Pre-natal and early life exposures, health significance in childhood (and later), and current reflections in policy

Amy D. Kyle, PhD MPH <adkyle@berkeley.edu> University of California Berkeley August 3, 2005, Helena Montana

© Copyright 2005 Amy D. Kyle. All rights reserved

Outline

- I. Prenatal exposures and evidence of their significance
- II. Related to discussion of "early life exposures"
- III. What do we look for?
- IV. Policy considerations

I. Prenatal exposures and their significance

- Environmental tobacco smoke provides a model
 - Presentation by Mark Anderson on this panel
- Agents
- · Outcomes

Environmental tobacco smoke

- Well established relationships between ETS exposure during pre natal period and childhood diseases
- ETS: respiratory disease and asthma linked to pre-natal (maternal) and early childhood exposure
- Suggested significance of early exposure

(e.g. DiFranza 2004)

PCBs

- Epidemiology studies reported alterations in cognitive development and attention and motor deficits after pre-natal exposure
 - Stronger relationship than for post-natal
- Recent study: effect on thyroid hormone and premature differentiation of one type of brain cell
 - Mechanism for effects on brain development

PCB

- Studies of women exposed and their children show effects associated with pre-natal exposure (not post-natal or breast feeding) (e.g. Jacobson 2002)
- · Later effects may be relevant as well
- Recent findings report sensitivity to organochlorine exposure and effects on semen quality in young men after puberty (Guo et al 2004)

PCBs

- Impact on brain cell differentiation varied by PCB congener
 - Not captured by the "toxicity equivalency factors" used to compare PCBs (Fritsche 2005)
- Previous study reported effects on thyroid hormone signaling
- Effects may be detected in childhood but deficits may extend throughout life

Methyl mercury

- · Methyl mercury is a neurotoxicant
- · Main exposure source is fish
 - transformed to "methyl" form in the environment and bioaccumulate in food chain
- Higher concentrations in fetal blood than mothers due to higher affinity to hemoglobin (Sakamoto 2004)

Perchlorate

- Interferes with uptake of iodide and thyroid hormones - concern for pregnant females
- Can lead to impacts on brain development of children
- Recent results show much greater concentrations in breast milk than would have been predicted - other exposure sources?

Perchlorate

- Keen debate over acceptable concentration
 - Levels from ~ 1 to 100 ppb suggested
 - Will determine cleanup cost
- Key issues:
 - Looking at "upstream" critical effect (i. e. interference with uptake of iodide) rather than illness
 - National Academy of Sciences and California EPA)
 - Representativeness (and ethics) of small human study used as basis for decision

Childhood leukemias

- Childhood leukemias most common cancer for children to age 15
- Several forms of leukemia
 - ALL (acute lymphocytic leukemia) is most common
 - AML (acute myeloid leukemia)
- Causes not known for 90%
- Increasing evidence that associated genetic changes arise before birth or in early neonatal (perinatal) period

Genetic evidence

- Particular patterns of changes or rearrangements in genes have been found to be typical of these cancers
- Recent results: these changes can already be seen in blood collected from newborns immediately after birth ("blood spots")
- This means that the changes occurred before birth

(Smith 2005) (McHale 2003)

Implications

- Other evidence suggests that both chemical and infectious agents may contribute to these changes
- Reflect both a change and a failure to repair change
- · Latency for cancer can be ten years
- Maternal exposures and perinatal exposures likely to be important

Pesticides

- Evidence of effects of pre-conception exposure
 - In home use for insecticides; application by commercial applicator -> increased risk (Ma 2002)
- Recent study shows that effects in adults are based on cumulative exposure not high concentrations - could be of interest for children as well

Pesticides

- Results suggest that exposures to pesticides before birth or in the first year after birth, but not later, are associated with AML and ALL
- · May be a particular fetal susceptibility

Pesticides

 Several studies show greater likelihood of childhood brain tumors with greater in home pesticide use including during pre natal period

Pesticides and fetal growth

- Home use pesticides (Columbia)
 - Chlorpyrifos and diazinon
 - Found in virtually all air samples in NYC
 - Found in most pregnant women; fetal blood had comparable levels
 - More exposure -> reduced birth weight and growth
 - Before regulatory action was taken to reduce these in 1991
- No relationship in later births

(Whyatt 2005, 2004)

Children often more sensitive

- Research in several areas seeing that children are often more sensitive than adults
- · Common mechanisms for this:
 - Interference with signaling
 - Development presents opportunity for defects (higher activity)
 - Defenses not available

May be no true "threshold"

- Current regulatory practice and toxicology assume there is a threshold for effects other than cancer
 - Threshold is a level at which no effects will occur
 - Allows setting a "safe" dose
- Increasing evidence this may not be the case, especially for a population
 - Lead results, methyl mercury, benzene
 - Suggests possible role for more precautionary approach

View of life stages

- Pre-natal phase is one key life stage
- Other phases also have other particular sensitivities
- Recent analyses suggest need to look at the vulnerabilities and susceptibilities at several life stages

Emerging themes

- · Children are more sensitive
 - More opportunity due to growth/development
 - Importance of signaling, which can be disrupted
 - Lack of defenses
- Think of pre-natal and post-natal/early childhood together
- Consider factors relevant at different life stages and implications into adulthood
 - It is not only childhood illnesses that are relevant
- We have done almost nothing to address any of this

II. Early life exposure

- Term used to refer to pre-natal, perinatal, childhood exposures
 - Can be considered in terms of affecting a sensitive time period
- Consideration of "imprinting" or creation of functional changes that lead to disease later but do not create defects now
 - Includes disease in adulthood or even older age

Barker hypothesis

- People who "grew" differently from others more likely to get heart disease
 - > Association of disease with low birth weight
 - Later: low birth weight followed by "compensatory" or "catch-up" weight gain
 - Thought to create unfavorable metabolic functioning that contributes to diabetes, heart disease, high blood pressure
 - > Related to metabolism changes (Barker 2004)
- Now widely accepted (?)
- Recent report that results could be due to kidney effects (Moritz et al 2003)

Theory expanded to chemicals

- Chemicals can also cause low birth weight, impact fetal development
- This reason may also lead to the same kinds of adverse outcomes
- Research focus is very recent
- · Causal mechanisms may be different
 - embryonic and fetal programming of physiological disorders in adulthood

(Lau and Rogers 2005)

NIEHS symposium

- Environmental agents cause functional deficits that do not become apparent until later in life
 - DES: altered gene expression in the uterus that is irreversible without any gross alterations in morphology
 - Possible role for in utero exposure to environmental estrogens in etiology of obesity
- Alterations in gene expression and imprinting due to in utero exposure to environmental agents ->
 - alterations in developmental programming expressed as a permanently altered gland, organ or system potential
 - Animal is sensitized to be more susceptible to disease later in life

Reproductive toxicology

- Expanding beyond structural abnormalities
- Newer understanding includes "functional" teratology extension beyond morphological examinations to include functional integrity of organ system.

Developmental plasticity

- Embodies idea that genetically based program can be modified in response to changing environmental conditions to shape the unique characteristics of each individual
- Development controlled by neural and hormonal signals
 - May allow individual to alter development in adaptive matter
 - Or may reflect limitations of development to buffer itself form environmental challenges

(Horton 2005)

Types of Results

- Occurrence of disease that would not otherwise have occurred in an individual
- Increased risk of a disease (higher prevalence) in a population
- Earlier onset or greater severity of a disease that would have occurred otherwise

(Heindel 2005)

Endocrine disruption as possible mechanism

- Disruption of development during a critical window
- To be discussed later
 - Presentation by Ted Schettler on this panel

Pesticide mixtures

- Parkinsons may result from insults during development
- Combined paraquat and maneb (mice)
 - loss of neurons
 - greater sensitivity to pesticides administered later
- Theory that agents with different modes of actions would reduce defense mechanism and increase vulnerability
- Greater damage → earlier or more severe disease

(Cory-Slechta et al 2005)

Cancer

EPA analysis shows higher cancer risk when exposure to chemical agents is earlier in life

- Reflected in children's supplement to the cancer risk assessment guidelines (proposed)
- Suggestion that fetal and perinatal hormonal factors that increase pool of stem cells could contribute ->
 - more potential for errant growth (Baik et al 2005)

Implications

- Early exposures have important effects that are often worse than later exposures
 - Children's illnesses but also adult illnesses
 - Loss of potential, increased risk or severity
- Existing tools and approaches do not capture this
- Need to think more carefully about how to assess children's environments and reduce exposures

III. What do we look for?

- We need to think about these issues more systematically
- Beyond individual studies to better understanding the processes likely to be affected
- Then what?
 - More detailed risk assessment OR
 - Precautionary approaches

What we have now (data)

- Example from America's Children and the Environment 2003
- Representation of key topics for environment and health for children
 - Project to identify and represent children's environmental health
 - These measures are about childhood cancer and hazardous air pollutants as they relate to cancer risks
 - Shows the very limited data available
 - Not adequate to show the more subtle issues we are discussing today (as yet)

SOURCE: National Cancer Institute, Surveilliance, Epidemiology, and End Results Program

SOURCE: National Cancer Institute, Surveilliance, Epidemiology, and End Results Program

Percentage of children living in counties where estimated hazardous air pollutant concentrations were greater than health benchmarks in 1996

SOURCE: U.S. Environmental Protection Agency, National Air Toxics Assessment

Risk assessment approaches

- · Intensive science approach
- Analysis by Daston, Faustman et al 2004
- Looks at needs for research at each life stage
- The diagram shows types of studies that are relevant

Elements to consider

- Life stages
- Differences in biochemical, molecular, cellular, organ related processes
- · Differences in kinetics:
 - Slower clearance from blood
 - Slower elimination
 - More absorption

WHO / Europe Env Agency

Questions to consider:

- Does assessment include reproductive and early developmental stages?
- Did tests consider adequately sensitive endpoints (i. e. impact on learning)
- Have long term effects of early life exposure been assessed?
- Were exposure patterns at different stages assessed?
- Did models reflect children, consider ALL sources, and reflect real world conditions?

(Tamburlini et al 2002)

Precautionary approaches

- Being discussed in Europe to address children's environmental health
- Alternative to science intensive risk assessment approaches

IV. Policy needs

- 1. Environmental standards that reflect children
- 2. Focus on upstream processes that lead to increased disease or risk
- 3. Address "missing" chemicals
- 4. Address "missing" environments
- 5. Think about cumulative exposures/risks

Environmental health standards

- Don't have standards for very many substances now
 - A few (six) air pollutants,
 - More (86) drinking water pollutants (including microbes and disinfection byproducts),
 - Pesticide practices
- · Need to address children in setting standards
- FIFRA (pesticides) and Safe Drinking Water Act have elements that begin this

Focus on process or disease?

- More upstream biological changes or processes may be useful to study or address (rather than waiting for disease)
 - More preventive approach
 - Disease may be MUCH later
 - Children's research center results have been key integrated approaches

Add missing chemicals

- Many recently discovered threats not adequately understood or controlled
 - Phthalates
 - PBDEs
 - Pesticides
- · Need to assess systematically

Add missing environments

- Children's environments not well addressed
 - Homes
 - Child care
 - Schools
 - Vehicles
 - Products
- Not one is addressed well nationally

Think about cumulative impacts

- See common mechanisms
- See some evidence that differing mechanisms add up to more effect
- Still assessing chemicals and impacts one at a time

Conclusion

- · Children are not a subpopulation
 - Virtually everyone starts out as a child
- Need to understand that the health of children is fundamental to the health of the population
- Early exposures matter more greater benefit to prevent them
- · Late impacts can be severe