Energy Conservation and Production at Waste Cleanup Sites

Michael Gill

ORD Hazardous Substances Technical Liaison Regional Science Council Seminar Series August 17, 2004

Building a scientific foundation for sound environmental decisions

Research and Development at EPA

- 1,950 employees
- \$700 million budget
- \$100 million extramural research grant program
- 13 lab or research facilities across the U.S.
- Credible, relevant and timely research results and technical support that inform EPA policy decisions

Building a scientific foundation for sound environmental decisions

Making decisions with sound science requires..

- Relevant, high quality, cutting-edge research in human health, ecology, pollution control and prevention, economics and decision sciences
- Proper characterization of scientific findings
- Appropriate use of science in the decision process

Research and development

- contribute uniquely to..
 - Health and ecological research, as well as research in pollution prevention and new technology
 - In-house research and an external grants program
- Problem-driven and core research

Building a scientific foundation for sound environmental decisions

High Priority Research Areas

- Human Health
- Particulate Matter
- Drinking Water
- Clean Water
- Global Change
- Endocrine Disruptors
- Ecological Risk
- Pollution Prevention
- Homeland Security

Building a scientific foundation for sound environmental decisions

ORD's Office of Science Policy

- Serves as a link between the ORD labs and EPA regulatory programs through:
 - research planning
 - technical support and
 - sponsoring training and workshops
- Me ORD Hazardous Substances Technical Liaison to Region 9

Building a scientific foundation for sound environmental decisions

- Most waste cleanup sites (RCRA, Superfund, Brownfields) cleanup systems use electricity
- Some are energy intensive for years
- Some waste sites offer energy production opportunities
- EPA's Superfund Engineering Forum supported investigating this issue through "Issue Paper"

Building a scientific foundation for sound environmental decisions

- In recent years, energy issues have been raised to forefront:
 - EO 13123 Greening the Government Through Efficient Energy Management (June '99) "...Each agency shall strive to expand the use of renewable energy..."
 - Western U.S. energy crisis of 2001 (outages, cost increases, charges of market tinkering....)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

- Top Ten Dumb Guy Ways To Conserve Energy
 - 10. Quit drinkin' gas
 - 9. Keep your television on a low setting,
 - no higher than Ch. 5
 - 8. Recycle Top Ten List entries
 - 7. Recycle Top Ten List entries
 - **6.** Host late-night talk show that causes millions of Americans to turn off their television sets

(Courtesy David Letterman)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

- Top Ten Dumb Guy Ways To Conserve Energy
- **5.** Crap, that's a hard question... is wrestling on?
- **4.** Instead of motor oil, lubricate your car's engine with Oil of Olay
- 3. Turn off the lights at Shea Stadium
- -- would it really matter?
- 2. Say goodbye to your electric razor
- -- get yourself some Epil-Stop & Spray
- 1. Become President -- ignore the problem completely

(Courtesy David Letterman)

Building a scientific foundation for sound environmental decisions

- <u>Today's Goals</u>:
 - Make project managers aware of energy use at waste cleanup sites by:
 - Reviewing *existing data* on conservation and production at waste sites
 - Providing information on *existing tools*
 - Discussing where we need to go: (recommendations, future work)

Building a scientific foundation for sound environmental decisions Energy Conservation and Production at Waste Cleanup Sites

EXISTING DATA

- Observed limited case studies:
 - 2 groundwater cleanup sites
 - 2 landfills
- Many EPA/DOE/State websites on energy savings. Most are for facilities, appliances, solar, wind, geothermal, fuel cells, etc. Few directly related to remediation systems, but could be adapted.

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

• Energy Savings - Groundwater Sites

• <u>Site 1</u>

- UV/oxidation remedy for treating VOCs
- Effective for treating high concentrations
- Energy-intensive operation (e.g. 350 gpm system used about 3000 KwH/day as opposed to 750 KwH to operate an air stripper) (3000KwH/day = 150 homes)
- Energy saving idea dropped because ROD amendment necessary to make change

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

UV / Oxidation System

Building a scientific foundation for sound environmental decisions

- VOCs in groundwater
- UV/hydrogen peroxide remedy
- System "incrementally" designed (inefficient)
- Designed for semi-continuous operation at high flow rates
- Energy-intensive space heating for buildings
- Thought given to energy use during design??

Building a scientific foundation for sound environmental decisions

- Findings?
 - One should consider energy during design and O&M processes
 - In one case, facility energy use (space heating), not just system design, can offer savings in energy use
 - Process, institutional, administrative barriers exist and may make design changes difficult
 - Energy issues probably not considered at these two sites

Building a scientific foundation for sound environmental decisions

- Energy Production Landfills
 - Landfills create methane gas
 - Gas can be collected and used to create electricity with microturbines
 - Microturbines are tolerant of lower methane content fuels (need >35%)
 - At some sites, this power allows operation off-the-grid

Building a scientific foundation for sound environmental decisions

- Site 1 Landfill
 - 190 acre landfill in So. California
 - Estimated 38M cubic yards of municipal solid waste and 330M gallons of liquid industrial waste
 - Gas collection systems installed
 - 2500 cfm of methane collected
 - Higher BTU-valued gas used to power a microturbine system for electricity generation

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Plumbing into Landfill Microturbines

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Landfill Microturbine System

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Site 2 Landfill

- Power company installed energy recovery system at landfill site
- Landfill generates methane gas at 1150 cfm
- Four internal combustion engines use methane to produce a max total of 3200kW of power
- Systems require >51% methane (BTU content)
- Project won 1 of 4 national EPA Landfill Methane Outreach Program (LMOP) awards

Building a scientific foundation for sound environmental decisions

- Findings...
 - Long term costs of systems are approx 25% of purchasing power. Translated into savings of \$400K per year in power costs for Southern California landfill.
 - Logistics hurdles do exist local utilities, environmental regulations, DOT.
 - Capital and O&M costs do exist for microturbines; it takes time to "break even".
 - Not all microturbines accept all fuels must find a fit.

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

...More Findings

- Important to research the microturbine company and "turnkey" systems are preferable
- Consider maintenance contracts
- Energy generation can be preferable alternative to offgas treatment
- Energy generation can provide energy selfsufficiency for the site and perhaps profit
- Government grants are available (FEMP/LMOP) for landfill gas generators

Building a scientific foundation for sound environmental decisions

- Other Energy Production Options at Waste Sites:
 - Photovoltaic Arrays on open area waste sites
 - Windpower on open area waste sites
 - Windpower/Solar/Geothermal for remote power needs (e.g. well pumps)
 - Tire / Medical waste recycling (CoGen plants)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

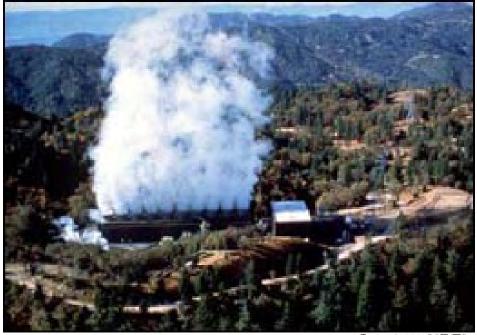
Photovoltaic Arrays

(Courtesy of Australian National University)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Windpower


(Courtesy of University of Colorado)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Geothermal Plants

Courtesy NREL

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

CoGeneration Plants

(Courtesy of Stanford University)

Building a scientific foundation for sound environmental decisions

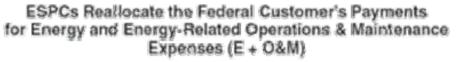
- Energy Web Sites
 - There are many energy websites most concentrate on energy as related to facilities management, renewable energy options or consumer issues
 - Optimization site (energy indirectly considered): http://www.epa.gov/oerrpage/superfund/action/ postconstruction/optimize.htm
 - EPA's Landfill Methane Outreach Program: http://www.epa.gov/Imop

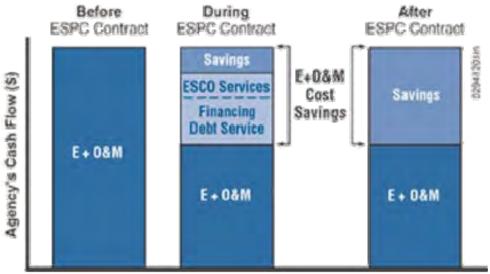
Building a scientific foundation for sound environmental decisions Energy Conservation and Production at Waste Cleanup Sites

EXISTING TOOLS

- Energy Saving Performance Contracts (ESPCs)
- Sankey Energy Flow Diagrams
- Evaluations for Modifying Energy Use

Building a scientific foundation for sound environmental decisions


- <u>Energy Saving Performance Contracts</u> (ESPCs)
 - Energy saving contract company (ESCO) identifies and evaluates energy-savings opportunities
 - Waste sites can enter into agreements with ESCOs
 - In contract, ESCO guarantees that savings measures will work, or they pay difference
 - Common in Europe; US DOE has program through Federal Energy Management Program (FEMP)



Building a scientific foundation for sound environmental decisions

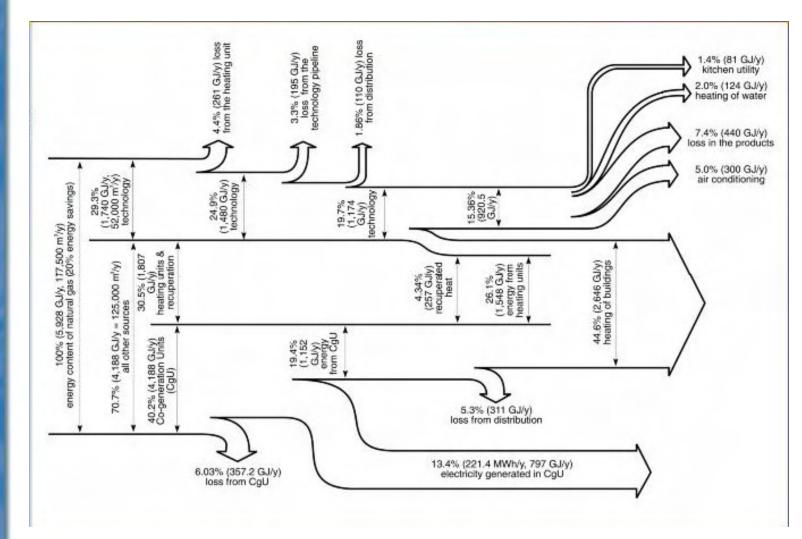
Energy Conservation and Production at Waste Cleanup Sites

Energy Saving Performance Contracts (ESPCs)

(Courtesy US DOE FEMP)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites


• <u>Sankey Energy Flow Diagrams</u>

- Graphic used to visualize energy balance in systems
- Explains relative "quantitative" relationships within the process
- Provides easy identification of areas where maximum consumption occurs and where impacts can be reduced

Energy Conservation and Production at Waste Cleanup Sites

RESEARCH & Example of Sankey Diagram (De Miclen Levice Slovakia)

(Courtesy Atom Prague, 2000, translated and modified by Katarina Mahutova, EPA Region 10)

Building a scientific foundation for sound environmental decisions

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

• Evaluations for Modifying Energy Use

- EPA and US ACE optimization tools exist; called Remedial Systems Evaluation (RSE) checklists
- In process of incorporating more energy specific issues indirectly into these optimization processes

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Evaluations for Modifying Energy Use: Checklist

Pumps, Motors & Other Equipment Used

Major	Wells	Make/	Capacity/	No. Units	Power	Hrs. Used/
Component	Served	Model	Size		Requirement/	day
Туре					Output	

Building a scientific foundation for sound environmental decisions

- General Ways to Reduce Energy
 - Determine if the system in place is overspecified or lacking in efficiency
 - Modify time of system operation to take advantage of:
 - system off-peak rate
 - cyclic pumping
 - batch processing

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

<u>Specific Ways to Reduce Energy</u>

- Air Stripping
- Advanced Oxidation
- Groundwater Extraction Systems
- Activated Carbon Adsorption Units

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Air Stripping

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

- <u>Air Stripping</u>
 - Are liquid and vapor flow rates the same as in the design spec? The air rate can often be reduced if the water rate is reduced.
 - Compare the present air emissions to the regulatory limits. Perhaps the offgas treatment can be reduced or discontinued.

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Advanced Oxidation

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Advanced Oxidation

- Determine whether any UV lamps can be turned off without reducing the treatment efficiency.
- Do any of the lamps need replacement? They could be drawing energy, but not reducing the contaminant concentrations.

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Groundwater Extraction Systems

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

- Groundwater Extraction Systems
 - Are the groundwater wells properly distributed to capture the plume most efficiently?
 - If natural attenuation is part of the remedy, are interim goals met whereby the pumping can be shut down?

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Activated Carbon Adsorption Units

(Courtesy JB Systems, Inc.)

(Courtesy - County of Maui, HI)

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

<u>Activated Carbon Adsorption Units</u>

- Are the carbon beds monitored for contaminant breakthrough to determine when changeout is necessary? (early changeout means more energy use)
- If spent carbon is regenerated onsite, can energy be saved?
- Are influent concentrations low enough to allow carbon units to be shut down?

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

• <u>Recommendations / Future Work</u>

- Develop customized software tools for energy conservation and production (examples follow)
- Develop model contracting terms implementing energy efficiency incentives, metrics and procurement guidelines
- Recommend incorporating these items into existing EPA guidance and training

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Energy Calculator Home Page

Address Attp://iris.fi.muni.cz/calcula	•	ATOR about tutorial
user name password	login registration	WHAT CALCULATOR IS This model has been prepared for the Danish National Railway Agency and the Danish state railways by: HOH Water Technology A/S NIRAS Consulting Engineers and Planners A/S
	quest login have you lost your password? click <u>here</u> . no data will be used, stored, shared by anybody else	Revisorsamvirket / Pannell Kerr Forster ScanRail Consult The model is part of the EU LIFE Project no. 96ENV/DK/0016 and is supported by the EU LIFE programme and the Technology Development programme of the Danish Environmental Protection Agency's Programme for Development of Technology, Soil and Groundwater

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Calculator - Demo Entry Screen

Address 🙆 http://	iris.fi.muni.cz/calculator-devel/v11/demo.html		👻 🔁 Go
	waste site energy management CALCULATO	CALCULATOR	
	BASIC SITE INFORMATI	ON	
demo	name	my testing waste site	
type of site	unit system contaminated media	US 💌 Groundwater 💌 🛕	
technology	contaminant group	PCBs	
outputs	LANDFILLING		
	distance to landfill (miles)	default 💌	
	transportation method	truck 💌	
	THERMAL DESORPTION		
	temperature (° F)	600° F 💌	
		calculate	

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Calculator - Selecting Site Parameters

Address 💰 http://iris.fi.muni.cz/	calculator-devel/v11/site.html				💌 🄁 G
wast	nerav	CULATO	DR	about tutorial	logout
	BASI	C SITE INFORMATI	ON		
demo type of site technology outputs		name city/state site size type unit system ntaminated media contaminant group clean up goal	SuperFund US VS Air Debris Groundwater Sediment Sludge Soil Subsurface Soil Surface Soil Surface Water Other		

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Calculator - Thermal Desorption page

waste	erav			
	management CALCULATOR		about tutorial logout	
	THERMAL DESORPTION			
demo	contaminants			
type of site	contaminant concentration (ppm)	default 💌		
technology	clean up goal (ppm)	default 🛛 💌		
1. landfilling 2. thermal desorption	soil characteristics			
	soil moisture (%)	default 💌		
outputs	soil organic content (%)	default 🛛 🔽		
·	soil clasification	default 💌		
	thermal desorption			
	temperature (° F)	600° F 🛛 👱		
	feed	default 👻		

Building a scientific foundation for sound environmental decisions **Energy Conservation and Production** at Waste Cleanup Sites

- Summary...
 - Waste cleanups at RCRA, Superfund and Brownfields sites are sometimes energy intensive for years
 - It makes sense to consider energy efficiency in their design and operation
 - Some sites may also offer energy production opportunities

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

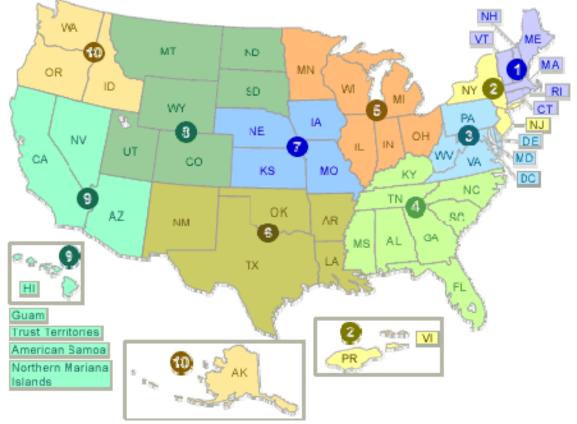
• ...<u>More Summary</u>

- Tools exist; more are being developed
- Important to consider energy issues during design and O&M together because operator is likely to be different than designer and may have no contractual interest in saving energy
- Issue Paper just published: "Introduction to Energy Conservation and Production at Waste Cleanup Sites" (EPA 542-S-04-001)
 - http://www.epa.gov/tio/tsp/issue.htm
 - http://www.clu-in.org

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Acknowledgements


- Idea Conception Mike Montgomery (Reg 9)
- Issue Paper Co-author and Calculator Lead -Katarina Mahutova (Reg 10)
- Superfund Engineering Forum and Technical Support Program
- Sponsor Technology Innovation Program (Kelly Madalinski)
- Tech Assistance US ACE (Ed Mead)
- Issue Paper Reviewers Many!

Building a scientific foundation for sound environmental decisions

Energy Conservation and Production at Waste Cleanup Sites

Mike Gill 415-972-3054 gill.michael@epa.gov Q&A????

