Innovation for Our Energy Future

Renewable Energy Overview, Global Energy, Climate, and the Challenge of Community-based Solutions

Renewable Energy for Tribal Community Survival

Roger Taylor
Tribal Energy Program Manager
National Renewable Energy Laboratory

EPA Region 9 10/23/08

Major DOE National Laboratories

Major NREL Technology Thrusts

Supply Side

Wind Energy

Solar Photovoltaics

Concentrating Solar

Power

Solar Buildings

Biomass Power

Biofuels

Geothermal Energy

Hydrogen

Superconductivity

Distributed Power

Demand Side

Hybrid Vehicles
Fuels Utilization
Buildings Energy
Technology

Federal Energy

Management

Advanced Industrial

Technologies

Cross Cutting

Basic Energy Science
Analytical Studies
International Programs

Tribal Energy Program

TEP Project Awards: 2002 - 2007

DOE's Tribal Energy Program

Website

- Features
- Program Brochure
- Upcoming Workshops
- Financial Opportunities
- Projects on Tribal Lands
 - Project Overviews
 - Status and Reports
 - Contacts
- Information Resources
- Contacts

www.eere.energy.gov/tribalenergy

NREL National Renewable Energy Laboratory

DOE's Tribal Energy ProgramGuide to Tribal Energy Development

The

Management

Development Processes

- Strategic Planning
- Options Analysis
- Organizational Development
- Project Development

Resource Library

- Energy Resources
- Technologies
- Costs
- Risk Factors
- Legal Issues
- Financing Options
- Contacts

Tribal

Development

Engineering Design

Power Agreement

www.eere.energy.gov/tribalenergy/guide

Renewable Resource Options

Building Design

Existing R&D programs, building technologies, and components tied together by Systems Integration and Computerized Design Tools.

Passive Solar Strategies

glazing size and location, and shading strategies contribute to a passive solar, or "climate-responsive," building.

Energy-Efficient Materials

Superior building materials, including high-efficiency windows, insulation, brick, concrete masonry, and interior finish products.

Siting and orientation,

Advanced Technologies

Energy-saving appliances, advanced energy controls and thermostats, efficient heating and cooling systems, photovoltaics, and solar water heating systems.

Energy Efficiency Options

Refrigerators - Half as much energy

Clothes Washers - Save up to \$110 per year

Oil & Gas Boilers – Save up to 10%

Programmable Thermostats -Save up to \$100 per year

Efficient Lighting

If every American changed out 5 lights, we'd save \$6 billion/year and the equivalent of 21 power plants.

Weatherization Options

Insulation

Infiltration

Controls Maintenance

DOE's Tribal Energy Program

Solar Electric Potential on Tribal Lands <u>~4.5</u> times the Total U.S. Electric Generation in 2004

Solar Electric Potential of 17,600 Billion kWh/yr on Indian Lands

Individual cells are connected in series (increases the voltage) and in parallel (increases the current) into a module.

World PV Cell/Module Production (MW)

Source: Paul Maycock, PV News, February 2005

026587210

Crystalline Silicon, Thin-Films, and Concentrators PV Industry Cost/Capacity

(DOE/US Industry Partnership)

Solar Options Bay Umiat Arctic Village t Hope Noatak Kotzebue Venetie Fort Yukon Nome Fairbanks North Pole Mt. McKinley McGrath Takeetun Anchorage Valdez Cordova Bethel Yakutat Salmon **January** July

Simple Direct Drive PV System

Water Pumping Designs

Solar Water Pumping
Ute Mt. Ute Tribe, CO
Inadequate Wind & High
Maintenance Costs

Simple DC PV System with Battery Storage

Typical PV - Battery Systems

DC PV System Example: PJKK Federal Building, HI

- 2 solar panels per lamp with peak output of 96 watts
- 39 Watt fluorescent lamps, 2500 lumens
- 90 amp-hour battery powers 12 hours per night
- ~\$2500 per light

AC PV System with Inverter

5kW Inverter

Converts Direct Current (DC) to Alternating Current (AC)

Utility-Connected (Line-Tie) PV System

Building-Integrated PV (BIPV)

Hybrid PV/Generator System

Stock Watering

Livestock watering at the Bledsoe Ranch Colorado, USA

 PV, Mechanical wind and diesel backup solves problems with seasonal variations in resource

NEOS Corporation

NTUA Home-Scale Hybrid

Geothermal Resource Potential

Geothermal Options

History of Geothermal Electricity

- Experiments began in Lardarello, Italy in 1904
- First U.S. plant at The Geysers in 1920s; first commercial plant in 1960

Geothermal Heat Pump Characteristics "Using Mother Nature Effectively"

- Highly energy efficient
- High level of comfort
- Typically ~70% renewable energy
- Suitable for residential, commercial or industrial
- Typically 15-25 year life
- Environmentally beneficial with no combustion
- Higher first costs, but lower life cycle costs
- Multiple ways to install, with suitability for almost all geographic locations
- Proven technology

Geo-Thermal Pond

Geo-Thermal Pond

Cultural & Heritage Center

Firelake Discount Foods

Small Hydro Power Options

Feature Active Select Feature

✓ O

V

- Small Hydro
 - -#
- O Low Power Conventional
 - -
- ✓ C Low Power Unconventional

✓ Microhydro

Northern California

DOE's Tribal Energy Program

Wind Potential on Tribal Lands about 14% of U.S. Annual Electric Generation (~ 3,853 Billion kWh/year)

Wind potential of about 535
Billion kWh/yr on Indian
Lands in Lower 48 States

Wind Turbine Sizes and Applications

Small (≤10 kW)

Homes
Farms
Remote Applications
(e.g. water
pumping, telecom
sites, icemaking)

Intermediate (10-250 kW)

Kotzebue

Village Power
Hybrid Systems
Distributed Power

Large (250 kW - 2+ MW)

Central Station Wind Farms Distributed Power

St. Paul

Biomass & Bioenergy Flows

Biomass Energy Pathways

Combustion **Excess air**

Thermal

Pyrolysis No Air

Gasification

Partial air

Fuel Gases

(CO + H₂)

Liquids

Heat

Wood Stove Heating

Seasoned firewood (20% moisture) @ \$300/cord (~\$150/ton)

~20 MBTU/cord > high efficiency wood stove @ 77% efficiency

~ \$20/MBTU delivered to home ~\$2.50/gal heating oil

Commercial-Scale Wood Heating

Green wood chips (50% moisture) @ \$50/ton ~8.6 MBTU/ton in a high efficiency wood boiler @ 85% efficiency

~ \$7.00/MBTU delivered to building

Bioenergy Project Requirements

We Live in a Changing World

Where Carbon Reduction is a Requirement 2005 Warmest Year on Record

Warming of 0.2°C/decade over last 30 years

Where U.S. Energy Consumption Continues to Grow

Source: 1850-1949, Energy Perspectives: A Presentation of Major Energy and Energy-Related Data, U.S.

Department of the Interior, 1975; 1950-2000, Annual Energy Review 2000, Table 1.3

National Renewable Energy Laboratory

Where the global economy is very complex

Increasingly volatile, increasingly upward

~\$77/bbl

~\$60/bbl

After a decade of low prices, natural gas prices are now more volatile at a higher level.

~\$15 MMBTU Henry Hub

~\$8.00 MMBTU

US Lower 48 Oil Discovery & Production

The Age of Oil

7 Generations Span The Age of Oil

Our Great Grand Parents

2100

U.S. Farm Energy Use, 2002

~75% Petroleum (assuming electric Irrigation)

Strategic Energy Planning

Defining where you are,
Where you want to go,
What are your energy options, and
Developing a plan to get there.

Tribal Strategic Energy Planning

Develop a tribal energy baseline

Develop a common tribal energy vision

Identify and support a tribal energy champion

Identify culture and environmental constraints

Identify and evaluate resource options

Tribal Objectives

- Energy Reliability & Security
- Off-Grid Electrification
- Minimize Environmental Impacts
- Supply Diversification
- Use of Local Resources
- Economic DevelopmentJobs
- Build technical expertise
 - Respect for Mother Earth
 - · Others??

Demand-Side Options

Supply-Side Options

Integrate supply and demand alternatives

Establish organizational and human resource needs

Strategic Energy Plan

Programs & Projects

Establish organizational and human resource needs

How do you want to make it happen?

