Local Applications of Innovative Groundwater Cleanup Using Zero Valent Metals

January 31, 2008 **US EPA Region 9**

Lester Feldman, Peggy Peischl and Peter Bennett

OUTLINE

- Site History and Conditions
- 2. Zero Valent Iron for GW Cleanup
- 3. Field Preparation and In Situ Testing of ZVI-Pd Nanoparticles in Palo Alto
- Installation of a Multiple Funnel & Gate PRB in Palo Alto

PART I: Site History and Conditions

i.e. What drove us to do this?

Site History – 20th Century

- Aerospace facility operated since the late 1950's
- Surface releases of PCE reportedly occurred along a fence line (weed control?)
- Characterization and GW Monitoring begins in the late 1980's (offsite plumes suspected)
- Soil remediation of source area in the mid-1990's (excavation of >5,000 cy with onsite thermal desorption)
- Dissolved plume contained by building dewatering sump, where discharge is treated and regulated under NPDES (as the IRM)
- Quarterly monitoring continues
- TCE plume arrives at upgradient monitoring well in the mid-90's

Site History – 21st Century

- **<u>2001</u>** Site is partitioned for redevelopment
- <u>2004</u> GMX conducts first high-resolution investigation (>60 CPT locations, >140 GW samples); offsite plumes mapped, residual onsite source identified
- <u>2005</u> GMX conducts high resolution source area characterization (MIP)
 - <u>**2006</u>** GMX pilot tests remediation technologies (ISB, ZVI, nZVI); Final GW Cleanup Plan submitted; completes "Transect G"</u>
- <u>2007</u> GMX Implements Cleanup Plan (PRB + ISB in the source area)

Site Hydrogeology

- Groundwater encountered at 8 to 10 feet below ground surface
- Water table at 6 feet below ground surface under confined conditions
 - Complex alluvial environment
 - Multiple water-bearing units
 - sand and gravel zones separated by low-permeability clays
- Groundwater flow rates measured with tracer tests vary from 0.4 to 5.1 feet per day
- Groundwater flow direction and VOC migration controlled by ancient buried stream channels

Chemical Distribution

PCE in source zone up to 26,000 μ g/L

PCE in dissolved plume along northern property line at <u>850 µg/L</u> from 10 - 60 ft bgs

 Offsite sources impact site, with TCE > 70,000 µg/L, Freon 113 > 1,000 µg/L

PART 2: Treatment of Chlorinated VOCs with ZVI

A passive, low profile, low energy approach for chlorinated solvent sites.

VOC Destruction on **ZVI**

ZVI: TCE half-life = 1 hour

nZVI: TCE half-life < 20 min

**nZVI particles are coated with exotic metals such as palladium to catalyze destruction of contaminants such as TCE*

PRB composed of **ZVI**:

Dissolved plume containment with a permeable reactive barrier (PRB)

Metallic Nanoparticles for Groundwater Cleanup

- I to 100 nanometers in diameter
- Usually formed by precipitation from metallic ions
- Small = fast reaction rates (good catalysts)
- Small = effective delivery to natural systems

Source Treatment with nZVI:

nZVI particles are injected into a well and transported through the source area by advection

Big Picture Questions on metallic nanoparticles (nZVI)

- Delivery?
- 2. Reactive Lifetime?
- 3. Dose (i.e. suspension concentration)?
- 4. Cost of Cleanup?

Assuming \$50 per pound, I g Fe/L, cost for treating I cy = \$21 (materials costs only)

PART 3: Onsite Preparation and Field Testing of Reactive Metal Nanoparticles

Fun with exotic chemicals...

Nano-Scale Iron Column Tests

Starch-Stabilized nZVI Particles

Feng He and Dongye Zhao, 2005. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water, *Environ. Sci. Technol.*, 39, 3314-3320.

Our Specific Objectives

Prepare "starch-stabilized" nZVI particles in suspensions of sufficient volume for field testing

Assess in situ transport and reactivity of nZVI particles by a series of Push-Pull Tests

Synthesis of nZVI:

- Prepare Starch (CMC 90K) and Ferrous Iron solution (remove O_2)
- 2. Reduce Ferrous Iron with Borohydride
 - $Fe^{2+} + 2BH_4^- + 6H_2O \rightarrow Fe^0 + 7H_2 + 2B(OH)_3$
- 3. Coat nZVI particles with Palladium Metal

 Pd^{4+} + $Fe^0 \rightarrow Pd^0$ + Fe^{2+}

3. Field Batch Reactor

Summary of nZVI batches

		Test Batches		
Reagent	Units	PPT-2	PPT-3	PPT-4
Volume	L	117	113	329
Starch - NaCMC (90K)	Wt%	0.82	0.40	0.29
Iron	mg/L	962	207	345
Borohydride (as B)	mg/L	371	80	136
Palladium (as Pd)	mg/L	0	0	0.329
Sodium Bromide – as Br	mg/L	285	284	140

Push-Pull Tests

Injection Wellhead

Push-Pull Tests

Push-Pull Test #2 nZVI (960 mg/L), 13 hr between injection & extraction

Push-Pull Test #3 nZVI (210 mg/L), 13 hr lag after extracting 60 L

Push-Pull Test #4 nZVI (340 mg/L),no lag time

Push-Pull Tests #3 & #4 Decrease in iron mobility with time

normalized Fe concentration = C_{Fe}^*/C_{Br}^*

$$C *_{Fe} = \frac{Fe(t)}{Fe(inj)}$$
 $C *_{Br} = \frac{Br(t)}{Br(inj)}$

The decrease in normalized Fe concentration to <0.5 within 200 – 300 minutes suggests that nZVI mobility is significantly reduced within hours of injection.

Push-Pull Test#4 Starch degradation as a potential explanation for loss of nZVI mobility

Push-Pull Test #4 Reactivity Assessment

Push-Pull Test #4 Ethane and Ethene Production

Push-Pull Test #4 %Dechlorination of CVOCs in extracted water samples

Conclusions

Field preparation of nanoparticles is feasible Mobility is short-lived, perhaps because the stabilizer is consumed quickly in the subsurface Complete dechlorination of CVOCs occurred at a rapid rate

More information is needed to scale-up nZVI applications to full scale

PART 4: Installation of a Multiple Funnel&Gate PRB

The design was based on a very high resolution transect of lithology and gw chemistry

Cross-section Along Northern Property Boundary

PCE > 100 ppb

15 to 40 feet bgs

Design Challenges

- 4 to 5 separate water-bearing zones
 - Maintain hydraulic vertical separation of different water-bearing zones
- Treatment area up to 60 feet deep370 feet in length

Multiple Funnel-and-Gate Design Concept

ZVI gates 3 ft diameter multi-layered caissons Caisson gates can be installed with multiple verticallyseparated treatment zones Possible up to 100' deep.

<u>Slurry wall funnels</u> 370 ft long continuous slurry wall treated groundwater

Cross-section Along PRB

PRB Design

PRB Design

Construction Methods – Step I

A thin slurry wall is installed across the PRB alignment to divert gw flow

Construction Methods – Step 3

A section of slurry wall is drilled out to allow for emplacement of ZVI and bentonite layers

Construction Methods – Step 4

Emplacement of ZVI and bentonite layers, flow through boring occurs

Construction Methods – Step 5

Possible Deviation Issues

Construction Summary

GENERAL	
Construction period	56 days
VIBRATING BEAM BARRIER WALL	
Total length	371 feet
Maximum depth	60 feet
Minimum depth	48.5 feet
Total square feet of wall	20,480 square feet
Slurry produced	13,699 cubic feet
Excess slurry disposed off-site	6,460 cubic feet
Average thickness of slurry wall ³	5.8 inches

Construction Summary

LARGE DIAMETER PERMEABLE COLUMNS

Diameter of LDPCs	36 inches
Number of LDPCs	39
Number of Treatment Gates	172
Total volume of ZVI/sand	
Used	385 cubic yards
Total Volume of Bentonite	
Used	100 cubic yards

Performance Summary

Piezometers installed prior to construction upgradient and downgradient of PRB

- Water level response
 - After slurry wall
 - After LDPC installation
- Groundwater chemistry

First Round Monitoring Results (numerical values are total CVOCs)

First Round Monitoring Results

Summary of VOC Removal

- Chlorinated VOCs low to non-detect in samples within PRB
- Calculated % Destruction is 99 to 100% in all but two sampling locations (80% and 89%)
- Data needs: Install upgradient and downgradient monitoring points

Acknowledgements

- R&D funding provided by client and Geomatrix
- Dr. Dongye Zhao and Feng He (Auburn University)
 - OTHER GMX TEAM MEMBERS

Matthew Goerz, Michael Calhoun, Frank Szerdy, Andy Cox, Deepa Gandhi, Spencer Archer, Murray Einarson, Brian Aiken, Dave Pearson

