An official website of the United States government.

This is not the current EPA website. To navigate to the current EPA website, please go to www.epa.gov. This website is historical material reflecting the EPA website as it existed on January 19, 2021. This website is no longer updated and links to external websites and some internal pages may not work. More information »

Greenhouse Gas Emissions

Overview of Greenhouse Gases

Pie chart that shows different types of gases. 81% from carbon dioxide fossil fuel use, deforestation, decay of biomass, etc., 9% from methane, 7% from nitrous oxide and 3% from fluorinated gases.Total Emissions in 2018 = 6,677 Million Metric Tons of CO2 equivalent. Percentages may not add up to 100% due to independent rounding.

Larger image to save or print
Gases that trap heat in the atmosphere are called greenhouse gases. This section provides information on emissions and removals of the main greenhouse gases to and from the atmosphere. For more information on the other climate forcers, such as black carbon, please visit the Climate Change Indicators: Climate Forcing page.

  • Carbon dioxide (CO2): Carbon dioxide enters the atmosphere through burning fossil fuels (coal, natural gas, and oil), solid waste, trees and other biological materials, and also as a result of certain chemical reactions (e.g., manufacture of cement). Carbon dioxide is removed from the atmosphere (or "sequestered") when it is absorbed by plants as part of the biological carbon cycle.
  • Methane (CH4): Methane is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and by the decay of organic waste in municipal solid waste landfills.
  • Nitrous oxide (N2O): Nitrous oxide is emitted during agricultural and industrial activities, combustion of fossil fuels and solid waste, as well as during treatment of wastewater.
  • Fluorinated gases: Hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, and nitrogen trifluoride are synthetic, powerful greenhouse gases that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for stratospheric ozone-depleting substances (e.g., chlorofluorocarbons, hydrochlorofluorocarbons, and halons). These gases are typically emitted in smaller quantities, but because they are potent greenhouse gases, they are sometimes referred to as High Global Warming Potential gases ("High GWP gases").

Each gas's effect on climate change depends on three main factors:

How much is in the atmosphere?

Concentration, or abundance, is the amount of a particular gas in the air. Larger emissions of greenhouse gases lead to higher concentrations in the atmosphere. Greenhouse gas concentrations are measured in parts per million, parts per billion, and even parts per trillion. One part per million is equivalent to one drop of water diluted into about 13 gallons of liquid (roughly the fuel tank of a compact car). To learn more about the increasing concentrations of greenhouse gases in the atmosphere, visit the Climate Change Indicators: Atmospheric Concentrations of Greenhouse Gases page.

How long do they stay in the atmosphere?

Each of these gases can remain in the atmosphere for different amounts of time, ranging from a few years to thousands of years. All of these gases remain in the atmosphere long enough to become well mixed, meaning that the amount that is measured in the atmosphere is roughly the same all over the world, regardless of the source of the emissions.

How strongly do they impact the atmosphere?

Some gases are more effective than others at making the planet warmer and "thickening the Earth's blanket."

For each greenhouse gas, a Global Warming Potential (GWP) has been calculated to reflect how long it remains in the atmosphere, on average, and how strongly it absorbs energy. Gases with a higher GWP absorb more energy, per pound, than gases with a lower GWP, and thus contribute more to warming Earth.

Note: All emission estimates are from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Top of Page

Carbon Dioxide Emissions

Carbon dioxide (CO2) is the primary greenhouse gas emitted through human activities. In 2018, CO2 accounted for about 81.3 percent of all U.S. greenhouse gas emissions from human activities. Carbon dioxide is naturally present in the atmosphere as part of the Earth's carbon cycle (the natural circulation of carbon among the atmosphere, oceans, soil, plants, and animals). Human activities are altering the carbon cycle–both by adding more CO2 to the atmosphere, and by influencing the ability of natural sinks, like forests and soils, to remove and store CO2 from the atmosphere. While CO2 emissions come from a variety of natural sources, human-related emissions are responsible for the increase that has occurred in the atmosphere since the industrial revolution.2

Pie chart of U.S. carbon dioxide emissions by source. 32% is from electricity, 34% is from transportation, 15% is from industry, 11% is from residential and commercial, and 7% is from other sources (non-fossil fuel combustion).Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Larger image to save or print
The main human activity that emits CO2 is the combustion of fossil fuels (coal, natural gas, and oil) for energy and transportation, although certain industrial processes and land-use changes also emit CO2. The main sources of CO2 emissions in the United States are described below.

  • Transportation. The combustion of fossil fuels such as gasoline and diesel to transport people and goods was the largest source of CO2 emissions in 2018, accounting for about 33.6 percent of total U.S. CO2 emissions and 27.3 percent of total U.S. greenhouse gas emissions. This category includes transportation sources such as highway and passenger vehicles, air travel, marine transportation, and rail.
  • Electricity. Electricity is a significant source of energy in the United States and is used to power homes, business, and industry. In 2018, the combustion of fossil fuels to generate electricity was the second largest source of CO2 emissions in the nation, accounting for about 32.3 percent of total U.S. CO2 emissions and 26.3 percent of total U.S. greenhouse gas emissions. The type of fossil fuel used to generate electricity will emit different amounts of CO2. To produce a given amount of electricity, burning coal will produce more CO2 than natural gas or oil.
  • Industry. Many industrial processes emit CO2 through fossil fuel consumption. Several processes also produce CO2 emissions through chemical reactions that do not involve combustion; for example, the production and consumption of mineral products such as cement, the production of metals such as iron and steel, and the production of chemicals. Fossil fuel combustion from various industrial processes accounted for about 15.4 percent of total U.S. CO2 emissions and 12.5 percent of total U.S. greenhouse gas emissions in 2018. Note that many industrial processes also use electricity and therefore indirectly result in CO2 emissions from electricity generation.

Carbon dioxide is constantly being exchanged among the atmosphere, ocean, and land surface as it is both produced and absorbed by many microorganisms, plants, and animals. However, emissions and removal of CO2 by these natural processes tend to balance, absent anthropogenic impacts. Since the Industrial Revolution began around 1750, human activities have contributed substantially to climate change by adding CO2 and other heat-trapping gases to the atmosphere.

In the United States, since 1990, the management of forests and other land (e.g., cropland, grasslands, etc.) has acted as a net sink of CO2, which means that more CO2 is removed from the atmosphere, and stored in plants and trees, than is emitted. This carbon sink offset is about 12 percent of total emissions in 2018 and is discussed in more detail in the Land Use, Land-Use Change, and Forestry section.

To find out more about the role of CO2 in warming the atmosphere and its sources, visit the Climate Change Indicators page.

Emissions and Trends

Carbon dioxide emissions in the United States increased by about 5.8 percent between 1990 and 2018. Since the combustion of fossil fuel is the largest source of greenhouse gas emissions in the United States, changes in emissions from fossil fuel combustion have historically been the dominant factor affecting total U.S. emission trends. Changes in CO2 emissions from fossil fuel combustion are influenced by many long-term and short-term factors, including population growth, economic growth, changing energy prices, new technologies, changing behavior, and seasonal temperatures. Between 1990 and 2018, the increase in CO2 emissions corresponded with increased energy use by an expanding economy and population, including overall growth in emissions from increased demand for travel.

Line graph that shows the U.S. carbon dioxide emissions from 1990 to 2018. In 1990 carbon dioxide emissions started around 5,000 million metric tons, peaked in 2007 at around 6,000 million metric tons, decreased to 5,300 million metric tons in 2018.Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Larger image to save or print

Reducing Carbon Dioxide Emissions

The most effective way to reduce CO2 emissions is to reduce fossil fuel consumption. Many strategies for reducing CO2 emissions from energy are cross-cutting and apply to homes, businesses, industry, and transportation.

EPA is taking common sense regulatory actions to reduce greenhouse gas emissions.

Examples of Reduction Opportunities for Carbon Dioxide
Strategy Examples of How Emissions Can be Reduced
Energy Efficiency

Improving the insulation of buildings, traveling in more fuel-efficient vehicles, and using more efficient electrical appliances are all ways to reduce energy use, and thus CO2 emissions.

Energy Conservation

Reducing personal energy use by turning off lights and electronics when not in use reduces electricity demand. Reducing distance traveled in vehicles reduces petroleum consumption. Both are ways to reduce energy CO2 emissions through conservation.

Learn more about What You Can Do at Home, at School, in the Office, and on the Road to save energy and reduce your carbon footprint.

Fuel Switching

Producing more energy from renewable sources and using fuels with lower carbon contents are ways to reduce carbon emissions.

Carbon Capture and Sequestration (CCS)

Carbon dioxide capture and sequestration is a set of technologies that can potentially greatly reduce CO2 emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO2. For example, capturing CO2 from the stacks of a coal-fired power plant before it enters the atmosphere, transporting the CO2 via pipeline, and injecting the CO2 deep underground at a carefully selected and suitable subsurface geologic formation, such as a nearby abandoned oil field, where it is securely stored.

Learn more about CCS.

Changes in Uses of Land and Land Management Practices

Learn more about Land Use, Land Use Change and Forestry Sector.

1 Atmospheric CO2 is part of the global carbon cycle, and therefore its fate is a complex function of geochemical and biological processes. Some of the excess carbon dioxide will be absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments.

2IPCC (2013). Climate Change 2013: The Physical Science Basis. Exit Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1585 pp.

Top of Page

Methane Emissions

In 2018, methane (CH4) accounted for about 9.5 percent of all U.S. greenhouse gas emissions from human activities. Human activities emitting methane include leaks from natural gas systems and the raising of livestock. Methane is also emitted by natural sources such as natural wetlands. In addition, natural processes in soil and chemical reactions in the atmosphere help remove CH4 from the atmosphere. Methane's lifetime in the atmosphere is much shorter than carbon dioxide (CO2), but CH4 is more efficient at trapping radiation than CO2. Pound for pound, the comparative impact of CH4 is 25 times greater than CO2 over a 100-year period.1

Globally, 50-65 percent of total CH4 emissions come from human activities.2, 3 Methane is emitted from energy, industry, agriculture, and waste management activities, described below.

  • Agriculture. Domestic livestock such as cattle, swine, sheep, and goats produce CH4 as part of their normal digestive process. Also, when animal manure is stored or managed in lagoons or holding tanks, CH4 is produced. Because humans raise these animals for food and other products, the emissions are considered human-related. When livestock and manure emissions are combined, the Agriculture sector is the largest source of CH4 emissions in the United States. For more information, see the Inventory of U.S. Greenhouse Gas Emissions and Sinks Agriculture chapter.
  • Energy and Industry. Natural gas and petroleum systems are the second largest source of CH4 emissions in the United States. Methane is the primary component of natural gas. Methane is emitted to the atmosphere during the production, processing, storage, transmission, and distribution of natural gas and the production, refinement, transportation, and storage of crude oil. Coal mining is also a source of CH4 emissions. For more information, see the Inventory of U.S. Greenhouse Gas Emissions and Sinks sections on Natural Gas Systems and Petroleum Systems.
  • Waste from Homes and Businesses. Methane is generated in landfills as waste decomposes and in the treatment of wastewater. Landfills are the third-largest source of CH4 emissions in the United States. Methane is also generated from domestic and industrial wastewater treatment and from composting. For more information, see the Inventory of U.S. Greenhouse Gas Emissions and Sinks Waste chapter.

Methane is also emitted from a number of natural sources. Natural wetlands are the largest source, emitting CH4 from bacteria that decompose organic materials in the absence of oxygen. Smaller sources include termites, oceans, sediments, volcanoes, and wildfires.

To find out more about the role of CH4 in warming the atmosphere and its sources, visit the Climate Change Indicators page.

Emissions and Trends

Methane emissions in the United States decreased by 18.1 percent between 1990 and 2018. During this time period, emissions increased from sources associated with agricultural activities, while emissions decreased from sources associated with landfills, coal mining, and from natural gas and petroleum systems.

Line graph that shows U.S. methane emissions from 1990 to 2018. Methane emissions gradually decreased from around 800 million metric tons of carbon dioxide equivalents in 1990 to around 650 million metric tons of carbon dioxide equivalents in 2018.Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2018 . These estimates use a global warming potential for methane of 25, based on reporting requirements under the United Nations Framework Convention on Climate Change.

Larger image to save or print

Reducing Methane Emissions

There are a number of ways to reduce CH4 emissions. Some examples are discussed below. EPA has a series of voluntary programs for reducing CH4 emissions, in addition to regulatory initiatives. EPA also supports the Global Methane Initiative Exit, an international partnership encouraging global methane reduction strategies.

Examples of Reduction Opportunities for Methane
Emissions Source How Emissions Can be Reduced
Industry

Upgrading the equipment used to produce, store, and transport oil and natural gas can reduce many of the leaks that contribute to CH4 emissions. Methane from coal mines can also be captured and used for energy. Learn more about the EPA's Natural Gas STAR Program and Coalbed Methane Outreach Program.

Agriculture

Methane from manure management practices can be reduced and captured by altering manure management strategies. Additionally, modifications to animal feeding practices may reduce emissions from enteric fermentation. Learn more about improved manure management practices at EPA's AgSTAR Program.

Waste from Homes and Businesses

Because CH4 emissions from landfill gas are a major source of CH4 emissions in the United States, emission controls that capture landfill CH4 are an effective reduction strategy. Learn more about these opportunities and the EPA's Landfill Methane Outreach Program.

References

1IPCC (2007). Climate Change 2007: The Physical Science Basis Exit. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom 996 pp.
2IPCC (2013). Climate Change 2013: The Physical Science Basis. Exit Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1585 pp.
3The Global Carbon Project Exit (2019).

Top of Page

Nitrous Oxide Emissions

In 2018, nitrous oxide (N2O) accounted for about 6.5 percent of all U.S. greenhouse gas emissions from human activities. Human activities such as agriculture, fuel combustion, wastewater management, and industrial processes are increasing the amount of N2O in the atmosphere. Nitrous oxide is also naturally present in the atmosphere as part of the Earth's nitrogen cycle, and has a variety of natural sources. Nitrous oxide molecules stay in the atmosphere for an average of 114 years before being removed by a sink or destroyed through chemical reactions. The impact of 1 pound of N2O on warming the atmosphere is almost 300 times that of 1 pound of carbon dioxide.1

Pie chart of U.S. nitrous oxide emissions by source. 78% is from agricultural soil management, 7% from stationary combustion, 6% from industry or chemical production, 4% from manure management, 4% from transportation, and 2% from other sources.Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Larger image to save or print
Globally, about 40 percent of total N2O emissions come from human activities.2 Nitrous oxide is emitted from agriculture, transportation, industry, and other activities, described below.

  • Agriculture. Nitrous oxide can result from various agricultural soil management activities, such as application of synthetic and organic fertilizers and other cropping practices, the management of manure, or burning of agricultural residues. Agricultural soil management is the largest source of N2O emissions in the United States, accounting for about 77.8 percent of total U.S. N2O emissions in 2018.
  • Fuel Combustion. Nitrous oxide is emitted when fuels are burned. The amount of N2O emitted from burning fuels depends on the type of fuel and combustion technology, maintenance, and operating practices.
  • Industry. Nitrous oxide is generated as a byproduct during the production of chemicals such as nitric acid, which is used to make synthetic commercial fertilizer, and in the production of adipic acid, which is used to make fibers, like nylon, and other synthetic products.
  • Waste. Nitrous oxide is also generated from treatment of domestic wastewater during nitrification and denitrification of the nitrogen present, usually in the form of urea, ammonia, and proteins.

Nitrous oxide emissions occur naturally through many sources associated with the nitrogen cycle, which is the natural circulation of nitrogen among the atmosphere, plants, animals, and microorganisms that live in soil and water. Nitrogen takes on a variety of chemical forms throughout the nitrogen cycle, including N2O. Natural emissions of N2O are mainly from bacteria breaking down nitrogen in soils and the oceans. Nitrous oxide is removed from the atmosphere when it is absorbed by certain types of bacteria or destroyed by ultraviolet radiation or chemical reactions.

To find out more about the sources of N2O and its role in warming the atmosphere, visit the Climate Change Indicators page.

Emissions and Trends

Nitrous oxide emissions in the United States have remained relatively flat between 1990 and 2018. Nitrous oxide emissions from mobile combustion decreased by 63.7 percent from 1990 to 2018 as a result of emission control standards for on-road vehicles. Nitrous oxide emissions from agricultural soils have varied during this period and were about 7.0 percent higher in 2018 than in 1990, primarily driven by increasing use of nitrogen fertilizers.

Line graph that shows U.S. nitrous oxide emissions from 1990 to 2018. In 1990 emissions were at about 360 million metric tons of carbon dioxide equivalents. Emissions peaked in 1998 around 390 million, then decreased to around 360 million in 2018.Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Larger image to save or print

Reducing Nitrous Oxide Emissions

There are a number of ways to reduce emissions of N2O, discussed below.

Examples of Reduction Opportunities for Nitrous Oxide Emissions
Emissions Source Examples of How Emissions Can be Reduced
Agriculture

The application of nitrogen fertilizers accounts for the majority of N2O emissions in the United States. Emissions can be reduced by reducing nitrogen-based fertilizer applications and applying these fertilizers more efficiently,3 as well as modifying a farm's manure management practices.

Fuel Combustion
  • Nitrous oxide is a byproduct of fuel combustion, so reducing fuel consumption in motor vehicles and secondary sources can reduce emissions.
  • Additionally, the introduction of pollution control technologies (e.g., catalytic converters to reduce exhaust pollutants from passenger cars) can also reduce emissions of N2O.

Industry
  • Nitrous oxide is generally emitted from industry through fossil fuel combustion, so technological upgrades and fuel switching are effective ways to reduce industry emissions of N2O.
  • Production of adipic acid results in N2O emissions that can be reduced through technological upgrades.

References

1 IPCC (2007) Climate Change 2007: The Physical Science Basis Exit. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom 996 pp.
2IPCC (2013). Climate Change 2013: The Physical Science Basis Exit. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1585 pp.
3EPA (2005). Greenhouse Gas Mitigation Potential in U.S. Forestry and Agriculture Exit. U.S. Environmental Protection Agency, Washington, DC, USA.

Top of Page

Emissions of Fluorinated Gases

Unlike many other greenhouse gases, fluorinated gases have no natural sources and only come from human-related activities. They are emitted through their use as substitutes for ozone-depleting substances (e.g., as refrigerants) and through a variety of industrial processes such as aluminum and semiconductor manufacturing. Many fluorinated gases have very high global warming potentials (GWPs) relative to other greenhouse gases, so small atmospheric concentrations can have disproportionately large effects on global temperatures. They can also have long atmospheric lifetimes—in some cases, lasting thousands of years. Like other long-lived greenhouse gases, most fluorinated gases are well-mixed in the atmosphere, spreading around the world after they are emitted. Many fluorinated gases are removed from the atmosphere only when they are destroyed by sunlight in the far upper atmosphere. In general, fluorinated gases are the most potent and longest lasting type of greenhouse gases emitted by human activities.

There are four main categories of fluorinated gases—hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and nitrogen trifluoride (NF3). The largest sources of fluorinated gas emissions are described below.

  • Substitution for Ozone-Depleting Substances. Hydrofluorocarbons are used as refrigerants, aerosol propellants, foam blowing agents, solvents, and fire retardants. The major emissions source of these compounds is their use as refrigerants—for example, in air conditioning systems in both vehicles and buildings. These chemicals were developed as a replacement for chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) because they do not deplete the stratospheric ozone layer. Chlorofluorocarbons and HCFCs are being phased out under an international agreement, called the Montreal Protocol. HFCs are potent greenhouse gases with high GWPs, and they are released into the atmosphere during manufacturing processes and through leaks, servicing, and disposal of equipment in which they are used. Newly developed hydrofluoroolefins (HFOs) are a subset of HFCs and are characterized by short atmospheric lifetimes and lower GWPs. HFOs are currently being introduced as refrigerants, aerosol propellants and foam blowing agents.
  • Industry. Perfluorocarbons are produced as a byproduct of aluminum production and are used in the manufacturing of semiconductors. PFCs generally have long atmospheric lifetimes and GWPs near 10,000. Sulfur hexafluoride is used in magnesium processing and semiconductor manufacturing, as well as a tracer gas for leak detection. HFC-23 is produced as a byproduct of HCFC-22 production and is used in semiconductor manufacturing.
  • Transmission and Distribution of Electricity. Sulfur hexafluoride is used as an insulating gas in electrical transmission equipment, including circuit breakers. The GWP of SF6 is 22,800, making it the most potent greenhouse gas that the Intergovernmental Panel on Climate Change has evaluated.

To find out more about the role of fluorinated gases in warming the atmosphere and their sources, visit the Fluorinated Greenhouse Gas Emissions page.

Emissions and Trends

Overall, fluorinated gas emissions in the United States have increased by about 83.4 percent between 1990 and 2018. This increase has been driven by a 268.8 percent increase in emissions of hydrofluorocarbons (HFCs) since 1990, as they have been widely used as a substitute for ozone-depleting substances. Emissions of perfluorocarbons (PFCs) and sulfur hexafluoride (SF6) have actually declined during this time due to emission reduction efforts in the aluminum production industry (PFCs) and the electricity transmission and distribution industry (SF6).

Line graph that shows U.S. fluorinated gas emissions from 1990 to 2018. Fluorinated gas emissions have increased from approximately 100 million metric tons of carbon dioxide equivalents in 1990 to just below 180 in 2018.Note: All emission estimates from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018.

Larger image to save or print

Reducing Fluorinated Gas Emissions

Because most fluorinated gases have a very long atmospheric lifetime, it will take many years to see a noticeable decline in current concentrations. However, there are a number of ways to reduce emissions of fluorinated gases, described below.

Examples of Reduction Opportunities for Fluorinated Gases
Emissions Source Examples of How Emissions Can be Reduced
Substitution of Ozone-Depleting Substances in Homes and Businesses

Refrigerants used by businesses and residences emit fluorinated gases. Emissions can be reduced by better handling of these gases and use of substitutes with lower global warming potentials and other technological improvements. Visit EPA's Ozone Layer Protection site to learn more about reduction opportunities in this sector.

Industry

Industrial users of fluorinated gases can reduce emissions by adopting fluorinated gas recycling and destruction processes, optimizing production to minimize emissions, and replacing these gases with alternatives. EPA has the following resources to manage these gases in the Industry sector:

Electricity Transmission and Distribution

Sulfur hexafluoride is an extremely potent greenhouse gas that is used for several purposes when transmitting electricity through the power grid. EPA is working with industry to reduce emissions through the SF6 Emission Reduction Partnership for Electric Power Systems, which promotes leak detection and repair, use of recycling equipment, and employee training.

Transportation

Hydrofluorocarbons (HFCs) are released through the leakage of refrigerants used in vehicle air-conditioning systems. Leakage can be reduced through better system components, and through the use of alternative refrigerants with lower global warming potentials than those presently used. EPA’s light-duty and heavy-duty vehicle standards provided incentives for manufacturers to produce vehicles with lower HFC emissions.

Top of Page

References

1IPCC (2007) Climate Change 2007: The Physical Science Basis Exit. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press. Cambridge, United Kingdom 996 pp.