Note: this document may contain some elements that are not fully accessible to users with disabilities. If you need assistance accessing any information in this document, please contact ORD_Webmaster@epa.gov.

Feasibility of In Situ Sequesteration of Toxic Metals in
Flowback Water from Hydraulic Fracturing.

Andrew G. Stack Chemical Sciences Division, Oak Ridge National Laboratory

Introduction

. : : AFM Growth Hillock - Crystal Growth Theory: Net Growth Rates:
Subsurface ﬂ.wds plfo.d }Jced as wastewater in ona Caleite (1014) il o _pvh Mmoot Rates:
hydrofracturing activities, particularly from shale Surface surface = - 06 P
formations, are resulting in significant amounts of p = mSI +nlog([Ca*™]/[CO3™]) +b os|| T Model ST |
produced toxic and radioactive metal contaminants, . e intervals | /L
1-5 such as barium and radium ( kealCa™ Jkco; [CO5 ] ) 2041 eebeton |/ }

2 SU U ilum. v=a — £ see below) |,

| i an | Vo (kealca ke [C0T]) ) 2L ]
- Barium (Ba2*) is a toxic metal present in some - g
. 2

produced oil and gas field waters at levels of several | g 02 ; N

. . kca, .
thousand mg/L,%2 far exceeding the EPA Maximum i _ Dio. 0F _
Contaminant Limit (MCL) of 2 mg/L. “Ca““CO%*) _a_, | /68 ol at® s / ¢ | =

s suENETT ERRETT BRI BRI ERRTIT R e
ﬁﬁﬁﬁ ﬁﬁﬂ 0001 001 01 1 10 100 1000

 Radium is the primary Naturally Occurring Yol

Radioactive Material (NORM) in these fluids.34 Some
produced water from wells in the Marcellus shale
(PA) contain up to 18,000 pCi/L dissolved radium
(Raz*),6 far exceeding the MCL of 5 pCi/L. T — e
Figure 1. Barite scale in a pipe used to carry oil.

+ Barite (BaS04) ‘scales’in wellhead and borehole (http://theoildrum.com) . Process-based precipitation models can successfully predict the dependence of growth rate
equipment can also be radioactive due to radium on changing cation-to-anion ratio.

incorporation.?

Figure 3. New mineral precipitation model.8 Left) Growth rates of CaCOs are measured on single crystals using the
atomic force microscope (AFM). The velocities and densities of monomolecular steps are measured. Center) These
are combined into a model that predicts rates of growth per unit surface area. Right) Measured data points and
model prediction, along with 95% Confidence Intervals and growth rate in porous media.

- Other ions in solution can poison growth of certain phases, e.g., strontium inhibits growth

- Current practice is to treat the contaminants in produced waters on the surface, but of CaCO3s when the [Sr2+]/[Ca2+] = 1 (Figure 4). Will flowback water compositions inhibit
municipal and industrial water treatment plants are not currently equipped to deal with growth of (Ra,Ba)S04?
some of the contaminants.” Instead of above-ground treatment, a possible strategy may be
to induce precipitation of mineral phases containing the contaminants directly in the N A T 8 BN presesssnesas
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subsurface, reducing treatment of flowback water at the surface.
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What are the sources of the metals?

- Barite is present in Marcellus shale and related formations as nodules, veins, replacement oo 1 ,
. . step + Sry, = step-Sr
crystals. Its sulfur and oxygen isotope ratios don’t match seawater. Its source could be from
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Can we induce precipitation to reduce toxic metals?

- How do the components of the fracturing fluid affect precipitation rates? These include
viscosity modifiers, scale inhibitors, proppants etc. Scale inhibitors in particular will likely
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