A Fundamental Approach to Coral Reef Monitoring and Assessment in the CNMI and American Samoa

Marine Biologist CNMI Division of Environmental Quality Peter Houk

PhD Candidate Florida Institute of Technology

Fundamental Approach to Monitoring and Assessment of Reefs

- Processes Regulating Reef Development
- Example 1 Northern Mariana Islands,
 CNMI
- Example 2 Southern Mariana Islands,
 CNMI
- Example 3 American Samoa

Processes Regulating Reef Development

- Initially, volcanic activity created islands, substrate for reefs to grow
- Location and extent of reef growth are dictated by (Macroscale Factors)
 - Temperature
 - Historical sea level fluctuations
 - Tectonics
 - Wave energy
- Historical Temperature and Sea Level Relationship
 - Historical growth created today's reef structure

Foram fossil cores

Processes Regulating Reef Development

- Tectonic Activities on Rota
 - Uplifting
 - Cores identify coral reef growth in the past
 - Uplifted Holocene deposits prevent "normal" Mariana Islands reef flat communities

Processes Regulating Reef Development

- Wave energy
 - Determines the type of community growth
 - Wave energy acts differently along a depth gradient

Munk and Sargent, 1948

Geister, 1977

Processes Regulating Reef Development

The integrated result that we see is the

- reef geomorphology (reef structure)
- Living "organic" reef

Understanding macroecology is key for present monitoring and assessment of coral reefs

Fundamental Approach to Monitoring and Assessment of Reefs

- Processes Regulating Reef Development
- Example 1 Northern Mariana Islands, CNMI
- Example 2 Southern Mariana Islands,
 CNMI
- Example 3 American Samoa

- Situated on active Marianas Ridge
- 1 5 million years old
- Mostly uninhabited
- Few previous studies
- Management plans for coral reefs desired

· Uracas

Maug

Asuncion

Agrihan

NMI

- Different present communities from different geological settings
- What processes are acting against these settings?
- Is it possible to classify setting before compare and contrast sites?

Example 1 - Northern Mariana

Islands

 To begin to understand impacts of feral animals we first use regional characteristics

> GUG 2, ALA 3 have living, organic reef situated mainly on limestone reef deposits, not volcanic rock

wave energy

Feral Animals

No Feral Animals

- Several coral community measures show little difference between sites
- What is impact of feral animals compared with natural community regulation processes at this site?

Fundamental Approach to Monitoring and Assessment of Reefs

- Processes Regulating Reef Development
- Example 1 Northern Mariana Islands,
 CNMI
- Example 2 Southern Mariana Islands, CNMI
- Example 3 American Samoa

Example 2 – Southern Mariana

 Increased complexity in geological settings

1) Antecedent,Holocene Deposition (indicator)

2) Pleistocene or earlier only (indicator)

Wave energy consideration

- Holocene (recent)
 deposits not related to
 exposure
- Deposits = topographic complexity, result of sediment trapping
- In circular nature, topographic relief provides refuge from scouring physical environment, and continues to build

- Living organic reef community
 - Favia, Leptastrea, Pocillopora account for >30% of measured coral
 - * = significant difference
 - = no significant difference

- Wave energy considerations
 - Holocene reefs
 - P. rus dominant reefs in extremely sheltered locations with Holocene deposition

From NOAA buoy data

Porites rus
 dominance, lower
 species diversity in
 extremely sheltered
 regions expected =

- Macroecology information required before assessments of land based disturbances and such
- Compare site in questions with regional information
- Use watershed characteristics, stream flow rates, water quality data, and others, to compliment reef community data (site specific studies)

Talakhaya Watershed, Rota Island

Fundamental Approach to Monitoring and Assessment of Reefs

- Processes Regulating Reef Development
- Example 1 Northern Mariana Islands,
 CNMI
- Example 2 Southern Mariana Islands,
 CNMI
- Example 3 American Samoa

- Watershed based management and water quality monitoring
- Reefs used as bio-criteria indicators to water quality health (EPA guidance)
- Simultaneously, initiate long term monitoring
 baseline

Arrows indicate similar geomorphology

- Similar geomorphology at Aoa, Leone, and Alofau
- This setting allows for larger corals, greater coverage, due to stable abiotic environment
- NOT imply "better condition" (low community evenness)
- Stability ≠ Diversity

Size Distribution of Coral Colonies

 Multivariate exploratory techniques (Multi-Dimensional Scaling), using coral relative abundances

Houk, Didonato, and Iguel, submitted EMAS

- Compare Sites with same regional characteristics
- Coral cover crude indicator for reef health assessment based upon coral community
 - Community evenness
 - Geometric diameters
 - Overall diversity

Acropora clathrata

Conclusion

 Environmental settings are important for understanding living reefs

 Elucidate processes that regulate coral communities

 Gain regional understanding to provide context for local assessments

Aguijan Island, CNMI

Conclusion

 Through monitoring we greatly enhance the ability to properly manage and protect coral reefs

Thanks to:

- US Environmental Protection Agency
- CNMI Division of Environmental Quality
- CNMI Coastal Resources Management Office
- American Samoa Environmental Protection Agency
- CNMI Marine Monitoring Team
- NOAA MARAMP, NOAA CREI Division