

Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

Jeanne Briskin
U.S. Environmental Protection Agency
Office of Research and Development
November 2011

Purpose of EPA's Study

- To assess whether hydraulic fracturing can impact drinking water resources
- To identify driving factors that affect the severity and frequency of any impacts

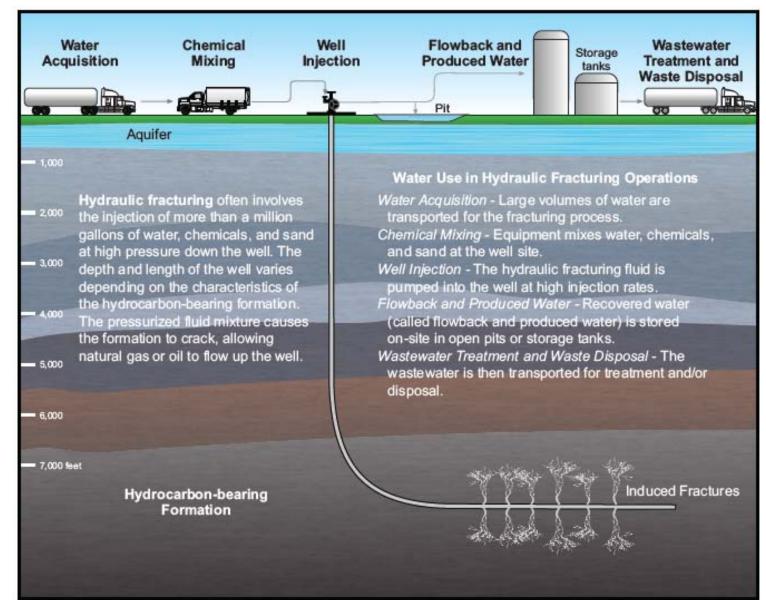
EPA's study plan focuses on the water cycle in hydraulic fracturing.

EPA is committed to using:

- ✓ Best available science
- √ Transparent, peer-reviewed process
- ✓ Quality assurance principles
- ✓ Independent sources of information
- ✓ Consultation with others

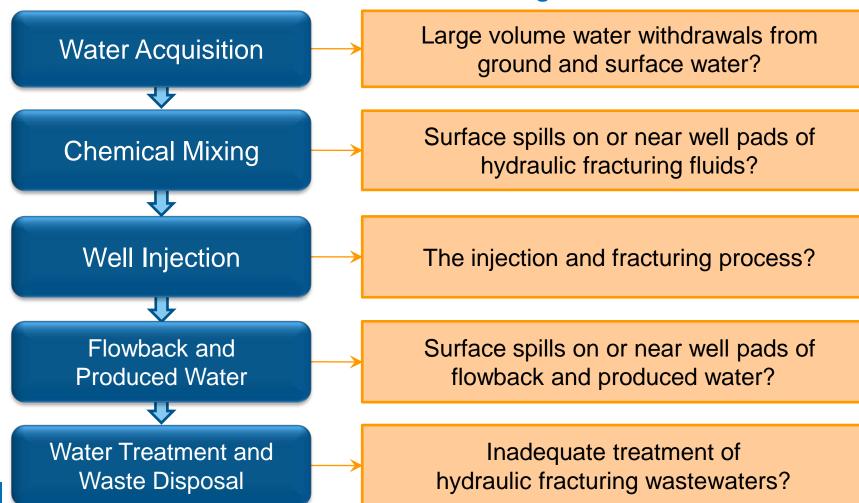
Study Plan Development

- Extensive stakeholder input
- Federal agency review
- Science Advisory Board review
- Final study plan released November 3, 2011



Science Advisory Board Peer Review

- SAB found study plan to be "appropriate and comprehensive"
- Response to SAB recommendations:
 - Core research questions and general approach are unchanged
 - More focused research questions
 - More detail about how questions will be addressed


Water Cycle

Research Questions

What are the potential impacts on drinking water resources of:

Research Approaches

- Gather and analyze existing data
- Case studies
- Scenario evaluations
- Laboratory studies
- Toxicity assessments

Analysis of Existing Data

Data sources include:

- Peer-reviewed literature
- State and federal agencies
- Information requests from industry

Analysis of Existing Data

Data include:

- Well locations, construction practices, and water use
- Chemicals in HF fluids, flowback, and produced water
- Standard operating procedures
- Frequency, severity, and causes of spills
- Treatment and disposal practices

Selecting Case Study Locations

- Site nomination through stakeholder outreach
- Site selection criteria included:
 - Applicability to and coverage of core research questions
 - Geologic, geographic, and hydrologic diversity
 - Potential human exposure
 - Ability to develop partnerships with stakeholders (prospective studies)

Case Study Locations

Prospective Case Studies

Haynesville Shale – DeSoto Parish, LA Marcellus Shale – Washington County, PA

Retrospective Case Studies

Bakken Shale - Killdeer, Dunn County, ND

Barnett Shale – Denton County, TX

Marcellus Shale – Bradford and Susquehanna Counties, PA

Marcellus Shale – Washington County, PA

Raton Basin - CO

Retrospective Approach

Study of locations where hydraulic fracturing has already occurred

- Determine whether drinking water resource is impacted
- If so, determine what factors may have contributed to the impacts
- Use a tiered study approach
 - Tier 1: Verify potential issue
 - Tier 2: Determine approach for detailed investigation
 - Tier 3: Conduct detailed investigation
 - Tier 4: Determine source(s) of any impacts

Prospective Approach

Collection of data prior to, during, and after hydraulic fracturing activities at new sites

- Characterize pre- and post-fracturing conditions
- Improve understanding of potential impacts of hydraulic fracturing
- Use a tiered study approach

Tier 1: Collect existing data

Tier 2: Construct conceptual site model

Tier 3: Conduct field sampling

Tier 4: Determine impact(s), if any

SEPA Evaluate Potential Scenarios for Water Impacts

- Explore potential cumulative impacts from water withdrawals
- Model various failure scenarios to determine conditions under which subsurface contaminant migration may occur
- Explore potential cumulative impacts from surface water disposal of treated HF wastewater

Types of Laboratory Work

- Explore reactions between hydraulic fracturing fluids and shale
- Determine the effectiveness of HF wastewater treatment using conventional wastewater treatment technologies
- Assess potential for treated wastewater to impact drinking water resources
- Modify analytical methods, as necessary

Toxicity Assessments

Focused on: Hydraulic fracturing fluids, wastewater, and naturally occurring substances in the subsurface

- Summarize known chemical, physical, and toxicological properties
- Estimate chemical, physical, and toxicological properties using structure-activity relationships
- Screen chemicals for priority attention

Reporting Results

• 2012

- Analysis of existing data
- Retrospective case studies
- Scenario evaluations
- Laboratory studies

• 2014

- Analysis of existing data
- Retrospective and prospective case studies
- Scenario evaluations
- Laboratory studies
- Toxicity assessments

See Figures 10 & 11 and Appendix A of study plan for details

Stakeholder Engagement

- EPA plans to provide quarterly updates on progress of research
- Additional suggestions?

EPA's Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources http://www.epa.gov/hydraulicfracturing