

SPRING AND SEEP SAMPLING AND ANALYSIS REPORT SANTA SUSANA FIELD LABORATORY VENTURA COUNTY, CALIFORNIA

Prepared For:

The Boeing Company Rocketdyne Propulsion and Power National Aeronautics and Space Administration U.S. Department of Energy

Prepared By:

MWH 1340 Treat Boulevard, Suite 300 Walnut Creek, California 94597

March 2003

Prepared by:

Project Manager

Richard G. Andrachek, P.E.

Reviewed By:

Dixie Hambrick, R. G.

DIXIE HAMBRICH

Project Manager

TABLE OF CONTENTS

1.0	INT	RODUCTION	
	1.1	Facility Background	. 1
	1.2	Objectives and Scope	. 1
	1.3	Overview Of Geology, Groundwater Occurrence	
		and Impacts	. 3
		1.3.1 Geology	. 3
		1.3.2 Groundwater Occurrence	. 5
		1.3.3 Groundwater Impacts	5
2.0	TEC	CHNIQUES USED TO SAMPLE SPRINGS AND SEEPS	. 5
	2.1	Direct Collection	
	2.2	Temporary Sampling Points	6
	2.3	Dam Construction	
3.0	DES	SCRIPTION OF SAMPLE LOCATIONS AND EVENTS	. 7
	3.1	Sample Location 1	. 7
	3.2	Sample Location 2	. 7
	3.3	Sample Location 3	8
	3.4	Sample Location 4	8
	3.5	Sample Location 5	8
	3.6	Sample Location 6	8
	3.7	Sample Location 7	9
	3.8	Sample Location 8	9
	3.9	Sample Location 9	9
	3.10	Sample Location 10	9
	3.11	Sample Location 11	10
	3.12	Sample Location 12	10
4.0	TAR	RGET ANALYTES, METHODS AND RESULTS	10
	4.1	Voc Results	12
	4.2	Perchlorate Results	13
	4.3	Radioactivity Results	
	4.4	Stable Hydrogen and Oxygen Isotopes (² H And ¹⁸ O)	14
	4.5	General Minerals Results	14
	4.6	Metals Results	15
5.0	SUN	MMARY AND CONCLUSIONS	15
	5.1	Conclusions	17
6.0	REF	FERENCES	17

TABLES

- 1 Spring and Seep Sample Collection Methods
- 2 Spring and Seep Analytical Testing Matrix
- 3 Results of Springs and Seeps Analyzed for VOCs and Perchlorate
- 4 Results of Springs and Seeps Analyzed for Radioactivity
- 5 Results of Springs and Seeps Analyzed for Stable Hydrogen and Oxygen Isotopes
- 6 Results of Springs and Seeps Analyzed for General Minerals
- Results of Springs and Seeps Analyzed for VOCs and Perchlorate, DTSC Split Samples
- 8 Results of Springs and Seeps Analyzed for Metals, DTSC Split Samples

FIGURES

- 1 Regional Location Map, Santa Susana Field Laboratory
- 2 Spring and Seep Locations
- 3 Current Geologic Map of the Santa Susana Field Laboratory (December 2002)
- 4 Stable Isotope Plot of Springs, Seeps, and Other Water at the SSFL

PLATES

- 1 Location of Springs and Seeps Within or Near the SSFL That Were Sampled
- 2 Stiff Diagrams of Cation/Anion Results and Stable Hydrogen and Oxygen Isotope Results

APPENDICES

- A Data Validation Summary and Analytical Results
- B DTSC Analytical Results

ABBREVIATIONS

²H deuterium

Boeing The Boeing Company
Ceimic The Ceimic Corporation

COPCs chemicals of potential concern

DOE Department of Energy

DTSC Department of Toxic Substances Control

FSDF Former Sodium Disposal Facility

H&A Haley & Aldrich

KLCS lower Chatsworth Formation
KUCS upper Chatsworth Formation
MCL maximum contaminant level

MWL meteoric water linemg/L milligrams per literμg/L micrograms per liter

NASA National Aeronautics and Space Administration

pCi/L picoCuries per liter
PVC polyvinyl chloride
QA quality assurance

RCRA Resource Conservation Recovery Act

RFI RCRA Facility Investigation
SSFL Santa Susana Field Laboratory

TCE trichloroethylene

TDS total dissolved solids

USEPA United States Environmental Protection Agency

VOC volatile organic compound

1.0 INTRODUCTION

This report presents the results of field sampling activities and analytical testing of springs and seeps currently identified within or near the Santa Susana Field Laboratory (SSFL). The SSFL is jointly owned by The Boeing Company (Boeing) and the National Aeronautics and Space Administration (NASA), and is operated by Boeing. A portion of the SSFL owned by Boeing is occupied by U.S. Department of Energy (DOE) facilities that are undergoing closure. This report has been prepared by MWH on behalf of Boeing, NASA, and DOE.

1.1 FACILITY BACKGROUND

The SSFL is located approximately 29 miles northwest of downtown Los Angeles, California, in the southwest corner of Ventura County (Figure 1). The SSFL occupies approximately 2,850 acres of hilly terrain with approximately 700 feet of topographic relief near the crest of the Simi Hills. The SSFL is divided into four administrative areas (Areas I, II, III, and IV), with undeveloped land along the northern and southern boundaries.

The SSFL has been active since 1948 and site activities have included research, development, and testing of primarily liquid propelled rocket engines, water jet pumps, lasers, liquid metal heat exchanger components, nuclear energy research, and related technologies. Six major liquid propelled rocket engine test areas, namely Bowl, Canyon, Alfa, Bravo, Coca, and Delta, were in operation simultaneously in the late 1950s and early 1960s. The Bowl, Canyon and Delta test areas were phased out of operation in the late 1960s and 1970s. The Coca test area was shut down in May 1988. The Alfa and Bravo test areas are currently in operation.

1.2 OBJECTIVES AND SCOPE

In March 2002, a work plan (MWH, 2002b) was prepared and submitted to the California Department of Toxic Substances Control (DTSC) that outlined the work to be performed for

collecting and analyzing water from springs and seeps within and adjacent to the SSFL. The objective of this project was to determine if chemicals of potential concern (COPCs) are present in water that emerges from the ground to produce these features. These data are needed to evaluate the potential transport of COPCs in groundwater underlying the SSFL and for use in the Surficial Media Operable Unit risk assessments.

Previous field investigations conducted by Ogden, MWH, and Haley & Aldrich (H&A [formerly GRC]) have identified 28 locations where seeps or springs occur within or adjacent to the SSFL property boundary. The locations of the 28 springs and seeps are shown on Figure 2. It should be noted that some springs and seeps are transient while others are continuous. The spring and seep work plan proposed collecting samples from 13 of the 28 springs and seeps. Samples were actually collected from 7 of the 13 proposed locations. Samples were not collected from 6 of the 13 proposed locations because they were either: dry, redundant, conditions were unsafe due to the presence of bees or access to private property was denied. However, two additional springs/seeps were identified subsequent to the issuance of the work plan. Samples were also collected from these two locations. Hence, samples were collected from a total of 9 locations.

This report describes the sampling methods used (Section 2), conditions at each spring or seep sample location (Section 3), and analytical results of the samples collected (Section 4). Laboratory data for samples collected by MWH during this program are provided in Appendix A.

Peter Bailey, a representative of DTSC, was present during most of this program's field work, and helped select the sampling location and type of sampling technique to be used at each spring or seep. In addition, he collected split samples that were analyzed independently by the DTSC. Analytical laboratory reports from DTSC's sampling effort are provided as Appendix B of this report.

It is worthy to note that spring/seep samples have been collected throughout the history of sampling activities at the SSFL. These data have been previously reported in either the quarterly groundwater monitoring reports or annual groundwater monitoring reports for the SSFL that have been submitted since the mid-1980s.

1.3 OVERVIEW OF GEOLOGY, GROUNDWATER OCCURRENCE AND IMPACTS

The following sections briefly describe the geology, the occurrence of groundwater underlying the SSFL and impacts that have resulted from site activities.

1.3.1 Geology

The primary geologic units present at the SSFL are the Quaternary Alluvium and the Cretaceous Chatsworth Formation. The alluvium is a mixture comprised principally of sand and silty sand, with minor amounts of silt and clay. The thickness of the alluvium is typically 5 to 15 feet, but in a few locations it is over 30 feet thick. The Chatsworth Formation is a marine turbidite sequence primarily comprised of medium-grained sandstone with interbedded siltstone and shale units that generally strike N70°E and dip to the northwest at approximately 25 to 35 degrees (Montgomery Watson, 2000; MWH, 2002a and c). A geologic map of the SSFL is presented in Figure 3.

The Chatsworth Formation at the SSFL has been divided into stratigraphic units as shown on Figure 3. The lower Chatsworth Formation (KLCS) is located in the eastern and southern parts of the SSFL and is differentiated from the upper Chatsworth Formation (KUCS) by a much higher proportion of fine-grained material. The definition of the Upper Chatsworth Formation has been refined significantly since 1999. In work performed by Dr. Ross Wagner and presented in a report issued in April of 2000 (Montgomery Watson, 2000), the Upper Chatsworth Formation was separated into two sandstone units (Sandstones 1 and 2) and three finer-grained units (Shales 1A and B, 2 and 3). Sandstone 1 was defined as a predominantly sandstone section between the top of the lower Chatsworth Formation and the bottom of Shale 2. Shale 2 is located in the middle of the upper Chatsworth Formation and consists primarily of shale and

siltstones interbedded with fine-grained sandstones. Sandstone 2 was defined as the predominantly sandstone unit which lies between the top of Shale 2 and the bottom of Shale 3. Shale 3 is the stratigraphically uppermost unit in the Chatsworth Formation and has a composition similar to Shale 2. The Simi Conglomerate Member of the Santa Susana Formation lies in depositional contact on Shale 3 (upper Chatsworth Formation).

Additional work performed in the northeast part of the SSFL east of the Shear Zone resulted in redefining Sandstone 1 (MWH, 2002a). Sandstone 1 was divided into three coarser-grained members (sandstones named the Bowl Member, Canyon Member and Sage Member) and two finer-grained members (siltstones/shales named the Happy Valley Member and the Woolsey Member). Furthermore, additional work performed in late 2001 to mid-2002 by Dr. Wagner resulted in redefining Sandstone 2 (MWH, 2002c). Sandstone 2 was divided into three coarser-grained members (the Silvernale Member, Lower Burro Flats Member and the Upper Burro Flats Member) and two finer-grained, siltstone/shale members (the SPA Member and ELV Member).

A number of inactive faults are present at the site, and have two general orientations. The North, Coca, Burro Flats, Woolsey Canyon, IEL, and Happy Valley Faults generally strike east-west, while the Shear Zone and Skyline Fault generally strike northeast-southwest. All faults appear to dip nearly vertically.

It should be noted that characterization of the geologic framework at the SSFL is in progress as of the writing of this report and hence some portions of the SSFL have not been characterized consistent with the definitions of Sandstone 1 defined above. The area of the SSFL currently being characterized for geology generally lies south of the North Fault, west of the Shear Zone, North of the Burro Flats Fault and below Shale 2 (Figure 3).

1.3.2 Groundwater Occurrence

Groundwater occurs at the SSFL in the alluvium, weathered bedrock, and unweathered bedrock (MWH, 2001). First-encountered groundwater typically exists under water table conditions and may be encountered in any of these media. At certain locations within the SSFL, groundwater is vertically continuous (i.e., not separated by a vadose zone) downward through the media in which it first occurs into the underlying media. Perched groundwater also occurs at certain locations within the SSFL. At these locations, a vadose zone within the unweathered Chatsworth Formation may locally separate perched groundwater from saturated unweathered Chatsworth Formation bedrock.

1.3.3 Groundwater Impacts

Previous subsurface investigations (since approximately 1984) and quarterly groundwater monitoring have identified releases of various COPCs to groundwater underlying the SSFL. Specific chemicals and concentrations are presented in the 2001 Annual Groundwater Monitoring Report (H&A, 2002) and by MWH in the Draft Shallow Groundwater Technical Memorandum (MWH, 2001). The facility now monitors approximately 340 groundwater wells/piezometers. The COPCs detected in groundwater at the SSFL with the most frequency are volatile organic compounds (VOCs) with trichloroethylene (TCE) occurring the most frequently and in the highest concentration of any of the VOCs. Perchlorate is also a COPC at the SSFL, but is only detected frequently in four areas onsite (MWH 2003).

2.0 TECHNIQUES USED TO SAMPLE SPRINGS AND SEEPS

Springs and seeps require special care when collecting groundwater samples to be submitted for analysis of VOCs because of the potential mass loss to the atmosphere. First, springs and seeps at or near the SSFL commonly produce little water and hence can require a considerable length of time to collect a representative sample. Second, they often emerge from a relatively large surface area, producing a thin sheet of flowing water. Because of these two characteristics, special sampling techniques were used for low yield springs or seeps as described below. Table

1 identifies the sampling method used at each of the nine springs/seeps where samples were collected. Three general methods were used to collect samples, each of which is described below. Plate 1 shows the location of the springs and seeps sampled during this program, and includes photographs of each.

2.1 DIRECT COLLECTION

If the flow rate from a spring was sufficiently high, a sample container was directly filled with the water emerging from the ground. If a pool of water was created by the spring/seep, a sample was collected directly from the pool by using a plastic syringe. Two springs/seeps, S17 and S18, were sampled using this technique (Plate 1).

2.2 TEMPORARY SAMPLING POINTS

Six springs did not produce sufficient water to collect groundwater samples directly from the flow emerging at the surface. In these cases, a temporary sampling point was placed into the soil or weathered bedrock to concentrate flow. If the flow from the spring or seep was diffuse and discharged over a relatively large area, the sampling point was constructed below the discharge area with the highest flow. When these conditions existed, the sampling point was constructed in a joint, bedding plane, or soft soil zone within the spring/seep. In soft soil or very weathered bedrock, the sampling point was constructed by digging a small hole and installing a short length of perforated polyvinyl chloride (PVC) pipe that was closed at the discharge. Groundwater samples were collected from these sampling points by gravity flow through the PVC pipe. This method was used at springs/seeps S16, S19, S21, S22, S22A and S29 (Plate 1).

2.3 DAM CONSTRUCTION

In one case, S14, a dam was constructed with a silicone-based sealant at the periphery of a seep to allow water to accumulate so samples could be collected (Plate 1). A plastic syringe was used to sample water pooled behind the silicone-dam constructed around seep S14.

3.0 DESCRIPTION OF SAMPLE LOCATIONS AND EVENTS

The following descriptions provide additional details about the sample locations, events, and methods.

3.1 SAMPLE LOCATION 1

Sample Location 1 is located north of the Former Sodium Disposal Facility (FSDF) and is immediately adjacent to the RD-59 well cluster. This location is stratigraphically in the uppermost part of the Upper Burro Flats Member of the Chatsworth Formation, just below the contact with Shale 3. As shown on Figure 2, at this location there are two springs (S19 and S21), both located near the RD-59 well cluster.

The southernmost spring (S21) emerges from a fairly large surface area; however, most of the flow emerges from the colluvium at the base of a road cut. This spring was sampled using a temporary sampling point installed in the colluvium at the base of the road cut. Samples were collected on June 10, 2002.

The other spring (S19) is located northeast of spring S21 and emerges from bedrock (Shale 3). Samples were collected from this spring on June 12, 2002 using a temporary sampling point.

3.2 SAMPLE LOCATION 2

Sample Location 2 is a developed spring (S18) located on the north side of the SSFL. The spring is located stratigraphically in the Upper Burro Flats Member of the Chatsworth Formation, just below the contact with Shale 3. The spring was previously developed by others through the construction of a 5- to 6-foot deep tunnel in the bedrock of Sandstone 2. The entrance to the water tunnel was partially sealed with concrete. The sample was collected at this location on June 10, 2002 from sheet flow at the mouth of the tunnel.

3.3 SAMPLE LOCATION 3

Sample Location 3 is located on the north side of the SSFL within the Upper Burro Flats Member. At this location there is a seep (S25) historically reported as a "perennial seep along canyon bottom" and possible spring (S17) reported as "beginning of flow in creek". The spring sample (S17) was collected on June 10, 2002 from a pool in a sandstone outcrop. The seep at S25 was not sampled because it was downstream from S17 and hence the source of water at this location was at least, if not completely, derived from S17.

3.4 SAMPLE LOCATION 4

Sample Location 4 is a spring (S13) located further down the same drainage (northward) from Sample Location 3 within the Simi Conglomerate. A sample was not collected from the spring (S13) due to the presence of a swarm of bees located near the spring, creating an unsafe condition.

3.5 SAMPLE LOCATION 5

Sample Location 5 is a spring (S14) located to the north of the SSFL, stratigraphically above the Chatsworth Formation within the Upper Burro Flats Member. The spring flows from bedrock. A silicone-dam was constructed around the spring so water could accumulate and provide sufficient volume for the sampling. Samples from this spring were collected on June 11, 2002 and on a second occurrence during the week of June 17, 2002.

3.6 SAMPLE LOCATION 6

Sample Location 6 is a spring (S16) located on the north side of the SSFL, approximately 1,500 feet south of Sample Location 5. At this location, the spring emerges from colluvium at the contact between the colluvium and Upper Burro Flats Member of the Chatsworth Formation.

Samples from this spring were obtained on June 11, 2002 by installing a temporary sampling point into the colluvium, downslope of the spring.

3.7 SAMPLE LOCATION 7

Sample Location 7 is a spring (S6) located on the north side of the SSFL within a sandstone unit. This spring (S6) was not sampled because it was dry.

3.8 SAMPLE LOCATION 8

Sample Location 8 is a spring (S27) located to the northeast of the SSFL in Black Canyon. At this location, the spring occurs seasonally within Sandstone 2 at a contact with the Shear Zone, a fault that strikes southwestward through the Area I road in the SSFL. The spring at Sample Location 8 was not sampled because it was dry.

3.9 SAMPLE LOCATION 9

Sample Location 9 is a spring (S26) located in Dayton Canyon to the southeast of the SSFL. This spring is located near the Burro Flats Fault where the fault juxtaposes sandstone and clay shale units of the Chatsworth Formation (based on geologic mapping by Dibblee, 1992). Field staff from Ogden (2000a) reported the spring to be a "perennial seep in stream bed of canyon bottom." This was not sampled because access from the property owner could not be obtained.

3.10 SAMPLE LOCATION 10

Sample Location 10 is a spring (S22) located south of the SSFL in the headwaters of Bell Canyon. At this location, the spring flows from a contact between the colluvium and the Chatsworth Formation. This spring (S22) was sampled on June 11, 2002 using a temporary sampling point. An additional spring was identified during field reconnaissance further up the

Bell Canyon drainage (S22A). This spring was sampled on June 11, 2002 using a temporary sampling point.

3.11 SAMPLE LOCATION 11

Sample Location 11 is a seep (S5) located in the west central part of the SSFL. At this location, the seep occurs within a drainage channel at an elevation of approximately 1,750 feet above mean sea level (MSL), at the contact between the Lower Burro Flats Member with the colluvium. Water elevations in nearby near-surface groundwater monitoring wells that are screened in the Lower Burro Flats Member (RS-15, ES-23, ES-28, ES-29, ES-30, and PZ-018) have historically been within a few feet of the ground surface following the winter rainy season. Based on the presence of this nearby near-surface groundwater within Sandstone 2 and the presence of sandstone bedrock outcrops within the channel bottom, it is suspected that groundwater that emerges at this seep is derived from Sandstone 2. However, groundwater from this seep (S5) was not sampled because the seep was dry during June 2002.

3.12 SAMPLE LOCATION 12

An additional spring (S29 [Location 12]) was identified near Location 2 during field reconnaissance activities at the SSFL during September 2002 (Plate 1). Location 12 is a spring that emerges at the contact between the Upper Burro Flats Member and Shale 3. It was sampled on October 3, 2002, using a temporary sampling point.

4.0 TARGET ANALYTES, METHODS AND RESULTS

Sampling and laboratory analyses were conducted on the samples collected during this program as specified in the Spring and Seep Work Plan (MWH, 2002b). In general, these follow the quality assurance criteria specified in the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Quality Assurance Project Plan (Ogden, 2000b and 2000c). Target analytes were grouped into two primary functions. All samples were analyzed for COPCs that included the following:

- VOCs using United States Environmental Protection Agency (USEPA) Method 8260
- Perchlorate using USEPA Method 300M
- Gross alpha and gross beta using USEPA Method 900, and gamma-emitting radionuclides using USEPA Method 901.1

The second group of target analytes were selected to provide information as to the source of the water collected at the spring or seep (i.e., groundwater or surface water) and/or background water quality as it relates to general minerals. Hence the target analytes in this functional group consisted of the following:

- Stable hydrogen (deuterium) and oxygen isotopes (²H and ¹⁸O)
- Selected general anions and cations (chloride, sulfate, carbonate, bicarbonate, sodium, potassium, magnesium, calcium), and total dissolved solids (TDS) using USEPA Methods 300, 6010, and 160.1, respectively.

Table 2 summarizes laboratory analyses that were performed for each sample collected by MWH. Where required, samples were analyzed at a California-certified laboratory. The Ceimic Corporation (Ceimic) located in Narragansett, Rhode Island analyzed the samples for the chemical parameters, and the radioactivity analyses were performed by Eberline Services, located in Richmond, California. The University of Waterloo located in Waterloo, Ontario, Canada analyzed samples for hydrogen and oxygen isotopes (deuterium (²H) and ¹⁸0, respectively). Additional split (or confirmation) quality control (QC) samples collected by MWH were analyzed by Severn-Trent Laboratories, located in Richland, Washington; Centrum, Weck, and Calscience Laboratories, located in Riverside, California; and by the University of Ottawa, located in Ottawa, Ontario, Canada.

The laboratory results for chemical and radiological analyses were reviewed by qualified chemists and validated following protocols established for the RFI being conducted at the SSFL under DTSC oversight. (Isotopic analyses are used only for water source evaluation and were not validated.) All laboratory data were deemed usable for the intended purpose of assessing water quality at the springs and seeps sampled during this program. Analytical results of samples collected by MWH are summarized in Tables 3 through 6, and laboratory reports and data validation information is provided in Appendix A (organized by analytical method).

DTSC collected split samples at eight of the nine spring and seep locations sampled during this program. These samples were analyzed for VOCs and perchlorate using the laboratory methods listed above. Due to the limited sample volume, the DTSC sample from S14 was only analyzed for perchlorate, not VOCs. DTSC samples were also analyzed for total metals using EPA method 6010/7000. It should be noted that the MWH primary samples were not proposed to be, nor were, analyzed for total metals. DTSC split sample results are summarized in Tables 7 and 8, and the laboratory reports are provided in Appendix B.

The following sections describe the analytical sampling results collected during this program.

4.1 VOC RESULTS

Table 3 summarizes VOC analytical results. Four VOCs (acetone, toluene, bromomethane, and methylene chloride) were detected at concentrations up to 21 micrograms per liter (μ g/L) in samples collected from three of the nine springs sampled during this program (S14, S17, and S29). Except for acetone, which was detected twice, each of compounds were detected only once. Toluene and bromomethane were reported at concentrations below the laboratory reporting method and were estimated by the data validators. Acetone was detected in the samples collected from spring S14 at a maximum concentration of 21 μ g/L. This is the location where a silicone dam was constructed and it is believed that the acetone detected in this sample is a result of contamination from the silicone caulking material (it was also detected in the field QC sample at this location, see Appendix A). Methylene chloride was detected in the sample collected from spring S29 at 6 μ g/L. Both acetone and methylene chloride are common laboratory contaminants. All VOCs detected in the spring and seep samples collected during this program are very infrequently encountered in SSFL groundwater, and when detected, are at low concentrations (H&A, 2002).

DTSC split samples for VOC analysis were collected at seven spring and seep locations (Table 7). DTSC did not collect a sample from S14 due to low flow conditions or from S29 because of the timing of the October sampling event. No VOCs were detected in the seven DTSC samples (Table 7).

4.2 PERCHLORATE RESULTS

Perchlorate was not detected above the method reporting limit of 1 μ g/L in any of the nine spring/seep samples collected by MWH, nor above the method reporting limit of 4 μ g/L in the eight split samples collected by DTSC. Results are summarized in Tables 3 and 7 for the MWH and DTSC split samples, respectively.

4.3 RADIOACTIVITY RESULTS

Radioactivity analyses of spring and seep water samples are summarized in Table 4. There were no detectable levels of gross alpha radioactivity. Gross beta activity levels in spring and seep water samples ranged up to 4.23 ± 1.7 picoCuries per liter (pCi/L). These results are below the drinking water maximum concentration levels (MCLs) for gross alpha and gross beta activities of 15 pCi/L and 50 pCi/L, respectively. The measured gross beta activity levels are also within reported ranges of domestic water supplies in the Los Angeles Area (Table 5-8 [The Boeing Company, 2002]). It should be noted that the groundwater underlying the SSFL is not a source of drinking water, hence the MCLs are not applicable, and are used here solely for a basis of comparison.

Analytical results of man-made gamma-emitting radionuclides are also presented on Table 4. No man-made gamma-emitting radionuclides were detected in any of the spring/seep samples. Three naturally occurring gamma-emitting radionuclides were detected in two spring and seep samples. Potassium-40 was detected at 234 pCi/L at S14. Bismuth-214 was detected at 17.8 pCi/L and lead-214 was detected at 29.5 pCi/L at S29. Bismuth-214 and lead-214 are part of the radon decay chain and radon is a naturally occurring radionuclide. Lead-214 and bismuth-214 have short half-lives of 27 minutes and 20 minutes, respectively, and hence, the reported amounts would decay away in about three to four hours. There are no regulatory action levels associated with the naturally occurring radionuclides of potassium-40, bismuth-214, and lead-214.

4.4 STABLE HYDROGEN AND OXYGEN ISOTOPES (²H AND ¹⁸O)

Hydrogen (deuterium) and oxygen isotope concentrations are summarized on Table 5. The results are also graphically depicted on Figure 4. Figure 4 also depicts deuterium and oxygen isotope results from other surface water and groundwater samples that have historically been collected at the SSFL (see Stable Isotope Hydrogeologic Evaluation at the Santa Susana Field Laboratory [Smith and Menchaca, 1995]).

These data are plotted relative to the meteoric water line¹ (MWL). As can be seen on Figure 4, the stable isotope results from all but one of the nine springs/seeps sampled fall in the same grouping as historic results of samples from wells that monitor Chatsworth Formation groundwater. These data confirm that the samples collected from the springs/seeps are derived from groundwater that emerges at these locations. The sample results from spring/seep S14 fall below the MWL as noted on Figure 4 and hence are indicative of waters that have been evaporated. These data indicate that the sample collected from spring/seep S14 was either surface water that had been present long enough to have evaporated or groundwater that emerged previously and had also evaporated.

4.5 GENERAL MINERALS RESULTS

A summary of the analytical results for cations, anions, alkalinity and total dissolved solids is provided on Table 6. Cations that were reported by the laboratory include: calcium, magnesium, potassium and sodium. Anions included: bicarbonate, carbonate, chloride and sulfate. Stiff diagrams depicting the cation/anion results of the nine springs sampled are presented on Plate 2. This plate also depicts the stable isotope results discussed in Section 4.4 above. TDS concentrations for all but one of the nine springs/seeps were below 1,000 milligrams per liter (mg/L). Spring/seep S22A had a TDS value of 1,241 mg/L. Chloride concentrations, which are indicators of groundwater flow system activity ranged from a low of 37.2 mg/L at S29 to a high of 78.2 mg/L at S14. The elevated chloride value from S14 indicates that the water sampled

¹ The global meteoric water line (MWL) defines the relationship between ¹⁸O and ²H in worldwide fresh surface waters as published by Harmon Craig (1961). The MWL is global only in application and is actually an average of many local or regional meteoric water lines that differ from the global line due to local changes in the climate and geography (Clark and Fritz, 1999).

14

from this location is groundwater. Surface water due to rainwater runoff would have much lower chloride values [e.g., chloride in rainfall at or near the SSFL is typically less than 1 mg/L based on measurements collected at a Atmospheric Acidity Protection Program monitoring station located in Reseda, CA (Cal EPA, 1995)].

4.6 METALS RESULTS

DTSC split samples were analyzed for total metals (Table 8). Five metals were detected in the eight samples collected by DTSC. Barium was detected in all eight samples at concentrations up to 0.144 mg/L. Chromium and nickel were detected once in the sample from S-14 at concentrations of 0.014 mg/L and 0.013 mg/L, respectively. Vanadium was detected in three spring/seep samples at concentrations up to 0.029 mg/L and zinc was detected in four spring/seep samples at concentrations up to 0.085 mg/L. These results are less than any established primary or secondary MCLs, or other state regulatory action levels for these metals. Also, these results are similar to or less than metal concentrations detected in SSFL groundwater monitoring wells (H&A, 2002).

5.0 SUMMARY AND CONCLUSIONS

A work plan was submitted to the DTSC for sampling and analyzing water emerging from within and beyond the perimeter of the SSFL at 13 spring/seep locations (MWH, 2002b). Samples were collected during June 2002 from 7 of these 13 locations. The six springs that were not sampled were either dry at the time, inaccessible due to private property owner access, safety hazards (bees), or were determined to be redundant of another sampling location. Two additional springs/seeps that had not previously been identified were also sampled, one in June 2002 and the other in October 2002. Therefore, samples were collected from a total of nine springs/seeps and submitted for chemical and radiological analyses during this program.

Samples from the springs/seeps were collected using three different methods depending on the yield and discharge characteristics of each spring/seep. Samples were analyzed to determine if COPCs were present at these locations and to assess general water quality conditions. The

occurrence and concentrations of COPCs at springs/seeps is important in evaluating the groundwater flow and transport system and in assessing potential impacts to surface receptors for the Surficial Media Operable Unit risk assessments that are being performed at the SSFL. The following COPCs were included in the list of target analytes: VOCs, perchlorate, gross alpha and gross beta radioactivity, and gamma-emitting radionuclides. Water quality parameters included stable hydrogen and oxygen isotopes (²H and ¹⁸O), cations, anions, alkalinity, and TDS.

An evaluation of the analytical results of the water quality parameters shows that the water sampled at each spring/seep is groundwater. This conclusion is supported by the plot of ²H and ¹⁸O results provided on Figure 4 and the chloride results presented on Table 6 and plotted on Plate 2. The ²H and ¹⁸O results for eight of the nine springs sampled falls in the same range as samples of groundwater from Chatsworth Formation wells that have also been analyzed for ²H and ¹⁸O. The chloride data were used to evaluate the source of water for the one spring/seep sample (S14) that was enriched in ²H and ¹⁸O (i.e., indicative of waters that have undergone evaporation). The chloride result was the highest of any of the nine springs, indicating that the water present at this spring was groundwater that had been evaporating.

Evaluation of the analytical results of the COPCs shows that perchlorate was not detected in any of the nine spring/seep samples collected by MWH, nor in the eight split samples collected by DTSC. Low concentrations of acetone, methylene chloride, toluene, and bromomethane were detected in the samples collected by MWH at three of the nine springs/seeps (S14, S17, and S29). Toluene and bromomethane were detected below laboratory method reporting limits. The highest VOC concentration detected in the samples was 21 μg/L of acetone at S14; this result is likely associated with contamination from a silicone dam that was constructed for sample collection. Both acetone and methylene chloride are common laboratory contaminants. All detected VOCs in the three spring/seep locations are detected infrequently in SSFL groundwater, and when detected, are detected at low concentrations. DTSC split sample results did not detect VOCs at the springs and seeps sampled.

Evaluation of the radiological results shows that gross alpha and gross beta activity levels are below state or federal maximum contaminant levels for drinking water. Such a comparison is

made solely for discussion purposes as none of the groundwater underlying the SSFL is used as a drinking water source. No man-made gamma-emitting isotopes were detected in any sample. Three naturally-occurring gamma-emitting radionuclides were detected in two of the nine springs, while none was detected in the other seven springs. Potassium-40, which is a radionuclide that naturally occurs in sandstone, was detected at 234 pCi/L in the sampled from S-14. Bismuth-214 and lead-214, both of which have half-lives less than 30 minutes, were detected in the sample from S29 at concentrations of 17.8 and 29.5 pCi/L, respectively. These naturally-occurring radionuclides would decay away in about three to four hours.

5.1 CONCLUSIONS

Evaluation of the analytical results of springs and seeps that occur within and around the periphery of the SSFL show no chemicals of potential concern or man-made radionuclides to be present above laboratory method reporting limits at seven of the nine springs and seeps sampled. These results are consistent with the strong attenuation of the transport by groundwater of any of the target analytes due to matrix diffusion and sorption. The detected VOC concentrations of acetone and methylene chloride above laboratory method reporting limits are likely a result of sample contamination either by the silicone caulking used as a dam to sample the spring, or by laboratory procedures. Detected radionuclides are naturally occurring. Based on these sampling results, no further evaluation of spring/seep data in the Surficial Media Operable Unit risk assessments appears warranted.

6.0 REFERENCES

The Boeing Company, 2002. Site Environmental Report for Calendar Year 2001, DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power. RD02-148. The Boeing Company, Canoga Park, CA.

California Environmental Protection Agency, Air Resources Board, Research Division, 1995. Atmospheric Acidity Protection Program: California Acid Deposition Monitoring Program; Wet Deposition Data Summary - July 1990 To June 1993; Hydrological Years 1991, 1992, And 1993. July.

- Clark, Ian and Peter Fritz, 1997. *Environmental Isotopes in Hydrogeology*, second printing (1999), 328 pp.
- Craig, Harmon, 1961. Isotopic variations in meteoric water. *Science*, 133: 1702-1703.
- Dibblee, T.W., 1992. Geologic Map of the Calabassas Quadrangle, Los Angeles and Ventura Counties. Dibblee Geologic Foundation Map DF-37
- Haley and Aldrich, Inc. (H&A), 2002. Report on Annual Groundwater Monitoring 2001, Santa Susana Field Laboratory, Ventura County, California. February.
- Montgomery Watson, 2000. Technical Memorandum, Conceptual Site Model, Movement of TCE in the Chatsworth Formation, Santa Susana Field Laboratory, Ventura County, California. Volumes I, II and III. April.
- MWH, 2001. Draft Shallow Groundwater Investigation Technical Memorandum, Santa Susana Field Laboratory, Ventura County, California. August.
- MWH, 2002a. Technical Memorandum, Geologic Characterization of the Eastern Portion of the Santa Susana Field Laboratory, Ventura County, California. February.
- MWH, 2002b. Spring and Seep Sampling Work Plan. Santa Susana Field Laboratory, Ventura County, California. March.
- MWH, 2002c. Plates Depicting the Geologic Stratigraphy and Structure in the Northwest Portion of SSFL, Santa Susana Field Laboratory, Ventura County, California. October.
- MWH, 2003. Perchlorate Source Evaluation and Technical Report, Santa Susana Field Laboratory, Ventura County, California. February.
- Ogden Environmental and Energy Services Co., Inc. (Ogden), 2000a. Standardized Risk Assessment Methodology (SRAM) Work Plan, Surficial Operable Unit, Santa Susana Field Laboratory, Ventura County, CA. June.
- Ogden. 2000b. RCRA Facility Investigation Work Plan Addendum Amendment, Santa Susana Field Laboratory, Ventura County, California. June.
- Ogden, 2000c. Final RCRA Facility Investigation Shallow Zone Groundwater Investigation Work Plan, Santa Susana Field Laboratory, Ventura County, California. December.
- Smith, Brian M. and Leticia B. Menchaca, 1995. Stable Isotope Hydrologic Evaluation at the Santa Susana Field Laboratory, Area IV. December.

TABLE 1

SPRING AND SEEP SAMPLE COLLECTION METHODS SANTA SUSANA FIELD LABORATORY

SPRING/ SEEP	SPRING/ SEEP	SAMPLE	Latitude and Longitude of Spring/Seep (1)		APPROXIMATE LOCATION	POSITION IN GEOLOGIC	SAMPLE COLLECTION METHOD
SAMPLE LOCATION	NO.	DATE	X COORDINATE	Y COORDINATE	AT SITE	FRAMEWORK	SAMI LE COLLECTION METHOD
1	S19	6/12/02	1783998.59396	268696.76457	Northwest of Area IV, off- site	Contact between Upper Burro Flats Member and Shale 3	Temporary sampling point
	S21	6/10/02	1783466.68133	260814.39752	Northwest of Area IV, off- site	Contact between Upper Burro Flats Member and Shale 3	Temporary sampling point
2	S18	6/10/02	1787609.42156	270294.13074	North of Area IV, undeveloped land	Contact between Upper Burro Flats Member and Shale 3	Collected from sheet flow
3	S17	6/10/02	1790177.83374	271247.73680	North of Area II, off-site	Within the Upper Burro Flats Member	Collected from pool in a sandstone outcrop
	S25	NA	NA	NA	North of Area II, off-site	Within the Upper Burro Flats Member	Not sampled, downstream of spring/seep S17
4	S13	NA	NA	NA	North of Area II, off-site	Within Simi Conglomerate	Not sampled, unsafe condition, bees present
5	S14	6/11/02 – 6/20/02	1791572.00634	273169.54422	North of Area I, off-site	Within the Upper Burro Flats Member	Collected from pool created by silica-dam
6	S16	6/11/02	1791907.50722	271986.56335	North of Area I, off-site	Contact between colluvium and Upper Burro Flats Member	Temporary sampling point
7	S 6	NA	NA	NA	North of Area I, off-site	Within sandstone	Not sampled, dry
8	S27	NA	NA	NA	Northeast of Area I, off-site	Within sandstone adjacent to Shear Zone	Not sampled, dry
9	S26	NA	NA	NA	Southeast of Area I, off-site	Contact between sandstone and shale units in Lower Chatsworth Formation with the Burro Flats fault	Not sampled, could not gain property access
10	S22	6/11/02	1787043.56186	260814.39752	South of Area II, off-site	Contact between colluvium and Sandstone 2	Temporary sampling point
10	S22A	6/11/02	1787044.62997	260836.82821	South of Area II, on-site	Contact between colluvium and Sandstone 2	Temporary sampling point
11	S5	6/11/02	NA	NA	Northwest Area III – onsite, north of Compound A	Contact between Lower Burro Flats Member and colluvium	Not sampled, dry
12	S29	10/3/02	1786709.43405	270527.79044	North of Area IV, off-site	Contact between Upper Burro Flats Member and Shale 3	Temporary sampling point

NA = not applicable
(1) Coordinates in State plane, NAD27, Zone V

TABLE 2

SPRING AND SEEP ANALYTICAL TESTING MATRIX
SANTA SUSANA FIELD LABORATORY, VENTURA COUNTY, CALIFORNIA

				Radioactivity Testing								
					Radioactivity		Stable Isotopes		General Minerals		ls	
Spring/ Seep Sample ID	MWH Sample ID	EPA Sample ID	VOCs (8260B)	Perchlorate (300M)	Gross Alpha/Gross Beta (900/901.1)	Gamma- Emitting Radionuclides (906)	Deuterium (² H)	Oxygen-18 (¹⁸ O)	Cations (6010B/7000)	Anions (300)	Total Dissolved Solids (160.1)	
S14	SSSW05SO1	ME058, MJ048, MW048	X	X	X	X	X	X	X	X	X	
S16	SSSW04SO1	ME050, MJ050, MW050	X	X	X	X	X	X	X	X	X	
S17	SSSW03SO1	ME049, MJ049, MW049	X	X	X	X	X	X	X	X	X	
S18	SSSW02SO1	ME048, MJ048, MW048	X	X	X	X	X	X	X	X	X	
S19	SSSW08SO1	ME054, MJ054, MW054	Chemical a	nd X	X	X	X	X	X	X	X	
S21	SSSW01SO1	ME047, MJ047, MO047	X	X	X	X	X	X	X	X	X	
S22	SSSW07SO1	ME053, MJ053, MW053	X	X	X	X	X	X	X	X	X	
S22A	SSSW06SO1	ME052, MJ047, MW052	X	X	X	X	X	X	X	X	X	
S29	SSSW09SO1	ME093, MJ093, MW093	X	X	X	X	X	X	X	X	X	

VOCs - Volatile Organic Compounds

TABLE 3

RESULTS OF SPRINGS AND SEEPS ANALYZED FOR VOCs AND PERCHLORATE SANTA SUSANA FIELD LABORATORY

Spring/Seep	MWH				Detected VOCs	3		
Sample ID	Sample ID	Date	Toluene (mg/L)	Bromomethane (mg/L)	Acetone (mg/L)	Methylene Chloride (mg/L)	MRL (mg/L)	Perchlorate (mg/L)
S14 ^(a)	SSSW05S01	6/11/02-6/20/02	2 J	ND	21 ^(b)	ND	(<5 TO <15)	ND (< 1)
S16	SSSW04S01	6/11/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S17	SSSW03S01	6/10/02	ND	ND	2 J	ND	(<5 TO <15)	ND (< 1)
S18	SSSW02S01	6/10/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S19	SSSW08S01	6/12/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S21	SSSW01S01	6/10/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S22	SSSW07S01	6/11/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S22A	SSSW06S01	6/11/02	ND	ND	ND	ND	(<5 TO <15)	ND (< 1)
S29	SSSW09S01	10/3/02	ND	1 J	ND	6	(<2 TO <15)	ND (< 1)

ND = not detected above method reporting limit (shown as "<")

MRL = method reporting limit

 $\mu g/L$ - micrograms per liter

J = estimated value; compound detected below method reporting limit.

⁽a) Multiple samples collected on several days from S14 location because of low flow conditions. To collect samples, silicone dam constructed.

⁽b) Acetone was detected at a concentration of 4 ug/L in the second VOC sample collected from S14.

TABLE 4

RESULTS OF SPRINGS AND SEEPS ANALYZED FOR RADIOACTIVITY
SANTA SUSANA FIELD LABORATORY

Spring/Seep	MWH		Gross Alpha	Gross Beta	Man-Ma	de Gamma-Emitt	ing Radionuclid	es (pCi/L)
Sample ID	Sample ID	Date	(pCi/L) MCL 15	(pCi/L) MCL 50	Cesium-134	Cesium-137	Cobalt-57	Cobalt-60
S14 ^(a)	SSSW05S01	6/11/02-6/20/02	ND (<3.96)	4.23 <u>+</u> 1.7	ND (<7.21)	ND (<7.01)	ND (<4.68)	ND (<7.22)
S16	SSSW04S01	6/11/02	ND (<1.93)	3.66 <u>+</u> 1.4	ND (<16.8)	ND (<15)	ND (<10.2)	ND (<17.4)
S17	SSSW03S01	6/10/02	ND (<3.05)	ND (<2.85)	ND (<14.7)	ND (<11)	ND (<7.98)	ND (<13.5)
S18	SSSW02S01	6/10/02	ND (<2.25)	4.1 <u>+</u> 1.5	ND (<9.88)	ND (<8.1)	ND (<3.28)	ND (<10.7)
S19	SSSW08S01	6/12/02	ND (<2.69)	3.3 <u>+</u> 1.4	ND (<15.1)	ND (<11.9)	ND (<8.74)	ND (<12.7)
S21	SSSW01S01	6/10/02	ND (<1.96)	3.29 <u>+</u> 1.4	ND (<16.5)	ND (<13.9)	ND (<9.7)	ND (<16.7)
S22	SSSW07S01	6/11/02	ND (<2.51)	ND (<2.78)	ND (<14.6)	ND (<12.5)	ND (<10.8)	ND (<12.8)
S22A	SSSW06S01	6/11/02	ND (<1.70)	ND (<2.00)	ND (<14.3)	ND (<11.3)	ND (<10.4)	ND (<11.3)
S29	SSSW09S01	10/3/02	ND (<4.46)	ND (<6.92)	ND (<9.26)	ND (<8.16)	ND (<5.21)	ND (<7.89)

ND = not detected above method reporting limit (shown as "<")

MCL = Maximum contaminant level

pCi/L - picoCuries per liter

⁽a) Multiple samples collected on several days from S14 location because of low flow conditions. To collect samples, silicone dam constructed.

⁽b) Results shown on this table only include those radionuclides regulated by state or federal agencies (lowest MCL provided), or man-made gamma-emmitting radionuclides (federally regulated by 40 CFR 141). All radionuclide sample data are presented in Appendix A.

⁽c) Three naturally occurring radionuclides were also detected in two samples: potassium-40 (234 pCi/L) at S14, and bismuth-214 (17.8 pCi/L), and lead-214 (29.5 pCi/L) at S29. Both bismuth-214 and lead-214 are short-lived naturally-occurring radon decay products. There are no federal or state established action levels for these isotopes.

TABLE 5
RESULTS OF SPRINGS AND SEEPS ANALYZED FOR STABLE HYDROGEN AND OXYGEN ISOTOPES SANTA SUSANA FIELD LABORATORY

Spring/Seep	MWH		Deuterium (² H)	Oxygen-18 (¹⁸ O)
Sample ID	Sample ID	Date	(d ² H 0/00 VSMOW)	(d ¹⁸ O 0/00 VSMOW)
S14 ^(a)	SSSW05S01	6/11/02-6/20/02	-35.48	-4.03
\$14 \$16	SSSW03S01 SSSW04S01	6/11/02	-33.48 -47.49	-4.03 -7.07
S17	SSSW03S01	6/10/02	-43.84	-7.09
S18	SSSW02S01	6/10/02	-44.38	-7.25
S19	SSSW08S01	6/12/02	-45.79	-7.33
S21	SSSW01S01	6/10/02	-44.05	-7.03
S22	SSSW07S01	6/11/02	-46.22	-6.89
S22A	SSSW06S01	6/11/02	-48.21	-6.69
S29	SSSW09S01	10/3/02	-52.08	-7.68

⁽a) Multiple samples collected on several days from S14 location because of low flow conditions. To collect samples, silicone dam constructed.

⁽b) Units for the hydrogen and deuterium isotopes are given as the measured value of the sample relative to the reference standard of Vienna standard mean ocean water (VSMOW) in permils (o/oo) or parts per thousand.

TABLE 6
RESULTS OF SPRINGS AND SEEPS ANALYZED FOR GENERAL MINERALS
SANTA SUSANA FIELD LABORATORY

Spring/Seep	MWH		C	ation Concen	trations (mg/	L)		Anion Co	ncentrations	(mg/L)		Total Dissolved Solids
Sample ID	Sample ID	Date	Calcium	Magnesium	Potassium	Sodium	Bicarbonate	Carbonate	Chloride	Sulfate	Alkalinity	(mg/L)
S14 ^(a)	SSSW05S01	6/11/02-6/20/02	32.1	22.1	5.5	178	257	ND (<2)	78.2	233	257	768.5
S16	SSSW04S01	6/11/02	57	32	ND (< 5)	67	282	ND (<2)	47.86	135.43	282	561
S17	SSSW03S01	6/10/02	106	35	ND (< 5)	76	301	ND (<2)	40.27	189.57	301	589
S18	SSSW02S01	6/10/02	85	25	ND (< 5)	80	285	ND (<2)	38.23	120.79	285	481
S19	SSSW08S01	6/12/02	77	24	ND (< 5)	106	288	ND (<2)	44.72	153.91	288	550
S21	SSSW01S01	6/10/02	82	19.8	ND (< 5)	71	254	ND (<2)	39.5	121.69	254	481
S22	SSSW07S01	6/11/02	200	83	<i>7.9</i>	95	311	ND (<2)	76.44	556.22	311	1,241
S22A	SSSW06S01	6/11/02	140	46	ND (< 5)	97	340	ND (<2)	71	300.54	340	ND (<10)
S29	SSSW09S01	10/3/02	57	16	3.4	130	283	ND (<2)	37.2	131.2	283.5	561

(a) Multiple samples collected on several days from S14 location because of low flow conditions. To collect samples, silicone dam constructed.

ND = not detected above method reporting limit (shown as "<")

mg/L - milligrams per liter

Bold indicates lowest concentration detected

Italics indicate highest concentration detected

TABLE 7

RESULTS OF SPRINGS AND SEEPS ANALYZED FOR VOCS AND PERCHLORATE DTSC SPLIT SAMPLES

SANTA SUSANA FIELD LABORATORY

Spring/Seep Sample ID	MWH Sample ID	DTSC Sample ID	Date	VOCs (ug/L)	Perchlorate (ug/L)
S14	SSSW05S01	SSFL-W-012K	6/12/02	Not Analyzed	ND (< 4)
S16	SSSW04S01	SSFL-W-008A, K	6/11/02	ND (<1 TO <5)	ND (< 4)
S17	SSSW03S01	SSFL-W-007A, K	6/10/02	ND (<1 TO <5)	ND (< 4)
S18	SSSW02S01	SSFL-W-006A, K	6/10/02	ND (<1 TO <5)	ND (< 4)
S19	SSSW08S01	SSFL-W-011A, K	6/12/02	ND (<1 TO <5)	ND (< 4)
S21	SSSW01S01	SSFL-W-005A, K	6/10/02	ND (<1 TO <5)	ND (< 4)
S22	SSSW07S01	SSFL-W-010A, K	6/11/02	ND (<1 TO <5)	ND (< 4)
S22A	SSSW06S01	SSFL-W-009A, K	6/11/02	ND (<1 TO <5)	ND (< 4)

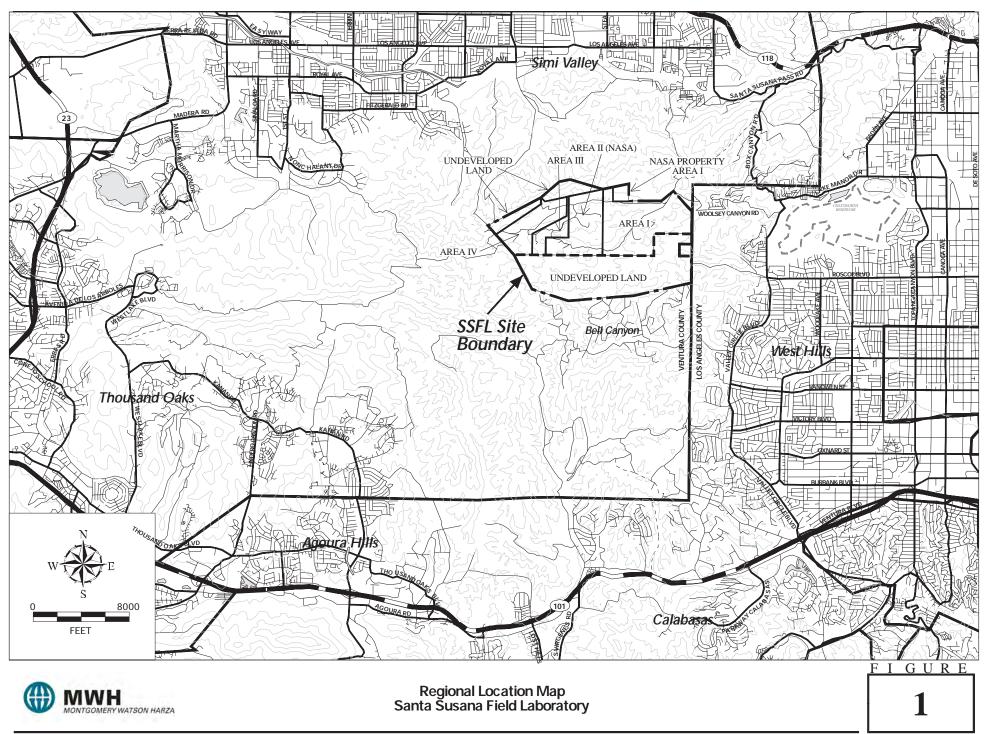
ND = not detected above method reporting limit (shown as "<")

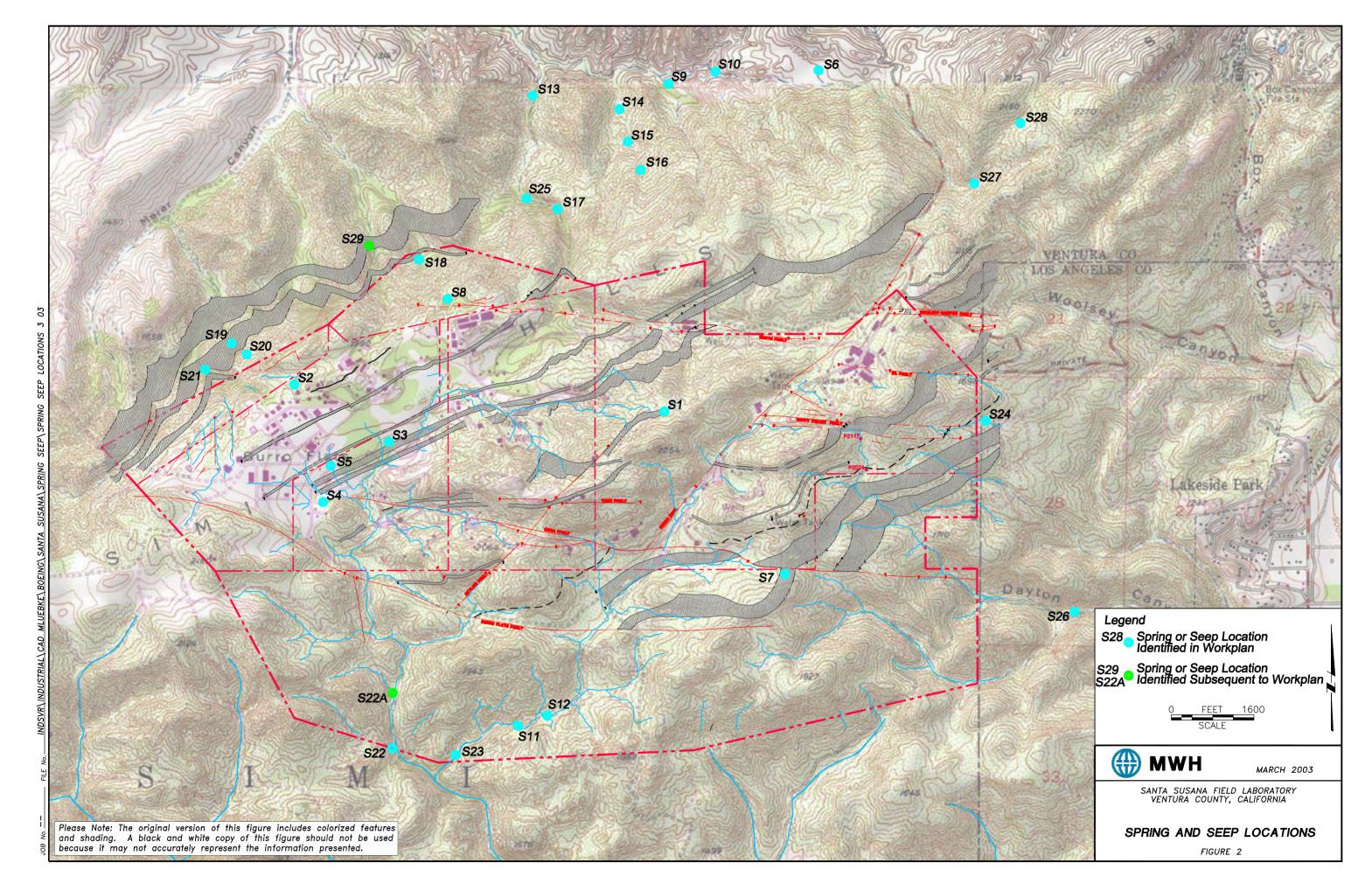
MRL = method reporting limit

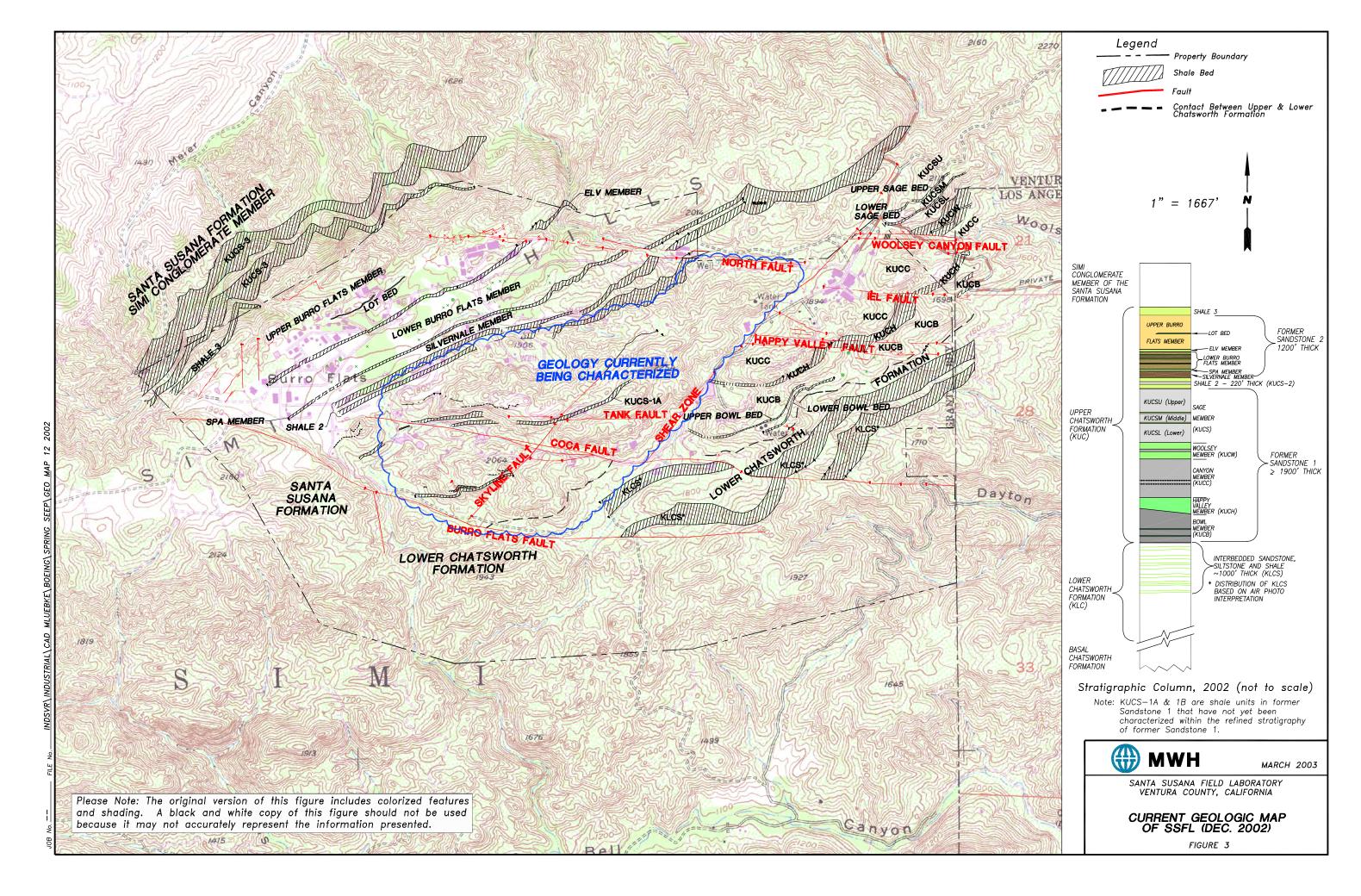
ug/L = milligrams per liter

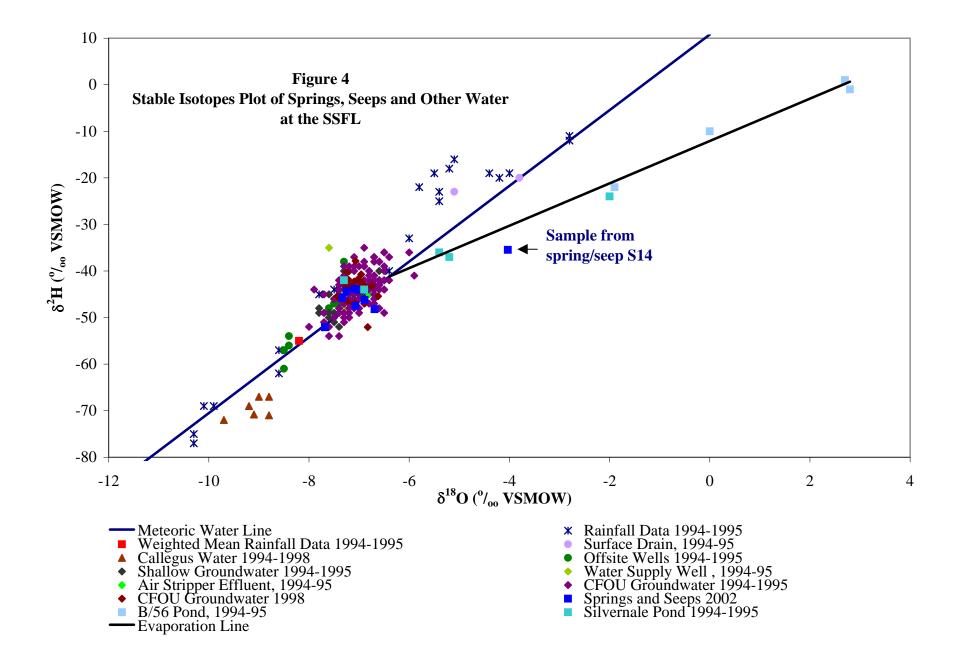
TABLE 8

RESULTS OF SPRINGS AND SEEPS ANALYZED FOR METALS
DTSC SPLIT SAMPLES
SANTA SUSANA FIELD LABORATORY


Spring/Seep	MWH	DTSC			Metals						
Sample ID	Sample ID	Sample ID	Date	MRL	Barium	Chromium	Nickel	Vanadium	Zinc		
S14	SSSW05S01	SSFL-W-012J	6/12/02	0.01	0.101	0.014	0.013	0.029	0.085		
S16	SSSW04S01	SSFL-W-008J	6/11/02	0.01	0.053				0.011		
S17	SSSW03S01	SSFL-W-007J	6/10/02	0.01	0.029						
S18	SSSW02S01	SSFL-W-006J	6/10/02	0.01	0.030						
S19	SSSW08S01	SSFL-W-011J	6/12/02	0.01	0.071			0.020	0.031		
S21	SSSW01S01	SSFL-W-005J	6/10/02	0.01	0.032						
S22	SSSW07S01	SSFL-W-010J	6/11/02	0.01	0.144			0.018	0.026		
S22A	SSSW06S01	SSFL-W-009J	6/11/02	0.01	0.034						


results - mg/L - milligrams per liter, "--" indicates not detected


Bold indicates lowest concentration detected


Italics indicate highest concentration detected

MRL - method reporting limit (practical quanititation limit)

APPENDIX A

SPRING AND SEEP SAMPLE DATA VALIDATION SUMMARY SANTA SUSANA FIELD LABORATORY

1.0 INTRODUCTION

The Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) at the Santa Susana Field Laboratory (SSFL) includes soil, groundwater, surface water, and biota sampling and analysis, as well as passive and active soil gas sampling and analysis following agency-approved work plans (Ogden, 1996; 2000a, and 2000b; MWH, 2002). Samples are analyzed for a variety of compounds including metals, volatile organic compounds, semivolatile organic compounds, polynuclear aromatic hydrocarbons, total fuel hydrocarbons, pesticide/polychlorinated biphenols (PCB) compounds, dioxin/furans, explosive compounds, and general minerals (fluoride, chloride, sulfate, alkalinity, perchlorate, etc.). The resulting data is validated by qualified chemists following EPA guidelines as described in the RFI Quality Assurance Plans (QAPPs) and data validation standard operating procedures (SOPs). These data validation procedures are based on USEPA CLP National Functional Guidelines for Organic Data Review (1994a) and USEPA CLP National Functional Guidelines for Inorganic Data Review (1994b).

The Seep and Spring sampling program collected water samples from seeps and springs within and surrounding the SSFL in June and October of 2002. Samples were analyzed for volatile organic compounds (VOCs), metals (calcium, magnesium, potassium, sodium), general minerals (chloride, sulfate, perchlorate, total alkalinity, bicarbonate alkalinity, carbonate alkalinity, total dissolved solids), and limited radiological parameters (gross alpha, gross beta, and other selected radiological isotopes). Data from all samples were subsequently validated at EPA Level V by AMEC Earth and Environmental (AMEC). The associated data validation reports and annotated laboratory result forms are attached to this summary. A precision, accuracy, representativeness, completeness, and comparibility (PARCC) parameter assessment was not performed for

the Seep and Spring sampling activity, because the number of samples collected were small and, in general, individual sampling events do not constitute a statistically significant event. However, because split samples were collected by the Department of Toxic Substances Control (DTSC), the agency overseeing this project, a comparison of these data to the primary sample results was performed. The individual DTSC results were not validated by AMEC.

Data validation results in the following qualifications of analytical results: "U" (undetected), "J" (estimated), "N" (presumptive identification), and "R" (rejected). Data with "U," "J," or "N" qualifiers are still usable; data with an "R" qualifier are unusable. The following items were reviewed during the validation process: sample management (collection techniques, sample containers, preservation, handling, transport, chain-of-custody, holding times); method blank sample results; blank spike and laboratory control sample results; surrogate recoveries, if applicable; matrix spike/matrix duplicate recoveries and precision; laboratory duplicate precision, if applicable; serial dilution precision, if applicable; field quality assurance / quality control (QA/QC) sample results; and other QC indicators as applicable.

Field QC samples provide a means of evaluating the quality of field sampling procedures, the effectiveness of equipment decontamination procedures, and the potential for introduction of contaminants unrelated to the project. Field QC samples collected during the project included field split samples, field blanks, and equipment rinsates. No trip blanks were collected in association with the site samples analyzed by SW-846 Method 8260B. Unless otherwise noted, field QC samples were collected according to the SSFL RFI QAPPs.

The following section contains a brief summary of data validation results for the Seep and Spring samples collected during June and October 2002. A more detailed summary of the validation findings is presented in the individual data validation reports attached. Overall, some results were qualified with estimated concentrations; these data are still

usable, but are viewed with additional caution. No data in this sampling event were rejected.

2.0 VOLATILE ORGANIC COMPOUNDS

For volatiles, results for all target compounds are considered useable as no data were rejected. Ten seep/spring samples were analyzed for Method 8260B target compounds. Two field split samples, and four field QC samples were also analyzed. Acetone and methylene chloride were qualified as estimated nondetects in two field QC samples due to contamination in the method blank. Chloroform was detected in another method blank but was not detected in the associated site sample. Nondetected results for dichlorodifluoromethane, chloromethane, vinyl chloride, and methylene chloride were estimated in several samples for laboratory control sample recovery deficiencies. Detected and nondetected target compounds were estimated in several samples for surrogate recovery deficiencies and sample receipt deficiencies. The results of the two field split samples were in good agreement. The results of the seven DTSC field split samples were in good agreement.

No trip blanks were collected; therefore, no assessment could be made with respect to possible contamination during sample handling and transport to the laboratory. An equipment rinsate and a field blank were collected on 06/13/02. Chloroform was detected in both the equipment rinsate and the field blank, but was not detected in the associated site samples. Two additional equipment rinsates from silicone tubing and silicone caulking were collected on 06/19/02 and 06/20/02 in association with two site samples collected from a silicone dam at seep/spring S14 on 06/11/03 and 06/13/03. Acetone and methylene chloride were detected in both equipment rinsates; however, these detects were subsequently qualified as estimated nondetects due to method blank contamination. Additionally, chloroform was detected in the equipment rinsate from the silicone caulking, but was not detected in the associated site samples.

Four site samples had a total of six reported detects for target compounds. Of those detects, four were for common laboratory contaminants, acetone (three detects) and methylene chloride (one detect). The remaining detects were for toluene and bromomethane. These detects were estimated by the laboratory as they were below the reporting limits.

Further discussion of the acetone detects in the site samples collected from seep/spring S14 is warranted. A silicone dam was constructed on 06/10/02 to collect sample from seep/spring S14. The first site sample was collected on 06/11/03, before the silicone material used in the dam had completed hardened or 'cured'. This sample had a detect for acetone above the reporting limit at $21~\mu g/L$. The second site sample was collected on 06/13/02 after the silicone material in the dam had cured. This sample had a detect for acetone below the reporting limit at $4~\mu g/L$. The associated equipment rinsates were collected on 06/1902 and 06/20/02. Although these detects were subsequently qualified as estimated nondetects due to method blank contamination, it is not possible to determine if the presence of acetone in the equipment rinsates was solely due to contamination from the method blank, or resulted from contamination of the silicone material.

3.0 METALS

For metals, all results are considered usable as no data were rejected. Nine seep/spring samples were analyzed for calcium, magnesium, potassium, and sodium. One field split sample, eight DTSC field split samples, and four field QC samples were also analyzed. The DTSC field split samples were analyzed for different parameters (barium, chromium, nickel, vanadium, and zinc) and are, therefore, not comparable. Sodium was detected in one method blank, but not at sufficient concentration to require estimation of the associated site samples. No qualifications were required for quality control deficiencies. One equipment rinsate had detects for several target compounds, but none were of sufficient concentration to qualify the associated site sample. No target compounds were detected in the field blank or the other equipment rinsate. The results of the field split

sample were in good agreement. The target compounds were detected in most site samples.

4.0 GENERAL MINERALS AND PERCHLORATE

For the general minerals, all results are considered useable as no data were rejected. Eleven seep/spring samples were analyzed for chloride, sulfate, perchlorate, total alkalinity, bicarbonate alkalinity, carbonate alkalinity, and total dissolved solids. Three field split samples, eight DTSC field split samples, and four field QC samples were also analyzed. No site samples were affected by method blank contamination since no target compounds were present in the method blanks. Total alkalinity, bicarbonate alkalinity, carbonate alkalinity, total dissolved solids, and chloride were estimated in several samples for laboratory control sample recovery deficiencies. Total dissolved solids were detected in an equipment rinsate resulting in the estimation of total dissolved solids in several site samples. The results of the field split samples were in good agreement. The results of the eight DTSC field split samples were in good agreement. There were no detects for perchlorate in any of the samples. The remaining target compounds were detected in some or all of the site samples.

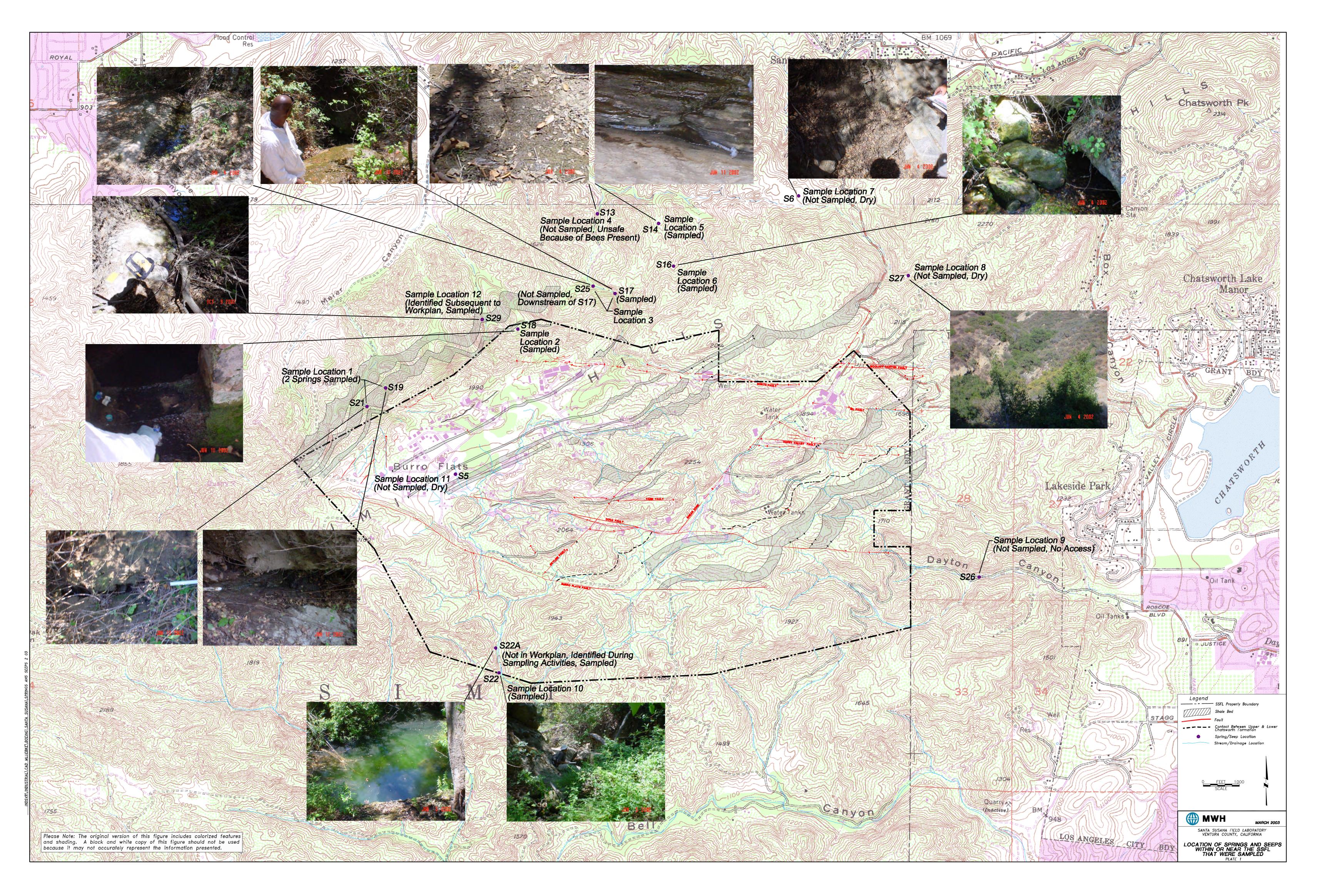
5.0 RADIOLOGICAL ISOTOPES

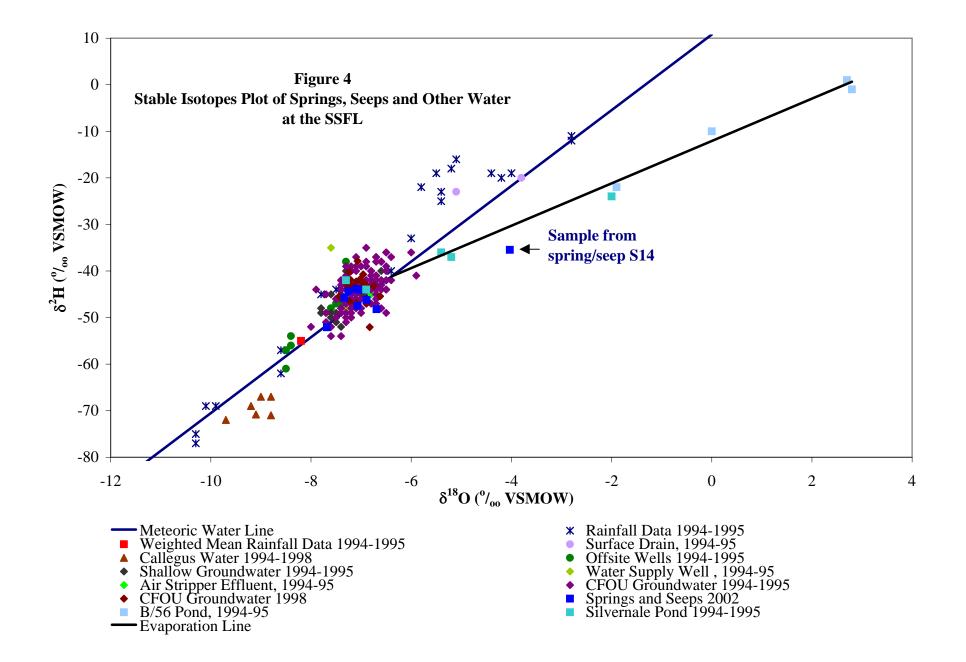
For the radiological parameters, all results are considered useable as no data were rejected. Thirteen seep/spring samples were analyzed for gross alpha, gross beta, potassium-40, cobalt-57, cobalt-60, cesium-134, cesium-137, thallium-208, lead-210, bismuth-212, lead-212, bismuth-214, lead-214, radium-226, actinium-228, thorium-234, and uranium-235, and one split sample was analyzed for gross alpha, gross beta, cesium-134, and cesium-137. No target compounds were present in the method blanks; however, the method blank associated with seep/spring S29 was not analyzed for lead-214 and bismuth-214. As the possibility of bismuth-214 and lead-214 blank contamination could not be evaluated in this sample, bismuth-214 and lead-214 detected in seep/spring S29 were qualified as estimated detects. No qualifications were required for quality control

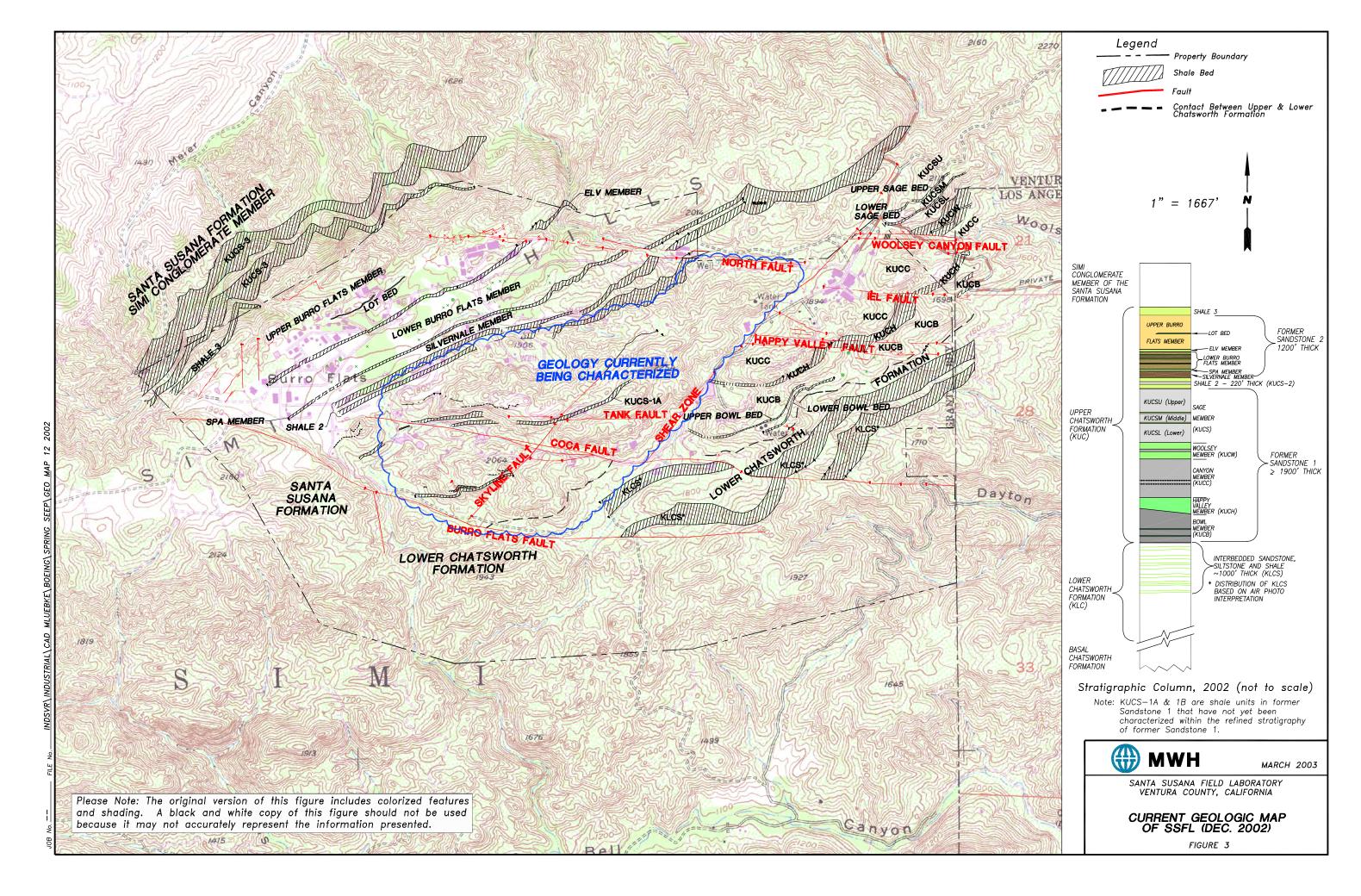
deficiencies. One sample had a detect for potassium-40, a naturally-occurring compound. This sample also had beta activity greater than the minimum detectable activities (MDA). This is expected since potassium-40 decays by beta emission. The second sample had detects for lead-214 and bismuth-214 that were within the 2σ margin of error reported by the laboratory. These two isotopes are short-lived daughter products of naturally-occurring uranium-238.

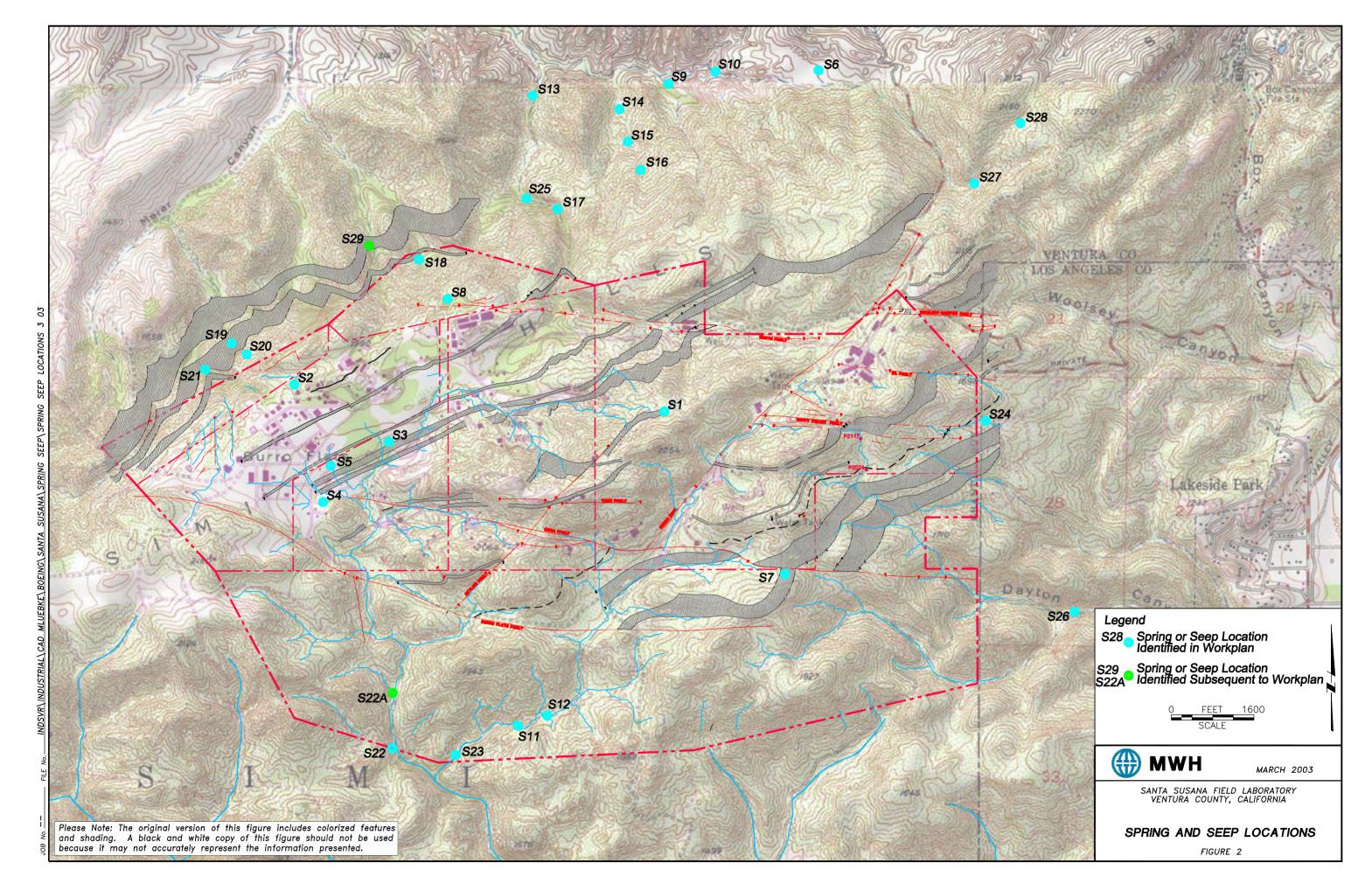
6.0 REFERENCES CITED

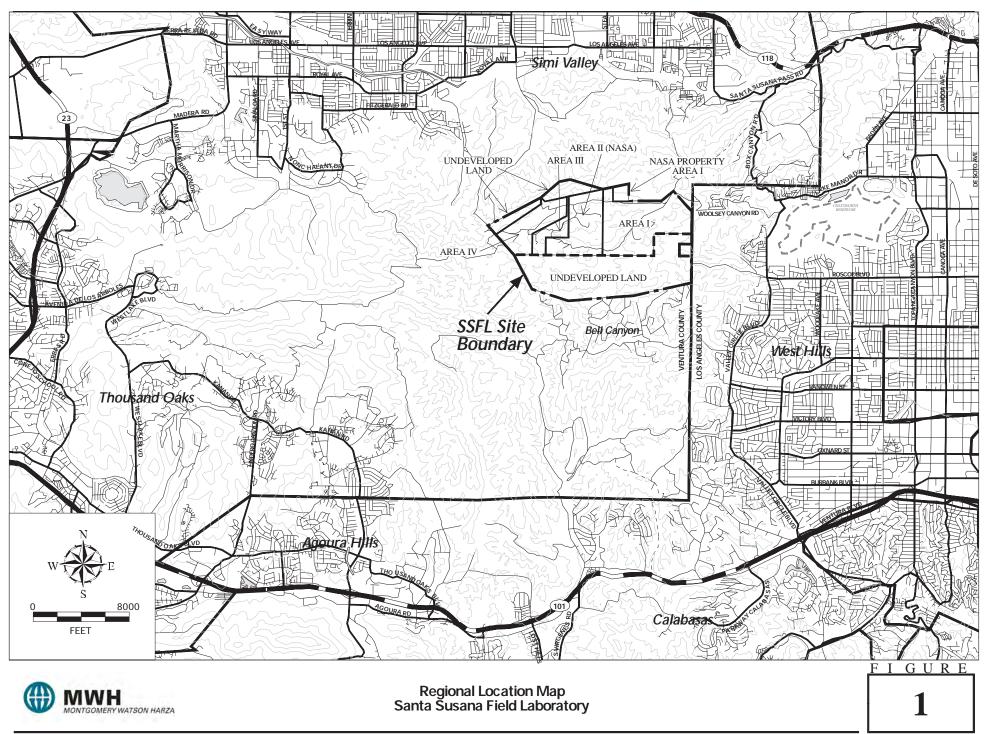
Ogden Environmental and Energy Services, Company, Inc. (Ogden). 1996. RCRA Facility Investigation Work Plan Addendum, Santa Susana Field Laboratory, Ventura County, California. September 1996.

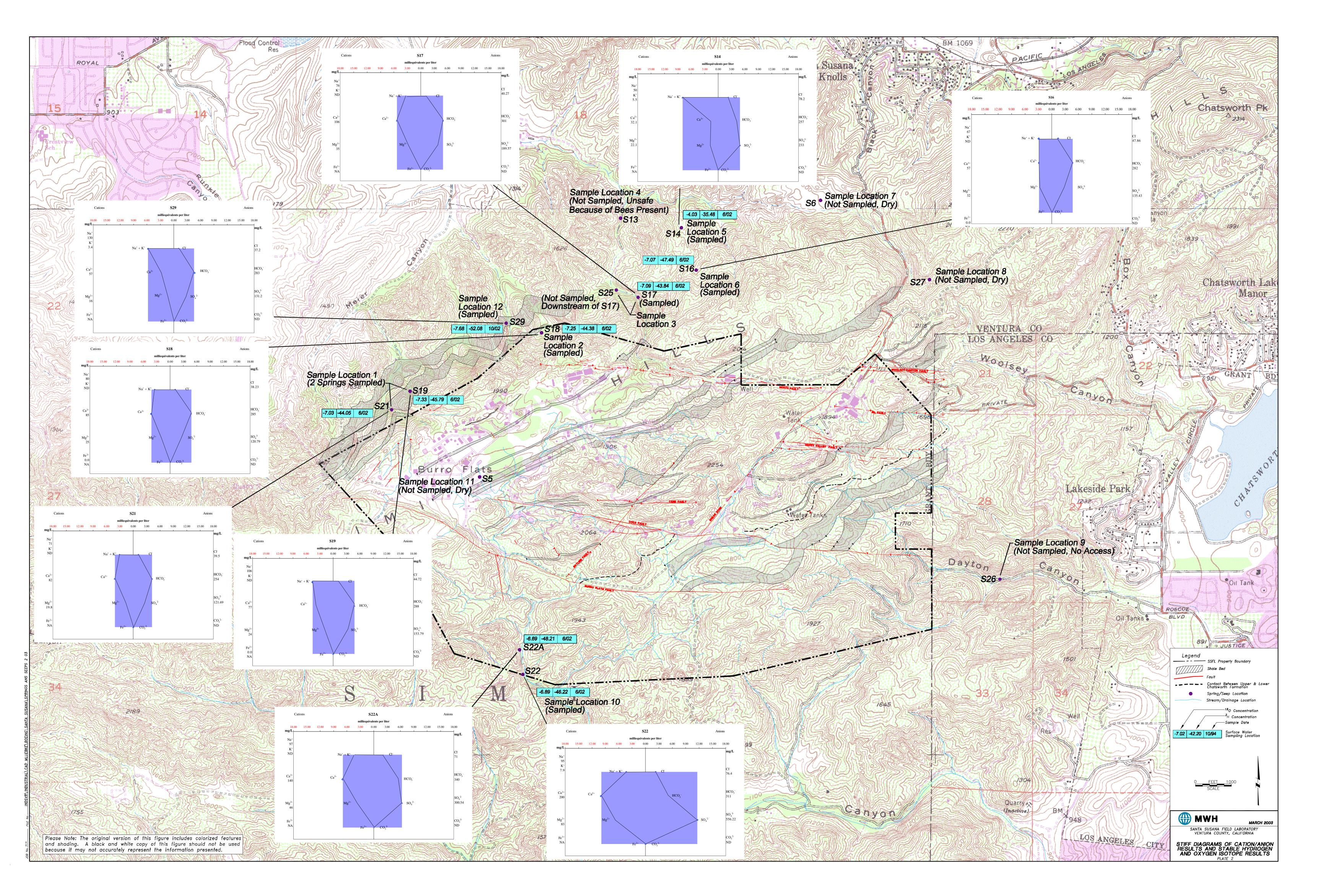

Ogden. 2000a. RCRA Facility Investigation Work Plan Addendum Amendment, Santa Susana Field Laboratory, Ventura County, California. June 2000.


Ogden. 2000b. Shallow Groundwater Investigation Work Plan, Final, Santa Susana Field Laboratory, Ventura County, California. December 2000.


MWH. 2002. Spring and Seep Sampling Work Plan. Santa Susana Field Laboratory, Ventura County, California. March 2002.


USEPA. 1994. CLP National Functional Guidelines for Organic Data Review.


USEPA. 1994. CLP National Functional Guidelines for Inorganic Data Review.



beliver the residue to the eddrass shows or as atsied in combact

Project Number:

Copier No.

TATE

Preservatives

HCL, pH-2 4°C HCL, pH<2

4°C

T'C

4°C

4°C

4°C

4°C

4°C

4°C

4°C

4°C

618

H2504, pH<2 4°C 4°C

S>Hq , EONH 4°C 4°C

MO 053 MD 053

555~075b1

SHO OW

(for MWH use only)

25 25 EF.

1230

Dapth

Date

ULS Number

中的

Soll

Water Product

VOC 8015BM

5VOC

SVOC 8260

DIOXINS 6316A FORMALDELYDE 6330

HEX CHHOMUM

PCBs 8040B/8045C

FLUORIDE 300M

HYORAZINE 300M

Sampling Extra Volum

MS/MED HOLD

1

Denter T

Total # of Bottles

SUCINA

pH 340.2

ORDNANCE 5000/7000 METALS 7796A

TPH 8270CSIM

Sample Usta

Mairiz

SHADIN

1951 DC 5551 555W BZSD. 95190150

911/02 1000

15/15

100 1430 516

XX

#

reject Wantiger: NONTGOMERY WATSON HARZA Diese Humbrick Boeing SSFL

> 250 N. Medison Avenue (626) 588-6310

il of Ottowa

Chain of Custody

Company! Address: Powell Hobits

250 N. Medison Avenue, Pasadensi, CA, 91101

Gontral Numbers COO : MO Q 47 0 Co 102 Page Laboratory Disposed

Received By (LAB):	Reinquished By:	Received By:	Asimonlated By:	Samplera Signatura:	
Deta lime Deta Contected:	Date Time Any other problems: Y or N		Broken container: Y of N	6/13/44 / 700 Lab Number: Does GOC metals samples: Y of N	Date Time
-	1		FAX results to Dixie Hambrick	Cormiteridas	For Lab Use

P.07/08 F-485

Pro: 1.127(1) we -> B

u7-09-02 13:56

Dixie Hambrick (project manager) / Edmund Sarao

Uofo EarthScienceTerre

Name: Address:

Montgomery Watson Harza

250 N. Madison Avenue

Pasadena, CA 91101

Project Name:

Boeing SSFL

Phone:

(818) 266-1378 (Ben Stewart)

Fax:

(818) 842-4345 (D. Hambrick) / (619) 239-3895 (E. Sarao)

edmund.m.sarao@us.mwhglobal.com

14

1647 50

Other billing info: Bill to Lowell Moffitt at above address. Fax data to both #s; e-mail data also to Edmund.

Cost: (1 x \$50) = \$50 Canadian (invoice to follow)

Lab No.	Sample No.	pH	TOS	& DVENDOW	Comments
B02-127-001 MO	THE RESERVE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.			-43.3	

Submitted:

June 19, 2002.

Completed:

July 09, 2002.

UofO EarthScienceTe Ju1-02-02 08:52

Be = - 126/17 WE-0

Name:

Dixie Hambrick (project manager) / Edmind Sarao

Address:

Montgomery Watson Harza 250 N. Madison Avenue

Pasadena, CA 91101

Project Name:

Boeing SSFL

Phone:

(818) 266-1378 (Ben Stewart)

Fax:

(818) 842-4345 (D. Hambrick) / (619) 239-3895 (E. Sarao)

E-mail:

edmund.m.sarao@us.mwhglobal.com

Other billing info: Bill to Lowell Moffitt at above address. Fax data to both #s; e-mail data also to Edmund.

Cost: (1 x \$40) = \$40 Canadian (Invoice to follow)

Lab No.	Sample No.	pH	TDS	8 18 Oversow	Comments
802-128-001	MOQ47			-7.04	
reneat	MOD47		14	-7.01	

Submitted:

June 19, 2002.

Completed:

July 02, 2002.

Cooler No.

TAT

Week

Relinquished By:

6/13/4C

CINE A. BITIES.

Does COC match samples:

2

Z

1-120h

E

37955500

For Lab Use

Tap Number:

Date

Received within holding time: Broken container: Y or

~

10

2

FAX results to like Hawkinch

818.842.4345

COC Seal Intact: Y or

I any YES, HWH contacted: Any other problems: Y or

4

9

Z

Date Contacted : Temperature °C

Date

Time

(1)3/02 1700

Received By:

Belinquished By:

Samplers Signature:

449BW

SSSMOISO

518

1230

6/11/02

1000

52

SHIES .

Depth

Date Time Collected Collected 10/02 1048

ULS Number

(for MWH use only) Description

5

Sample Data

840MG

555W0350 555W02501

DSTORY

MW1651

555WØ55Ø 555W04501

SSSWOBSO

522A 5/4 516

1415

14.30 1100

1100

522 519

6/Rbs

6/13/02

MINIOS 4 MW053 MW652

MW055

MW036

SSQWW FR

9 J

55QWØIFØ 555 N 68501 555WO 7501

MWH MONTGOMERY WATSON HARZA

250 N. Madison Avenue Payadana, CA 91101 (626) 588-6310

Chain of Custody

BIII To: FOREH MOTEU

250 N. Medison Avenue, Pasadena, CA, 91101 Sample Oksposel Instructions: Shipment Melinot: Factor

Company: Address:

Date 6 , 13 P2 Page Control Number: CCC Laboratory Disposal throw w

Lab ID Preservatives Soll X Matrix Water Product BO16BN 4°C HCL, pH<2 4°C 8270CSIM 4ºC 870C 8270C 870C 8290 a*C 4°C DIOXINS 8916A FORMALDEHYDE 8930 ORDNANCE H2SO4, pH<2 400 4°C HNO3, pH<2 6000/7000 METALS 7196A 4°C 4°C НЕХ СНЯОМИМ 8082 4°C PCBs 9040B/9045C 4°C pH 340,2 CO FLUORIDE MODE 4°C ANIONS 300M A°C HYDRAZINE 300M 4°C PERCHLORATES Dewlerin 018 XXX XXX Sampling Method Extra Volume MS/MSD HOLD

Tatal Hal Battlee

Received By (LAB); Way Solu Parker With Copy Original Vellow: Lab Copy Pink: Field Copy

JUN PUT

2002

Project Manager: Dicie Hambrick
Project Manager: Boeing SSPL
Project Mumber:
Deliver the results to the address above or as stated in contract Boeing SSFL

Us of Waterloo

Client: Hambrick Montgomery Watson Harza Project: Boeing SSFL ISO# 2002450 Location:Office 10 for 2H/18O

Sample	Lab#	180	Result	Repeat	2H	Result	Repeat
Cumpic		SMOW					
MW047	47982	X	-7.03	F-100	X	-44.05	-44.41
MW048	47983	in the second	-7.25	-7.39	X	-44.3B	-43.91
MW049	47984	-	-7.09		X	-43.84	-42.57
MW050	47985	Tables -	-7.07	_	X	-47.49	-48,97
MW051	47986	-	-4.03	-	X	-35,48	-34.44
	47987	-	-6.69	-	X	-48.21	-48.21
MW052			-6.89		X	-46,22	THE RESERVE TO THE PERSON NAMED IN
MW053	47988	-	-7.33		X	-45.79	
MW054	47989	-		-	X	-68.68	
MW055	47990		-9.34		-	-73,58	
MW056	47991	X	-9.21		X	-/3,30	-10,42

To Contact EIL: mepatton@uwaterloo.ca or phone: 519 888 4732 Environmental Isotope Lab 2002-07-02 1 of 1

> Robert J. Drimmie Laboratory Manager rdrimmie@uwaterloo.ca 519 888 4567 ext 2580

From-MINH AMERICAS INC D2:36pm Mar-14-03 jeci Nariges: Dink Hombrick Jeci Nazia: Boding SSFL Jeci Morbri: Jear the results to the address strate or as aleked in contract Level: EBOM! STOPPEN SIGNALINES Unquiested By: calvad By is award By (LAB) T. MONTGOMERY WATSON HARZA SSSWOTSO Halle Copyright for burney to albury to be sufficient to the Doserbilan (for MWH use only 47 4 2 ... Black eldness Spirita 智量 IO 100 Depth ٢ 3 108,62 Calleolad 品品 250 N. Medison Avenue Pasadeno, CA 9110) (626) 628-6310 Collected 19/9/2 Date Date 7.87 Diela Dide 8 ULS Number BUILT 1 auli 1/20 THE S Out 1250 ale Lab 10 Ť. Elli Toc Companyi Additessi Preservatives Chain of Custody Revelved within inciding lines Broken container: Y Does COC match semplast COC Beal intect: Y Date Contacted: Any other proticess: I MAY YEE, MAN'H contacted: THE NUMBER Temperature C 7 Water 100 Soil HINN 258 fl. Medisus Avenus, Pederiens, CA, 91101 Epwell Moult Water dia. Product 4 9 4 4 HCL PH & RULE DEPARTMENT OF SERVICE 9 Z 1 **XBS** 44 4 9 9 TPH 8270CSIM 4-0 Ħ Z 4ºC SVOC Z 4"0 8290 A"C DIDXINS STEA PORMALDELYDE 8830 1 H2904, pH42 4ºC Commedia 1 fax rusults to 4°C For Lab Usa DRIDMANCE 6000/7000 MNDS, pHC METALS 7186A arc. Semple Olsowellantwelkers, Leborolov Dispose different Heisard: Comment 40 HEX CHROMUM 8082 Control Number: COC 4ºC PGB# 8040B/9045C 10,3 4°C pN 340.2 4°0 FLUORIDE 300M ANIONS 60 Dixie Harbird BOOM HYDRAZINE BOOM 818,842,4345 102 PHID 4°C 4ºC ELOUWW : PERCHLORATES Sampling 1 Method Extra Volume 4 MSIMSO HOLD Total S of Spries XD-40-130 \$2:\$1 From-not brea TIC BER BER P. noor non 677-1 Ann_J

T-819

P.04/08

F-485

Client: Hambrick

Montgomery Watson Harza

ISO# 2002663

Location:A - 3

1 for 2H/18O

Sample	Lab#	180	Result	Repeat	2H	Result	Repeat
Campio		SMOW	-				
MVVD93 10/03/02	51840	X	7,68	-7.78	X	-52,08	-50.68

1

Environmental Isotope Lab 2002-11-04 1 of 1

To Contact EIL: mepatton@uwaterloo.ca or phone: 519 888 4732 Robert J. Drimmie Laboratory Manager rdrimmie@uwaterloo.ca 519 888 4567 ext 2530

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MJ093
Matrix: water
No. of Samples: 1

Date Reviewed: November 27, 2002

Reviewer: P. Meeks

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC matched the sample. Only calcium, potassium, magnesium, and sodium were requested on the COC, but the laboratory reported 21 additional metals. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3. Method Blanks	Selenium was detected in the method blank at a concentration greater than the CRDL. Additionally, the reviewer noticed that boron and thallium were detected in CCB1 at 64.9020 and 5.3100 µg/L, respectively.	Boron and thallium detected in the sample were qualified "UJ." As selenium was not detected in the sample, no further qualifications were required.
5. <u>LCS/BS</u>	One solid LCS sample was analyzed with the sample. Boron and molybdenum were not spiked into the LCS.	No qualifications were required.
6. <u>Duplicates</u>	None.	No qualifications were required.
7. MS/MSDs	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: Metals

	Findings	Qualifications
9. ICP Serial Dilution	None.	No qualifications were required.
10. Other	None	No qualifications were required.
11. Field QC Samples FB: MJ055 (SDG MJ047) ER: MJ056 (SDG MJ047),	The field QC samples were analyzed only for calcium, potassium, magnesium, and sodium. There were no detects for these analytes in the field QC samples. No assessment was made with respect to the remaining 21 metal analytes.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

USEPA - CLP -1-

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: Cemec Laboratories Contract: Rocketdyne Lab Code: CTIC Case No.: 021006 SAS No.: SDG No.: M3093 Matrix (Soil Water): WATER Lab Sample ID: 021006-01 Level (low/ms: LOW Date Received: 10/4/2002 % Solids: 0.: Concentration Units (ug/L or mg/kg dry weight): UG/L								MJ	093
Matrix (soil water): WATER	ab Name: Cerr	c Laboratories	Contr	act: Rocketdyr	ıe				
Date Received: 10/4/2002 No. Date Received: 10/4/2002 Date Re	ab Code: CIT	Case No.:	<u>021006</u> SA	AS No.:		SDG N	· · ·	MJ093	
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No.	atrix (soil 🖘	cer): WATER		Lab Sample I	D:	02100	6-01		_
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q M Qual Qua				Date Receive	d:	10/4/	2002		
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q M Garat	3/61 (10W/IIE	HOW							_
CAS No. Analyte Concentration C Q M Qual C Q Q M Qual C	Solids: 0.1	***************************************							
T440-36-0		Concentrati	ion Units (ug/	L or mg/kg dry	weig	ght):			1
T440-36-0		CAS No.	Analyte	Concentration	С	Q	М	[Rev Qual	Code
T440-38-2 Arsenic 6.0 B P		7429-90-5	Aluminum	370					
T440-39-3 Barium S1 B		7440-36-0	Antimony	1.8			P	ĪΟ	Decoration of the second
T440-41-7 Beryllium		7440-38-2	Arsenic	6.0	1		P	_	
T440-42-8 Boron 110 B P U T440-43-9 Cadmium 0.35 U P U T440-70-2 Calcium 57000 P T440-48-4 Cobalt 3.3 U P T440-50-8 Copper 8.7 U P T439-89-6 Iron 1100 P T439-92-1 Lead 1.8 U P T439-95-4 Magnesium 16000 P T439-97-6 Mercury 0.040 U AV T439-98-7 Molybdenum 8.8 U P T440-02-0 Nickel 7.3 U P T440-09-7 Potassium 3400 B P T782-49-2 Selenium 3.7 U P T7440-22-4 Silver 6.1 U P T7440-23-5 Sodium 130000 P T440-28-0 Thallium 3.1 B P T7440-66-6 Zinc 36 P T840-66-6 Zinc 36 P		7440-39-3	Barium					<u> </u>	
T440-43-9 Cadmium		7440-41-7	Beryllium	0.48			•	<u>-</u> :	
T440-70-2 Calcium 57000 P		7440-42-8	Boron	110	-		<u> </u>	<u>-</u> :	B
		7440-43-9	Cadmium	0.35	שן	<u> </u>	P	ĮΟ	ma-remoisticalite
7440-48-4		7440-70-2	Calcium	57000	<u> </u>			<u> </u>	TOTAL PROGRAMMENT
Taylor T		7440-47-3	Chromium			<u> </u>		10	meli's dribuns vischilia
Taylor T		7440-48-4	Cobalt	<u> </u>		<u> </u>	-	! /	old 2-b b b b b b b b b b b b b b b b b b b
T439-92-1		7440-50-8	Copper		Ιū			<u> </u>	
7439-95-4 Magnesium		7439-89-6	Iron		1	<u> </u>		<u> </u>	
T439-96-5 Manganese					Ιυ	<u> </u>	:	! 🖰	
7439-97-6 Mercury 0.040 U AV U 7439-98-7 Molybdenum 8.8 U P V Y Y Y Y Y Y Y Y Y		7439-95-4		<u></u>	 	<u> </u>	:	<u> </u>	nde alaman (), dels () ()
Taylor T					1	<u> </u>	•	 	.)./ Chicago
7440-02-0						<u> </u>		14	100 C C C C C C C C C C C C C C C C C C
7440-09-7						<u> </u>		-	
7782-49-2 Selenium 3.7 U P U 7440-22-4 Silver 6.1 U P U						1	; 		
7440-22-4 Silver 6.1 U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U U			<u> </u>	<u>. '</u>	!	<u> </u>	<u> </u>	_ - 1 1	
7440-23-5 Sodium 130000 P P			!		_ -	<u> </u> 	<u> </u>	_	A COLUMN TO THE PROPERTY OF TH
7440-28-0					10	<u> </u>	:		ALL AND
7440-62-2			<u> </u>		I IB	<u> </u>		<u> </u> (R
7440-66-6 Zinc 36 P			<u> </u>			<u> </u>		_	
7440-00-0 DING		<u> </u>	<u> </u>		1	<u> </u> 		1	
Color Before Clarity Before: Texture:		7440-66-6	Zine] 30		<u>!</u>	1 -	_!	
Color Before Clarity Before: Texture:									
	Color Before	Cla	arity Before:		- T	extare	•		
Color After: Clarity After: Artifacts:	Color After:	Cla	arity After:		- A	rtifac	ts:		
Comments:	Comments:	AMEC VA						- 1	

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MJ058
Matrix: water
No. of Samples: 3

Date Reviewed: November 12, 2002

Reviewer: P. Meeks

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ058, MJ059, MJ060

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC accounted for the samples in this SDG. Metals analyses were not requested on the COC for the samples in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included calcium magnesium, potassium, and sodium. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3. Method Blanks	Sodium was detected in the method blank at 67.800 µ.g/L.	No qualifications were required.
5. <u>LCS/BS</u>	One aqueous LCS sample was analyzed with the sample. The recoveries were within the control limits of 80-120%.	No qualifications were required.
6. <u>Duplicates</u>	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ058 Analysis: Metals

	Findings	Qualifications
7. MS/MSDs	None.	No qualifications were required.
9. ICP Serial Dilution	None.	No qualifications were required.
10. Other	None.	No qualifications were required.
11. <u>Field QC Samples</u> FB: MJ055 ER: MJ059, MJ060	Calcium magnesium, potassium, and sodium were not detected in the field QC samples at sufficient concentrations to qualify MJ058.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

TOTAL METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
м.то 5.8	

Contract: Boeing SSFL

Lab Code: CRIMIC Case No.: 020619

SAS No.:

SDG NO.: MJ058

fatrix (soil/water):WATER

Lab Sample ID: 020619-01

Level (low/med): LOW

Date Received: 06/21/02

s Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): μG/L

CAS No.	Analyte	Concentration	C	Q	м	Ru Qual	Qual Code
7440-70-2	Calcium	32100			P		
7439-95-4	Magnesium	22100			P]	
7440-09-7	Potassium	5510			P	1	
7440-23-5	Sodium	178000			P	Ī	

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

Ceimic

TOTAL METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
мJ059	

Contract: Boeing SSFL

CRIMIC Lab Code:

Case No.: 020619

SAS No.:

SDG NO .:

MJ058

Matrix (soil/water): WATER

Lab Sample ID: 020619-02

Level (low/med): LOW

Date Received: 06/21/02

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	C	Q	М	Rev Qual	Rual
7440-70-2	Calcium	68.9	ט	İ	P	U	
7439-95-4	Magnesium	117	В		P	_	
7440-09-7	Potassium	371	В		P	<u> </u>	
7440-23-5	Sodium	975	В		P	<u> </u>	ļ

Color Before:

COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

Ceimic

TOTAL METALS

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO. MJ060

Contract: Boeing SSFL

Lab Code: CEIMIC Case No.: 020619

SAS No.:

SDG NO.: MJ058

fatrix (soil/water): WATER

Lab Sample ID: 020619-03

Date Received: 06/21/02

Level (low/med): LOW

Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	C	Q	М	Qual	Code
7440-70-2	Calcium	73.7	В		P		
7439-95-4	Magnesium	107	В		P	<u> </u>	
7440-09-7	Potassium	232	В		P	<u> </u>	and the second s
7440-23-5	Sodium	561	В		P		- Company

Color Before:

COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V1

SDG: MJ047 Matrix: Water

No. of Samples: 9

Date Reviewed: July 18, 2002

Reviewer: A. Lang

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ047, MJ048, MJ049, MJ050, MJ052, MJ053, MJ054, MJ055, MJ056

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC matched the samples and accounted for the analysis. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3. Method Blanks	Metals were not detected in the method blank associated with the samples in this SDG.	No qualifications were required.
5. <u>LCS/BS</u>	One aqueous LCS sample was analyzed with the samples. The recoveries were within the laboratory defined QC limits.	No qualifications were required.
6. <u>Duplicates</u>	None.	No qualifications were required.
7. MS/MSDs	None.	No qualifications were required.
9. ICP Serial Dilution	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ047 Analysis: Metals

	Findings	Qualifications
10. Other	None.	No qualifications were required.
11. <u>Field QC Samples</u> FB: MJ055 ER: MJ056	Metals were not detected in the field QC samples.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

CEIMIC

Corporation

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-01

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation few Quift
Calcium	0618	on	_
Magnesium	0618	82 20	5
Potassium	0618	ND	5
Sodium	0618	71	5 u

ND = Not Detected

AMEC VALIDATED

LEVELV

Domanta d L.	Ces)		120	107
Reported by: _		Approved by:	101	101

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-02

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration		Quantitati Limit	on hw Qual	Qual acle
Calcium	0618	85	÷	5		
Magnesium	0618	25		5		
Potassium	0618	ND		5	. 1	
Sodium	0618	80		5	u	

ND = Not Detected

AMEC VALLDAILD

LEVELV

Reported by:

Approved by:

BP

188

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-03

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation Rur Qual Limit Qual Esle
Calcium	0618	106	5
Magnesium	0618	35	5
Potassium	0618	ND	5 (A)
Sodium	0618	76	5

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:	CW	Approved by:	BP	189
	1	* * * * * * * * * * * * * * * * * * * *	· / /	

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-04

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation for Gual Limit Gual Colle
Calcium	0618	57	5
Magnesium	0618	32	5
Potassium	0618	ND	5 (1)
Sodium	0618	67	5 W

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:	Cer	Approved by:	BP	q	Ω	l.
				*	~~~	_

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-06

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation Rev Just Limit Lual Cock
Calcium	0618	140	-
Magnesium	0618	46	5
Potassium	0618	ND	5 //
Sodium	0618	97	5 W

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:

Approved by:

BP

191

CEIMIC

Corporation

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-07

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation June Qual Limit Gual Cocle
Calcium	0618	200	5
Magnesium	0618	83	5
Potassium	0618	8	5
Sodium	0618	95	5

LEVELV

AMEC VALIDATED

Reported by:	Approved by:	BP	192
* * *	 ripproved by.	. , , ,	

Corporation
"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-08

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation for Lyaf Limit Sunt Socie
Calcium	0618	77	
Magnesium	0618	24	5
Potassium	0618	ND	5 (4
Sodium	0618	106	5 W

ND = Not Detected

AMEC VALIDATED

Reported by:	<u>(1)</u>	Approved by:	BP	193
		* · · · · · · · · · · · · · · · · · · ·		

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-09

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation	Sample	Quantitation for Qual
	Batch	Concentration	Limit for Qual Colle
Calcium	0618	ND	5
Magnesium	0618	ND	5
Potassium	0618	ND	5
Sodium	0618	ND	5

ND = Not Detected

AMEC VALIDATED

LEVELV

Reported by:

Approved by: ____

BP

194

CEIMIC Corporation

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-10

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation	Sample	Quantitation Rev Qual
	Batch	Concentration	Limit Qual Code
Calcium	0618	ND	5
Magnesium	0618	ND	5
Potassium	0618	ND	5
Sodium	0618	ND	5

ND = Not Detected

EWELV

AMEC VALIDATED

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

 QC Level:
 V¹

 SDG:
 MC093

 Matrix:
 Water

 No. of Samples:
 1

REs/DLs: 0

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The sample was received with temperatures within the QC limits of 4°±2° C. The COC matched the sample and accounted for the analyses. No custody seals information was provided by the laboratory. Analyses were performed within the holding times.	No qualifications were required.
3. Method Blanks	One water method blank was analyzed with this SDG. There were no detects in the method blank.	No qualifications were required.
4. <u>LCS/BS</u>	An aqueous LCS sample was analyzed with the sample. The recoveries for all analytes were within the laboratory-established QC limits.	No qualifications were required.
6. MS/MSDs	No MS/MSD analyses were performed in association with the sample in this SDG.	No qualifications were required.
7. Field QC Samples ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	There were no detects in MJ055 or MJ056.	No qualifications were required
8. Other	None	No qualifications were required.

Project: Rocketdyne SDG: MC093 Analysis: MM

	Findings	Qualifications
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Metals

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No:

21172 Water

Matrix:

Analyst: TLR/GF

Date Sampled:

10/03/02 Date Received:

Date Digested:

10/04/02

Date Analyzed:

10/07/02 10/07/02

Batch Number:

6010W2531

	S	ample ID:	Blank	MC093	Rev	Qua
Element	Method #	RL	mg/L	mg/L	Qual	Code
Calcium	6010B	2.0	ND	60	and the second s	
Magnesium	6010B	0.20	ND	15		
Sodium	6010B	0.20	ND	130		
Potassium	6010B	0.25	ND	3.2		

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹

SDG: MC047 Matrix: water No. of Samples: 1

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MC047

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperature upon receipt at Centrum Analytical Laboratories was above the QC limits of 4°±2°C. All analyses were subcontracted to other laboratories. Temperature at receipt was not noted for the perchlorate analysis subcontracted to Weck Laboratory. Temperature upon receipt for the remaining analyses was noted to be within the QC limits. The original COC accounted for the sample in this SDG. Chloride, sulfate, carbonate alkalinity, and bicarbonate alkalinity analyses were not requested on the COC. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. TDS analysis was requested but was not performed as insufficient volume was received.	No qualifications were required.
	No transfer COC was included for the perchlorate analysis. A transfer COC was included for the remaining analyses, but was not legible. No custody seal information was provided by the laboratory. Holding times were met.	

Project: Rocketdyne SDG: MC047 Analysis: Gen. Min.

	Findings	Qualifications
3. Method Blanks	Perchlorate, sulfate, and chloride were not detected in the method blanks. No alkalinity method blanks were analyzed.	No qualifications were required.
5. <u>LCS/BS</u>	Recoveries for perchlorate and sulfate were within the laboratory-established control limits. No LCS was provided for chloride or alkalinity.	Chloride, total alkalinity, bicarbonate alkalinity, and carbonate alkalinity were qualified as estimated, "J," for detects and "UJ," for nondetects.
6. <u>Duplicates</u> MC047 – chloride only	Duplicate analyses were performed for chloride only. The RPD was less than 20%.	No qualifications were required.
7. MS/MSDs MC047 –sulfate only	MS/MSD analyses were performed for sulfate only. The recoveries were within the laboratory-established control limits of 70-130% and the RPD was less than the laboratory-established control limit of 25%.	No qualifications were required.
10. Other	No raw data was provided for any of the analyses in this SDG.	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ056 FB: MJ055 Field duplicates: none	There were no applicable detects in either of the field QC samples.	No qualifications were required.
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Weck Laboratories, Inc.

Environmental and Analytical Services - Since 1964

Report Date: Friday, June 28, 2002 Received Date: Monday, June 17, 2002

Phone: (909) 779-0310

FAX: (909) 779-0344

Log By: mq Log Time: 11:03

Client: Centrum Analytical Laboratories, Inc.

1401 Research Park Drive Riverside, CA 92507

Attn.: Marilu Escher

Project: Boeing SSFL/20674

P.O. #:

Turnaround Time: Normal

CERTIFICATE OF ANALYSIS

Lab#: A204182-001 Sampled By: Client Sample ID: MCO47

Matrix: Water

Date: 6/10/2002

Time: 10:48

Source: 20674-1

Parameter	Rew	Oud Result	Flag	Units	Dilution Factor	RL	Method	Analyzo	ed	Worksheet #
Perchlorate	U	ND		ug/L	1	3.0	EPA 314	6/24/2002	dc	WS35335

Flags for Data Qualifiers:

✓ Authorized Signature

ELAP # 1132

LACSD # 10143

J = Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method Detection Limit (MDL) and the Pratical Quantitation Limit (PQL).

B = Compound detected in the blank. Sample result equal or less than 10 times the concentration in the blank.

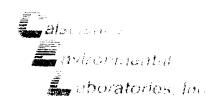
- H = Estimated value, result over the calibration range
- R = Result is suspect, LCS recovery greater than the upper control limit.
- L = Result is suspect, LCS recovery lower than the control limit.
- Q = QC result out of acceptance limits.
- T = Trace detection, detected but below the reporting limit.

Notes

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance. All results are expressed on wet weight basis unless specified.

RL = Reporting Limit.


ND = Not detected, below the reporting limit.

Sub = Subcontracted analysis, original report enclosed.

AME VIEW WALLE

land Vallada V

Lab#: A204182

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

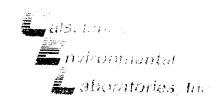
Date Received:

Work Order No:

06/14/02

Preparation:

02-06-0556 N/A


Method:

SM 2320B

Project 20674 / Boeing SSFL

Client Sample Number			b Sample Number		Matrix	Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-06	-0556-1		Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units	Rev Qual	Qual		
Alkalinity Total as CaCO3)	250	5.0	1		mg/L	T	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

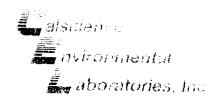
Date Received:

Work Order No:

Preparation: Method:

06/14/02 02-06-0556

N/A


SM 2320B

Project: 20674 / Boeing SSFL

Client Sample Number			b Sample Number		Matrix	Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-0€	3-0556-1		Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1
Parameter	Result	<u>R</u> ı	<u>DE</u>	Qual	Units	Rev Qual	(ode	·	
Bicarbonate (as CaCO3)	250	5.0	1		mg/L	.	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

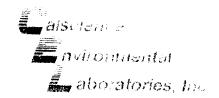
Date Received:

Work Order No:

Preparation:

06/14/02

02-06-0556


N/A SM 2320B

Method:

Project: 20674 / Boeing SSFL

Client Sample Number		Lab Sample Number			Date Matrix Collected		Date Prepared	Date Analyzed	QC Batch ID
MC047		02-06	3-0556-1		Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1
Parameter	Resuit	<u>Rl</u>	<u>DF</u>	Qual	<u>Units</u>	Red Qual	Soll.	·····•	
Carbonate	СN	1.0	1		mg/L	V3	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside. CA 92507-2111

Date Received:

Work Order No:

02-06-0556

Preparation:

N/A

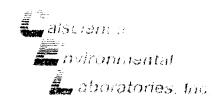
06/14/02

Method:

SM 4500-CI C

Project: 20674 / Boeing SSFL

Page 1 of 1


Client Sample Number			b Sample Vumber		Matrix	Date Collecte	Date d Prepared	Date Analyzed	QC Batch ID
MC047		02-06	5-0556-1		Aqueous	06/10/02	N/A	06/17/02	0617CICMB1
Parameter	Result	<u>R</u> i.	<u>DF</u>	Qual	Units	// I a	ode		
Chloride	47	2	1		mg/L	J	ere a		
Method Blank		099-0	5-057-1,078		Aqueous	N/A	N/A	06/17/02	0617CICMB1
<u>Parameter</u>	Result	<u>R:</u>	<u>DF</u>	Qua!	Units				
Dhionde	ND	2.0	1		mg/L	*			

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Analysis Not Validated

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Project: 20674 / Boeing SSFL

Date Received:

Work Order No:

Preparation:

Method:

06/14/02

02-06-0556

N/A EPA 375.4

Client Sample Number			b Sample Number		Matrix	Date Collect		Date Analyzed	QC Batch ID
MC047		02-06	-0556-1	Aqueous		06/10/0	2 N/A	06/16/02	0616SO4MB1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	Rev Qual	Code	·	
Sulfate	150	10	5	Ō	mg/L				
Method Blank		099-0	5-091-1,086		Aqueous	N//	N/A	06/16/02	0616SO4MB1
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>				
Sulfate	ND	2.0	1		mg/L	*			

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MJ093
Matrix: water
No. of Samples: 1

Date Reviewed: November 27, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. The COC accounted for the sample in this SDG. Chloride, sulfate, carbonate, bicarbonate, and alkalinity analyses were not requested on the COC for the sample in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. Custody seals were not present on the cooler. Holding times were met, except for the seven day holding time for TDS.	The TDS result for MJ093 was qualified "J."
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. LCS/BS	The LCS recoveries were within the laboratory-established control limits, except for TDS, which was recovered at 123%.	The TDS result for MJ093 was qualified "J."
6. <u>Duplicates</u>	None performed.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: Gen. Min.

	Findings	Qualifications
7. MS/MSDs	None performed.	No qualifications were required.
10. Other	None	No qualifications were required.
11. Field QC Samples ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	TDS was reported in MJ056 at 914 mg/L.	TDS was qualified as estimated, "J," in MJ093.
Comments	None	None

Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result for God Units	Method Reporting Limit	Date Date Prep'd Analyzed
Perchlorate	ND U ug/L	1	10/07/02 10/07/02

ND = Not Detected

Pais	
Reported by:	Approved by:

ARIEO VALIDATED

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result for Gual	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Sulfate	131.2	mg/L	7.5	10/14/02	10/14/02

Reported by: _	B5		Approved by:	TS	
	AMEC	MALIDATED			

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ093

Date Sampled: 10/03/02

Date Sample Received: 10/04/02

Matrix: Water

Laboratory ID: 021006-01

Target Analyte	Result	Units few Q	Method Reporting Limit	Date Date Prep'd Analyzed
A Harlinia	283.5	mg/L	ode 2	10/11/02 10/11/02
Alkalinity Chloride	37.2	mg/L	1	10/17/02 10/17/02
Total Dissolved Solids	561	mg/L J H	, L, F 10	10/17/02 10/17/02

Reported by: _	%	Approved by:	17	
	A CONTRACTOR OF THE PARTY OF TH			

Local lancing No. Local India V

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	283 283 ND	mg/L ————————————————————————————————————	2 2 2 2	10/11/02 10/11/02 10/11/02	10/11/02 10/11/02 10/11/02

ND = Not Detected

Analysis Not Validated

Reported by:	Approved by:	M	·*- · · · · · · · · · · · · · · · · · ·
--------------	--------------	---	---

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

OC Level: V¹
SDG: MJ058
Matrix: water
No. of Samples: 3

Date Reviewed: November 12, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ058, MJ059, MJ060

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. The COC accounted for the samples in this SDG. Chloride, sulfate, alkalinity, bicarbonate, and carbonate analyses were not requested on the COC for the samples in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. Custody seals were not present on the cooler. Holding times were met.	No qualifications were required.
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. <u>LCS/BS</u>	All recoveries were within the control limits of 87-110% for perchlorate and 80-120% for the remaining analyses.	No qualifications were required.
6. <u>Duplicates</u>	None performed.	No qualifications were required.
7. MS/MSDs MJ047 – perchlorate only	None performed.	No qualifications were required.

	Findings	Qualifications
10. Other	None	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ059, MJ060 FB: MJ055 Field duplicates: none	Alkalinity, carbonate, and TDS were reported in the equipment rinsates.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

CEIMIC
Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ058

Date Sampled: 06/20/02

Laboratory ID: 020619-01

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual
Alkalinity . Bicarbonate Carbonate Total Dissolved Solids	257 257 ND 768.5	mg/L mg/L mg/L mg/L	2.0 2.0 2.0 10	06/29/02 06/29/02 06/29/02 06/25/02	06/29/02 06/29/02 06/29/02 06/26/02	U	

ND = Not Detected

	with the second		
	B Pontuli		V M
Reported by:	D. Ponule	Approved by:	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ058

Date Sampled: 06/20/02

Laboratory ID: 020619-01

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual
Chloride Sulfate	78.2 233	mg/L mg/L	1 5	07/02/02 07/06/02	07/02/02 07/06/02	•	

	1			-
Reported by:	<u>CW</u>	Approved by:	BP	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ059

Date Sampled: 06/19/02

Laboratory ID: 020619-02

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Rew Analyzed Qual
Alkalinity .	20	mg/L	2.0	06/29/02	06/29/02
Bicarbonate	20	mg/L	2.0	06/29/02	06/29/02
Carbonate	ND	mg/L	2.0	06/29/02	06/29/02 ∪ \
Total Dissolved Solids	21	mg/L	10	06/25/02	06/26/02

ND = Not Detected

, max		
Reported by: <u>B. Pa.W.U</u>	Approved by:	<u>EW</u>

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	M	lontgomery	Watson
---------	---	------------	--------

Client Sample ID: MJ059

Date Sampled: 06/19/02

Laboratory ID: 020619-02

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual
Chloride Sulfate	ND ND	mg/L mg/L	1 5	07/02/02 07/06/02	07/02/02 07/06/02		

ND = Not Detected

-	1		0 0
Reported by:	CW	Approved by:	<u> 158</u>

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client	Mon	tgomery	Watson
. ment.	MIOH	DECHIEF A	TTALDUM

Client Sample ID: MJ059

Date Sampled: 06/19/02

Date Sample Received: 06/21/02

Matrix: Water

Laboratory ID: 020619-02

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev 1 Qual	Qual Code
Perchlorate	ND ·	ug/L	1	06/27/02	06/27/02	<i>U</i>	i

ND = Not Detected

\sim Ω	15
Reported by:	Approved by:

AMEC VALIDATED

Inorganic Analytes Page 3

LEVEN V.

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ060

Date Sampled: 06/20/02

Laboratory ID: 020619-03

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date for Analyzed Qual	Qual Code
Alkalinity	20	mg/L	2.0	06/29/02	06/29/02	
Bicarbonate	20	mg/L	2.0	06/29/02	06/29/02	
Carbonate	ND	mg/L	2.0	06/29/02	06/29/02 U	
Total Dissolved Solids	14	mg/L	10	06/25/02	06/25/02	

ND = Not Detected

3. MUK	Approved by:	W

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery \	Watson
----------------------	--------

Client Sample ID: MJ060

Date Sampled: 06/20/02

Date Sample Received: 06/21/02

Matrix: Water

Laboratory ID: 020619-03

Target Analyte	Resu	lt Units	Method Reporting Limit	Date t Prep'd	Date Analyzed	Rw Qual	Qua
Chloride . Sulfate	NI NI	O	1 5	07/02/02 07/06/02			

ND = Not Detected

-1/		
Reported by:	Approved by:	Be

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson

Client Sample ID: MJ060

Date Sampled: 06/20/02

Laboratory ID: 020619-03

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	· Rev Qual	Qual Cods
Perchlorate	ND	ug/L	1	06/27/02	06/27/02	U_	

ND = Not Detected

\mathcal{M}	13
Reported by:	Approved by:

AMEC VILLENATED

Inorganic Analytes Page 4

,р 131

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MJ047

Matrix: Soil

No. of Samples: 10
Date Reviewed: July 18, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ047, MJ048, MJ049, MJ050, MJ052, MJ053, MJ054, MJ055, MJ056, MJ057

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. COC matches samples and accounts for analyses. Custody seals were not present on the cooler. Holding times were met.	No qualifications were required.
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. LCS/BS	All recoveries were within the control limits of 87-110% for perchlorate and 80-120% for chloride, sulfate, and alkalinity. Not applicable to total dissolved solids.	No qualifications were required.
6. <u>Duplicates</u>	Not performed.	No qualifications were required.
7. MS/MSDs MJ047 – perchlorate only	The RPD was less then 20% and the recoveries were within 75-125%.	No qualifications were required.
10. <u>Other</u>	None	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ056 FB: MJ055 Field duplicates: none	Total dissolved solids were reported in the equipment rinsate at 914 mg/L.	Total dissolved solids detected in the site samples were qualified as estimated, "J."
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

T702WC5 1 Revision 0

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte		Quol Result	Units	Method Reporting Limit	Date Date Prep'd Analyze	d
Chloride Sulfate	A CONTRACTOR OF THE PARTY OF TH	39.50 121.69	mg/L mg/L	5.0 5.0	06/19/99 06/19/9 06/19/99 06/19/9	

AMEC VALIDATED

	1	5		
Reported by:				

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-02

Target Analyte Ren Qual Ce	sal Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride	38.23	mg/L	5.0	06/19/99	06/19/99
Sulfate	120.79	mg/L	5.0	06/19/99	06/19/99

ANEC VALIDATED

Reported by: _

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Rev Qual	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate		Charles were controlled to the	40.27 189.57	mg/L mg/L	5.0 5.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

	Case	75	
Reported by: _		 U	

Approved by:	AL.
11 /	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	fer Qual	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate			47.86 135.43	mg/L mg/L	5.0 5.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

	15	
Reported by:	<u> </u>	

Approved by	y:	M	
		······································	

CEIMIC Corporation

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-06

Target Analyte	fer Rual	(Rua)	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate		- Option of the Company of the Compa	71.00 300.54	mg/L mg/L	10.00 10.00	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

Reported by:

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte	Per Qual Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Chloride Sulfate		76.44 556.22	mg/L mg/L	10.0 10.0	06/19/99 06/19/99	06/19/99 06/19/99	_

AMEC VALIDATED

	← ← ← 		
Reported by:	`\		

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-08

Target Analyte	Rev Qual Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride		44.72	mg/L	10.0	06/19/99	06/19/99
Sulfate		153.91	mg/L	10.0	06/19/99	06/19/99

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-09

Target Analyte	Rev Qual	Qual Cods	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate	4	nick General von der State	ND ND	mg/L mg/L	0.200 0.200	06/19/99 06/19/99	06/19/99 06/19/99

ND = Not Detected

_ inggeneration and a state of the control of the c

AMEC VALIDATED

Reported by:	Approved by:	M_
	* t	

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-10

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate	√		ND ND	mg/L mg/L	0.100 0.100	06/19/99 06/19/99	06/19/99 06/19/99

-ND = Not Detected.

and the second s

AWEC VALIDATED

Reported by:

Corporation"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ057

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-11

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate			76.82 221.20	mg/L mg/L	10.0 10.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-01

Target Analyte	lw Wal	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		254 254 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

	The Carlo	VAL			ŒŪ
--	-----------	-----	--	--	----

Reported by: B. R. Muk_ Approved by: _____

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-02

Target Analyte	fer Qual	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		285 285 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

ANEC VALIDATED

Reported by:	B. R. Mruk	Approved by:	n	
La Low VI Kill Low				

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Pur Qual Co	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity	U	301	mg/L	2.0	06/22/02	06/22/02
Bicarbonate		301	mg/L	2.0	06/22/02	06/22/02
Carbonate		ND	mg/L	2.0	06/22/02	06/22/02

ND = Not Detected

awec validated

Reported by: B. Pumul Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	ew Qual	Qual Result	Units	Method Reporting Limit	Date Date Prep'd Analyzed	l
Alkalinity Bicarbonate Carbonate	U	282 282 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/0 06/22/02 06/22/0 06/22/02 06/22/0	2

ND = Not Detected

AMEC VALIDATED

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Laboratory ID: 020581-06

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Reval	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		340 340 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AW		VA			A	TE	
----	--	----	--	--	---	----	--

Approved by: ____

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte	Pur	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		311 311 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

Reported by: B. R. MWK

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Laboratory ID: 020581-08

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	lw Qual	Qual Resul	t Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U	288 288 ND	mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

distribution of the second				
Reported by:	B. Panruk	Approved by:	N	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Ru	and Re	esult	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	J		ND ND ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

Kan Anna V Ban Am V

Reported by: B. RuMuk

Approved by: ____

Laboratory ID: 020581-09

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Laboratory ID: 020581-10

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Poul	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	V V	Code	ND ND ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AWEC VALIDATED

Reported by: B. Ru Mulc

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Wat	mery Watson
------------------------	-------------

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	; J	F	481	mg/L	10	06/18/02	06/19/02
		•					

Reported by: _______

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ048

Date Sampled: 06/10/02

Laboratory ID: 020581-02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	ew Qual	Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	; J	F	481	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

V Same Name V

Reported by: $\beta \rho$

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	Start of the Control		589	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

Reported by:	3P	Approved by:	<u>Il</u>
--------------	----	--------------	-----------

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ050

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-04

Target Analyte	Rw Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Total Dissolved Solids	J		561	mg/L	10	06/18/02	06/19/02	•

AMEC VALIDATED

•		
Reported by:BP	Approved by:	

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-06

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	U	ND	mg/L	10	06/18/02	06/19/02

ND = Not Detected

a elemente se de la companya de la c

ANEC VALIDATED

Reported by:	BP	Approved by:	IN
			V

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte Rev	(Od)	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids J	grandina grandina	1241	mg/L	01	06/18/02	06/19/02

AMEC VALIDATED

Reported by: 58	Approved by:	M

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-08

Target Analyte	Ru Quel	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	J	groups and the same of the sam	550	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

Maria David (Maria Maria) L	w o		, In	
Reported by:	BP	Approved by:		

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-09

Target Analyte	Rev Qual	Qual Res	sult	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	v	1	ND	mg/L	10	06/18/02	06/19/02

ND = Not Detected

AWEC VALIDATED

Reported by: \mathcal{S}_{ℓ}

Approved by: ____

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ056

Date Sampled: 06/13/02

Laboratory ID: 020581-10

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Total Dissolved Solids	-		914	mg/L	10	06/18/02	06/19/02	

AMEC VALIDATED

Reported by: Approved by:

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	and to profit you will the custodial authority published by	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by: ____

Approved by:

309

INORGANIC ANALYTES

Client	Montgomery	Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Laboratory ID: 020581-02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U		ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgome	ery Watson					
Client Sample ID:	MJ049					
Date Sampled: 06/	/10/02			Labora	ory ID: 020581	-03
Date Sample Rece	eived: 06/14/	702				
Matrix: Water						
Target Analyte	Rev Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02
ND = Not Detecte	d					TO SERVICE LANGUAGE POR SE
eren (j. 1865) General (j. 1866)	****	** ** <u></u> *	·	_		
	WA.	IDATED V				
Reported by:	P.	2	Ap	proved by:	19	·

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	and Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U		ND	ug/L	l	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgomery Watson	
Client Sample ID: MJ052	

Date Sampled: 06/11/02 Laboratory ID: 020581-06

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Perchlorate	Ų	ND	ug/L	1	06/27/02	06/27/02	

ND = Not Detected

	VA		i Ka	

R_	
Reported by:	Approved by:

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ053

Date Sampled: 06/11/02

Laboratory ID: 020581-07

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	l	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client Sample ID: MJ054

Date Sampled: 06/12/02

Laboratory ID: 020581-08

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rw Qual	aud Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

ANEC VALIDATED

Reported by: ____

Approved by: ____

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ055

Date Sampled: 06/13/02

Laboratory ID: 020581-09

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected.

AMEC VALIDATED

Approved by: _____

INORGANIC ANALYTES

Client: Mo	ntgomery	Watson
------------	----------	--------

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-10

Target Analyte	lew Oha	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	l	06/27/02	06/27/02

ND = Not Detected

AWEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ057

Date Sampled: 06/13/02

Laboratory ID: 020581-11

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rew Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02	

ND = Not Detected

AMEC VALIDATED

The second secon

Reported by:

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MC093

Matrix: water

No. of Samples: 1

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MC093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperature upon receipt at Centrum Analytical Laboratories was within the QC limits of 4°±2°C. All analyses were subcontracted to Calscience Environmental Laboratories.	No qualifications were required.
	The original COC accounted for the sample in this SDG. Chloride, sulfate, carbonate alkalinity, and bicarbonate alkalinity analyses were not requested on the COC. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses.	
	No transfer COC was included. The Calscience case narrative did not mention any sample receipt problems. No custody seal information was provided by either laboratory. Holding times were met.	
3. Method Blanks	Perchlorate, sulfate, and chloride were not detected in the method blanks. No alkalinity or TDS method blanks were analyzed.	No qualifications were required.

Project: Rocketdyne SDG: MC093 Analysis: Gen. Min.

	Findings	Qualifications			
5. <u>LCS/BS</u>	Recoveries for perchlorate, chloride and sulfate were within the laboratory-established control limits. No LCS was provided for TDS or alkalinity.	TDS, total alkalinity, bicarbonate alkalinity, and carbonate alkalinity were qualified as estimated, "J," for detects and "UJ," for nondetects.			
6. <u>Duplicates</u> MC047 – TDS only	Duplicate analyses were performed for TDS only. The RPD was less than 20%.	No qualifications were required.			
7. MS/MSDs None	None.	No qualifications were required.			
10. Other	Raw data was provided only for TDS.	No qualifications were required.			
11. <u>Field QC Samples</u> ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	TDS was reported in MJ056 at 914 mg/L.	TDS was estimated , "J," in MC093.			
Comments	None	None			

Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

aboratories, Inc.

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.	Date Sampled:	10/03/02
1401 Research Park Drive	Date Received:	10/04/02
Suite 100	Date Analyzed:	10/08/02
Riverside, CA 92507-2111		
	Work Order No.:	02-10-0288
Attn: Marilu Escher	Method:	EPA 314.0
RE: Boeing SSFL/21172	Page 1 of 1	

All concentrations are reported in ug/L (ppb).

Sample Number	Perchlorate Concentration	Reporting <u>Limit</u> Rw Qual Qual Code
MC093	ND	2.0 U
Method Blank	ND	2.0 X

Samelynia Not Validates

AMEG VALIDADA

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02

02-10-0288

Preparation:

N/A

Method:

SM 2320B

Project: Boeing SSFL/21172

Page 1 of 1

Client Sample Number MC093			Lab Sample Number		Matrix	Date Prepared	Date Analyzed 10/04/02	QC Batch ID 21004ALKD3
		02-10-0288-1		10/03/02	Aqueous	N/A		
Parameter Alkalinity, Total (as CaCO3)	Result 290	<u>RL</u> 5.0	<u>DF</u> 1	Qual	<u>Units</u> mg/L	Per Qual Co	ode	

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

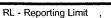
Work Order No:

10/04/02 02-10-0288

Preparation:

N/A

Method:


SM 2320B

Project: Boeing SSFL/21172

Page 1 of 1

Client Sample Number MC093			Lab Sample Number 02-10-0288-1		Matrix	Date Prepared	Date Analyzed 10/04/02	QC Batch ID 21004ALKD3
		02-1			Aqueous	N/A		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	hal Co	id	
Bicarbonate (as CaCO3)	290	5.0	1		mg/L	JL		

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02 02-10-0288

Preparation:

N/A

Method:

SM 2320B

Project: Boeing SSFL/21172

Page 1 of 1

Client Sample Number			Sample mber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093		02-1	0-0288-1	10/03/02	Aqueous	N/A	10/04/02	21004ALKD3
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>	Qual C	oal ode	
Carbonate	ND	1.0	1		mg/L	07 7		

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02 02-10-0288

Preparation:

N/A

Method:

EPA 300.0

Project: Boeing SSFL/21172

Page 1 of 1

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093			02-10-0288-1	10/03/02 A	queous	N/A	10/04/02	021004L01
Parameter (ha) (ha	Result	<u>RL</u>	DF Qual Units	Parameter (Va)	Code	Result	<u>RL</u>	DF Qual Units
Chloride	35	20	20 mg/L	Sulfate		130	20	20 mg/L
Method Blank			099-05-118-1,453	N/A A	queous	N/A	10/04/02	021004L01
Parameter ·	Result	RL	DF Qual Units	<u>Parameter</u>	A CONTRACTOR OF THE CONTRACTOR	Result	RL	DF Qual Units
Chloride X	ND	1.0	1 mg/L	Sulfate +		ND	1.0	1 mg/L

Analysis N**ot Valid**ased

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

General Chemistry

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: Analyst:

Water GF

21172

Date Sampled: Date Received: 10/03/02

10/04/02

Analysis:	Total Dissolved	Į
	Solids	
Method Number:	160.1 mg/L fer Wa	
Sample ID	myr Code	
MC093	610 J L F	
A CONTRACTOR OF SHARE OF AMERICA AND THE AND THE STATE OF	and the second s	
Reporting Limit:	10	
		acaiceacacacacacacacacac
Date Analyzed:	10/09/02 1601W0305	
QC Batch #:	100100000	

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V1

SDG: 8462
Matrix: Water
No. of Samples: 3
REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME058, ME059, ME060

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No sample receipt information was provided by the laboratory. Analyses were performed within the holding time of 180 days.	As the case narrative did not note that the samples were received damaged, no qualifications were required.
3. Method Blanks	One water method blank (2024-003) was analyzed with the samples in this SDG. There were no detects in the method blank. The method blank was not analyzed for cobalt-57, thallium-208, lead-210, lead-212, lead-214, bismuth-212, bismuth-214, thorium-234, or actinium-228.	As cobalt-57, thallium-208, lead-210, lead-212, lead-214, bismuth-212, bismuth-214, thorium-234, or actinium-228 were not reported in any of the site samples, no qualifications were required.

Project: Rocketdyne SDG: 8462 Analysis: RA

	Findings	Qualifications
4. LCS/BS	An aqueous LCS sample (2024-004) was analyzed with the samples in this SDG. The LCS was only fortified with gross alpha, gross beta, cesium-137, and radium-226. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 85-110% and were deemed reasonable by the reviewer.	No qualifications were required.
6. <u>Duplicates</u>	No duplicate analyses were performed in association with the samples in this SDG.	No qualifications were required.
7. Field QC Samples ER: ME059, ME060 FB: ME055 (SDG 8458) Field duplicates: none	There were no detects in any of the field QC samples.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	Potassium-40 was reported in site sample ME058. Potassium-40 occurs naturally in soil and water. This sample also had beta activity greater than the MDA, which is expected since potassium-40 decays by beta emission. Additionally, the beta activity reported in ME058 was approximately five times less than the California Primary Drinking Water Standard.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Jan-U6-03 11:46am From-MWH AMERICAS INC

JAN-06-2003 10:14

EBERLINE SERVICES

T-311 P.03/05 F-366 15102350438 P.02/04

Eberline Services

ANALYSIS RESULTS

SPG <u>8462</u>
Work Order <u>R206078-01</u>
Received Date <u>06/21/02</u>

Client MWH PASADENA Contract JDB #1890607.0114

Matrix WATER

Client	Lab			٠.					
Sample ID	Sample	D Coile	cted Analy			1			
			CTED WINTY	ed Nuclide	Res	UL5 2	20 Units	MDA	
ME058	8462-00	1 06/1	8/02 07/26/	OZ Grosskip		- 1			- G
			07/24)	OS GLOBSVID		5 ± 2.3	-	3.96	
			07/19/			3 = 1.7		2,46	
				02 K40 (9 02 Co57 (6		± 110	J	71.3	
			07/19/	02 Coán (G	_	J	pci/L	4.68	
			07/19/	02 CS134 (G)		i	pci/L	7.22	
			07/19/	D2 CE 137 (G)		1	PC1/L	7.21	
			07/19/0		_	f	PCi/L	7,01	
)2 Pb210 (G)	u	ł	pci/L	11.0	
			07/19/0	12 Bi212 (G)		- 1	PC1/L	1330	
			07/19/0				pci/L	52.3	
			07/10/0		_		pci/L	12.6	
				2 Pb214 (G)	_	ŀ	bc(/r	13.7	
			07/19/0		Ü		PC1/L	12.6	
				2 Ac228 (6)	u	- 1	pcill	98.7	
			07/19/02	Ca) AESAT S	IJ	1	pci/L	31.5	
			07/19/02	DS22 (C)	U		pCi/L	192	
-050				-1005	n		PC1/L	37.5	1
059	8462-002	06/19/	02 07/26/02	GrossAlpha	-0.288 ;	0 70			
			07/24/02	Gross Beta	-0-028	1 1	pC 1/L	0.797	L
			07/24/02		4-020 s	11-1	pci/L	1.87	
			07/24/02		Ü	1	pci/L	148	
		• *	07/24/02		U	1	pC1/L	5.34	
		,	07/24/02		Ü	1	pCi/L	7.96	ĺ
				Cs137 (G)	Ü	1	pCi/L	8.42	
		•	07/24/02	TL208 (G)	IJ		pci/L	7.19	
		•	07/24/02	Pb210 (G)	U	1	DC I/L	7.57	
		•	07/24/02	Bi212 (G)	n		pci/L	1420	
		<i>i.</i>	07/34/02	Pb212 (G)	Ü		pci/L	53.9	
			07/24/02	B1214 (G)	Ü		þCi∕L	10.3	
•			07/24/02	Ph214 (G)	u		pCi/L	14.3	
			07/24/02	Ra226 (G)	u		pCi/L	13.3	
			07/24/02	Ac228 (G)	ű		pCi/L	118	and (seemones)
		ı	07/24/02	Th234 (G)	u		pCi/L	33.0	
			07/24/02	U235 (G)	U		pci/L	235	
,0		1		·i*	"		pci/L	45.7	V
-	8462-003	06/20/02	07/24/02	GrossAlpha	0.208 ±	1 52	- 6 -44		
			07/24/02		-0.722 ± 1	135	pCi/L	0.851	\circ

AMEC VALIDATED

Corrified by 20 Confidence of 106/03
Page 1

ANALYSIS RESULTS

SDG <u>8462</u> Work Order <u>R206078-01</u> Received Date 06/21/02

CLICAT MUH PASADENA Contract JOB #1890607.0114

Matrix <u>WATER</u>

	1 '1			1				
Client	Lab		i i					
Sample ID	Sample ID Collected	Analyzed	Nuclide	Results ± 20	Unite	MDA	Rev Qual	(Ode
WE000		07/19/02		U	pCI/L	146	U	
		07/19/02		u	pCi/L	5.50		
		07/19/02		u	pCi/L	8.87		
			Cs134 (8)	U	pci/L	9.71		
			Ca137 (G)	U	pCi/L	8.39		
			T1208 (G)	U	pCi/L	15.3		
			Pb210 (0)	U	pCi/L	570		
			B1212 (G)	U	pCi/L	69.9		
			Pb212 (6)	u	pCi/L	11.6		
			B(214 (G)	U	pci/L	16.1		
			Pb214 (G)	u	pci/L	15.4		
			Ra226 (G)	U	pci/L	115		
			Ac228 (G)	u	PC1/L	37.4		
	•		Th234 (G)	U	pCi/L	181		
		11/ 13/DC	U235 (B)	ប	pCi/L	44.8	V	

AMEC VALIDATED

certified by_

Report Date 01/06/03 Page 2

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V1

SDG: 20380

Matrix: Water

No. of Samples: 1

REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: MS047

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. The laboratory provided no temperature information. No custody seals were present on the coolers. Analyses were performed within the holding time of 180 days.	Due to the nonvolatile nature of the analytes and as the sample was noted to be received undamaged, no qualifications were required.
3. Method Blanks	Three water method blanks, one for gross alpha (E299D1AC), one for gross beta (E299K1AA), and one for cesium-134 and cesium-137 (E299Q1AA) were analyzed with the sample in this SDG. There were no detects in the method blanks above the applicable MDAs.	No qualifications were required.

Project: Rocketdyne SDG: 20380 Analysis: RA

	Findings	Qualifications
4. <u>LCS/BS</u>	Three aqueous LCS samples, one for gross alpha (E299D1AC), one for gross beta (E299K1AC), and one for cesium-134 and cesium-137 (E299Q1AC) were analyzed with the sample in this SDG. The recoveries were within the laboratory-established control limits of 70-130%.	No qualifications were required.
6. <u>Duplicates</u> MS047	The duplicate analyses were performed on sample MS047 for gross alpha only. Gross alpha was nondetected in the original result and detected above the MDA in the duplicate result.; however, the results were within ±2σ.	No qualifications were required.
7. Field QC Samples ER: ME056 (SDG 8458) FB: ME055 (SDG 8458) Field duplicates: none	There were no detects in ME055 or ME056.	No qualifications were required
8. Other	None.	No qualifications were required.
Comments	None.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

FORM I

Date: 26-Jun-02

SAMPLE RESULTS

6/10/2002 10:48:00 AM 6/14/2002 11:00:00 AM Collection Date: Received Date: 20380 19857 Report No.: SDG: STL Richland J2F180183-1 Lot-Sample No.: Lab Name:

Matrix: COC No.:

Client Sample ID: MS047

Ordered by Client Sample ID, Batch No.

WATER

										כוחמומו	י ווסויט לע ג	Oldered by Ciletit Satispie ID, Datcil No.
Parameter	Result	Qual	Count Result Qual Error (2.5)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Analy Method, Primary Detector
Batch: 2170274	Work Orc	ler: E27	3C1AA 🔌 🗟 🗟	Work Order: E273C1AA 💆 충분증 Report DB ID: 9E273C10	9E273C10							
ALPHA	1.76 U	⊃	1.2 0	1.2		pCi/L	100.00%	0.94	6/21/02 01:52 p		0.098	RICHRC5014
						0.786	1.0	(2.8)			ų	GPC10A
Batch: 2170276	Work Order: E273C1AC	ler: E27	3C1AC	Report DB ID: 9E27	9E273C10	-	-					
BETA	6.82		2.0	2.2	3.29	pCi/L	100.00%	(2.1)	6/21/02 01:42 p		0.1983	RICHRC5014
			Carlotte Million Marie Carlotte			1.56	4.0	(6.3)			_	GPC26A
Batch: 2170282	Work Order: E273C1AD	ler: E27.	3C1AD	Report DB ID: 9E273C10	9E273C10	With court of the Administrance and the Admi						
CS-134	3.93	⊃	9.1	9.1	17.5	pCi/L		0.22	6/22/02 05:39 a		9.0	RICHRC5017
								0.87			_	GER1\$1
CS-137	2.12	⊃	7.8	7.8	14.6	pCi/L		0.14	6/22/02 05:39 a		9.0	RICHRC5017
			-in-				20.0	0.54			_	GER1\$1

Number of Results:

Comments:

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Qual - Analyzed for, but the result is less than the Mdc/Mda|Total Uncert or gamma scan software did not identify the nuclide.

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 900.0M and 901.1

QC Level: V¹
SDG: 8458
Matrix: Water
No. of Samples: 9

REs/DLs: 0

Date Reviewed: February 11, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME047, ME048, ME049, ME050, ME052, ME053, ME054, ME055, ME056

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No sample receipt information was provided by the laboratory. Analyses were performed within the holding time of 180 days.	As the case narrative did not note that the samples were received damaged, no qualifications were required.
3. Method Blanks	One water method blank (8458-011) was analyzed with the samples in this SDG. There were no detects in the method blank. The method blank was not analyzed for lead-210.	As lead-210 was not reported in any of the site samples, no qualifications were required.
4. LCS/BS	An aqueous LCS sample (8458-010) was analyzed with the samples in this SDG. The LCS was only fortified with gross alpha, gross beta, cobalt-60, and cesium-137. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 90-110%.	No qualifications were required.

Project: Rocketdyne SDG: 8458 Analysis: RA

	Findings	Qualifications
6. <u>Duplicates</u> ME049	The duplicate analyses were performed on sample ME049 in association with the samples in this SDG. All RPDs were within the laboratory-established control limit of $\pm 3\sigma$.	No qualifications were required.
7. Field QC Samples ER: ME056 FB: ME055 Field duplicates: none	There were no detects in ME055 or ME056.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	None.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

ANALYSIS RESULTS

SDG	8458	Client	MWH PASADENA
Work Order	R206045-01	Contract	
Received Date	06/14/02	Matrix	WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	Umita	MDA	lev ,	190
		- Served Midty Zed	Nactifue	Results ± 20	<u>Units</u>	MDA	- Qual	(00
ME047	8458-001	06/10/02 07/23/02	GrossAlpha	0.209 ± 1.1	pCi/L	1.96	U	
		07/23/02		3.29 ± 1.4	pCi/L	1.94		
		07/31/02		U	pCi/L	220	U	
		07/31/02	Co 57 (G)	U	pCi/L	9.70	,	
		07/31/02	Co 60 (G)	U	pCi/L	16.7		
		07/31/02	Cs 134 (G)	U	pCi/L	16.5	İ	
		07/31/02	Cs 137 (G)	U	pCi/L	13.9		
		07/31/02	Tl 208 (G)	U	pCi/L	15.7		
		07/31/02	Pb 210 (G)	U	pCi/L	969		
		07/31/02	Bi 212 (G)	U	pCi/L	106		
		07/31/02	Pb 212 (G)	U	pCi/L	20.3		
		07/31/02	Bi 214 (G)	U	pCi/L	26.7		
		07/31/02	Pb 214 (G)	U	pCi/L	27.7		
		07/31/02	Ra 226 (G)	U .	pCi/L	200		
		07/31/02	Ac 228 (G)	U	pCi/L	67.6		
		07/31/02	Th 234 (G)	Ü	pCi/L	315		
		07/31/02	U 235 (G)	U	pCi/L	74.4	\downarrow	
ME048	8458-002	06/10/02 07/23/02	GrossAlpha	1.17 ± 1.6	pCi/L	2.25	U	
		07/23/02	Gross Beta	4.10 ± 1.5	pCi/L	2.06		
		07/31/02	K 40 (G)	U	pCi/L	92.7	υl	-
		07/31/02	Co 57 (G)	U	pCi/L	3.28		
		07/31/02	Co 60 (G)	U	pCi/L	10.7		
		07/31/02	Cs 134 (G)	U	pCi/L	9.88		
		07/31/02	Cs 137 (G)	U	pCi/L	8.10		
		07/31/02	Tl 208 (G)	U ·	pCi/L	8.16		
		07/31/02	Pb 210 (G)	U	pCi/L	142		
		07/31/02	Bi 212 (G)	U	pCi/L	63.8		
		07/31/02	Pb 212 (G)	U	pCi/L	9.10		
			Bi 214 (G)	U	pCi/L	15.4		
			Pb 214 (G)	Ü	pCi/L	13.1		
			Ra 226 (G)	U	pCi/L	89.8		
			Ac 228 (G)	U	pCi/L	34.7		
			Th 234 (G)	U	pCi/L	112		
		07/31/02	U 235 (G)	U	pCi/L	26.1	↓	
ME049	0/50 007	04 440 400 07 407 400						
MEO49	8458-003	06/10/02 07/23/02	GrossAlpha Gross Beta	0.023 ± 1.7	pCi/L	3.05	U	

AMEC VALIDATED

Certified by A Jacob Report Date 08/08/02
Page 1

ANALYSIS RESULTS

SDG 8458 Client MWH PASADENA Work Order R206045-01 Contract				
Pageinal Day 04/44/02	SDG 8	3458	Client	MWH PASADENA
Page 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Work Order R	206045-01	Contract	
Matrix WATER	Received Date 0	06/14/02	Matrix	WATER

Client	Lab						fw	Qua
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Qual	Code
MEO49		07/19/02	K /0					
		07/18/02		U	pCi/L	195	Ų	
		07/18/02		U	pCi/L	7.98		Ì
		07/18/02		U	pCi/L	13.5		
			Cs 134 (G)	U	pCi/L	14.7		
			Cs 137 (G)	U	pCi/L	11.0		
		07/18/02	Tl 208 (G)	U	pCi/L	12.2		
			Pb 210 (G)	U	pCi/L	807	1	1
			Bi 212 (G)	U	pCi/L	93.5		
			Pb 212 (G)	U	pCi/L	16.8		
			Bi 214 (G)	U	pCi/L	22.9		
			Pb 214 (G)	U	pCi/L	22.5		
			Ra 226 (G)	U	pCi/L	168		
			Ac 228 (G)	U	pCi/L	54.8		
			Th 234 (G)	U	pCi/L	257		
		07/18/02	U 235 (G)	U	pCi/L	61.5	Ψ	
ME050	8458-004	06/11/02 07/23/02	GrossAlpha	1.47 ± 1.5	pCi/L	1.93	U	
		07/23/02	Gross Beta	3.66 ± 1.4	pCi/L	1.93		
		07/18/02		U	pCi/L	261	U	
		07/18/02	Co 57 (G)	U	pCi/L	10.2	1	
		07/18/02	Co 60 (G)	U	pCi/L	17.4		
		07/18/02	Cs 134 (G)	U	pCi/L	16.8		
		07/18/02	Cs 137 (G)	U	pCi/L	15.0		
		07/18/02	Tl 208 (G)	U	pCi/L	16.9		
		07/18/02	Pb 210 (G)	U	pCi/L	1020		
		07/18/02	Bi 212 (G)	U	pCi/L	114	1	
		07/18/02	Pb 212 (G)	U	pCi/L	20.6		
		07/18/02	Bi 214 (G)	U	pCi/L	30.2		
		07/18/02	Pb 214 (G)	U	pCi/L	30.0		
		07/18/02	Ra 226 (G)	U	pCi/L	209		
		07/18/02	Ac 228 (G)	U	pCi/L	73.1		
		07/18/02	Th 234 (G)	U	pCi/L	324		
			U 235 (G)	U	pCi/L	81.6	\downarrow	
ME052	8458-005	06/11/02 07/23/02	GrossAlpha	0.788 ± 1.2	pCi/L	1.70	U	
			Gross Beta	0.915 ± 1.2	pCi/L	2.00	U	

AMEC VALIDATED

Certified by April Report Date 08/08/02
Page 2

ANALYSIS RESULTS

SDG	8458	Client	MWH PASADENA
Work Order	R206045-01	Contract	
Received Date	06/14/02	Matrix	WATER

Comple ID								KW.	1 (20.14
Sample ID	Sample ID	Collected	Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Qual	Code
ME 05 2.			07/74/00	14 (0)					
			07/31/02		U	.pCi/L	140	Ų	
				Co 57 (G)	U	pCi/L	10.4		
			07/31/02		U	pCi/L	11.3		
			07/31/02	• •	U	pCi/L	14.3		
				Cs 137 (G)	U	pCi/L	11.3		
				Tl 208 (G)	U	pCi/L	14.0		
				Pb 210 (G)	U	pCi/L	4150		Ì
				Bi 212 (G)	U	pCi/L	92.6]
				Pb 212 (G)	U	pCi/L	23.9		
				Bi 214 (G)	U	pCi/L	27.4		
				Pb 214 (G)	U	pCi/L	28.0		
				Ra 226 (G)	U	pCi/L	309		
		1	07/31/02	Ac 228 (G)	U	pCi/L	52.1	į	
				Th 234 (G)	U	pCi/L	509	Ì	1
		I	07/31/02	U 235 (G)	U	pCi/L	84.5	\downarrow	
ME053	8458-006	06/11/02	07/23/02	GrossAlpha	-0.555 ± 1.2	pCi/L	2.51	U	
		1	07/23/02	Gross Beta	-0.143 ± 1.6	pCi/L	2.78	U	
		1	07/30/02	K 40 (G)	U	pCi/L	148	U	
		1	07/30/02	Co 57 (G)	U	pCi/L	10.8		
			07/30/02	Co 60 (G)	U	pCi/L	12.8		
		1	07/30/02	Cs 134 (G)	U	pCi/L	14.6		
		ı	07/30/02	Cs 137 (G)	U	pCi/L	12.5		
		1	07/30/02	Tl 208 (G)	U	pCi/L	14.0		
		i	07/30/02	Pb 210 (G)	U	pCi/L	6480		
		1	07/30/02	Bi 212 (G)	U	pCi/L	87.7		
		1	07/30/02	Pb 212 (G)	U	pCi/L	23.5		
		1	07/30/02	Bi 214 (G)	U	pCi/L	36.0		
		ı	07/30/02	Pb 214 (G)	U	pCi/L	27.6		
			07/30/02	Ra 226 (G)	U ·	pCi/L	219		
			07/30/02	Ac 228 (G)	U	pCi/L	50.4		
			07/30/02	Th 234 (G)	U	pCi/L	522		
				U 235 (G)	U	pCi/L	79.6	↓	
ME054	8458-007	06/12/02	07/23/02	GrossAlpha	1.78 ± 2.0	pCi/L	2.69	U	
				Gross Beta	3.30 ± 1.4	pCi/L	2.09		1

AMEC VALIDATED

Certified by Mylacciell Report Date 08/08/02 Page 3

ANALYSIS RESULTS

SDG <u>8458</u>	Client MWH PASADENA
Work Order <u>R206045-01</u>	Contract
Received Date 06/14/02	Matrix <u>WATER</u>

Client	Lab						Per	, Qu
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Qual	<i>©</i>
ME054								
		07/31/02		U	pCi/L	295	Ų	
		07/31/02		U	pCi/L	8.74	ļ	1
		07/31/02		U	pCi/L	12.7		
			Cs 134 (G)	U	pCi/L	15.1	ļ	1
			Cs 137 (G)	U	pCi/L	11.9	ĺ	
			Tl 208 (G)	U	pCi/L	11.8		
			Pb 210 (G)	U	pCi/L	2130		
			Bi 212 (G)	U	pCi/L	95.2	-	1
			Pb 212 (G)	U	pCi/L	15.8	.	
			Bi 214 (G)	U	pCi/L	23.2	İ	
			Pb 214 (G)	U	pCi/L	22.8	{	
			Ra 226 (G)	U	pCi/L	178	ŀ	
			Ac 228 (G)	U	pCi/L	55.5	İ	
			Th 234 (G)	U	pCi/L	363		İ
		07/31/02	U 235 (G)	U	pCi/L	68.2	V	
ME055	8458-008	06/13/02 07/23/02	GrossAlpha	-0.119 ± 0.42	pCi/L	0.866	U	
		07/23/02	Gross Beta	-0.261 ± 1.3	pCi/L	2.27	Ū	
		07/30/02	K 40 (G)	U	pCi/L	95.8	Ū	
		07/30/02	Co 57 (G)	υ	pCi/L	7.06	Ĭ	
		07/30/02		U	pCi/L	7.80		
		07/30/02	Cs 134 (G)	U	pCi/L	9.38		ĺ
		07/30/02	Cs 137 (G)	U	pCi/L	8.48		
		07/30/02	Tl 208 (G)	U	pCi/L	9.27		
		07/30/02	Pb 210 (G)	υ	pCi/L	3390		
		07/30/02	Bi 212 (G)	U	pCi/L	101		
		07/30/02	Pb 212 (G)	U	pCi/L	16.3		
		07/30/02	Bi 214 (G)	U	pCi/L	17.9		
		07/30/02	Pb 214 (G)	U	pCi/L	19.0		
		07/30/02	Ra 226 (G)	U	pCi/L	148		
		07/30/02	Ac 228 (G)	U	pCi/L	33.9		
		07/30/02	Th 234 (G)	U	pCi/L	347		
		07/30/02	U 235 (G)	U	pCi/L	55.2	\checkmark	
ME056	8458-009	06/13/02 07/23/02	GrossAlpha	-0.028 ± 0.38	pCi/L	0.772	U	
			Gross Beta	-0.162 ± 1.1	pCi/L	1.92	Ü	
		,,		J. 102 2 1.1	P01/L	1.74		1

AMEC VALIDATED

L.V.

Certified by Manuelle Report Date 08/08/02
Page 4

ANALYSIS RESULTS

SDG <u>8458</u>	<u>B</u> Client 1	MWH PASADENA
Work Order R206	<u>5045-01</u> Contract	
Received Date <u>06/1</u>	<u>14/02</u> Matrix <u>l</u>	WATER
L		

Client	Lab						Rev	<u>م</u> 1
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	<u>Units</u>	MDA	Qual	Code
ME0S6								
		07/31/02	K 40 (G)	U	pCi/L	318	· U	
		07/31/02	Co 57 (G)	U	pCi/L	6.81	1	
		07/31/02	Co 60 (G)	U	pCi/L	14.6		
		07/31/02	Cs 134 (G)	U	pCi/L	15.4		
		07/31/02	Cs 137 (G)	U	pCi/L	12.7		
		07/31/02	Tl 208 (G)	U	pCi/L	11.5		
		07/31/02	Pb 210 (G)	U	pCi/L	504		
		07/31/02	Bi 212 (G)	U	pCi/L	86.8		
		07/31/02	Pb 212 (G)	U	pCi/L	15.0		
		07/31/02	Bi 214 (G)	U	pCi/L	24.8		
		07/31/02	Pb 214 (G)	U	pCi/L	22.6		1
		07/31/02	Ra 226 (G)	U	pCi/L	154		
		07/31/02	Ac 228 (G)	U	pCi/L	54.0		1
		07/31/02	Th 234 (G)	U	pCi/L	175		
		07/31/02	U 235 (G)	U	pCi/L	51.8	↓	
								1

AMEC VALIDATED

7

Certified by Dececific Report Date 08/08/02

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V¹
SDG: 8494
Matrix: Water
No. of Samples: 1
REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No temperature information was provided by the laboratory. The sample was received intact. No custody seals were present on the cooler. Analyses were performed within the holding time of 180 days.	Due to the nonvolatile nature of the analytes and as the sample was received undamaged, no qualifications were required.
3. Method Blanks	One water method blank (7720-003) was analyzed with the sample in this SDG. There were no detects in the method blank. The method blank was only analyzed for gross alpha and gross beta (see comment section).	All remaining analytes except bismuth-214 and lead-214 were nondetected in ME093. As the possibility of bismuth-214 and lead-214 blank contamination could not be evaluated, bismuth-214 and lead-214 detected in ME093 were qualified as estimated, "J.".

Project: Rocketdyne SDG: 8494 Analysis: RA

	Findings	Qualifications
4. LCS/BS	An aqueous LCS sample (7720-003) was analyzed with the sample in this SDG. The LCS was only fortified with gross alpha, gross beta, cobalt-60, cesium-137, and uranium-235. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 85-110% and were deemed acceptable.	No qualifications were required.
6. <u>Duplicates</u>	No duplicate analyses were performed in association with the sample in this SDG.	No qualifications were required.
7. Field QC Samples ER: none FB: none Field duplicates: none	There were no field QC samples associated with ME093.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	Sample ME093 had detects for lead-214 and bismuth-214. These two isotopes are short-lived daughter products of naturally-occurring uranium-238. Other precursors in this decay chain are radon-222 and radium-226. Uranium-238 and radium-226 were analyzed for but were not detected at large MDAs. These MDAs were probably large enough to support the detection of lead-214 and bismuth-214. Of these detects, only beta activity is regulated by the National Primary Drinking Water Standards and the California Primary Drinking Water Standards.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

ANALYSIS RESULTS

SDG 8494

Work Order R210047-01

Received Date 10/09/02

Client <u>MWH PASADENA</u>

Contract <u>1890607.0114</u>

Matrix <u>WATER</u>

Client Sample ID	Lab Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Rev Qual	Qual
ME093	8494-001	10/03/02 10/23/02	GrossAlpha	0.390 ± 2.5	pCi/L	4.46	U	
		10/23/02	Gross Beta	5.51 ± 4.3	pCi/L	6.92	1	
		10/15/02	K40	U	pCi/L	253	1	
		10/15/02	Co57	υ	pCi/L	5.21		
		10/15/02	Co60	U	pCi/L	7.89		
		10/15/02	Cs134	U	pCi/L	9.26		
		10/15/02	Cs137	U	pCi/L	8.16		
		10/15/02	T1208	υ	pCi/L	14.2	ļ	
		10/15/02	Pb210	U .	pCi/L	1790		
		10/15/02	Bi212	U	pCi/L	61.0		
		10/15/02	Pb212	U	pCi/L	11.2	\downarrow	
		10/15/02	Bi214	17.8 ± 16	pCi/L	16.6	J	* 3
		10/15/02	Pb214	29.5 ± 16	pCi/L	18.4	J	× 3
		10/15/02	Ra226	υ	pCi/L	122	U	
		10/15/02	Ac228	U	pCi/L	36.4	1	
		10/15/02	Th234	U	pCi/L	246		
		10/15/02	U235	U	pCi/L	48.4	\downarrow	-

AMEC VALIDATED

V.

Certified by_

Report Date 10/31/02

Page 1

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹

SDG: MC047 Matrix: Water

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

<u>Date Reviewed</u>: 01/08/03 <u>Reviewer</u>: S. Boehnke

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC047

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed by both field and laboratory personnel. Sample receipt information was recorded on the COC. The VOC sample vials were received intact. Custody seals were present and intact on the cooler. The cooler temperature was recorded as 12°C, outside the temperature limits of 4 ± 2°C. The analysis of the sample was performed within 14 days of sample collection.	All nondetect sample results were qualified as estimated, "UJ."
4. Method Blanks	One method blank was analyzed with this SDG. No target compounds were detected in the method blank.	No qualifications were required.
5. LCS/BS	One LCS/LCSD pair was analyzed with this SDG. Spike compounds were recovered within the QC limits.	No qualifications were required.
6. Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.

Project: Rocketdyne SDG: MC047 Analysis: VOA

	Findings	Qualifications
8. Field QC Samples ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at 2µg/L, each. Chloroform was not reported in the site sample in this SDG.	No qualifications were required.
9. Other	TICs were not provided with the sample in this SDG.	No qualifications were required.
Comments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.:

20674

Matrix:

Water

Analyst:

JTS/CP

Date Sampled:

06/10-12/02

Date Received:

06/14/02

Date Analyzed:

06/17/02

Batch Number:

M48260W749

	Sample ID:	Blank	MC047	rci	qua
Compounds	RL	μg/L	μg/L	qual	code
cis-1,3-Dichloropropene	0.5	ND	ND	US	*1
trans-1,3-Dichloropropene	0.5	ND	ND		
Diisopropyl Ether (DIPE)	5.0	ND	ND		
Ethylbenzene	0.5	ND	ND		
Ethyl tert-Butyl Ether (EtBE)	5.0	ND	ND		
Hexachlorobutadiene	0.5	ND	ND		
2-Hexanone	10	ND	ND		
Isopropylbenzene	0.5	ND	ND		
p-Isopropyltoluene	0.5	ND	ND		
Methylene chloride	50	ND	ND		
4-Methyl-2-pentanone	5.0	ND	ND		
Methyl-tert-butyl ether (MtBE) 1.0	ND	ND		
Naphthalene	0.5	ND	ND		
n-Propylbenzene	0.5	ND	ND		
Styrene	0.5	ND	ND		
1,1,1,2-Tetrachloroethane	0.5	ND	ND		
1,1,2,2-Tetrachloroethane	1.0	ND	ND		
Tetrachloroethene	0.5	ND	ND		
Toluene	0.5	ND	ND		
1,2,3-Trichlombenzene	0.5	ND	ND		
1,2,4-Trichlorobenzene	0.5	ND	ND	The state of the s	
1,1,1-Trichloroethane	0.5	ND	ND		
1,1,2-Trichloroethane	0.5	ND	ND		
Trichloroethene	0.5	ND	ND		
1,2,3-Trichloropropane	0.5	ND	ND		
Trichlorofluoromethane	0.5	ND	ND		
Trichlorotrifluoroethane	5.0	ND	ND		
1,2,4-Trimethylbenzene	0.5	ND	ND		
1,3,5-Trimethylbenzene	0.5	ND	ND		
Vinyl chloride	0.5	ND	ND		
Xylenes, m-,p-	1.0	ND	ND		
Xylene, o-	0.5	ND	ND		

Surrogates (% recovery) Limits: 70 - 130

Sample ID:	Blank	MC047
Dibromotluoromethane	101	99
Toluene-d8	98	99
Bromofluorobenzene	101	102

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: 20674 Water

Analyst:

JTS/CP

Date Sampled:

06/10-12/02

Date Received:

06/14/02 06/17/02

Date Analyzed: Batch Number:

M48260W749

	Sample ID:	Blank	MC047	rev	, 5	Pera	7_		 		
Compounds	RL	μg/L	μg/L	qual	0	Cod	No.				
Acetone	50	ND	ND	US	*	1					
tert-Amyl Methyl Ether (T	AME) 5.0	ND	ND			*					
Benzene	0.5	ND	ND								
Bromobenzene	1.0	ND	ND			! ::::::::					
Bromochloromethane	1.0	ND	ND								
Bromodichloromethane	0.5	ND	ND								
Bromoform	0.5	ND	ND					 	 	 	

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ND

ND

ND

ND

ND

ND

ND

ND

ND

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

trans-1,2-Dichloroethene 1,2-Dichloropropane

ND

ND

ND

ND

ND

ND

ND

ND

ND

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹
SDG: MJ093
Matrix: Water

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Date Reviewed: 11/26/02

Reviewer: M. Pokorny
Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MJ093

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The COC was signed by both field and laboratory personnel. No sample receipt information was recorded on the COC.	No qualifications were required.
		A laboratory sample receipt checklist noted that the VOC sample vials were received intact. There were no custody seals on the coolers. The cooler temperatures were recorded as 2°C, within the temperature limits of 4 ± 2°C.	
		The analysis of the sample was performed within 14 days of sample collection.	
4.	Method Blanks	One method blank (VBLKLG) was analyzed with this SDG. Acetone was reported in VBLKLG, at 2µg/L.	Acetone was not reported in the sample of this SDG; therefore, no qualifications were required.
5.	LCS/BS	One LCS (VLCSLG) was analyzed with this SDG. All spiked compounds were recovered within the QC limits.	No qualifications were required.
6.	Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7.	MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: VOA

	Findings	Qualifications
8. Field QC Sample ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at 2μg/L, each. Chloroform was not reported in any of the site samples in this SDG.	No qualifications were required.
9. Other	Sample MJ093 was analyzed for a list of 41 target compounds. TICs were not provided with the sample in this SDG. Compounds reported below the reporting limits were qualified as estimated, "J," by the laboratory.	No qualifications were required.
Comments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

MW SAMPLE NO.

MJ093 SDG No.: MJ093 Lab Sample ID: 021006-01

Lab Code: CEIMIC Case No.: ROCKET SAS No.:

Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: LL302

Level: (low/med) LOW

Date Received: 10/04/02

Contract: MW

% Moisture: not dec.

Lab Name: CEIMIC CORP

- Date Analyzed: 10/10/02

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND (ug/L or ug/Kg) I	ITS: UG/L	Q	REV	QUA COD
75-71-8	56550555555555555555555555555555555555	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט		

VOLATILE ORGANICS ANALYSIS DATA SHEET MJ093 Lab Name: CEIMIC CORP Contract: MW Lab Code: CEIMIC Case No.: ROCKET SAS No.: SDG No.: MJ093 Matrix: (soil/water) WATER Lab Sample ID: 021006-01 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: LL302 Level: (low/med) LOW Date Received: 10/04/02 % Moisture: not dec. Date Analyzed: 10/10/02 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: REV QUAL CAS NO. COMPOUND (ug/L or ug/Kg) UG/L QUAL CODE U 5 U 75-25-2-----Bromoform 79-34-5----1,1,2,2-Tetrachloroethane 108-67-8-----1,3,5-Trimethylbenzene

FORM 1

95-63-6----1,2,4-Trimethylbenzene 541-73-1----1,3-Dichlorobenzene 106-46-7----1, 4-Dichlorobenzene 95-50-1----1,2-Dichlorobenzene

96-12-8----1, 2-Dibromo-3-Chloropropane

FORM I VOA

MW SAMPLE NO.

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹
SDG: MJ058

Matrix: Water

No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Date Reviewed: 11/26/02

Reviewer: M. Pokorny

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MJ059, MJ060

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The COC was signed by both field and laboratory personnel. No sample receipt information was recorded on the COC.	No qualifications were required.
		A laboratory sample receipt checklist noted that the VOC sample vials were received intact. There were no custody seals on the coolers. The cooler temperatures were recorded as 5°C, within the temperature limits of 4 ± 2°C. The analyses of the samples were performed within 14 days of sample collection.	
4.	Method Blanks	Two method blanks (VBLKP2 and VBLKQE) were analyzed with this SDG. Acetone and methylene chloride were reported in VBLKP2, at 31µg/L and 16µg/L, respectively. No target compounds were reported in VBLKQE.	The reporting limits for acetone and methylene chloride were raised to the levels of contamination and the results qualified as estimated nondetects, "UJ," in samples MJ059 and MJ060.
5.	LCS/BS	Two LCSs (VLCSP2 and VLCSQE) were analyzed with this SDG. All spiked compounds were recovered within the QC limits.	No qualifications were required.

Project: Rocketdyne SDG: MJ058 Analysis: VOA

	T	T
	Findings	Qualifications
6. Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.
8. Field QC Samples ER: None TB: None FB: None FD: None	Sample MJ059 was identified as a silicone blank on the COC. Sample MJ060 was identified as a tubing blank on the COC.	No qualifications were required.
9. Other	Samples MJ059 and MJ060 were initially analyzed for a list of 37 target compounds and was reanalyzed for the added compound 1,4-dioxane. TICs were not provided with the sample in this SDG. Compounds reported below the reporting limits were qualified as estimated, "J," by the laboratory.	No qualifications were required.
Comments	None.	None.

Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Lab Name: CEIMIC CORP Contract: MONTGOMERY MJ059

Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058

Matrix: (soil/water) WATER Lab Sample ID: 020619-02

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: P3034

Level: (low/med) LOW Date Received: 06/21/02

% Moisture: not dec. Date Analyzed: 07/03/02

GC Column: DB624 ID: 0.20 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/F		0	rev	<i>iQ</i> UAL
		(43) I OI U9/I		V		1
75-01-4 74-83-9 75-00-3 75-00-3 75-35-4 75-09-2 75-15-0 156-60-5 75-34-3 78-93-3 56-59-2 540-59-0 67-66-3 71-55-6 71-43-2 79-01-6 78-87-5 75-27-4 10061-01-5 108-88-3 10061-02-6 79-00-5 127-18-4 108-10-1 591-78-6 124-48-1 108-90-7 100-41-4	1,1-DichloroetheMethylene ChloriCarbon Disulfidetrans-1,2-Dichloroetha2-Butanonecis-1,2-DichloroetheChloroform1,1,1-TrichloroeCarbon Tetrachlo1,2-DichloroethaBenzeneTrichloroethene1,2-DichloropropBromodichloromethe1,2-DichloropropBromodichloromethe1,2-TrichloroeToluenetrans-1,3-DichloroeTetrachloroethene1,1,2-TrichloroeTetrachloroethene4-Methyl-2-Pentan2-HexanoneDibromochlorometheChlorobenzeneEthylbenzeneXylenes (total)	ene de de coroethene de (total) cthane de ne de (total) cthane de ne de coroethene de ne de (total)	41 50 55 10 10 15 55 55 55 55 55 55 55 55 55 55 55 55		Q4 0 - 50 50 - + to	B

MW SAMPLE NO.

-Lab Name: CEIMIC COP	RP	Contract: MONI	GOMERY		MJ059		
Lab Code: CEIMIC	Case No.: BOEING	SAS No.:	SDG	No.:	MJ058		
Matrix: (soil/water)	WATER	Lab S	Sample ID:	0206	19-02		
Sample wt/vol:	5.000 (g/mL) ML	Lab F	ile ID:	P303	4		
Level: (low/med)	LOW	Date	Received:	06/2	1/02		
% Moisture: not dec.		Date .	Analyzed:	07/0	3/02		
GC Column: DB624	ID: 0.20 (mm)	Dilut	ion Factor	c: 1.	0		
Soil Extract Volume:	(uL)	Soil	Aliquot Vo	olume	3 9	(1	ıL)
CAS NO.	COMPOUND	CONCENTRATIO			Q	1ZEV QUAL	QUAL
95-47-6 100-42-5 75-25-2 79-34-5	Styrene	nloroethane		5 5 5 5	U U U	0	

MW SAMPLE NO.

-Lab N	ame: CEIMIC COR	RP	Contract: MONT	GOMERY		MJ059		
Lab C	ode: CEIMIC	Case No.: BOEING	SAS No.:	SDG	No.:	MJ058		
Matri	x: (soil/water)	WATER	Lab S	ample ID:	0206	19-02		
Sampl	e wt/vol:	5.000 (g/mL) ML	Lab F	ile ID:	Q264	5		
Level	: / (low/med)	LOW	Date 1	Received:	06/2	1/02		
% Moi:	sture: not dec.		Date 2	Analyzed:	08/09	9/02		
GC Co	lumn: RTX-624	ID: 0.25 (mm)	Dilut	ion Facto	r: 1.0)		
Soil B	Extract Volume:	(uL)	Soil A	Aliquot V	olume	n P	(uL)
,	CAS NO.	COMPOUND	CONCENTRATIO			Q	REV	QUATI CODE
	123-91-1	1,4-Dioxane			0.100	U	U	

MW SAMPLE NO.

MJ060 -Lab Name: CEIMIC CORP Contract: MONTGOMERY Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058 Matrix: (soil/water) WATER Lab Sample ID: 020619-03 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: P3035 Level: (low/med) LOW Date Received: 06/21/02 % Moisture: not dec. Date Analyzed: 07/03/02 GC Column: DB624 ID: 0.20 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: REV IQUAL CAS NO. COMPOUND (ug/L or ug/Kg) UG/L QUAL CODE 5 U 5 U

1 /2 02 2	villy i citable to	7	, , 0	1 [[
	Bromomethane	.5	: U		
	Chloroethane	5	U		
67-64-1		29	В	UJ	13
75-35-4	1,1-Dichloroethene	5	U		
75-09-2	Methylene Chloride	_ 20	В	UJ	13
75-15-0	Carbon Disulfide	5	U	1)	•
	trans-1,2-Dichloroethene	5	U		
	1,1-Dichloroethane	5	U		
	2-Butanone	10	U		
156-59-2	cis-1,2-Dichloroethene	5	U		
	1,2-Dichloroethene (total)	10	U		
	Chloroform	5	U		
71-55-6	1,1,1-Trichloroethane	5	U		
	Carbon Tetrachloride	5	U		
	1,2-Dichloroethane	5	U		
71-43-2		5	U		
	Trichloroethene	5	U		
78-87-5	1,2-Dichloropropane	5	U		
	Bromodichloromethane	5	U		
10061-01-5	cis-1,3-Dichloropropene	5	U		
108-88-3	Toluene	5	U		
10061-02-6	trans-1,3-Dichloropropene	5	U		
79-00-5	1,1,2-Trichloroethane	5	ט		
127-18-4	Tetrachloroethene	5	U		
108-10-1	4-Methyl-2-Pentanone	10	U		
591-78-6	2-Hexanone	10	U		
	Dibromochloromethane	5	U		
	Chlorobenzene	5	U		
100-41-4	Ethylbenzene	5	U		
	Xylenes (total)	15	U	-	
	m,p-Xylenes	10	U ·	V	
				•	
The state of the second st				(; ;	•

MW SAMPLE NO.

-Lab Name: CEIMIC CORP	Contract: MONTGOMERY MJ060	
Lab Code: CEIMIC Case No.: BOEING	SAS No.: SDG No.: MJ058	Address Advantage Company
Matrix: (soil/water) WATER	Lab Sample ID: 020619-03	
Sample wt/vol: $5.000 (g/mL) ML$	Lab File ID: P3035	
Level: (low/med) LOW	Date Received: 06/21/02	
% Moisture: not dec.	Date Analyzed: 07/03/02	
GC Column: DB624 ID: 0.20 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volume:	(uL)
CAS NO. COMPOUND		ZEV QUAL QUAL CODE
95-47-6	5 U	V

VOLATILE ORGANICS ANALYSIS DATA SHEET MJ060 -Lab Name: CEIMIC CORP Contract: MONTGOMERY Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058 Matrix: (soil/water) WATER Lab Sample ID: 020619-03 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q2647 Level: (low/med) LOW Date Received: 06/21/02 % Moisture: not dec. Date Analyzed: 08/09/02 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L REV QUAL QUAL CODE 123-91-1----1,4-Dioxane

FORM 1

FORM I VOA

MW SAMPLE NO.

0.100 U

U

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹
SDG: MJ047
Matrix: Water

No. of Samples: 11
No. of Reanalyses/Dilutions: 0

Date Reviewed: 07/18/02

Reviewer: D. A. Buckheister

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MJ047, MJ048, MJ049, MJ050, MJ051, MJ052, MJ053, MJ054, MJ055, MJ056,

MJ057

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed by both field and laboratory personnel. No sample receipt information was recorded on the COC. A laboratory sample receipt checklist noted that the VOC sample vials were not all received intact; however, no additional information regarding the broken containers was recorded. There were no custody seals on the cooler. The cooler temperature was recorded as 4°C, within the temperature limits of 4 ± 2°C. Air bubbles were present in samples MJ047, MJ048, and MJ049. The samples were analyzed within 14 days of sample collection.	All target compounds were qualified as estimated, "J" for detects and "UJ," for nondetects," in samples MJ047, MJ048, and MJ049.
4. Method Blanks	Two method blanks (VBLKQW and VBLKQX) were analyzed with this SDG. No target compounds were reported in the method blanks.	No qualifications were required.

Project: Rocketdyne SDG: MJ047 Analysis: VOA

Γ			
		Findings	Qualifications
5.	LCS/BS	Two LCSs (VLCSQW and VLCSQX) were analyzed with this SDG. Dichlorodifluoromethane, chloromethane, vinyl chloride, and methylene chloride were recovered below the QC limits but above than 10% in both of the LCSs. Added target compounds chlorotrifluoroethane, 1,1,2-trichlorotrifluoroethane, and 2-chloroethyl vinyl ether were not spiked into either LCS.	The nondetect results for the compounds recovered below the QC limits were qualified as estimated, "UJ," in all of the samples in this SDG, except MJ055 and MJ056, which were identified as field QC samples.
6.	Surrogates	Dibromofluoromethane was recovered above the QC laboratory-established QC limits in samples MJ048, MJ049, MJ050, MJ052, MJ054, MJ055, MJ056, and MJ057. Dibromofluoromethane was recovered below the QC limits but above 10% in sample MJ053. All remaining surrogate recoveries were within the QC limits.	Detected compounds in samples MJ049 and MJ057 were qualified as estimated, "J." Samples MJ055 and MJ056 were identified as field QC samples and required no qualifications. The nondetect results for all target compounds were qualified as estimated, "UJ," in sample MJ053.
7.	MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.
8.	Field QC Samples ER: MJ056 ER:MJ059, MJ060 (MJ051 only) TB: None FB: MJ055 FD: None	Chloroform was reported in both the equipment rinsate MJ056 and the field blank at 2µg/L, and in equipment rinsate MJ059 at 1 µg/L. Chloroform was not reported in any of the site samples in this SDG.	No qualifications were required.
9.	Other	All of the samples in this SDG were analyzed for added compounds chlorotrifluoroethene, 1,1,2-trichlorotrifluoroethane, and 2-chloroethyl vinyl ether. TICs were not provided with the samples in this SDG. Compounds reported below the reporting limits were qualified as estimated, "J," by the laboratory.	No qualifications were required.
Co	mments	None.	None.
L			

 $^{^{1}}$ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

MW SAMPLE NO.

MJ047

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Lab Sample ID: 020581-01 Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1905

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/24/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATION		Q	REV	QUAL CODE
75-71-8 74-87-3 75-01-4 74-83-9 75-00-3 75-69-4	ChlorotrifluoroDichlorodifluorChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluoro1,1,2-Trichloro	omethane methane	5 5 5 5 5 5 5 5 5	U	W5 W5	*1
75-35-4 75-09-2		eneide	10 5 5	U U	n2	<u></u>
75-34-3 78-93-3 156-59-2 67-66-3 71-55-6 56-23-5 107-06-2 71-43-2 79-01-6 110-75-8 108-88-3 10061-02-6 79-00-5 127-18-4	1,1-Dichloroeth2-Butanonecis-1,2-DichlorChloroform1,1,1-TrichloroCarbon Tetrachl1,2-DichloroethBenzeneTrichloroethene2-ChloroethylviBromodichlorome	oethene ethane oride ane nyl ether thane oropropene ethane	5 10 5 5 5 5 5 5 10 5 5 5 5 5	υ		
630-20-6 100-41-4 1330-20-7 75-25-2	1,1,1,2-TetrachEthylbenzeneXylenes (total)Bromoform1,1,2,2-Tetrach		5 5 15 5 5	U U		

FORM I VOA ANEC VALIDATED

711

MW SAMPLE NO.

Lab Name: CEIMIC CORP	Contract: MW	MJ047	
Lab Code: CEIMIC Case No.: BOEING	SAS No.: 020581 SDG	No.: MJ0≟7	
Matrix: (soil/water) WATER	Lab Sample ID	: 020581-01	
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID:	Q1905	
Level: (low/med) LOW	Date Received	: 06/14/02	
% Moisture: not dec.	Date Analyzed:	: 06/24/02	
GC Column: RTX-624 ID: 0.25 (mm)	Dilution Facto	or: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I		BEN QUALLOTH
108-67-81,3,5-Trimethy 95-63-61,2,4-Trimethy 541-73-11,3-Dichlorobe 106-46-71,4-Dichlorobe 95-50-11,2-Dichlorobe 96-12-81,2-Dibromo-3-	vlbenzene enzene enzene enzene	5 U 5 U 5 U 5 U 5 U 5 U	us *1

AMEC VALIDATED

MW SAMPLE NO.

MJ048	

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-02

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1906

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/24/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATIO		Q	PEV	Quaz Los	£
79-38-9 75-71-8 74-87-3 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 75-35-4 75-34-3 75-34-3 71-55-6 71-55-6 71-43-2 79-01-6 75-27-4 108-88-3 10061-02-6 79-00-5 127-18-4 108-90-7	ChlorotrifluoroeDichlorodifluoroChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluoron1,1,2-TrichlorotAcetone1,1-DichloroetheMethylene Chloritrans-1,2-Dichloroethe2-Butanonecis-1,2-DichloroetheChloroform1,1,1-TrichloroeCarbon Tetrachlo1,2-DichloroetheBenzeneTrichloroethene2-ChloroethylvirBromodichloromet	(ug/L or ug, ethene omethane methane crifluoroetha ene ide oroethene ethane oride ane myl ether chane oropropene ethane			REV UNIN VIN VIN VIN VIN VIN VIN VIN VIN VIN	Quaz (0) *1 L	THE TAIL AND THE T
100-41-4 1330-20-7 75-25-2	Ethylbenzene Xylenes (total)		5 15 5 5	n n			

FORM I VOA

AMEC VALIDATE

MW SAMPLE NO.

	MJ048
Lab Name: CEIMIC CORP C	ontract: MW
Lab Code: CEIMIC Case No.: BOEING	SAS No.: 020581 SDG No.: MJ047
Matrix: (soil/water) WATER	Lab Sample ID: 020581-02
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: Q1906
Level: (low/med) LOW	Date Received: 06/14/02
% Moisture: not dec.	Date Analyzed: 06/24/02
GC Column: RTX-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/kg) UG/L Q FUAL GDE
108-67-81,3,5-Trimethyl 95-63-61,2,4-Trimethyl 541-73-11,3-Dichloroben 106-46-71,4-Dichloroben 95-50-11,2-Dichloroben 96-12-81,2-Dibromo-3-C	benzene 5 U zene 5 U zene 5 U zene 5 U

MW SAMPLE NO.

MJ049

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-03

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1907

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/24/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATIO		Q	REV	- Quar C	ODE
70 20 0	Ohlasski flassa	1			11-5	*	1
79-38-9	Chlorotrifluoroet	nene	Generalism 17/2-18-4-4-5-6-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	5 U 5 U 5 U	us		
75-71-8	Dichlorodifluorom	etnane		5 U	us	L	- [
	Chloromethane			5 U		11.	1
	Vinyl Chloride			5 U	$\bot \Psi_{-}$	14_	
	Bromomethane			5 U	NJ		
	Chloroethane	- ,		5 U 5 U 2 J 5 U	1		- 1
75-69-4	Trichlorofluorome	thane		5 U	11/		1
76-13-1	1,1,2-Trichlorotr	ifluoroetha		5 U	1 7	ے	-
67-64-1			~~490~440000000000000000000000000000000	2 J	【ゴ	S	
	1,1-Dichloroethen		Į.	5 U	45	١,	
75-09-2	Methylene Chlorid	e		5 U	$\perp \psi$	<u> </u>	
156-60-5	trans-1,2-Dichlor	oethene	Ţ	5 U	W		
	1,1-Dichloroethan	e	Ţ	5 U			
	2-Butanone		10				1
	cis-1,2-Dichloroe	thene	Ţ	5 U			
	Chloroform_		į	5 U	1 1		1
71-55-6	1,1,1-Trichloroet	nane		5 U			
56-23-5	Carbon Tetrachlor	ide	Ţ	5 U	1 1	į	
107-06-2	1,2-Dichloroethan	e					
71-43-2	Benzene_		Į.	ט כ			- 1
79-01-6	Trichloroethene		Ţ	5 U			1
110-75-8	2-Chloroethylviny	l ether	10) U	1 1		
	Bromodichlorometh	ane	Ţ	5 U			1
108-88-3	Toluene		Ę	U			1
10061-02-6	trans-1,3-Dichlore	opropene	Ţ	U	1 1		1
79-00-5	1,1,2-Trichloroetl	nane			1 1		
	Tetrachloroethene			υ			1
108-90-7	Chlorobenzene		5	טוֹכּ	1 1		
630-20-6	1,1,1,2-Tetrachlo	roethane	5				1
100-41-4	Ethylbenzene		g				ı
1330-20-7	Xylenes (total)		15	U			1
75-25-2	Bromoform		- 5			1	1,
79-34-5	1,1,2,2-Tetrachlor	roethane	Ē				\ /
					¥	1	V
		1,		- 1	-1		Ī

FORM I VOA

AMEC VALIDATED

MW SAMPLE NO.

Lab Name: CEIMIC COR	P	Contract: MW	OLM	<u>4</u> 9
Lab Code: CEIMIC (Case No.: BOEING	SAS No.: 020581	SDG No.: MJ0	4 7
Matrix: (soil/water)	WATER	Lab Sample	ID: 020581-	C3
Sample wt/vol:	5.000 (g/mL) ML	Lab File I	D: Q1907	
Level: (low/med)	LOW	Date Recei	ved: 06/14/0	2
% Moisture: not dec.		Date Analy	zed: 06/24/0	2
GC Column: RTX-624	ID: 0.25 (mm)	Dilution F	actor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliqu	ot Volume: _	(uL)
CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)		BEV QUAL GOD
95-63-6 541-73-1 106-46-7 95-50-1	1,3,5-Trimethy1,2,4-Trimethy1,3-Dichlorobe1,4-Dichlorobe1,2-Dichlorobe1,2-Dibromo-3-	rlbenzene enzene enzene enzene	5 U 5 U 5 U 5 U 5 U 5 U	#1

AWEC VALIDATED
16

LEVELV

MW SAMPLE NO.

MJ050	
-------	--

Lab Name: CEIMIC CORP Contract:	MW
---------------------------------	----

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-04

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1920

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

	AS NO. COM		NTRATION UNITS: or ug/Kg) UG/L	Q	REV Qual	QUAL	CODF
79-38-9	5-71-8	DichlorodifluoromethanChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluoromethaneI,1,2-TrichlorotrifluoAcetoneI,1-DichloroetheneMethylene Chloridetrans-1,2-DichloroetheneI,1-DichloroethaneCis-1,2-DichloroetheneChloroformI,1,1-TrichloroethaneCarbon TetrachlorideI,2-DichloroethaneCarbon TetrachlorideI,2-DichloroethaneTrichloroetheneTrichloroetheneTrichloroetheneTrichloroetheneTolueneTolueneTetrachloroethene	coetha 1 ne 1 er 1 ene 1		w → u — → w	<u> </u>	

FORM I VOA

AMEC VALIDAT

MW SAMPLE NO.

Lab Name: CEIMIC COF	RP (Contract: MW	20 CM	50	
Lab Code: CEIMIC	Case No.: BOEING	SAS No.: 020581	SDG No.: MJ04	7	
Matrix: (soil/water)	WATER	Lab Sample	ID: 020581-0	14	
Sample wt/vol:	5.000 (g/mL) ML	Lab File II	D: Q1920		
Level: (low/med)	LOW	Date Recei	ved: 06/14/02	!	
% Moisture: not dec.	Account of the Control of the Contro	Date Analy:	zed: 06/25/02	i	
GC Column: RTX-624	ID: 0.25 (mm)	Dilution Fa	actor: 1.0		
Soil Extract Volume:	(uL)	Soil Alique	ot Volume:	(uL	١)
CAS NO.	COMPOUND	CONCENTRATION UNI (ug/L or ug/Kg) (REV	QUAL CODE
95-63-6 541-73-1 106-46-7 95-50-1	1,3,5-Trimethyl 1,2,4-Trimethyl 1,3-Dichlorober 1,4-Dichlorober 1,2-Dichlorober 1,2-Dibromo-3-0	lbenzenenzenenzene	5 U 5 U 5 U 5 U 5 U	V	

MW SAMPLE NO.

MJ051

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-05

Sample wt/vol: 5.000 (g/mL) MLLab File ID: Q1921

Level: (low/med) LOW Date Received: 06/14/02

Date Analyzed: 06/25/02 % Moisture: not dec.

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATIO		Q	PEV Juan	Quay CODE
79-38-9 75-71-8 74-87-3 74-83-9 75-00-3 75-69-4 75-69-4 75-35-4 75-35-4 75-34-3 75-34-3 71-55-6 71-55-6 71-43-2 75-27-4 100-41-4 1330-20-7 75-25-2	ChlorotrifluoroeDichlorodifluoroeChloromethaneVinyl ChlorideBromomethaneChloroethaneChloroethaneTrichlorofluoroe1,1,2-TrichloroetheMethylene ChlorieTrans-1,2-DichloroetheI,1-Dichloroethe2-Butanonecis-1,2-DichloroetheChloroform1,1,1-TrichloroeCarbon Tetrachlo1,2-DichloroetheBenzeneTrichloroethene2-ChloroethylvinBromodichlorometToluenetrans-1,3-DichloroetheneTrichloroetheneTolueneTetrachloroetheneChlorobenzeneI,1,2-TetrachlEthylbenzeneXylenes (total)Bromoform	methane methan	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	מממממממממממממממממממממממממממממממממממממממ	Eur WW -> aus	QUAY CODE
/3-34-3	1,1,2,2-Tetrachl		5	U	\bigvee	

FORM I VOA

AMEG VALIDALL

MW SAMPLE NO.

MJC51

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJC-47

Matrix: (soil/water) WATER Lab Sample ID: 020581-35

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1921
Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 108-67-8-----1,3,5-Trimethylbenzene 5 U 95-63-6----1,2,4-Trimethylbenzene 5 U 541-73-1----1,3-Dichlorobenzene 5 U 106-46-7----1,4-Dichlorobenzene 5 U 95-50-1----1,2-Dichlorobenzene 5 U 96-12-8----1,2-Dibromo-3-Chloropropane U

AMEC VALIDATED

MW SAMPLE NO.

Lab Name: CEIMIC CORP

Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER

Lab Sample ID: 020581-06

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: Q1922

Level: (low/med) LOW

Date Received: 06/14/02

% Moisture: not dec.

Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATIO		Q	REV	DIAL CODE
79-38-9 75-71-8 74-87-3 74-83-9 75-00-3 75-69-4 75-69-4 75-35-4 75-35-4 75-34-3 75-34-3 71-55-6 71-55-6 71-43-2	ChlorotrifluorocDichlorodifluoroc	ethene omethane trifluoroetha ene ide oroethene ethane oride ane nyl ether chane oropropene ethane	/Kg) UG/L 5 5 5 5 5 10 5 5 5 10 5 5 5 5 5 5 5 5	ח מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ	We was a sure of the sure of t	DIAC CODE
75-25-2	Xylenes (total) Bromoform 1,1,2,2-Tetrachl	Loroethane	15 5 5	บ บ บ		

FORM I VOA

AMEC VALIDATED

MW SAMPLE NO.

			MIOTO		
Lab Name: CEIMIC CORP	Contract	: MW	MJ052		
Lab Code: CEIMIC Case No	o.: BOEING SAS No.	: 020581 SDG	No.: MJ047		
Matrix: (soil/water) WATER		Lab Sample ID:	020581-06		
Sample wt/vol: 5.000	(g/mL) ML	Lab File ID:	Q1922		
Level: (low/med) LOW		Date Received:	06/14/02		
% Moisture: not dec.	PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRES	Date Analyzed:	06/25/02		
GC Column: RTX-624 ID: 0.	.25 (mm)	Dilution Facto	r: 1.0		
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:	(uL)	
CAS NO. COME		NTRATION UNITS: or ug/Kg) UG/L		REV SUAL	TUAL GODE
108-67-81,3, 95-63-61,2, 541-73-11,3- 106-46-71,4- 95-50-11,2- 96-12-81,2-	4-Trimethylbenzene Dichlorobenzene Dichlorobenzene Dichlorobenzene		5 U 5 U 5 U 5 U 5 U	<u>u</u>	

MW SAMPLE NO.

MJ053	
-------	--

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-07

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1923

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.		CONCENTRATION (ug/L or ug/)	Q	REV	8	<u></u>
79-38-9 75-71-8 74-87-3 75-01-4 74-83-9 75-69-4 76-13-1 75-35-4 75-35-4 75-34-3 156-59-2 67-66-3 71-55-6 56-23-5 107-06-2 71-43-2 79-01-6 110-75-8 108-88-3 108-88-3 108-90-7	COMPOUND ChlorotrifluoroetlDichlorodifluoromChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluoromethaneAcetone1,1,2-TrichloroetheneMethylene ChlorideTrians-1,2-Dichloroethane2-ButanoneChloroform1,1,1-TrichloroethaneCarbon TetrachlorideCarbon TetrachlorideBenzeneTrichloroethaneBenzeneTrichloroethene2-ChloroethylvinylBromodichloromethaleTolueneTrichloroetheneTrichloroetheneTetrachloroetheneTetrachloroethene	hene ethane chane ifluoroetha e chen	5 U U U U U U U U U U U U U U U U U U U	REVUSUS	Qual C	
630-20-6 100-41-4 1330-20-7 75-25-2	Chlorobenzene1,1,1,2-TetrachlorEthylbenzeneXylenes (total)Bromoform1,1,2,2-Tetrachlor				\ \\ \\ \\ \\ \\ \\ \	

MW SAMPLE NO.

MJ053

Lab Name: CEIMIC CORP Contract: MW Case No.: BOEING SAS No.: 020581 Lab Code: CEIMIC SDG No.: MJ047 Matrix: (soil/water) WATER Lab Sample ID: 020581-07 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1923 Level: (low/med) LOW Date Received: 06/14/02 % Moisture: not dec. Date Analyzed: 06/25/02 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 108-67-8----1,3,5-Trimethylbenzene 5 | U 95-63-6-----1,2,4-Trimethylbenzene_ 5 U 541-73-1----1,3-Dichlorobenzene 5 U 106-46-7----1,4-Dichlorobenzene 5 U 95-50-1----1,2-Dichlorobenzene 5 U 96-12-8----1,2-Dibromo-3-Chloropropane 5 U

MW SAMPLE NO.

Lab Name: CEIMIC COR	P	Contract: MW	MJ054
Lab Code: CEIMIC	Case No.: BOEING	SAS No.: 020581 SDG	No.: MJ047
Matrix: (soil/water)	WATER	Lab Sample ID:	020581-08
Sample wt/vol:	5.000 (g/mL) ML	Lab File ID:	Q1924
Level: (low/med)	LOW	Date Received:	06/14/02
% Moisture: not dec.		Date Analyzed:	06/25/02
GC Column: RTX-624	ID: 0.25 (mm)	Dilution Facto	r: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

T9-38-9	CAS NO.	COMPOUND	CONCENTRATIO		Q	PEV (QUALL
1/1/2/2 1001000011111010000111111010000111111101111	75-71-8 74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 75-35-4 75-34-3 75-34-3 75-34-3 71-55-6 71-55-6 71-43-2 710-75-8 10-75-8 10-75-8 108-88-3 108-88-3 108-90-7 127-18-4 108-90-7 1330-20-6 75-25-2	DichlorodiflucChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluor1,1,2-TrichlorAcetone1,1-DichloroetMethylene Chlotrans-1,2-Dichloroet2-Butanonecis-1,2-DichloroetChloroform1,1,1-TrichlorCarbon Tetrach1,2-DichloroetBenzeneTrichloroethen2-ChloroethylvBromodichloromToluenetrans-1,3-Dich1,1,2-TrichlorTetrachloroethenChlorobenzene1,1,1,2-TetracEthylbenzeneXylenes (totalBromoform	omethane omethane otrifluoroetha hene ride loroethene hane roethene oethane loride hane e inyl ether ethane loropropene oethane loropropene oethane	555555555555555555555555555555555555555	מממממממממממממממממממממממממממממממממממממממ	4 V V V V V V V V V V V V V V V V V V V	

FORM I VOA

AMEC VALIDATED

96-12-8----1,2-Dibromo-3-Chloropropane

MW SAMPLE NO.

5 U

MJ054 Lab Name: CEIMIC CORP Contract: MW Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047 Matrix: (soil/water) WATER Lab Sample ID: 020581-08 5.000 (g/mL) ML Sample wt/vol: Lab File ID: Q1924 Level: (low/med) LOW Date Received: 06/14/02 % Moisture: nòt dec. Date Analyzed: 06/25/02 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 108-67-8----1,3,5-Trimethylbenzene 5 U 95-63-6-----1,2,4-Trimethylbenzene 541-73-1----1,3-Dichlorobenzene 5 U 5 U 5 U 106-46-7-----1,4-Dichlorobenzene 95-50-1----1,2-Dichlorobenzene 5 U

MW 6/14/2 SAMPLE NO.

MJ055

Lab Name: CEIMIC CORP Contract: MW

Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-09

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1925

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. _____ Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

79-38-9Chlorotrifluoroethene	CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/			Q	KEV	A
75-71-8	1		***************************************			г	YUAL	GUAC
75-71-8	79-38-9	Chlorotrifluoroe	thene		5	U	in	
74-87-3	75-71-8	Dichlorodifluoro	methane				1	1
76-13-11,1,2-Trichlorotrifluoroetha 10 U 75-35-41,1-Dichloroethene 5 U 75-09-2Methylene Chloride 5 U 156-60-5	74-87-3	Chloromethane				U		
76-13-11,1,2-Trichlorotrifluoroetha 10 U 75-35-41,1-Dichloroethene 5 U 75-09-2Methylene Chloride 5 U 156-60-5	75-01-4	Vinyl Chloride			5	U		
76-13-11,1,2-Trichlorotrifluoroetha 10 U 75-35-41,1-Dichloroethene 5 U 75-09-2Methylene Chloride 5 U 156-60-5	74-83-9	Bromomethane			5	U		İ
76-13-11,1,2-Trichlorotrifluoroetha 10 U 75-35-41,1-Dichloroethene 5 U 75-09-2Methylene Chloride 5 U 156-60-5					5	U		
76-13-11,1,2-Trichlorotrifluoroetha 10 U 75-35-41,1-Dichloroethene 5 U 75-09-2Methylene Chloride 5 U 156-60-5	75-69-4	Trichlorofluoron	ethane		5	U		
67-64-1	76-13-1	1,1,2-Trichlorot	rifluoroetha		5	U		Ì
75-35-4	67-64-1	Acetone			10	U		
75-09-2Methylene Chloride	75-35-4	1,1-Dichloroethe	ne		5			
156-60-5trans-1,2-Dichloroethene	75-09-2	Methylene Chlori	de		5	U		
75-34-31,1-Dichloroethane	156-60-5	trans-1,2-Dichlo	roethene			U		
156-59-2cis-1,2-Dichloroethene	75-34-3	1,1-Dichloroetha	ne		5	U		
156-59-2cis-1,2-Dichloroethene			***************************************		10	U		
67-66-3Chloroform 2 J 3 71-55-61,1,1-Trichloroethane 5 U 56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	156-59-2	cis-1,2-Dichloro	ethene		5		l W	
56-23-5Carbon Tetrachloride	67-66-3	Chloroform			2	J	1	
56-23-5Carbon Tetrachloride	71-55-6	1,1,1-Trichloroe	thane	ellegy dik land big der De letter disk process, er besommen gegennem er bekönten brook en en oprol	5	Ū	14 -	
107-06-21,2-Dichloroethane	56-23-5	Carbon Tetrachlo	ride		5			
79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	107-06-2	1,2-Dichloroetha	ne		5			
79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	71-43-2	Benzene	***************************************		5	U		
75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	79-01-6	Trichloroethene				U		
75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	110-75-8	2-Chloroethylvin	yl ether		10	U		
108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	75-27-4	Bromodichloromet	hane					
10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	108-88-3	Toluene	***************************************			U		
79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	10061-02-6	trans-1,3-Dichlo	ropropene					
127-18-4Tetrachloroethene	79-00-5	1,1,2-Trichloroe	thane					
108-90-7Chlorobenzene	127-18-4	Tetrachloroethen	e		5			
630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	108-90-7	Chlorobenzene			5			
100-41-4Ethylbenzene	630-20-6	1,1,1,2-Tetrachl	oroethane		5			
1330-20-7Xylenes (total)	100-41-4	Ethylbenzene	***************************************					
75-25-2Bromoform 5U	1330-20-7	Xylenes (total)						
	75-25-2	Bromoform						
V	79-34-5	1,1,2,2-Tetrachl	oroethane			U		
							V	-

FORM I VOA

AMEC VALIDATED

27

MW 6/14/2 SAMPLE NO.

Lab Name: CEIMIC CORP	Contract: MW	MJ055
Lab Code: CEIMIC Case No.	: BOEING SAS No.: 020581 SDG	No.: MJ047
Matrix: (soil/water) WATER	Lab Sample ID	: 020581-09
Sample wt/vol: 5.000 (g	g/mL) ML Lab File ID:	Q1925
Level: (low/med) LOW	Date Received	: 06/14/02
% Moisture: not dec.	Date Analyzed	: 06/25/02
GC Column: RTX-624 ID: 0.25	5 (mm) Dilution Fact	or: 1.0
Soil Extract Volume:	(uL) Soil Aliquot	Volume:(uL)
CAS NO. COMPOU	CONCENTRATION UNITS UND (ug/L or ug/Kg) UG/	
108-67-81,3,5- 95-63-61,2,4- 541-73-11,3-Di 106-46-71,4-Di 95-50-11,2-Di 96-12-81,2-Di	-Trimethylbenzeneichlorobenzeneichlorobenzene	5 U V 5 U 5 U 5 U 5 U 5 U

MW SAMPLE NO.

MJ056 **FP**No.: MJ047

Lab Name: CEIMIC CORP Contract: MW

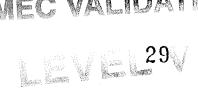
Lab Code: CEIMIC Case No.: BOEING SAS No.: 020581 SDG No.: MJ047

Matrix: (soil/water) WATER Lab Sample ID: 020581-10

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1926

Level: (low/med) LOW Date Received: 06/14/02

% Moisture: not dec. ____ Date Analyzed: 06/25/02


GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug/		Q	REV Qu
79-38-9 75-71-8 74-87-3 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 75-35-4 75-34-3 75-34-3 71-55-6 71-55-6 71-43-2 71-5-27-4 100-1-02-6 71-18-4 110-75-8 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8 75-27-4 110-75-8	ChlorotrifluorDichlorodifluoChloromethaneVinyl ChlorideBromomethaneChloroethaneTrichlorofluor1,1,2-TrichlorAcetone1,1-DichloroetMethylene ChloTrichloroet1,1-Dichloroet2-ButanoneCis-1,2-DichloroetChloroform1,1,1-TrichlorCarbon Tetrach1,2-DichloroetBenzeneTrichloroethen2-ChloroethylvBromodichloromTolueneTrichloroethenTolueneTetrachloroethTetrachloroethChlorobenzene1,1,2-TetracEthylbenzeneXylenes (total	oethene romethane omethane otrifluoroetha hene ride loroethene hane roethene loride hane e inyl ether ethane loropropene oethane hloroethane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	מממממממממממממממממממ	JUAL CHE
/9-34-5	1,1,2,2-Tetrac	nioroethane	5	U 	Ψ

FORM I VOA

AMEC VALIDATED

96-12-8----1,2-Dibromo-3-Chloropropane

MW SAMPLE NO.

MJ056 Lab Name: CEIMIC CORP Contract: MW Lab Code: CEIMIC SDG No.: MJ047 Case No.: BOEING SAS No.: 020581 Matrix: (soil/water) WATER Lab Sample ID: 020581-10 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q1926 Level: (low/med) LOW Date Received: 06/14/02 % Moisture: not dec. Date Analyzed: 06/25/02 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 108-67-8-----1,3,5-Trimethylbenzene_ 5 U 95-63-6-----1,2,4-Trimethylbenzene 541-73-1----1,3-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene 5 U 5 U 5 U 5 U 95-50-1-----1,2-Dichlorobenzene

5 U

MW SAMPLE NO.

:	MW	MJ057
:	020581 SDG	No.: MJ047
Ι	ab Sample ID	: 020581-11
Ι	ab File ID:	Q1927

Lab Name: CEIMIC CORP

Lab Code: CEIMIC Case No.: BOEING SAS No.: 02058

Contract: MW

Matrix: (soil/water) WATER

Level: (low/med) LOW

Sample wt/vol: 5.000 (g/mL) ML

Date Received: 06/14/02

% Moisture: not dec.

Date Analyzed: 06/25/02

GC Column: RTX-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

T9-38-9	CAS NO.		CONCENTRATION			Q	PEV	QUAL CODE
75-71-8	79-38-9	Chlorotrifluoroetl	nene		5	TT	u	
74-87-3				nderfore for the colored for the complete and decode to the colored and the co				
75-01-4	74-87-3	Chloromethane					ربم ا	1 4
74-83-9	75-01-4	Vinyl Chloride			5			
75-00-3Chloroethane	74-83-9	Bromomethane		COMMUNICATION (APPROPRIATE PROPERTY AND ASSESSMENT ASSE			11	
75-69-4	75-00-3	Chloroethane					in	
76-13-11,1,2-Trichlorotrifluoroetha	75-69-4	Trichlorofluoromet	hane	4	5		11.	
67-64-1	76-13-1	1,1,2-Trichlorotr	fluoroetha				1 1 1	
75-35-4				y d			オゴ	S
156-60-5trans-1,2-Dichloroethene				CONTRACTOR CONTRACTOR			ii	
156-60-5trans-1,2-Dichloroethene	75-09-2	Methylene Chloride	9		5	U	uzs	1
78-93-31,1-Dichloroethane 5 U 78-93-32-Butanone 10 U 156-59-2cis-1,2-Dichloroethene 5 U 67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 79-01-6Trichloroethene 5 U 110-75-8Bromodichloromethane 5 U 108-88-3Toluene 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7	156-60-5	trans-1,2-Dichloro	ethene	A STATE OF THE STA	5	Ū		
156-59-2cis-1,2-Dichloroethene 5 U 67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7			3				1 1	
67-66-3Chloroform 5 U 71-55-61,1,1-Trichloroethane 5 U 56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U								
71-55-61,1,1-Trichloroethane 5 U 56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U			hene					
56-23-5Carbon Tetrachloride 5 U 107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Bromoform 5 U								
107-06-21,2-Dichloroethane 5 U 71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10961-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U								
71-43-2Benzene 5 U 79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	56-23-5	Carbon Tetrachlori	.de					
79-01-6Trichloroethene 5 U 110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	107-06-2	1,2-Dichloroethane	}				1 1	
110-75-82-Chloroethylvinyl ether 10 U 75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U								
75-27-4Bromodichloromethane 5 U 108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U								
108-88-3Toluene 5 U 10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	110-75-8	2-Chloroethylvinyl	ether				1 1	
10061-02-6trans-1,3-Dichloropropene 5 U 79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	15-27-4	Bromodichlorometha	ine				1 1	-
79-00-51,1,2-Trichloroethane 5 U 127-18-4Tetrachloroethene 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	108-88-3	Totuene					1 1	
127-18-4Tetrachloroethene	70 00 5	trans-1,3-Dichlord	propene					
108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 1330-20-7Xylenes (total) 15 U 75-25-2Bromoform 5 U	127 10 4	Total ablace there	nane				1 1	
630-20-61,1,1,2-Tetrachloroethane								
100-41-4Ethylbenzene	630.20 6	1 1 1 2 Total	acthana			_		
1330-20-7Xylenes (total)	100-41-4	Fthylbongono	oethane				1 1	-
75-25-2Bromoform 5 U	1330-20-7	Yvlenes (total)			- 1	-		
1,2,2,2 tectachiotocchane			roethane					
	1 . 5 5 1 5	1,1,2,2 iccidciioi	Occilare		ا	U	W	

FORM I VOA

AMEC VALIDATED

DAB 7/18/02

MW SAMPLE NO.

Lab Name: CEIMIC CORP	Contract: MW	MJ057	
Lab Code: CEIMIC Case No.: BOEING	G SAS No.: 020581 SDG	No.: MJ047	
Matrix: (soil/water) WATER	Lab Sample ID:	020581-11	
Sample wt/vol: 5.000 (g/mL) M	Lab File ID:	Q1927	
Level: (low/med) LOW	Date Received:	06/14/02	
% Moisture: not dec.	Date Analyzed:	06/25/02	
GC Column: RTX-624 ID: 0.25 (mm)	Dilution Facto	r: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot V	olume:(uL)	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Q Rel Quar Co	T
108-67-81,3,5-Trimeth 95-63-61,2,4-Trimeth 541-73-11,3-Dichlorok 106-46-71,4-Dichlorok 95-50-11,2-Dichlorok 96-12-81,2-Dibromo-3	ylbenzene penzene penzene penzene	5 U W 5 U 5 U 5 U 5 U 5 U 5 U	ν,

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹
SDG: MJ093
Matrix: Water

No. of Samples: 1
No. of Reanalyses/Dilutions: 0

Date Reviewed: 11/26/02

Reviewer: M. Pokorny
Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MJ093

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The COC was signed by both field and laboratory personnel. No sample receipt information was recorded on the COC.	No qualifications were required.
		A laboratory sample receipt checklist noted that the VOC sample vials were received intact. There were no custody seals on the coolers. The cooler temperatures were recorded as 2°C, within the temperature limits of 4 ± 2°C.	
		The analysis of the sample was performed within 14 days of sample collection.	
4.	Method Blanks	One method blank (VBLKLG) was analyzed with this SDG. Acetone was reported in VBLKLG, at 2µg/L.	Acetone was not reported in the sample of this SDG; therefore, no qualifications were required.
5.	LCS/BS	One LCS (VLCSLG) was analyzed with this SDG. All spiked compounds were recovered within the QC limits.	No qualifications were required.
6.	Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7.	MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: VOA

	Findings	Qualifications
8. Field QC Sample ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at 2μg/L, each. Chloroform was not reported in any of the site samples in this SDG.	No qualifications were required.
9. Other	Sample MJ093 was analyzed for a list of 41 target compounds. TICs were not provided with the sample in this SDG. Compounds reported below the reporting limits were qualified as estimated, "J," by the laboratory.	No qualifications were required.
Comments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

MW SAMPLE NO.

MJ093 SDG No.: MJ093 Lab Sample ID: 021006-01

Lab Code: CEIMIC Case No.: ROCKET SAS No.:

Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: LL302

Level: (low/med) LOW

Date Received: 10/04/02

Contract: MW

% Moisture: not dec.

Lab Name: CEIMIC CORP

- Date Analyzed: 10/10/02

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND (ug/L or ug/Kg) I	ITS: UG/L	Q	REV	QUA COD
75-71-8	56550555555555555555555555555555555555	ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט		

VOLATILE ORGANICS ANALYSIS DATA SHEET MJ093 Lab Name: CEIMIC CORP Contract: MW Lab Code: CEIMIC Case No.: ROCKET SAS No.: SDG No.: MJ093 Matrix: (soil/water) WATER Lab Sample ID: 021006-01 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: LL302 Level: (low/med) LOW Date Received: 10/04/02 % Moisture: not dec. Date Analyzed: 10/10/02 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: REV QUAL CAS NO. COMPOUND (ug/L or ug/Kg) UG/L QUAL CODE U 5 U 75-25-2-----Bromoform 79-34-5----1,1,2,2-Tetrachloroethane 108-67-8-----1,3,5-Trimethylbenzene

FORM 1

95-63-6----1,2,4-Trimethylbenzene 541-73-1----1,3-Dichlorobenzene 106-46-7----1, 4-Dichlorobenzene 95-50-1----1,2-Dichlorobenzene

96-12-8----1, 2-Dibromo-3-Chloropropane

FORM I VOA

MW SAMPLE NO.

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹ SDG: MJ058

Matrix: Water

No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Date Reviewed: 11/26/02

Reviewer: M. Pokorny

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MJ059, MJ060

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The COC was signed by both field and laboratory personnel. No sample receipt information was recorded on the COC.	No qualifications were required.
		A laboratory sample receipt checklist noted that the VOC sample vials were received intact. There were no custody seals on the coolers. The cooler temperatures were recorded as 5°C, within the temperature limits of 4 ± 2°C. The analyses of the samples were performed within 14 days of sample collection.	
4.	Method Blanks	Two method blanks (VBLKP2 and VBLKQE) were analyzed with this SDG. Acetone and methylene chloride were reported in VBLKP2, at 31µg/L and 16µg/L, respectively. No target compounds were reported in VBLKQE.	The reporting limits for acetone and methylene chloride were raised to the levels of contamination and the results qualified as estimated nondetects, "UJ," in samples MJ059 and MJ060.
5.	LCS/BS	Two LCSs (VLCSP2 and VLCSQE) were analyzed with this SDG. All spiked compounds were recovered within the QC limits.	No qualifications were required.

Project: Rocketdyne SDG: MJ058 Analysis: VOA

	T	T
	Findings	Qualifications
6. Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.
8. Field QC Samples ER: None TB: None FB: None FD: None	Sample MJ059 was identified as a silicone blank on the COC. Sample MJ060 was identified as a tubing blank on the COC.	No qualifications were required.
9. Other	Samples MJ059 and MJ060 were initially analyzed for a list of 37 target compounds and was reanalyzed for the added compound 1,4-dioxane. TICs were not provided with the sample in this SDG. Compounds reported below the reporting limits were qualified as estimated, "J," by the laboratory.	No qualifications were required.
Comments	None.	None.

Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Lab Name: CEIMIC CORP Contract: MONTGOMERY MJ059

Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058

Matrix: (soil/water) WATER Lab Sample ID: 020619-02

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: P3034

Level: (low/med) LOW Date Received: 06/21/02

% Moisture: not dec. Date Analyzed: 07/03/02

GC Column: DB624 ID: 0.20 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/F		0	rev	<i>iQ</i> UAL
		(43) I OI U9/I		V		1
75-01-4 74-83-9 75-00-3 75-00-3 75-35-4 75-09-2 75-15-0 156-60-5 75-34-3 78-93-3 56-59-2 540-59-0 67-66-3 71-55-6 71-43-2 79-01-6 78-87-5 75-27-4 10061-01-5 108-88-3 10061-02-6 79-00-5 127-18-4 108-10-1 591-78-6 124-48-1 108-90-7 100-41-4	1,1-DichloroetheMethylene ChloriCarbon Disulfidetrans-1,2-Dichloroetha2-Butanonecis-1,2-DichloroetheChloroform1,1,1-TrichloroeCarbon Tetrachlo1,2-DichloroethaBenzeneTrichloroethene1,2-DichloropropBromodichloromethe1,2-DichloropropBromodichloromethe1,2-TrichloroeToluenetrans-1,3-DichloroeTetrachloroethene1,1,2-TrichloroeTetrachloroethene4-Methyl-2-Pentan2-HexanoneDibromochlorometheChlorobenzeneEthylbenzeneXylenes (total)	ene de de coroethene de (total) cthane de (total) chane de (total) cthane de (total) cthane de (total)	41 50 55 10 10 15 55 55 55 55 55 55 55 55 55 55 55 55		Q4 0 - 50 50 - + to	B

MW SAMPLE NO.

-Lab Name: CEIMIC CO	RP	Contract: MONI	GOMERY		MJ059		
Lab Code: CEIMIC	Case No.: BOEING	SAS No.:	SDG	No.:	MJ058		
Matrix: (soil/water)	WATER	Lab S	Sample ID:	0206	19-02		
Sample wt/vol:	5.000 (g/mL) ML	Lab F	ile ID:	P303	4		
Level: (low/med)	LOW	Date	Received:	06/2	1/02		
% Moisture: not dec.	All the state of t	Date .	Analyzed:	07/0	3/02		
GC Column: DB624	ID: 0.20 (mm)	Dilut	ion Factor	c: 1.	0		
Soil Extract Volume:	(uL)	Soil	Aliquot Vo	olume	3 9	(1	ıL)
CAS NO.	COMPOUND	CONCENTRATIO			Q	12EV QUAL	QUAL
95-47-6 100-42-5 75-25-2 79-34-5	Styrene	nloroethane		5 5 5 5 5 5	U U U	0	

MW SAMPLE NO.

-Lab N	ame: CEIMIC COR	RP	Contract: MONT	GOMERY		MJ059		
Lab C	ode: CEIMIC	Case No.: BOEING	SAS No.:	SDG	No.:	MJ058		
Matri	x: (soil/water)	WATER	Lab S	ample ID:	0206	19-02		
Sampl	e wt/vol:	5.000 (g/mL) ML	Lab F	ile ID:	Q264	5		
Level	: / (low/med)	LOW	Date 1	Received:	06/2	1/02		
% Moi:	sture: not dec.		Date 2	Analyzed:	08/09	9/02		
GC Co	lumn: RTX-624	ID: 0.25 (mm)	Dilut	ion Facto	r: 1.0)		
Soil B	Extract Volume:	(uL)	Soil A	Aliquot V	olume	n P	(uL)
,	CAS NO.	COMPOUND	CONCENTRATIO			Q	REV	QUATI CODE
	123-91-1	1,4-Dioxane			0.100	U	U	

MW SAMPLE NO.

-Lab Name: CEIMIC CORP	Contract: MONTGOMERY MJ060	
Lab Code: CEIMIC Case No.: BOEING	SAS No.: SDG No.: MJ058	•
Matrix: (soil/water) WATER	Lab Sample ID: 020619-03	
Sample wt/vol: $5.000 (g/mL) ML$	Lab File ID: P3035	
Level: (low/med) LOW	Date Received: 06/21/02	
% Moisture: not dec.	Date Analyzed: 07/03/02	
GC Column: DB624 ID: 0.20 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q Rev	
95-47-6	chloroethane 5 U U Chloroethane 5 U U Chloroethane 5 U Ch	

VOLATILE ORGANICS ANALYSIS DATA SHEET MJ060 -Lab Name: CEIMIC CORP Contract: MONTGOMERY Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058 Matrix: (soil/water) WATER Lab Sample ID: 020619-03 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: Q2647 Level: (low/med) LOW Date Received: 06/21/02 % Moisture: not dec. Date Analyzed: 08/09/02 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L REV QUAL QUAL CODE

123-91-1-----1,4-Dioxane

FORM 1

0.100 U

U

MW SAMPLE NO.

1:1.

MW SAMPLE NO.

MJ060 -Lab Name: CEIMIC CORP Contract: MONTGOMERY Lab Code: CEIMIC Case No.: BOEING SAS No.: SDG No.: MJ058 Matrix: (soil/water) WATER Lab Sample ID: 020619-03 Sample wt/vol: 5.000 (g/mL) ML Lab File ID: P3035 Level: (low/med) LOW Date Received: 06/21/02 % Moisture: not dec. Date Analyzed: 07/03/02 GC Column: DB624 ID: 0.20 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: REV IQUAL CAS NO. COMPOUND (ug/L or ug/Kg) UG/L QUAL CODE 5 U 5 U

1 /2 02 1	vinyi chiiorido	J	10	1 [
	Bromomethane	.5	U		
	Chloroethane	5	U		
67-64-1		29	В	UJ	B
75-35-4	1,1-Dichloroethene	5	U	Ü	
75-09-2	Methylene Chloride	_ 20	В	UJ	13
75-15-0	Carbon Disulfide	5	U	()	,
	trans-1,2-Dichloroethene	5	U		
	1,1-Dichloroethane	5	U		
	2-Butanone	10	U		
156-59-2	cis-1,2-Dichloroethene	5	U		
	1,2-Dichloroethene (total)	10	U		
	Chloroform	5	ע		
71-55-6	1,1,1-Trichloroethane	5	U		
	Carbon Tetrachloride	5	U		
	1,2-Dichloroethane	5	U		
71-43-2		5	U		
	Trichloroethene	5	U		
78-87-5	1,2-Dichloropropane	5	U		
	Bromodichloromethane	5	U		
10061-01-5	cis-1,3-Dichloropropene	5	ע		
108-88-3	Toluene	5	U		
10061-02-6	trans-1,3-Dichloropropene	5	U		
79-00-5	1,1,2-Trichloroethane	5	U		
127-18-4	Tetrachloroethene	5	U		
108-10-1	4-Methyl-2-Pentanone	10	ן ט		
591-78-6	2-Hexanone	10	ן ט		
	Dibromochloromethane	5	ן ט		
	Chlorobenzene	5	U		
100-41-4	Ethylbenzene	5	U		
	Xylenes (total)	15	ן ט	-	
	m,p-Xylenes	10	U -	V	
				•	
. A the second s	Administration of the state of			(1)	·

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V¹

SDG: MC047 Matrix: Water

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

<u>Date Reviewed</u>: 01/08/03 <u>Reviewer</u>: S. Boehnke

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC047

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed by both field and laboratory personnel. Sample receipt information was recorded on the COC. The VOC sample vials were received intact. Custody seals were present and intact on the cooler. The cooler temperature was recorded as 12°C, outside the temperature limits of 4 ± 2°C. The analysis of the sample was performed within 14 days of sample collection.	All nondetect sample results were qualified as estimated, "UJ."
4. Method Blanks	One method blank was analyzed with this SDG. No target compounds were detected in the method blank.	No qualifications were required.
5. LCS/BS	One LCS/LCSD pair was analyzed with this SDG. Spike compounds were recovered within the QC limits.	No qualifications were required.
6. Surrogates	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.

Project: Rocketdyne SDG: MC047 Analysis: VOA

		Findings	Qualifications
8.	Field QC Samples ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at 2µg/L, each. Chloroform was not reported in the site sample in this SDG.	No qualifications were required.
9.	Other	TICs were not provided with the sample in this SDG.	No qualifications were required.
Co	mments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.:

20674

Matrix:

Water

Analyst:

JTS/CP

Date Sampled:

06/10-12/02

Date Received:

06/14/02

Date Analyzed:

06/17/02

Batch Number:

M48260W749

	Sample ID:	Blank	MC047	rci	qua
Compounds	RL	μg/L	μg/L	qual	code
cis-1,3-Dichloropropene	0.5	ND	ND	US	*1
trans-1,3-Dichloropropene	0.5	ND	ND		
Diisopropyl Ether (DIPE)	5.0	ND	ND		
Ethylbenzene	0.5	ND	ND		
Ethyl tert-Butyl Ether (EtBE)	5.0	ND	ND		
Hexachlorobutadiene	0.5	ND	ND		
2-Hexanone	10	ND	ND		
Isopropylbenzene	0.5	ND	ND		
p-Isopropyltoluene	0.5	ND	ND		
Methylene chloride	50	ND	ND		
4-Methyl-2-pentanone	5.0	ND	ND		
Methyl-tert-butyl ether (MtBE) 1.0	ND	ND		
Naphthalene	0.5	ND	ND		
n-Propylbenzene	0.5	ND	ND		
Styrene	0.5	ND	ND		
1,1,1,2-Tetrachloroethane	0.5	ND	ND		
1,1,2,2-Tetrachloroethane	1.0	ND	ND		
Tetrachloroethene	0.5	ND	ND		
Toluene	0.5	ND	ND		
1,2,3-Trichlombenzene	0.5	ND	ND		
1,2,4-Trichlorobenzene	0.5	ND	ND	The state of the s	
1,1,1-Trichloroethane	0.5	ND	ND		
1,1,2-Trichloroethane	0.5	ND	ND		
Trichloroethene	0.5	ND	ND		
1,2,3-Trichloropropane	0.5	ND	ND		
Trichlorofluoromethane	0.5	ND	ND		
Trichlorotrifluoroethane	5.0	ND	ND		
1,2,4-Trimethylbenzene	0.5	ND	ND		
1,3,5-Trimethylbenzene	0.5	ND	ND		
Vinyl chloride	0.5	ND	ND		
Xylenes, m-,p-	1.0	ND	ND		
Xylene, o-	0.5	ND	ND		

Surrogates (% recovery) Limits: 70 - 130

Sample ID:	Blank	MC047
Dibromotluoromethane	101	99
Toluene-d8	98	99
Bromofluorobenzene	101	102

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: 20674 Water

Analyst:

JTS/CP

Date Sampled:

06/10-12/02

Date Received:

06/14/02 06/17/02

Date Analyzed: Batch Number:

M48260W749

	Sample ID:	Blank	MC047	rev	, 5	Pera	7_		 		
Compounds	RL	μg/L	μg/L	qual	0	Cod	No.				
Acetone	50	ND	ND	US	*	1					
tert-Amyl Methyl Ether (T	AME) 5.0	ND	ND			*					
Benzene	0.5	ND	ND								
Bromobenzene	1.0	ND	ND			! ::::::::					
Bromochloromethane	1.0	ND	ND								
Bromodichloromethane	0.5	ND	ND								
Bromoform	0.5	ND	ND					 	 	 	

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ND

ND

ND

ND

ND

ND

ND

ND

ND

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

trans-1,2-Dichloroethene 1,2-Dichloropropane

ND

ND

ND

ND

ND

ND

ND

ND

ND

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V1

SDG: MC093 Matrix: Water

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

<u>Date Reviewed</u>: 01/08/03 <u>Reviewer</u>: S. Boehnke

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC093

Data Validation Findings

	Findings	Qualifications	
1. Sample Management	The COC was signed by both field and laboratory personnel. Sample receipt information was recorded on the COC. The VOC sample vials were received intact. The cooler temperature was recorded as 4°C, within the temperature limits of 4 ± 2°C. No custody seal information was provided by the laboratory. The analysis of the sample was performed within 14 days of sample collection.	No qualifications were required.	
4. Method Blanks	One method blank was analyzed with this SDG. No target compounds were detected in the method blank.	No qualifications were required.	
5. <u>LCS/BS</u>	One LCS/LCSD pair was analyzed with this SDG. Spike compounds were recovered within the QC limits.	No qualifications were required.	
6. <u>Surrogates</u>	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.	
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.	

Project: Rocketdyne SDG: MC093 Analysis: VOA

		Findings	Qualifications
8.	Field QC Samples ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at $2\mu g/L$, each. Chloroform was not reported in the site sample in this SDG.	No qualifications were required.
9.	Other	TICs were not provided with the sample in this SDG.	No qualifications were required.
Co	mments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: 21172

Analyst:

Water ZL Date Sampled:

10/03/02

Date Received:

10/04/02

Date Analyzed:

10/04-07/02

Batch Number:

MS48260W2893

	Sample ID:	Blank	MC093	rev	guo)
Compounds	RL	μg/L	μg/L	gual	codo
Acetone	50	ND	ND	UU	
tert-Amyl Methyl Ether (TAMI	∃) 5.0	ND	ND		
Benzene	0.5	ND	ND		
Bromobenzene	1.0	ND	ND		
Bromochloromethane	1.0	ND	ND		
Bromodichloromethane	0.5	ND	ND		
Bromoform	0.5	ND	ND		
Bromomethane	0.5	ND	ND		
tert-Butanol (TBA)	10	ND	ND		
2-Butanone (MEK)	10	ND	ND		
n-Butylbenzene	0.5	ND	ND	GBAY Annya	
sec-Butylbenzene	0.5	ND	ND		
tert-Butylbenzene	0.5	ND	ND	and the same of th	
Carbon disulfide	10	ND	ND		
Carbon tetrachloride	0.5	ND	ND		
Chlorobenzene	0.5	ND	ND		
Chloroethane	0.5	ND	ND		
Chloroform	0.5	ND	ND		
Chloromethane	0.5	ND	ND		
2-Chlorotoluene	0.5	ND	ND		
4-Chlorotoluene	0.5	ND	ND		
Dibromochloromethane	0.5	ND	ND		
1,2-Dibromoethane	0.5	ND	ND		
1,2-Dibromo-3-chloropropan		ND	ND		
Dibromomethane	0.5	ND	ND		
1,2-Dichlorobenzene	0.5	ND	ND		
1,3-Dichlorobenzene	0.5	ND	ND		
1,4-Dichlorobenzene	0.5	ND	ND		
Dichlorodifluoromethane	0.5	ND	ND	odenselv	
1,1-Dichloroethane	0.5	ND	ND		
1,2-Dichloroethane	0.5	ND	ND		
1,1-Dichloroethene	0.5	ND	ND		
cis-1,2-Dichloroethene	0.5	ND	ND		
trans-1,2-Dichloroethene	0.5	ND	ND		
1,2-Dichloropropane	0.5	ND	ND		
1,3-Dichloropropane	0.5	ND	ND		
2,2-Dichloropropane	0.5	ND	ND		
1,1-Dichloropropene	0.5	ND	ND	\mathcal{U}	

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.:

21172 Water

Matrix: Analyst:

ZL

Date Sampled:

10/03/02

Date Received:

10/04/02

Date Analyzed:

10/04-07/02

Batch Number:

MS48260W2893

Sample ID: **Blank** MC093 μg/L μg/L Compounds RL cis-1,3-Dichloropropene 0.5 ND ND trans-1,3-Dichloropropene ND ND 0.5 Diisopropyl Ether (DIPE) 5.0 ND ND Ethylbenzene 0.5 ND ND Ethyl tert-Butyl Ether (EtBE) ND ND 5.0 ND Hexachlorobutadiene 0.5 ND 2-Hexanone 10 ND ND 0.5 ND ND Isopropylbenzene ND 0.5 ND p-Isopropyltoluene 50 ND Methylene chloride ND 4-Methyl-2-pentanone 5.0 ND ND ND Methyl-tert-butyl ether (MtBE) 1.0 ND ND 0.5 ND Naphthalene n-Propylbenzene 0.5 ND ND Styrene 0.5 ND ND 1,1,1,2-Tetrachloroethane 0.5 ND ND 1.0 ND ND 1,1,2,2-Tetrachloroethane Tetrachloroethene 0.5 ND ND 0.5 ND ND Toluene 0.5 ND ND 1.2.3-Trichlorobenzene 1,2,4-Trichlorobenzene 0.5 ND ND 0.5 ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane 0.5 ND ND Trichloroethene 0.5 ND ND 0.5 ND ND 1,2,3-Trichloropropane Trichlorofluoromethane 0.5 ND ND: Trichlorotrifluoroethane 5.0 ND ND 1,2,4-Trimethylbenzene 0.5 ND ND ND ND 1,3,5-Trimethylbenzene 0.5 ND ND. 0.5 Vinyl chloride 1.0 ND ND Xylenes, m-,p-0.5 ND ND Xylene, o-

Surrogates (% recovery) Limits: 70 - 130

Sample ID:	Blank	MC093
		101
Toluene-d8	98	97
		95

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MJ047
Matrix: Water

No. of Samples: 9

Date Reviewed: July 18, 2002

Reviewer: A. Lang

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ047, MJ048, MJ049, MJ050, MJ052, MJ053, MJ054, MJ055, MJ056

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC matched the samples and accounted for the analysis. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3. Method Blanks	Metals were not detected in the method blank associated with the samples in this SDG.	No qualifications were required.
5. LCS/BS	One aqueous LCS sample was analyzed with the samples. The recoveries were within the laboratory defined QC limits.	No qualifications were required.
6. <u>Duplicates</u>	None.	No qualifications were required.
7. MS/MSDs	None.	No qualifications were required.
9. ICP Serial Dilution	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ047 Analysis: Metals

	Findings	Qualifications
10. Other	None.	No qualifications were required.
11. Field QC Samples FB: MJ055 ER: MJ056	Metals were not detected in the field QC samples.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-01

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation few Just
Calcium	0618	22	
		82	5
Magnesium	0618	20	5
Potassium	0618	ND	5 //
Sodium	0618	71	5 W

ND = Not Detected

AMEC VALIDATED

LEVELV

Reported by:	Ce)		W.P	197
Reported by:		Approved by:	101	101

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-02

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Preparation Batch	Sample Concentration		Quantitatio Limit	on hw Qual	Qual
0618	85	t	5		
0618	25		5		
0618	ND		5	.,	
0618	80		5	u	
	Batch 0618 0618 0618	Batch Concentration 0618 85 0618 25 0618 ND	0618 85 0618 25 0618 ND	Batch Concentration Limit 0618 85 5 0618 25 5 0618 ND 5	Batch Concentration Limit Revenue 0618 85 5 0618 25 5 0618 ND 5

ND = Not Detected

AMEC VALLDAILD

LEVELV

Reported by:

Approved by:

BP

188

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-03

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation Rw- Qual Limit Qual bale
Calcium	0618	106	5
Magnesium	0618	35	5
Potassium	0618	ND	5 14
Sodium	0618	76	5

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:	Approved by:	BP	189
--------------	--------------	----	-----

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-04

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation for Gual Limit Gual Colle
Calcium	0618	57	5
Magnesium	0618	32	5
Potassium	0618	ND	5 (1)
Sodium	0618	67	5 W

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:	(h	<u> </u>	Approved by:	BP	19	1)
							7-

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-06

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation Rw Just Limit Lual Cock
Calcium	0618	140	-
Magnesium	0618	46	5
Potassium	0618	ND	5 //
Sodium	0618	97	5 W

ND = Not Detected

LEVELV

AMEC VALIDATED

Reported by:

191

Corporation

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-07

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation for Sund Code
Calcium	0618	200	5
Magnesium	0618	83	5
Potassium	0618	8	5
Sodium	0618	95	5

LWELV

AMEC VALIDATED

Reported by:	Approved by:	BP	192
* * *	ripproved by.	, ,,	T 0 12

Corporation
"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-08

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation Batch	Sample Concentration	Quantitation for Lyaf Limit Sunt Socie
Calcium	0618	77	
Magnesium	0618	24	5
Potassium	0618	ND	5 (4
Sodium	0618	106	5 W

ND = Not Detected

AMEC VALIDATED

Reported by:	<u>(1)</u>	Approved by:	BP	193
		* · · · · · · · · · · · · · · · · · · ·		

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-09

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation	Sample	Quantitation for Qual
	Batch	Concentration	Limit for Qual Colle
Calcium	0618	ND	5
Magnesium	0618	ND	5
Potassium	0618	ND	5
Sodium	0618	ND	5

ND = Not Detected

AMEC VALIDATED

Reported by:

Approved by: $\beta \rho$

"Analytical Chemistry for Environmental Management"

TOTAL METALS SW846 METHOD 6010A

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Aqueous

Laboratory ID: 020581-10

Date Analysis Completed: 06/18/02

Concentration in: mg/L (ppm)

Target Analyte	Preparation	Sample	Quantitation Bur Qual
	Batch	Concentration	Limit Qual Code
Calcium Magnesium Potassium Sodium	0618 0618 0618 0618	ND ND ND ND	5 LL 5 5

ND = Not Detected

LEVELV

AMEC VALIDATED

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MJ058
Matrix: water
No. of Samples: 3

Date Reviewed: November 12, 2002

Reviewer: P. Meeks

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ058, MJ059, MJ060

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC accounted for the samples in this SDG. Metals analyses were not requested on the COC for the samples in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included calcium magnesium, potassium, and sodium. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3. Method Blanks	Sodium was detected in the method blank at $67.800~\mu.g/L$.	No qualifications were required.
5. <u>LCS/BS</u>	One aqueous LCS sample was analyzed with the sample. The recoveries were within the control limits of 80-120%.	No qualifications were required.
6. <u>Duplicates</u>	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ058 Analysis: Metals

	Findings	Qualifications
7. MS/MSDs	None.	No qualifications were required.
9. ICP Serial Dilution	None.	No qualifications were required.
10. Other	None.	No qualifications were required.
11. <u>Field QC Samples</u> FB: MJ055 ER: MJ059, MJ060	Calcium magnesium, potassium, and sodium were not detected in the field QC samples at sufficient concentrations to qualify MJ058.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

TOTAL METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.	
MJ058		

Contract: Boeing SSFL

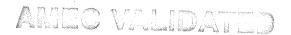
Lab Code: CRIMIC Case No.: 020619

SAS No.:

SDG NO.: MJ058

fatrix (soil/water):WATER

Lab Sample ID: 020619-01


Level (low/med): LOW

Date Received: 06/21/02

s Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): μG/L

CAS No.	Analyte	Concentration	C	Q	м	Ru Qual	Qual Code
7440-70-2	Calcium	32100			P		
7439-95-4	Magnesium	22100			P]	
7440-09-7	Potassium	5510			P	1	
7440-23-5	Sodium	178000			P	Ī	

Color Before: COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

Ceimic

TOTAL METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMPLE	NO.
мJ059	

Contract: Boeing SSFL

CRIMIC Lab Code:

Level (low/med): LOW

Case No.: 020619

SAS No.:

MJ058 SDG NO.:

Matrix (soil/water): WATER

Lab Sample ID: 020619-02

% Solids: 0.0

Date Received: 06/21/02

Concentration Units (ug/L or mg/kg dry weight): μ G/L

CAS No.	Analyte	Concentration	С	Q	М	Rev	Qual Code
7440-70-2	Calcium	68.9	ט		P	ľV	
7439-95-4	Magnesium	117	В		P	_	
7440-09-7	Potassium	371	В		P	<u> </u>	
7440-23-5	Sodium	975	В		P	_	1

Color Before:

COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

Ceimic

TOTAL METALS

INORGANIC ANALYSIS DATA SHEET

SAMPLE NO. MJ060

Contract: Boeing SSFL

Lab Code: CEIMIC Case No.: 020619

SAS No.:

SDG NO.: MJ058

fatrix (soil/water):WATER

Lab Sample ID: 020619-03

Level (low/med): LOW

Date Received: 06/21/02

Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	C	Q	М	Rev Qual	Code
7440-70-2	Calcium	73.7	В		P		
7439-95-4	Magnesium	107	В		P	ļ	
7440-09-7	Potassium	232	В		P	<u> </u>	
7440-23-5	Sodium	561	В		P	_	

Color Before:

COLORLESS

Clarity Before:

CLEAR

Texture:

Color After:

COLORLESS

Clarity After:

CLEAR

Artifacts:

Comments:

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MJ093
Matrix: water
No. of Samples: 1

Date Reviewed: November 27, 2002

Reviewer: P. Meeks

Reference: USEPA SW-846 Methods 3050B, 6010B

Samples Reviewed: MJ093

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The coolers were received within the temperature QC limits of 4°±2° C. The COC matched the sample. Only calcium, potassium, magnesium, and sodium were requested on the COC, but the laboratory reported 21 additional metals. No custody seals were present on the coolers. The analysis was performed within the 6 month holding time for metals.	No qualifications were required.
3.	Method Blanks	Selenium was detected in the method blank at a concentration greater than the CRDL. Additionally, the reviewer noticed that boron and thallium were detected in CCB1 at 64.9020 and 5.3100 µg/L, respectively.	Boron and thallium detected in the sample were qualified "UJ." As selenium was not detected in the sample, no further qualifications were required.
5.	LCS/BS	One solid LCS sample was analyzed with the sample. Boron and molybdenum were not spiked into the LCS.	No qualifications were required.
6.	<u>Duplicates</u>	None.	No qualifications were required.
7.	MS/MSDs	None.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: Metals

	Findings	Qualifications
9. ICP Serial Dilution	None.	No qualifications were required.
10. Other	None	No qualifications were required.
11. Field QC Samples FB: MJ055 (SDG MJ047) ER: MJ056 (SDG MJ047),	The field QC samples were analyzed only for calcium, potassium, magnesium, and sodium. There were no detects for these analytes in the field QC samples. No assessment was made with respect to the remaining 21 metal analytes.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

USEPA - CLP -1-

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: Cemec Laboratories Contract: Rocketdyne Lab Code: CTIC Case No.: 021006 SAS No.: SDG No.: M3093 Matrix (Soil Water): WATER Lab Sample ID: 021006-01 Level (low/ms: LOW Date Received: 10/4/2002 % Solids: 0.: Concentration Units (ug/L or mg/kg dry weight): UG/L								MJ	093
Matrix (soil water): WATER	ab Name: Ce	c Laboratories	Contr	act: Rocketdyr	ıe				
Date Received: 10/4/2002 No. Date Received: 10/4/2002 Date Re	ab Code: CIT	Case No.:	<u>021006</u> SA	AS No.:		SDG N	· · ·	MJ093	
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No.	atrix (soil 🖘	cer): WATER		Lab Sample I	D:	02100	6-01		_
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q M Qual Qua				Date Receive	d:	10/4/	2002		
Concentration Units (ug/L or mg/kg dry weight): UG/L CAS No. Analyte Concentration C Q M Garat	3/61 (10W/III	HOW							_
CAS No. Analyte Concentration C Q M Qual C Q Q M Qual C	Solids: 0.1	***************************************							
T440-36-0		Concentrati	ion Units (ug/	L or mg/kg dry	weig	ght):			1
T440-36-0		CAS No.	Analyte	Concentration	С	Q	М	[Rev Qual	Code
T440-38-2 Arsenic 6.0 B P		7429-90-5	Aluminum	370					
T440-39-3 Barium S1 B		7440-36-0	Antimony	1.8			P	ĪΟ	Decoration of the second
T440-41-7 Beryllium		7440-38-2	Arsenic	6.0	1		P	_	
T440-42-8 Boron 110 B P U T440-43-9 Cadmium 0.35 U P U T440-70-2 Calcium 57000 P T440-48-4 Cobalt 3.3 U P T440-50-8 Copper 8.7 U P T439-89-6 Iron 1100 P T439-92-1 Lead 1.8 U P T439-95-4 Magnesium 16000 P T439-97-6 Mercury 0.040 U AV T439-98-7 Molybdenum 8.8 U P T440-02-0 Nickel 7.3 U P T440-09-7 Potassium 3400 B P T782-49-2 Selenium 3.7 U P T7440-22-4 Silver 6.1 U P T7440-23-5 Sodium 130000 P T440-28-0 Thallium 3.1 B P T7440-66-6 Zinc 36 P T840-66-6 Zinc 36 P		7440-39-3	Barium					<u> </u>	
T440-43-9 Cadmium		7440-41-7	Beryllium	0.48			•	<u>-</u> :	
T440-70-2 Calcium 57000 P		7440-42-8	Boron	110	-		<u> </u>	<u>-</u> :	B
		7440-43-9	Cadmium	0.35	שן	<u> </u>	P	ĮΟ	ma-remote (SSA)
7440-48-4		7440-70-2	Calcium	57000	<u> </u>			<u> </u>	TOTAL PROGRAMMENT
Taylor T		7440-47-3	Chromium			<u> </u>		10	meli's dribuns vischilia
Taylor T		7440-48-4	Cobalt	<u> </u>		<u> </u>	-	! /	old 2-b b b b b b b b b b b b b b b b b b b
T439-92-1		7440-50-8	Copper		Ιū			<u> </u>	
7439-95-4 Magnesium		7439-89-6	Iron		1	<u> </u>		<u> </u>	
T439-96-5 Manganese					Ιυ	<u> </u>	:	! 🖰	
7439-97-6 Mercury 0.040 U AV U 7439-98-7 Molybdenum 8.8 U P V Y Y Y Y Y Y Y Y Y		7439-95-4		<u></u>	 	<u> </u>	:	<u> </u>	nde alaman (), dels () ()
Taylor T					1	<u> </u>	•	 	.)./ Chicago
7440-02-0						<u> </u>		14	100 C C C C C C C C C C C C C C C C C C
7440-09-7						<u> </u>		-	
7782-49-2 Selenium 3.7 U P U 7440-22-4 Silver 6.1 U P U						1	; 		
7440-22-4 Silver 6.1 U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U P U U			<u> </u>	<u>. '</u>	!	<u> </u>	<u> </u>	_ - 1 1	
7440-23-5 Sodium 130000 P P			!		_ -	<u> </u> 	<u> </u>	_	A COLUMN TO THE PROPERTY OF TH
7440-28-0					10	<u> </u>	:		ALL AND AND AND AND AND AND AND AND AND AND
7440-62-2			<u> </u>		I IB	<u> </u>		<u> </u> (R
7440-66-6 Zinc 36 P			<u> </u>			<u> </u>		_	
7440-00-0 DING		<u> </u>	<u> </u>		1	<u> </u> 		1	
Color Before Clarity Before: Texture:		7440-66-6	Zine] 30		<u>!</u>	1 -	_!	
Color Before Clarity Before: Texture:									
	Color Before	Cla	arity Before:		- T	extare	•		
Color After: Clarity After: Artifacts:	Color After:	Cla	arity After:		- A	rtifac	ts:		
Comments:	Comments:	AMEC VA						- 1	

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Metals by Method ILM04

QC Level: V¹
SDG: MC093
Matrix: Water
No. of Samples: 1

REs/DLs: 0

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The sample was received with temperatures within the QC limits of $4^{\circ}\pm 2^{\circ}$ C. The COC matched the sample and accounted for the analyses. No custody seals information was provided by the laboratory. Analyses were performed within the holding times.	No qualifications were required.
3. Method Blanks	One water method blank was analyzed with this SDG. There were no detects in the method blank.	No qualifications were required.
4. <u>LCS/BS</u>	An aqueous LCS sample was analyzed with the sample. The recoveries for all analytes were within the laboratory-established QC limits.	No qualifications were required.
6. MS/MSDs	No MS/MSD analyses were performed in association with the sample in this SDG.	No qualifications were required.
7. Field QC Samples ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	There were no detects in MJ055 or MJ056.	No qualifications were required
8. Other	None	No qualifications were required.

Project: Rocketdyne SDG: MC093 Analysis: MM

	Findings	Qualifications
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Metals

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No:

21172 Water

Matrix:

Analyst: TLR/GF

Date Sampled:

10/03/02 Date Received:

Date Digested:

10/04/02

Date Analyzed:

10/07/02 10/07/02

Batch Number:

6010W2531

	S	ample ID:	Blank	MC093	Rev	Qua
Element	Method #	RL	mg/L	mg/L	Qual	Code
Calcium	6010B	2.0	ND	60	and the second s	
Magnesium	6010B	0.20	ND	15		
Sodium	6010B	0.20	ND	130		
Potassium	6010B	0.25	ND	3.2		

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MJ047

Matrix: Soil

No. of Samples: 10
Date Reviewed: July 18, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ047, MJ048, MJ049, MJ050, MJ052, MJ053, MJ054, MJ055, MJ056, MJ057

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. COC matches samples and accounts for analyses. Custody seals were not present on the cooler. Holding times were met.	No qualifications were required.
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. LCS/BS	All recoveries were within the control limits of 87-110% for perchlorate and 80-120% for chloride, sulfate, and alkalinity. Not applicable to total dissolved solids.	No qualifications were required.
6. <u>Duplicates</u>	Not performed.	No qualifications were required.
7. MS/MSDs MJ047 – perchlorate only	The RPD was less then 20% and the recoveries were within 75-125%.	No qualifications were required.
10. <u>Other</u>	None	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ056 FB: MJ055 Field duplicates: none	Total dissolved solids were reported in the equipment rinsate at 914 mg/L.	Total dissolved solids detected in the site samples were qualified as estimated, "J."
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

T702WC5 1 Revision 0

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte		Quol Result	Units	Method Reporting Limit	Date Date Prep'd Analyze	d
Chloride Sulfate	A CONTRACTOR OF THE PARTY OF TH	39.50 121.69	mg/L mg/L	5.0 5.0	06/19/99 06/19/9 06/19/99 06/19/9	

AMEC VALIDATED

	1	5		
Reported by:				

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-02

Target Analyte Ren Qual Ce	sal Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride	38.23	mg/L	5.0	06/19/99	06/19/99
Sulfate	120.79	mg/L	5.0	06/19/99	06/19/99

ANEC VALIDATED

Reported by: _

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate		Charles were controlled to the charles were controlled to the	40.27 189.57	mg/L mg/L	5.0 5.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

	Case	75	
Reported by: _		 U	

Approved by:	AL.
11 /	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	fer Qual	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate			47.86 135.43	mg/L mg/L	5.0 5.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

	15	
Reported by:	<u> </u>	

Approved by	y:	M	
		······································	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-06

Target Analyte	Per Qual	Rud	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate		General transmission	71.00 300.54	mg/L mg/L	10.00 10.00	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

Reported by:

Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte	Per Qual Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Chloride Sulfate		76.44 556.22	mg/L mg/L	10.0 10.0	06/19/99 06/19/99	06/19/99 06/19/99	_

AMEC VALIDATED

	← ← ← 		
Reported by:	`\		

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-08

Target Analyte	Rev Qual Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride		44.72	mg/L	10.0	06/19/99	06/19/99
Sulfate		153.91	mg/L	10.0	06/19/99	06/19/99

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-09

Target Analyte	Rev Qual	Qual Cods	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate	1	nick General von der State	ND ND	mg/L mg/L	0.200 0.200	06/19/99 06/19/99	06/19/99 06/19/99

ND = Not Detected

_ inggeneration and a state of the control of the c

AMEC VALIDATED

Reported by:	Approved by:	M_
	* t	

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-10

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate	√		ND ND	mg/L mg/L	0.100 0.100	06/19/99 06/19/99	06/19/99 06/19/99

-ND = Not Detected.

and the second s

AWEC VALIDATED

Reported by:

Corporation"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES EPA 300.0 A

Client: Montgomery Watson

Client Sample ID: MJ057

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-11

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Chloride Sulfate			76.82 221.20	mg/L mg/L	10.0 10.0	06/19/99 06/19/99	06/19/99 06/19/99

AMEC VALIDATED

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-01

Target Analyte	lw Wal	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		254 254 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

	The Carlo	VAL			ŒŪ
--	-----------	-----	--	--	----

Reported by: B. R. Muk_ Approved by: _____

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-02

Target Analyte	fer Qual	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		285 285 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

ANEC VALIDATED

Reported by:	B. R. Mruk	Approved by:	n	
La Low VI Kill Low				

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Pur Qual Co	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity	U	301	mg/L	2.0	06/22/02	06/22/02
Bicarbonate		301	mg/L	2.0	06/22/02	06/22/02
Carbonate		ND	mg/L	2.0	06/22/02	06/22/02

ND = Not Detected

awec validated

Reported by: B. Pumul Approved by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	ew Qual	Qual Result	Units	Method Reporting Limit	Date Date Prep'd Analyzed	l
Alkalinity Bicarbonate Carbonate	U	282 282 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/0 06/22/02 06/22/0 06/22/02 06/22/0	2

ND = Not Detected

AMEC VALIDATED

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ052

Date Sampled: 06/11/02

Laboratory ID: 020581-06

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Reval	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		340 340 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AW		VA			A	TE	
----	--	----	--	--	---	----	--

Approved by: ____

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte	Pur	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U		311 311 ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

Reported by: B. R. MWK

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ054

Date Sampled: 06/12/02

Laboratory ID: 020581-08

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	lw Qual	Qual Resul	t Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	U	288 288 ND	mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

distribution of the second				
Reported by:	B. Panruk	Approved by:	N	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Ru	and Re	esult	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	J		ND ND ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AMEC VALIDATED

Kan Anna V Ban Am V

Reported by: B. RuMuk

Approved by: ____

Laboratory ID: 020581-09

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ056

Date Sampled: 06/13/02

Laboratory ID: 020581-10

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Poul	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	V V	Code	ND ND ND	mg/L mg/L mg/L	2.0 2.0 2.0	06/22/02 06/22/02 06/22/02	06/22/02 06/22/02 06/22/02

ND = Not Detected

AWEC VALIDATED

Reported by: B. Ru Mulc

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Wat	mery Watson
------------------------	-------------

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	; J	F	481	mg/L	10	06/18/02	06/19/02
		•					

Reported by: _______

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ048

Date Sampled: 06/10/02

Laboratory ID: 020581-02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	ew Qual	Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	; J	F	481	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

V Same Name V

Reported by: $\beta \rho$

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ049

Date Sampled: 06/10/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-03

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	Start of the Control		589	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

Reported by:	3P	Approved by:	<u>Il</u>
--------------	----	--------------	-----------

Corporation

"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ050

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-04

Target Analyte	Rw Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Total Dissolved Solids	J		561	mg/L	10	06/18/02	06/19/02	•

AMEC VALIDATED

•		
Reported by:BP	Approved by:	

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ052

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-06

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	U	ND	mg/L	10	06/18/02	06/19/02

ND = Not Detected

a elemente semblio de la companio del companio de la companio dell

ANEC VALIDATED

Reported by:	BP	Approved by:	IN
			V

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ053

Date Sampled: 06/11/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-07

Target Analyte Rev	(Od)	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids J	grandina grandina	1241	mg/L	01	06/18/02	06/19/02

AMEC VALIDATED

Reported by: 58	Approved by:	M

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ054

Date Sampled: 06/12/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-08

Target Analyte	Ru Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	J	groups and the same of the sam	550	mg/L	10	06/18/02	06/19/02

AMEC VALIDATED

Maria David (Maria Maria) L	w o		, In	
Reported by:	BP	Approved by:		

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson

Client Sample ID: MJ055

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-09

Target Analyte	Rev Qual	Qual Res	sult	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Total Dissolved Solids	v	1	ND	mg/L	10	06/18/02	06/19/02

ND = Not Detected

AWEC VALIDATED

Reported by: \mathcal{S}_{ℓ}

Approved by: ____

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ056

Date Sampled: 06/13/02

Laboratory ID: 020581-10

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Total Dissolved Solids	-		914	mg/L	10	06/18/02	06/19/02	

AMEC VALIDATED

Reported by: Approved by:

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ047

Date Sampled: 06/10/02

Laboratory ID: 020581-01

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	and to profit you will the custodial authority published by	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by: ____

Approved by:

309

INORGANIC ANALYTES

Client	Montgomery	Watson

Client Sample ID: MJ048

Date Sampled: 06/10/02

Laboratory ID: 020581-02

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev	Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U		ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgome	ery Watson					
Client Sample ID:	MJ049					
Date Sampled: 06/	ory ID: 020581	-03				
Date Sample Rece	eived: 06/14/	702				
Matrix: Water						
Target Analyte	Rev Qual	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02
ND = Not Detecte	d					TO SERVICE LANGUAGE POR SE
eren (j. 1865) General (j. 1866)	****	** ** <u></u> *	·	_		
	WA.	IDATED V				
Reported by:	P.	2	Ap	proved by:	19	·

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ050

Date Sampled: 06/11/02

Laboratory ID: 020581-04

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	and Code	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U		ND	ug/L	l	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgomery Watson	
Client Sample ID: MJ052	

Date Sampled: 06/11/02 Laboratory ID: 020581-06

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Perchlorate	Ų	ND	ug/L	1	06/27/02	06/27/02	

ND = Not Detected

	VA		i Ka	

R_	
Reported by:	Approved by:

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ053

Date Sampled: 06/11/02

Laboratory ID: 020581-07

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	l	06/27/02	06/27/02

ND = Not Detected

AMEC VALIDATED

Reported by:

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client Sample ID: MJ054

Date Sampled: 06/12/02

Laboratory ID: 020581-08

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rw Qual	aud Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected

ANEC VALIDATED

Reported by: ____

Approved by: ____

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ055

Date Sampled: 06/13/02

Laboratory ID: 020581-09

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rev Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02

ND = Not Detected.

AMEC VALIDATED

Approved by: _____

INORGANIC ANALYTES

Client: Mo	ntgomery	Watson
------------	----------	--------

Client Sample ID: MJ056

Date Sampled: 06/13/02

Date Sample Received: 06/14/02

Matrix: Water

Laboratory ID: 020581-10

Target Analyte	few Ohas	and Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02	

ND = Not Detected

AWEC VALIDATED

Reported by:

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ057

Date Sampled: 06/13/02

Laboratory ID: 020581-11

Date Sample Received: 06/14/02

Matrix: Water

Target Analyte	Rew Qual	Qual Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	
Perchlorate	U	ND	ug/L	1	06/27/02	06/27/02	

ND = Not Detected

AMEC VALIDATED

The second secon

Reported by:

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

OC Level: V¹
SDG: MJ058
Matrix: water
No. of Samples: 3

Date Reviewed: November 12, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ058, MJ059, MJ060

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. The COC accounted for the samples in this SDG. Chloride, sulfate, alkalinity, bicarbonate, and carbonate analyses were not requested on the COC for the samples in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. Custody seals were not present on the cooler. Holding times were met.	No qualifications were required.
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. LCS/BS	All recoveries were within the control limits of 87-110% for perchlorate and 80-120% for the remaining analyses.	No qualifications were required.
6. <u>Duplicates</u>	None performed.	No qualifications were required.
7. MS/MSDs MJ047 – perchlorate only	None performed.	No qualifications were required.

	Findings	Qualifications
10. Other	None	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ059, MJ060 FB: MJ055 Field duplicates: none	Alkalinity, carbonate, and TDS were reported in the equipment rinsates.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ058

Date Sampled: 06/20/02

Laboratory ID: 020619-01

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual
Alkalinity . Bicarbonate Carbonate Total Dissolved Solids	257 257 ND 768.5	mg/L mg/L mg/L mg/L	2.0 2.0 2.0 10	06/29/02 06/29/02 06/29/02 06/25/02	06/29/02 06/29/02 06/29/02 06/26/02	U	

ND = Not Detected

			
	B Pankuli		$V \omega$
Reported by:	D. Pomule	Approved by:	

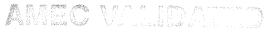
Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ058

Date Sampled: 06/20/02


Laboratory ID: 020619-01

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual Code
Chloride . Sulfate	78.2 233	mg/L mg/L	1 5	07/02/02 07/06/02		•	

	1		
Reported by:	EW	Approved by: BP	

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ059

Date Sampled: 06/19/02

Laboratory ID: 020619-02

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Rew Analyzed Qual
Alkalinity .	20	mg/L	2.0	06/29/02	06/29/02
Bicarbonate	20	mg/L	2.0	06/29/02	06/29/02
Carbonate	ND	mg/L	2.0	06/29/02	06/29/02 ∪ \
Total Dissolved Solids	21	mg/L	10	06/25/02	06/26/02

ND = Not Detected

, max		
Reported by: <u>B. Pa.W.U</u>	Approved by:	<u>EW</u>

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ059

Date Sampled: 06/19/02

Laboratory ID: 020619-02

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev Qual	Qual Code
Chloride Sulfate	ND ND	mg/L mg/L	1 5	07/02/02 07/06/02	07/02/02 07/06/02		

ND = Not Detected

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client	Mon	tgomery	Watson
. ment.	MIOH	DECIME!	TTALDUM

Client Sample ID: MJ059

Date Sampled: 06/19/02

Date Sample Received: 06/21/02

Matrix: Water

Laboratory ID: 020619-02

Commission of the commission of the state of					andre de la digital de la filia de la companya de la filia de la companya de la companya de la companya de la c		
Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rev 1 Qual	Qual Code
Perchlorate	ND ·	ug/L	1	06/27/02	06/27/02	<i>U</i>	i

ND = Not Detected

\sim Ω	15
Reported by:	Approved by:

AMEC VALIDATED

Inorganic Analytes Page 3

LEVEL V.

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ060

Date Sampled: 06/20/02

Laboratory ID: 020619-03

Date Sample Received: 06/21/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date for Analyzed Qual	Qual Code
Alkalinity	20	mg/L	2.0	06/29/02	06/29/02	
Bicarbonate	20	mg/L	2.0	06/29/02	06/29/02	
Carbonate	ND	mg/L	2.0	06/29/02	06/29/02	
Total Dissolved Solids	14	mg/L	10	06/25/02	06/25/02	

ND = Not Detected

3. MUK	Approved by:	W

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ060

Date Sampled: 06/20/02

Date Sample Received: 06/21/02

Matrix: Water

Laboratory ID: 020619-03

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed	Rw Qual	Qua
Chloride . Sulfate	ND ND	mg/L mg/L	1 5	07/02/02 07/06/02	07/02/02 07/06/02		

ND = Not Detected

-1/ \		
Reported by:	Approved by:	BP

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ060

Date Sampled: 06/20/02

Laboratory ID: 020619-03

Date Sample Received: 06/21/02

Matrix: Water

	ent galantes and de comito (1865) de servini (1984) per entre proprieta de comito acomito acomito entre entre e	arvere med a lije i lii 100 der et et elektrijk filmen har blik dit 100 med vil de mediskipe defense f	Method	Date	Date	Per 1	- 90al
Target Analyte	Result	Units	Reporting Limit	Prep'd	Analyzed	Qual	رەم
Perchlorate	ND	ug/L	1	06/27/02	06/27/02	U_	_

ND = Not Detected

\mathcal{M}	15
Reported by:	Approved by:

AMEQ VILLENATED

Inorganic Analytes Page 4

,ю 131

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MJ093
Matrix: water
No. of Samples: 1

Date Reviewed: November 27, 2002

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MJ093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperatures were within the QC limits of 4°±2°C. The COC accounted for the sample in this SDG. Chloride, sulfate, carbonate, bicarbonate, and alkalinity analyses were not requested on the COC for the sample in this SDG. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. Custody seals were not present on the cooler. Holding times were met, except for the seven day holding time for TDS.	The TDS result for MJ093 was qualified "J."
3. Method Blanks	There were no detects in any of the method blanks.	No qualifications were required.
5. LCS/BS	The LCS recoveries were within the laboratory-established control limits, except for TDS, which was recovered at 123%.	The TDS result for MJ093 was qualified "J."
6. <u>Duplicates</u>	None performed.	No qualifications were required.

Project: Rocketdyne SDG: MJ093 Analysis: Gen. Min.

	Findings	Qualifications
7. MS/MSDs	None performed.	No qualifications were required.
10. Other	None	No qualifications were required.
11. Field QC Samples ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	TDS was reported in MJ056 at 914 mg/L.	TDS was qualified as estimated, "J," in MJ093.
Comments	None	None

Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

CEIMIC Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result for God Units	Method Reporting Limit	Date Date Prep'd Analyzed
Perchlorate	ND U ug/L	1	10/07/02 10/07/02

ND = Not Detected

Pais	
Reported by:	Approved by:

ARIEO VALIDATED

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result for Gual	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Sulfate	131.2	mg/L	7.5	10/14/02	10/14/02

Reported by: _	B5		Approved by:	TS	
	AMEC	MALIDATED			

Corporation "Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client: Montgomery Watson

Client Sample ID: MJ093

Date Sampled: 10/03/02

Date Sample Received: 10/04/02

Matrix: Water

Laboratory ID: 021006-01

Target Analyte	Result	Units few Q	Method Reporting Limit	Date Date Prep'd Analyzed
A Harlinia.	283.5	mg/L	ode 2	10/11/02 10/11/02
Alkalinity Chloride	37.2	mg/L	1	10/17/02 10/17/02
Total Dissolved Solids	561	mg/L J H	, L, F 10	10/17/02 10/17/02

Reported by: _	%	Approved by:	17	
	A CONTRACTOR OF THE WAY AND THE WAY			

Local lancing No. Local India V

Corporation
"Analytical Chemistry for Environmental Management"

INORGANIC ANALYTES

Client:	Montgomery	Watson
---------	------------	--------

Client Sample ID: MJ093

Date Sampled: 10/03/02

Laboratory ID: 021006-01

Date Sample Received: 10/04/02

Matrix: Water

Target Analyte	Result	Units	Method Reporting Limit	Date Prep'd	Date Analyzed
Alkalinity Bicarbonate Carbonate	283 283 ND	mg/L ————————————————————————————————————	2 2 2 2	10/11/02 10/11/02 10/11/02	10/11/02 10/11/02 10/11/02

ND = Not Detected

Analysis Not Validated

Reported by:	Approved by:	M	·*- · · · · · · · · · · · · · · · · · ·
--------------	--------------	---	---

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹

SDG: MC047 Matrix: water No. of Samples: 1

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MC047

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperature upon receipt at Centrum Analytical Laboratories was above the QC limits of 4°±2°C. All analyses were subcontracted to other laboratories. Temperature at receipt was not noted for the perchlorate analysis subcontracted to Weck Laboratory. Temperature upon receipt for the remaining analyses was noted to be within the QC limits. The original COC accounted for the sample in this SDG. Chloride, sulfate, carbonate alkalinity, and bicarbonate alkalinity analyses were not requested on the COC. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses. TDS analysis was requested but was not performed as insufficient volume was received.	No qualifications were required.
	No transfer COC was included for the perchlorate analysis. A transfer COC was included for the remaining analyses, but was not legible. No custody seal information was provided by the laboratory. Holding times were met.	

Project: Rocketdyne SDG: MC047 Analysis: Gen. Min.

	Findings	Qualifications
3. Method Blanks	Perchlorate, sulfate, and chloride were not detected in the method blanks. No alkalinity method blanks were analyzed.	No qualifications were required.
5. <u>LCS/BS</u>	Recoveries for perchlorate and sulfate were within the laboratory-established control limits. No LCS was provided for chloride or alkalinity.	Chloride, total alkalinity, bicarbonate alkalinity, and carbonate alkalinity were qualified as estimated, "J," for detects and "UJ," for nondetects.
6. <u>Duplicates</u> MC047 – chloride only	Duplicate analyses were performed for chloride only. The RPD was less than 20%.	No qualifications were required.
7. MS/MSDs MC047 –sulfate only	MS/MSD analyses were performed for sulfate only. The recoveries were within the laboratory-established control limits of 70-130% and the RPD was less than the laboratory-established control limit of 25%.	No qualifications were required.
10. Other	No raw data was provided for any of the analyses in this SDG.	No qualifications were required.
11. <u>Field QC Samples</u> ER: MJ056 FB: MJ055 Field duplicates: none	There were no applicable detects in either of the field QC samples.	No qualifications were required.
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Weck Laboratories, Inc.

Environmental and Analytical Services - Since 1964

Report Date: Friday, June 28, 2002 Received Date: Monday, June 17, 2002

Phone: (909) 779-0310

FAX: (909) 779-0344

Log By: mq Log Time: 11:03

Client: Centrum Analytical Laboratories, Inc.

1401 Research Park Drive Riverside, CA 92507

Attn.: Marilu Escher

Project: Boeing SSFL/20674

P.O. #:

Turnaround Time: Normal

CERTIFICATE OF ANALYSIS

Lab#: A204182-001 Sampled By: Client Sample ID: MCO47

Matrix: Water

Date: 6/10/2002

Time: 10:48

Source: 20674-1

Parameter	Rew	Oud Result	Flag	Units	Dilution Factor	RL	Method	Analyzo	ed	Worksheet #
Perchlorate	U	ND		ug/L	1	3.0	EPA 314	6/24/2002	dc	WS35335

Flags for Data Qualifiers:

✓ Authorized Signature

ELAP # 1132

LACSD # 10143

J = Analyte was detected. However, the analyte concentration is an estimated value, which is between the Method Detection Limit (MDL) and the Pratical Quantitation Limit (PQL).

B = Compound detected in the blank. Sample result equal or less than 10 times the concentration in the blank.

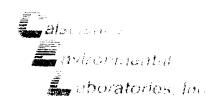
- H = Estimated value, result over the calibration range
- R = Result is suspect, LCS recovery greater than the upper control limit.
- L = Result is suspect, LCS recovery lower than the control limit.
- Q = QC result out of acceptance limits.
- T = Trace detection, detected but below the reporting limit.

Notes

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance. All results are expressed on wet weight basis unless specified.

RL = Reporting Limit.


ND = Not detected, below the reporting limit.

Sub = Subcontracted analysis, original report enclosed.

AME VIEW WALLE

land Value Hair V

Lab#: A204182

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

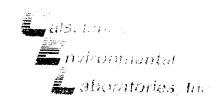
Date Received:

Work Order No:

06/14/02

Preparation:

02-06-0556 N/A


Method:

SM 2320B

Project 20674 / Boeing SSFL

Client Sample Number		Lab Sample Number			Matrix	Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-06	-0556-1		Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units	Rev Qual	Qual		
Alkalinity Total as CaCO3)	250	5.0	1		mg/L	T	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

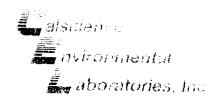
Date Received:

Work Order No:

Preparation: Method:

06/14/02 02-06-0556

N/A


SM 2320B

Project: 20674 / Boeing SSFL

Client Sample Number			b Sample Number	Matrix		Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-0€	3-0556-1		Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1
Parameter	Result	<u>R</u> ı	<u>DE</u>	Qual	Units	Rev Qual	(ode	·	
Bicarbonate (as CaCO3)	250	5.0	1		mg/L	.	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

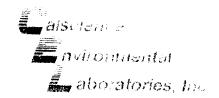
Date Received:

Work Order No:

Preparation:

06/14/02

02-06-0556


N/A SM 2320B

Method:

Project: 20674 / Boeing SSFL

Client Sample Number			b Sample Number		Matrix	Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-06	3-0556-1	Aqueous	06/10/02	N/A	06/14/02	0614AlkDP1	
Parameter	Result	<u>Rl</u>	<u>DF</u>	Qual	<u>Units</u>	Red Qual	Soll.	·····•	
Carbonate	СN	1.0	1		mg/L	V3	L		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside. CA 92507-2111

Date Received:

Work Order No:

02-06-0556

Preparation:

N/A

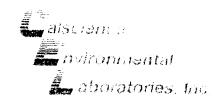
06/14/02

Method:

SM 4500-CI C

Project: 20674 / Boeing SSFL

Page 1 of 1


Client Sample Number			Lab Sample Number			Date Collecte	Date d Prepared	Date Analyzed	QC Batch ID
MC047		02-06	5-0556-1		Aqueous	06/10/02	N/A	06/17/02	0617CICMB1
Parameter	Result	<u>R</u> i.	<u>DF</u>	Qual	Units	// I a	ode		
Chloride	47	2	1		mg/L	J	ere a		
Method Blank		099-0	5-057-1,078		Aqueous	N/A	N/A	06/17/02	0617CICMB1
<u>Parameter</u>	Result	<u>R:</u>	<u>DF</u>	Qua!	Units				
Dhionde	ND	2.0	1		mg/L	*			

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Analysis Not Validated

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

Preparation:

Method:

06/14/02

02-06-0556

N/A EPA 375,4

_ .

Project: 20674 / Boeing SSFL

Client Sample Number			b Sample Number		Matrix	Date Collected	Date Prepared	Date Analyzed	QC Batch ID
MC047		02-06	6-0556-1		Aqueous	06/10/02	N/A	06/16/02	0616SO4MB1
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Units		ode	·	100
Sulfate	150	10	5	Ō	mg/L				
Method Blank		099-0	5-091-1,086		Aqueous	N/A	N/A	06/16/02	0616SO4MB1
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>	All the second s			
luifate	ND	2.0	1		mg/L	*			

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: General Minerals by 300.0M, 310.0, and 2540C

QC Level: V¹
SDG: MC093

Matrix: water

No. of Samples: 1

Date Reviewed: January 08, 2003

Reviewer: P. Meeks

Reference: USEPA Contract Laboratory Program National Functional Guidelines For

Inorganic Data Review (2/94)

Samples Reviewed: MC093

Data Validation Findings

	Findings	Qualifications
1. Sample Management	Temperature upon receipt at Centrum Analytical Laboratories was within the QC limits of 4°±2°C. All analyses were subcontracted to Calscience Environmental Laboratories.	No qualifications were required.
	The original COC accounted for the sample in this SDG. Chloride, sulfate, carbonate alkalinity, and bicarbonate alkalinity analyses were not requested on the COC. A memo from Montgomery Watson personnel dated 06/21/02 alerted the laboratory that the general mineral analyses requested on the COC included these analyses.	
	No transfer COC was included. The Calscience case narrative did not mention any sample receipt problems. No custody seal information was provided by either laboratory. Holding times were met.	
3. Method Blanks	Perchlorate, sulfate, and chloride were not detected in the method blanks. No alkalinity or TDS method blanks were analyzed.	No qualifications were required.

Project: Rocketdyne SDG: MC093 Analysis: Gen. Min.

	Findings	Qualifications
5. <u>LCS/BS</u>	Recoveries for perchlorate, chloride and sulfate were within the laboratory-established control limits. No LCS was provided for TDS or alkalinity.	TDS, total alkalinity, bicarbonate alkalinity, and carbonate alkalinity were qualified as estimated, "J," for detects and "UJ," for nondetects.
6. <u>Duplicates</u> MC047 – TDS only	Duplicate analyses were performed for TDS only. The RPD was less than 20%.	No qualifications were required.
7. MS/MSDs None	None.	No qualifications were required.
10. Other	Raw data was provided only for TDS.	No qualifications were required.
11. Field QC Samples ER: MJ056 (SDG MJ047) FB: MJ055 (SDG MJ047) Field duplicates: none	TDS was reported in MJ056 at 914 mg/L.	TDS was estimated , "J," in MC093.
Comments	None	None

Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

aboratories, Inc.

ANALYTICAL REPORT

Centrum Analytical Laboratories, Inc.	Date Sampled:	10/03/02
1401 Research Park Drive	Date Received:	10/04/02
Suite 100	Date Analyzed:	10/08/02
Riverside, CA 92507-2111		
	Work Order No.:	02-10-0288
Attn: Marilu Escher	Method:	EPA 314.0
RE: Boeing SSFL/21172	Page 1 of 1	

All concentrations are reported in ug/L (ppb).

Sample Number	Perchlorate Concentration	Reporting Limit Rw Qual Qual Code
MC093	ND	2.0 U
Method Blank	ND	2.0 X

Samelynia Not Validates

AMEG VALIDADA

ND denotes not detected at indicated reportable limit.

Each sample was received by CEL chilled, intact, and with chain-of-custody attached.

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02

02-10-0288

Preparation:

N/A

Method:

SM 2320B

Project: Boeing SSFL/21172

Client Sample Number			Lab Sample Date Number Collected		Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093		02-1	0-0288-1	10/03/02	Aqueous	N/A	10/04/02	21004ALKD3
Parameter Alkalinity, Total (as CaCO3)	Result 290	<u>RL</u> 5.0	<u>DF</u> 1	Qual	<u>Units</u> mg/L	Per Qual Co	ode	

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

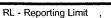
Date Received:

Work Order No:

10/04/02 02-10-0288

Preparation:

N/A


Method:

SM 2320B

Project: Boeing SSFL/21172

Client Sample Number			ample nber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093		02-1	0-0288-1	10/03/02	Aqueous	N/A	10/04/02	21004ALKD3
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	hal Co	id	
Bicarbonate (as CaCO3)	290	5.0	1		mg/L	JL		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02 02-10-0288

Preparation:

N/A

Method:

SM 2320B

Project: Boeing SSFL/21172

Client Sample Number			Lab Sample Number		Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093		02-1	0-0288-1	10/03/02	Aqueous	N/A	10/04/02	21004ALKD3
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>	Qual C	oal ode	
Carbonate	ND	1.0	1		mg/L	07 7		

Centrum Analytical Laboratories, Inc.

1401 Research Park Drive

Suite 100

Riverside, CA 92507-2111

Date Received:

Work Order No:

10/04/02 02-10-0288

Preparation:

N/A

Method:

EPA 300.0

Project: Boeing SSFL/21172

Page 1 of 1

Client Sample Number			Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
MC093			02-10-0288-1	10/03/02 A	queous	N/A	10/04/02	021004L01
Parameter (ha) (ha	Result	<u>RL</u>	DF Qual Units	Parameter (Va)	Code	Result	<u>RL</u>	DF Qual Units
Chloride	35	20	20 mg/L	Sulfate		130	20	20 mg/L
Method Blank			099-05-118-1,453	N/A A	queous	N/A	10/04/02	021004L01
Parameter ·	Result	RL	DF Qual Units	<u>Parameter</u>	A CONTRACTOR OF THE CONTRACTOR	Result	RL	DF Qual Units
Chloride X	ND	1.0	1 mg/L	Sulfate +		ND	1.0	1 mg/L

Analysis N**ot Valid**ased

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1432 • TEL: (714) 895-5494 • FAX: (714) 894-7501

General Chemistry

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: Analyst:

Water GF

21172

Date Sampled: Date Received: 10/03/02

10/04/02

Analysis:	Total Dissolved	Į
	Solids	
Method Number:	160.1 mg/L fer Wa	
Sample ID	myr Code	
MC093	610 J L F	
A CONTRACTOR OF SHEET	and the second s	
Reporting Limit:	10	
		acaiceacacacacacacacacac
Date Analyzed:	10/09/02 1601W0305	
QC Batch #:	100100000	

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 900.0M and 901.1

 V^{l} QC Level: SDG: 8458 Matrix: Water No. of Samples:

REs/DLs:

Date Reviewed: February 11, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME047, ME048, ME049, ME050, ME052, ME053, ME054, ME055, ME056

Data Validation Findings

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No sample receipt information was provided by the laboratory. Analyses were performed within the holding time of 180 days.	As the case narrative did not note that the samples were received damaged, no qualifications were required.
3. Method Blanks	One water method blank (8458-011) was analyzed with the samples in this SDG. There were no detects in the method blank. The method blank was not analyzed for lead-210.	As lead-210 was not reported in any of the site samples, no qualifications were required.
4. <u>LCS/BS</u>	An aqueous LCS sample (8458-010) was analyzed with the samples in this SDG. The LCS was only fortified with gross alpha, gross beta, cobalt-60, and cesium-137. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 90-110%.	No qualifications were required.

Project: Rocketdyne SDG: 8458 Analysis: RA

	Findings	Qualifications
6. <u>Duplicates</u> ME049	The duplicate analyses were performed on sample ME049 in association with the samples in this SDG. All RPDs were within the laboratory-established control limit of $\pm 3\sigma$.	No qualifications were required.
7. Field QC Samples ER: ME056 FB: ME055 Field duplicates: none	There were no detects in ME055 or ME056.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	None.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

ANALYSIS RESULTS

SDG 8458 Client MWH PASADENA				
	SDG <u>84</u> 5	58	lient	MWH PASADENA
Work Order R206045-01 Contract	Work Order <u>R2</u> (06045-01 Con	tract	
Received Date 06/14/02 Matrix WATER	Received Date <u>06</u> ,	<u>//14/02</u>	atrix	WATER

Client Sample ID	Lab Sample ID	Collected Analyzed	Nuclide	<u>Resul</u> ts ± 2σ	Umina	MD 4	Rev	190
		Socretica Mary Zea	<u>Nac t rae</u>	Results ± 20	<u>Units</u>	MDA	Qual	(00
ME047	8458-001	06/10/02 07/23/02	GrossAlpha	0.209 ± 1.1	pCi/L	1.96	U	
		07/23/02		3.29 ± 1.4	pCi/L	1.94		
		07/31/02		U	pCi/L	220	U	
		07/31/02	Co 57 (G)	U	pCi/L	9.70	1	
		07/31/02	Co 60 (G)	U	pCi/L	16.7		
		07/31/02	Cs 134 (G)	บ	pCi/L	16.5	İ	
		07/31/02	Cs 137 (G)	U	pCi/L	13.9		
		07/31/02	Tl 208 (G)	U	pCi/L	15.7		
		07/31/02	Pb 210 (G)	U	pCi/L	969		
		07/31/02	Bi 212 (G)	U	pCi/L	106		
		07/31/02	Pb 212 (G)	U	pCi/L	20.3		
		07/31/02	Bi 214 (G)	U	pCi/L	26.7		
		07/31/02	Pb 214 (G)	U	pCi/L	27.7		
		07/31/02	Ra 226 (G)	U .	pCi/L	200		
		07/31/02	Ac 228 (G)	U	pCi/L	67.6		
		07/31/02	Th 234 (G)	U	pCi/L	315		
		07/31/02	U 235 (G)	U	pCi/L	74.4	\downarrow	
ME048	8458-002	06/10/02 07/23/02	GrossAlpha	1.17 ± 1.6	pCi/L	2.25	U	
		07/23/02	Gross Beta	4.10 ± 1.5	pCi/L	2.06		
		07/31/02	K 40 (G)	U	pCi/L	92.7	U	
		07/31/02	Co 57 (G)	U	pCi/L	3.28	1	
		07/31/02	Co 60 (G)	U	pCi/L	10.7		
			Cs 134 (G)	U	pCi/L	9.88		
			Cs 137 (G)	U	pCi/L	8.10		
		07/31/02	Tl 208 (G)	u ·	pCi/L	8.16		
		07/31/02	Pb 210 (G)	U	pCi/L	142		
		07/31/02	Bi 212 (G)	U	pCi/L	63.8		
		07/31/02	· ·	U	pCi/L	9.10		
			Bi 214 (G)	U	pCi/L	15.4		
			Pb 214 (G)	U	pCi/L	13.1		
			Ra 226 (G)	U	pCi/L	89.8		
			Ac 228 (G)	U	pCi/L	34.7		
			Th 234 (G)	U	pCi/L	112		
		07/31/02	U 235 (G)	U	pCi/L	26.1	↓	
ME049	8458-003	06/10/02 07/23/02	GrossAlpha	0.023 ± 1.7	pCi/L	3.05	U	
		07/23/02	Gross Beta	1.66 ± 1.8	pCi/L	2.85	U	

AMEC VALIDATED

Certified by A Jacob Report Date 08/08/02
Page 1

ANALYSIS RESULTS

SDG	8458	Client	MWH PASADENA
Work Order	R206045-01	Contract	
Received Date	06/14/02	Matrix	WATER

Client	Lab						fw	Qua
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Qual	Code
meo49		07/19/02	K (0				. •	
		07/18/02		U	pCi/L	195	Ų	
		07/18/02		U	pCi/L	7.98		Ì
		07/18/02		U	pCi/L	13.5	1	
			Cs 134 (G)	U	pCi/L	14.7		
			Cs 137 (G)	U	pCi/L	11.0	-	
		07/18/02	Tl 208 (G)	U	pCi/L	12.2	l	
			Pb 210 (G)	U	pCi/L	807	1	
			Bi 212 (G)	U	pCi/L	93.5		
			Pb 212 (G)	U	pCi/L	16.8		
			Bi 214 (G)	U	pCi/L	22.9		
			Pb 214 (G)	U	pCi/L	22.5		
			Ra 226 (G)	U	pCi/L	168	ŀ	
			Ac 228 (G)	· U	pCi/L	54.8		
			Th 234 (G)	U	pCi/L	257	1	
		07/18/02	U 235 (G)	U	pCi/L	61.5	Ψ	
ME050	8458-004	06/11/02 07/23/02	GrossAlpha	1.47 ± 1.5	pCi/L	1.93	U	
		07/23/02	Gross Beta	3.66 ± 1.4	pCi/L	1.93		
		07/18/02	K 40 (G)	U	pCi/L	261	U	
		07/18/02	Co 57 (G)	U	pCi/L	10.2	1	ļ
		07/18/02	Co 60 (G)	U	pCi/L	17.4		
		07/18/02	Cs 134 (G)	U	pCi/L	16.8	.	
		07/18/02	Cs 137 (G)	U	pCi/L	15.0		
		07/18/02	Tl 208 (G)	U	pCi/L	16.9		
		07/18/02	Pb 210 (G)	U	pCi/L	1020		
		07/18/02	Bi 212 (G)	U	pCi/L	114		
		07/18/02	Pb 212 (G)	U	pCi/L	20.6		
		07/18/02	Bi 214 (G)	U	pCi/L	30.2		
		07/18/02	Pb 214 (G)	U	pCi/L	30.0		
			Ra 226 (G)	U	pCi/L	209		
		07/18/02	Ac 228 (G)	U	pCi/L	73.1		
			Th 234 (G)	U	pCi/L	324		
			U 235 (G)	U	pCi/L	81.6	\downarrow	
ME052	8458-005	06/11/02 07/23/02	GrossAlpha	0.788 ± 1.2	pCi/L	1.70	U	
			Gross Beta	0.915 ± 1.2	pCi/L	2.00	Ū	
				! * tw	P0./L	2.00	-	

AMEC VALIDATED

Certified by April Report Date 08/08/02
Page 2

ANALYSIS RESULTS

SDG	8458	Client	MWH PASADENA
Work Order	R206045-01	Contract	
Received Date	06/14/02	Matrix	WATER

Sample ID Sample ID Collected Analyzed Analyzed Nuclide Results : ME 05 2. 07/31/02 K 40 (G) U U 07/31/02 Co 57 (G) U U 07/31/02 Co 60 (G) U U 07/31/02 Cs 134 (G) U U 07/31/02 Cs 137 (G) U U 07/31/02 Tl 208 (G) U U 07/31/02 Pb 210 (G) U U 07/31/02 Pb 212 (G) U U	± 2σ Units .pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	MDA 140 10.4 11.3 14.3 11.3 14.0 4150 92.6 23.9	<u>Qual</u>	Code
07/31/02 K 40 (G) U 07/31/02 Co 57 (G) U 07/31/02 Co 60 (G) U 07/31/02 Cs 134 (G) U 07/31/02 Cs 137 (G) U 07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	10.4 11.3 14.3 11.3 14.0 4150 92.6		
07/31/02 Co 57 (G) U 07/31/02 Co 60 (G) U 07/31/02 Cs 134 (G) U 07/31/02 Cs 137 (G) U 07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	10.4 11.3 14.3 11.3 14.0 4150 92.6		
07/31/02 Co 60 (G) U 07/31/02 Cs 134 (G) U 07/31/02 Cs 137 (G) U 07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	11.3 14.3 11.3 14.0 4150 92.6		-
07/31/02 Cs 134 (G) U 07/31/02 Cs 137 (G) U 07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	14.3 11.3 14.0 4150 92.6		-
07/31/02 Cs 137 (G) U 07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L pCi/L	11.3 14.0 4150 92.6		
07/31/02 Tt 208 (G) U 07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L pCi/L	14.0 4150 92.6		
07/31/02 Pb 210 (G) U 07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L pCi/L	4150 92.6		
07/31/02 Bi 212 (G) U 07/31/02 Pb 212 (G) U	pCi/L pCi/L	92.6		Ì
07/31/02 Pb 212 (G) U	pCi/L			
		27 0		
	pCi/L	43.7		
07/31/02 Bi 214 (G) U		27.4		
07/31/02 Pb 214 (G) U	pCi/L	28.0		
07/31/02 Ra 226 (G) U	pCi/L	309		
07/31/02 Ac 228 (G) U	pCi/L	52.1	İ	
07/31/02 Th 234 (G) U	pCi/L	509		
07/31/02 U 235 (G) U	pCi/L	84.5	\downarrow	
ME053 8458-006 06/11/02 07/23/02 GrossAlpha -0.555 ± 1.	.2 pCi/L	2.51	U	
07/23/02 Gross Beta -0.143 ± 1.	.6 pCi/L	2.78	U	
07/30/02 K 40 (G) U	pCi/L	148	U	
07/30/02 Co 57 (G) U	pCi/L	10.8		
07/30/02 Co 60 (G) U	pCi/L	12.8		
07/30/02 Cs 134 (G) U	pCi/L	14.6		
07/30/02 Cs 137 (G) U	pCi/L	12.5		
07/30/02 Tl 208 (G) U	pCi/L	14.0		
07/30/02 Pb 210 (G) U	pCi/L	6480		
07/30/02 Bi 212 (G) U	pCi/L	87.7		
07/30/02 Pb 212 (G) U	pCi/L	23.5		
07/30/02 Bi 214 (G) U	pCi/L	36.0		
07/30/02 Pb 214 (G) U	pCi/L	27.6		
07/30/02 Ra 226 (G) U	pCi/L	219		
07/30/02 Ac 228 (G) U	pCi/L	50.4		
07/30/02 Th 234 (G) U	pCi/L	522		
07/30/02 U 235 (G) U	pCi/L	79.6	↓	
ME054 8458-007 06/12/02 07/23/02 GrossAlpha 1.78 ± 2.	.0 pCi/L	2.69	U	
07/23/02 Gross Beta 3.30 ± 1.		2.09		

AMEC VALIDATED

Certified by Mylacciell Report Date 08/08/02 Page 3

ANALYSIS RESULTS

SDG 8458 Client MWH PASADENA	
CCTCTC MWIT FASADLINA	
Work Order R206045-01 Contract	
Received Date <u>06/14/02</u> Matrix <u>WATER</u>	

Client	Lab						Per	, Qu
Sample ID	Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Qual	<i>©</i>
ME054								
		07/31/02		U	pCi/L	295	Ų	
		07/31/02		U	pCi/L	8.74	-	
		07/31/02		U	pCi/L	12.7		
			Cs 134 (G)	U	pCi/L	15.1	ļ	
			Cs 137 (G)	U	pCi/L	11.9	ĺ	
			Tl 208 (G)	U	pCi/L	11.8		
			Pb 210 (G)	U	pCi/L	2130		
			Bi 212 (G)	U	pCi/L	95.2	-	İ
			Pb 212 (G)	U	pCi/L	15.8	.	
			Bi 214 (G)	U	pCi/L	23.2	İ	
			Pb 214 (G)	U	pCi/L	22.8	{	1
			Ra 226 (G)	U	pCi/L	178	ŀ	
			Ac 228 (G)	U	pCi/L	55.5	İ	
			Th 234 (G)	U	pCi/L	363		
		07/31/02	U 235 (G)	U	pCi/L	68.2	V	
ME055	8458-008	06/13/02 07/23/02	GrossAlpha	-0.119 ± 0.42	pCi/L	0.866	U	
		07/23/02	Gross Beta	-0.261 ± 1.3	pCi/L	2.27	Ū	
		07/30/02	K 40 (G)	U	pCi/L	95.8	Ū	
		07/30/02	Co 57 (G)	υ	pCi/L	7.06	Ĭ	
		07/30/02		U	pCi/L	7.80		
		07/30/02	Cs 134 (G)	U	pCi/L	9.38		
		07/30/02	Cs 137 (G)	U	pCi/L	8.48		
		07/30/02	Tl 208 (G)	U	pCi/L	9.27		
		07/30/02	Pb 210 (G)	υ	pCi/L	3390		
		07/30/02	Bi 212 (G)	U	pCi/L	101		
		07/30/02	Pb 212 (G)	U	pCi/L	16.3		
		07/30/02	Bi 214 (G)	U	pCi/L	17.9		
		07/30/02	Pb 214 (G)	U	pCi/L	19.0		
		07/30/02	Ra 226 (G)	U	pCi/L	148		
		07/30/02	Ac 228 (G)	U	pCi/L	33.9		
		07/30/02	Th 234 (G)	U	pCi/L	347		
		07/30/02	U 235 (G)	U	pCi/L	55.2	\checkmark	
ME056	8458-009	06/13/02 07/23/02	GrossAlpha	-0.028 ± 0.38	pCi/L	0.772	U	
			Gross Beta	-0.162 ± 1.1	pCi/L	1.92	Ü	
		,,		0.,0E 2 1.1	P01/L	1.74		

AMEC VALIDATED

L.V.

Certified by Manuelle Report Date 08/08/02
Page 4

ANALYSIS RESULTS

SDG <u>8458</u>	Client	MWH PASADENA
Work Order R2060	045-01 Contract	
Received Date <u>06/14</u>	<u>4/02</u> Matrix	WATER
L		

Client	Lab						Rev	<u>م</u> 1
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 2σ	<u>Units</u>	MDA	Qual	Code
ME0S6								
		07/31/02	K 40 (G)	U	pCi/L	318	U	
		07/31/02	Co 57 (G)	U	pCi/L	6.81	l	
		07/31/02	Co 60 (G)	U	pCi/L	14.6		
		07/31/02	Cs 134 (G)	U	pCi/L	15.4		
		07/31/02	Cs 137 (G)	U	pCi/L	12.7		
		07/31/02	Tl 208 (G)	U	pCi/L	11.5		
		07/31/02	Pb 210 (G)	U	pCi/L	504		
		07/31/02	Bi 212 (G)	U	pCi/L	86.8		
		07/31/02	Pb 212 (G)	U	pCi/L	15.0		
		07/31/02	Bi 214 (G)	U	pCi/L	24.8		
		07/31/02	Pb 214 (G)	U	pCi/L	22.6		1
		07/31/02	Ra 226 (G)	U	pCi/L	154		
		07/31/02	Ac 228 (G)	U	pCi/L	54.0		1
		07/31/02	Th 234 (G)	U	pCi/L	175		
		07/31/02	U 235 (G)	U	pCi/L	51.8	↓	
								1

AMEC VALIDATED

7

Certified by Dececific Report Date 08/08/02

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V1

SDG: 20380

Matrix: Water

No. of Samples: 1

REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: MS047

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. The laboratory provided no temperature information. No custody seals were present on the coolers. Analyses were performed within the holding time of 180 days.	Due to the nonvolatile nature of the analytes and as the sample was noted to be received undamaged, no qualifications were required.
3. Method Blanks	Three water method blanks, one for gross alpha (E299D1AC), one for gross beta (E299K1AA), and one for cesium-134 and cesium-137 (E299Q1AA) were analyzed with the sample in this SDG. There were no detects in the method blanks above the applicable MDAs.	No qualifications were required.

Project: Rocketdyne SDG: 20380 Analysis: RA

	Findings	Qualifications
4. <u>LCS/BS</u>	Three aqueous LCS samples, one for gross alpha (E299D1AC), one for gross beta (E299K1AC), and one for cesium-134 and cesium-137 (E299Q1AC) were analyzed with the sample in this SDG. The recoveries were within the laboratory-established control limits of 70-130%.	No qualifications were required.
6. <u>Duplicates</u> MS047	The duplicate analyses were performed on sample MS047 for gross alpha only. Gross alpha was nondetected in the original result and detected above the MDA in the duplicate result.; however, the results were within ±2σ.	No qualifications were required.
7. Field QC Samples ER: ME056 (SDG 8458) FB: ME055 (SDG 8458) Field duplicates: none	There were no detects in ME055 or ME056.	No qualifications were required
8. Other	None.	No qualifications were required.
Comments	None.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

FORM I

Date: 26-Jun-02

SAMPLE RESULTS

6/10/2002 10:48:00 AM 6/14/2002 11:00:00 AM Collection Date: Received Date: 20380 19857 Report No.: SDG: STL Richland J2F180183-1 Lot-Sample No.: Lab Name:

Matrix: COC No.:

Client Sample ID: MS047

Ordered by Client Sample ID, Batch No.

WATER

										כוחמומו	י ווסויט לע ג	Oldered by Ciletit Satispie ID, Datcil No.
Parameter	Result	Qual	Count Result Qual Error (2.5)	Total Uncert(2 s)	MDC MDA, Action Lev	Rpt Unit, Lc	Yield CRDL(RL)	Yield Rst/MDC, CRDL(RL) Rst/TotUcert	Analysis, Prep Date	Total Sa Size	Aliquot Size	Analy Method, Primary Detector
Batch: 2170274	Work Orc	ler: E27	3C1AA 🔌 🗟 🗟	Work Order: E273C1AA 💆 충분증 Report DB ID: 9E273C10	9E273C10							
ALPHA	1.76 U	⊃	1.2 0	1.2		pCi/L	100.00%	0.94	6/21/02 01:52 p		0.098	RICHRC5014
						0.786	1.0	(2.8)			ų	GPC10A
Batch: 2170276	Work Order: E273C1AC	ler: E27	3C1AC	Report DB ID: 9E27	9E273C10	-	-					
BETA	6.82		2.0	2.2	3.29	pCi/L	100.00%	(2.1)	6/21/02 01:42 p		0.1983	RICHRC5014
			Carlotte Million Marie Carlotte			1.56	4.0	(6.3)			_	GPC26A
Batch: 2170282	Work Order: E273C1AD	ler: E27.	3C1AD	Report DB ID: 9E273C10	9E273C10	With count of the Administration and the Admi						
CS-134	3.93	⊃	9.1	9.1	17.5	pCi/L		0.22	6/22/02 05:39 a		9.0	RICHRC5017
								0.87			_	GER1\$1
CS-137	2.12	⊃	7.8	7.8	14.6	pCi/L		0.14	6/22/02 05:39 a		9.0	RICHRC5017
			-in-				20.0	0.54			_	GER1\$1

Number of Results:

Comments:

MDC|MDA,Lc - Detection, Decision Level based on instrument background or blank, adjusted by the sample Efficiency, Yield, and Volume. U Qual - Analyzed for, but the result is less than the Mdc/Mda|Total Uncert or gamma scan software did not identify the nuclide.

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V1

SDG: 8462
Matrix: Water
No. of Samples: 3
REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME058, ME059, ME060

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No sample receipt information was provided by the laboratory. Analyses were performed within the holding time of 180 days.	As the case narrative did not note that the samples were received damaged, no qualifications were required.
3. Method Blanks	One water method blank (2024-003) was analyzed with the samples in this SDG. There were no detects in the method blank. The method blank was not analyzed for cobalt-57, thallium-208, lead-210, lead-212, lead-214, bismuth-212, bismuth-214, thorium-234, or actinium-228.	As cobalt-57, thallium-208, lead-210, lead-212, lead-214, bismuth-212, bismuth-214, thorium-234, or actinium-228 were not reported in any of the site samples, no qualifications were required.

Project: Rocketdyne SDG: 8462 Analysis: RA

	Findings	Qualifications
4. LCS/BS	An aqueous LCS sample (2024-004) was analyzed with the samples in this SDG. The LCS was only fortified with gross alpha, gross beta, cesium-137, and radium-226. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 85-110% and were deemed reasonable by the reviewer.	No qualifications were required.
6. <u>Duplicates</u>	No duplicate analyses were performed in association with the samples in this SDG.	No qualifications were required.
7. Field QC Samples ER: ME059, ME060 FB: ME055 (SDG 8458) Field duplicates: none	There were no detects in any of the field QC samples.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	Potassium-40 was reported in site sample ME058. Potassium-40 occurs naturally in soil and water. This sample also had beta activity greater than the MDA, which is expected since potassium-40 decays by beta emission. Additionally, the beta activity reported in ME058 was approximately five times less than the California Primary Drinking Water Standard.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Jan-U6-03 11:46am From-MWH AMERICAS INC

JAN-06-2003 10:14

EBERLINE SERVICES

T-311 P.03/05 F-366 15102350438 P.02/04

Eberline Services

ANALYSIS RESULTS

SPG <u>8462</u>
Work Order <u>R206078-01</u>
Received Date <u>06/21/02</u>

Client MWH PASADENA Contract JDB #1890607.0114

Matrix WATER

Client	Lab			٠.					
Sample ID	Sample	D Coile	cted Analy			1			
			CTED WINTY	ed Nuclide	Res	UL5 1	20 Units	MDA	
ME058	8462-00	1 06/1	8/02 07/26/	OZ Grosskip		- 1			- G
			07/24)	DS GLOSS BE		5 ± 2.3	-	3.96	
			07/19/			3 = 1.7		2,46	
				02 K40 (9 02 Co57 (6		± 110	J	71.3	
			07/19/	02 Coán (G	_	J	pci/L	4.68	
			07/19/	02 CS134 (G)		i	pci/L	7.22	
			07/19/	D2 CE 137 (G)		1	PC1/L	7.21	
			07/19/0		_	f	PCi/L	7,01	
)2 Pb210 (G)	u	ł	pci/L	11.0	
			07/19/0	12 Bi212 (G)		- 1	PC1/L	1330	
			07/19/0				pci/L	52.3	
			07/10/0		_		pci/L	12.6	
				2 Pb214 (G)	_	ŀ	bc(/r	13.7	
			07/19/0		Ü		PC1/L	12.6	
				2 Ac228 (6)	u	- 1	pcill	98.7	
			07/19/02	Ca) AESAT S	IJ	1	pci/L	31.5	
			07/19/02	DS22 (C)	U		pCi/L	192	
-050				-1005	n		PC1/L	37.5	1
059	8462-002	06/19/	02 07/26/02	GrossAlpha	-0.288 ;	0 70			
			07/24/02	Gross Beta	-0-028	1 1	pC 1/L	0.797	L
			07/24/02		4-020 s	11-1	pci/L	1.87	
			07/24/02		Ü	1	pci/L	148	
		• *	07/24/02		U	1	pC1/L	5.34	
		,	07/24/02		Ü	1	pCi/L	7.96	
				Cs137 (G)	Ü	1	pCi/L	8.42	
		•	07/24/02	TL208 (G)	IJ		pci/L	7.19	
		•	07/24/02	Pb210 (G)	U	1	DC I/L	7.57	
		•	07/24/02	Bi212 (G)	n		pci/L	1420	
		<i>i.</i>	07/34/02	Pb212 (G)	Ü		pci/L	53.9	
			07/24/02	B1214 (G)	Ü		þCi∕L	10.3	
•			07/24/02	Ph214 (G)	u		pCi/L	14.3	
			07/24/02	Ra226 (G)	u		pCi/L	13.3	
			07/24/02	Ac228 (G)	ű		pCi/L	118	and (seemones)
		ı	07/24/02	Th234 (G)	u		pCi/L	33.0	
			07/24/02	U235 (G)	U		pci/L	235	
,0		1		·i*	"		pci/L	45.7	V
-	8462-003	06/20/02	07/24/02	GrossAlpha	0.208 ±	1 52	- 6 -44		
			07/24/02		-0.722 ± 1	135	pCi/L	0.851	\circ

AMEC VALIDATED

Corrified by 20 Confidence of 106/03
Page 1

Eberline Services

ANALYSIS RESULTS

SDG <u>8462</u> Work Order <u>R206078-01</u> Received Date 06/21/02

CLICAT MUH PASADENA Contract JOB #1890607.0114

Matrix <u>WATER</u>

	1 '1			1				
Client	Lab		i i					
Sample ID	Sample ID Collected	Analyzed	Nuclide	Results ± 20	Unite	MDA	Rev Qual	(Ode
WE000		07/19/02		U	pCI/L	146	U	
		07/19/02		u	pCi/L	5.50		
		07/19/02		u	pCi/L	8.87		
			Cs134 (8)	U	pci/L	9.71		
			Ca137 (G)	U	pCi/L	8.39		
			T1208 (G)	U	pCi/L	15.3		
			Pb210 (0)	U	pCi/L	570		
			B1212 (G)	U	pCi/L	69.9		
			Pb212 (6)	u	pCi/L	11.6		
			B(214 (G)	U	pci/L	16.1		
			Pb214 (G)	u	pci/L	15.4		
			Ra226 (G)	U	pci/L	115		
			Ac228 (G)	u	PC1/L	37.4		
	•		Th234 (G)	U	pCi/L	181		
		11/ 13/DC	U235 (B)	ប	pCi/L	44.8	V	

AMEC VALIDATED

certified by_

Report Date 01/06/03 Page 2

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne SSFL RFI

Project Manager: D. Hambrick

Analysis/Method: Radiochemical Analyses by Method EPA 9310 and 901.1M

QC Level: V¹
SDG: 8494
Matrix: Water
No. of Samples: 1
REs/DLs: 0

Date Reviewed: February 12, 2003

Reviewer: P. Meeks

Reference: National Functional Guidelines for Inorganic Data Review (2/94)

Samples Reviewed: ME093

	Findings	Qualifications
1. Sample Management	The COC was signed and dated by field and laboratory personnel and accounted for the analyses presented in this SDG. No temperature information was provided by the laboratory. The sample was received intact. No custody seals were present on the cooler. Analyses were performed within the holding time of 180 days.	Due to the nonvolatile nature of the analytes and as the sample was received undamaged, no qualifications were required.
3. Method Blanks	One water method blank (7720-003) was analyzed with the sample in this SDG. There were no detects in the method blank. The method blank was only analyzed for gross alpha and gross beta (see comment section).	All remaining analytes except bismuth-214 and lead-214 were nondetected in ME093. As the possibility of bismuth-214 and lead-214 blank contamination could not be evaluated, bismuth-214 and lead-214 detected in ME093 were qualified as estimated, "J.".

Project: Rocketdyne SDG: 8494 Analysis: RA

	Findings	Qualifications
4. LCS/BS	An aqueous LCS sample (7720-003) was analyzed with the sample in this SDG. The LCS was only fortified with gross alpha, gross beta, cobalt-60, cesium-137, and uranium-235. No laboratory-established control limits were provided by the laboratory; however, the recoveries for all analytes were within 85-110% and were deemed acceptable.	No qualifications were required.
6. <u>Duplicates</u>	No duplicate analyses were performed in association with the sample in this SDG.	No qualifications were required.
7. Field QC Samples ER: none FB: none Field duplicates: none	There were no field QC samples associated with ME093.	No qualifications were required
8. Other	The laboratory did not report gross alpha or gross beta reported below the MDA as nondetected, "U."	Results reported below the MDA were qualified as nondetected, "U."
Comments	Sample ME093 had detects for lead-214 and bismuth-214. These two isotopes are short-lived daughter products of naturally-occurring uranium-238. Other precursors in this decay chain are radon-222 and radium-226. Uranium-238 and radium-226 were analyzed for but were not detected at large MDAs. These MDAs were probably large enough to support the detection of lead-214 and bismuth-214. Of these detects, only beta activity is regulated by the National Primary Drinking Water Standards and the California Primary Drinking Water Standards.	No qualifications were required.

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Eberline Services

ANALYSIS RESULTS

SDG 8494

Work Order R210047-01

Received Date 10/09/02

Client <u>MWH PASADENA</u>

Contract <u>1890607.0114</u>

Matrix <u>WATER</u>

Client Sample ID	Lab Sample ID	Collected Analyzed	<u>Nuclide</u>	Results ± 2σ	<u>Units</u>	MDA	Rev Qual	Qual
ME093	8494-001	10/03/02 10/23/02	GrossAlpha	0.390 ± 2.5	pCi/L	4.46	U	
		10/23/02	Gross Beta	5.51 ± 4.3	pCi/L	6.92	1	
		10/15/02	K40	U	pCi/L	253	1	
		10/15/02	Co57	υ	pCi/L	5.21		
		10/15/02	Co60	U	pCi/L	7.89		
		10/15/02	Cs134	U	pCi/L	9.26		
		10/15/02	Cs137	U	pCi/L	8.16		
		10/15/02	T1208	υ	pCi/L	14.2	ļ	
		10/15/02	Pb210	U .	pCi/L	1790		
		10/15/02	Bi212	U	pCi/L	61.0		
		10/15/02	Pb212	U	pCi/L	11.2	\downarrow	
		10/15/02	Bi214	17.8 ± 16	pCi/L	16.6	J	* 3
		10/15/02	Pb214	29.5 ± 16	pCi/L	18.4	J	× 3
		10/15/02	Ra226	υ	pCi/L	122	U	
		10/15/02	Ac228	U	pCi/L	36.4	1	
		10/15/02	Th234	U	pCi/L	246		
		10/15/02	U235	U	pCi/L	48.4	\downarrow	-

AMEC VALIDATED

V.

Certified by_

Report Date 10/31/02

Page 1

550 South Wadsworth Boulevard, Suite 500, Lakewood, CO 80026 303.935.6505, Fax 303.935.6575

DATA ASSESSMENT FORM

Project Title: Rocketdyne, SSFL RFI Program

Project Manager: D. Hambrick

Analysis/Method: Volatiles by Method 8260B

QC Level: V1

SDG: MC093 Matrix: Water

No. of Samples: 1

No. of Reanalyses/Dilutions: 0

<u>Date Reviewed</u>: 01/08/03 <u>Reviewer</u>: S. Boehnke

Reference: National Functional Guidelines for Organic Data Review (2/94)

Samples Reviewed: MC093

	Findings	Qualifications
1. Sample Management	The COC was signed by both field and laboratory personnel. Sample receipt information was recorded on the COC. The VOC sample vials were received intact. The cooler temperature was recorded as 4°C, within the temperature limits of 4 ± 2°C. No custody seal information was provided by the laboratory. The analysis of the sample was performed within 14 days of sample collection.	No qualifications were required.
4. Method Blanks	One method blank was analyzed with this SDG. No target compounds were detected in the method blank.	No qualifications were required.
5. <u>LCS/BS</u>	One LCS/LCSD pair was analyzed with this SDG. Spike compounds were recovered within the QC limits.	No qualifications were required.
6. <u>Surrogates</u>	All surrogate recoveries were within the laboratory-established QC limits.	No qualifications were required.
7. MS/MSDs	No MS/MSD analyses were associated with this SDG.	No qualifications were required.

Project: Rocketdyne SDG: MC093 Analysis: VOA

		Findings	Qualifications
8.	Field QC Samples ER: MJ056 TB: None FB: MJ055 FD: None	Chloroform was reported in samples MJ055 and MJ056 at $2\mu g/L$, each. Chloroform was not reported in the site sample in this SDG.	No qualifications were required.
9.	Other	TICs were not provided with the sample in this SDG.	No qualifications were required.
Co	mments	None.	None.

¹ Level V Validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.: Matrix: 21172 Water

Analyst:

ZL

Date Sampled:

10/03/02

Date Received:

10/04/02

Date Analyzed:

10/04-07/02

Batch Number:

MS48260W2893

	Sample ID:	Blank	MC093	rev	gera
Compounds	RL	μg/L	μg/L	gual	code
Acetone	50	ND	ND	U	
tert-Amyl Methyl Ether (TAMI	∃) 5.0	ND	ND		
Benzene	0.5	ND	ND		
Bromobenzene	1.0	ND	ND		
Bromochloromethane	1.0	ND	ND		
Bromodichloromethane	0.5	ND	ND		
Bromoform	0.5	ND	ND		
Bromomethane	0.5	ND	ND		
tert-Butanol (TBA)	10	ND	ND	Observation of the Control of the Co	
2-Butanone (MEK)	10	ND	ND		
n-Butylbenzene	0.5	ND	ND		
sec-Butylbenzene	0.5	ND	ND		
tert-Butylbenzene	0.5	ND	ND		
Carbon disulfide	10	ND	ND		
Carbon tetrachloride	0.5	ND	ND		
Chlorobenzene	0.5	ND	ND		
Chloroethane	0.5	ND	ND		
Chloroform	0.5	ND	ND		
Chloromethane	0.5	ND	ND		
2-Chlorotoluene	0.5	ND	ND		
4-Chlorotoluene	0.5	ND	ND		
Dibromochloromethane	0.5	ND	ND		
1,2-Dibromoethane	0.5	ND	ND		
1,2-Dibromo-3-chloropropar		ND	ND		
Dibromomethane	0.5	ND	ND		
1,2-Dichlorobenzene	0.5	ND	ND		
1,3-Dichlorobenzene	0.5	ND	ND		
1,4-Dichlorobenzene	0.5	ND	ND		
Dichlorodifluoromethane	0.5	ND	ND	- Annual Control	
1,1-Dichloroethane	0.5	ND	ND		
1,2-Dichloroethane	0.5	ND	ND	.	
1,1-Dichloroethene	0.5	ND	ND		
cis-1,2-Dichloroethene	0.5	ND	ND		
trans-1,2-Dichloroethene	0.5	ND	ND		
1,2-Dichloropropane	0.5	ND	ND		
1,3-Dichloropropane	0.5	ND	ND		
2,2-Dichloropropane	0.5	ND	ND		
1,1-Dichloropropene	0.5	ND	ND	V	

EPA 8260B - Volatile Organics

Client:

Montgomery Watson

Project:

Boeing SSFL

Job No.:

21172 Water

Matrix: Analyst:

ZL

Date Sampled:

10/03/02

Date Received:

10/04/02

Date Analyzed:

10/04-07/02

Batch Number:

MS48260W2893

Sample ID: **Blank** MC093 μg/L μg/L Compounds RL cis-1,3-Dichloropropene 0.5 ND ND trans-1,3-Dichloropropene ND ND 0.5 Diisopropyl Ether (DIPE) 5.0 ND ND Ethylbenzene 0.5 ND ND Ethyl tert-Butyl Ether (EtBE) ND ND 5.0 ND Hexachlorobutadiene 0.5 ND 2-Hexanone 10 ND ND 0.5 ND ND Isopropylbenzene ND 0.5 ND p-Isopropyltoluene 50 ND Methylene chloride ND 4-Methyl-2-pentanone 5.0 ND ND ND Methyl-tert-butyl ether (MtBE) 1.0 ND ND 0.5 ND Naphthalene n-Propylbenzene 0.5 ND ND Styrene 0.5 ND ND 1,1,1,2-Tetrachloroethane 0.5 ND ND 1.0 ND ND 1,1,2,2-Tetrachloroethane Tetrachloroethene 0.5 ND ND 0.5 ND ND Toluene 0.5 ND ND 1.2.3-Trichlorobenzene 1,2,4-Trichlorobenzene 0.5 ND ND 0.5 ND 1,1,1-Trichloroethane ND 1,1,2-Trichloroethane 0.5 ND ND Trichloroethene 0.5 ND ND 0.5 ND ND 1,2,3-Trichloropropane Trichlorofluoromethane 0.5 ND ND. Trichlorotrifluoroethane 5.0 ND ND 1,2,4-Trimethylbenzene 0.5 ND ND ND ND 1,3,5-Trimethylbenzene 0.5 ND ND. 0.5 Vinyl chloride 1.0 ND ND Xylenes, m-,p-0.5 ND ND Xylene, o-

Surrogates (% recovery) Limits: 70 - 130

Sample ID:	Blank	MC093
		101
Toluene-d8	98	97
		95

