04/	/25/0	6	611608	88
	50.0	50.3	ug	101	1.2	KNOX	0050/	26A 1	Mod	04/	/25/0	6	611608	88
			Dilution Fac	tor: 1										
Chlorine		WO	:H33P51AC	-LCS/H3	3P51A	D-LCSI	D LCS	Lot	-Sa	mple#:	H6D2	60000	0-184	
	50.0	50.2	ug	100		KNOX	0050/	26A 1	Mod	04/	/17/0	6	611618	34
	50.0	50.5	ug	101	0.59	KNOX	0050/	26A 1	Mod	04/	/17/0	6	611618	34
			Dilution Fac	tor: 1										
Hydrogen chl	oride	WO	:H3XTL1AC	-LCS/H3	XTL1A	D-LCSI	D LCS	Lot	-Sa	mple#:	H6D2	40000	0-264	
	51.4	50.7	ug	99		KNOX	0050/	26A I	Mod	04/	/21/0	6	611426	54
	51.4	51.9	ug	101	2.3	KNOX	0050/	26A I	Mod	04/	/21/0	6	611426	54
			Dilution Fac	tor: 1										
Hydrogen chl	oride	WO	#:H31Q81AC	-LCS/H3	1Q81A	D-LCSI	D LCS	Lot	-Sa	mple#:	H6D2	50000	0-303	
	51.4	52.4	ug	102		KNOX	0050/	26A I	Mod	04/	/25/0	6	611530	03
	51.4	51.7	ug	101	1.3	KNOX	0050/	26A	Mod	04/	/25/0	6	611530	03
			Dilution Fac	tor: 1										

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

	PERCENT	RECOVERY	RPD		PREPARATION-	PREP
PARAMETER	RECOVERY	LIMITS	RPD LIMITS	METHOD	ANALYSIS DATE	BATCH #
Chlorine		WO# :	H2H7E1AC-MS/	H2H7E1AD-MSD MS L	ot-Sample #: H	6D040103-002
	145 N	(75 - 125)		KNOX 0050/26A Mod	04/17/06	6116184
	136 N	(75 - 125)	3.0 (0-20)	KNOX 0050/26A Mod	04/17/06	6116184
		Dilu	ion Factor: 1			
Chlorine		WO#:	H2H7V1AD-MS/	H2H7V1AE-MSD MS L	ot-Sample #: H	6D040103-008
	141 N	(75 - 125)		KNOX 0050/26A Mod	04/25/06	6116088
	139 N	(75 - 125)	0.54 (0-20)	KNOX 0050/26A Mod	04/25/06	6116088
		Dilut	ion Factor: 1			
Hydrogen chl	oride	WO#:	H2H691AC-MS/	H2H691AD-MSD MS L	ot-Sample #: H	(6D040103-001
	105	(75 - 125)		KNOX 0050/26A Mod	04/21/06	6114264
	97	(75 - 125)	1.9 (0-20)	KNOX 0050/26A Mod	04/21/06	6114264
		Dilut	ion Factor: 1			

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: H6D040103

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER	TRUOMA	TMA	TUUOMA	UNITS	RECVRY	RPD	METH	DD .	ANALYSIS DATE	BATCH #
Chlorine			WO#:	H2H7E1AC-MS/	'H2H7E1 <i>F</i>	D-MSI) MS	Lot-Samp	le #: H6D040103	-002
	1950	1220	3720 N	ug	145		KNOX	0050/26A	04/17/06	6116184
	1950	1220	3610 N	ug	136	3.0	KNOX	0050/26A	04/17/06	6116184
			Diluti	on Factor: 1						
Chlorine			WO#:	H2H7V1AD-MS/	'H2H7V1 <i>F</i>	E-MSI) MS	Lot-Samp	le #: H6D040103-	-008
	1940	1220	3660 N	ug	141		KNOX	0050/26A	04/25/06	6116088
	1940	1220	3640 N	ug	139	0.54	KNOX	0050/26A	04/25/06	6116088
			Diluti	on Factor: 1						
Hydrogen (chloride		WO#:	H2H691AC-MS/	'H2H691 <i>F</i>	D-MSI) MS	Lot-Sampl	le #: H6D040103-	-001
	11800	3710	15700	ug	105		KNOX	0050/26A	04/21/06	6114264
	11800	3710	15400	ug	97	1.9	KNOX	0050/26A	04/21/06	6114264
			Diluti	on Factor: 1						

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H69-SMP

Matrix..... AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

H2H69-DUP

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-001	
11800	11900	ug	0.84	(0-20)	KNOX 0050/26A Mod	04/21/06	6114264
	I	ilution Fact	tor: 185	6.3			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7E-SMP

Matrix....: AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

H2H7E-DUP

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Chlorine					SD Lot-Sample #:	H6D040103-002	
1950	2010	ug	3.0	(0-20)	KNOX 0050/26A Mod	04/17/06	6116184
	т	Milution Fact	-or. 610				

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7F-SMP

H2H7F-DUP

Matrix..... AIR

Date Sampled...: 03/28/06

Date Received..: 04/02/06

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-003	
ND	ND	ug	0	(0-20)	KNOX 0050/26A Mod	04/25/06	6115303
	ת	ilution Fact	or. 514	2			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7G-SMP

H2H7G-DUP

Matrix..... AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chlorine					SD Lot-Sample #:	H6D040103-004	
ND	ND	ug	0	(0-20)	KNOX 0050/26A Mc	d 04/17/06	6116184
		Dilution Fac	tor: 100)			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7J-SMP

Matrix..... AIR

H2H7J-DUP

Date Sampled...: 03/29/06 Date Received..: 04/02/06

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloric	de				SD Lot-Sample #:	H6D040103-005	
6950	6910	ug	0.58	(0-20)	KNOX 0050/26A Mod	1 04/21/06	6114264
		Dilution Bo	a+a 101	00 6			

Dilution Factor: 1938.6

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7K-SMP

Matrix..... AIR

Date Sampled...: 03/29/06 Date Received..: 04/02/06

H2H7K-DUP

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Chlorine					SD Lot-Sample #:	H6D040103-006	
2010	2120	ug	5.3	(0-20)	KNOX 0050/26A Mod	04/17/06	6116184

Dilution Factor: 720

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7P-SMP

Matrix....: AIR

H2H7P-DUP

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-007	
6490	6190	ug	4.7	(0-20)	KNOX 0050/26A Mod	l 04/21/06	6114264

Dilution Factor: 1938.6

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7V-SMP

H2H7V-DUP

Matrix..... AIR

Date Sampled...: 03/30/06 Date Received..: 04/02/06

PARAM RESULT	DUPLICATE RESULT	UNITS	RPD	RPD LIMIT	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chlorine			_		SD Lot-Sample #:	H6D040103-008	
1940	1920	ug	1.0	(0-20)	KNOX 0050/26A Mo	d 04/25/06	6116088
		Dilution Fa	ctor: 61	0			

Sample Receipt Documentation

Request for Analysis/Chain-of-Custody – RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon

Comprehensive Performance Test at Parker, Arizona

STL Knoxville Lot Number: \(\(\frac{145040103}{142541}\)

NOTE: After Log-In, please give the original completed RFA/COC to Patti Carswell.

Project Identification: Westates Carbon CPT			Laboratory Deliverable Turnaround Requirements:					
STL Knoxville Project Number:	142541		Analytical Due Date:	14 Days from Lab Receipt				
STL Contact:	Ms. Patti Carswell (865) 291-3010		(Review-Released Data)					
STL - ACS Project Manager:	Dr. William C. Anderson (865) 291-3080		Data Package Due Date:	14 Days from Lab Receipt				
Analytical Testing QC Requirement	<u>s:</u>	7	Laboratory Destination:	STL Knoxville				
The Legend for Project-Specific Quali	ty Control Testing is designated in	1		5815 Middlebrook Pike				
the "QC" column as follows:		-	1	Knoxville, Tennessee 37921				
"MS" = Matrix Spike, "MSD" = Matr.	ix Spike Duplicate,	1		(865) 291-3000				
"DUP" = Duplicate, and "PDS" = Pos	t Digestion Spike		Courier:	Federal Express				
Project Deliverables:								
Report analytical results on R-02 Report	orts and in data packages.							
Include "Field Number", "Sample Type", and "Run Number" on all R-02 Reports.								
Holding Time Requirements:								
Anions (Chloride/Chlorine) 30 Days to Analysis.								

	Field Sample No./ Sample Coding ID	Sample Collection Date	Project QC Require- ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
/	G-2978-R1-M5 0.1N H ₂ SO ₄ Impinger Solution	3-28-06	DUP/ MS/MSD	H-Liter Amber Boston Round	0.1N H ₂ SO ₄ Impinger Solution, Run #1 Method 0050/26A Train	Analyze for HCl by ion chromatography (Method SW-9056/9057).
/	G-2979-R1-M5 0.1N NaOH Impinger Solution	3-28-06	DUP/ MS/MSD	500 mL High Density Polyethylene Bottle	Chloride Analysis 0.1N NaOH Impinger Solution, Run #1 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
,	G-2982-R1-M5 0.1N H ₂ SO ₄ Impinger Solution RB	3.28.06	Reagent Blank	250 mL Amber Boston Round	0.1N H ₂ SO ₄ Impinger Solution Reagent Blank Run #1 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).
,	G-2983-R1-M5 0.1N NaOH Impinger Solution RB	3-28-06	Reagent Blank	250 mL High Density Poly- ethylene Bottle	0.1N NaOH Impinger Solution Reagent Blank Run #1 M5 HCl/Cl ₂ Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
	G-3065-R2-M5 0.1N H ₂ SO ₄ Impinger Solution	3-29-06	DUP	3500 mL High Density Polyethylene Bottle	0.1N H ₂ SO ₄ Impinger Solution, Run #2 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).

Request for Analysis/Chain-of-Custody – RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon Comprehensive Performance Test at Parker, Arizona

Field Sample No./ Sample Coding ID	Sample Collection Date	Project QC Require- ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
G-3066-R2-M5 0.1N NaOH Impinger Solution	3-24.06	DUP	500 mL High Density Polyethylene Bottle	0.1N NaOH Impinger Solution, Run #2 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
G-3149-R3-M5 0.1N H ₂ SO ₄ Impinger Solution	3:30cg	DUP	500 mL High Density Polyethylene Bottle	0.1N H ₂ SO ₄ Impinger Solution, Run #3 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).
G-3150-R3-M5 0.1N NaOH Impinger Solution	330-gi	DUP	500 mL High Density Polyethylene Bottle	0.1N NaOH Impinger Solution, Run #3 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).

Request for Analysis/Chain-of-Custody – RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon

Comprehensive Performance Test at Parker, Arizona

HUDOMOIOS

Sample Receipt Log and Condition of the Samples Upon Receipt:

Please fill in the	following information:	Comme	
		(Please write "NONE" if no	comment applicable)
	entities of any samples that were listed on the not found in the sample shipment.	MA	
	nple shipping cooler temperature of all orting samples listed on this RFA:	5.0°C	
(3) Record any ap	parent sample loss/breakage.	MA	
(4) Record any ur shipment of sa	identified samples transported with this mples:	NA	
	amples were received according to the ired specifications (i.e. no nonconformances):	Nla	
Custody Tran	sfer: (f	and delivered	
Relinquished By:	Name	Company	Date/Time
Accepted By:	Motos	ST L- Martille Company	4(2/06 1625
Relinquished By:	Name	Company	Date/Time
Accepted By:	Name	Company	Date/Time
riccepted By.	Name	Company	Date/Time
Relinquished By:	Name	Company	Date/Time
	ivanie	Company	Date/Time
Accepted By:	Name	Company	Date/Time
Relinquished By:	Name	Company	Date/Time
Accepted By:	Name	C	Description 1
	ivame	Company	Date/Time

STL KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Client: Focus		Pro	ject:	westates Carbon	Lot Number: <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
Review Items	Yes	No	NA	If No, what was the problem?	Comments/Actions Taken
Do sample container labels match COC? (IDs, Dates, Times)	V			☐ 1a Do not match COC ☐ 1b Incomplete information ☐ 1c Marking smeared ☐ 1d Label torn ☐ 1e No label ☐ 1f COC not received ☐ 1g Other:	PUA- COC. WASAY relonquisted (signed, DAK, or time)
2. Is the cooler temperature within limits? (> freezing temp. of water to 6 °C; NC, 1668, 1613B: 0-4°C; VOST: 10°C; MA: 2-6 °C)	/			☐ 2a Temp Blank = ☐ 2b Cooler Temp =	
3. Were samples received with correct chemical preservative (excluding Encore)?			1	☐ 3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or containers?				☐ 4a Not present ☐ 4b Not intact ☐ 4c Other:	
5. Were all of the samples listed on the COC received?	1	X	4/10	5a Samples received-not on COC Support Samples not received on COC	
6. Were all of the sample containers received intact?	/			☐ 6a Leaking ☐ 6b Broken	
7. Were VOA samples received without headspace?			1	☐ 7a Headspace (VOA only)	
8. Were samples received in appropriate containers?	/			□ 8a Improper container	
Did you check for residual chlorine, if necessary?			/	☐ 9a Could not be determined due to matrix interference	
10. Were samples received within holding time?	V	1		☐ 10a Holding time expired	
1. For rad samples, was sample activity info. provided?			1/	☐ Incomplete information	
12. For SOG water samples (1613B, 1668A, 8290, LR PAHs), do samples have visible solids present?			1	If yes & appears to be >1%, was SOG notified?	
13. Are the shipping containers intact?	V			☐ 13a Leaking ☐ 13b Other:	
4. Was COC relinquished? (Signed/Dated/Timed)				□ 14a Not relinquished	
5. Are tests/parameters listed for each sample?	V			☐ 15a Incomplete information	
6. Is the matrix of the samples noted?	1			☐ 15a Incomplete information	
7. Is the date/time of sample collection noted?	V			☐ 15a Incomplete information	
8. Is the client and project name/# identified?	/		/	☐ 15a Incomplete information	
9. Was the sampler identified on the COC?	<u> </u>	<u> </u>	1		
Quote #: PM Instructions:					
Sample Receiving Associate:				Date: 4/3/06	QA026R18.doc, 1/30/06

ω 2

Wet Chemistry

Sample Summary

Client Sample ID: G-2978-R1-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-001

Work Order #...: H2H69

Matrix..... AIR

Date Sampled...: 03/28/06

Date Received..: 04/02/06

PARAMETER RESULT RL UNITS METHOD PREPARATION- PREP

Hydrogen chloride 11800 1860 ug KNOX 0050/26A Mod 04/21/06 6114264

Dilution Factor: 1856.3 MDL..... 557

Client Sample ID: G-2979-R1-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-002 Work Order #...: H2H7E Matrix...... AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS DATE
 PREP BATCH #

 Chlorine
 1950
 610
 ug
 KNOX 0050/26A Mod 04/17/06
 6116184

Dilution Factor: 610 MDL..... 183

Client Sample ID: G-2982-R1-M5 0.1N H2SO4 IMPINGER SOLUTION RB

General Chemistry

Lot-Sample #...: H6D040103-003 Work Order #...: H2H7F
Date Sampled...: 03/28/06 Date Received..: 04/02/06

Matrix..... AIR

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Hydrogen chloride	ND Dil	514 ution Facto	ug or: 514.2	KNOX 0050/26A Mod	04/25/06	6115303

Client Sample ID: G-2983-R1-M5 0.1N NAOH IMPINGER SOLUTION RB

General Chemistry

Lot-Sample #...: H6D040103-004 Work Order #...: H2H7G

Matrix..... AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Chlorine	ND Dil	100 ution Fact	ug or: 100	KNOX 0050/26A Mod	04/17/06	6116184

6114264

STL Knoxville - ACS

Client Sample ID: G-3065-R2-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-005

6950

Work Order #...: H2H7J

Matrix....: AIR

KNOX 0050/26A Mod 04/21/06

Date Sampled...: 03/29/06

Hydrogen chloride

Date Received..: 04/02/06

PREPARATION-PREP PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

ug

1940 Dilution Factor: 1938.6 MDL..... 582

Client Sample ID: G-3066-R2-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-006 Work Order #...: H2H7K Matrix.....: AIR

Date Sampled...: 03/29/06 Date Received..: 04/02/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS DATE
 PREP BATCH #

 Chlorine
 2010
 720
 ug
 KNOX 0050/26A Mod 04/17/06
 6116184

Dilution Factor: 720 MDL...... 216

Client Sample ID: G-3149-R3-M5 0.1N H2SO4 IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-007

Work Order #...: H2H7P

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

PREPARATION- PREP
PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

Hydrogen chloride 6490 1940 ug KNOX 0050/26A Mod 04/21/06 6114264

Dilution Factor: 1938.6 MDL..... 582

Client Sample ID: G-3150-R3-M5 0.1N NAOH IMPINGER SOLUTION

General Chemistry

Lot-Sample #...: H6D040103-008

Work Order #...: H2H7V

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 PREPARATION-ANALYSIS
 PREPARATION-BATCH #

 Chlorine
 1940
 610
 ug
 KNOX 0050/26A Mod 04/25/06
 04/25/06
 6116088

Dilution Factor: 610 MDL..... 183

QC Summary

METHOD BLANK REPORT

General Chemistry

Client Lot #...: H6D040103

Matrix..... AIR

PARAMETER Chlorine	RESULT ND	REPORTING LIMIT UNITS Work Order #: H33P51A 10.0 ug Dilution Factor: 10	METHOD A MB Lot-Sample #: KNOX 0050/26A Mod	PREP BATCH # 6116184
Chlorine	ND	Work Order #: H33H91A 10.0 ug Dilution Factor: 10	A MB Lot-Sample #: KNOX 0050/26A Mod	6116088
Hydrogen chloride	ND	Work Order #: H3XTL1A 10.3 ug Dilution Factor: 10.3	A MB Lot-Sample #: KNOX 0050/26A Mod	6114264
Hydrogen chloride	ND	Work Order #: H31Q81A 10.3 ug Dilution Factor: 10.3	A MB Lot-Sample #: KNOX 0050/26A Mod	6115303

NOTE(S):

LABORATORY CONTROL SAMPLE EVALUATION REPORT

General Chemistry

Lot-Sample #...: H6D040103

Matrix..... AIR

PARAMETER Chlorine	PERCENT RECOVERY 102 101	WO#:H33H91AC	(0-20)	METHOD H91AD-LCSD LCS Lo KNOX 0050/26A Mod KNOX 0050/26A Mod	04/25/06	60000-088
Chlorine	100 101	(90 - 110)	(0-20)	P51AD-LCSD LCS Lo KNOX 0050/26A Mod KNOX 0050/26A Mod	04/17/06	6116184
Hydrogen chl	oride 99 101	(90 - 110)	(0-20)	TL1AD-LCSD LCS Lo KNOX 0050/26A Mod KNOX 0050/26A Mod	04/21/06	6114264
Hydrogen chl	oride 102 101	(90 - 110)	(0-20)	Q81AD-LCSD LCS Lo KNOX 0050/26A Mod KNOX 0050/26A Mod	04/25/06	6115303

NOTE(S):

LABORATORY CONTROL SAMPLE DATA REPORT

General Chemistry

Lot-Sample #...: H6D040103

Matrix..... AIR

	SPIKE	MEASURE	D	PERCNT					PREPARA	TION-	PREP
PARAMETER	TUUOMA	TNUOMA	UNITS	RECVRY	RPD	METHO	DD		ANALYSI	S DATE	BATCH #
Chlorine		WO	#:H33H91AC	-LCS/H3	3H91AI	-LCSI	LCS	Lot-Sa	mple#: H	6D26000	880-0
	50.0	50.9	ug	102		KNOX	0050/2	26A Mod	04/2	5/06	6116088
	50.0	50.3	ug	101	1.2	KNOX	0050/	26A Mod	04/2	5/06	6116088
			Dilution Fac	tor: 1							
Chlorine		WO	#:H33P51AC	-LCS/H3	3P51AI	D-LCSI	LCS	Lot-Sa	mple#: H	6D26000	0-184
	50.0	50.2	ug	100		KNOX	0050/2	26A Mod	04/1	7/06	6116184
	50.0	50.5	ug	101	0.59	KNOX	0050/	26A Mod	04/1	7/06	6116184
			Dilution Fac	tor: 1							
Hydrogen chl	oride	WO	#:H3XTL1AC	-LCS/H3	XTL1AI	D-LCSI	LCS	Lot-Sa	mple#: H	6D24000	0-264
	51.4	50.7	ug	99		KNOX	0050/2	26A Mod	04/2	1/06	6114264
	51.4	51.9	ug	101	2.3	KNOX	0050/	26A Mod	04/2	1/06	6114264
			Dilution Fac	tor: 1							
Hydrogen chl	oride	WO	#:H31Q81AC	-LCS/H3	1Q81AI	D-LCSI	LCS	Lot-Sa	mple#: H	6D25000	0-303
	51.4	52.4	ug	102		KNOX	0050/	26A Mod	04/2	5/06	6115303
	51.4	51.7	ug	101	1.3	KNOX	0050/	26A Mod	04/2	5/06	6115303
			Dilution Fac	tor: 1							

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

General Chemistry

Client Lot #...: H6D040103 Matrix..... AIR

Date Sampled...: 03/30/06 Date Received..: 04/02/06

PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	RPD RPD LIMITS N	METHOD	PREPARATION- ANALYSIS DATE	PREP E BATCH #
Chlorine		WO#:	H2H7E1AC-MS/H2	2H7E1AD-MSD MS L	ot-Sample #: H	H6D040103-002
	145 N	(75 - 125)	I	KNOX 0050/26A Mod	04/17/06	6116184
	136 N	(75 - 125)	3.0 (0-20) I	KNOX 0050/26A Mod	04/17/06	6116184
		Dilut	ion Factor: 1			
Chlorine		WO#:	H2H7V1AD-MS/H2	2H7V1AE-MSD MS L	ot-Sample #: H	H6D040103-008
	141 N	(75 - 125)	I	KNOX 0050/26A Mod	04/25/06	6116088
	139 N	(75 - 125)	0.54 (0-20) I	KNOX 0050/26A Mod	04/25/06	6116088
		Dilut	ion Factor: 1			
Hydrogen chl	oride	WO#:	H2H691AC-MS/H2	2H691AD-MSD MS L	ot-Sample #: F	H6D040103-001
	105	(75 - 125)	I	KNOX 0050/26A Mod	04/21/06	6114264
	97	(75 - 125)	1.9 (0-20) I	KNOX 0050/26A Mod	04/21/06	6114264
		Dilut	ion Factor: 1			

NOTE(S):

N Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

General Chemistry

Client Lot #...: H6D040103

Matrix..... AIR

Date Sampled...: 03/30/06

Date Received..: 04/02/06

	SAMPLE	SPIKE	MEASRD		PERCNT				PREPARATION-	PREP
PARAMETER	AMOUNT	TMA	AMOUNT	UNITS	RECVRY	RPD	METHO	DD	ANALYSIS DATE	BATCH #
Chlorine			WO#:	H2H7E1AC-MS/	/H2H7E1	D-MSI	MS	Lot-Sampl	e #: H6D040103-	-002
	1950	1220	3720 N	ug	145		KNOX	0050/26A	04/17/06	6116184
	1950	1220	3610 N	ug	136	3.0	KNOX	0050/26A	04/17/06	6116184
			Diluti	on Factor: 1						
Chlorine			WO#:	H2H7V1AD-MS/	/H2H7V1	AE-MSI) MS	Lot-Sampl	e #: H6D040103-	-008
	1940	1220	3660 N	ug	141		KNOX	0050/26A	04/25/06	6116088
	1940	1220	3640 N	ug	139	0.54	KNOX	0050/26A	04/25/06	6116088
			Diluti	on Factor: 1						
Hydrogen o	chloride		WO#:	H2H691AC-MS/	/H2H691 <i>I</i>	AD-MSI) MS	Lot-Sampl	Le #: H6D040103-	-001
	11800	3710	15700	ug	105		KNOX	0050/26A	04/21/06	6114264
	11800	3710	15400	ug	97	1.9	KNOX	0050/26A	04/21/06	6114264
			Diluti	on Factor: 1						

NOTE(S):

N $\;$ Spiked analyte recovery is outside stated control limits.

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H69-SMP

Matrix....: AIR

Date Sampled...: 03/28/06 Date Received..: 04/02/06

H2H69-DUP

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-001	
11800	11900	ug	0.84	(0-20)	KNOX 0050/26A Mod	04/21/06	6114264
	D	ilution Fact	or: 185	6.3			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7E-SMP

H2H7E-DUP

Matrix....: AIR

Date Sampled...: 03/28/06

Date Received..: 04/02/06

	DUPLICATE			RPD	PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD ANALYSIS DATE	BATCH #
Chlorine					SD Lot-Sample #: H6D040103-002	
1950	2010	ug	3.0	(0-20)	KNOX 0050/26A Mod 04/17/06	6116184
		Dilution Fa	ctor. 61	^		

Dilution Factor: 610

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7F-SMP

Matrix..... AIR

Date Sampled...: 03/28/06

H2H7F-DUP Date Received..: 04/02/06

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride				•	SD Lot-Sample #:	H6D040103-003	
ND	ND	ug	0	(0-20)	KNOX 0050/26A Mod	1 04/25/06	6115303

Dilution Factor: 514.2

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7G-SMP

H2H7G-DUP

Matrix..... AIR

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Chlorine					SD Lot-Sample #:	H6D040103-004	
ND	ND	ug	0	(0-20)	KNOX 0050/26A Mod	04/17/06	6116184
	г	oilution Fact	or: 100				

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7J-SMP

H2H7J-DUP

Matrix....: AIR

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-005	
6950	6910	ug	0.58	(0-20)	KNOX 0050/26A Mod	04/21/06	6114264
	_						

Dilution Factor: 1938.6

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7K-SMP

H2H7K-DUP

Matrix....: AIR

Date Sampled...: 03/29/06 Date Received..: 04/02/06

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Chlorine				-	SD Lot-Sample #:	H6D040103-006	
2010	2120	ug	5.3	(0-20)	KNOX 0050/26A Mod	04/17/06	6116184
		Dilution Fac	tor. 720	n			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7P-SMP

H2H7P-DUP

Matrix..... AIR

Date Sampled...: 03/30/06 Date Received..: 04/02/06

	DUPLICATE			RPD		PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS DATE	BATCH #
Hydrogen chloride					SD Lot-Sample #:	H6D040103-007	
6490	6190	ug	4.7	(0-20)	KNOX 0050/26A Mod	04/21/06	6114264
	Γ	ilution Fact	or: 193	8.6			

General Chemistry

Client Lot #...: H6D040103

Work Order #...: H2H7V-SMP

Matrix..... AIR

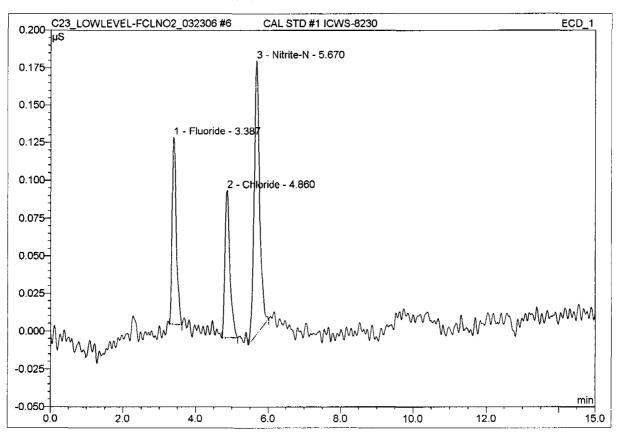
H2H7V-DUP

	DUPLICATE			RPD	PREPARATION-	PREP
PARAM RESULT	RESULT	UNITS	RPD	LIMIT	METHOD ANALYSIS DATE	BATCH #
Chlorine					SD Lot-Sample #: H6D040103-008	
1940	1920	ug	1.0	(0-20)	KNOX 0050/26A Mod 04/25/06	6116088

Dilution Factor: 610

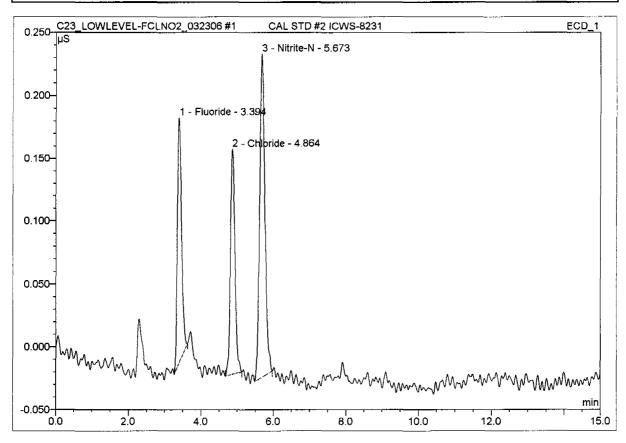
Raw Data

Hydrogen Chloride / Chlorine

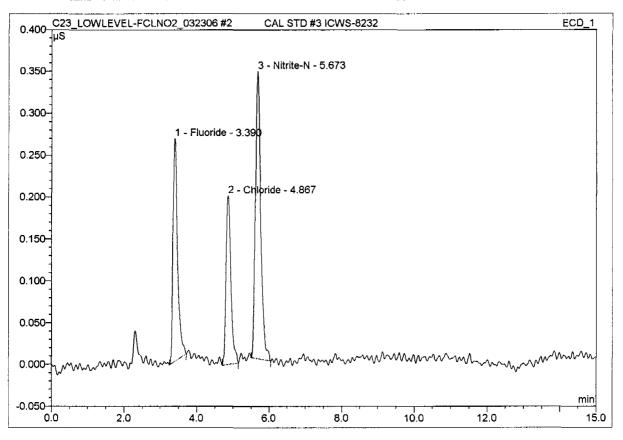

STL Knoxville IC Initial Calibration Data Review / Narrative Checklist Methods: 300.0, 9056, 9057 and 26A, SOP: KNOX-WC-0005, Rev. 6

Page 1 of 1 (ICS-1500)

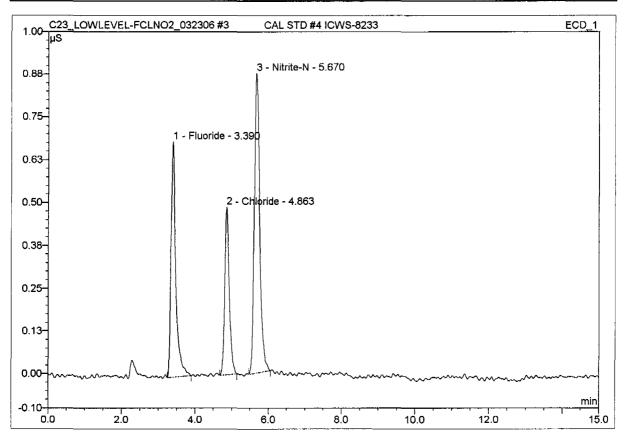
Analysis Date: 3/23/06		File ID;		C23-LOWLEVEL-CIFNO2-032306		
In	nitial Calibration Review Items	N/A	Yes	No	If No, why is data reportable?	2nd √
1.	Were at least 5 levels of each analyte analyzed?		1			/
2.	Is low level standard concentration ≤ RL?		1			1
3.	Are the correlation coefficients (r) ≥ 0.995 ; $r^2 \geq 0.990$?		1			1
4.	For method 300.0, was the calibration curve processed using linear regression?	1				NA
5.	For manual integrated standards, are before/after chromatograms provided with initials/date/reason?	1		-	Reasons: S=Split peak, U=Undetected peak, I=Incorrect peak integration, B=Baseline correction, W=Wrong peak chosen by data system	NA


Analyst: CWK	Date: 3/27/05
Comments:	
Range: 0.05 ppm-1.0 ppm	
Height: F-, CI, NO2-N	
<u> </u>	
2 nd Level Reviewer:	Date: 3/27/86
Comments:	
	·

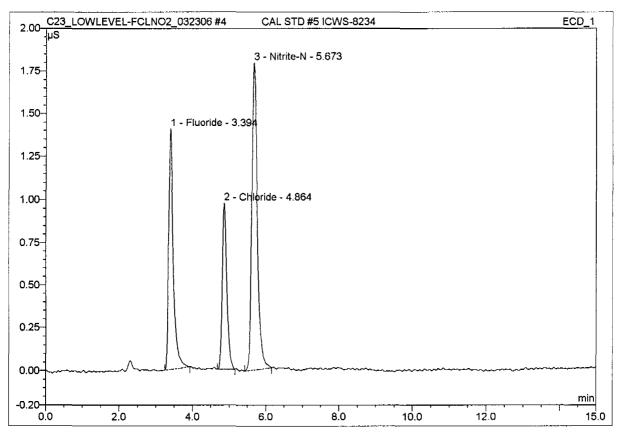
6 CAL STD #1 ICWS-8230							
Sample Name: Vial Number:	CAL STD #1 ICWS-8230 1207	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	standard	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time:	3/23/2006 12:37	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.39	Fluoride	0.12396	0.016	25.62	0.0497	BMB
2	4.86	Chloride	0.09774	0.016	24.26	0.0442	вмв
3	5.67	Nitrite-N	0.18176	0.032	50.13	0.0519	ВМВ

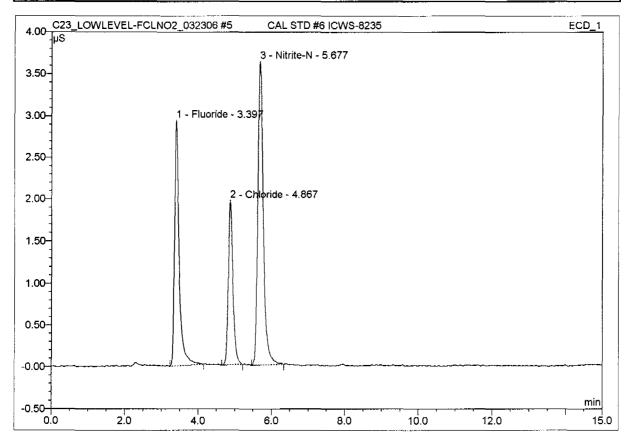
1 CAL STD #2 ICWS-8231							
Sample Name: Vial Number:	CAL STD #2 ICWS-8231 1202	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	standard	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time: Run Time (min):	3/23/2006 10:51 15.00	Sample Weight: Sample Amount:	1.0000 1.0000				


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.39	Fluoride	0.19577	0.026	27.16	0.0754	BMB
2	4.86	Chloride	0.17938	0.026	27.03	0.0866	ВМВ
3	5.67	Nitrite-N	0.25730	0.044	45.81	0.0735	ВМВ

2 CAL STD #3 ICWS-8232							
Sample Name: Vial Number:	CAL STD #3 ICWS-8232 1203	Injection Volume: Channel:	50.0 ECD 1				
Sample Type:	standard	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time:	3/23/2006 11:08	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.39	Fluoride	0.26686	0.039	29.88	0.1007	вмв
2	4.87	Chloride	0.20179	0.031	24.30	0.0982	вмв
3	5.67	Nitrite-N	0.34319	0.059	45.83	0.0980	вмв

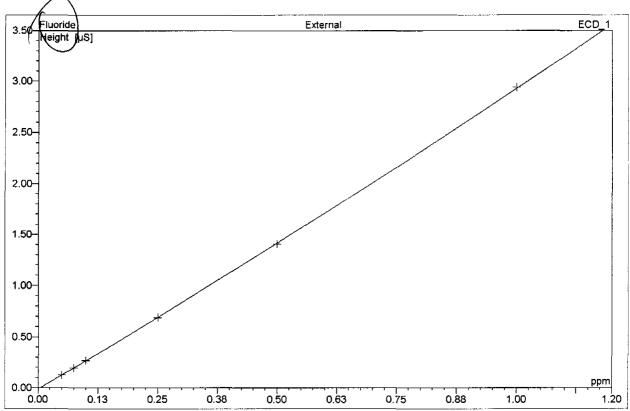
3 CAL STD #4 ICWS-8233							
Sample Name: Vial Number:	CAL STD #4 ICWS-8233 1204	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	standard	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time:	3/23/2006 11:25	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Туре
1	3.39	Fluoride	0.68790	0.103	31.67	0.2493	вмв
2	4.86	Chloride	0.49037	0.071	21.95	0.2475	вмв
3	5.67	Nitrite-N	0.87589	0.150	46.38	0.2488	вмв

4 CAL STD #5 ICWS-8234						
Sample Name: Vial Number:	CAL STD #5 ICWS-8234 1205	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	3/23/2006 11:43 15.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.39	Fluoride	1.40562	0.203	30.89	0.4967	вмв
2	4.86	Chloride	0.97380	0.141	21.50	0.4965	вмв
3	5.67	Nitrite-N	1.79553	0.313	47.61	0.5045	вмв

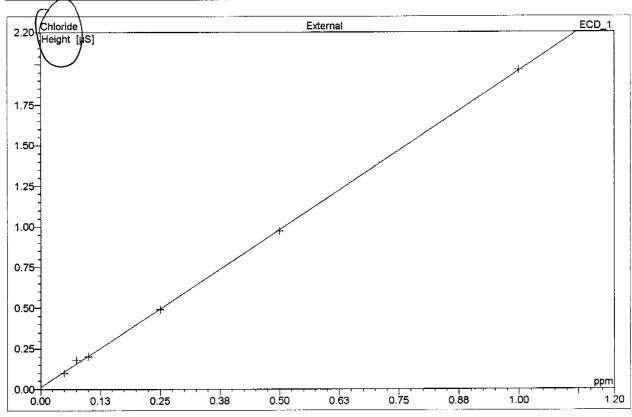
5 CAL STD #6 ICWS-8235						
Sample Name: Vial Number:	CAL STD #6 ICWS-8235 1206	Injection Volume: Channel:	50.0 ECD 1			
Sample Type:	standard	Wavelength:	n.a.			
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000			
Recording Time:	3/23/2006 12:00	Sample Weight:	1.0000			
Run Time (min):	15.00	Sample Amount:	1.0000			



No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.40	Fluoride	2.93874	0.425	31.61	1.0030	
2	4.87	Chloride	1.96386	0.287	21.36	1.0020	вмв
3	5.68	Nitrite-N	3.63137	0.632	47.03	0.9983	вмв

5 CAL STD #6 ICWS-8235

Sample Name:	CAL STD #6 ICWS-8235	Injection Volume:	50.0
Vial Number:	1206	Channel:	ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	3/23/2006 12:00	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000



No.	Ret.Time min	Peak Name	Cal.Type	Points	R-Square	Offset	Slope	Curve
1_	3.40	Fluoride	XXQOff	6	0.9999	-0.014390	2.77520	0.168474
2	4.87	Chloride	X0QOff	6	0.9980	0.012524	1.92498	0.022501
3	5.68	Nitrite-N	X0QOff	6	0.9999	0.000895	3.47706	0.159690
Average:					0.9993	-0.0003	2.7257	0.1169

E	- CAL	CTD	#C	DIMIC	9225
J	- ONL	010	770	10440	-0200


Sample Name:	CAL STD #6 ICWS-8235	Injection Volume:	50.0
Vial Number:	1206	Channel:	ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	3/23/2006 12:00	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	R-Square	Offset	Slope	Curve
1	3.40	Fluoride	XXQOff	6	0.9999	-0.014390	2.77520	0.168474
2	4.87	Chloride	X0QOff	6	0.9980	0.012524	1.92498	0,022501
3	5.68	Nitrite-N	X0QOff	6	0.9999	0.000895	3.47706	0.159690
Average:	<u> </u>				0.9993	-0.0003	2.7257	0.1169

5 CAL STD #6 ICWS-8235 (3)27 [84]

Sample Name:	CAL STD #6 ICWS-8235	Injection Volume:	50.0
Vial Number:	1206	Channel:	ECD_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	3/23/2006 12:00	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	R-Square	Offset	Slope	Curve
1	3.40	Fluoride	XXQOff	6	0.9999	-0.014390	2.77520	0.168474
2	4.87	Chloride	X0QOff	6	0.9980	0.012524	1.92498	0.022501
3	5.68	Nitrite-N	X0QOff	6	0.9999	0.000895	3.47706	0.159690
Average:					0.9993	-0.0003	2.7257	0.1169

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date: <u>CWK 3 23 06 Chemist:</u> <u>CWK</u> Expiration Date: 411 06

ID	Compound	Parent Lot	Parent	Parent Exp.	Parent	Aliquot	Dilution	Final
Number	Name	Number	Source	Date	Conc.	Volume (ml)	Volume (ml)	Conc.
	 -	 	·		 			
1. ICW1-8228	۶,	22015	ERA	113167	1,000 ppm	2.5 ml	25	100 ppm
2. /cul source	a-	36065	,	6 30 07				\
3. (inkrmediak)	N02-N	17075		7/31/07				
4. 1cw1-8229	F-	28-126A5	Sper	9/15/06				
5. / 2nd source)	CI-	x-001018	Inglad	4/1/06				
6. (intermediate)	No2-N	1-13 NO24-2	Spet	10/30/06				
7.		<u> </u>	•					
8.								
9.								
10.								
11.								
12			-					
13.								
14.								

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date: 3 23 06 Chemist: CWK Expiration Date: 3 24 06

ID Number	Compound Name	Parent Lot Number	Parent Source	Parent Exp. Date	Parent Conc.	Aliquot Volume (ml)	Dilution Volume (ml)	Final Conc.
1. ICWS-8230	F.	ICWI -	8228	411/04	100 ppm	0.05	looml	0.05 ppm
2. (cal 1)	Cl-							
3.	NO2-N					ļ		
4. 10W5-8231	۴٠					0.075		0.075
5. (ul 2)	CI-					<u> </u>		
6.	Noz-N					ļ		ļ
7. 1cw5-8232	F					0.100		0.100
8. (cal 3)	01-							1
9.	NOTH							
10. 1CW 5 3233	F,					0.250		0.250
11. (CAR 4)	CI-							1_
12.	NO2-N							
13.	and the same of th							
14.								

Reviewed By:		

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date: 3 23 06 Chemist: WK Expiration Date: 3/24/0	xpiration Date: 3/24/06	3 23 06 Chemist: WY
---	-------------------------	---------------------

ID Number	Compound Name	Parent Lot Number	Parent Source	Parent Exp. Date	Parent Conc.	Aliquot Volume (ml)	Dilution Volume (ml)	Final Conc.
1. 1W5-8234	F-	IONI -	3228	4/1/06	100 ppm	0.500	pone	0.50 ppm
2. (cd 5 à cev)	a-			,	''			
3.	NO2-N							
4. 10W5-8235	F,					1.00		1.0 ppm
5. (CAL 6)	C1-							,,,
6.	NOZN							\
7								
8. 1cW 5 823b	F,	IWI -	8229	4/1/06	100 ppm	0,250	IDONL	0.25 ppm
9. (IW ILUS)	C1			<u> </u>		1		
10.	4-2011							
11. 1W5 8237	F-							
12. (Icu/ceso)	CI-							
13.	4-6011							
14.	and the second s							

STL Knoxville Anions in Air Data Review / Narrative Checklist for Methods 9056/9057/26A, SOP KNOX-WC-0005, Rev. 5 Page 1 of 1

Lot Number	H6D040103	Analysis Date: 4/17/06	File	ID:	D17-	-LOWLEVEL-FCL NO2-041706 ICAL FILE ID: CA3-LOWLEVEL-FCLNO2.	
Review Items			NA	Yes	No	If No, why is data reportable?	2 nd 1
1. Were PM check	dists (L40), Lot Summary and any a	pplicable QAS reviewed?		V			V
2. ICV within 90-	110%R and ICB/CCB < 1/2 RL?						
CCVs/CCBs rui	n after every 10 samples, and at enc	l of sequence?		1			/
4. Is %D ≤10% fo	r each CCV?						1
5. If CCV failed, v	vas it rerun only once?		1				NA
6. LCS/LCSD ana	lytes within 90-110%R? If no, list	LCS ID:		√		☐ [lcs3] LCS recovery >upper control limit & sample results are <rl.*< td=""><td></td></rl.*<>	
7. Method blank <	< 1/2 RL?			1		□ [mb3] No analyte > RL in associated samples.*	
If no, list blank				/		□ [mb7] Sample results > 10x higher than blank.	
	un at required frequency?						
9. Matrix spikes v	vithin 75-125% recovery?				/	✓ 🗆 [air ms1] MS %R slightly outside limits for 1 sample.	
If no, list MS IL	Hatte	366			/	[air ms2] MS %R slightly outside limits for >1 sample.	
Hah	recovery due to matrix i	ntar ferences		1	ļ	☐ Air train reagent blank – spike result not reported.	
	's assigned to all matrix spikes exc	ept reagent blanks?	 -		 		
	es done within holding time (HT)?			/		☐ [ht1] HT expired upon receipt. ☐ [ht2] Analysis requested after HT expired.*	
	If no, list samples: 12. Were results processed using correct ICAL?			1		□ [III2] Analysis requestea after 111 expirea.	
	sults within the calibration range?			7	 		1 - 1
	cceptable for all samples, QC samp	les and standards?	 	1	 		1
	egrated standards and QC samples,		 	1	1	Reasons: S=Split peak, U=Undetected peak, I=Incorrect peak integration,	
	nitials/date/reason?		Ì	V	Ì	B=Baseline correction, W=Wrong peak chosen by data system.	
16. Calculations ch	ecked for error? (Document manua	l calculation checks.)		V.			
	eets checked for transcription errors			V,			
	correct? (Verify results, RLs, units			V			
	formances documented and discusse		1		<u> </u>	List NCM #:	NA
20. Appropriate air	train autotext selected for narrative	>?				[air1] Cl' reported as HCl and Cl ₂ .	
				1		□ [air2] C1 reported as HCl only.	
				\ \		□ [air3] Cl', F' reported as HCl, Cl ₂ , HF.	
						☐ [air4] Cl', F', Br' reported as HCl, Cl ₂ , HF, HBr, Br ₂ . ☐ [air5] Cl', F', NO ₂ ', NO ₃ ' reported as HCl, Cl ₂ , HF, HNO ₂ , HNO ₃ .	
1						\Box [air6] Cl., F., No ₂ , No ₃ reported as HCl, Cl ₂ , HF, HNo ₂ , HNo ₃ . \Box [air6] Cl., F., Br., I reported as HCl, Cl ₂ , HF, HBr, Br ₂ , I.	
	*				1	[air7] Cl', F', NO ₂ ', NO ₃ ' reported as Cl', F', NO ₂ ', NO ₃ '.	1 , 1
21. Sample pH adi	ustment included in narrative?		1/	<u> </u>	\vdash	☐ [air pH] Sample pH adjusted prior to analysis.	NA
	esults included in narrative?		1		†	□ [audit2] Audit results in mg/L.	NA
Analyst: CA	W.K.	Date:	4126	05		2 nd Level Reviewer: AMW e wer Date: 4/	27/1/
Comments:	H2H7 1/20		-11			Comments:	-1/-4
V= 0.1	012524 + 1.9249810. .012524 + p.6147131	319335)+ 0.022501	(0.	31932	35) 2	<i>y</i>	
1420	· 012524+ 0.6147131	188 + 0.00229453	6				
14-	0. 6295						
	- · · • · · · · · · · · · · · · · · · ·		_		_		

^{*} Such action must be taken in consultation with client.

STL Knoxville Chlorine (Cl₂) Analysis

Batch No.: 6116184

QuantIMS RL (ug/mL): 1.0

QuantIMS MDL (ug/mL): 0.3

Low Calibration Standard (ug/mL): 0.1

2nd Level Review by:

Date:

No. of Significant Figures:

	Panoration Standar	Sample		Final Chloride Result	Rounded		Rounded	QuantIMS
		Volume	Bench	(ug/mL)	Result	RL	MDL	Dilution
Sample Type	Lab ID	(mL)	Dilution	(Corrected for bench dilution)	ug Cl ₂	ug Cl ₂	ug Cl ₂	Factor
BLANK	H33P51AA	100	1			10.0	3.00	10.0
LCS	H33P51AC	100		/ 0.502		10.0	3.00	10.0
LCSD	H33P51AD	100		/ 0.505	/ 50.5	10.0	3.00	10.0
SPIKE ADDED		100		0.000		10.0	3.00	10.0
	Н2Н7Е	305				610	183	610.0
	H2H7E DUP	305				610	183	610.0
MS	H2H7E MS	305	/ 20			610	183	610.0
MSD	H2H7E MSD	305			3,610	610	183	610.0
SPIKE ADDED	ļ	305	/ 20	4.000	/ 1,220	610	183	610.0
	H2H7G	100				100	30.0	100.0
	H2H7G DUP	100	10	0.166	/ ND	100	30.0	100.0
MS	H2H7G MS	100	10	2.107	211	100	30.0	100.0
SPIKE ADDED		100	10	2.000	200	100	30.0	100.0
	H2H7K	360	20	/ /5.579	2,010	720	216	720.0
	H2H7K DUP	360	/ 20	/ 5.880	2,120	720	216	720.0

Rounded Result, ug Cl₂ = Chloride result (ug/mL) x Sample Volume (mL)

Rounded RL, ug Cl₂ = Low Calibration Standard (ug/mL) x Sample Volume (mL) x Bench Dilution

Rounded MDL, ug Cl₂ = QuantIMS MDL (ug/mL) x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL) x Sample Volume (mL) x Bench Dilution

QuantIMS Dilution Factor = Sample Volume (mL) x Bench Dilution x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL)

STL Knoxville Dionex IC Runlog Cover Page

Analyst:	CWK	Date:	4/17/0	& Seq	uence	e ID: DIT-LOWIE	VEL FCLN	102-04	11706
Instrument:	□ D X-600	Method:		ζ-WC-0003, S	SW-84	46 0061/7199			
	ICS-1500					-846 9056 □ EPA 300.0	0 □ SW-846	9057-Mod	DEPA 26A-Mod
	□ DX-320		LUKNO	K-WC-0014, F	EPA 3	14.0			
	Preventive	Maintenan	ice			Inst	trument Con	ditions	
Daily:						Flow Rate =	1.00	mL/m	in
☑ Check pum	p and gas pressu	re				Pressure =	2070	psi	
Check all li	nes for crimping	, leaks and o	discolorat	ion		Conductance =	24.8	μS	
As Needed:						Suppressor Current =	43 mA		
☐ Change colu	umn and guard c	olumn				Eluent Generator =		mM k	КОН
☐ Change colu	umn and/or guar	d column be	d support				-		
☐ Clean condi	uctivity cell								
☐ De-gas pum	np head when flo	w is erratic							
☐ Check/repla	ce eluant end lir	ne filter							
				MS/MSD S	pike :	Information			
WO#	Compound	Spik	e ID	Parent Co	nc.	Spike Added (mL)	Final Volum	ne (mL)	Final Conc.
HAHTE	C1-	ITW1-	8262	100 ggm		0.020 ml	ion	e	0.2 PPM
H2H76	u.		1	100 ppn		0.020ml	lowl		0.2 ppm
71001					·				
				,					
				· · · · · · · · · · · · · · · · · · ·					
		<u> </u>							
Comments:									
	ا ملاه ا	and a	با سرور	- at 11	·~			.00	
1/1	any uprain	your se	yai cor	laurence	; <u>,</u>	so proceeded to	o analyz	e all	σ <i>τ</i>
The sam	ins at 1	to and	110× + H	interes,	15	appeared as It	The feat	o wer	porkd
Wierk	1.19 50 M	near the	CATIL T	instrad	or	Magny · III/M	sy iccove	y "N	YUVUV
Sodium Thi	osulfate added to	NaOH imp	inger san	iples.	An	so proceeded to appeared as if height. Ms/M otance limits naluce Samples	of 1/90	dilut	ibn i

high recovery due to matrix interference WC075R1. 6/11/04

Sequence:

D17_LOWLEVEL-FCLNO2_041706

Operator:

kaukerc

Page 1 of **3**° **J** Printed: 4/18/2006 8:13:20 AM

CWK 4/18/26

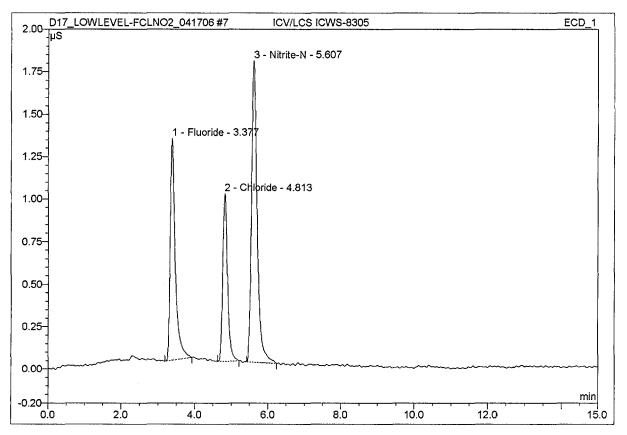
Title:

Datasource: Location:

Timebase:

#Samples:

ICS_1500_net ICS1500

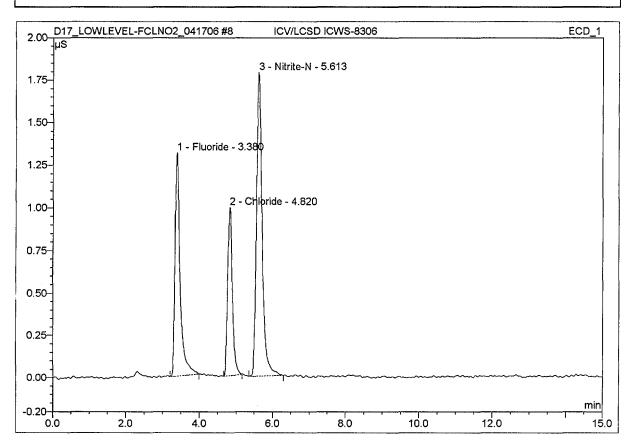

30

ICS1500

Created: Last Update: 4/17/2006 10:46:02 AM by kaukerc 4/17/2006 2:12:37 PM by kaukerc

No.	Name	Sample ID	Inj. Vol.	Inj. Date/Time	Dil. Factor	*Multiplier [Liters]	Weight
1	CAL STD #2 ICWS-8231		50.0	3/23/2006 10:51:01 AM	1.0000		1.0000
2	CAL STD #3 ICWS-8232		50.0	3/23/2006 11:08:25 AM	1.0000		1.0000
3	CAL STD #4 ICWS-8233		50.0	3/23/2006 11:25:49 AM	1.0000		1.0000
4	CAL STD #5 ICWS-8234		50.0	3/23/2006 11:43:13 AM	1.0000		1.0000
5	CAL STD #6 ICWS-8235		50.0	3/23/2006 12:00:37 PM	1.0000		1.0000
6	CAL STD #1 ICWS-8230		50.0	3/23/2006 12:37:04 PM	1.0000		1.0000
7	CV/LCS ICWS-8305		50.0	4/17/2006 10:54:01 AM	1.0000		1.0000
8	CV/LCSD ICWS-8306		50.0	4/17/2006 11:11:25 AM	1.0000		1.0000
9	👸 ICB/METHOD BLK		50.0	4/17/2006 11:28:49 AM	1.0000		1.0000
10	6 H6D040103 H2H7E 1/10		50.0	4/17/2006 12:03:38 PM	10.0000		1.0000
11	6 H6D040103 H2H7E MS 1/10 3PPM		50.0	4/17/2006 12:36:02 PM	10.0000		1.0000
12	6 H6D040103 H2H7E 1/20	1.11	50.0	4/17/2006 1:08:26 PM	20.0000		1.0000
13	6 H6D040103 H2H7E MS 1/20 0.2PPM		50.0	4/17/2006 1:40:50 PM	20.0000		1.0000
14	6 H6D040103 H2H7E DUP 1/20		50.0	4/17/2006 2:13:15 PM	20.0000		1.0000
15	H6D040103 H2H7E MSD 0.2 PPM CL		50.0	4/17/2006 2:45:39 PM	20.0000		1.0000
16	H6D040103 H2H7K 1/20		50.0	4/17/2006 3:18:03 PM	20.0000		1.0000
17	CCV ICWS-8307		50.0	4/17/2006 3:50:28 PM	1.0000		1.0000
18	CCB		50.0	4/17/2006 4:07:52 PM	1.0000		1.0000
19	6 H6D040103 H2H7K DUP 1/20		50.0	4/17/2006 4:25:17 PM	20.0000		1.0000
20	## H6D040103 H2H7V 1/20		50.0	4/17/2006 4:57:41 PM	20.0000		1.0000
21	H6D040103 H2H7V DUP 1/20		50.0	4/17/2006 5:30:05 PM	20.0000		1.0000
22	H6D040103 H2H7G 1/20		50.0	4/17/2006 6:02:29 PM	20.0000		1.0000
23	## H6D040103 H2H7G DUP 1/20		50.0	4/17/2006 6:34:54 PM	20.0000		1.0000
24	# H6D040103 H2H7G MS 0.2 PPM CL 1/20		50.0	4/17/2006 7:07:18 PM	20.0000		1.0000
25	# H6D040103 H2H7G 1/10		50.0	4/17/2006 7:39:43 PM	10.0000		1.0000
26	## H6D040103 H2H7G DUP 1/10		50.0	4/17/2006 8:12:08 PM	10.0000		1.0000
27	H6D040103 H2H7G MS 0.2PPM 1/10		50.0	4/17/2006 8:44:32 PM	10.0000		1.0000
28	CCVICWS-8307		50.0	4/17/2006 9:16:56 PM	1.0000		1.0000
29	₹ CCB		50.0	4/17/2006 9:34:20 PM	1.0000		1.0000
30	SHUTDOWN		50.0	4/17/2006 9:51:45 PM	1.0000		1.0000

7 ICV/LCS ICWS-8305									
Sample Name: Vial Number:	ICV/LCS ICWS-8305 1207	Injection Volume: Channel:	50.0 ECD_1						
Sample Type:	unknown	Wavelength:	n.a.						
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.						
Quantif, Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000						
Recording Time: Run Time (min):	4/17/2006 10:54 15.00	Sample Weight: Sample Amount:	1.0000 1.0000						

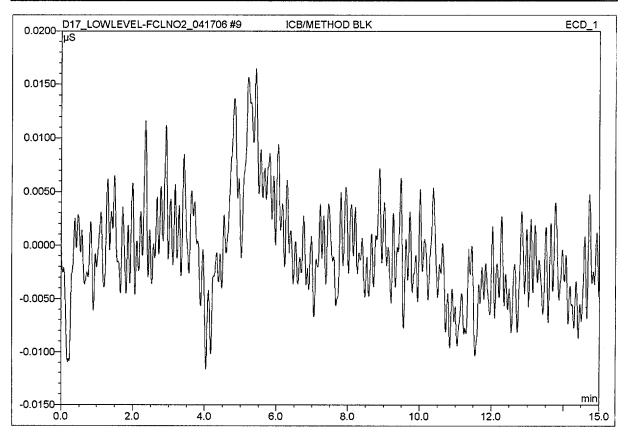


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.38	Fluoride	1.30564	0.206	30.35	0.4627	вмв
2	4.81	Chloride	0.98396	0.149	21.96	0.5017	BMB
3	5.61	Nitrite-N	1.77445	0.324	47.69	0.4987	BMB

Height

H33 PSIAC

8 ICV/LCS	8 ICV/LCSD ICWS-8306							
Sample Name: Vial Number:	ICV/LCSD ICWS-8306 1207	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time: Run Time (min):	4/17/2006 11:11 15.00	Sample Weight: Sample Amount:	1.0000 1.0000					

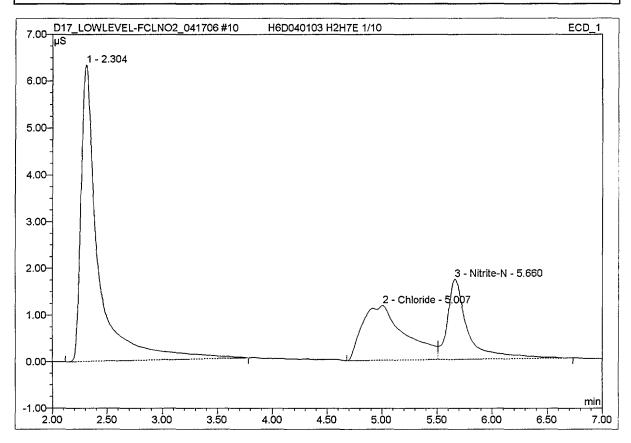


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.38	Fluoride	1.31388	0.211	30.81	0.4655	вмв
2	4.82	Chloride	0.98979	0.148	21.57	0.5047	BMB
3	5.61	Nitrite-N	1.78550	0.326	47.62	0.5017	BMB

Height

H33P51AD

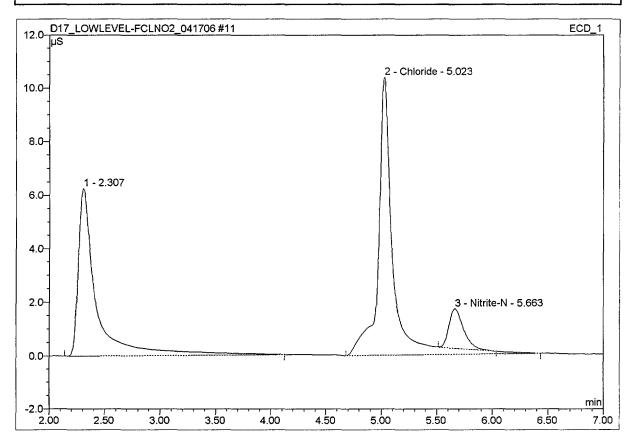
9 ICB/METHOD BLK								
Sample Name: Vial Number:	ICB/METHOD BLK 1210	Injection Volume: Channel:	50.0 ECD 1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time:	4/17/2006 11:28	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					



No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Туре

10 H6D040103 H2H7E 1/10

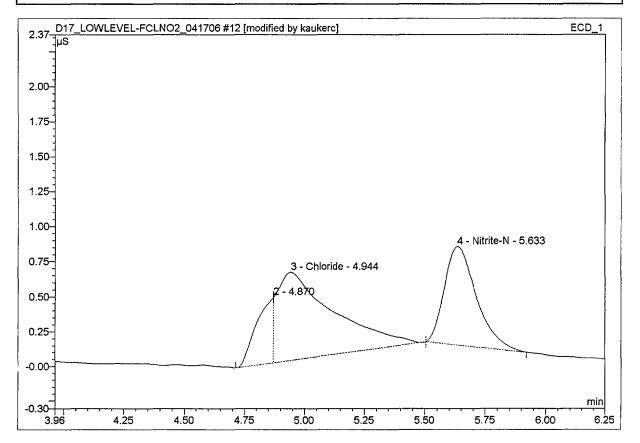
Sample Name: H6D040103 H2H7E 1/10 Injection Volume: 50.0 Vial Number: 1210 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Dilution Factor: Quantif. Method: **AS4A-SC ANION METHOD** 10.0000 Recording Time: Sample Weight: 1.0000 4/17/2006 12:03 Run Time (min): 30.00 Sample Amount: 1.0000


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.30	n.a.	6.32588	1.159	1.78	n.a.	вмв
2	5.01	Chloride	1.16884	0.526	0.81	5.9653	ВМ
3	5.66	Nitrite-N	1.71615	0.368	0.57	4.8261	MB
4	7.80	n.a.	0.08985	0.019	0.03	n.a.	вмв
5	12.50	n.a.	17.64772	5.861	9.00	n.a.	BMB
6	22.67	n.a.	60.17590	57.216	87.82	n.a.	BMB

Height

NOT USED

11 H6D040103 H2H7E MS 1/10 3PPM


Sample Name: H6D040103 H2H7E MS 1/10 3PPM Injection Volume: 50.0 Vial Number: 1243 Channel: ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 10.0000 Recording Time: 4/17/2006 12:36 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	6.24617	1.177	1.78	n.a.	BMB
2	5.02	Chloride	10.36808	1.608	2.44	50.7813	BMB
3	5,66	Nitrite-N	1.46655	0.222	0.34	4.1366	Rd
4	7.82	n.a.	0.08803	0.018	0.03	n.a.	вмв
5	12.50	n.a.	17.50407	5.816	8.81	n.a.	вмв
6	22.67	n.a.	60.17407	57.159	86.60	n.a.	вмв

Spiked overrange / spiked at 3ppm
NOT used / Jop Std is 1.0 ppm

12 H6D040103 H2H7E 1/20						
Sample Name: Vial Number:	H6D040103 H2H7E 1/20 1244	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000			
Recording Time: Run Time (min):	4/17/2006 13:08 30.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.30	n.a.	3.54845	0.611	1.01	n.a.	BMB
2	4.87	n.a.	0.46900	0.038	0.06	n.a.	BM *
3	4.94	Chloride	0.62954	0.170	0.28	6.3867	Mb*
4	5.63	Nitrite-N	0.70159	0.108	0.18	3.9938	bMB*
5	12.50	n.a.	8.66041	2.925	4.82	n.a.	вмв
6	22.66	n.a.	59.97437	56.801	93.65	n.a.	ВМВ

Height

manual integration CWK Sprit feat / Base line 4/17/06

n.a.

20.0000

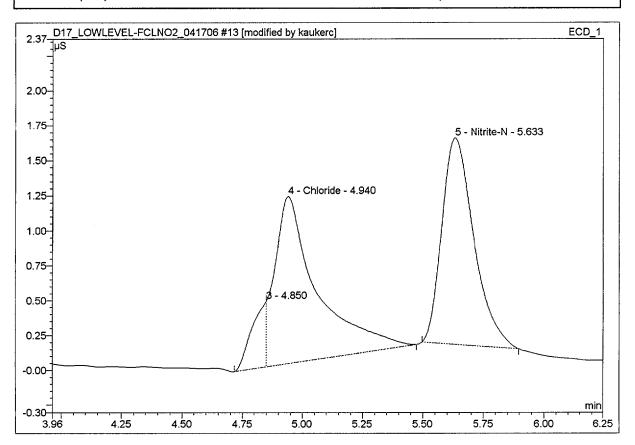
1.0000

1.0000

12 H6D040	0103 H2H7E 1/20			
Sample Name: Vial Number:	H6D040103 H2H7E 1/20 1244	Injection Volume: Channel:	50.0 ECD 1	
Sample Type:	unknown	Wavelength:	n.a.	

Sample Type:unknownWavelength:Control Program:AS14A ANIONS_CI2 METHODBandwidth:Quantif. Method:AS4A-SC ANION METHODDilution Factor:Recording Time:4/17/2006 13:08Sample Weight:Run Time (min):30.00Sample Amount:

4.00 D17_LOWLEVEL-FCLNO2_041706 #12 ECD_1 H6D040103 H2H7E 1/20 1 - 2.304 3.50-3.00-2.50 2.00-1.50-1.00-3 - Nitrite-N - 5.633 2 - Chloride - 4.944 0.50 -0.00 min -0.50 3.50 4.50 5.50 2.50 3.00 4.00 5.00 6.00 6.50 7.00 2.00


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.30	n.a.	3.54845	0.611	1.01	n.a.	вмв
2	4.94	Chloride	0.67601	0.269	0.44	6.8659	ВМ
3	5.63	Nitrite-N	0.83419	0.171	0.28	4.7415	MB
4	12.50	n.a.	8.66041	2.925	4.81	n.a.	BMB
5	22.66	n.a.	59.97437	56.801	93.46	n.a.	BMB

original

Hught

13 H6D040103 H2H7E MS 1/20 0.2PPM

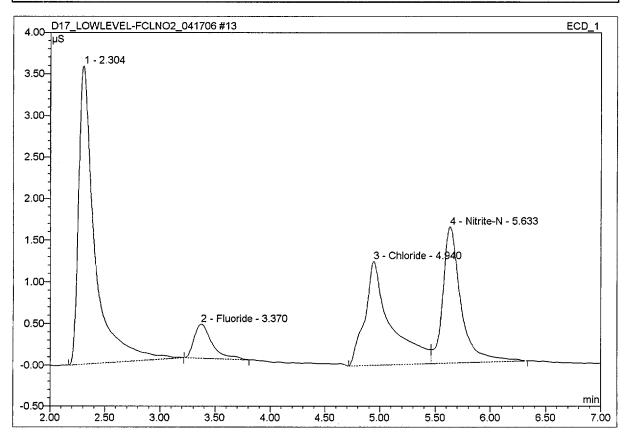
Sample Name: H6D040103 H2H7E MS 1/20 0.2PPM Injection Volume: 50.0 Channel: Vial Number: 1245 ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Dilution Factor: 20.0000 Quantif. Method: **AS4A-SC ANION METHOD** Recording Time: 4/17/2006 13:40 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Туре
1	2.30	n.a.	3.58462	0.614	0.99	n.a.	BMB
2	3.37	Fluoride	0.40949	0.077	0.12	3.0270	BMB
3	4.85	n.a.	0.47075	0.032	0.05	n.a.	BM *
4	4.94	Chloride	1.19454	0.244	0.40	12.1939	MB*
5	5.63	Nitrite-N	1.47472	0.227	0.37	8.3185	BMB*
6	12.51	n.a.	8.78460	2.964	4.79	n.a.	BMB
7	22.67	n.a.	60.59387	57.674	93.28	n.a.	BMB

108%F

Height

manual integration 12.1939-6.3867= 5.8072/4= 1450/6R

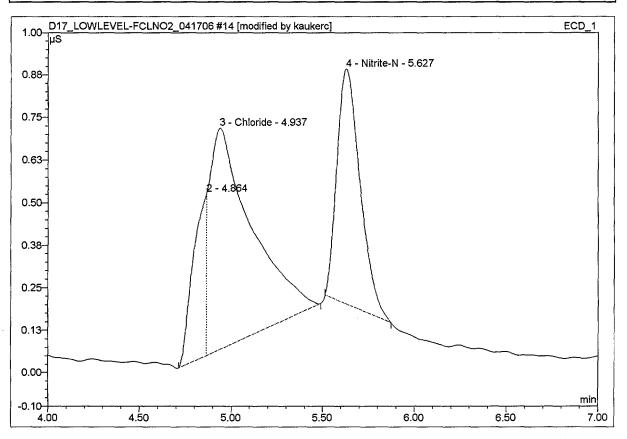

CUTK 4/17/06

Split Peak/ Baseline

Chromeleon (c) Dionex 1996-2001 Version 6.50 SP4 Build 1000

13 H6D040103 H2H7E MS 1/20 0.2PPM

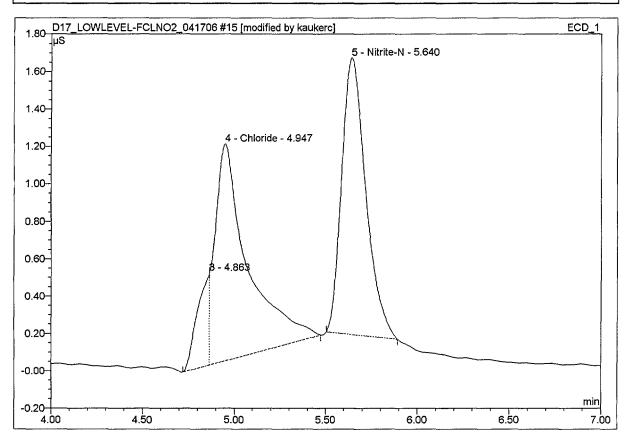
Sample Name: H6D040103 H2H7E MS 1/20 0.2PPM Injection Volume: 50.0 Vial Number: 1245 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 20.0000 Recording Time: 4/17/2006 13:40 Sample Weight: 1.0000 Run Time (min): Sample Amount: 30.00 1.0000


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	2.30	n.a.	3.58462	0.614	0.99	n.a.	вмв
2	3.37	Fluoride	0.40949	0.077	0.12	3.0270	BMB
3	4.94	Chloride	1.24454	0.338	0.55	12.7059	вм
4	5.63	Nitrite-N	1.63509	0.312	0.50	9.2053	MB
5	12.51	n.a.	8.78460	2.964	4.78	n.a.	BMB
6	22.67	n.a.	60.59387	57.674	93.05	n.a.	BMB

pmy/24/08 75.7868

Height

original


14 H6D040103 H2H7E DUP 1/20						
Sample Name: Vial Number:	H6D040103 H2H7E DUP 1/20 1246	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000			
Recording Time:	4/17/2006 14:13	Sample Weight:	1.0000			
Run Time (min):	30.00	Sample Amount:	1.0000			

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area μS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.30	n.a.	3.60753	0.638	1.03	∞ n.a.	BMB
2	4.86	n.a.	0.47439	0.039	0.06	n.a.	BM *
3	4.94	Chloride	0.64879	0.173	0.28	6.5852	MB*
4	5,63	Nitrite-N	0.68912	0.101	0.16	3.9233	BMB*
_5	7.79	n.a.	0.04797	0.012	0.02	n.a.	BMB
6	12.50	n.a.	8.78251	2.969	4.78	n.a.	вмв
7	22.66	n.a.	60.97326	58.234	93.67	n.a.	BMB

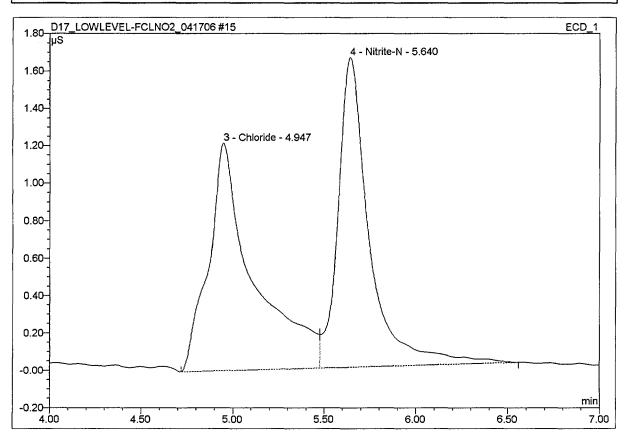
15 H6D040103 H2H7E MSD 0.2 PPM CL

Sample Name: H6D040103 H2H7E MSD 0.2 PPM CL Injection Volume: 50.0 Vial Number: 1247 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Quantif. Method: Dilution Factor: **AS4A-SC ANION METHOD** 20,0000 Recording Time: 4/17/2006 14:45 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
L	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1_	2.31	n.a.	3.63362	0.691	1.11	n.a.	BMB
2	3.37	Fluoride	0.40048	0.074	0.12	2.9632	Rd
3	4.86	n.a.	0.49281	0.036	0.06	n.a.	BM *
4	4.95	Chloride	1.15882	0.240	0.39	11.8279	MB*
_ 5	5.64	Nitrite-N	1.47644	0.226	0.36	8.3281	BMB*
6	7.80	n.a.	0.05431	0.012	0.02	n.a.	BMB
7	12.51	n.a.	8.83485	2.984	4.80	n.a.	вмв
8	22.68	n.a.	60.58071	57.862	93.14	n.a.	вмв

Height 11.8279-6.3867=5.4412 | y= 136% R

Manual integration


egration WK Sprit Peak 4/25/06 Chromeleon (c) Dionex

Version 6.50 SP4

default_letter/Integration

15 H6D040103 H2H7E MSD 0.2 PPM CL

Sample Name: H6D040103 H2H7E MSD 0.2 PPM CL Injection Volume: 50.0 Vial Number: 1247 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. **AS4A-SC ANION METHOD** Dilution Factor: Quantif. Method: 20.0000 Recording Time: 4/17/2006 14:45 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.63362	0.691	1.11	n.a.	вмв
2	3.37	Fluoride	0.40048	0.074	0.12	2.9632	Rd
3	4.95	Chloride	1.21367	0.346	0.55	12.3898	BM
4	5.64	Nitrite-N	1.65457	0.329	0.53	9.3128	MB
5	7.80	n.a	0.05431	0.012	0.02	n.a.	BMB
6	12.51	n.a.	8.83485	2.984	4.79	n.a.	вмв
7	22.68	n.a.	60.58071	57.862	92.88	n.a.	вмв

Height

original

AS4A-SC ANION METHOD

4/17/2006 15:18

30.00

20.0000

1.0000

1.0000

16 H6D040			
Sample Name:	H6D040103 H2H7K 1/20	Injection Volume:	50.0
Vial Number:	1248	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.

ECD_1 LOWLEVEL-FCLNO2_041706 #16 [modified by kaukerc] 0.90-4 - Nitrite-N - 5.640 0.80-0.70 0.60-3 - Chloride - 4.943 0.50-0.40-4.847 0.30-0.20-0.10-0.00min -0.10-4.50 5.00

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.12987	0.567	0.94	n.a.	вмв
2	4.85	n.a.	0.33123	0.016	0.03	n.a.	BM *
3	4.94	Chloride	0.55128	0.163	0.27	5.5793	MB*
4	5.64	Nitrite-N	0.65313	0.103	0.17	3.7199	BMB*
5	7.80	n.a.	0.06379	0.015	0.02	n.a.	BMB
6	12.52	n.a.	5.68057	1.937	3.21	n.a.	вмв
7	22.67	n.a.	60.53208	57.646	95.37	n.a.	вмв

5.50

manual integration

Split Peak / Baseline

CWK 4/26/06

Height

6.00

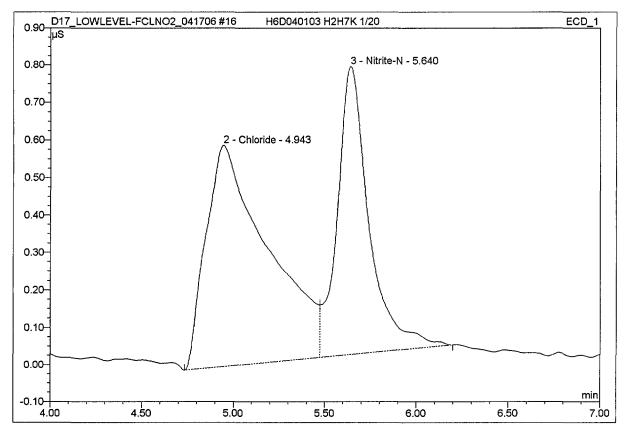
6.50

Dilution Factor:

Sample Weight:

Sample Amount:

7.00

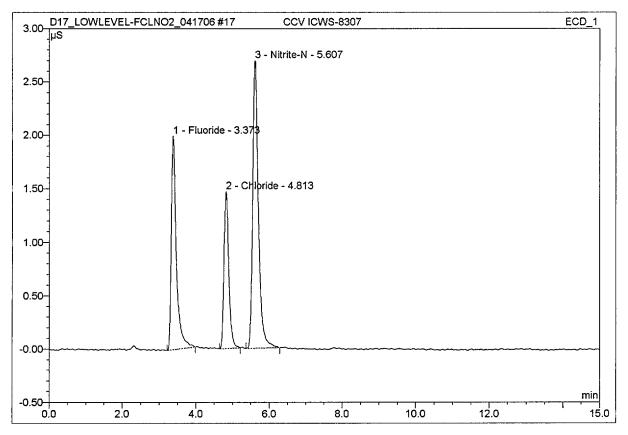

4.00

Quantif. Method:

Recording Time:

Run Time (min):

16 H6D040103 H2H7K 1/20							
Sample Name: Vial Number:	H6D040103 H2H7K 1/20 1248	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000				
Recording Time:	4/17/2006 15:18	Sample Weight:	1.0000				
Run Time (min):	30.00	Sample Amount:	1.0000				

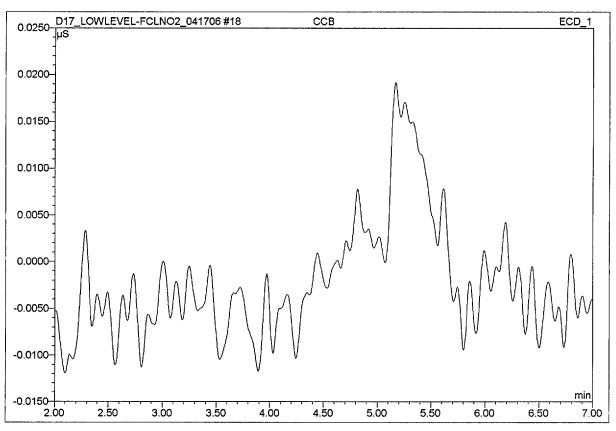


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.12987	0.567	0.94	n.a.	BMB
2	4.94	Chloride	0.59101	0.231	0.38	5.9894	BM
3	5.64	Nitrite-N	0.76864	0.155	0.26	4.3722	MB
4	7.80	n.a.	0.06379	0.015	0.02	n.a.	BMB
5	12.52	n.a.	5.68057	1.937	3.20	n.a.	BMB
6	22.67	n.a.	60.53208	57.646	95.20	n.a.	BMB

Height

original

17 CCV ICWS-8307						
Sample Name: Vial Number:	CCV ICWS-8307 1249	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000			
Recording Time:	4/17/2006 15:50	Sample Weight:	1.0000			
Run Time (min):	15.00	Sample Amount:	1.0000			

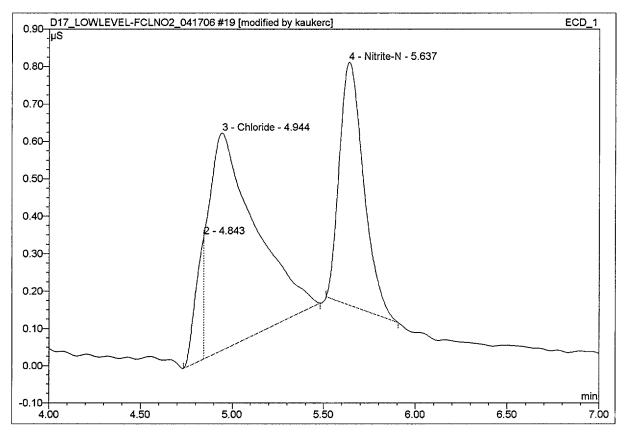


No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	1.99924	0.314	30.71	0.6962	вмв
2	4.81	Chloride	1.46643	0.222	21.70	0.7487	вмв
3	5.61	Nitrite-N	2.69250	0.487	47.59	0.7484	ВМВ

99.89. R

Huight

18 CCB			
Sample Name: Vial Number:	CCB 1250	Injection Volume: Channel:	50.0 ECD_1
Sample Type: Control Program: Quantif. Method: Recording Time: Run Time (min):	unknown AS14A ANIONS METHOD AS4A-SC ANION METHOD 4/17/2006 16:07 15.00	Wavelength: Bandwidth: Dilution Factor: Sample Weight: Sample Amount:	n.a. n.a. 1.0000 1.0000



No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Туре

19 H6D040103 H2H7K DUP 1/20

Sample Name: H6D040103 H2H7K DUP 1/20 Injection Volume: 50.0 Vial Number: 1251 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. 20.0000 Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: Recording Time: 4/17/2006 16:25 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	2.31	n.a.	3.16814	0.571	0.93	n.a.	BMB
2	4.84	n.a.	0.32770	0.016	0.03	n.a.	BM *
3	4.94	Chloride	0.58038	0.169	0.28	5.8796	MB*
4	5.64	Nitrite-N	0.64776	0.100	0.16	3.6895	BMB*
5	7.81	n.a.	0.06450	0.014	0.02	n.a.	BMB
6	12.50	n.a.	5.73075	1.958	3.20	n.a.	BMB
7	22.66	n.a.	61.23936	58.455	95.39	n.a.	BMB

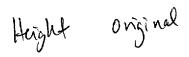
manual integration

Split Peak | Baseline Height

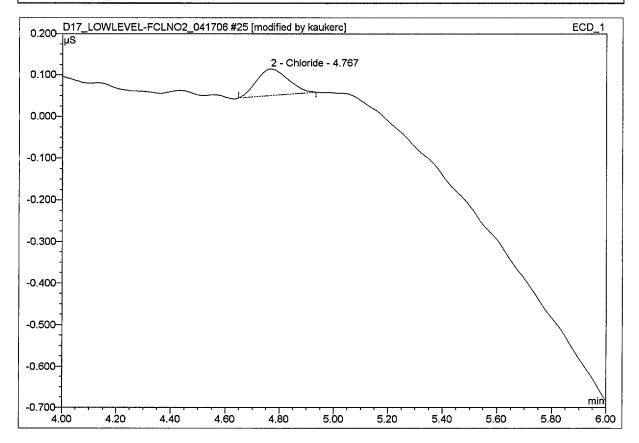
CWK 4/26/06

20.0000

1.0000


1.0000

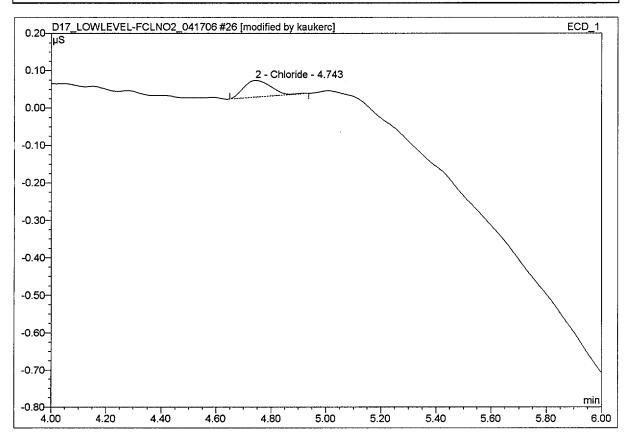
19 H6D040	103 H2H7K DUP 1/20		
Sample Name: Vial Number:	H6D040103 H2H7K DUP 1/20	Injection Volume: Channel:	50.0 ECD 1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.


Control Program: AS14A ANIONS_CI2 METHOD	Bandwidth:
Quantif. Method: AS4A-SC ANION METHOD	Dilution Factor:
Recording Time: 4/17/2006 16:25	Sample Weight:
Run Time (min): 30.00	Sample Amount:

D17_LOWLEVEL-FCLNO2_041706 #19 ECD_1 H6D040103 H2H7K DUP 1/20 0.90-3 - Nitrite-N - 5.637 0.80-0.70-2 - Chloride - 4.944 0.60-0.50-0.40-0.30-0.20 0.10-4 0.00 min -0.10-5.00 4.50 5.50 6.00 4.00 6.50 7.00

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.16814	0.571	0.93	n.a.	BMB
2	4.94	Chloride	0.61833	0.236	0.38	6.2712	BM
3	5.64	Nitrite-N	0.76986	0.152	0.25	4.3791	MB
4	7.81	n.a.	0.06450	0.014	0.02	n.a.	ВМВ
5	12.50	n.a.	5.73075	1.958	3.19	n.a.	BMB
6	22.66	n.a.	61.23936	58.455	95.23	n.a.	вмв

25 H6D040103 H2H7G 1/10							
Sample Name: Vial Number:	H6D040103 H2H7G 1/10 1253	Injection Volume: Channel:	50.0 ECD 1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000				
Recording Time:	4/17/2006 19:39	Sample Weight:	1.0000				
Run Time (min):	30.00	Sample Amount:	1.0000				



No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	8.27819	1.481	2.21	n.a.	BMB*
2	4.77	Chloride	0.06389	0.009	0.01	0.2667	BMB*
3	12.44	n.a.	1.15545	6.854	10.23	n.a.	BMB
4	22.60	n.a.	61.20676	58.682	87.55	n.a.	BMB

ZMPL

Height

26 H6D040103 H2H7G DUP 1/10						
Sample Name: Vial Number:	H6D040103 H2H7G DUP 1/10 1253	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000			
Recording Time:	4/17/2006 20:12	Sample Weight:	1.0000			
Run Time (min):	30.00	Sample Amount:	1.0000			

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.30	n.a.	8.27738	1.488	2.22	n.a.	BMB*
2	4.74	Chloride	0.04454	0.005	0.01	0.1663	BMB*
3	12.43	n.a.	1.11902	6.638	9.92	n.a.	BMB
4	22.58	n.a.	61.40153	58.803	87.85	n.a.	BMB

LMDL

Height

27 H6D040103 H2H7G MS 0.2PPM 1/10

Sample Name:

H6D040103 H2H7G MS 0.2PPM 1/10

Vial Number:

1254

Sample Type:

unknown

Control Program:

AS14A ANIONS_CI2 METHOD **AS4A-SC ANION METHOD**

Quantif. Method: Recording Time:

4/17/2006 20:44

Run Time (min):

30.00

Injection Volume:

Channel:

50.0 ECD 1

Wavelength:

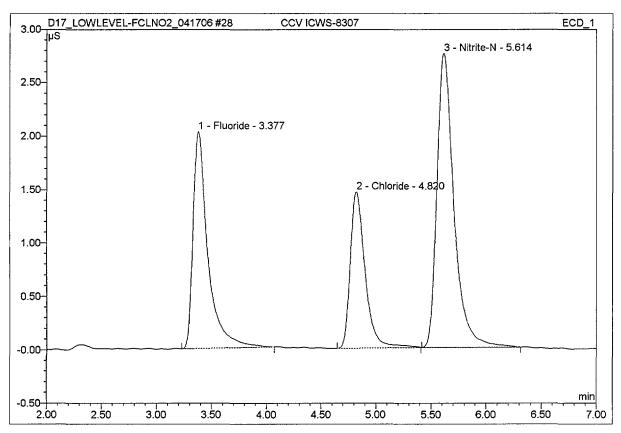

n.a.

Bandwidth: Dilution Factor: n.a. 10.0000

Sample Weight:

1.0000

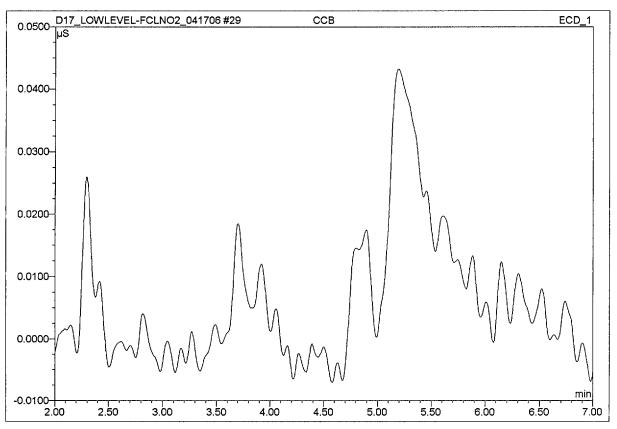
Sample Amount: 1.0000



No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	8.28100	1.500	2.26	n.a.	ВМ
2	3.33	Fluoride	0.48501	0.160	0.24	1.7803	MB
3	4.77	Chloride	0.41910	0.075	0.11	2.1069	BMB*
4	5.51	Nitrite-N	0.64240	0.297	0.45	1.8296	BMB
5	12.44	n.a.	0.91405	5.474	8.26	n.a.	BMB
6	22.61	n.a.	61.34836	58.740	88.67	n.a.	BMB

2.1069 - 0.2667- 1.8402 2.1069/2 = 10570R

Chromeleon (c) Dionex 1996-2001 Version 6.50 SP4 Build 1000


28 CCV ICV	NS-8307		
Sample Name: Vial Number:	CCV ICWS-8307 1258	Injection Volume: Channel:	50.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/17/2006 21:16	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type	
1	3.38	Fluoride	2.02894	0.317	30.58	0.7060	BMB	
2	4.82	Chloride	1.46015	0.228	22.01	0.7455	BMB	7
3	5.61	Nitrite-N	2.74939	0.492	47.41	0.7637	BMB	٦

Height

29 CCB			
Sample Name:	ССВ	Injection Volume:	50.0
Vial Number:	1259	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/17/2006 21:34	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

STL Knoxville Anions in Air Data Review / Narrative Checklist for Methods 9056/9057/26A, SOP KNOX-WC-0005, Rev. 5 Page 1 of 1

CA3-LOWLEVEL-FULNOZ-032306

Lot Number H&DO40/03	Analysis Date: 4/21 04	File	ID:	021	- LAWLEVEL - FULNOZ - 042106 ICAL FILE ID: BARA-ASMA - ANIO	NS- OUF 4
Review Items		NA	Yes	No	If No, why is data reportable?	2 nd 1
1. Were PM checklists (L40), Lot Summary and any a	pplicable QAS reviewed?		$\sqrt{}$			V
2. ICV within 90-110%R and ICB/CCB < 1/2 RL?			1			
3. CCVs/CCBs run after every 10 samples, and at end	of sequence?		1,			~
4. Is %D ≤10% for each CCV?						
5. If CCV failed, was it rerun only once?						NA
6. LCS/LCSD analytes within 90-110%R? If no, list I	LCS ID:		/		☐ [lcs3] LCS recovery >upper control limit & sample results are <rl.*< td=""><td>/</td></rl.*<>	/
7. Method blank < 1/2 RL?			/		□ [mb3] No analyte > RL in associated samples.*	
If no, list blank ID:			,	<u> </u>	☐ [mb7] Sample results > 10x higher than blank.	
8. Matrix spikes run at required frequency?			/	L		
9. Matrix spikes within 75-125% recovery?			1		☐ [air ms1] MS %R slightly outside limits for 1 sample.	
If no, list MS ID:		_	/		☐ [air ms2] MS %R slightly outside limits for >1 sample.	
10.111				 	☐ Air train reagent blank – spike result not reported.	
10. Were MS run #'s assigned to all matrix spikes exce	ept reagent blanks?		1	}		
11. Sample analyses done within holding time (HT)? If no, list samples:			/		☐ [ht1] HT expired upon receipt.	
1) no, list samples: 12. Were results processed using correct ICAL?			/		□ [ht2] Analysis requested after HT expired.*	1
13. Are positive results within the calibration range?			/	 		~
14. Is integration acceptable for all samples, QC sample	as and standards?	-	7	 -		
15. For manual integrated standards and QC samples, a		ne	1	 	Reasons: S=Split peak, U=Undetected peak, I=Incorrect peak integration,	+
provided with initials/date/reason?	ing the for our of the first the fir		V .		B=Baseline correction, W=Wrong peak chosen by data system.	
16. Calculations checked for error? (Document manual	calculation checks.)		1			
17. Were spreadsheets checked for transcription errors'			1			
18. Final report/F6 correct? (Verify results, RLs, units,	qualifiers, DFs, dates, spikes	s.)	1			1
19. Are all nonconformances documented and discussed	d in narrative?	V			Lişt NCM #:	NA
20. Appropriate air train autotext selected for narrative	?				☑ [air1] CF reported as HCl and Cl ₂ . □ [air2] CF reported as HCl only.	
			/		□ [air3] Cl', I' reported as HCl, Cl ₂ , HF.	
				1	□ [air4] Cl ⁺ , F ⁺ , Br ⁺ reported as HCl, Cl ₂ , HF, HBr, Br ₂	
					[air5] Cl., F., NO ₂ , NO ₃ reported as HCl, Cl ₂ , HF, HNO ₃ , HNO ₃ .	
			ŀ	1	☐ [air6] Cl', F', Br', I' reported as HCl, Cl ₂ , HF, HBr, Br ₂ , I'. ☐ [air7] Cl', F', NO ₂ ', NO ₃ ' reported as Cl', F', NO ₂ ', NO ₃ '.	-
21. Sample pH adjustment included in narrative?			├─┈	+	☐ [air pH] Sample pH adjusted prior to analysis.	NA
22. Audit sample results included in narrative?		1	 	+-	☐ [audit2] Audit results in mg/L.	NA
			<u> </u>			
Analyst: WK	Dat	te: 4/24	106		2 nd Level Reviewer: Date:	4/26/06
Comments: Halle 10	21/1/2011	1747	172		Comments:	
y= 0.012524 + 1.92498 (0.1,34 1 y = 0.012524 + 1.2208993	15 1 D 20 6 8 5 1 2	/ • 47 1 d	71	+		
1 7 5 0.012329 7 (.2 203773	17 T 0.00-107 12	1 9		-+		
/ Y= 1.242 V						

^{*} Such action must be taken in consultation with client.

STL Knoxville Hydrogen Chloride (HCl) Analysis

Batch No.: 6114264

QuantIMS RL (ug/mL): 1.0

QuantIMS MDL (ug/mL): 0.3

2nd Level Review by:

No. of Significant Figures:

by: 4 / 1/24 / 04 | 1/24 / 04

Low C	alibration Standard	l (ug/mL):	0.1					
		Sample		Final Chloride Result	Rounded	Rounded	Rounded	QuantIMS
		Volume	Bench	(ug/mL)	Result	RL	MDL	Dilution
Sample Type	Lab ID	(mL)	Dilution	(Corrected for bench dilution)	ug HCl	ug HCl	ug HCl	Factor
BLANK	H3XTL1AA	100	/ 1	0.000	/ ND	10.3	3.09	10.3
LCS	H3XTL1AC	100	/ 1	0.493	50.7	10.3	3.09	10.3
LCSD	H3XTL1AD	100	/ 1	0.504	51.9	10.3	3.09	10.3
SPIKE ADDED		100	/ 1	/ 0.500	51.4	10.3	3.09	10.3
	H2H69	1805	/ 10	6.342	/ 11,800	1,860	557	1856.3
	H2H69 DUP	1805	/ 10	6.398	11,900	1,860	557	1856.3
MS	H2H69 MS	1805	/ 10	8.458	15,700	1,860	557	1856.3
MSD	H2H69 MSD	1805	/ 10	/ 8.298		1,860	557	1856.3
SPIKE ADDED		1805	/ 10	/ 2.000	3,710	1,860	557	1856.3
	Н2Н7Ј	1885	/ 10	/ 3.585	6,950	1,940	582	1938.6
	H2H7J DUP	1885	/ 10	3.567	6,910	1,940	582	1938.6
	Н2Н7Р	1885	/ 10	/ 3.349		1,940	582	1938.6
	H2H7P DUP	1885	10	3.194	6,190	1,940	582	1938.6
	·			·				
								1

Rounded Result, ug HCI = Chloride result (ug/mL) x (MW HCI/MW CI) x Sample Volume (mL)

Rounded RL, ug HCI = Low Calibration Standard (ug/mL) x (MW HCI/MW CI) x Sample Volume (mL) x Bench Dilution

Rounded MDL, ug HCl = QuantIMS MDL (ug/mL) x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL) x (MW HCl/MW Cl) x Sample Volume (mL) x Bench Dilution QuantIMS Dilution Factor = Sample Volume (mL) x Bench Dilution x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL) x (MW HCl/MW Cl)

Molecular Weight (MW) HCl = 1.0079 + 35.453 = 36.4609

Molecular Weight (MW) Ci = 35.453

STL Knoxville Dionex IC Runlog Cover Page

Analyst:	CWK	Date:	4/21	06 Seq	uenc	e ID: D21-Lowl	EVEL - FC	LN02.	042106
Instrument:	□ p X-600	Method:	_ ′ ′	K-WC-0003, S					
mstrument.	☑ ICS-1500	wiethou:				-846 9056 ☐ EPA 300.	0 □ SW-846	9057-Mod	EPA 26A-Mod
	□ DX-320			ζ-WC-0014, Ε	EPA 3	14.0			
	Preventive	Maintenand	ce e		Ī	Ins	trument Con	ditions	
Daily:						Flow Rate =	1.00	mL/m	in
Check pum	p and gas pressur	re				Pressure =	2065	psi	
Check all li	nes for crimping,	leaks and di	iscolorat	ion		Conductance =	24.8	μS	
As Needed:						Suppressor Current =	43	mA	
☐ Change coli	umn and guard co	olumn				Eluent Generator =		mM K	ОН
☐ Change colu	umn and/or guard	l column bed	l support						
☐ Clean condi	uctivity cell								
☐ De-gas pum	p head when flow	w is erratic							
☐ Check/repla	ice eluant end lin	e filter							····
				MS/MSD S	pike :	Information	···-		
WO#	Compound	Spike	: ID	Parent Co	nc.	Spike Added (mL)	Final Volur	ne (mL)	Final Conc.
H2H69	Cl-	IWI-	8262	100 ppm		0.020 ml	Ione	,	0. 29pm
				111					11
				Manual Residence					**************************************
	· · · · · · · · · · · · · · · · · · ·								
									· · · · · · · · · · · · · · · · · · ·
									
	 								
Comments:									
		······································							·- <u></u> .
	·								·
			. , , , , , , , , , , , , , , , , , , ,						
☐ Sodium Thie	osulfate added to	NaOH impi	nger san	ınles					

Sequence: Operator: D21_LOWLEVEL-FCLNO2_042106

kaukerc

Page 1 of 3/1 Printed: 4/21/2006 1:18:33 PM

WK 4/21/06

Title:

Datasource:

ICS_1500_net

Location: Timebase: ICS1500 ICS1500

#Samples:

21

22

7

0

CCB

SHUTDOWN

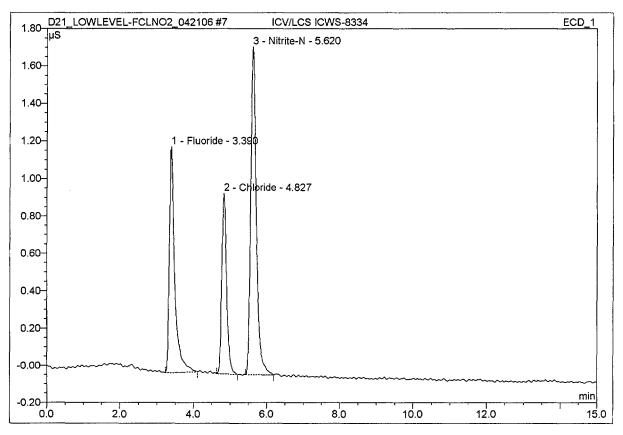
10S150 22 Created: Last Update:

50.0 4/21/2006 1:00:08 PM

50.0 4/17/2006 9:51:45 PM

4/21/2006 8:24:56 AM by kaukerc 4/21/2006 10:37:28 AM by kaukerc

1.0000

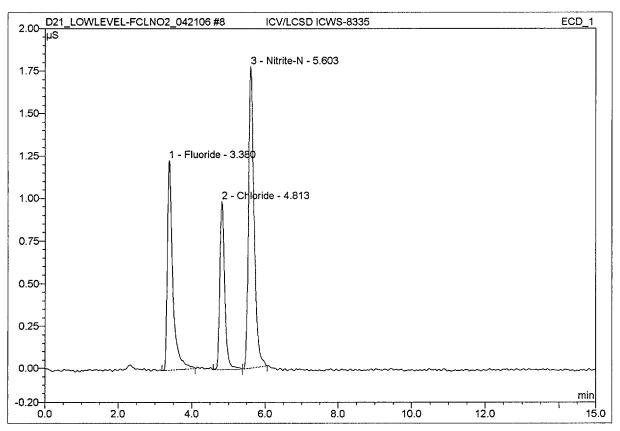

1.0000

1.0000

1.0000

*Multiplier Weight No. Name Sample ID Inj. Vol. Inj. Date/Time Dil. Factor [Liters] (A) CAL STD #2 ICWS-8231 50.0 3/23/2006 10:51:01 AM 1.0000 1.0000 **CAL STD #3 ICWS-8232** 50.0 3/23/2006 11:08:25 AM 1.0000 1.0000 1.0000 3 A CAL STD #4 ICWS-8233 1.0000 50.0 3/23/2006 11:25:49 AM 1.0000 1.0000 4 M CAL STD #5 ICWS-8234 50.0 3/23/2006 11:43:13 AM CAL STD #6 ICWS-8235 5 50.0 3/23/2006 12:00:37 PM 1.0000 1.0000 1.0000 1.0000 6 M CAL STD #1 ICWS-8230 50.0 3/23/2006 12:37:04 PM 1.0000 7 M ICV/LCS ICWS-8334 50.0 4/21/2006 8:29:43 AM 1.0000 1.0000 1.0000 8 ICV/LCSD ICWS-8335 50.0 4/21/2006 8:47:07 AM 7 9 ICB/METHOD BLK 50.0 4/21/2006 9:04:31 AM 1.0000 1.0000 10.0000 1.0000 10 M H6D040103 H2H69 1/10 50.0 4/21/2006 9:21:55 AM (a) H6D040103 H2H69 MS 1/10 0.2 PPM CL 1.0000 11 50.0 4/21/2006 9:51:24 AM 10.0000 10.0000 1,0000 12 ### H6D040103 H2H69 DUP 1/10 50.0 4/21/2006 10:23:29 AM H6D040103 H2H69 MSD 1/10 0.2 PPM CL 10.0000 1.0000 13 1 50.0 4/21/2006 10:40:54 AM 10.0000 1.0000 14 50.0 4/21/2006 10:58:18 AM H6D040103 H2H7J 1/10 15 7 H6D040103 H2H7J DUP 1/10 50.0 4/21/2006 11:15:43 AM 10.0000 1.0000 16 7 H6D040103 H2H7P 1/10 50.0 4/21/2006 11:33:07 AM 10.0000 1.0000 7 **CCV ICWS-8336** 50.0 4/21/2006 11:50:31 AM 1.0000 1.0000 17 1.0000 1.0000 18 7 CCB 50.0 4/21/2006 12:07:56 PM 19 7 H6D040103 H2H7P DUP 1/10 50.0 4/21/2006 12:25:19 PM 10.0000 1.0000 1.0000 1.0000 7 **CCV ICWS-8336** 4/21/2006 12:42:44 PM 20 50.0

7 ICV/LCS ICWS-8334 Sample Name: ICV/LCS ICWS-8334 Injection Volume: 50.0 Vial Number: 1207 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS METHOD Bandwidth: n.a. Quantif. Method: AS4A-SC ANION METHOD Dilution Factor: 1.0000				
· ·		· · · · · · · · · · · · · · · · · · ·		
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.	
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000	
Recording Time:	4/21/2006 8:29	Sample Weight:	1.0000	
Run Time (min):	15.00	Sample Amount:	1.0000	

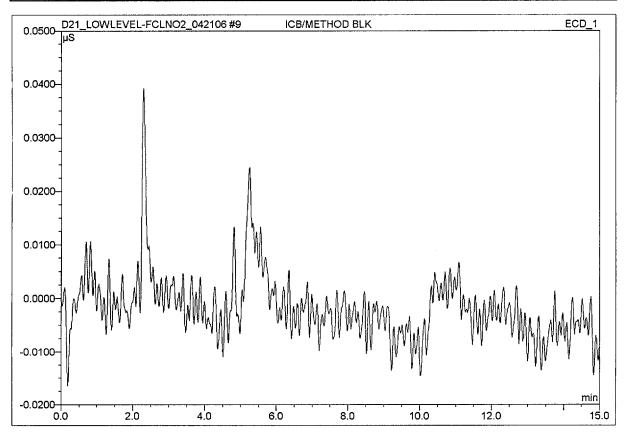


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	3.39	Fluoride	1.20880	0.207	30.83	0.4296	BMB
2	4.83	Chloride	0.96750	0.148	21.97	0.4933	BMB
3	5.62	Nitrite-N	1.75321	0.317	47.19	0.4928	BMB

98.7°1.R

H3XTLIAC

8 ICV/LCSD ICWS-8335							
Sample Name: Vial Number:	ICV/LCSD ICWS-8335 1207	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time:	4/21/2006 8:47	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				

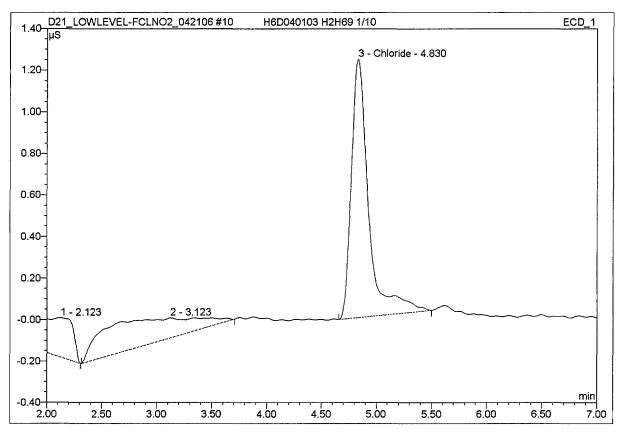


No.	Ret.Time	Peak Name	Height (uS)	Area uS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.38	Fluoride	1.23558	0.211	30.86	0.4387	BMB
2	4.81	Chloride	0.98917	0.154	22.55	0.5044	BMB
3	5.60	Nitrite-N	1.77402	0.318	46.60	0.4985	вмв

100.90lop

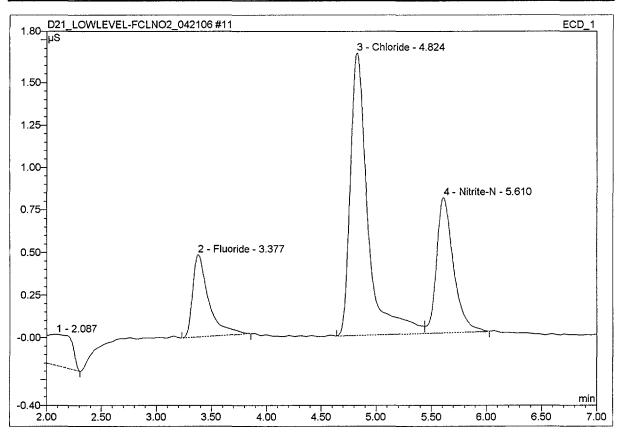
H3XTLIAD

9 ICB/METHOD BLK							
Sample Name: Vial Number:	ICB/METHOD BLK 1210	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time: Run Time (min):	4/21/2006 9:04 15.00	Sample Weight: Sample Amount:	1.0000 1.0000				

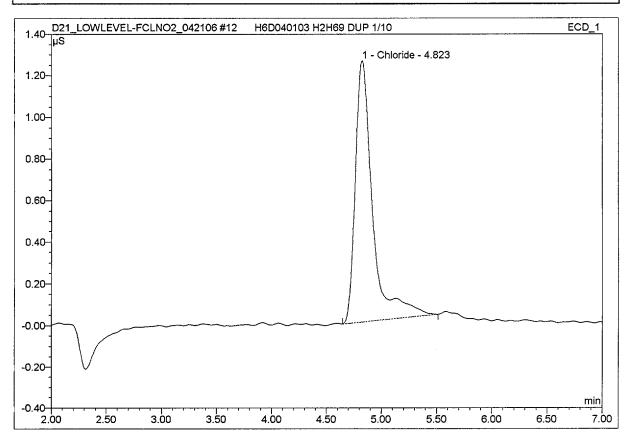


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

H3XTLIAA

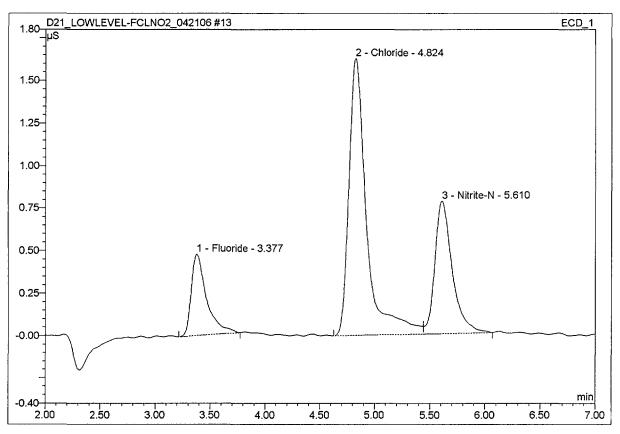

10 H6D040103 H2H69 1/10							
Sample Name: Vial Number:	H6D040103 H2H69 1/10 1210	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000				
Recording Time:	4/21/2006 9:21	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.12	n.a.	0.18854	0.125	0.50	n.a.	BMB
2	3.12	n.a.	0.09478	0.119	0.47	n.a.	BMB
3	4.83	Chloride	1.24248	0.226	0.90	6.3424	BMB
4	7.79	n.a.	0.44307	0.104	0.41	n.a.	BMB
5	12.42	n.a.	72.73359	24.650	97.73	n.a.	BMB

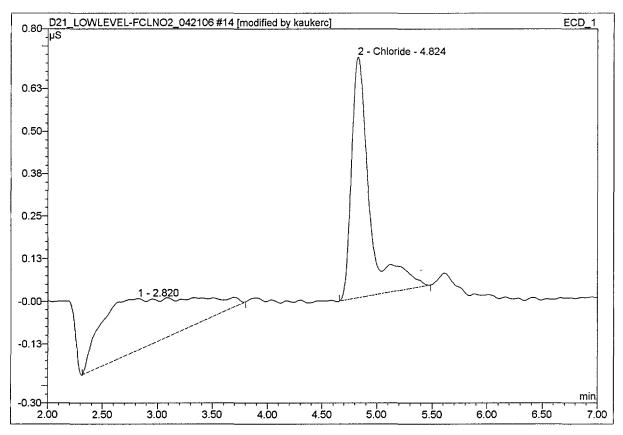

11 H6D040103 H2H69 MS 1/10 0.2 PPM CL

Sample Name: H6D040103 H2H69 MS 1/10 0.2 PPM CL Injection Volume: 50.0 Vial Number: Channel: 1243 ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: **AS14A ANIONS METHOD** Bandwidth: n.a. Quantif. Method: Dilution Factor: 10.0000 **AS4A-SC ANION METHOD** Recording Time: Sample Weight: 4/21/2006 9:51 1.0000 Run Time (min): 15.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.09	n.a.	0.18427	0.129	0.51	n.a.	BMB
2	3.38	Fluoride	0.48324	0.081	0.32	1.7740	BMB
3	4.82	Chloride	1.65682	0.307	1.21	8.4583	ВМ
4	5.61	Nitrite-N	0.79193	0.141	0.55	2.2517	MB
5	7.78	n.a.	0.43232	0.098	0.38	n.a.	BMB
6	12.41	n.a.	72.68974	24.697	97.03	n.a.	вмв


12 H6D040103 H2H69 DUP 1/10								
Sample Name: Vial Number:	H6D040103 H2H69 DUP 1/10 1244	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000					
Recording Time:	4/21/2006 10:23	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	4.82	Chloride	1.25329	0.229	0.90	6.3978	BMB
2	7.78	n.a.	0.43709	0.102	0.40	n.a.	вмв
3	12.41	n.a.	73.77207	25.129	98.70	n.a.	вмв

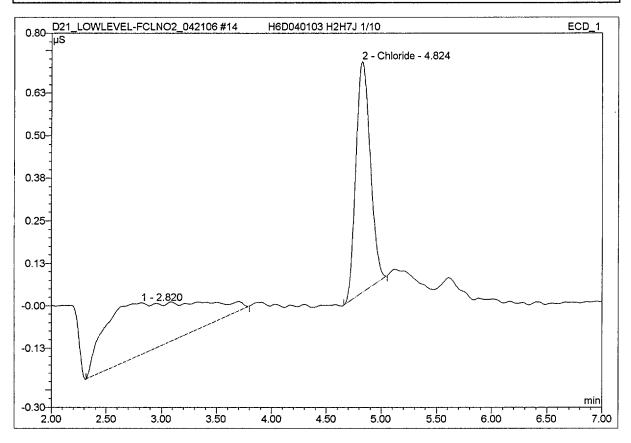

13 H6D040103 H2H69 MSD 1/10 0.2 PPM CL

Sample Name: H6D040103 H2H69 MSD 1/10 0.2 PPM CL Injection Volume: 50.0 Vial Number: 1245 Channel: ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: **AS14A ANIONS METHOD** Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 10.0000 Recording Time: 4/21/2006 10:40 Sample Weight: 1.0000 Run Time (min): 15.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.38	Fluoride	0.47914	0.078	0.31	1.7596	BMB
2	4.82	Chloride	1.62542	0.303	1.19	8.2982	вм
3	5.61	Nitrite-N	0.77838	0.143	0.56	2.2135	MB
4	7.78	n.a.	0.44059	0.100	0.39	n.a.	вмв
5	12.41	n.a.	72.79631	24.798	97.54	n.a.	вмв

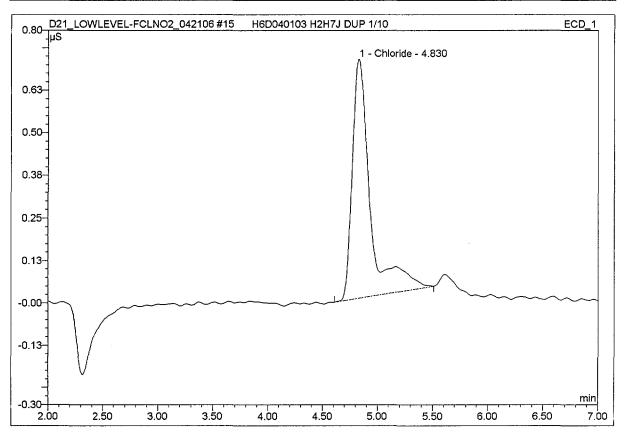
14 H6D040	14 H6D040103 H2H7J 1/10							
Sample Name: Vial Number:	H6D040103 H2H7J 1/10 1246	Injection Volume: Channel:	50.0 ECD 1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000					
Recording Time: Run Time (min):	4/21/2006 10:58 15.00	Sample Weight: Sample Amount:	1.0000 1.0000					

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.82	n.a.	0.15194	0.142	0.61	n.a.	вмв
2	4.82	Chloride	0.70547	0.136	0.58	3.5847	BMB*
3	7.78	n.a.	0.36414	0.080	0.34	n.a.	вмв
4	12.42	n.a.	67.67685	22.968	98.47	n.a.	вмв

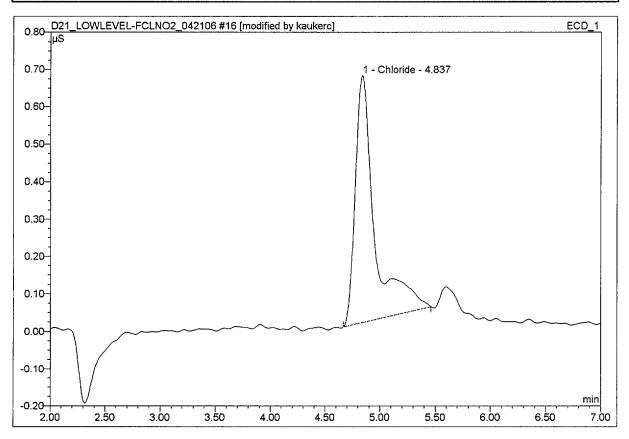

Manual integration

(B)

CWX
4/24/06


14 H6D040	14 H6D040103 H2H7J 1/10							
Sample Name: Vial Number:	H6D040103 H2H7J 1/10 1246	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000					
Recording Time:	4/21/2006 10:58	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					

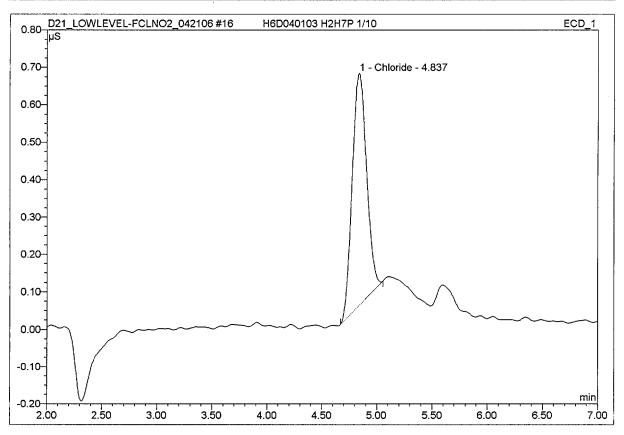
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.82	n.a.	0.15194	0.142	0.61	n.a.	вмв
2	4.82	Chloride	0.67788	0.103	0.44	3.4426	вмв
3	7.78	n.a.	0.36414	0.080	0.35	n.a.	вмв
4	12.42	n.a.	67.67685	22.968	98.60	n.a.	вмв


original

15 H6D040103 H2H7J DUP 1/10							
Sample Name: Vial Number:	H6D040103 H2H7J DUP 1/10 1247	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000				
Recording Time:	4/21/2006 11:15	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	4.83	Chloride	0.70199	0.134	0.58	3.5668	вмв
2	7.78	n.a.	0.37046	0.087	0.38	n.a.	вмв
3	12.41	n.a.	66.81145	22.670	99.03	n.a.	вмв

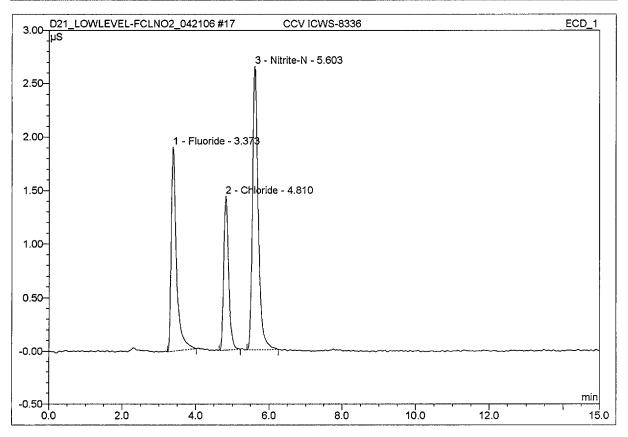
16 H6D040103 H2H7P 1/10								
Sample Name: Vial Number:	H6D040103 H2H7P 1/10 1248	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000					
Recording Time:	4/21/2006 11:33	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					


No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	4.84	Chloride	0.65981	0.135	0.46	3.3494	BMB*
2	7.76	n.a.	4.96453	1.151	3.90	n.a.	вмв
3	12.40	n.a.	82.41413	28.243	95.65	n.a.	BMB

manual integration

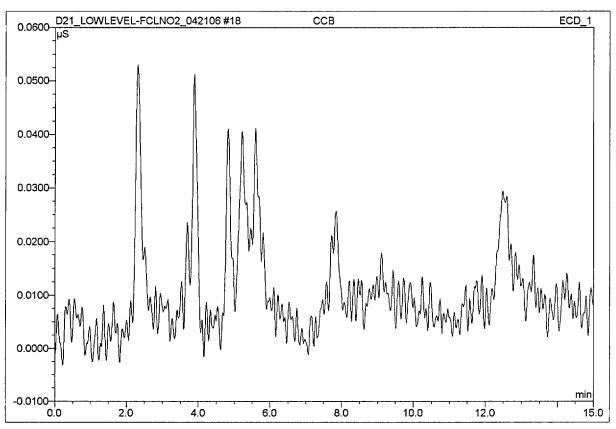
CWK B

4/24/06


16 H6D040103 H2H7P 1/10								
H6D040103 H2H7P 1/10 1248	Injection Volume: Channel:	50.0 ECD_1						
unknown	Wavelength:	n.a.						
AS14A ANIONS METHOD	Bandwidth:	n.a.						
AS4A-SC ANION METHOD	Dilution Factor:	10.0000						
4/21/2006 11:33	Sample Weight:	1.0000 1.0000						
	H6D040103 H2H7P 1/10 1248 unknown AS14A ANIONS METHOD AS4A-SC ANION METHOD	H6D040103 H2H7P 1/10 1248 Channel: unknown Wavelength: AS14A ANIONS METHOD AS4A-SC ANION METHOD Dilution Factor: 4/21/2006 11:33 Injection Volume: Channel: Wavelength: Dilution Factor: Sample Weight:						

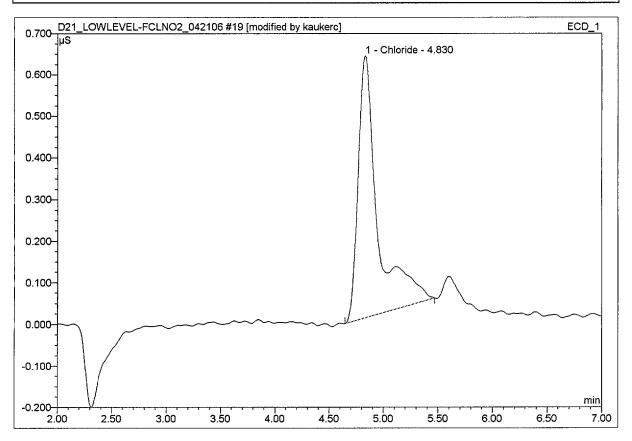
No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	4.84	Chloride	0.62005	0.093	0.32	3.1444	вмв
2	7.76	n.a.	4.96453	1.151	3.90	n.a.	вмв
3	12.40	n.a.	82.41413	28.243	95.78	n.a.	вмв

original


17 CCV ICWS-8336						
Sample Name: Vial Number:	CCV ICWS-8336 1249	Injection Volume: Channel:	50.0 ECD_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000			
Recording Time:	4/21/2006 11:50	Sample Weight:	1.0000			
Run Time (min):	15.00	Sample Amount:	1.0000			

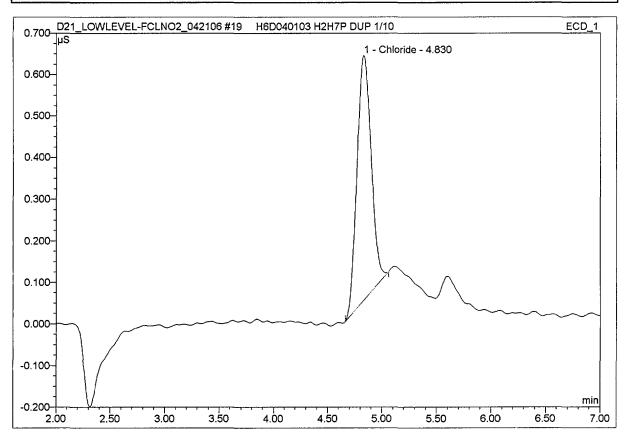
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	1.90669	0.313	30.70	0.6654	BMB
2	4.81	Chloride	1.43798	0.222	21.75	0.7342	BMB
3	5.60	Nitrite-N	2.64768	0.486	47.55	0.7363	BMB

97.9% LF


18 CCB			
Sample Name:	CCB	Injection Volume:	50.0
Vial Number:	1250	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/21/2006 12:07	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

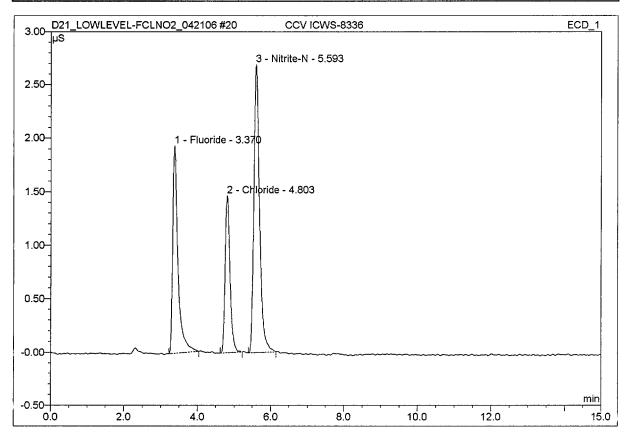
19 H6D040103 H2H7P DUP 1/10							
Sample Name: Vial Number:	H6D040103 H2H7P DUP 1/10 1251	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000				
Recording Time: Run Time (min):	4/21/2006 12:25 15.00	Sample Weight: Sample Amount:	1.0000 1.0000				



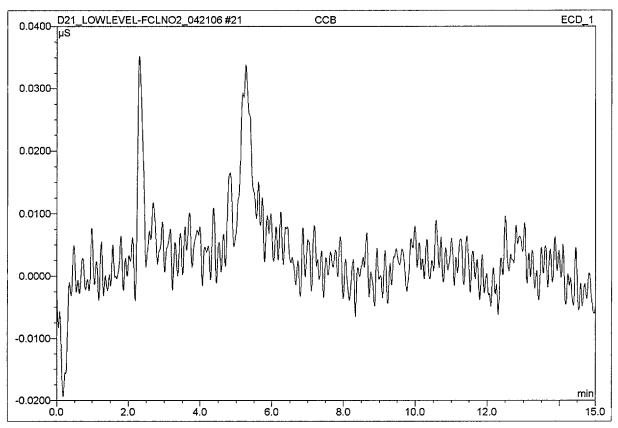
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	4.83	Chloride	0.62967	0.131	0.45	3.1940	BMB*
2	7.75	n.a.	4.94284	1.143	3.89	n.a.	BMB
3	12.40	n.a.	82.06895	28.147	95.67	n.a.	BMB

manual integration WK B

4/24/06


19 H6D040103 H2H7P DUP 1/10						
Sample Name: Vial Number:	H6D040103 H2H7P DUP 1/10 1251	Injection Volume: Channel:	50.0 ECD 1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.			
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	10.0000			
Recording Time: Run Time (min):	4/21/2006 12:25 15.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	4.83	Chloride	0.58898	0.089	0.30	2.9842	BMB
2	7.75	n.a.	4.94284	1.143	3.89	n.a.	вмв
3	12.40	n.a.	82.06895	28.147	95.81	n.a.	вмв


20 CCV IC	20 CCV ICWS-8336						
Sample Name: Vial Number:	CCV ICWS-8336 1258	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time: Run Time (min):	4/21/2006 12:42 15.00	Sample Weight: Sample Amount:	1.0000 1.0000				

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	3.37	Fluoride	1.94056	0.320	30.93	0.6766	вмв
2	4.80	Chloride	1.46825	0.226	21.85	0.7497	BMB
3	5.59	Nitrite-N	2.69337	0.488	47.22	0.7486	BMB

99.9068

21 CCB			
Sample Name:	CCB	Injection Volume:	50.0
Vial Number:	1259	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/21/2006 13:00	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

STL Knoxville Anions in Air Data Review / Narrative Checklist for Methods 9056/9057/26A, SOP KNOX-WC-0005, Rev. 5 Page 1 of 1

Lot Number HGD040331 HGD040103 Analysis Date: 4/25/06	File	iD:	D25	- LOWLEVEL-FULNOZ- ICAL FILE ID: C23-LOWLEVEL-FULNOZ	-032306
Review Items	NA	Ves	No	If No, why is data reportable?	2 nd 1
1. Were PM checklists (I.40), Lot Summary and any applicable QAS reviewed?		V			/
2. ICV within 90-110%R and ICB/CCB < 1/2 RL?		\checkmark			
3. CCVs/CCBs run after every 10 samples, and at end of sequence?		1			/
4. Is %D ≤10% for each CCV?					
5. If CCV failed, was it rerun only once?	1				NA
6. LCS/LCSD analytes within 90-110%R? If no, list LCS ID:		,		☐ [lcs3] LCS recovery >upper control limit & sample results are	1
		/	<u> </u>	<rl,*< td=""><td></td></rl,*<>	
7. Method blank < 1/2 RL?		/		□ [mb3] No analyte > RL in associated samples.*	
If no, list blank II):	<u> </u>	V,		☐ [mb7] Sample results > 10x higher than blank.	
8. Matrix spikes run at required frequency?		V	ļ		
9. Matrix spikes within 75-125% recovery?		/	1	☐ [air ms1] MS %R slightly outside limits for 1 sample.	
If no. list MS ID: H2HTV - high recovery due to matrix		•	1	air ms2] MS %R slightly outside limits for >1 sample.	
interferences.	ļ	1		✓ Air train reagent blank – spike result not reported.	
10. Were MS run #'s assigned to all matrix spikes except reagent blanks? 11. Sample analyses done within holding time (HT)?	ļ	V		☐ [ht1] IIT expired upon receipt.	
If no, list samples:		\checkmark		□ [ht2] Analysis requested after HT expired.*	
12. Were results processed using correct ICAL?		./	 	13 [m2] Analysis requested tyler 111 expired.	
13. Are positive results within the calibration range?	 	7			/_
14. Is integration acceptable for all samples, QC samples and standards?	 	Ž			
15. For manual integrated standards and QC samples, are before/after chromatograms		,		Reasons: S=Split peak, U=Undetected peak, I=Incorrect peak integration,	/
provided with initials/date/reason?		/	İ	B=Baseline correction, W=Wrong peak chosen by data system.	
16. Calculations checked for error? (Document manual calculation checks.)		1			
17. Were spreadsheets checked for transcription errors?	<u> </u>	V,			/
18. Final report/F6 correct? (Verify results, RLs, units, qualifiers, DFs, dates, spikes.)	/	V			JA
19. Are all nonconformances documented and discussed in narrative?	V			List NCM #:	MIK
20. Appropriate air train autotext selected for narrative?		/		[air1] Cl' reported as HCl and Cl ₂ .	
		V		□ [air2] Cl reported as HCl only.	/
				□ [air3] Cl ⁺ , F ⁺ reported as HCl, Cl ₂ , HF.	
				□ [air4] Cl', F', Br' reported as HCl, Cl ₂ , HF, HBr, Br ₂ .	
			1	☐ [air5] Cl', F', NO ₂ ', NO ₃ ' reported as HCl, Cl ₂ , HF, HNO ₂ , HNO ₃ . ☐ [air6] Cl', F', Br', I' reported as HCl, Cl ₂ , HF, HBr, Br ₂ , I'.	
				☐ [air7] Cl', F', NO ₂ ', NO ₃ ' reported as Cl', F', NO ₂ ', NO ₃ '.	
21. Sample pH adjustment included in narrative?	1	 	-	☐ [air pH] Sample pH adjusted prior to analysis.	NA
22. Audit sample results included in narrative?	1		+	□ [audit2] Audit results in mg/L.	NA
	1100	101			
Analyst: WK Date:	1/25	100			7/04
Comments: H2K9M MS 1150 V: 0.012524 + 1.92498 (0.173218) + 0.022501	10-1	722		Comments:	
V= 0.012524 + 0.333441186 + 0.000675053	(0,1	17~	1017		
Y= 0.3466 /			+		
Y- V-2164					

^{*} Such action must be taken in consultation with client.

STL Knoxville Hydrogen Chloride (HCl) Analysis

Batch No.: 6115303

QuantIMS RL (ug/mL): 1.0
QuantIMS MDL (ug/mL): 0.3
Low Calibration Standard (ug/mL): 0.1

2nd Level Review by:

Date:

No. of Significant Figures:

4/27/04

Low C	alibration Standard			0.1	 					
		Sample			Final Chloride Result		Rounded	Rounded	Rounded	QuantIMS
		Volume	Beno		(ug/mL)		Result	RL	MDL	Dilution
Sample Type	Lab ID	(mL)	Diluti	on	(Corrected for bench dilution)		ug HCl	ug HCl	ug HCl	Factor
BLANK	H31Q81AA	100		1	0.000		ND	10.3	3.09	10.3
LCS	H31Q81AC	100	/	1	0.509		52.4	10.3	3.09	10.3
LCSD	H31Q81AD	100	1	1	0.503		51.7	10.3	3.09	10.3
SPIKE ADDED		100	/	1	0.500		51.4	10.3	3.09	10.3
	H2H7F	100	/	50	0.351		ND	514	154	514.2
	H2H7F DUP	100	/	50	0.796	1	ND	514	154	514.2
	H2H7F MS	100	_	50	8.473	7	871	514	154	514.2
SPIKE ADDED		100	7	50	10.000		1,030	514	154	514.2
							• • • • • • • • • • • • • • • • • • • •			
				-						
				-						
	-					_				
										· · · · · · · · · · · · · · · · · · ·
						_				
						_				
L	l				1			1		

Rounded Result, ug HCI = Chloride result (ug/mL) x (MW HCI/MW CI) x Sample Volume (mL)

Rounded RL, ug HCl = Low Calibration Standard (ug/mL) x (MW HCl/MW Cl) x Sample Volume (mL) x Bench Dilution

Rounded MDL, ug HCl = QuantIMS MDL (ug/mL) x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL) x (MW HCl/MW Cl) x Sample Volume (mL) x Bench Dilution QuantIMS Dilution Factor = Sample Volume (mL) x Bench Dilution x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL) x (MW HCl/MW Cl)

Molecular Weight (MW) HCI = 1.0079 + 35.453 = 36.4609

Molecular Weight (MW) CI = 35.453

H6D040103

STL Knoxville Chlorine (Cl₂) Analysis

Batch No.: 6116088

QuantIMS RL (ug/mL):

2nd Level Review by: Auth
Date: 4/27/06

QuantIMS MDL (ug/mL): Low Calibration Standard (ug/mL):

No. of Significant Figures:

		Sample Volume	Bench	Final Chloride Result (ug/mL)	Rounded Result	Rounded RL	Rounded MDL	QuantIMS Dilution
Sample Type	Lab ID	(mL)	Dilution	· -		ug Cl ₂	ug Cl ₂	Factor
	<u> </u>	100			<u></u>			
	H33H91AA H33H91AC	100			110		3.00	10.0 10.0
	H33H91AD	100						10.0
SPIKE ADDED	INSSHAIND	100		0.500	50.0		3.00 3.00	10.0
	H2H7V	305			1,940		183	610.0
	H2H7V DUP	305	20				183	610.0
	H2H7V MS	305		12.000				610.0
	H2H7V MSD	305					183	610.0
SPIKE ADDED	11211/ 4 141515	305		4.000		610	183	610.0
Of IRE ADDED		303	20	7.000	1,220	010	103	010.0

				,				
	· · · · · · · · · · · · · · · · · · ·							
				1-1-1-1				

Rounded Result, ug Cl₂ = Chloride result (ug/mL) x Sample Volume (mL)

Rounded RL, ug Cl₂ = Low Calibration Standard (ug/mL) x Sample Volume (mL) x Bench Dilution

Rounded MDL, ug Cl₂ = QuantlMS MDL (ug/mL) x Low Calibration Standard (ug/mL) / QuantlMS RL (ug/mL) x Sample Volume (mL) x Bench Dilution QuantIMS Dilution Factor = Sample Volume (mL) x Bench Dilution x Low Calibration Standard (ug/mL) / QuantIMS RL (ug/mL)

STL Knoxville Dionex IC Runlog Cover Page

Analyst:	CWK	Date:	4/25/0	b Sea	uence ID:	D25-LOWL	EVEL-FCL	NO2 - 04	2506	. _
Instrument:	☐ DX-600	Method:			SW-846 0061. □ SW-846 90	/7199 56 □ EPA 300.	0 □ SW-846	9057-Mod	E EPA	26A-Mod
	□ DX-320			(-WC-0014, 1						
	Preventive	Maintenan	ce			Ins	trument Cor	ıditions		
Daily:				-,		Flow Rate =	1.00	mL/m	in	
	p and gas pressu	re				Pressure =	2060	psi		
/	nes for crimping		liscolorati	on		Conductance =	24.7	μS		
As Needed:		, 104110 4414 0				ssor Current =	43	mA		
	ımn and guard c	olumn				nt Generator =		mM K	OH	
_	ımn and/or guard		d support							
☐ Clean condi	_		F F				· · · · · · · · · · · · · · · · ·			
	p head when flo	w is erratic								
	ice eluant end lin									
]	MS/MSD S	pike Inform	nation			:	
WO #	Compound	Spik	e ID	Parent Co	nc. Spik	e Added (mL)	Final Volu	me (mL)	Fin	al Conc.
H2H7F	CI-	IcwI.		100 00		.020 ml	low		0.2	2 ppM
H2K9M	a	1	0202	100 pg/	n 0	1	1	-	1	<u>- 11 </u>
HALPC	C1-	16W1-	8262	100 88N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \).020 ml	lom	e	0.2	ppm
H2XPV	CI-	1				\	1			11
112471	CI-									
100										
	<u> </u>		-							
<u> </u>							· · · · · · · · · · · · · · · · · · ·			
									9.,	
										
Comments:							<u> </u>			
	High ve	nvena d	w to	mahij i	ntertino.	ces for sa	mole Hot	17V/H0	D040	7103).
	Flyn ra	-0 V C-1-3 K	4 - C 4 -	ו אוואין	- CIVI FLA CAC	الله والله	h flagt	(100/
								,		
V Sodium Thi	osulfate added to	NaOH imp	inger sam	ınles						

CWK

4/26/06

Sequence: Operator:

D25_LOWLEVEL-FCLNO2_042506

kaukerc

Page 1 of **42** Printed: 4/26/2006 10:15:07 AM

Title:

Datasource:

Location:

ICS_1500_net ICS1500 ICS1500

Timebase: #Samples:

42

4/25/2006 9:18:45 AM by kaukerc

Created: 4/26/2006 10:13:43 AM by kaukerc Last Update:

No.	Nai	me	Sample ID	lnj. Vol.	Inj. Date/Time	Dil. Factor	*Multiplier [Liters]	Weight
1	Õ	CAL STD #2 ICWS-8231		50.0	3/23/2006 10:51:01 AM	1.0000		1.0000
2	ñ	CAL STD #3 ICWS-8232		50.0	3/23/2006 11:08:25 AM	1.0000		1.0000
3		CAL STD #4 ICWS-8233		50.0	3/23/2006 11:25:49 AM	1.0000		1.0000
4	Ö	CAL STD #5 ICWS-8234		50.0	3/23/2006 11:43:13 AM	1.0000		1.0000
5	7	CAL STD #6 ICWS-8235		50.0	3/23/2006 12:00:37 PM	1.0000		1.0000
6	8	CAL STD #1 ICWS-8230		50.0	3/23/2006 12:37:04 PM	1.0000		1.0000
7		ICV/LCS ICWS-8346		50.0	4/25/2006 9:22:03 AM	1.0000		1.0000
8	2	ICV/LCSD ICWS-8347		50.0	4/25/2006 9:39:27 AM	1.0000		1.0000
9	2	ICB/METHOD BLK		50.0	4/25/2006 9:56:51 AM	1.0000		1.0000
10	2	H6D040331 H2K9M 1/50		50.0	4/25/2006 10:14:15 AM	50.0000		1.0000
11	2	H6D040331 H2K9M MS 1/50 0.2 PPM CL		50.0	4/25/2006 10:31:40 AM	50.0000		1.0000
12	7	H6D040331 H2K9M DUP 1/50		50.0	4/25/2006 10:49:04 AM	50.0000		1.0000
13	7	H6D040103 H2H7F 1/50		50.0	4/25/2006 11:06:28 AM	50.0000		1.0000
14	2	H6D040103 H2H7F DUP 1/50		50.0	4/25/2006 11:23:53 AM	50.0000		1.0000
15	3	H6D040103 H2H7F MS 1/50 0.2 PPM CL		50.0	4/25/2006 11:41:17 AM	50.0000		1.0000
16	8	H6D100156 H2XPC 1/10		50.0	4/25/2006 12:04:07 PM	10.0000		1.0000
17	7	CCV ICWS-8348		50.0	4/25/2006 12:21:31 PM	1.0000		1.0000
18		CCB		50.0	4/25/2006 12:38:56 PM	1.0000		1.0000
19	7	H6D100156 H2XPC 1/200		50.0	4/25/2006 12:56:20 PM	200.0000		1.0000
20	2	H6D100156 H2XPC MS 1/200 0.2 PPM CL		50.0	4/25/2006 1:13:44 PM	200.0000		1.0000
21	7	H6D100156 H2XPC 1/200		50.0	4/25/2006 1:39:14 PM	200.0000		1.0000
22	8	H6D100156 H2XPC MS 1/200 0.2 PPM CL		50.0	4/25/2006 1:56:39 PM	200.0000		1.0000
23	8	H6D100156 H2XPC DUP 1/200		50.0	4/25/2006 2:14:03 PM	200.0000		1.0000
24	8	H6D100156 H2XPP 1/200		50.0	4/25/2006 2:40:20 PM	200.0000		1.0000
25	2	H6D100156 H2XPP DUP 1/200		50.0	4/25/2006 2:57:45 PM	200.0000		1.0000
26	8	H6D100156 H2XPK 1/200		50.0	4/25/2006 3:15:10 PM	200.0000		1.0000
27	2	H6D100156 H2XPK DUP 1/200		50.0	4/25/2006 3:32:34 PM	200.0000		1.0000
28	3	H6D100156 H2XPV 1/50		50.0	4/25/2006 3:49:58 PM	50.0000		1.0000
29	7	CCV ICWS-8348		50.0	4/25/2006 4:07:22 PM	1.0000		1.0000
30	2	ССВ		50.0	4/25/2006 4:24:46 PM	1.0000		1.0000
31	7	H6D100156 H2XPV DUP 1/50		50.0	4/25/2006 4:42:10 PM	50.0000		1.0000
32		H6D100156 H2XPV MS 1/50 0.2 PPM CL		50.0	4/25/2006 4:59:34 PM	50.0000		1.0000
33	7	H6D100156 H2XPV 1/100		50.0	4/25/2006 5:16:58 PM	100.0000		1.0000
34	2	H6D100156 H2XPV DUP 1/100		50.0	4/25/2006 5:34:23 PM	100.0000		1.0000
35		H6D100156 H2XPV MS 1/100 0.2 PPM CL		50.0	4/25/2006 5:51:47 PM	100.0000		1.0000
36	2	H6D040103 H2H7V 1/20		50.0	4/25/2006 6:09:11 PM	20.0000		1.0000
37	7	H6D040103 H2H7V DUP 1/20		50.0	4/25/2006 6:41:36 PM	20.0000		1.0000
38	2	H6D040103 H2H7V MS 1/20 0.2PPM CL		50.0	4/25/2006 7:14:00 PM	20.0000		1.0000
39	2	H6D040103 H2H7V MSD 1/20 0.2PPM CL		50.0	4/25/2006 7:46:24 PM	20.0000		1.0000
40	2	CCV ICWS-8348		50.0	4/25/2006 8:18:49 PM	1.0000		1.0000
41	<u> </u>	CCB		50.0	4/25/2006 8:36:13 PM	1.0000		1.0000

126

Sequence:

D25_LOWLEVEL-FCLNO2_042506

Operator:

kaukerc

2 • f Page 4 of 6 Printed: 4/26/2006 10:15:07 AM

> cwk 1/26/06

Title:

Datasource:

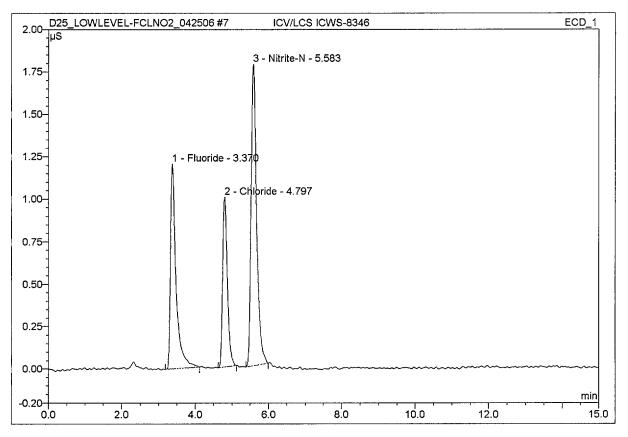
ICS_1500_net

Location: Timebase: ICS1500 ICS1500

#Samples:

42

Created:


4/25/2006 9:18:45 AM by kaukerc

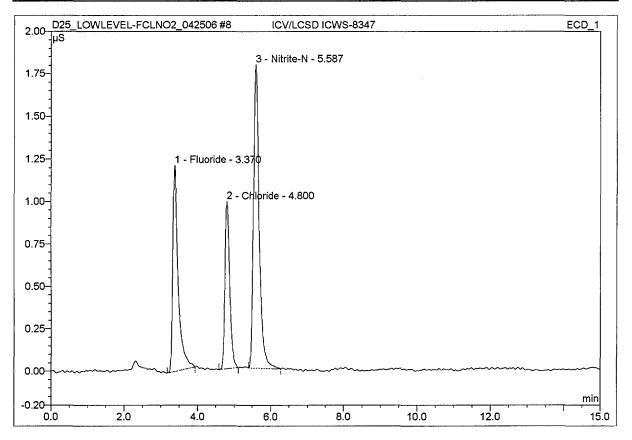
Last Update:

4/26/2006 10:13:43 AM by kaukerc

No.	Name	Sample ID	Inj. Vol.	Inj. Date/Time	Dil. Factor	*Multiplier [Liters]	Weight
42	SHUTDOWN		50.0	4/25/2006 8:53:37 PM	1.0000		1.0000

7 ICV/LCS ICWS-8346								
Sample Name: Vial Number:	ICV/LCS ICWS-8346 1207	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time:	4/25/2006 9:22	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area uS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	1.20690	0.210	31.13	0.4289	
2	4.80	Chloride	0.99883	0.150	22.20	0.5093	BMB
3	5.58	Nitrite-N	1.77443	0.315	46.67	0.4986	BMB


101.9°WR

H31Q81AC

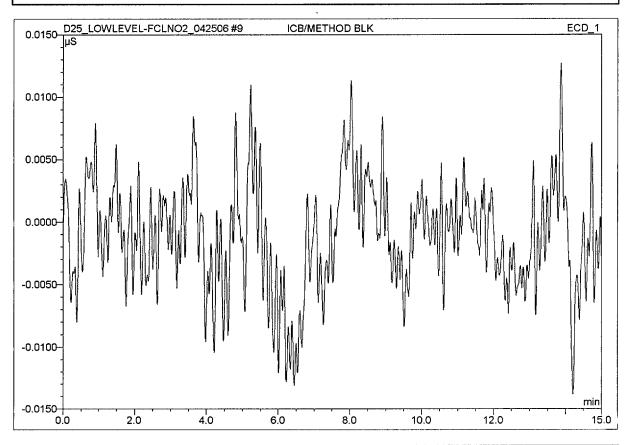
H33H9IAC H33JPIAC

H313GLAC

8 ICV/LCSD ICWS-8347							
Sample Name: Vial Number:	ICV/LCSD ICWS-8347 1207	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000				
Recording Time:	4/25/2006 9:39	Sample Weight:	1.0000				
Run Time (min):	15.00	Sample Amount:	1.0000				

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	1.21362	0.206	30.34	0.4312	BMB
2	4.80	Chloride	0.98592	0.149	21.94	0.5027	вмв
3	5.59	Nitrite-N	1.78392	0.324	47.72	0.5013	вмв

100.5%

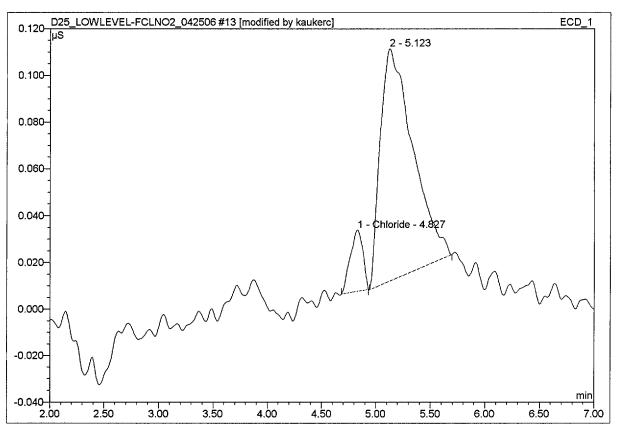

H31 Q81ATD

H33 H9 1AD

H33J PIAD

H31361AD

9 ICB/ME	9 ICB/METHOD BLK							
Sample Name: Vial Number:	ICB/METHOD BLK 1210	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time: Run Time (min):	4/25/2006 9:56 15.00	Sample Weight: Sample Amount:	1.0000 1.0000					

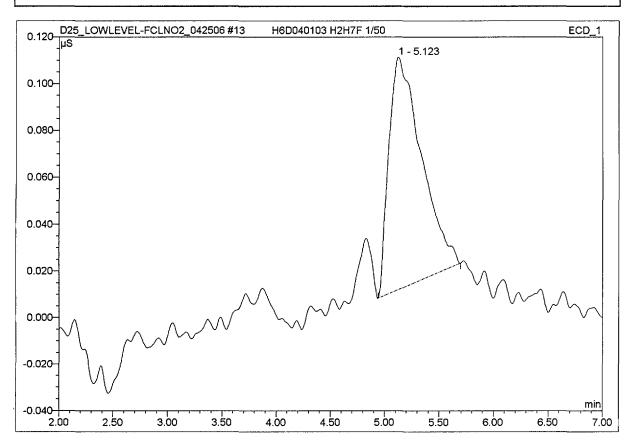

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

H31Q81AA H313G1AA H33 H9 IAA H335 PIAA

13 H6D040103 H2H7F 1/50

Sample Name: H6D040103 H2H7F 1/50 Injection Volume: 50.0 Vial Number: 1245 Channel: ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: **AS14A ANIONS METHOD** Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 50.0000 Recording Time: 4/25/2006 11:06 Sample Weight: 1.0000 Run Time (min): 15.00 Sample Amount: 1.0000

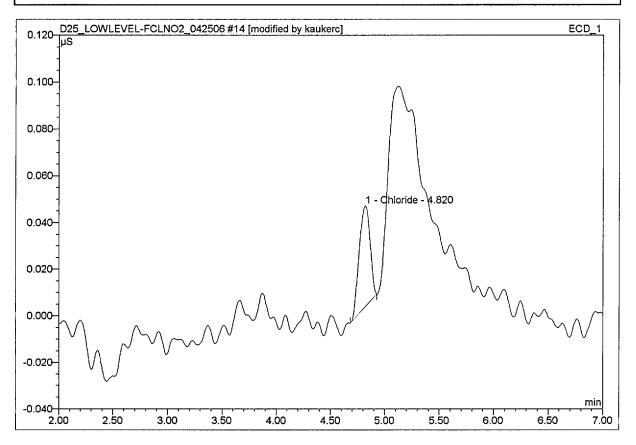
	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak	
		(min.)		(uS)	μS*min	(%)	(mg/L)	Туре	J .
	1	4.83	Chloride	0.02603	0.003	0.01	0.3507	BMB*	ZMDL
i	2	5.12	n.a.	0.09927	0.034	0.10	n.a.	вмв	
	3	12.27	n.a.	98.84110	33.175	99.89	n.a.	вмв	


manual integration Peak unidentified

CWK 4/25/06

Analyzed & 150 to Separate matrix interference (RT 5.123) from Cl-peak. 1271 06/20 4 /10 dilutions did not provide separation.

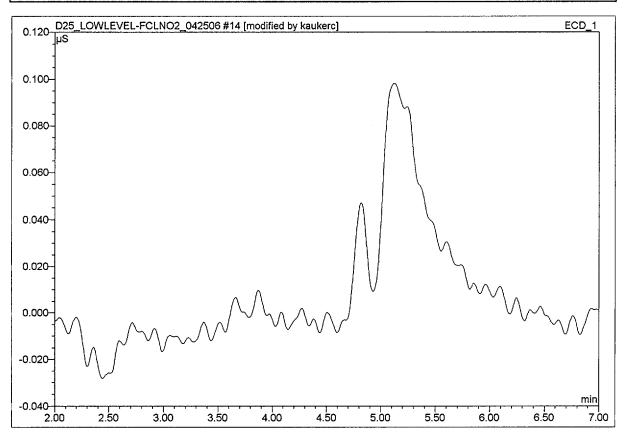
Chromeleon (c) Dionex 1996-2001 Version 6.50 SP4 Build 1000


13 H6D040103 H2H7F 1/50 Sample Name: H6D040103 H2H7F 1/50 Injection Volume: 50.0 Vial Number: 1245 Channel: ECD_1 Sample Type: Wavelength: unknown n.a. Control Program: Bandwidth: **AS14A ANIONS METHOD** n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 50.0000 Recording Time: 4/25/2006 11:06 Sample Weight: 1.0000 Run Time (min): Sample Amount: 1.0000 15.00

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	5.12	n.a.	0.09927	0.034	0.10	n.a.	BMB
2	12.27	n.a.	98.84110	33.175	99.90	n.a.	вмв

original

14 H6D040103 H2H7F DUP 1/50							
Sample Name: Vial Number:	H6D040103 H2H7F DUP 1/50 1246	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	50.0000				
Recording Time: Run Time (min):	4/25/2006 11:23 15.00	Sample Weight: Sample Amount:	1.0000 1.0000				

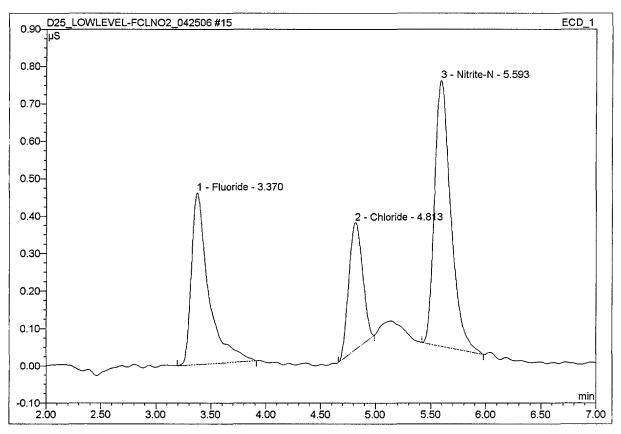

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak	
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type] ,
1	4.82	Chloride	0.04316	0.005	0.02	0.7955	BMB*]
2	12.25	n.a.	98.85907	33.190	99.98	n.a.	BMB]

-mDL

manual integration
Peak unidentified

WK 4/25/06

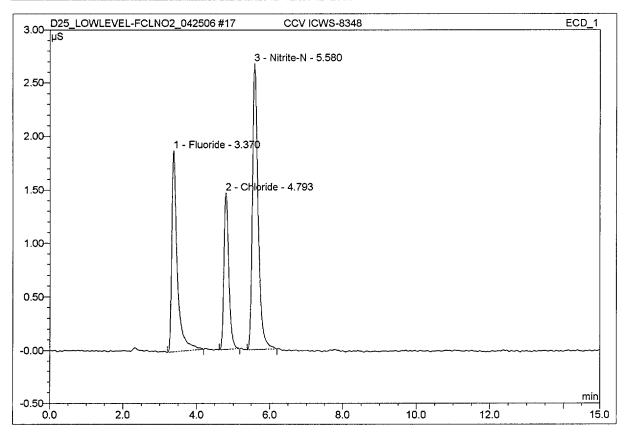
14 H6D040103 H2H7F DUP 1/50								
Sample Name: Vial Number:	H6D040103 H2H7F DUP 1/50 1246	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	50.0000					
Recording Time: Run Time (min):	4/25/2006 11:23 15.00	Sample Weight: Sample Amount:	1.0000 1.0000					



No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	µS*min	(%)	(mg/L)	Туре
1	12.25	n.a.	98.85907	33.190	100.00	n.a.	вмв

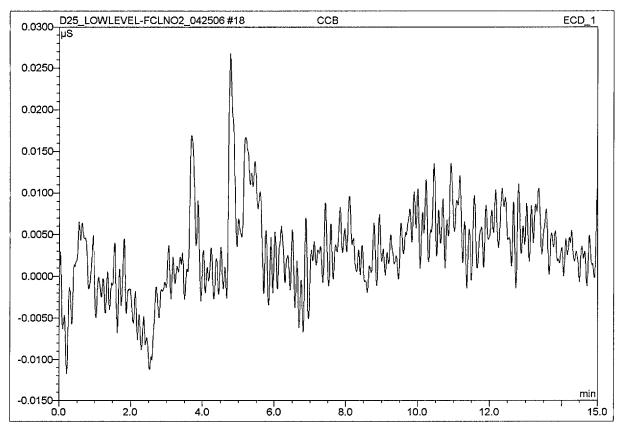
original

15 H6D040103 H2H7F MS 1/50 0.2 PPM CL


Sample Name: H6D040103 H2H7F MS 1/50 0.2 PPM CL Injection Volume: 50.0 Vial Number: 1247 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: **AS14A ANIONS METHOD** Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 50.0000 Recording Time: Sample Weight: 1.0000 4/25/2006 11:41 Run Time (min): 15.00 Sample Amount: 1.0000

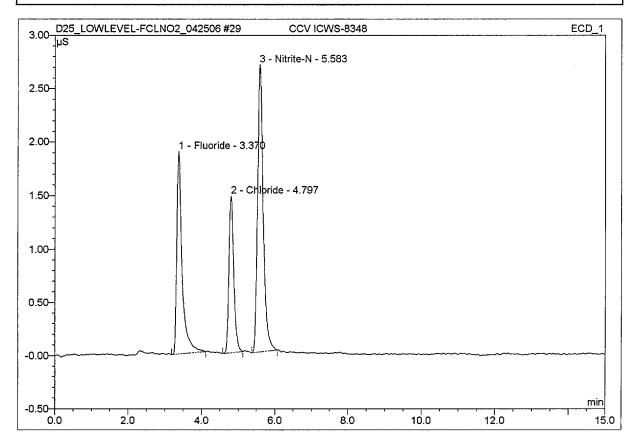
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	0.45870	0.083	0.25	8.4371	вмв
2	4.81	Chloride	0.33936	0.049	0.15	8.4726	вмв
3	5.59	Nitrite-N	0.70986	0.121	0.36	10.1011	вмв
4	12.26	n.a.	98.96616	33.177	99.24	n.a.	ВМВ

857, R

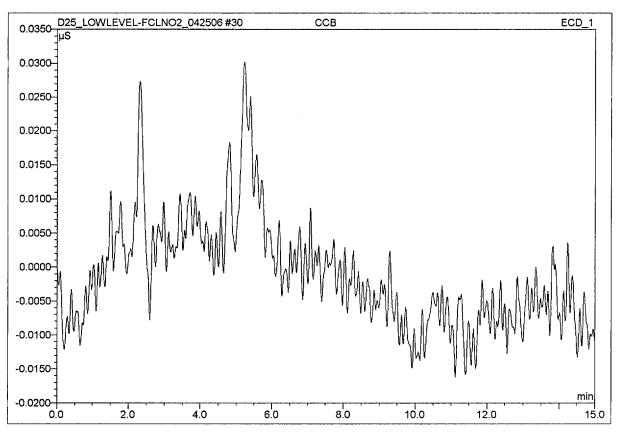

17 CCV ICWS-8348								
Sample Name: Vial Number:	CCV ICWS-8348 1249	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time:	4/25/2006 12:21	Sample Weight:	1.0000					
Run Time (min):	15.00	Sample Amount:	1.0000					

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.37	Fluoride	1.87893	0.323	31.31	0.6561	вмв
2	4.79	Chloride	1.45953	0.222	21.57	0.7452	вмв
3	5.58	Nitrite-N	2.67123	0.486	47.12	0.7427	вмв

99.4°LK

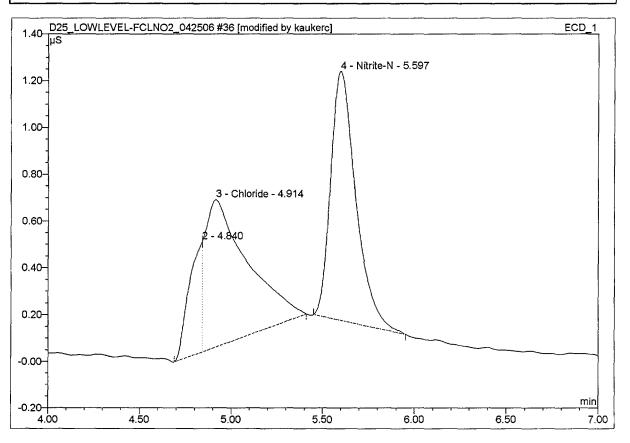

18 CCB			,
Sample Name: Vial Number:	CCB 1250	Injection Volume: Channel:	50.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/25/2006 12:38	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type

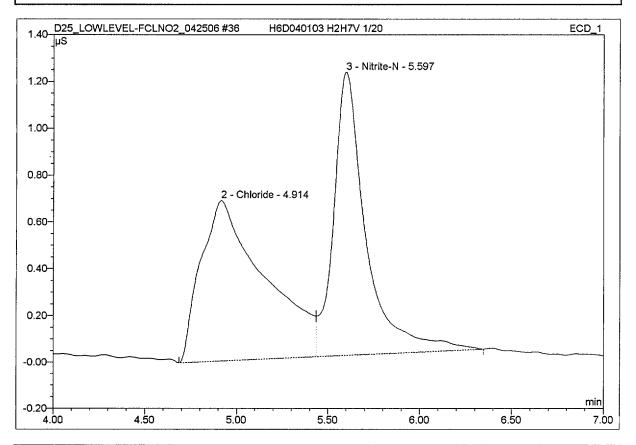

29 CCV ICWS-8348								
Sample Name: Vial Number:	CCV ICWS-8348 1258	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000					
Recording Time: Run Time (min):	4/25/2006 16:07 15.00	Sample Weight: Sample Amount:	1.0000 1.0000					

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Type
1	3.37	Fluoride	1.89490	0.317	30.97	0.6614	BMB
2	4.80	Chloride	1.46666	0.224	21.89	0.7488	BMB
3	5.58	Nitrite-N	2.68964	0.483	47.14	0.7476	вмв

99.8062


30 CCB			
Sample Name: Vial Number:	CCB 1259	Injection Volume: Channel:	50.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/25/2006 16:24	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
L	(min.)		(uS)	μS*min	(%)	(mg/L)	Type


36 H6D040103 H2H7V 1/20								
Sample Name: Vial Number:	H6D040103 H2H7V 1/20 1277	Injection Volume: Channel:	50.0 ECD_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.					
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000					
Recording Time:	4/25/2006 18:09	Sample Weight:	1.0000					
Run Time (min):	30.00	Sample Amount:	1.0000					

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.58636	0.631	1.01	n.a.	BMB
2	4.84	n.a.	0.47049	0.039	0.06	n.a.	BM *
3	4.91	Chloride	0.62854	0.167	0.27	6.3765	MB*
4	5.60	Nitrite-N	1.06243	0.169	0.27	6.0227	BMB*
_ 5	7.74	n.a.	0.10984	0.025	0.04	n.a.	BMB
6	12.31	n.a.	5.65034	1.866	2.99	n.a.	BMB
7	22.23	n.a.	63.42883	59.542	95.36	n.a.	BMB

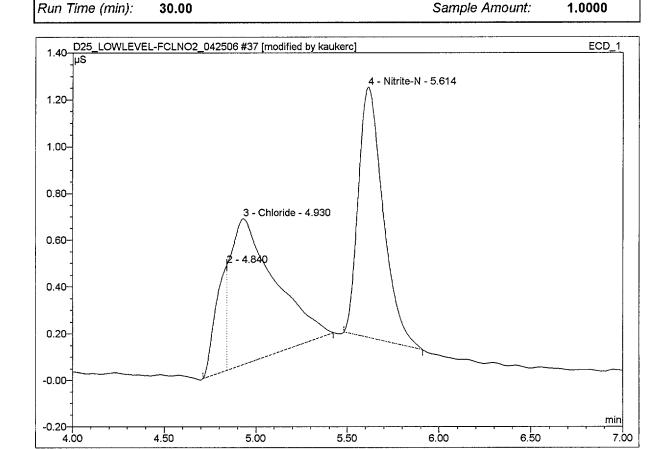
manual integration | Baseline | Split Peak
CWK 4/26/06

36 H6D040103 H2H7V 1/20							
Sample Name: Vial Number:	H6D040103 H2H7V 1/20 1277	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000				
Recording Time: Run Time (min):	4/25/2006 18:09 30.00	Sample Weight: Sample Amount:	1.0000 1.0000				

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak
	(min.)	_	(u3)	μο min	(70)	(IIIg/L)	Туре
1	2.31	n.a.	3.58636	0.631	1.01	n.a.	BMB
2	4.91	Chloride	0.68513	0.275	0.44	6.9598	ВМ
3	5.60	Nitrite-N	1.20933	0.249	0.40	6.8434	MB
4	7.74	n.a.	0.10984	0.025	0.04	n.a.	BMB
5	12.31	n.a.	5.65034	1.866	2.98	n.a.	вмв
6	22.23	n.a.	63.42883	59.542	95.13	n.a.	вмв

AS4A-SC ANION METHOD

4/25/2006 18:41


20.0000

1,0000

37 H6D040103 H2H7V DUP 1/20							
Sample Name:	H6D040103 H2H7V DUP 1/20	Injection Volume:	50.0				
Vial Number:	1278	Channel:	ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.				

Dilution Factor:

Sample Weight:

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.61945	0.692	1.10	n.a.	BMB
2	4.84	n.a.	0.44819	0.032	0.05	n.a.	BM *
3	4.93	Chloride	0.62217	0.173	0.27	6.3108	MB*
4	5.61	Nitrite-N	1.06740	0.167	0.27	6.0505	BMB*
5	7.76	n.a.	0.10939	0.026	0.04	n.a.	вмв
6	12.32	n.a.	5.71531	1.869	2.97	n.a.	BMB
7	22.24	n.a.	63.76434	59.954	95.30	n.a.	BMB

manual integration

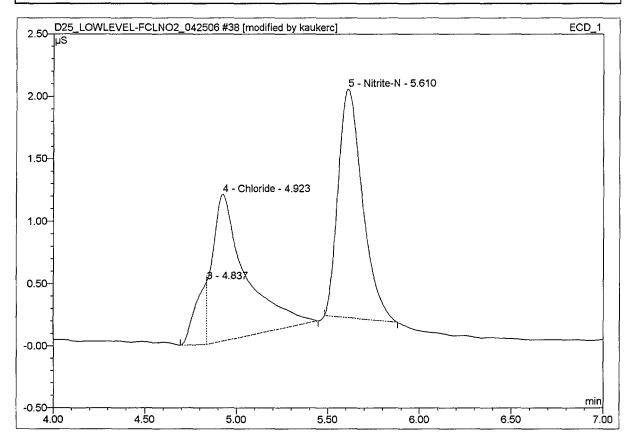
Split Peak | Baseline

CWK 4/24/06

Quantif. Method:

Recording Time:

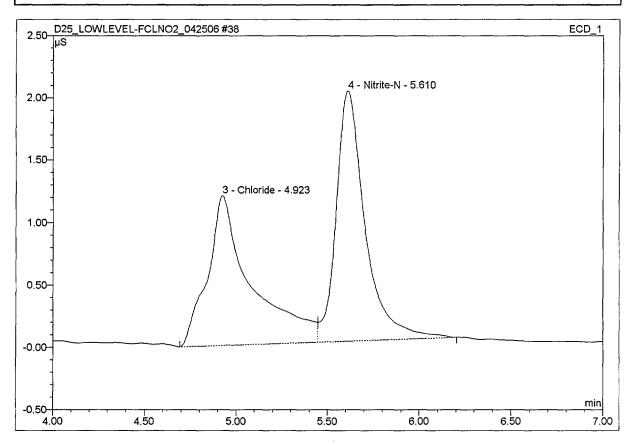
37 H6D040103 H2H7V DUP 1/20							
Sample Name: Vial Number:	H6D040103 H2H7V DUP 1/20 1278	Injection Volume: Channel:	50.0 ECD_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.				
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000				
Recording Time: Run Time (min):	4/25/2006 18:41 30.00	Sample Weight: Sample Amount:	1.0000 1.0000				



No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.61945	0.692	1.10	n.a.	BMB
2	4.93	Chloride	0.67817	0.272	0.43	6.8882	вМ
3	5.61	Nitrite-N	1.20857	0.235	0.37	6.8391	MB
4	7.76	n.a.	0.10939	0.026	0.04	n.a.	BMB
5	12.32	n.a.	5.71531	1.869	2.96	n.a.	BMB
6	22.24	n.a.	63.76434	59.954	95.09	n.a.	BMB

original

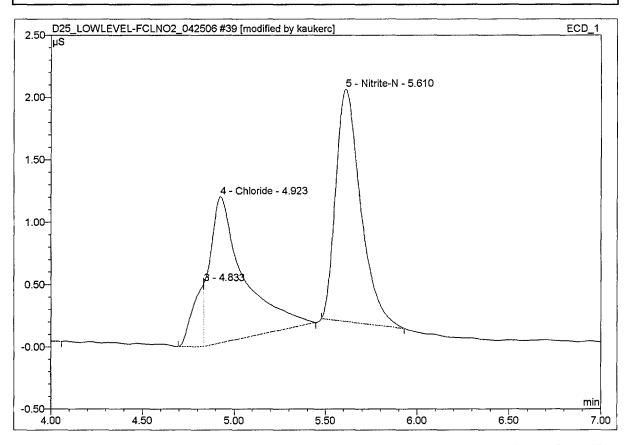
38 H6D040103 H2H7V MS 1/20 0.2PPM CL


Sample Name: H6D040103 H2H7V MS 1/20 0.2PPM CL Injection Volume: 50.0 Vial Number: 1278 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 20.0000 Recording Time: 4/25/2006 19:14 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.62937	0.685	1.08	n.a.	BMB
2	3.37	Fluoride	0.39211	0.083	0.13	2.9039	Rd
3	4.84	n.a.	0.50566	0.036	0.06	n.a.	BM *
4	4.92	Chloride	1.17557	0.248	0.39	11.9995	MB*
5	5.61	Nitrite-N	1.82987	0.283	0.45	10.2777	BMB*
6	7.74	n.a.	0.11546	0.025	0.04	n.a.	BMB
7	12.33	n.a.	5.74529	1.889	2.99	n.a.	BMB
8	22.24	n.a.	63.66195	59.909	94.86	n.a.	вмв

Manual integration
Split Peak | Baseline
Cure 4/26/04

38 H6D040103 H2H7V MS 1/20 0.2PPM CL										
Sample Name: Vial Number:	H6D040103 H2H7V MS 1/20 0.2PPM CL 1278	Injection Volume: Channel:	50.0 ECD 1							
Sample Type:	unknown	Wavelength:	n.a.							
Control Program:	AS14A ANIONS_CI2 METHOD	Bandwidth:	n.a.							
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	20.0000							
Recording Time: Run Time (min):	4/25/2006 19:14 30.00	Sample Weight: Sample Amount:	1.0000 1.0000							



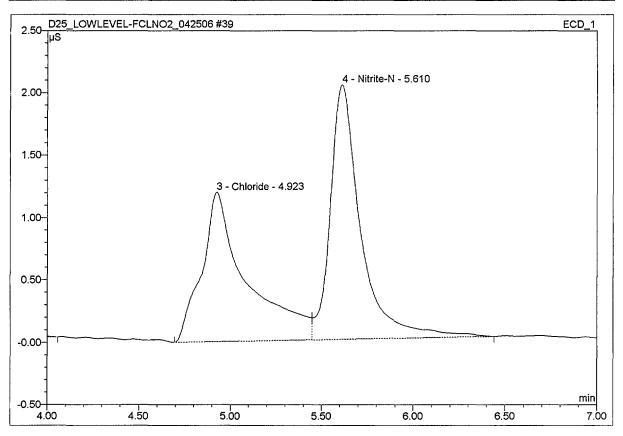
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.62937	0.685	1.08	n.a.	BMB
2	3.37	Fluoride	0.39211	0.083	0.13	2.9039	Rd
3	4.92	Chloride	1.19822	0.333	0.53	12.2316	вм
4	5.61	Nitrite-N	2.00673	0.369	0.58	11.2471	MB
5	7.74	n.a.	0.11546	0.025	0.04	n.a.	вмв
6	12.33	n.a.	5.74529	1.889	2.99	n.a.	BMB
7	22.24	n.a.	63.66195	59.909	94.65	n.a.	BMB

original

39 H6D040103 H2H7V MSD 1/20 0.2PPM CL

Sample Name: H6D040103 H2H7V MSD 1/20 0.2PPM CL Injection Volume: 50.0 Channel: Vial Number: 1279 ECD 1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: 20.0000 Recording Time: 4/25/2006 19:46 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

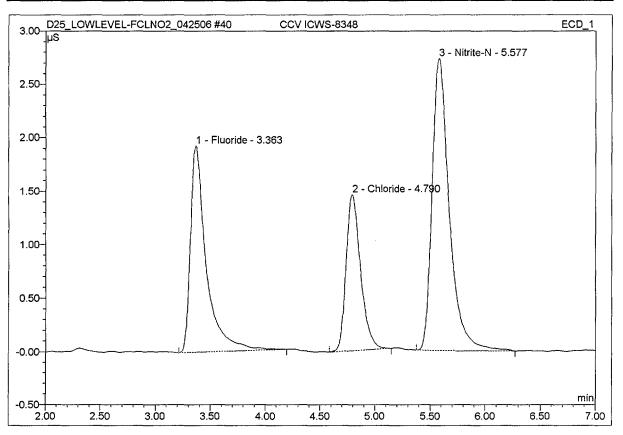
No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.55115	0.678	1.23	n.a.	вмв
2	3.36	Fluoride	0.39181	0.080	0.14	2.9018	Rd
3	4.83	n.a.	0.50319	0.035	0.06	n.a.	BM *
4	4.92	Chloride	1.16994	0.251	0.45	11.9418	MB*
5	5.61	Nitrite-N	1.86039	0.294	0.53	10.4453	BMB*
6	7.76	n.a.	0.11340	0.029	0.05	n.a.	BMB_
7	12.34	n.a.	5.68163	1.874	3.39	n.a.	вмв
8	22.34	n.a.	57.65884	52.059	94.14	n.a.	вмв


manual integration

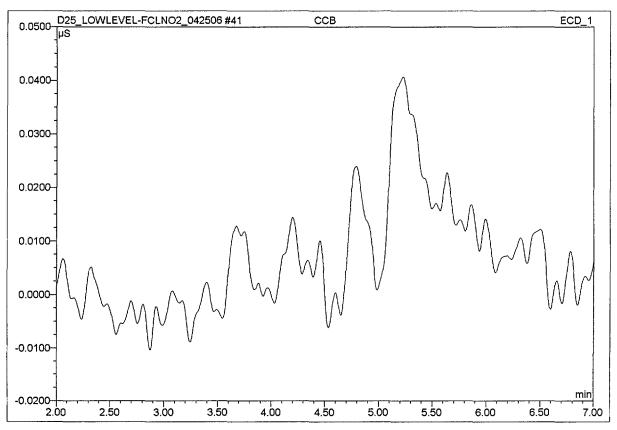
CWK Split Peak / Baseline

4/26/06

39 H6D040103 H2H7V MSD 1/20 0.2PPM CL


Sample Name: H6D040103 H2H7V MSD 1/20 0.2PPM CL Injection Volume: 50.0 Vial Number: 1279 Channel: ECD_1 Sample Type: unknown Wavelength: n.a. Control Program: AS14A ANIONS_CI2 METHOD Bandwidth: n.a. 20.0000 Quantif. Method: **AS4A-SC ANION METHOD** Dilution Factor: Recording Time: 4/25/2006 19:46 Sample Weight: 1.0000 Run Time (min): 30.00 Sample Amount: 1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	2.31	n.a.	3.55115	0.678	1.22	n.a.	вмв
2	3.36	Fluoride	0.39181	0.080	0.14	2.9018	Rd
3	4.92	Chloride	1.19548	0.339	0.61	12.2035	ВМ
4	5.61	Nitrite-N	2.03714	0.392	0.71	11.4133	MB
5	7.76	n.a.	0.11340	0.029	0.05	n.a.	вмв
6	12.34	n.a.	5.68163	1.874	3.38	n.a.	вмв
7	22.34	n.a.	57.65884	52.059	93.88	n.a.	BMB


original

40 CCV IC	NS-8348		
Sample Name: Vial Number:	CCV ICWS-8348 1280	Injection Volume: Channel:	50.0 ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/25/2006 20:18	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time (min.)	Peak Name	Height (uS)	Area µS*min	Rel.Area (%)	Amount (mg/L)	Peak Type
1	3.36	Fluoride	1.92763	0.321	30.99	0.6723	BMB
2	4.79	Chloride	1.45737	0.222	21.44	0.7441	BMB
3	5.58	Nitrite-N	2.72698	0.492	47.57	0.7577	BMB

41 CCB			
Sample Name:	CCB	Injection Volume:	50.0
Vial Number:	1281	Channel:	ECD_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	AS14A ANIONS METHOD	Bandwidth:	n.a.
Quantif. Method:	AS4A-SC ANION METHOD	Dilution Factor:	1.0000
Recording Time:	4/25/2006 20:36	Sample Weight:	1.0000
Run Time (min):	15.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Peak
	(min.)		(uS)	μS*min	(%)	(mg/L)	Туре

STL Knoxville Source Air Analysis Sample Information

Analyst	Date	Lot #	Work Order#	FH or BH	Impinger Volume (mL)	Impinger pH as received	Impinger pH after adjustment	Amount added to adjust pH	
CWK	4/17/06	H6D040103	HZHTE	BH	305 m)	P# 10			
	1		H2H76	BH	250 ml	pH14	-		
			H2H7K	ВН	360 m)	PHIO			
			H2H7V	817	305ml	91+10			
CWK	4 21 06	H60040103	H2H69	FH	1805	pH 52			
L	' ' '		H2H7J	FH	1885	PH 52			
			H2H7P	FH	1885	PHSZ			
			H247F	FH (BIF)	Neome	PH 42			
				,					
····									
									

Comments:	H2H69 -	980ml +825 =	1805 ml
	H2H75-	940ml + 500ml	+ 445ml = 1885 mj
	12478-	1000 ml + 410m	1 + 475 = 1835 ml

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date:	4117/06	Chemist: _	CWK	Expiration Date:	4/18/06
-------	---------	------------	-----	------------------	---------

ID Number	Compound Name	Parent Num		Parent Source		1 1		Parent Conc.		Aliquot Volume (ml)		Dilution Volume (ml)		Final Conc.		
1. 1cwg 8305	F-	ICWI	[-	826	8262		July 4,2006		lov pom		.500	100 ml		0.90 ррм		
2. (IW) LUS)	CI-				L	7		11								
3.	102-1															
4. 1cW58306	F-															
4. 1W58306 5. (1W/LC50)	CI-															
6.	N02-N								\				}			
7. 1CWS 8307	F-	Icw	L -	8261		July 4,2006		100 ppm		0.750		100		0.75 ppm		
8. (CW)	CI-				:		·		\		1					
9.	4-604						_									
_10.																
11.																
12.																
_13.																
14.																

Reviewed By:

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date: 4/21/06 Chemist: CWK Expiration Date: 4/22/06

ID Number	Compound Name	Parent Lot Number	Parent Source	Parent Exp. Date	Parent Conc.	Aliquot Volume (ml)	Dilution Volume (ml)	Final Conc.
1. 1cms 8334	F-	ICWI -	8262	144,2006	100 ppm	0.500	100ml	0.50 ppm
2. (Idlus)	CI-					į		
3.	N02-1							
4. 1 cw 58335	F-							
5. (IW) LESP)	u-							
6.	NO2-N							
7. 1cms 3336	F-	IWI-	8261			0.750		0.75 ppm
8. (CC1)	CI-							1
9.	NO2- N							
_10.								
_11.								
12.								
13.								
14.								

Reviewed By:

STL KNOXVILLE PREPARATION OF FINAL WORKING STANDARD SOLUTIONS FROM VENDOR PREPARED STOCKS WET CHEMISTRY

Date: 4/25/06 Chemist: CWK Expiration Date: 4/21/06

ID Number	Compound Name	Parent Lot Number	Parent Source	Parent Exp. Date	Parent Conc.	Aliquot Volume (ml)	Dilution Volume (ml)	Final Conc.
1. 1cws 3346	F-	IWI-	8262	July 4 2006	IDOPPM	0.500	100ml	0.500ppm
2. (W)LCS)	u -				\			1
3.	NO2-N							
4. 1 cw 5 8347	F-							
5. (IW) USD)	Cı-							
6.	N02-N							
7. 1W58348	F-	IWI-	8261			0.750		0.75
8. (car)	CI-							
9.	NO2-N							
10.								
11.								
12.								
13.								
14.								

n		
Reviewed	By:	

Sample Receipt Documentation

Request for Analysis/Chain-of-Custody – RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon Comprehensive Performance Test at Parker, Arizona

STL Knoxville Lot Number: \(\(\frac{145040\0}{5}\)
STL Knoxville Project Number: 142541

NOTE: After Log-In, please give the original completed RFA/COC to Patti Carswell.

Project Identification:	Westates Carbon CPT		Laboratory Deliverable Tur	naround Requirements:			
STL Knoxville Project Number: 142541			Analytical Due Date:	14 Days from Lab Receipt			
STL Contact:	STL Contact: Ms. Patti Carswell (865) 291-3010		(Review-Released Data)				
STL - ACS Project Manager: Dr. William C. Anderson (865) 291-3080			Data Package Due Date:	14 Days from Lab Receipt			
Analytical Testing OC Requirement		ו ור	Laboratory Destination:	STL Knoxville			
The Legend for Project-Specific Quali	ty Control Testing is designated in			5815 Middlebrook Pike			
the "QC" column as follows:				Knoxville, Tennessee 37921			
"MS" = Matrix Spike, "MSD" = Matr				(865) 291-3000			
"DUP" = Duplicate, and "PDS" = Pos	t Digestion Spike	لـــالــ	Courier:	Federal Express			
Project Deliverables:							
Report analytical results on R-02 Report	orts and in data packages.						
Include "Field Number", "Sample Typ	e", and "Run Number" on all R-02 R	eport	S.				
Holding Time Requirements:							
Anions (Chloride/Chlorine) 30 Days to Analysis.							

	Field Sample No./ Sample Coding ID	Sample Collection Date	Project QC Require- ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
-	G-2978-R1-M5 0.1N H ₂ SO ₄ Impinger Solution	3-28-06	DUP/ MS/MSD	Liter Amber Boston Round	0.1N H ₂ SO ₄ Impinger Solution, Run #1 Method 0050/26A Train	Analyze for HCl by ion chromatography (Method SW-9056/9057).
′	G-2979-R1-M5 0.1N NaOH Impinger Solution	3-28-06	DUP/ MS/MSD	500 mL High Density Polyethylene Bottle	Chloride Analysis 0.1N NaOH Impinger Solution, Run #1 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
,	G-2982-R1-M5 0.1N H ₂ SO ₄ Impinger Solution RB	3.28.06	Reagent Blank	250 mL Amber Boston Round	0.1N H ₂ SO ₄ Impinger Solution Reagent Blank Run #1 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).
	G-2983-R1-M5 0.IN NaOH Impinger Solution RB	3-28-06	Reagent Blank	250 mL High Density Poly- ethylene Bottle	0.1N NaOH Impinger Solution Reagent Blank Run #1 M5 HCl/Cl ₂ Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
1	G-3065-R2-M5 0.1N H ₂ SO ₄ Impinger Solution	3-29-06	DUP	3500 mL High Density Polyethylene Bottle	0.1N H ₂ SO ₄ Impinger Solution, Run #2 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).

Request for Analysis/Chain-of-Custody – RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon Comprehensive Performance Test at Parker, Arizona

Field Sample No./ Sample Coding ID	Sample Collection Date	Project QC Require- ments	Sample Bottle/ Container	Sample Type/Analysis	Analytical Specifications
G-3066-R2-M5 0.1N NaOH Impinger Solution	3-28.06	DUP	500 mL High Density Polyethylene Bottle	0.1N NaOH Impinger Solution, Run #2 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).
G-3149-R3-M5 0.1N H ₂ SO ₄ Impinger Solution	3:3°4 g	DUP .	500 mL High Density Polyethylene Bottle	0.1N H ₂ SO ₄ Impinger Solution, Run #3 Method 0050/26A Train Chloride Analysis	Analyze for HCl by ion chromatography (Method SW-9056/9057).
G-3150-R3-M5 0.1N NaOH Impinger Solution	330-gi	DUP	500 mL High Density Polyethylene Bottle	0.1N NaOH Impinger Solution, Run #3 Method 0050/26A Train Chlorine Analysis	Analyze for Cl ₂ by ion chromatography (Method SW-9056/9057).

Request for Analysis/Chain-of-Custody - RFA/COC #023 [Method 0050/26A Train] Focus/US Filter Westates Carbon

Comprehensive Performance Test at Parker, Arizona

HLDOHO103

Sample Receipt Log and Condition of the Samples Upon Receipt:

Please fill in the	following information:	Comme	
		(Please write "NONE" if no	o comment applicable)
	entities of any samples that were listed on the not found in the sample shipment.	MA	
	mple shipping cooler temperature of all orting samples listed on this RFA:	5.0°C	
(3) Record any ap	pparent sample loss/breakage.	NA	
(4) Record any un shipment of sa	nidentified samples transported with this amples:	NA	
(5) Indicate if all s project's requ	samples were received according to the ired specifications (i.e. no nonconformances):	NA	
Custody Tran	<u>sfer:</u> {f	and delivered	
Relinquished By:	Name	Сотрапу	Date/Time
Assented Dec	Motor	STL-Madville	4/2/06 1625
Accepted By:	Name	Company	Date/Time
Relinquished By:			
remiquioned 2).	Name	Company	Date/Time
Accepted By:			
	Name	Company	Date/Time
Relinquished By:			
	Name	Company	Date/Time
Accepted By:	Nove	<u> </u>	D., 27:
	Name	Company	Date/Time
Relinquished By:	Name	Company	Date/Time
A		Company	Date Hine
Accepted By:	Name	Company	Date/Time

STL KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Client: focus		Pro	ject:	westates carbon	Lot Number: HIDDH0103
Review Items	Yes	No	NA	If No, what was the problem?	Comments/Actions Taken
I. Do sample container labels match COC? (IDs, Dates, Times)	V			☐ 1a Do not match COC ☐ 1b Incomplete information ☐ 1c Marking smeared ☐ 1d Label torn ☐ 1e No label ☐ 1f COC not received ☐ 1g Other:	14A- CCC- WASAY relinquished (signed DAK, or time)
2. Is the cooler temperature within limits? (> freezing temp. of water to 6 °C; NC, 1668, 1613B: 0-4 °C; VOST: 10 °C; MA: 2-6 °C)	V			□ 2a Temp Blank = □ 2b Cooler Temp =	
3. Were samples received with correct chemical preservative (excluding Encore)?			V	☐ 3a Sample preservative =	
4. Were custody seals present/intact on cooler and/or containers?				☐ 4a Not present ☐ 4b Not intact ☐ 4c Other:	
Were all of the samples listed on the COC received?	1	X	4/100	5a Samples received-not on COC Samples not received on COC	
Were all of the sample containers received intact?	/			☐ 6a Leaking ☐ 6b Broken	
. Were VOA samples received without headspace?			1	☐ 7a Headspace (VOA only)	
Were samples received in appropriate containers?	V			□ 8a Improper container	·
. Did you check for residual chlorine, if necessary?			/	☐ 9a Could not be determined due to matrix interference	
0. Were samples received within holding time?	V			□ 10a Holding time expired	
1. For rad samples, was sample activity info. provided?			V	☐ Incomplete information	
For SOG water samples (1613B, 1668A, 8290, LR PAHs), do samples have visible solids present?			1	If yes & appears to be >1%, was SOG notified?	
3. Are the shipping containers intact?	V			☐ 13a Leaking ☐ 13b Other:	
4. Was COC relinquished? (Signed/Dated/Timed)		1		☐ 14a Not relinquished	
5. Are tests/parameters listed for each sample?	V			☐ 15a Incomplete information	
6. Is the matrix of the samples noted?	V			☐ 15a Incomplete information	
7. Is the date/time of sample collection noted?	V			☐ 15a Incomplete information	
8. Is the client and project name/# identified?	0			☐ 15a Incomplete information	
9. Was the sampler identified on the COC?			V		
Quote #: PM Instructions:					
Sample Receiving Associate:				Date: 4/3/06	QA026R18.doc, 1/30/06