Basics of the UIC Program and Ground Water Protection

Three Affiliated Tribes New Town, North Dakota

Tricia Pfeiffer Underground Injection Control Program Permit Writer Watershed and Aquifer Protection Unit-Detail

> Bachelor in Environmental Science (GSU) Masters in Environmental Engineering (CU-Boulder)

> > US EPA-Region 8 Denver, Colorado 303-312-6271 Pfeiffer.Tricia@epa.gov

Objectives

- Regulatory Authority
- Permitting Process for the Underground Injection Control program
- Technical Overview of Permit Review and Drilling Processes
- Sustainability and Ground Water Protection

Regulatory Timeline

Regulatory Authority

1974 SDWA-Basic UIC Concepts

- Requires EPA to promulgate regulations to protect drinking water sources from contamination through underground injection
- Defines Underground Injection
- BLM: Onshore Oil and Gas Order No.2

Regulatory Requirements

1974 SDWA-Basic UIC Mandate

- Not interfere with oil and gas production
- Consider varying geologic, hydrologic, or historical conditions
- Avoid promulgating regulations that would unnecessarily disrupt existing State programs

Mission of the UIC Program

The UIC program's mission is to protect underground sources of drinking water from contamination by regulating the construction and operation of injection wells

Definitions

- Well: A bored, drilled, or driven shaft, or a dug well or dug hole where the depth is greater than the largest surface dimension; or an improved sinkhole; or a subsurface distribution system
- Underground injection: Subsurface emplacement of fluids through a well

Definitions

- Aquifer: Geologic formation that is capable of yielding a significant amount of water to a well or spring
- Underground Source of Drinking Water (USDW):
 An aquifer or portion of an aquifer that
 - Supplies any public water system or contains a quantity of ground water sufficient to supply a public water system, and
 - Currently supplies drinking water for human consumption, or
 - Contains fewer than 10,000 mg/L total dissolved solids *and* is not an exempted aquifer

Definition

Class II Wells

- Dispose of fluids associated with the production of oil and natural gas (II-D)
- Inject fluids for enhanced oil recovery (II-R)
- Inject liquid hydrocarbons for storage (II-H)

Permit Requirements

UIC Application Completeness Review - Worksheet and Checklist (handout 1)

Area of Review (AoR)

Topographic Maps of Wells-AoR

Corrective Action Plan

Financial Responsibility Demonstration

Geology of Injection and Confining Zones

Monitoring Program

Stimulation Plan Operating Data

Injection Procedures

Construction Details (Schematic)

Formation Testing Plan

Plan for well failure

Plugging and Abandonment Plan (7520-14)

Name and Depth of USDWs

Existing EPA Permits

Description of Business

Aquifer Exemption

Permitting Process

- Goal: Consistency, Equality and Protection
- Guidance Documents (34-40) examples:
 - G₃₄: CBL Techniques and Interpretation
 - G₃₇: Demonstration Part II Mechanical Integrity
 - G40: Plugging and Abandonment Requirements

Technical Review-Worksheet and Checklist

Key Areas of Analysis

- Geology: Injection and Confining Zone
- Ground Water: USDWs/AE
- Construction: Injection and AoR wells
- Area of Review: Potential Conduits
- Operation: MAIP
- Monitoring: Testing and Logging Requirements
- Plugging and Abandonment Plan
- Financial Responsibility

Big Bend 1-5 SWD

- Class II Commercial SWD-Draft Status
- Proposed Location ~3 miles south of New Town (map)
- Additional Requirements
 - Site Security
 - Manifest for tracking
 - Chemical Analysis on produced water for characterization (handout2)

TAT Specific Geology

Geology: Big Bend 1-5 SWD

Formation Name Top (ft)		Bottom (ft)	TDS (mg/L)	Lithology		
Coleharbor	0	23		sand, silt, clay		
Bullion Creek	23	558	2,110	silt, sand, clay, lignite, limestone		
Cannonball	558	1,043		sand, mudstone		
Hell Creek	1,043	1,413	1,530	sand, mudstone		
Fox Hills	1,413	1,713	1,530	silt, shale, sand, siltstone		
Pierre	1,713	3,587	>10,000	shale		
Niobrara	3,587	3,855		shale		
Carlile	3,855	4,085		shale		
Greenhorn	4,085	4,267		shale		
Belle Fourche	4,267	4,488		shale		
Mowry	4,488	4,845		shale		
Inyan Kara (Dakota)	4,845	5,261	>10,000	sand		
Swift	5261	5,706		shale		
Rierdon	5,706	5,796		shale		
Piper	5,796	6,244		shale		
Bakken: upper	10,109	10,129		shale		
Bakken: middle	10,129	10,174	244,272	siltstone		
Bakken: lower	10,174	10,217		shale		
Three Forks	10,217	10,230	295,557	dolostone, limestone		

Geologic Analysis-Index Map

(handout 3/poster)

Cross Section Analysis

(poster

WATER TABLE

Underground Source of Drinking Water Include: Drinkable Quality Water (<3,000 TDS)

And

Useable Quality Water (3,000-10,000 TDS)

Brine - Salt Water (>10,000 TDS)

BRINE

Ground Water: USDWs

 Base of USDW: Fox Hills Formation (USGS Water Resources of North Dakota/Water Resources of the Fort Berthold Indian Reservation, West Central North Dakota Report 98-4098)

• Fox Hills: ~1,700 ft bgs

~1,500 ppm

• Bakken: ~10,000 ft bgs

~250,000 ppm

Construction

- Youtube: search Oil Drilling Animation
- Click: An example animation from the Faculty Innovation Center at UT Austin. fic.engr.utexas.edu
- http://www.youtube.com/watch?v=U2ms95HXol4

Injection Well
Technology
1st Step:
Surface Casing

2nd Step: Long-String Casing

3rd Step: Tubing and Packer

Class II Salt Water Disposal Well

WELLHEAD

WELLBORE DIAGRAM BIG BEND 1-5 SWD

GL ELEVATION - 1900.51 KB ELEVATION - 1904.51

NE NW SEC 5 T151 R92 405' FNL and 2400' FWL Mountrail County, North Dakota

USDW Surface-1713 < 10,000 TDS Coleharbor-Fox Hills

Formation	TVD KB
Coleharbor Group	0-23'
Bullion Creek	23'
Cannon Ball	558"
Hell Creek	1,043'
Fox Hills	1,413'
Pierre	1,713'
Niobrara	3,587'
Carlile	3,855"
Greenhorn	4,085"
Belle Fourche	4,267
Mowry	4,488'
Inyan Kara (Dakota)	4,845'
Swift	5,261'
TD	5,410'
Mowry	Upper confining zone 4,49

188

Swift Lower confining zone 5,261'

BHT 125-130 FASSUMED

NOTE: NOT TO SCALE

String	Hole Size	Casing Size	Interval Depth	CUFT	Yield	53/5	тос
Surface Lead Set "C" Surface Tall 500" G	13-1/2" 60% Xcen	9-5/8"	0-1363°	1065 391	1.66 1.15	400 357	Surface 1363*
Freduction Lead 'Lite' Freduction Tail 510' G	8-3/4" 2016 Xcen	7"	0-4600° 4600-5410°	830 148	1.05 1.15	405 140	Surface 4600*

Surface casing set below lowermost USDW through shale layers

Cemented to surface: reduces conduit behavior

Area of Review

- Identify manmade and potential natural pathways that could act as a potential conduit for fluid into USDWs
- Method: calculated or fixed radius of ¼ mile
- Locate wells, faults, and surface features
 - Well type, depth, construction, date drilled, record of plugging and/or completion
 - Any other additional information required by the Director

External Pathways

Not to scale

Operation

• MAIP: Pressure effects should not reach the limits of the reservoir

SRT: Conducted to determine the MAIP

• Draft: 1,355 psi/ft; SRT required

Monitoring

 Must demonstrate mechanical integrity at least every 5 years

 Monthly monitoring of injection pressure, flow rate, and volume

Other Logging and Testing specific to permit

Big Bend 1-5 SWD

- No AoR wells
- Checking Braden Head Pressure on nearby production wells
- See Draft Permit: Appendix B (handout 4)

Ground Water Protection

- Not a strong regulatory framework for protecting ground water
- Growing population in the west and growing reliance on ground water for drinking water resources (water grab)
- Where aquifers are shallow: BMP should be employed during surface and shallow sub-surface activites to reduce impact to potential and currently used drinking water resources
 - Closed loop or pit less drilling
 - Monitor piping for leaks
 - Casing and Cementing requirements for production and disposal wells

Sustainability

- Better Technology: shouldn't have to develop one resource at the expense of another
 - Bakken and Three Forks: TDS ~250,000 ppm
 - Need fresh water for HF (gel jobs)
 - Recycle and Reuse leads to less produced water waste

Structure of the Program: Public Involvement in UIC

- SDWA mandates public involvement
- Opportunities
 - Public hearings for program revisions, permits, permit appeals, and aquifer exemption
 - Public information meetings may be held for permit decisions and other Agency actions

NHPA and ESA

- Federal Agency required to examine potential for impacts and consult with relevant parties
- Important to receive information from Tribe on cultural and significant properties
- Each action is a separate case