

June 2012

Dewatering Monitoring Plan

Lockwood Water and Sewer District Sewer Installation

Lockwood Solvents Groundwater Plume Site Yellowstone County, Montana Revision 0

Prepared by:

United States Environmental Protection Agency, Region 8

Signature Page Dewatering Monitoring Plan

Approvals:	
ATC Associates Project Manager	June 27, 2012 Signature/Date Jim Sullivan
PWT Project Manager	Signature/Date Catherine LeCours
EPA Remedial Project Manager/Delegated Quality Assurance Approving Official	Pogn Hogel June 28, 2012 Signature/Date Roger Hoogerheide
DEQ Project Officer	My June 29, 2012 Signature/Date John Podolinsky

Document Revision Log

Revision	Date	Primary Changes	
0		EPA Final Document	
		,	

Table of Contents

Distribu	tion List1
1.0	Project Management
1.1	Introduction
1.2	Plan Objective
1.3	Project Organization3
1.4	Project Schedule3
1.5	Project Constraints3
2.0	Quality Objectives and Criteria4
2.1	Data Quality Objectives4
2.2	Performance Criteria5
3.0	Data Generation and Acquisition
3.1	Sampling Design5
3.2	Sampling Methods
3.2.	Depth to Groundwater Measurements
3.2	2 Groundwater Sampling
3.3	Sample Handling and Custody
3.3	.1 Sample Identification
3.3	2 Sample Management
3.4	Sample Analysis12
3.5	Data Review and Management
4.0	References
2 P	igures Extra Control of the Control
2 N 3 S 4 N 5 A	ables Project Organization and Responsibilities Monitoring Well Locations, Rationale, and Trigger Values sample Analysis Monitoring Wells Historical Data Analytical Results Distribution List une 21, 2012 water level measurements
A M B M C T	ttachments Monitoring Well Logs Mann Kendall Trend Evaluations Sechnical Memorandum Water Level Measurement Record

Acronyms and Abbreviations

cis-DCE cis-1,2-dichloroethene COC contaminant of concern

DEQ Montana Department of Environmental Quality

EPA Environmental Protection Agency

gpm gallons per minute

LSGPS Lockwood Solvents Groundwater Plume Site

LWSD Lockwood Water and Sewer District MCL EPA's Maximum Contaminant Level

PCE tetrachloroethene

QAPP Quality Assurance Project Plan

ROD Record of Decision

Soco West

SVE soil vapor extraction TCE trichloroethene ug/L micrograms per liter VC vinyl chloride

VOC volatile organic compounds

Distribution List

Dewatering Monitoring Plan

The following is a distribution list of personnel who will receive an electronic copy of the Dewatering Monitoring Plan for the sampling events initially scheduled for 2012 at the Lockwood Solvents Groundwater Plume Superfund Site. The Dewatering Monitoring Plan with original signatures will be placed in the Superfund administrative record. Agency and/or contractor affiliations are also listed for each individual. A hard copy of the signed monitoring plan will be available with the field sampling lead during the events and an electronic copy will be stored on Environmental Protection Agency's (EPA) shared drive. A copy will also be placed in EPA's record center and at the site repository located at Montana State University-Billings.

Roger Hoogerheide **EPA** Andrew Schmidt **EPA** John Podolinsky **DEO** Woody Woods Boris Krizek **POTW**

James Sullivan Catherine LeCours

Dave Mosser Jill Cook Wynn Pippin **LWSD**

ATC Associates

PWT Morrison & Maeirle Morrison & Maeirle Energy Laboratories, Inc. hoogerheide.roger@epa.gov Schmidt.andrew@epa.gov jpodolinsky@mt.gov

woodyw@lockwoodwater.com KrizekB@ci.billings.mt.us

james.sullivan@atcassociates.com

clecours@pwt.com dmosser@m-m.net icook@m-m.net

wpippin@energylab.com

DRAFT – Dewatering Monitoring Plan Lockwood Water and Sewer District Sewer Installation

1.0 Project Management

1.1 Introduction

The Lockwood Solvents Groundwater Plume Site (LSGPS) is located to the east of Billings, Montana (Figure 1) and consists of chlorinated solvent contamination in soil and groundwater. There are four main contaminants of concern (COCs): tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC). Two primary source areas for chlorinated solvent groundwater contamination have been identified at the LSGPS: Soco West (Soco) and Beall Trailers, Inc.

The Record of Decision, Lockwood Solvent Groundwater Plume Site (ROD) (DEQ/EPA 2005) details the selected remedy for the LSGPS. The preferred alternatives identified in the ROD for remediation at the LSGPS are a combination of technologies to clean up the source areas; prevent migration of contaminated groundwater from the source areas; and accelerate cleanup of the contaminated groundwater that has already migrated downgradient of the source areas. The remedial components for Beall include soil vapor extraction (SVE) and enhanced bioremediation. The remedial components for Soco include a permeable reactive barrier, enhanced bioremediation, excavation with low temperature thermal treatment, SVE, and in-situ chemical oxidation. Monitored natural attenuation is also identified for the site-wide groundwater.

In 2010, the Lockwood Water and Sewer District (LWSD) issued a contract to install a sewer system within the Superfund boundaries as part of the Phase 1 Sewer Subdistrict, 2009-02 project. Monitoring of previous dewatering activities associated with sewer installation along Lockwood Road indicated that the radius of influence extended approximately 900 feet from the nearest pumping well (Tetra Tech 2010). This radius of influence occurred during a discharge rate of approximately 300 gallons per minute (gpm) along Lockwood Road. Sample results from the dewatering associated with sewer installation identified low levels (< 5 ug/L) of TCE and the source of this volatile organic compound likely originated from the Beall Trailers facility.

1.2 Plan Objective

The LWSD plans to install the next portion of the Phase 1 Sewer Subdistrict sewer line in 2012, as part of the 2011-01 Project. This phase includes the placement of a sewer line along Taylor Place, Lockwood Road and Lomond Lane. The proposed dewatering will not only transect the leading edge of the Beall Trailers TCE north plume but has the potential to impact the Soco source area which contains PCE and is located approximately 600 feet north of Taylor Place. Figure 2 illustrates the approximate locations of the proposed pumping wells to be installed by LWSD's Construction Contractor, Western Municipal Construction, the linear extent of this phase of the sewer line project, and the locations of the existing monitoring wells to be sampled for this Dewatering Monitoring Plan.

The EPA, through its contractors and an enforcement order with Soco West, will monitor changes in the groundwater flow and contaminant concentrations to minimize the negative effects that dewatering activities may potentially have on the existing source contamination at the Soco facility or the associated dissolved phase plumes emanating from the Beall and Soco facilities. This Dewatering Monitoring Plan is prepared to direct the collection of field parameters, water elevations and analytical data during dewatering operations associated with the installation of a

sewer line along Taylor Place, Lockwood Roadand Lomond Lane that result in a drawdown of 0.5 feet or more in select monitoring wells.

This Dewatering Monitoring Plan includes the relevant components of a Sampling and Analysis Plan, along with a Field Sampling Plan and Quality Assurance Project Plan. This plan is concise and the other documents referenced herein govern the data collection process.

1.3 Project Organization

Table 1 identifies the stakeholders for this program and briefly describes their roles and responsibilities. The project Organization Chart can be found on Figure 3. Further details of the responsibilities and training requirements of the project roles can be found in Section 2.5 of the EPA-approved Supplemental Sampling Program Quality Assurance Project Plan Remedial Design, Lockwood Solvent Groundwater Plume Site, Beall Source Area Operable Unit 1 (PWT 2012) and Section 1.1 of the EPA-approved Groundwater Monitoring Quality Assurance Project Plan, Operable Unit 2, Lockwood Solvent Groundwater Plume Site (ATC 2012). The EPA Remedial Project Manager is responsible for the maintenance and distribution of this Dewatering Monitoring Plan.

It is imperative to the success of this monitoring program that the construction schedule is relayed to the EPA and DEQ constantly and accurately. Open and frequent communication will be facilitated through weekly correspondence to include the EPA, DEQ, LWSD, City of Billings, and their contractors (as appropriate).

1.4 Project Schedule

Per correspondence from the LWSD's contractor dated June 26, the LWSD intends to begin dewatering of Taylor Place on approximately July 1, 2012. The work will proceed from west to east along Taylor Place and then to Lockwood Road. Work will be completed on Lomond Lane in order to allowgroundwater levels to drop and because the dewatering wells are located in the main drive approach of a major trucking company. The work is scheduled to be completed in mid September 2012.

- June 25 through July 8, 2012 North Frontage Road (no dewatering anticipated)
- •
- July 9 through July 31, 2012 Taylor Place
- August 1 through August 20, 2012 Lockwood Road
- August 21 through August 31, 2012 Lomond Lane

As discussed below, the EPA intends to collect baseline static water level measurements within one week of the start of dewatering activities. The baseline levels will be collected the week of June 18, 2012. The North Frontage Road portion of the project does not require dewatering and thus does not require monitoring.

1.5 Project Constraints

Practical constraints may include the progression of the LWSD's contractor, Western Municipal Construction, through the dewatering and installation process. The EPA's contractor will provide field support as needed for the duration of the project. A laboratory has been secured to provide quick turnaround analysis as noted below.

2.0 Quality Objectives and Criteria

2.1 Data Quality Objectives

The objective of the data collection for this Dewatering Monitoring Plan is to minimize the potential impact of the dewatering on the Soco source area contaminants and the dissolved phase plumes emanating from both the Soco and Beall source areas by monitoring groundwater water drawdown and contaminant concentrations, thereby managing the dewatering activities. The data collected will be field-based depth to water level measurements, drawdown calculations, and subsequent analytical results if necessary.

Step 1 – *State the Problem*: The LWSD expansion project requires dewatering of the groundwater within the LSGPS. The potential negative impact, primarily movement of contaminated groundwater into areas currently not impacted, shall be prevented or at least minimized, through continuous monitoring of wells that may be potentially affected during dewatering.

Step 2 – *Identify the Goal of the Study*: The overall ogoal of this workplan is to monitor wells during dewatering activities to ensure dewatering does not negatively impact the movement of contamination at the Site.

Step 3 – *Identify Information Inputs*: The EPA and their contractor have evaluated the potential impacts of the proposed dewatering activities to develop the monitoring program detailed in this Dewatering Monitoring Plan. Field-based depth to groundwater measurements will be collected during the dewatering activities. Results of drawdown measurements in certain wells may prompt the collection of analytical samples.

Step 4 – *Define the Study Boundaries*: The lateral boundary is the area of potential influence of the pumping wells as shown on Figure 2. The vertical boundary is the depth of dewatering in the aquifer. The temporal boundary is the summer and early fall of 2012.

Step 5 – Develop the Analytical Approach: The EPA will monitor depth to water levels in select existing monitoring wells identified on Figure 2. If the drawdown at a well reaches a certain level identified in Table 2, groundwater samples will be collected for laboratory analysis. If the analytical results and the confirmation sample demonstrate an exceedance of the trigger values noted in Table 2, the stakeholders will determine the appropriate response for the dewatering activities (e.g., termination of dewatering, continuation for a short period, etc.).

Step 6 – Specify Performance or Acceptance Criteria: The EPA will utilize field measurements and analytical results to determine if the dewatering activities are or have the potential to influence either the Soco source area or the contaminated groundwater plume(s). A false acceptance error would result in the discontinuation of the dewatering activities when in fact the dewatering is not impacting the contamination. A false rejection error would result in the continuation of the dewatering program when in fact it is impacting the contamination. A goal of this Dewatering Monitoring Plan is to provide sufficient planning and methodologies to prevent against either error.

Step 7 – Develop the Plan for Obtaining Data: The monitoring and data collection program is described in subsequent sections of this Dewatering Monitoring Plan.

2.2 Performance Criteria

Data collected under this monitoring plan will be used to appropriately manage the dewatering activities of the LWSD sewer line expansion project, primarily immediate decisions to the continuation of the dewatering activities. The EPA has determined screening level data is sufficient for this purpose and quality assurance and quality control measures beyond the steps described in this Dewatering Monitoring Plan are not necessary.

The EPA will not include in the site database nor validate any data collected as part of this monitoring plan. The data will not be used for making decisions other than as identified in this Dewatering Monitoring Plan. While quality control samples will not be collected, confirmation samples will be collected if a concentration trigger value identified in Table 2 is exceeded. However, standard laboratory quality assurance and quality control measures will not be altered for this sampling program.

Table 3 identifies the COCs, anticipated concentration ranges, analytical method, and other analysis-specific information. The chosen analytical method will result in a method detection limit lower than the trigger values established for this program.

The Precision, Accuracy, Representativeness, Completeness and Comparability parameters are discussed in Section 4.0 of the EPA-approved PWT Quality Assurance Project Plan (QAPP) (PWT 2012) and Section 2.7 of the EPA-approved ATC QAPP; however, they are not applicable to the data evaluation efforts of this monitoring program.

3.0 Data Generation and Acquisition

3.1 Sampling Design

Ten existing monitoring wells have been selected to monitor and evaluate the effects of dewatering. The wells selected are MW001, MW002, MW100, MW103, MW108, MW109, MW110, MW216, MW217, and PT001.

The sample design discussion is supported by the following:

- Figure 2 illustrates the approximate locations of the pumping wells to be installed by the LWSD, the linear extent of this phase of the sewer line project, and the locations of the monitoring wells.
- Attachment A contains the well logs for the wells.
- Attachment B includes the results of the Mann Kendall Trend Evaluations for each of the wells and each of the COCs where sufficient data has been collected to perform this statistical test.
- Attachment C is a Technical Memorandum describing the calculations and assumptions
 used to evaluate groundwater velocity rates based on existing site information and from
 the previous dewatering effort (Tetra Tech 2010). Based on these calculations predicted
 drawdown levels have been established at each well to act as a trigger to invoke
 sampling.
- Table 4 includes the historical concentrations of the COCs for these wells.
- Table 2 explains the monitoring well locations, rationale, and both drawdown and contaminant concentration trigger values for the dewatering monitoring program.

The EPA's drinking water standard (MCL) and the remedial action level established in the ROD for each of the COCs are as follows:

- PCE 5 ug/L
- TCE 5 ug/L
- cis-DCE 70 ug/L
- VC 2 ug/L

The following text includes a discussion of each of the wells, including water level changes that would require sampling and the decisions to be made based on the specific analytical results for each well.

For each monitoring location and sample collected, the following guidelines apply:

- Depth to groundwater measurements will be recorded and if drawdown exceeds the trigger value of 0.5 feet in MW002, MW100, MW103, MW109, MW110, or MW217 and 2.0 feet in MW001, MW216 or MW108, groundwater sampling will commence.
- Depth to groundwater measurements will be recorded and if drawdown exceeds the trigger value of 1.0 feet in PT001, the EPA and Soco/ATC will discuss an appropriate course of action. No sampling trigger has been established for this well.
- Any contaminant concentration result that exceeds the well-specific trigger value will require an immediate resampling to confirm the exceedance.
- If the confirmation sample concentration exceeds the well-specific trigger value, the
 stakeholders will discuss the dewatering program based on the level of the exceedance
 and the time frame of the pumping program. All possible scenarios, including analytical
 results, cannot be anticipated at this time. At a minimum, the City of Billings, the LWSD,
 the EPA and the DEQ will be involved with any decisions made for the dewatering
 program.
- If the confirmation sample does not exceed the well-specific trigger value, depth to groundwater measurements and the frequency of sampling will revert to the baseline approach.
- The parties listed in Table 5 lists shall be contacted with the groundwater level and analytical results related to sampling activities performed pursuant to this plan; immediately upon receipt of the data by the contractor.

Specific frequency schedules and data collection protocols are discussed in Sections 3.2 and 3.3. If a well is inaccessible during any given activity, the EPA RPM will be notified. Depending on the reason for the inability to sample, potential options will be discussed to ensure the integrity of the monitoring program.

<u>MW001</u> is located on the south side of the Soco property and upgradient of the Soco impacts. Since MW001 is located immediately adjacent to Taylor Place it is likely that dewatering activities of LWSD pumping wells 8 and 9 will result in the lowering of 4 feet in the groundwater elevation. This well has been sampled semi-annually since 2003 and has never had detections above the MCL for any of the COCs. The Mann Kendall Trend Evaluation of TCE results from this well show an increasing trend at this well which is likely the result of the leading edge of the Beall north plume reaching Taylor Place. This well is being monitored to determine the effects dewatering have on dissolved phase plumes.

If a dewatering related drawdown of 2.0 feet is measured at MW001, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 2.0 feet.

Since only low levels of TCE have been detected in this well and the location is southeast of Soco source contamination, TCE and PCE will be the trigger COCs. Concentration trigger values of > 4 ug/L for TCE and > 1 ug/L for PCE have been selected.

If the results of the confirmation sample from MW001 confirm the exceedance of a trigger value, at a minimum the City of Billings will be notified and the EPA will suggest a sample to be taken directly from the construction dewatering discharge to evaluate potential impact on the city's effluent limits established for this project.

MW002 is located on Ankrum Trucking property approximately 450 feet north of Taylor Place. This well is also located 200 feet southwest of the Soco dissolved phase plume. The LWSD pumping wells 11 and 12 on Lomond Lane are cross gradient from MW002 about 1021 feet and 692 feet respectively from MW002. There have been several MCL exceedances of TCE early on while the other three COCs have been non-detect. The Mann Kendall Trend Evaluation of COCs results from this well show stable/no trend to decreasing trends. This well is being monitored because it is located southwest of the dissolved phase PCE plume to determine if dewatering pulls the dissolved phase plume cross gradient.

If a dewatering related drawdown of 0.5 feet is measured at MW002, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 0.5 feet.

Since this well is located cross gradient southwest of the PCE plume and only low levels of PCE have been detected in this well, PCE and TCE will be the trigger COCs. Concentration trigger values of > 1 ug/L for PCE and > 10 ug/L for TCE have been selected.

If the results of the confirmation sample from MW002 confirm the exceedance of a trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped or modified to minimize the impact.

<u>MW100</u> is approximately 315 feet north of Taylor Place and is also located near the southern boundary of the former tank farm source area. The LWSD pumping wells 8 and 9 are upgradient of MW100 about 387 feet and 414 feet respectively. There have been four MCL exceedances of VC since 2003 and the other three COCs have been mostly non-detect or at very low levels. The Mann Kendall Trend Evaluation of COCs results from this well show stable/no trend to increasing trends. This well is located southwest of the former tank farm source area. It is being monitored to determine if dewatering pulls either the Soco source contamination or the dissolved phase plume cross gradient.

If a dewatering related drawdown of 0.5 feet is measured at MW100, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 0.5 feet.

As this well is located in close proximity to the Soco tank farm source area, PCE and TCE will be the trigger COCs. Concentration trigger values of > 1 ug/L for PCE and > 3 ug/L for TCE have been selected.

If the results of the confirmation sample from MW100 confirm the exceedance of a trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the

exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped or modified to minimize the impact.

<u>MW103</u> is approximately 315 feet north of Taylor Place and is located near the southern boundary of the former tank farm source area. The LWSD pumping well 8 is located about 443 upgradient of MW103 while pumping well 9 is 404 feet. There have been sporadic MCL exceedances of PCE (October 2006 & October 2007), TCE (October 2007), cis-DCE (October 2007 & April 2010), and VC (April 2005, October 2006, October 2008, April 2009, and April 2009). The Mann Kendall Trend Evaluation of COCs results from this well show a stable/no trend to a decreasing trend. This well is being monitored because it is located southeast of the former tank farm source area to determine if dewatering pulls either the source contamination or the dissolved phase plume cross gradient.

If a dewatering related drawdown of 0.5 feet is measured at MW103, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 0.5 feet.

As this well is located in close proximity to the Soco tank farm source area, the trigger concentrations will be > 1 ug/L for PC, > 2 ug/L for TCE, > 20 ug/L for cis-DCE, and > 2 ug/L for VC.

If the results of the confirmation sample from MW0103 confirm the exceedance of a trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped or modified to minimize the impact.

<u>MW108</u> is located on Corcoran Trucking property approximately 100 feet east of Lomond Lane and 250 feet north of Taylor Place. The LWSD pumping wells 11 and 12 are cross gradient about 460 feet and 170 feet respectively and well 5 is located 448 feet upgradient of MW108. Historically this well has had detections of TCE but there has never been an MCL exceedance. The other three COCs have been mostly non-detect or at very low levels. The Mann Kendall Trend Evaluation of TCE results from this well indicate a stable/ no trend to a decreasing trend. Because of its proximity to the proposed work on Lomond Lane and because it is on the fringes of the Beall TCE plume, this well is being monitored.

If a dewatering related drawdown of 2.0 feet is measured at MW108, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 2.0 feet.

Since only low levels of TCE have been detected in this well and the location is southwest of Beall, TCE and PCE will be the trigger COCs. Concentration trigger values of > 4 ug/L for TCE and > 1 ug/L for PCE have been selected.

If the results of the confirmation sample from MW108 confirm the exceedance of a trigger value, at a minimum the City of Billings will be notified and the EPA will suggest a sample to be taken directly from the construction dewatering discharge to evaluate potential impact on the city's effluent limits established for this project.

<u>MW109</u> is located on Ankrum Trucking property approximately 250 feet northwest of Taylor place and 500 feet southeast of the Soco PCE plume. The LWSD pumping wells 6 and 7 are upgradient of MW109 about 344 feet and 440 feet respectively. Sample results have consistently been above the MCL for TCE although the Mann Kendall Trend Evaluation indicates a decreasing trend for TCE. The other three COCs have been mostly non-detect or at very low levels. This well is being monitored because it is located within the TCE dissolved phase plume.

If a dewatering related drawdown of 0.5 feet is measured at MW109, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 0.5 feet..

Since MW109 is in the TCE plume, TCE will be the trigger COC. A concentration trigger values of > 10 ug/L for TCE has been selected.

If the results of the confirmation sample from MW109 confirm the exceedance of the trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped or modified to minimize the impact.

MW110 is located on Keller Trucking property approximately 300 feet northwest of Taylor place. This well is also located 300 feet southwest of the Soco dissolved phase plume. The LWSD pumping wells 7 and 8 are upgradient of MW110 about 416 and 466 feet respectively. There have been seven MCL exceedances for TCE; most recently during the past three October sampling events. The other three COCs have been mostly non-detect or at very low levels. While there have been exceedances, the Mann Kendall Trend Evaluation of TCE results from this well indicate a stable/ no trend. This well is being monitored because it is located within the leading edge of the TCE plume and southwest of the dissolved phase PCE plume to determine if dewatering pulls the dissolved phase plume cross gradient.

If a dewatering related drawdown of 0.5 feet is measured at MW110, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 0.5 feet.

As this well is located within the TCE plume and cross gradient of the PCE plume, PCE and TCE will be the trigger COCs. Concentration trigger values of > 1 ug/L for PCE and > 10 ug/L for TCE have been selected.

If the results of the confirmation sample from MW110 confirm the exceedance of a trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped or modified to minimize the impact.

<u>MW216</u> is located on Drinkwalter and Sons property approximately 46 feet southwest of Lockwood Road and downgradient of the Beall source area. The LWSD pumping wells 1 and 2 are downgradient of MW216 about 99 feet and 288 feet respectively. This well has never had detections above the MCL for any of the COCs. The Mann Kendall Trend Evaluation of COCs results from this well indicate a stable/ no trend to a decreasing trend. This well is being monitored because it is located cross gradient of the dissolved phase TCE plume emanating from Beall to determine if dewatering pulls the dissolved phase plume cross gradient.

If a dewatering related drawdown of 2.0 feet is measured at MW216, then a groundwater sample will be collected immediately and will be sampled weekly as long as the water level measurements are observed to be below 2.0 feet.

As this well is located cross gradient of the TCE plume and only low levels of TCE have been detected in this well, TCE will be the trigger COC. A concentration trigger value of > 4 ug/L for TCE has been selected.

If the results of the confirmation sample from MW108 confirm the exceedance of a trigger value, at a minimum the City of Billings will be notified and the EPA will suggest a sample to be taken directly from the construction dewatering discharge to evaluate potential impact on the city's effluent limits established for this project

<u>MW217</u> is located on Lumberyard Supply Company property approximately 58 feet southwest of Lockwood Road and downgradient of the Beall source area. The LWSD pumping wells 5 and 6 are downgradient of MW217 about 459 feet and 315 feet respectively. Sample results have consistently been above the MCL for TCE while the other three COCs have been mostly non-detect or at very low levels. The Mann Kendall Trend Evaluation of TCE results from this well indicate a stable/ no trend to a decreasing trend. This well is being monitored because it is a part of the dissolved phase TCE plume emanating from Beall to determine if dewatering pulls the dissolved phase TCE plume down or cross gradient.

If a dewatering related drawdown of 0.5 feet is measured at MW217, then a groundwater sample will be collected immediately.

As this well is part of the TCE plume and only low levels of TCE have been detected in this well, TCE will be the trigger COC. A concentration trigger value of > 10 ug/L for TCE has been selected.

If the results of the confirmation sample from MW217 confirm the exceedance of the trigger value, the results will be evaluated within the duration of the dewatering activity. For example, if the exceedance occurs one week after dewatering begins, this indicates that dewatering is having an immediate effect on the plume and source area and discussion needs to commence on whether dewatering needs to be stopped.

<u>PT001</u> is located on Soco property immediately on the western fringe of the northwest source area. The LWSD pumping wells 11 and 12 are cross gradient and 7 and 8 are upgradient from PT001. Sample results have consistently been non-detect or at very low levels for the COCs. In sufficient data has been collected from this well to perform a Mann Kendall Trend Evaluation. This well is initially being monitored for drawdown only.

If a dewatering related drawdown of 1.0 feet is measured at PT001, then the EPA and Soco/ATC will discuss an appropriate course of action. At this time, the EPA has not identified a sampling trigger value.

3.2 Sampling Methods

Appropriate protocols for collecting depth to groundwater measurements, field parameters, and groundwater samples; sample documentation (including log books and photographs), labeling, handling, and, shipping; laboratory procedures; decontamination; equipment maintenance and testing; supplies management; and problem resolution are discussed in the EPA-approved

Groundwater Monitoring Quality Assurance Project Plan, Operable Unit 2, Lockwood Solvent Groundwater Plume Site (ATC 2012) and the EPA-approved Supplemental Sampling Program Quality Assurance Project Plan Remedial Design, Lockwood Solvent Groundwater Plume Site, Beall Source Area Operable Unit 1 (PWT 2012). As two consulting firms will be performing the work under this Dewatering Monitoring Plan (ATC on behalf of Soco and PWT on behalf of the EPA), each firm's activities will be consistent with the provisions of their individual QAPPs and this plan. The two QAPPs are also not inconsistent with each other; therefore providing comparable data from the different wells. This Dewatering Monitoring Plan will only briefly discuss these procedures. Please refer to these documents for additional procedure details.

3.2.1 Depth to Groundwater Measurements

On June 21, 2012 static water levels at monitoring wells MW001, MW100, MW103, MW002, MW108, MW109, MW110, MW216, MW217, and PT001 were measured. These measurements are included in Table 6 and are considered baseline conditions to compare subsequent water elevations against. Water level measurements will also be collected again the week of July 1 prior to dewatering activities. Water level measurements will be collected following the appropriate SOPs and recorded on the Water Level Measurement Record form (Attachment D). Since the water level measurements are relative to the measurements collected during this program only, conversion of the water level measurements to feet above sea level is not necessary.

Water levels in all ten monitoring wells will be monitored on a daily basis, at a minimum, once pumping is initiated. Depth to groundwater in select wells (e.g., MW110) may be continuously recorded with a transducer and downloaded weekly. Water levels will be compared to the drawdown trigger values in Table 2 immediately upon collection. On the first day of any new pumping well start-up, water level measurements will be collected twice a day until the water level stabilizes. At that time, frequency of the water level measurements may be reduced based on discussions between the stakeholders. If a dewatering related drawdown exceeding the well-specific trigger value identified on Table 2 is measured at any of these wells, groundwater sampling will begin in the affected well(s). Continuous monitoring ensures that any changes to the existing dissolved phase groundwater plumes are detected to ensure dewatering does not negatively impact the movement of contamination at the Site.

3.2.2 Groundwater Sampling

If dewatering results in a drawdown that triggers groundwater sampling, samples will be collected immediately and then weekly thereafter from the monitoring wells that reach the trigger drawdown level until groundwater returns to above the trigger groundwater elevation as compared against. Field parameters will also be collected from each well during the collection of each groundwater sample. Field parameters will be measured and recorded in accordance with appropriate SOPs, using a low volume flow-through cell (ATC 2012, PWT 2012). Groundwater samples will be collected from the existing monitoring wells using low flow sampling techniques in accordance with the appropriate groundwater sampling SOPs (ATC 2012, PWT 2012).

At any time, the EPA, in consultation with the other stakeholders, may alter the trigger values or the frequency of water level measurements or sample collection based on field observations, analytical results, changes in the construction schedule, or any other condition as appropriate.

3.3 Sample Handling and Custody

3.3.1 Sample Identification

The sample naming convention that has been used on previous semi-annual groundwater sampling events will be used for this monitoring event. However, a DW for dewatering will be added to end of each sample to discern it from other sample events. The letter C will be added after DW if the sample is a confirmation sample.

3.3.2 Sample Management

After collection, samples will be managed in accordance with appropriate SOPs for Sample Handling (ATC 2012, PWT 2012). Samples will be packaged and hand delivered to a local laboratory once sample collection is completed. Appropriate chain of custody procedures will be followed to ensure samples are accounted for from the field to the laboratory.

3.4 Sample Analysis

Samples will be submitted to Energy Laboratories, Inc., located on 1120 South 27th Street in Billings, Montana, for laboratory analysis of volatile organic compounds (VOCs) by EPA Method 524.2 and appropriate laboratory procedures will be followed. A one-day turnaround will be requested for the analyses. Laboratory data will be compared to historic data and the trigger concentration identified for the monitoring well(s) to determine if dewatering is having any effect on the Soco source contaminants or the dissolved phase plumes. Because of the immediate use of this data for making decisions, data evaluation or validation is not anticipated or required.

3.5 Data Review and Management

All field parameters collected and any laboratory analytical results will be shared with the EPA and DEQ as it becomes available to assist in decision-making. The EPA, in consultation with other stakeholders, will review the data for usability for its intended purpose of evaluating the dewatering activities.

Hard copies of the field forms, sampling forms, and analytical data will be scanned for electronic archive. In addition, any electronic deliverables or documents will be archived. It is not necessary for the analytical data generated from this sampling effort to be validated or entered into Scribe at this time.

4.0 References

- ATC. 2012. Groundwater Monitoring Quality Assurance Project Plan, Operable Unit 2, Lockwood Solvent Groundwater Plume Site. April.
- MDEQ/USEPA. 2005. Record of Decision, Lockwood Solvent Groundwater Plume Site Billings, Montana. August.
- PWT. 2012. Supplemental Sampling Program, Quality Assurance Project Plan, Lockwood Solvent Groundwater Plume Site, Beall Source Area Operable Unit 1, Yellowstone County, Montana. March.
- Tetra Tech. 2010. Groundwater Drawdown Monitoring Report: January 4, 2010, Phase One Sewer Subdistrict Lockwood Water and Sewer District Construction Dewatering System. January.

Tables

Table 1

Project Organization and Responsibilities

Dewatering Monitoring Plan

Lockwood Solvents Groundwater Plume Superfund Site

Managers	Organization	Responsibilities
Roger Hoogerheide	EPA	Project oversight/management and decision making
		authority for discontinuing dewatering if effects of
		dewatering are impacting the plume or source area
John Podolinsky	DEQ	Project oversight/management and decision making
		authority for discontinuing dewatering if effects of
	5	dewatering are impacting the plume or source area
Andrew Schmidt	EPA	Project oversight/management and decision making
		authority for discontinuing dewatering if effects of
		dewatering are impacting the plume or source area
Boris Krizek	City of Billings	Decision making authority for discontinuing
		dewatering at any time
James Sullivan	ATC Associates	Responsible for monitoring/sampling of MW100,
	(Soco contractor)	MW103, and PT001; provides input on dewatering
	(2000 001111111111)	decisions; provides field data and analytical results to
		EPA/DEQ
Catherine LeCours	PWT (EPA	Responsible for monitoring/sampling MW001,
Camerine Decours	contractor)	MW002, MW108, MW109, MW110, MW216, and
	Contractor)	MW217; provides input on dewatering decisions;
		provides field data and analytical results to EPA/DEQ
Woody Woods	LWSD	Decision making authority for discontinuing
Woody Woods	EWSD	dewatering at any time
Jock Clause	Western	Permittee to LWSD for Industrial Discharge to
JOCK Clause	Municipal	LWSD sewer collection system. Responsible for all
	Construction	dewatering means, methods and techniques.
	(LWSD	Responsible for design and operation of construction
	Construction	dewatering system and conducting all required
	Contractor)	sampling per the permit and per the construction
	Contractor)	contract with LWSD. Submits sampling results to
		Owner and Engineer.
Dave Mosser-	Morrison -	Act as the Owner's representative in coordination
Dave Wosser	Maierle, Inc.	with the construction contractor, Western Municipal
	(LWSD	Construction, as well as with EPA and DEQ.
	Engineering	Construction, as wen as with El A and DEQ.
	contractor)	
Jill Cook	Morrison -	Act as the Owner's representative in coordination
JIII COOK	Maierle, Inc.	with the Construction Contractor, Western Municipal
	(LWSD	Construction, as well as with EPA and DEQ.
	Engineering	Construction, as well as with El A and DEQ.
	contractor)	
Wynn Pippin		Provide analytical support for groundwater complex
w yiii r ippili	Energy Laboratories Inc.	Provide analytical support for groundwater samples
	Laboratories, Inc.	

Table 2 Monitoring Well Locations, Rationale, and Trigger Values Dewatering Monitoring Plan Lockwood Solvents Groundwater Plume Superfund Site

Monitoring	Location	Rationale	Drawdown	Concentration
Well			Value	Trigger Value
= .			(feet)	(ug/L)
MW001	Along Taylor Place, south of the Soco property, upgradient of the Soco source and groundwater plume and side gradient of the Beall TCE plume	Closest monitoring well to Taylor Place	2.0	> 1.0 PCE > 4.0 TCE
MW002	Approximately 450 feet north of Taylor Place, 200 feet southwest of the Soco PCE plume, and 200 feet northeast of the Beall TCE plume	Cross gradient effects of dewatering on the Soco PCE and Beall TCE plumes	0.5	> 1.0 PCE > 10.0 TCE
MW100	Approximately 315 feet north of Taylor Place and near the southern boundary of the former tank farm source area	Upgradient of the Soco source areas and dissolved phase plume	0.5	> 1.0 PCE > 3.0 TCE
MW103	Approximately 315 feet north of Taylor Place and near the southern boundary of the former tank farm source area	Upgradient of the Soco source areas and dissolved phase plume	0.5	> 5.0 PCE > 5.0 TCE > 70.0 cis-DCE > 2.0 VC
MW108	Approximately 100 feet east of Lomond Lane and 250 feet north of Taylor Place	Close proximity to the pumping wells – will monitor field parameters initially	2.0	> 3.0 TCE
MW109	Approximately 250 feet northwest of Taylor place and 500 feet southeast of the Soco PCE plume	Cross gradient effects of dewatering on the Soco PCE plume and effects on the Beall TCE plume	0.5	> 1.0 PCE > 10.0 TCE
MW110	Approximately 300 feet northwest of Taylor Place and 300 feet southwest of the Soco PCE plume	Cross gradient effects of dewatering on the Soco PCE plume and effects on the Beall TCE plume	0.5	> 1.0 PCE > 10.0 TCE
MW216	Approximately 46 feet southwest of Lockwood Road and cross gradient of the Beall TCE plume	Cross gradient effects of dewatering on the Beall TCE plume	2.0	> 4.0 TCE
MW217	Approximately 58 feet southwest of Lockwood Road and within the Beall TCE plume	Downgradient effects of dewatering on the Beall TCE plume	0.5	> 10.0 TCE
PT001	Immediately west of the Soco northwestern source area	Cross gradient effects of dewatering on the Soco source area	1.0	none established at this time

Sample Analysis Dewatering Monitoring Plan Lockwood Solvents Groundwater Plume Superfund Site

Matrix	Analysis	Anticipated Concentration Range	Action Limit (VOC's only) 1	Reporting Limits	Analytical Method	Laboratory Identification/ Field	Sample Type	Sample Number ²	Duplicates / MS/MSD ³	Holding time	Lab Turnaround Time	Sample volume	Container Size/Type	Preservative	Total Analyses ¹
	Tetrachloroethene	0.5 to 15 ug/L		0.5 ug/L											
Groundwater	Trichloroethene	0.5 to 17 ug/L	vary for each well	0.5 ug/L	E24.2	Farmi	Crob	150	N/A	14 days	1 day	120 ml	3 - 40 mL glass	HCI and 4 °C (±2°C)	159
Glodiidwatei	Cis-1,2-Dichloroethene	0.5 to 40 ug/L	monitored	0.5 ug/L	524.2	Energy	Grab	159	N/A	14 days	1 day	120 1111	3 - 40 III. glass	HCI alid 4 C (12 C)	139
	Vinyl Chloride	0.5 to 18 ug/L		0.5 ug/L											

- 1 Action limits for this dewatering monitoring program are well-specific and are included on Table 2 of this Dewatering Monitoring Plan.
 2 Groundwater samples are estimated based on "worst case scenario" of a sample collected every three days (starting three days after initial pumping) for the duration of the project from each well.
 3 Data quality objectives for this sampling program does not require QA/QC samples collected in the field.

LWSD DEWATERING MONITORING PLAN
LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

Monitoring Wells within the Area of Interest for Dewatering Southern Lomond Lane, Taylor Place, and Lockwood Road

"QA/QC samples not included
units - ug/L

units - ug/L					
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW001	4/22/2003	0.5U	0.5U	0.5U	0.5U
MW001	10/21/2003	0.5U	0.5U	0.5U	0.5U
MW001	4/22/2004	0.5U	0.5U	0.5U	0.5U
MW001	10/12/2004	0.5U	0.5U	0.5U	0.5U
MW001	4/27/2005	0.5U	0.50	0.2J	0.5U
				0.5U	0.5U
MW001	10/27/2005	0.5U	0.5U		
MW001	4/5/2006	0.5U	0.5U	0.5U	0.5U
MW001	10/24/2006	0.5U	0.5U	0.34J	0.5U
MW001	4/4/2007	0.5U	0.5U	0.35J	0.5U
MW001	10/3/2007	0.5U	0.5U	0.5U	0.5U
MW001	4/16/2008	0.5U	0.5U	0.44J	0.5U
MW001	10/13/2008	0.5U	0.5U	0.68	0.5U
MW001	4/14/2009	0.5U	. 0.5U	0.58	0.5U
MW001	10/6/2009	0.5U	0.5U	0.76	0.5U
MW001	4/14/2010	0.5U	0.5U	0.26	0.5U
MW001	10/12/2010	0.5U	0.5U	0.19	0.5U
MW001	4/12/2011	0.5U	0.5U	0.81	0.5U
MW001	4/26/2012	0.5U	0.5U	2.1	0.4U
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW002	6/1/2000	0.5	0.2U	4.56	0.2U
MW002	11/16/2000	2150D	536	72	0.5U
MW002	11/16/2000	0.35J	.21J	3.8	731
MW002	7/25/2001	0.68	0.5U	7.1	0.5U
		0.64		6.2	0.5U
MW002	7/25/2001	0.65	0.5U	7.3	
MW002	10/23/2001		0.5U	6.5	0.5U
MW002	2/6/2002	0.78	0.5U		0.5U
MW002	4/30/2002	0.98	0.5U	6.7	0.5U
MW002	7/24/2002	0.6	0.5U	7.3	0.5U
MW002	10/28/2002	0.99	0.5U	10	0.5U
MW002	4/23/2003	0.76	0.5U	6.6	0.5U
MW002	10/21/2003	1	0.5U	9.1	0.5U
MW002	4/22/2004	0.86	0.5U	6	0.5U
MW002	10/12/2004	0.84	0.5U	7.7	0.5U
MW002	4/27/2005	0.74	0.5U	6	0.5U
MW002	10/26/2005	0.81	0.5U	. 7	0.5U
MW002	4/4/2006	0.77	0.5U	5.5	0.5U
MW002	10/24/2006	0.5U	0.5U	0.5U	0.5U
MW002	10/24/2006	0.67	0.5U	5.4	0.5U
MW002	4/4/2007	0.58	0.5U	4.1	0.5U
MW002	10/3/2007	0.6U	0.5U	5.2	0.5U
MW002	4/17/2008	0.47J	0.5U	3.6	0.5U
MW002	10/15/2008	0.56	0.5U	4.8	0.5U
MW002	4/15/2009	0.57	0.5U	3.7	0.5U
MW002	10/8/2009	0.64	0.5U	4.5	0.5U
MW002	4/12/2010	0.51	0.5U	3.9	0.5U
MW002	10/13/2010	0.52	0.5U	4.6	0.5U
MW002	4/12/2011	0.42	0.5U	3.1	0.5U
MW002	10/13/2011	0.45	0.5U	4.2	0.5U
MW002	4/16/2012	0.5U	0.5U	3.5	0.4U
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW100	4/23/2003	18	0.23	0.5	3.4
MW100	10/22/2003	0.5U	0.5U		0.5U
				0.3J	
MW100	4/20/2004	5.8	0.21J	0.7	3
MW100	10/13/2004	0.23J	0.5U	0.39J	0.5U
MW100	4/27/2005	1.7	0.84	1.1	. 1.2
MW100	10/26/2005	0.52	0.5U	0.6	0.32J
MW100	4/5/2006	2	0.62	1	1.4
MW100	4/4/2007	0.82	1.1	2	0.5U
MW100	10/2/2007	0.48J	0.48J	1.5	0.5U
MW100	4/16/2008	6.9	0.6	1.8	8.3
MW100	10/15/2008	0.65J	0.66J	1.8J	0.3J
MW100	4/15/2009	9.3	1.7	2.3	2.3

1011100	40/6/2000		0.55	4.5	0.511
MW100	10/6/2009	0.9	0.55	1.5	0.5U
MW100	4/13/2010	37	14	3.3	12
MW100	10/13/2010	4.9	0.5	1.4	0.15
MW100	10/24/2006	0.34J	0.89	1.4	0.5U
MW100	4/13/2011	1.6	0.95	1.4	0.31
MW100	10/4/2011	0.67	0.27	1.3	0.16
MW100	4/26/2012	1.8	0.5U	1.8	0.4U VINYL CHLORIDE
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE 0.35	TRICHLOROETHENE 0.49	0.83
MW103	4/23/2003	14 0.53	0.5U	0.49 0.27J	0.83 0.5U
MW103	10/22/2003 4/20/2004	3.8	0.5U	0.29J	0.38J
MW103	10/13/2004	17	0.5U	0.28J	1.1
MW103	4/27/2005	18	0.5U	0.31J	2.1
MW103	10/26/2005	0.43J	0.5U	0.5U	0.5U
MW103	4/5/2006	7.2	0.5U	0.29J	0.89
MW103	10/24/2006	9.8	9	3	2.5
MW103	4/4/2007	8	1.5	0.67	1.3
MW103	10/2/2007	101	11	6.3	10
MW103	4/16/2008	17	0.5U	0.52	0.5
MW103	10/15/2008	16J	3.2J	1.8J	3.4J
MW103	4/15/2009	22	2.7	1.1	3.9
MW103	10/6/2009	0.66	1.4	0.98	0.5U
MW103	4/13/2010	101	0.53	0.78	18
MW103	10/13/2010	0.88	0.5U	0.3	0.5U
MW103	4/13/2011	8.6	0.5U	0.32	0.5U
MW103	10/12/2011	0.93	1.4	1.1	0.5U
MW103	4/26/2012	9.4	0.5U	0.5U	0.4U
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW108	6/18/2002	0.2U	0.2U	0.2U	0.2U
MW108	8/8/2002	0.5	0.5U	2.4	0.5U
MW108	11/1/2002	0.61	0.5U	2.9	0.5U
MW108	4/23/2003	0.56	0.5U	2.5	0.5U
MW108	10/21/2003	0.47J	0.5U	2.9	0.5U
MW108	4/22/2004	0.4J	0.5U	2.5	0.5U
MW108	10/12/2004	0.4J	0.5U	2.7	0.5U
MW108	4/27/2005	0.37J	0.5U	2.6	0.5U
MW108	10/27/2005	0.44J	0.5U	2.6	0.5U
MW108	4/4/2006	0.33J	0.5U	2.3	0.5U
MW108	4/4/2006	0.36J	0.5U	2.6	0.5U
MW108	10/26/2006	0.28	0.5U	2.1	0.5U
MW108	4/4/2007	0.5U	0.5U	2.3	0.5U
MW108	10/3/2007	0.5U	0.5U	2.1 1.8	0.5U
MW108	4/15/2008	0.5U 0.2U	0.5U	1.8	0.5U
MW108 MW108	10/13/2008	0.22J	0.5U	1.9	0.5U 0.5U
	4/15/2009	0.5U	0.5U	2	
MW108 MW108	10/7/2009 4/12/2010	0.22	0.5U 0.5U	1.7	0.5U 0.5U
MW108		0.2	0.5U	1.7	0.5U
MW108	4/12/2010 10/13/2010	0.28	0.5U	2	0.5U
MW108	4/12/2011	0.2	0.5U	1.7	0.5U
MW108	10/13/2011	0.17	0.5U	2	0.5U
MW108	4/30/2012	0.5U	0.5U	1.8	0.4U
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW109	6/18/2002	0.2U	0.2U	0.2U	0.2U
MW109	8/8/2002	0.86	0.5U	11	0.5U
MW109	11/1/2002	1.3	0.5U	10	0.5U
MW109	4/23/2003	0.92	0.5U	9.3	0.5U
MW109	10/21/2003	1	0.5U	12	0.5U
MW109	4/22/2004	0.88	0.5U	7.9	0.5U
MW109	10/12/2004	0.85	0.5U	10	0.5U
MW109	4/27/2005	0.8	0.5U	9	0.5U
MW109	10/27/2005	0.79	0.5U	9	0.5U
MW109	4/4/2006	0.67	0.5U	8.3	0.5U
MW109	10/23/2006	0.63	0.5U	7	0.5U
				6.3	0.5U
MW109	4/4/2007	0.64	0.27J	0.5	
	4/4/2007 10/2/2007	0.64 0.69	0.5U	6.4	0.5U
MW109					
MW109 MW109	10/2/2007	0.69	0.5U	6.4	0.5U

MW109					
	10/13/2008	0.52	0.18J	6.2	0.5U
MW109	10/13/2008	0.54	0.17J	6.5	0.5U
MW109		0.6	0.22J	5.6	0.5U
	4/15/2009				
MW109	10/7/2009	0.63	0.52	6.2	0.5U
MW109	4/12/2010	0.6	0.23	5.8	0.5U
MW109	10/14/2010	0.47	0.28	. 5.5	0.5U
MW109	4/12/2011	0.44	U	4.5	0.5U
MW109		0.42	0.33	6.8	0.5U
The state of the s	10/13/2011	Annual Control of the			
MW109	4/30/2012	0.5U	0.5U	5.5	0.4U
MW110	4/23/2003	0.59	0.5U	7	0.5U
MW110	10/21/2003	0.92	0.5U	10	0.5U
		0.77	0.5U	7.5	0.5U
MW110	4/22/2004				
MW110	10/12/2004	0.66	0.5U	8.2	0.5U
MW110	4/27/2005	0.5U	0.5U	0.82	0.5U
MW110	10/27/2005	0.53	0.5U	4.8	0.5U
MW110	4/4/2006	0.5U	0.5U	2	0.5U
MW110	10/24/2006	0.5U	0.5U	1.4	0.5U
MW110	4/4/2007	0.5U	0.5U	1.4	0.5U
MW110	4/17/2008	0.22J	0.5U	1.7	0.5U
MW110	10/13/2008	0.41J	0.21J	4.5	0.5U
MW110	4/15/2009	0.23J	0.5U	1.8	0.5U
MW110	10/7/2009	0.8	0.82	7.2	0.5U
MW110	4/12/2010	0.34	0.5U	2.5	0.5U
MW110	10/13/2010	0.57	0.4	6.4	0.5U
MW110	4/12/2011	0.33	0.32	4.1	0.5U
MW110	10/13/2011	0.35	0.52	5.7	0.5U
MW110	5/1/2012	3.2J	0.8	3.5	0.5U
STATION	COLLECTIONDATE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
MW216	4/22/2003	0.58	0.55	4.6	0.5U
MW216	10/23/2003	0.48J	0.5	3.9	0.5U
MW216	4/19/2004	0.35J	0.39J	3.5	0.5U
MW216	10/12/2004	0.24J	0.46J	3.2	0.5U
MW216	4/28/2005	0.3J	0.49J	3	0.5U
MW216	10/26/2005	0.5U	0.5U	2.5	0.5U
MW216	4/5/2006	0.5U	0.44J	2.6	0.5U
	10/26/2006		0.48J	2.5	
MW216					
		0.18J			0.5U
MW216	4/5/2007	0.18J 0.5U	0.54	2.7	0.5U
MW216 MW216					
	4/5/2007	0.5U	0.54	2.7	0.5U
MW216 MW216	4/5/2007 10/3/2007 10/16/2008	0.5U 0.5U 0.5U	0.54 0.46J 0.55	2.7 2.6 2.7	0.5U 0.5U 0.5U
MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008	0.5U 0.5U 0.5U 0.2J	0.54 0.46J 0.55 0.42J	2.7 2.6 2.7 2.4	0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009	0.5U 0.5U 0.5U 0.2J 0.23J	0.54 0.46J 0.55 0.42J 0.54	2.7 2.6 2.7 2.4 2.5	0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008	0.5U 0.5U 0.5U 0.2J	0.54 0.46J 0.55 0.42J	2.7 2.6 2.7 2.4	0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009	0.5U 0.5U 0.5U 0.2J 0.23J	0.54 0.46J 0.55 0.42J 0.54	2.7 2.6 2.7 2.4 2.5	0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U	0.54 0.46J 0.55 0.42J 0.54 0.48J	2.7 2.6 2.7 2.4 2.5 2.4	0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.32	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.32 0.32 0.26	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.19J 0.19J	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.32 0.32 0.26	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.19J 0.19J	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.19J 0.19J CIS-1,2-DICHLOROETHENE	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.9U 0.32 0.26 0.19J 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217 MW217 MW217	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217 MW217 MW217 MW217 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217 MW217 MW217	4/5/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217 MW217 MW217 MW217 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004	0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217 MW217 MW217 MW217 MW217 MW217 MW217 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006 10/23/2006	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4 9.4	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4 9.4	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7 1.4	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4 9.4 10	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4 9.4	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7 1.4 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 12 10 9.4 9.4 10 9 8.9	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7 1.4 1.3 1.5	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.7 1.4 1.7 1.4 1.3 1.5 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008 10/16/2009 10/7/2009	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.7 1.4 1.3 1.5 1.3 1.5 1.3 1.5 1.4	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.7 1.4 1.7 1.4 1.3 1.5 1.3	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008 4/16/2009 10/7/2009 4/14/2010	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68 0.78 0.78	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7 1.4 1.3 1.5 1.3 1.5 1.3 1.4 1.4 1.7 1.4 1.3 1.5	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6 9 8.4 10	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008 10/16/2009 10/7/2009 4/14/2010	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68 0.78 0.7	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.7 1.4 1.3 1.5 1.3 1.5 1.3 1.6 1.6 1.6 1.6	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6 9 8.4 10 8.9	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 10/4/2007 4/16/2008 10/16/2008 4/16/2009 10/7/2009 4/14/2010 10/14/2010 4/13/2011	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68 0.78 0.7	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.4 1.7 1.4 1.3 1.5 1.3 1.5 1.3 1.6 1.6 1.6 1.6 1.6 1.6 1.6	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6 9 8.4 10 8.9 6.8	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U
MW216 MW217	4/5/2007 10/3/2007 10/3/2007 10/16/2008 4/16/2008 4/15/2009 10/7/2009 4/14/2010 10/14/2010 10/13/2011 5/1/2012 COLLECTIONDATE 4/22/2003 10/23/2003 4/19/2004 10/12/2004 4/27/2005 10/27/2005 10/27/2005 4/5/2006 10/23/2006 4/5/2007 10/4/2007 4/16/2008 10/16/2008 10/16/2009 10/7/2009 4/14/2010	0.5U 0.5U 0.5U 0.5U 0.2J 0.23J 0.5U 0.5U 0.5U 0.5U 0.32 0.26 0.19J 0.19J CIS-1,2-DICHLOROETHENE 1.5 1.2 0.94 0.84 0.86 0.88 0.74 0.75 2.5U 0.77U 0.72 0.69 0.68 0.78 0.7	0.54 0.46J 0.55 0.42J 0.54 0.48J 0.4 0.3 0.3 0.4J 0.5U TETRACHLOROETHENE 1.6 1.4 1.2 1.3 1.5 1.3 1.4 1.7 1.4 1.3 1.5 1.3 1.5 1.3 1.6 1.6 1.6 1.6	2.7 2.6 2.7 2.4 2.5 2.4 2.1 1.9 2.7 3.3U 3.1 TRICHLOROETHENE 16 15 12 12 10 9.4 9.4 10 9 8.9 8.6 9 8.4 10 8.9	0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U

.

Table 5

Analytical Results Distribution List
Dewatering Monitoring Plan
Lockwood Solvents Groundwater Plume Superfund Site

Name	Affiliation	Telephone	Email
Roger	EPA Project Manager	406-457-5031	Hoogerheide.roger@epa.gov
Hoogerheide			
John Podolinsky	DEQ Project Officer	406-841-5040	jpodolinsky@mt.gov
Woody Woods	Director, Lockwood Water	406-259-4120	woodyw@lockwoodwater.com
	and Sewer District		-
Boris Krizek	City of Billings POTW	406-247-8517	KrizekB@ci.billings.mt.us
Jim Sullivan	ATC Associates, Inc.	406-259-1033	James.sullivan@atcassociates.com
	(Soco consultant)		×.
Catherine LeCours	PWT, Ltd.	406-457-5495	clecours@pwt.com
	(EPA consultant)		_

Table 6 Lockwood Dewatering Monitoring Plan

Water Level Measurements June 21

feet below top of casing

Well ID	Date								
	6/21/2012								
MW001 *	17.81								
MW002	8.37								
MW100	10.16								
MW103	10.15	·							
MW108 *	6.58								
MW109	7.02								
MW110	5.72								
MW216 *	NC								
MW217	11.2								
PT02	6.29								

NC = not collected

^{*} transducer present

Figures

Figure 3
Organization Chart

Dewatering Monitoring Plan Lockwood Solvent Groundwater Plume Superfund Site

Attachment A Well Logs

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY

LOG OF BOREHOLE

Borehole/Well ID: MW216

DRILLING DATE: 7/11/02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 34 TOTAL WELL DEPTH (ft btoc): 34 LOGGED BY: Randy Laskowski

CLIENT: MDEQ

PROJECT NO.: S1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2
TOC ELEVATION (ft AMSL): 3109.99
GROUND ELEVATION (ft AMSL): 3110.53
DRILLING CO.: Maxim
WATER LEVEL (ft btoc): 10.10 (10/28/02)

GROUNDWATER ELEV (ft AMSL).: 3100.09

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW216

DRILLING DATE: 7/11/02
DRILLING METHOD: HSA
BOREHOLE DEPTH (ft bgs): 34
TOTAL WELL DEPTH (ft btoc): 34
LOGGED BY: Randy Laskowski

CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2
TOC ELEVATION (ft AMSL): 3109.99
GROUND ELEVATION (ft AMSL): 3110.53
DRILLING CO.: Maxim
WATER LEVEL (ft btoc): 10.10 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3100.09

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW217

DRILLING DATE: 7/23/02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 32.2 TOTAL WELL DEPTH (ft btoc): 31.1 LOGGED BY: Randy Laskowski

CLIENT: MDEQ PROJECT NO.: S1176-10RIRPRT BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2
TOC ELEVATION (ft AMSL): 3107.92
GROUND ELEVATION (ft AMSL): 3108.26
DRILLING CO.: O'Keefe
WATER LEVEL (ft btoc): 9.21 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3098.82

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW217

DRILLING DATE: 7/23/02
DRILLING METHOD: HSA
BOREHOLE DEPTH (ft bgs): 32.2
TOTAL WELL DEPTH (ft btoc): 31.1
LOGGED BY: Randy Laskowski
CLIENT: MDEQ
PROJECT NO.: S1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2
TOC ELEVATION (ft AMSL): 3107.92
GROUND ELEVATION (ft AMSL): 3108.26
DRILLING CO.: O'Keefe
WATER LEVEL (ft btoc): 9.21 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3098.82

Monitoring Well PT-1

PROJECT: AS/SVE Pilot Study

DATE: 12/13/01

LOGGED BY: H. Kaiser

LOCATION: Brenntag West, Lockwood, MT.

HOLE DIA.: 8 in.

SAMPLER: 2" Dia. Split Spoon

DRILL RIG.: Mobile B-61, Okeefe Drilling Co.

GROUND ELEV.: 3101.5

DESCRIPTION	USCS CLASS	GRAPHIC LOG	DEPTH	BLOWS/6	SAMPLE	PID (ppm)	RECOVERY		ONSTRUCTION ETAIL Locking Cop
CLAY: With minor medium sand, light grey to brown at depth dry medium stiff no odor or stain.	CL		- ı- - ı-	42		0			<bentonite< td=""></bentonite<>
CLAY: With minor sand, moist light grey, medium stiff to soft, no odor or stain.	CL		3 3	3 3 3 2		0	16" 24"		
BACKFILL: Encountered 8" of bentonite. (moved location 2 feet North and continued drilling)			_ ,_ _ 5	2 2 2 2		0	14" 24"		
CLAY: Moist, grey, medium soft, slight odor, no stain, minor fine sand, (laboratory sample PT-1 6-8 FT.)	CL		_	2 3 5 7	X	0 738	24"		
Top 7", CLAY: As above. Bottom 17", SAND: Wet, brown and grey, minor clay and silt, no odor, medium sand, well sorted.	CL/ SP		 9 	6 8 9 12		107			
SAND: Fine grained, wet, grey, minor silt and clay, no odor or stain.	SP		- '- 11 	3 3 3 4		o	12" 24"		
Top 12", SAND: As above, medium coarse, wet, grey. Bottom 8", GRAVEL: Fine to coarse, rounded, with sand, wet, grey, no odor.	SP/ GP		- 13 - 13	29 26 29		0	18" 24"		Sand Pack
GRAVEL: With sand, wet, fine to coarse, rounded gravel with medium to coarse sand, no odor or stain.	GP		15 - 15	45 40 41 29		o	12" 24"		
GRAVEL: With sand and minor clay, fine to medium gravel, coarse sand, wet, no odor.	GP		- 17 - 17	29 23 40 46		0	24"		
Same as Above: Poorly sorted, clay increasing slightly, wet, no odor or stain.	GP		- 19 19	32 72 80 52		0	20" 24"		2" Dia. PVC Sch 40 0.020" Slotted
SAND and GRAVEL: Coarse sand, fine to medium gravel, wet, no odor. (Laboratory sample PT-1 20-22 FT)	GP		- 20 21 	21 70 67 103	X	o	12" 24"		Screen
SAND: With fine gravel in bottom 8", well sorted medium coarse sand, grey, wet. DO: Sand heaving into augers.	GP		23 23	34 50-4"		0	10"		
Same as Above: bottom 8" with fine gravel and sand; heaving sands.	GP		-25	30 50-5"		0	24" 11"		
SANDSTONE (BEDROCK) Grey medium grained. TD = 28'	SS		-26 -27	50-3"		0	2" 3"		
			-28 29 30					<u>. v.</u>	_
SECOR International Incorporated Billings, Montana Notes: D0 = Drillers observ Lab samples submitt and TOC analysis.		Energy		= tot for VO				hod 8260)	Project No. 032.60001.004 LOG-0763 Page 1 of 1

MONTANA WELL LOG REPORT

Form No. 603 R2-89

Well ID# EPA-1

This log reports the activities of a licensed Montana well driller and serves as the official record of work done within the borehole and casing and describes the amount of water encountered. This form is to be completed by the driller and filed with DNRC within 60 days of completion of the work.

Acquiring Water Rights is the well owner's responsibility and is not accomplished by the filling of this report.

Well log information is stored in the Groundwater Information Center at the Montana Bureau of Mines and Geology (Butte) and water right information is stored in the Water Rights Bureau records (Helena).

For fields that are not applicable, enter NA. Optional fields have a gro	ayed back	nound. R	ecord additional information in the REMARKS section.
1. WELL OWNER: Name U.S. EPA 40 PETE STEVENSON Mailing address U.S. E.PA Region 8.	Test - 1 hour minimum Drawdown is the amount water level is lowered below static level. All depth measurements shall be from the top of the well casing.		
	Time of recovery is hours/minutes since pumping stopped.		
999 18th STreet, Suite \$00, Denver Col.	Air test*		
2. WELL LOCATION: List 1/4 from smallest to largest	gpm with drill stem set atft. for hours Time of recovery hrs/min. Recovery water levelft.		
¼¼ <u>NW ¼ S E</u> ¼, Sectjon <u>Z6</u>	1		
Township LINS Range 26 W County Yellows Towe	OR Baller test* gpm with ft. of drawdown after hours		
Lot, Tract/Blk Subdivision Name Well Address1353 Taylor Billing m	Time of recoveryhrs/min. Recovery water level ft.		
Well Address 1353 Taylor Billings 77	OR Pump test*		
GPS Yes No Lockulos MY	Depth pump set for test ft.		
LatitudeLongitude Error as reported by GPS locator (± feet)	gpm pump rate withft. of drawdown after hrs pumping		
Horizontal datum NAD27 WGS84	Time of recovery hrs/min. Recovery water level ft.		
3. PROPOSED USE: ☐ Domestic ☐ Stock ☐ Irrigation	OR Flowing Artesian*		
☐ Public water supply Monitoring Well ☐ Other:	gpm forhours		
4. TYPE OF WORK:	Flow controlled by		
New well Deepen existing well Abandon existing well	not be t	he sustainab	le yield of the well. Sustainable yield does not include the resevoir of the
Method: ☐ Cable ☐ Rotary ☐ Other:	7. WEL		
5. WELL CONSTRUCTION DETAILS:			Material:
Borehole: Dia. 8/7 in. from 0 ft. to 25 ft.	From .	, Feet To	color/rock and type/descriptor (example: blue/shale/hard, or brown/gravel/water, or brown/sand/neaving)
Dia. in. from ft. to ft.	0	9	5.17 Clay - Med Brown
Dia.	9	71	Silti Clay - Light BROWN
Casing:	21	25	SANDY gravel - MED BROWN
Steel: Wall thickness WA Threaded Welded		- 63	SANOY GRAVET FIED BROWN
Dia. in. from			
Plastic: Pressure Rating 780 lbs. Threaded Welded Dia. 2" in. from ft. to 29" ft.			
Perforations/Slotted Pipe:			
Type of perforator used/\(\mathcal{N}\) A Size of perforations/slots in. by in.			
no. of perforations/slots from ft. to ft.			
no. of perforations/slots fromft. toft.			
Screens: X Yes コ No Material アンこうこと イク			
Dia 7" Slot size <u>0.010</u> from <u>24</u> ft. to <u>14</u> ft.			
Dia Slot size from ft. to ft.	-		
Gravel Packed: Yes INO Size of gravel ib/rc Silica Sond			
Packer:Yes No Type Depth(s)	□ ADDITIONAL SHEETS ATTACHED		
7 F T 1	8. DATE WELL COMPLETED: 9/23/99		
Depth from ft. to ft. OR □ Continuous feed	9. REMA	RKS:	
	<u> </u>	<u> </u>	
S. WELL TEST DATA: A well test is required for all wells (See details on well less report cause)	10. DRILLER/CONTRACTOR'S CERTIFICATION:		
A well test is required for all wells. (See details on well log report cover.) Static water level 12.8" ft. below top of casing or	All work performed and reported in this well log is in compliance with the Montana well construction standards. This report is true to the best of my knowledge.		
Static water level 1/2.8 th. below top of casing or Closed-in artesian pressurepsi.			
How was test flow measured:	Name, firm, or corporation (print) MAXIM Tech wolog 165		
bucket/stopwatch, weir, flume, flowmeter, etc			
	Address Bux 38615 Billings MV. 59107		
ellowstone groundwater closure area only - Water Temperature°F	Signature Oau V Brand		
AQUIFER TEST DATA FORM ATTACHED	Date _/c	2/25/	99 Utense no. MMWC 2344
Mantone DNPC PO POY 201501 H	F. F	T 50000	MBMG ID#

MONTANA WELL LOG REPORT

Form No. 603 R2-09

Well ID# EPA - Z

This log reports the activities of a licensed Montana well driller and serves as the official record of work done within the borehole and casing and describe the amount of water encountered. This form is to be completed by the driller and filed with DNRC within 60 days of completion of the work.

Acquiring Water Rights is the well owner's responsibility and is not accomplished by the filling of this report.

Well log information is stored in the Groundwater Information Center at the Montana Bureau of Mines and Geology (Butte) and water right information is stored in the Water Rights Bureau records (Helena).

For fields that are not applicable, enter NA. Optional fields have a grayed background. Record additional information in the REMARKS section. 1. WELL OWNER: Test - 1 hour minimum % PETE STEVENSON Drawdown is the amount water level is lowered below static level. All depth measurements shall be from the top of the well casing. Malling address U.S. Region 8 Time of recovery is hours/minutes since pumping stopped. 500 Denver Col Air test* List 1/4 from smallest to largest gpm with drill stem set at_ __ ft, for__ 2. WELL LOCATION: Time of recovery _____hrs/min. Recovery water level _ 14 NW 14 SE 14, Section _ OR Baller test* Township INS Range Z6 DW County Yellows Tone ___ gpm with _ _ ft. of drawdown after ___ _ hours ___, Tract/Blk____ Subdivision Name___ __hrs/min. Recovery water level _ Time of recovery ___ Well Address 1305 Taylor OR Pump test* GPS Yes No Depth pump set for test _ Longitude ___ Latitude gpm pump rate with ____ft. of drawdown after___ hrs pumping Error as reported by GPS locator (± feet) Time of recovery _____ hrs/min. Recovery water level _____tt. Horizontal datum □ NAD27 □ WGS84 OR Flowing Artesian* 3. PROPOSED USE: □ Domestic ☐ Stock ☐ Irrigation - □ Public water supply Monitoring Well □ Other:_ apm for _ Flow controlled by __ 4. TYPE OF WORK: *During the well test the discharge rate shall be as uniform as possible. This rate may or may New well Deepen existing well Abandon existing well not be the sustainable yield of the well. Sustainable yield does not include the resevoir of the Method: ☐ Cable ☐ Rotary Ø Other: #5# WELL LOG: 5. WELL CONSTRUCTION DETAILS: Material: Deoth, Feet Borehole: 8 1/2 color/rock and type/descriptor (example: blue/shale/hard or brown/gravel/water, or brown/sand/heaving) in, from To Dia. _ in. from __ __ ft. to _ mec Dia. in. from _ - MED BROWN Casing: Steel: Wall thickness MA Threaded Mer 4 PAVE BROWN Dia. _ ____in. from ___ __ ft. **t**o _ in. from _ Plastic: Pressure Rating 780 lbs. Threaded Welded Dia. 7 in. from 6 tt. to 73 tt. Perforations/Slotted Pipe: .Type of perforator used ____ Size of perforations/slots _____ in. by ____ __ no. of perforations/slots from _____ft. to __ ·____ft. to __ no. of perforations/slots from ____ Screens: XYes No No Pic Slot size <u>D.D10</u> from 13/2 ft. to 22/2 _____ from _____ ft. to _____ ft. __ Slot size___ Gravel Packed: Syes Silica Sand + NATIVE SAND Packer: Tyes ☐ ADDITIONAL SHEETS ATTACHED Depth(s) 8. DATE WELL COMPLETED: Grout: Material used Bendonite chips + NegT Comean Depth from 2 ft. to 10 ft. OR □ Continuous feed 6. WELL TEST DATA: 10. DRILLER/CONTRACTOR'S CERTIFICATION: A well test is required for all wells. (See details on well log report cover.) All work performed and reported in this well log is in compliance with the Static water level _5.4_ft. below top of casing or Montana well construction standards. This report is true to the best of my Closed-in artesian pressure _____psi. knówledge. Name, firm, pr corporation (print) MAXIM Technologies How was test flow measured: bucket/stopwatch, weir, flume, flowmeter, etc. Yellowstone groundwater closure area only - Water Temperature _ Signature AQUIFER TEST DATA FORM ATTACHED Date 10/76 MBMG ID#

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW100

DRILLING DATE: 6-21-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 33 TOTAL WELL DEPTH (ft btoc): 30.77 LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3103.29
GROUND ELEVATION (ft AMSL): 3103.59
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 9.48 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3093.81

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW100

DRILLING DATE: 6-21-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 33 TOTAL WELL DEPTH (ft btoc): 30.77 LOGGED BY: J. Faubion CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3103.29
GROUND ELEVATION (ft AMSL): 3103.59
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 9.48 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3093.81

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW103

DRILLING DATE: 6-24-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): TOTAL WELL DEPTH (ft btoc): LOGGED BY: J. Faubion

CLIENT: MDEQ PROJECT NO.: S1176-10RIRPRT BOREHOLE DIAMETER (in.):
WELL CASING DIAMETER (in.):
TOC ELEVATION (ft AMSL):
GROUND ELEVATION (ft AMSL):
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc):
GROUNDWATER ELEV (ft AMSL).:

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW103

DRILLING DATE: 6-24-02
DRILLING METHOD: HSA
BOREHOLE DEPTH (ft bgs):
TOTAL WELL DEPTH (ft btoc):
LOGGED BY: J. Faubion
CLIENT: MDEQ

PROJECT NO.: S1176-10RIRPRT

BOREHOLE DIAMETER (in.):
WELL CASING DIAMETER (in.):
TOC ELEVATION (ft AMSL):
GROUND ELEVATION (ft AMSL):
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc):
GROUNDWATER ELEV (ft AMSL).:

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW108

DRILLING DATE: 6-18-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 30.0 TOTAL WELL DEPTH (ft btoc): 26.7 LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: S1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3098.77
GROUND ELEVATION (ft AMSL): 3099.30
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 6.46 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3092.31

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE VELLOWSTONE COUNTY

Dawahala ////all ID: ##14/4.00

LOG OF BOREHOLE

Borehole/Well ID: MW108

DRILLING DATE: 6-18-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 30.0 TOTAL WELL DEPTH (ft btoc): 26.7 LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3098.77
GROUND ELEVATION (ft AMSL): 3099.30
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 6.46 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3092.31

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW109

DRILLING DATE: 6-18-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 32.0 TOTAL WELL DEPTH (ft btoc): 30.1 LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: S1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3099.94
GROUND ELEVATION (ft AMSL): 3100.21
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 6.57 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3092.31

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW109

DRILLING DATE: 6-18-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 32.0 TOTAL WELL DEPTH (ft btoc): 30.1 LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3099.94
GROUND ELEVATION (ft AMSL): 3100.21
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 6.57 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3092.31

YELLOWSTONE COUNTY MONTANA

LOG OF BOREHOLE

Borehole/Well ID: MW110

DRILLING DATE: 6-19-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 30.5 TOTAL WELL DEPTH (ft btoc): 29.84 LOGGED BY: J. Faubion CLIENT: MDEQ PROJECT NO.: S1176-10RIRPRT BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3098.71
GROUND ELEVATION (ft AMSL): 3098.93
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 5.6 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3093.11

LOCKWOOD SOLVENT GROUNDWATER PLUME SITE YELLOWSTONE COUNTY

LOG OF BOREHOLE

Borehole/Well ID: MW110

YELLOWSTONE COUNTY MONTANA

DRILLING DATE: 6-19-02 DRILLING METHOD: HSA BOREHOLE DEPTH (ft bgs): 30.5 TOTAL WELL DEPTH (ft btoc): 29.84

LOGGED BY: J. Faubion

CLIENT: MDEQ

PROJECT NO.: \$1176-10RIRPRT

BOREHOLE DIAMETER (in.): 8.25
WELL CASING DIAMETER (in.): 2.0
TOC ELEVATION (ft AMSL): 3098.71
GROUND ELEVATION (ft AMSL): 3098.93
DRILLING CO.: SK Geotechnical
WATER LEVEL (ft btoc): 5.6 (10/28/02)
GROUNDWATER ELEV (ft AMSL).: 3093.11

Attachment B Mann Kendall Trend Evaluations

Mann Kendall Trend Evaluation

Contaminant:

CIS-1,2-Dichloroethene

Monitoring Inputs

Quarter	MW001	MW100	MW103	MW110	MW002
	ug/l	ug/l	ug/l	ug/l	ug/l
1	0.25	0.23	17	0.77	0.76
2	0.25	1.7	18	0.66	1
3	0.25	0.52	0.43	0.25	0.86
4	0.25	2	7.2	0.53	0.84
5	0.25	0.34	9.8	0.25	0.74
6	0.25	0.82	8	0.25	0.81
7	0.25	0.48	101	0.25	0.77
8	0.25	6.9	17	0.22	0.67
9	0.25	0.65	16	0.41	0.58
10	0.25	9.3	22	0.23	0.6U
11	0.25	0.9	0.66	0.8	0.471
12	0.25	37	101	0.34	0.56J
13	0.25	4.9	0.88	0.57	0.57
14	0.25	1.6	8.6	0.33	0.64J
15	0.25	0.67	0.93	0.35	0.51
16	0.25	1.8	9.4	0.32	0.52

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Decreasing
MW002	Decreasing

5-12 Quarter Evaluation

IL GOL	ireci Evaluation
1W001	Stable/No Trend
1W100	Increasing
1W103	Stable/No Trend
/W110	Stable/No Trend
/W002	Stable/No Trend
	MW100 MW103 MW110

9-16 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

12 Quarter Evaluation

MW001	Stable/No Trend
MW100	Increasing
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

16 Quarter Evaluation

MW001	Stable/No Trend		
MW100	Increasing		
MW103	Stable/No Trend		
MW110	Stable/No Trend		
MW002	Decreasing		

Mess1	Decreasing		
	r sheet for chart)		

Mann Kendall Trend Evaluation Contaminant: PCE

Monitoring Inputs

Quarter	MW108	MW109	MW216	MW217	
	ug/l	ug/l	ug/l	ug/l	ug/l
1	0.25	0.25	0.46	1.3	OF HA
2	0.25	0.25	0.49	1.5	
3	0.25	0.25	0.25	1.3	
4	0.25	0.25	0.44	1.4	
5	0.25	0.25	0.48	1.4	
6	0.25	0.27	0.54	1.7	
7	0.25	0.25	0.46	1.4	
8	0.25	0.2	0.55	1.3	
9	0.25	0.18	0.42	1.5	Digital Inc.
10	0.25	0.22	0.54	1.3	In The
11	0.25	0.52	0.48	1.4	
12	0.25	0.23	0.4	1.6	ELE TO
13	0.25	0.28	0.3	1.6	
14	0.25	0.25	0.3	1.5	
15	0.25	0.33	0.4	1.5	
16	0.25	0.25	0.25	1.7	No.

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Increasing
MW217	Stable/No Trend
0	Stable/No Trend

5-12 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

9-16 Quarter Evaluation

3-10 Gue	itter Evaluation
MW108	Stable/No Trend
MW109	Increasing
MW216	Decreasing
MW217	Increasing
0	Stable/No Trend

12 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

16 Quarter Evaluation

io diami	or Evaluation
MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Decreasing
MW217	Increasing
0	Stable/No Trend

mess	1	Decreasing
(See 7	yea	r sheet for chart)

Mann Kendall Trend Evaluation Contaminant: DCE

Monitoring Inputs

Quarter	MW108	MW109	MW216	MW217	The same
	ug/l	ug/I	ug/l	ug/l	ug/I
1	0.4	0.25	0.24	0.84	1.11.10
2	0.37	0.25	0.3	0.86	
3	0.44	0.25	0.25	0.88	
4	0.33	0.25	0.25	0.74	
5	0.28	0.25	0.18	0.75	13 - 13
6	0.25	0.27	0.25	1.25	
7	0.25	0.25	0.25	0.39	51500
8	0.25	0.2	0.25	0.72	
9	0.1	0.18	0.2	0.69	
10	0.22	0.22	0.23	0.68	
11	0.25	0.52	0.25	0.78	AST AS
12	0.2	0.23	0.25	0.7	16.6
13	0.28	0.28	0.32	0.48	
14	0.2	0.25	0.26	0.44	1336
15	0.17	0.33	0.19	0.37	100
16	0.25	0.25	0.19	0.25	

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW108	Decreasing
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

5-12 Quarter Evaluation

O IL GUI	itter Evaluation
MW108	Decreasing
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend
	MW109 MW216 MW217

9-16 Quarter Evaluation

0	Stable/No Trend
MW217	Decreasing
MW216	Stable/No Trend
MW109	Increasing
	Stable/No Trend

12 Quarter Evaluation

MW108	Decreasing
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Decreasing
0	Stable/No Trend

16 Quarter Evaluation

	MW108	Decreasing
	MW109	Stable/No Trend
	MW216	Stable/No Trend
	MW217	Decreasing
	0	Stable/No Trend

Mann Kendall Trend Evaluation

Contaminant:

PCE

Monitoring Inputs

Quarter	MW001	MW100	MW103	MW110	MW002
	ug/I	ug/l	ug/l	ug/l	ug/l
1	0.25	0.25	0.25	0.25	0.25
2	0.25	0.84	0.25	0.25	0.25
3	0.25	0.25	0.25	0.25	0.25
4	0.25	0.62	0.25	0.25	0.25
5	0.25	0.89	9	0.25	0.25
6	0.25	1.1	1.5	0.25	0.25
7	0.25	0.48	11	0.25	0.25
8	0.25	0.6	0.25	0.25	0.25
9	0.25	0.66	3.2	0.21	0.25
10	0.25	1.7	2.7	0.25	0.25
11	0.25	0.55	1.4	0.82	0.25
12	0.25	14	0.53	0.25	0.25
13	0.25	0.5	0.25	0.4	0.25
14	0.25	0.95	0.25	0.32	0.25
15	0.25	0.27	1.4	0.52	0.25
16	0.25	0.25	0.25	0.8	0.25

Data Entry Cell

Mann-Kendall Results

0 0	Quart	E.	deres	

o o deditor Evaluation		
Stable/No Trend		

5-12 Quarter Evaluation MW001 | Stable/No Trend

		Ottobionio interio
	MW100	Stable/No Trend
	MW103	Decreasing
	MW110	Stable/No Trend
	MW002	Stable/No Trend

9-16 Quarter Evaluation

MW001	Stable/No Trend
MW100	Decreasing
MW103	Decreasing
MW110	Increasing
MW002	Stable/No Trend

12 Quarter Evaluation

MW001	Stable/No Trend
MW100	Increasing
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

16 Quarter Evaluation

10 Guai	ter Lvaidation
MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Increasing
MW002	Stable/No Trend

Mann Kendall Trend Evaluation Contaminant: TCE

Monitoring Inputs

Quarter	MW001	MW100	MW103	MW110	MW002
	ug/l	ug/l	ug/l	ug/l	ug/l
1	0.25	0.39	0.28	8.2	6
2	0.25	1.1	0.31	0.82	7.7
3	0.2	0.6	0.25	4.8	6
4	0.25	1	0.29	2	7
5	0.25	1.4	3	1.4	5.5
6	0.34	2	0.67	1.4	5.4
7	0.35	1.5	6.3	1.4	4.1
8	0.25	1.8	0.52	1.7	5.2
9	0.44	1.8	1.8	4.5	3.6
10	0.68	2.3	1.1	1.8	4.8
11	0.58	1.5	0.98	7.2	3.7
12	0.76	3.3	0.78	2.5	4.5
13	0.26	1.4	0.3	6.4	3.9
14	0.19	1.4	0.32	4.1	3.
15	0.81	1.3	, 1.1	5.7	4.2
16	2.1	1.8	0.25	3.5	3.5

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW001	Stable/No Trend
MW100	Increasing .
MW103	Increasing
MW110	Stable/No Trend
MW002	Decreasing

5-12 Quarter Evaluation

MW001	Increasing
MW100	Increasing
MW103	Stable/No Trend
MW110	Increasing
MW002	Decreasing
	MW100 MW103 MW110

9-16 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Decreasing
MW110	Stable/No Trend
MW002	Stable/No Trend

12 Quarter Evaluation

MW001	Increasing
MW100	Increasing
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Decreasing

16 Quarter Evaluation

10	Guai	CI Evaluation	
M	MW001 Increasing		
M	W100	Increasing	
M	W103	Stable/No Trend	
M	W110	Stable/No Trend	
M	W002	Decreasing	

7 Year Evaluation

Mess1		Decreasing		
10	7			

MW001 - TCE

Mann Kendall Trend Evaluation Contaminant: TCE

Monitoring Inputs

Quarter	MW108	MW109	MW216	MW217	108/2
	ug/l	ug/l	ug/l	ug/l	ug/l
1	2.7	10	3.2	12	2000
2	2.6	9	3	12	
3	2.6	9	2.5	10	
4	2.3	8.3	2.6	9.4	Service.
5	2.1	7	2.5	9.4	
6	2.3	6.3	2.7	10	
7	2.1	7.9	2.6	9	
8	1.8	5.7	2.7	8.9	
9	1.8	6.2	2.4	8.6	Britis.
10	1.9	5.6	2.5	9	
11	2	6.2	2.4	8.4	1000
12	1.7	5.8	2.1	10	Mary Mary
13	2	5.5	1.9	8.9	
14	1.7	4.5	2.7	6.8	-
15	2	6.8	1.65	6.8	124 (by 1)
16	1.8	5.5	3.1	7.5	

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW108	Decreasing
MW109	Decreasing
MW216	Stable/No Trend
MW217	Decreasing
0	Stable/No Trend

5-12 Quarter Evaluation

o iz duditoi Evaluatioi				
	MW108	Decreasing		
	MW109	Decreasing		
	MW216	Decreasing		
	MW217	Stable/No Trend		
	0	Stable/No Trend		

9-16 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Decreasing
0	Stable/No Trend

12 Quarter Evaluation

MW108	Decreasing
MW109	Decreasing
MW216	Decreasing
MW217	Decreasing
0	Stable/No Trend

16 Quarter Evaluation

10 Quarter Evaluation			
	MW108	Decreasing	
	MW109	Decreasing	
	MW216	Decreasing	
	MW217	Decreasing	
	0	Stable/No Trend	

Mess1		Decreasing				
See	7	yea	sheet	for	chart)	_

Mann Kendall Trend Evaluation

Contaminan

Vinyl Chloride

Monitoring Inputs

Quarter	MW001	MW100	MW103	MW110	MW002
	ug/l	ug/l	ug/l	ug/l	ug/l
1	0.25	0.25	1.1	0.25	0.25
2	0.25	1.2	2.1	0.25	0.25
3	0.25	0.32	0.25	0.25	0.25
4	0.25	1.4	0.89	0.25	0.25
5	0.25	0.25	2.5	0.25	0.25
6	0.25	0.25	1.3	0.25	0.25
7	0.25	8.3	10	0.25	0.25
- 8	0.25	0.3	0.5	0.25	0.25
9	0.25	2.3	3.4	0.25	0.25
10	0.25	0.25	3.9	0.25	0.25
11	0.25	12	0.25	0.25	0.25
12	0.25	0.15	18	0.25	0.25
13	0.25	0.25	0.25	0.25	0.25
14	0.25	0.31	0.25	0.25	0.25
15	0.25	0.16	0.25	0.25	0.25
16	0.2	0.2	0.2	0.25	0.25

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

5-12 Quarter Evaluation

1		
	MW001	Stable/No Trend
	MW100	Stable/No Trend
	MW103	Stable/No Trend
	MW110	Stable/No Trend
	MW002	Stable/No Trend

9-16 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Decreasing
MW110	Stable/No Trend
MW002	Stable/No Trend

12 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

16 Quarter Evaluation

MW001	Stable/No Trend
MW100	Stable/No Trend
MW103	Stable/No Trend
MW110	Stable/No Trend
MW002	Stable/No Trend

Mann Kendall Trend Evaluation Contaminant: VC

Monitoring Inputs

Quarter	MW108	MW109	MW216	MW217	1000
	ug/I	ug/l	ug/I	ug/l	ug/l
1	0.25	0.25	0.25	0.25	
2	0.25	0.25	0.25	0.25	SERVE T
3	0.25	0.25	0.25	0.25	Market 1
4	0.25	0.25	0.25	0.25	
5	0.25	0.25	0.25	0.25	
6	0.25	0.25	0.25	0.25	
7	0.25	0.25	0.25	0.25	
8	0.25	0.25	0.25	0.25	
9	0.25	0.25	0.25	0.25	
10	0.25	0.25	0.25	0.25	
11	0.25	0.25	0.25	0.25	
12	0.25	0.25	0.25	0.25	
13	0.25	0.25	0.25	0.25	
14	0.25	0.25	0.25	0.25	
15	0.25	0.25	0.25	0.25	
16	0.25	0.25	0.25	0.25	

Data Entry Cell

Mann-Kendall Results

0-8 Quarter Evaluation

	101 = 1 4144411011
MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

5-12 Qua	irter Evaluation
MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

9-16 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

12 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

16 Quarter Evaluation

MW108	Stable/No Trend
MW109	Stable/No Trend
MW216	Stable/No Trend
MW217	Stable/No Trend
0	Stable/No Trend

N	les	s1	Decreasing					
			ar sheet for char	t)				

Attachment C Technical Memorandum

TECHNICAL MEMORANDUM

June 22, 2012

Subject:

Evaluation of Groundwater Flow Velocity and Prediction of Drawdown Levels due to

Dewatering Efforts for Sewer Line Installations

Site:

Lockwood Solvent Groundwater Plume Site

Yellowstone, County, Montana

Reference:

Dewatering Monitoring Plan, EPA Region 8, June 2012

Lockwood Water and Sewer District (LWSD) Sewer Line Installation

Attachments:

Calculation and reference sheets, 20 pgs.

PURPOSE

The purpose of this technical memorandum is to present the calculations supporting an estimate of groundwater flow velocity and predicted drawdown levels of groundwater due to dewatering efforts supporting planned sewer line installations by the LWSD. Dewatering activities are planned for the sewer lines along select roads near the Lockwood Solvent Groundwater Plume Site and potential impacts are being monitored. Previous dewatering efforts were performed in 2009/2010 as reported in the *Groundwater Drawdown Monitoring Report: January 4, 2010, prepared by Tetra Tech, Inc., Billings, MT,* and information gathered from that effort is used to support these calculations along with site specific aquifer characteristic data from the EPA Remedial Investigation efforts.

DATA EVALUATION

Groundwater Travel Distance

Based on the reported aquifer parameters from the *Remedial Investigation Report - Lockwood Solvent Groundwater Plume Site, June 2003* travel distance of groundwater is expected to be limited, if any. However, the hydraulic conductivity (K) values from the site seem very low when compared to representative values of hydraulic conductivity for alluvial aquifers (Rahn 1986, p. 19 and 20 of attached calculations), so calculated impacts can be misleading versus observed drawdown data.

Drawdowns

The K values used were based on slug tests and they are so low that it would suggest this area should not have to be dewatered. However, we know this is not true because dewatering is required and withdrawal rates are not trivial from past efforts. Preliminary use of equations to calculate drawdown provides results that were not realistic compared to drawdown observed from the actual monitoring of groundwater levels during the 2009/2010 sewer dewatering project. Thus, the best predictions of expected drawdowns for the site are to use the reported 2009/2010 drawdowns and area of influence.

CONSIDERATIONS

• If there are MAJOR concerns of impacts to the plumes prior to the beginning of the next phase of dewatering, then a conservative approach is recommended for groundwater level monitoring (either

manual collection or with transducers) and subsequent groundwater sampling based on drawdown trigger levels.

- Further calculations can be performed, but based on existing data and observations they are not expected to be as representative as actual observed efforts from the 2009/2010 dewatering.
- A full pumping test with correct data collection would be the best way to quantify the site aquifer. To our knowledge this has not yet been done at the site.
- Data from the past dewatering effort could be plotted in the appropriate graphs to do a pump test analysis, even though multiple wells were pumped, this would provide a more realistic determination of the aquifer parameters. The evaluation would not be as straight forward as a standard pump test. Additional multi-well assumptions would be required.
- Existing data and parameters may not have been compared to field values in the specific site areas. The
 K values appear low for expected values for an alluvial aquifer. However, the groundwater gradients
 are low and likely water is moving slowly.
- Another calculation for groundwater velocity would be to look at the plume itself. What is the
 observed expansion of the plume and concentrations monitored over time. This is the most general and
 comprehensive way to calculate a rate of movement which inherently includes the retardation factors of
 all the contaminants. If that evaluation matches up to the calculations provided so far it is then a good
 cross check.

CONCLUSIONS

The groundwater velocity calculations using the parameters from previous site investigations and recent dewatering efforts indicate that the planned dewatering for 2012 will have minimal impacts to the movement of groundwater. There are no indications that the diversion of existing contaminant plumes will be affected by the dewatering efforts. Total travel distance of groundwater for the full 56 day dewatering is 0.04 feet for static conditions and 0.02 feet for pumping conditions see attached calculations pages 2 and 3, respectively. Based on groundwater velocity calculations it appears most of the water released will be from direct storage from the aquifer. Therefore lateral movement would be limited. Additionally, validation of the groundwater velocity sensitivity to K can be done by increasing the K value by 1000 times the reported site value. Even at that increase of K value, which would then be representative of coarse gravel, the travel distance is only increased to ~40 feet for the duration of dewatering effort. Therefore, the evaluation of potential groundwater plume movement is quite conservative both given the field parameters and from artificially varying the K values to extreme limits but within representative ranges.

Calculations to estimate expected drawdowns in the wells were attempted, but with the aquifer parameters, namely the very low hydraulic conductivity, the calculations presented an unrealistic drawdown as compared to real observed values from the 2009/2010 dewatering effort. Overall, the best approach for evaluation of drawdown is to use the observed drawdown from the 2009/2010 report and apply an overlay of the Cone of Depression as found in Figure 5 to the areas of concern. Compared to the 2009/2010 dewatering effort expect drawdowns in the Lockwood areas of 1-2 feet. This approach was used to prepare the drawdown trigger values for sampling in the EPA Dewatering Monitoring Plan, June 2012.

If there any further questions or comments regarding this technical memorandum please contact Bruce Peterman at 303 274-5400 x45 or Ram Ramaswami at x19.

PROJECT LOCKWOOD SULVENT OW PLUME - DEWATERING PLAN					E	PA		
BY B. PETERMAN	CHKD Ram Ramawam	APPD	JOB NO.	COL	2A1	190112	200	11006
DATE 6/15/2012	DATE 6/22/2012		SHEET	1	of	20	REV	0

	-
EVALUATION OF Ground water velocity AT STATE CONSTRUME	
NO DEWATERING ACTIONS.	
SOURCE FOR AQUIERR PARAMETERS USED IN CALCES	
REMEDIAL TAVEST. REPORT - LOCKWOOD SOLVENT GROWN WHITE PLIMES IN JUNE 2003, TETRA TECH EM, INC. 249A.	£-
	bear.
CALCS SELECT NOINT PATHS A+B on Fig 3-B(P10/2	20
PATH A - MOW OOL to MW 126; DISTANCE (MAP) = 2330 AT = L	
Difference In groundante- elevation = AA = 3095 - 3080 = 15At	
PATHB - MW 204 to MW 124; DISTANCE = 4485 A = LV	
ΔH = 3110 - 3082 = 2884	in the state of the state of
FORMULA FOR AVERAGE GAOWAS WHICH VIELOCITY FROM	
Chonnowater and wens, 2nd ED, F.G. DRISCOII, P. 83 EDN 5.18a	
Vaug = K(h, -hz) h = ground unker elev. (ft)	
L = FEON PATH CENTIFY (FF)	
GIVEN!	
K = Aug of 8 Slug fests in TABLE 32 - Suntant PT St. Tot Parill	
K = Aug of 8 Slug fests in TABLE 3.2 - Symmany of RI Slug Test Results used available montering civils from Allawal agarden K = 0.34 Pt/d V	g.
n = Avg. of 4 measured perpetted in Table 5-6-50 mindry of	p.
Restachated the incering parameters mensurements	
n = 0.328 V	
L = from PATA A & B ABOUTE	
h, hz = avoundanter glevature from PATIT A AB above	*

PROJECT LOCK WOOD	SOLVENT GW PLU	ME-DEWATERING HA	CLIENT	Ē	P	A		
BY B. PETERMAN	CHKD Ram Ramaswam	`APPD	JOB NO.	COP	A	780,12	22 001	100
DATE 6/15/2012	DATE 6/22/2012	DATE	SHEET	2	of	20	REV	0

PROJECT LOCKWOOD	SOLVENT OW PLUM	ME -D EWATERINA	CLIENT	-	EPA	-	
BY B. Peterman	CHKD Reum Ramassam !	APPD	JOB NO.	C014	4 980	122 001	1006
	DATE 6/22/2012 1		SHEET	3	of 2	> REV	0

0/13/2012
Pumpino conditions PAST
EVALUATION OF GROUND WATER VELOCITY DURING DEWATERING
EFFORTS IN SUPPORT OF SEWER LINE ENGINEERS
IN JAM. 2010. RESULTS OF DENATEAINS OTAN
monitoring were used for contentations. REFIERIENE Document.
Ground water DHAWNOUN now towns Report JAM. 4, 2010
AS PREPARED FOR COP CONSTANETURE, LLC by TEXAM TECH,
BILLINGS, MT. Using SAME EQUS FROM MAR 1.
FROM FIGURES - PHINAING DEAMBOUN CONTONIS PHACE ONE
FROM FIGURES - PUMPING DEANDOWN CONTOURS PHATE ONE SEWER SUBDISTANCE LOCIOLOGO WATER AND SEVER DITTAL 12/1/2009
SELECT A TRAVEL PATH WITHIN COME OF DEPACTION
From MW-100 to MULLING CENTER OF DILAWROWN APER
(NEW CO13 28+27) (8 BE ATTHEHED FILT) ~ P(11/20)
DISTANCE MEASURIED = 1170 St =L
AB = (h h2) = 4.5 FF + OFF => 4.5 FT
Avg. aroundanter velocity during pumping (deuntering)
V = 0.34+1/d(4.5++) = 0.00399 P+
V = 0. 3 + 7/d (4.5 ++) = 0.00399 Pt
0.328 0.000 429 fold
0.520
EXPECTED TRAVEL DUNING PUMPING
0.02466
(0.00399 At/d X 56 days) = 0.22 Ct
CONCLUSION - Even Burgina pumping From previous deunterry
expos, Travel time in come of deginersion
is very small and also is inherently
do NOT expect plume movement to be significant.

PROJECT LOCKWOOD	SOLVENT GLA PLLIME -	DEWATEHNY IMPHET	CLIENT	1	EPA		
BY B. PETERMAN	CHKD Ram Ramaswan	*APPD	JOB NO.	CORA	980 122	001	006
DATE 6/15/2012	DATE 6/22/2012	DATE	SHEET	4 of	20	REV	0

PURPOSE:						
	PPOUIN	E A S	imple L	EWATERINE	CALCULATION	FOR
				man and the second seco	OCAL AFEA .	and the second second
	1	3 1 1 1			DIENCESSON	
WATER VOL	ume Pen	veal CAL	culutures	· Arsun	e EACH DEWN Prings @ 6	OGAM
From con	sinuchuon	V SCHENG	LITTE FUR	2012	Volum	
Lomon	D LN -	- 2 WE	is - 12	OGPM .	> 2,246,4	-
TAYLOR	PL -	6 WELL PUN	s - 36 Ar 2	a days	> 15,033,6	00 9-1
LOCKNO	1	1 1 1 1		o GPM ->		00 5-1
ESTIMATED VOLUM Verrou devai	red over fering p	the day	be -> n trun of l overlap	Torse the	25,920,	int 10%
seg me	ng days (stays e	ach) for	Cach	of volume re	
Rough vol		(culatro.		Coch		below >
Rough vol planned USE DIA:	une ca denul merar o	Control Large F CONE 0	of Add	son; comon	Aguili areo	below FA UF
Rough vol plunned USE DIA:	une ca densil metar o own IN	Contations. FCONE OF	of Add	Sour COMONI	ME in ARA	below the up
Rough vol plunned USE DIA: AT SH MEASULE	une ca denut merer o own IN	Contation. FORE OF FIG. 5 F	of Adding of Add	soun, comons A TECH REV	ME EN ARA	below the up
Rough vol plunned USE DIA: AT SH MEASURE Arch.	une cardenal merer o own IN DIAM = M d ² SATUA	CONTRACTOR OF COME OF FIG. 5 F PETER - 17 (2	LOW TERM	soun; comons H TECH REV. USC 5 - 3,698,	Aguile area ARA LA THORN LOW LAT. (12/1/20 1 mple circle 361 ft V	below the up
Rough vol planned USE DIA: Ar SH MEASHE Aren USE F	one condense of the service of the s	CONTROL FIG. 5 F RIER - TEN THE BLE S-7 THICKNESS	0 F ARE 10 F ARE 17 D F + 17 D F + 17 D F + 14	Coch MINIETER STOR STORY; CORROWS H TECH REV. CUSC S - 3,698, OF AQUITER, PART PORMAGE. 8,361 Ft 2 x	10 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 20 1 1 1 1	(P17/20) 59,025 At 3
Rough vol planned USE DIA: AT SH MEASURE Area. USE Volume = USING	one condense of the service of the s	CONTROL FIG. 5 F MIER - 1 TEN THE BLE S-7 HICKNESS	10 F ARESI - MIJUL I 3,69	2004 STOR 2004; COMONI H TECH REV. 2 USC S - 3,698, 01- AQUITER, 1 Par Paramete. 8,361 A+2 x 93,507 Sal	Aguille area ME in ARA LA THORITORI MAT. (12/1/20 1 mylle circle 361 ft V 1 0 = 25 ft In RI. B	(P17/20) 59,025 At 3 eff. parasily

PROJECT LOCKWOOD	SOLVENT GW PLUME	- DEWATERIAL PLAN	CLIENT EPA
BY B. PETERMAN	CHKD Ram Ramaswam	APPD	JOB NO. CORA 980 122 001 006
DATE 6/15/2012	DATE 6/22/2012	DATE	SHEET 5 of 20 REV 0

	40CK		SCHEOULE 2012
VORK AR	EAS COL	romucron scith Dur Di	EWHER SCHO +5 # LIELLS
NORTH FI	PONTATE RD	6/20-7/1 120	A STATE OF THE STA
Lomono	cu	71-7/8 82	6/26-7/8/130 2
AYLOR	PL	7/9-7/31 234	7/3-7/31 292 6
LOCKWOOD	RD	8/1-8/20 200	7/27-8/20 250 4
		Pumsing	DAGE
		10176	DAGS 67days
		Pumlina	CALENDAR DAYS
		OUEALAI	
			=> 156 DAY
	+++++		

PROJECT LOCILWOOD	SOLUENT QU PLUM	- DEWATERME PLAN	CLIENT	EPA
BY B. Peterman	CHKD Rown Ramaswaw	APPD	JOB NO.CORA	1980 122 001 006
DATE 6/21/2012	DATE 6/22/2012	DATE	SHEET 6	of 20 REV 0

June 2012

	Sunday		Monday	7	Tuesday	Wedneso	day	Thursday	Frid	lay	Satu	rday
22									1		2	
22									*			
	3	П	4		5	6		7	8	153	9	154
23	•		-		J			'			9	
		155		156	157		158	159		160		161
	10		11		12	13		14	15		16	
24												
		162		163	164		165	166		167		168
	17		18		19	20		21	22		23	
25	_				-			,				
		169		170	171		172	173		174		175
	24		25		26 LOMOND	27		28 (11+	29		30	
26					1		2 11	Files (11+	120	GAM	Land designation	
		176		177	178		179	180		181		182

USE 60 gpm Per well

5 d

July 2012

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1 LOMOND L	2 + -2 WELLS	3 (11+12)	4	5	6	7
27	120 GP1		TAYLOR F	L 6 WELLS	(5-10)		N
	183	184	185	186	480 apm	188	189
20	8	9	10	11	12	13	14
28	(-360				26
_	190	191	192	GPM 193	194	195	196
	15	16	17	18	19	20	21
29							
	2 \(\tag{197}\)	198	199	200	201	202	203
	22	23	24	25	26	27	28
30				50 Sec. 10		4	600 apm
	204	205	206	207	208	LOCKWOOD 200	4 WEUS 210
	29	30	31		^		(1-4)
31			3)				
-	211	212	213				
	211	212	213				

314

August 2012

	Sunday	M	londay	Tue	sday	Wed	nesday	Thu	rsday	Fri	day	Sat	urday
31		¥				1 Local	6 mog 214	-	40 GP 4 WELLS 215	3 (1-9	⊬) 216	4	217
22	5	6		7		8		9		10		11	
32					74 THE 191								-5
	12	13	219	14	220	15	221	16	222	17	223	18	224
33												_	
	22	25	226		227		228		229		230		231
34	19	20	7	21		22		23		24		25	
	23	32	233	,	234		235		236		237		238
	26	27		28	2	29		30		31			
35						-			-				
	23	9	240		241		242		243		244	,	201

TOTAL PLUMPING 56 d

6/15/12 BOP W

= A-B = dia. et come .t depresson

2.6" (500ft) = 2170 Pt

AH = ~4.5A-00= 4.5A

W.	Mariana a				1	DISTANCE				The Sales State Controlled in	
WELL		MW001	MW002	MW100	MW103	MW108	MW109	MW110	MW216	MW217	PT001
Pumping	11	1343	1021	1310	1410	406	699	1010	545	823	119
	12	1218		Name and Address of the Owner, where	1198	THE PARTY OF THE P	AND DESCRIPTION OF THE PARTY OF	Non-uni-terrorise	-	and the Party of t	91
WELL		MW001	MW002	MW100	MW103	MW108	MW109	MW110	MW216	MW217	PT001
	5	1056	978	1089	1179	448	527	820	371	459	106
=	6	690	828	759	857	544	344	539	649	315	82
Pumping Well	7	375	812	512	598	769	440	416	943	477	69
Puml	8	136	875	387	443	980	625	464	1188	692	68
	9	154	1010	414	404	1223	864	635	1456	947	76
WELL	10	465 MW001	1242 MW002		-		CHARLES HOW SHOULD	Contract of the Contract of th	1737 MW216	1216 MW217	96 PT001
		14444001	INIMOUZ	MW100	MW103	MW108	MW109	MW110	MWZIO	MANZE	PIOUL
=	1	1284	1264	1354	1453	704	814	1100	99	538	135
DIE N	2	1560	1456	1613	1714	854	1044	1344	288	814	158
Pumping Well	3	1981	1788	2017	2117	1173	1425	1734	707	1240	195
THE REAL PROPERTY.	(4	2374	2119	2394	2497	1511	1794	2106	1105	1639	230

PLANNED DEWATERIAG WELLS AND COCKMOOD SITE NOOMITORIAL WELLS. 6/20

MEATUREN

DISTAMAS

BESWEEN

P13/20

TABLE 3-2

SUMMARY OF RI SLUG TEST RESULTS LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

Well Number	Aquifer Zone	Test Date	Test Type Conducted	Hydraulic Conductivity (ft/sec)	Hydraulic Conductivity (ft/d)	Hydraulic Conductivity (cm/sec)
MW107	Alluvial	8-13-02	Slug Removal	2.78 E-06	0.24	8.47 E-05
MW110	Alluvial	8-13-02	Slug Removal	4.86 E-06	0.42	1.48 E-04
MW117	Alluvial	8-12-02	Slug Removal	1.97 E-06	0.17	6.01 E-05
MW128	Bedrock	8-12-02	Slug Removal	1.02 E-05	0.88	3.10 E-04
MW203	Alluvial	8-13-02	Slug Removal	2.08 E-06	0.18	6.33 E-05
MW213	Alluvial	8-12-02	Slug Removal	4.28 E-06	0.37	1.31 E-04
MW215	Alluvial	8-13-02	Slug Removal	3.7 E0-06	0.32	1.12 E-04
MW301	Alluvial	8-13-02	Slug Removal	7.29 E-06	0.63	2.22 E-04
MW308	Alluvial	8-13-02	Slug Removal	4.05 E-06	0.35	1.23 E-04

Notes:

Solution Method: Bouwer-Rice (1976)

cm/sec

Centimeters per second

ft/sec

Feet per second

ft/d

Feet per day

Aug B Allnoval wells K values

TOTAL = 2.68

Avy = 0.335 At/d V 1+ = 0.63 L = 0.17

Aug = 1.18 x E-4 cm/s

TABLE 5-1

PHYSICAL AND CHEMICAL PROPERTIES OF COPCs
LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

COPC	CAS#	Water Solubility (mg/L)	Log K _{ow}	K _{oc} (L/kg)	Vapor Pressure (as mm of Hg)	Henry's Law Constant (atm-m³/mol)
PCE	127-18-4	150 at 25°C	3.40	426ª	18.47 at 25°C	0.018 at 25°C
TCE	79-01-6	1,366 at 25°C	₹63 2.42 €	130ª	74 at 25°C	0.11 at 25°C
Vinyl Chloride	75-01-4	2,763 at 25°C	1.36	30ª	2,600 at 25°C	1.2 at 10°C
cis-1,2 DCE	156-59-2	3,500 at 25°C	1.86	125ª	180 at 20°C	0.00408 at 24.8°C
trans-1,2 DCE	156-60-5	6,300 at 25°C	2.09	36	265 at 20°C	0.00938 at 24.8°C

Notes:

Source: Wiedemeier and others 1999, except as noted. Default value used in BIOCHLOR Model (Aziz and Others 2002) °C Degree Celsius atm-m3/mol Atmospheric cubic meters per mole COPC Chemical of Potential Concern DCE Dichloroethene Hg Mercury Organic-carbon partition coefficient Koc Octanol-water partition coefficient Kow L/kg Liters per kilogram mg/L Milligrams per liter Tetrachloroethene PCE TCE Trichloroethene

TABLE 5-6 SUMMARY OF GEOTECHNICAL ENGINEERING PARAMETER MEASUREMENTS LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

Sample No.	Sample Date	Well/Boring	Sample Depth (ft bgs)	Moisture Content (weight percent)	Organic Carbon ^A (weight percent)	Dry Bulk Density ^B	Specific Gravity	Effective Porosity
MW110SB001	6/19/2002	MW110	14:0 - 16.0 ft	NA	0.28	NA	NA	NA
MW118SB001	7/22/2002	MW118	14.0 - 16 ft	20	0.08	NA	NA	NA
MW127SB002	7/24/2002	MW127	24.0 - 26.0 ft	20	2.05	NA	NA	NA
MW210SB100	8/13/2002	MW210	9.8 - 11.8 ft	28	0.18	NA	NA	NA
MW300SB001	8/14/2002	MW300	15.0 - 15.9 ft	4.9	0.13	NA	NA	NA
MW305SB002	7/22/2002	MW305	14.0 - 16.0 ft	24	0.05	NA	NA	NA
MW311SB001	7/18/2002	MW311	19.0 - 21.0 ft	18	0.07	NA	NA	NA
PT004-001 ^C	12/15/2001	PT004	8.5 - 9.0 ft	43.6	NA	1.12 g/cm ³	NA	NA
PT004-002 ^C	12/15/2001	PT004	9.0 - 9.5 ft	45.2	NA	1.11 g/cm ³	NA	NA
PT002-001 ^C	12/13/2001	PT002	6.5 - 7.0 ft	34.9	NA	1.26 g/cm ³	NA	NA
PT001-001 ^C	12/12/2001	PT001	7.0 - 7.5 ft	31.4	NA	1.37 g/cm ³	NA	NA
SB203SB002	7/09/2002	SB203	19.0 - 21.0 ft	18.6	NA	97.5 pcf	2.7	0.422
SB203SB004	7/09/2002	SB203	44.0 - 45.5 ft	14.3	NA	111.2 pcf	2.68	0.355
MW202SB001	7/17/2002	MW202	19.0 - 21.0 ft	16.1	NA	118.5 pcf	2.7	0.297
MW202SB002	7/17/2002	MW202	21.0 - 22.5 ft	8.8	NA	129.6 pcf	2.72	0.236

Analyzed by EPA Method EPA 415.2/A5310C

Analyzed by Method ASTM D2850

Samples collected by SECOR International Inc., results reported in SECOR. 2002. Subsurface Investigation Report, Lockwood Solvent Site, Lockwood, Montana.

ft bgs = Feet below ground surface

Not analyzed NA =

 $g/cm^3 =$ Grams per cubic centimeter

pcf = Pounds per cubic foot

TABLE 5-7

MODEL INPUT PARAMETERS AND ASSUMPTIONS
LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

		Initial	Calibrated	Initial	Calibrated	
Aodel Parameters	Units	Model	Value	Model	Value	
		Area B	Plume	Area A Plume		
Aquifer	none	Alluvium	nc	Alluvium	nc	
Aquifer type	none	unconfined	nc	unconfined	nc	
Tydraulic conductivity	ft/d	0.275	1.63	0.295	70	
Hydraulic conductivity	cm/sec	9.708E-05	5.754E-04	1.041E-04	2.471E-02	
Aquifer thickness	ft	25	nc	22	22	
Transmissivity	ft2/d	7	nc	6	1,540	
Effective porosity	none	0.27	nc	0.27	nc	
Hydraulic gradient	ft/ft	0.0059	nc	0.0066	nc	
Gradient direction	degrees	285	nc	320	nc	
Seepage velocity	ft/d	0.0060	0.0356	0.0064	1.5296	
Seepage velocity	ft/yr	2.2	13.0	2.2	558.3	
Longitudinal dispersivity	ft	10	nc	20	nc	
Transverse dispersivity	ft	1	nc	2	nc	
Vertical dispersivity	ft	0.1	nc	0.2	nc	
Retardation - PCE	none	4.18	nc	4.18	nc	
Retardation - TCE	none	1.97	nc	1.97	nc	
Retardation - DCE	none	1.93	nc	1.93	nc	
Retardation - VC	none	1.22	nc	1.22	nc	
Fraction of organic carbon	none	0.0018	nc	0.0018	nc	
Bulk density	g/cm ³	1.12	nc	1.12	nc	
(K _{oc}) - PCE	L/kg	426	nc	426	nc	
(K _{oc}) - TCE	L/kg	130	nc	130	nc	
(K _{oc}) - DCE	L/kg	125	nc	125	nc	
(K _{oc}) - VC	L/kg	30	nc	30	nc	

TABLE 5-7 (Continued)

MODEL INPUT PARAMETERS AND ASSUMPTIONS LOCKWOOD SOLVENT GROUNDWATER PLUME SITE

Model Parameters	Units	Initial	Calibrated	Initial	Calibrated
		Model Value		Model Value	
		Area B Plume		Area A Plume	
Decay coefficient -PCE	years ⁻¹	2.4	0.10	2.40	0.75
Decay coefficient -TCE	years ⁻¹	2.4	0.01	2.40	3.00
Decay coefficient -DCE	years ⁻¹	2.2	0.007	2.20	0.70
Decay coefficient -VC	years-1	4.9	4.8	4.90	4.80
Source	none	SS	nc	SS	nc
Source Activity	years	24	nc	30	nc

Notes:

cm/sec	Centimeters per second cis-1,2,-Dichloroethene		
DCE			

ft Feet

ft/d Feet per day ft/yr Feet per year

g/cm³ grams per cubic centimeters

L/kg Liters per kilogram

nc No change in model parameter value for calibrated model

PCE Tetrachloroethene
SS Steady state
TCE Trichloroethene
VC Vinyl chloride

Source Activity

Number of years that a continuing contribution of source has occurred in the subsurface. This is a value assumed for the model; actual

time may vary.

Attachment D Water Level Measurement Record

Attachment D Water Level Measurement Record

Dewatering Monitoring Plan Lockwood Solvents Groundwater Plume Superfund Site

MW	page of

Date	Time	Static Water Level Reading (feet below top of casing)	Change from Previous Measurement	Sampler
,		,	,	
			-	
				-