

Dixon Ridge Farms

- ☐ Grower and Processor of Organic Walnuts;
 - The largest handler of organic walnuts in the United States;
 - We grow organic walnuts on over 500 acres, and buy about 2,500 more acres of organic walnut production from 67 growers
- □ Family farming in California since 1867 and organic since 1990;
- ☐ We follow a sustainable, whole systems approach to organic farming and business.

Our Energy Goal

Total farm and processing net energy self sufficiency by 2012 for all types of energy

We aim to achieve this goal while taking into account:

- 1. Carbon neutral or negative
- 2. Nitrous-oxide neutral or negative
- 3. Use non-food sources for energy
- 4. Energy costs should be reasonable
- 5. Transferable

Current Conservation Practices

1. Recycle

- Hulls/shells spread back into orchard
- Water recirculation systems since 1982
- Prunings chipped and back into soil since 1976
- Aluminum/paper/plastic/steel/etc as much as can
- 2. No till / Mow production methods since 1980
- 3. Integrated Pest Management
- 4. Fertilize with Compost, rather than synthetic fertilizers
- 5. Irrigation New type
 - Overhead hoses through tree branches
 - Drop rotary sprinklers greenhouse style
 - Compatible with cover crops/organic production
 - VFD Electric Pump Motors
 - Operate at 10-25 PSI at pump vs. 35-50 PSI for drip and micro-sprinklers
- 6. Freezer insulation all at or above R 80 even though "normal" is R 25
- 7. Dryer Improvements
 - Recirculation cover tent/building
 - Save 35-40% of drying fuel
 - Same number of dryers, trailers and drying capacity
- 8. Land conservation / preservation

Current "Green" Energy Production

1. Solar

- 3,500 square feet of PV panels
- Generates \$3,500/year of electricity
- Very low maintenance
- Specifications on all new buildings include loading for solar panels of 6#/sq. ft
- Future desire to increase to over 90,000 sq. ft
- Side benefit of cooling by shading roof with panels
- Solar addition is a perfect fit with freezer energy use

Current "Green" Energy Production (cont.)

- 2. Bio Max 50 Manufactured by Community Power Corp (CPC), Grant from California Energy Commission (CEC)
 - Production
 - Propane: Offsets \$12-14,000/year during 5-week drying season
 - Electricity: Produces \$30,000-\$45,000/year
 - Hot Water: Hydronic
 - Heating: Use hydronic or hot air to heat our buildings & dryers
 - Local Use: Will use 100% of produced energy on site
 - Fuel: Uses about 820,000 pounds of walnut shell per year
 - Environmental Impact
 - Walnut shells: Are a renewable, non-food source of energy
 - Carbon Cycle: Atmospheric CO₂ absorbed by trees to produce walnuts, which provide food and shells for energy production that will be used to dry and process walnuts, emissions back to air
 - "Waste": Hope is to use "char-ash" in compost and apply back into orchard (long-term carbon sequestration)
 - Net negative release of carbon: 1,000 year half-life in soil

Status Report

- □ Energy Generation and Reduction
 - Generate about 20% of our electricity use
 - Offset about 40% of our propane use
 - Reduce dryer heat needs by about 70% via CHP and recirculation
 - → Total is about 25% of all energy used
- □ Costs
 - → Cost to produce electricity and propane onsite is about the same as retail price
 - → May be revenue generating depending on GHG reduction market and excess energy generation sales

Future Projects (Grants Please!)

- ☐ More solar panels on the roofs possibly up to 90,000 sq ft
- ☐ Walnut Oil, 2009
 - Press inedible walnuts into oil for biodiesel or walnut oil fuel
 - Estimated 12-14,000 gallons could be produced per year under current production
 - Would supply 75% of current diesel needed for tractors, irrigation, trucks and generators
 - Estimated cost of \$1.25/gallon
- ☐ Change gas generator to a "diesel" generator, 2009
 - 85% producer gas, 15% liquid fuel (diesel, synthetic-diesel, bio-diesel or vegetable oil)
 - 100 kW of electrical production
- ☐ CPC Bio Max 100, late 2010 use rest of shells available to produce 100 kW or 200 kW
- Use CHP in Absorption chillers on HVAC and freezers
 - Should save about \$18,000/year
- ☐ CPC Liquid Fuel Module, 2009 trials, 2010 production
 - Will generate approximately 25 gallons/day, 15,000 gallons/year of synthetic diesel
- □ CPC Hydrogen Module, ?
 - Possibly use for fuel cell energy for forklifts, vehicles, electricity generation
- □ Research Studies
 - Carbon and Nitrogen UCD, NRCS, DRF
 - Char ash use CPC, UCD, DRF
 - Energy efficiency improvements UCD Energy Efficiency Center, PG&E, DRF
 - Energy production UCD, CA Biomass Collaborative ?, DRF

Current Impediments

- 1.Emissions
- 2. Char/ash Soil Application
- 3.Interconnection

Impediment 1: Emissions

- Letter of non-compliance
- Time to issue Authorization to Construct (ATC) estimated to be 3 years
- Length of time to issue Authorization to Operate (ATO) - 9 months
- Costs about \$28,600, so far
- Annual costs ???

Impediment 2: Char-ash Application

- ☐ We face potential oversight from the following agencies:
 - USDA, NRCS, US EPA, CA EPA, Yolo and Solano County Dept. of Ag and Dept. of Health, CIWMB, CA OSHA, US OSHA, WRCB, CCOF, USDA, DFG
 - Others?
- □ Costs- about \$5,700, so far
- ☐ Char-ash testing shows that it is non-toxic
- □ Good news partial grant to UCD to study soil application

Impediment 3: Interconnection

- ☐ Catch 22
 - Solar net meter for four renewables only & prohibits biomass
 - Could have used Non-export, but equipment was about \$50,000
 - Would never have been able to pay this off
 - FIT prohibits interconnection with solar net meter that took incentive money or CEC PIER grants
- Fees for FIT
 - Was told as high as \$50,000, may be less, confusion
 - Don't know costs until we pay a non-refundable fee
 - Game stopper for small renewable generators
- ☐ FIT MPR (Market Price Referent) is not high enough to pay for these costs
- MPR natural gas based, subsidized and variable. Falling NG prices=falling interest in RPG

Global Issues

- Overcoming Centralized Power and Distribution thinking and marketing
- ☐ Security centralized power plants and transmission is less secure
- Not all renewable power is green (or how it can be made "black")
 - TANC Transmission Authority of Northern California
 - Description 600 mile transmission line from NE CA to 15 MOUs
 - Will destroy 60,000 acres of forest, farm and range land, permanently
 - Total solar array of about 22,000 acres
 - Line constr. costs \$1.5 \$6 Billion or \$1000-\$4000 for each house
 - Transmission line loss is huge
 - Could give to roof mounted solar instead
 - 650 square feet array could easily be put on each house served
 - Large solar in desert areas destroys a fragile environment, maintenance?
 - Algae ponds in the desert consume large quantities of water, destroy the environment and are not sustainable
- ☐ Transport of Bio Mass to centralized plants, not sustainable, cost-effective.

Solutions

- Encourage small, distributed, renewable fueled generation.
- Encourage energy efficiency
- Encourage efficient and complete use of resources
- Transparent economics to show <u>all</u> costs of energy.
- Renewable fuels information clearinghouse, advocate, etc. needed
- One stop permitting emissions, interconnection, by-products, etc.
- Permitting fees and costs scaled to size
- Simplified, fast and consistent method to rectify problems

Solutions, cont.

Emissions

- Need to be based on fuel life cycle calculations
- Phased in for renewable power
- Fees should be reduced or eliminated
- Should not be regional standards/goals expand zones & coordinate
 - If they are emitted in another district, they still are emissions
- Need to balance all GHG's Looking just at NOX gives only a partial view

Solutions, cont.

Interconnection

- Rule 21/net meter and AB 1969/FIT need to become one. Why?
 - Simplify. Would be better able to understand and promote.
 - Eliminate conflicts between the two programs.
 - Simplify integration of new renewable technologies.
 - Administration of AB 32, AB 1969/FIT, RPS and RPG goals would be simplified.
 - Accommodate change. RGFs (Renewable Generation Facility) would not have to understand and decide which is best for their needs now and in the future.
 - Accommodate import/export change. It is hard for RGFs to balance loads and generation. The hybrid would make this unimportant. Grid stability and capacity would be increased.
 - Fully develop RPG. Existing Net Meter limits generation to annual on-site use, not resource potential.
 - Encourage Conservation. RGFs would conserve energy because they would not make "use-it-or-lose-it" decisions.
 - Simplify Tariffs. The number and type of tariffs would be simplified.

Conclusion

- Stimulate short and long-term economy and job gains. Move the USA and CA energy sector toward domestic self-sufficiency.
- Encourage maximum energy conservation and efficiency.
- Expedite adoption of Renewable Power Generation (RPG).
- Meet the goals of AB 32, RPS and AB 1969/FIT.
- Embrace Distributed Generation (DG) as a highly desirable method of meeting local energy loads without incurring the high environmental and economic costs of high voltage grid transmission and centralized generation.
- Diversification of fuel types for RPG is good, stabilizing the market, power generation and costs.
- Overshooting the goals of RPS, AB 32 and AB 1969/FIT is better than under achieving them.
- These solutions should be implemented immediately
- THESE GOALS CAN BE MET & AGRICULTURE CAN PLAY A ROLE

